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List of notation 

Proj(H) classical model of sharp quantum logic, modeled on 

a Hilbert space H 

£(%) classical model of unsharp quantum logic, modeled on 

a Hilbert space H 

F(G,u) interval effect algebra (as defined in the section 1.2) 

A(t,s) A-operator (as defined in Definition 1.4.2) 

di(C), di{C) facets of a cuboid C (introduction to the section 2.1) 

Through the whole thesis we follow this convention in using symbols: 

x finite-dimensional observable 

{xt\t G M} one-dimensional spectral resolution 

F finite-dimensional spectral resolution 

r, s, t , . . . n-tuples of reals 

r{, S{,U,... i-th coordinates of n-tuples r, s, t , . . . 

E effect algebra 

(G, u), (H, v) unital po-groups 

C, T>, £,... cuboids (as defined in the section 2.1) 

a, f3,7,... vertices of cuboids 

Through the whole thesis we use the following abbreviations: 

(RDP) Riezs decomposition property 

(LP) Lifting property (Definition 2.1.3) 
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Introduction 

The P h D thesis concerns the question for which algebras related to the 
logic of quantum mechanics there is a one-to-one correspondence between 
observables and spectral resolutions. Observables are by definition certain 
a-homomorphisms from Borel cr-algebra B(M) to a quantum structure C (typ
ically effect algebra) and each observable gives rise to a spectral resolution 
as its distributive function. The hardest part of the problem in question is 
to find some conditions on £ , such that the spectral resolutions (considered 
as an independent concept - certain mappings B(M) —> C) uniquely extend 
to observables. 

The problem is an abstraction of the well-known result in the classical 
probability theory, where the Borel probabilistic measures are in one-to-one 
correspondence with their distribution functions. The reconstruction of a 
measure is possible (in the classical case) by the Caratheodory's extension 
theorem, which states that each a-additive measure on a ring of sets has 
a unique extension to a a-additive measure on the generated a-algebra. In 
our case, we take for the ring the one generated by all half-open intervals 
[t,s), t, s G K (each spectral resolution naturally defines such sub-additive 
measure). In the literature, looking for the extended measure is known as 
the measure extension problem, and when the answer is positive, we say that 
measure extension property ( M E P ) holds. 

As time passes the problem of measure extension was considered for mea
sures with values in more general algebraic structures. R. Sikorski in [Sik69] 
threats the case of Boolean algebras - he showed there that the so-called weak 
cr-distributivity condition on the Boolean algebra has a key role. Sikorski 
provided proof (which arises by communication with him and K . Matthes) 
that the weak a-distributivity is a sufficient condition for ( M E P ) . O n the 
other hand, J . D . Wright in 1971 (see [Wri71]) proved, that the weak cr-
distributivity is a necessary (and so equivalent) condition for the measure 
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extension (to be precise, Sikorski distinguished strong and weak a - M E P , 
where the weak one is equivalent to weak cr-distributivity). In fact, Wright 
dealt with the problem on a more general level of lattice ordered vector 
spaces. These results were later reproved by Fremlin in [Fre75] in a simpler 
way. Fremlin's proof is elementary in the sense that no representation the
orems are used and the proof utilizes only the countable axiom of choice. 
The proof is proceeded inside the algebraic structure of Riesz spaces and 
could be interpreted as a tricky simulation of the classical e, 5 calculus using 
weak-a-distributivity. 

The Fremlin's approach was then adopted by B . Riecan, who presented a 
measure extension construction on MV-algebras (1-groups) in [RT97], where 
probability theory for MV-algebras is systematically built. Riecan also has 
some partial results for non-lattice ordered effect algebras in [Rie98], but a 
full measure extension construction is given (in the cited article) only for 
the a-complete MV-algebras. Hence, it seems to be the case, that Fremlin's 
technique is limited by a lattice structure. 

In contrast to the mentioned results, in the thesis, we wil l consider the 
measure extension problem only for the measures based on the Borel subsets 
of W1. While for the range structure we wil l take some quantum structure, 
typically an effect algebra with ( R D P ) , hence a more general structure than 
an MV-algebra in the work of Riecan. 

A n important moment in the research of the algebraic quantum logic was 
an observation, that most of the important quantum structures are repre-
sentable as intervals in the partially ordered Abelian groups (as is argued by 
Foulis and Greechie in [GF95]). This observation led to a bridge between 
quantum logic and the well-developed theory of po-groups. Two important 
representation theorems, which have prime importance in the P h D thesis, 
were achieved thanks to this bridge: Each effect algebra with Riesz Decom
position Property is representable as an interval in a po-group satisfying 
interpolation property (in fact there is a categorical equivalence between the 
category of effect algebras with (RDP) and the category of unital Abelian 
po-groups with interpolation - a result of K . Ravindran [Rav96]). The second 
important theorem is a kind of Loomis-Sikorski theorem: Each monotone a-
complete effect algebra with (RDP) can be represented as a a-homomorphic 
image of so-called effect tribe of fuzzy-sets (proved in [BCD06]). 

The second mentioned theorem is the main tool for applications of the 
lifting technique presented in the P h D thesis: extending spectral resolution 
F on an effect algebra E for which we have Loomis-Sikorski representation 
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7r : T —> E proceeds in three steps. First, we lift the spectral resolution to a 
spectral resolution F on T , the lifted spectral resolution can be using some 
standard results from the probability theory extended to an observable x, 
which gives the desired observable X by composing with IT. Just described 
technique was used in [DK14] for E being a monotone cr-complete effect al
gebra with (RDP) . Note that this case has not been approached by Fremlin's 
technique. 

In the P h D thesis, after introducing basic concepts in the Chapter 1, 
there are provided generalisations of the results of Dvurecenskij and Kukova 
in several directions: 

(I) generalisation to finite-dimensional observables (i.e., these having as 
domain B(Rn),n£ N) , 

(II) weakening the monotone completeness, by considering lexicographic 
interval effect algebras F(HxG, (u, 0)), where (G,u) is a Dedekind 
cr-complete po-group with interpolation and (H, u) is any unital 
(Abelian) po-group, 

(III) combination of (I—II)-

In the first generalization, described in Chapter 2, the lifting process become 
much more complicated, in contrast to the one-dimensional case, where the 
lifting is a rather simple part. The lifting of finite-dimensional resolutions 
is presented in the general situation of a a-projection TT : (H, v) —> (G, u) 
of monotone cr-complete Abelian po-groups. It turns out, that so-called 
lifting property (certain strengthening of surjectivity which holds in the cases 
of Loomis-Sikorski theorems) is a necessary and sufficient condition for the 
lifting process. The lifting is achieved by iterating the inductive process and, 
as one might expect, it strongly utilizes (a countable version of) the axiom 
of choice. This part of the P h D thesis covers the results from [DL20d] 
and [DL20a]. 

In the second and the third generalisation, described in Chapter 3, only 
spectral resolutions satisfying certain additional properties extend to observ
ables. The generalisations are characteristic by a need to refine the arguments 
of most of the proofs. The main result considering a finite-dimensional ob
servable on a lexicographic effect algebra is reached through many technical 
lemmas. This part generalises the results form [DL20b],[DL19],[DL19] and 
[DLce]. 
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In the last Chapter 4, a classical approach to measure extension (via 
outer measures) is exhibited in the case of monotone a-complete interval 
effect algebras having faithful a-state. The assumption of the existence of 
faithful a-state is a strong one, for example, each monotone a-complete effect 
algebra with (RDP) is a lattice, whenever obtains such a state. Nevertheless, 
in Chapter 4, the property of (RDP) is not assumed, hence the main result 
is not covered by the ones from the previous chapters achieved by the lifting 
procedure. 

The aim of the PhD thesis 
A general aim of the P h D thesis is to establish a one-to-one correspondence 
between (finite-dimensional) observables and spectral resolutions for as many 
quantum structures as possible. In more detail, the original motivation was 
to develop methods from [DK14] to finite-dimensional cases and to study the 
effect of the lexicographic product on the correspondence in question. 

Methods 
The approach to the problem is based on and limited by several representa
tions theorems: the ones representing effect algebras as intervals of partially 
ordered groups and Loomis-Sikorski-like representations of certain effect al
gebras as a a-projections of tribes of fuzzy sets. Moreover, some well-known 
results from the measure theory are used. 

Main Results 
The main results SX6 clS follows 

1. A one-to-one correspondence between finite-dimensional observables 
and spectral resolutions is established for the monotone a-complete 
effect algebras with Riesz Decomposition Property. 

2. Given a a-projection TT : T —> E of monotone a-complete interval 
effect algebras satisfying so-called lifting property, a process of lifting 
the finite-dimensional spectral resolutions of E to the ones of T is 
described. 
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3. For interval effect algebra F(HxG, (u, 0)), where (H, u) is an unital po-
group and G is a monotone a-complete po-group with interpolation, a 
classification of the spectral resolutions which extend to observables is 
given. 

4. The classical approach to the measure extension (via outer measure) 
is applied to establish the correspondence in question in the case of a 
monotone a-complete interval effect algebras with a faithful a-state. 
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Chapter 1 

Basic concepts 

In the chapter, some basic concepts are introduced: the related ordered struc
tures (effect algebras and partially ordered groups), finite-dimensional spec
tral resolutions and observables, and some essential theorems used in the 
following chapters. However, as the content of the thesis is all about ob
servables, the first section is devoted to motivating the definition of observ
ables and outlining how the concept of quantum structures encodes reasoning 
about physical experiments. 

1.1 Quantum structures from the a logico-
physical perspective 

In the spirit of W . Mackey, we describe an abstraction of a physical system 
as a triple (0,S,p), where O is a set of observables (measurable physical 
quantities), S is a set of states (possible states of the physical model) and 
p : S xO x B(R) —> [0,1] is some real valued mapping. We read p(s, A, A ) as 
the probability that in some state s we get a value in A when measuring an 
observable A. For such system several Mackey's axioms (I-VII) have to hold 
(as G . Mackey argues in [Mac63]) to ensure physically plausible properties. 
For the full list of Mackey's axioms see [CGG13], we wil l mention only some 
of them: 

(I) p(s,A,-) : B(R) —> [0,1] is a probability measure for each observable 
A and state s. 
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(II) Different states and observables are distinguishable by measuring: 

[(Vs G S, A G B(R)) ,p(s , Ax, A ) = p(s, A 2 , A)] ^ A, = A2, 

[(V4 eO,Ae B(R)),p(Sl,A, A ) = P(s2, A, A)] =>Sl = s2. 

Now we can thing of the ordered pairs (A, A ) in O x as certain 
experimental propositions about the system "we observe a value in A , when 
measuring A". A n d we obtain a structure C called quantum logic after identi
fying those pairs (Ai, Ax) , (A2, A2) which are indistinguishable by measuring, 
i.e., whenever p(s, Ai, A i ) = p(s, A2, A2) holds in each state s G S. Equiva-
lently, we can define C as a collection of [0,l]-valued mappings with definition 
domain S (those which arise from experimental propositions). On L we can 
naturally define some structure: an ordering, a compatibility relation and an 
ortho-complementation. If a, b G C have representatives (Ax, Ax) , (A2,A2) 
such that: 

• p(-, Ai, A i ) < p(-,A2, A2) pointwise, then we set a < b, 

• Ai = A2, we call a, b compatible, 

• A i = A2, we call a the complement of b. 

Mackey stated several additional axioms which guarantee richness of both 
states and observables and enforce the quantum logic to be a a-orthocom-
plete orthomodular poset. Moreover, Mackey demanded (via axiom (VII)) 
the resulting logic to be isomorphic to the classical quantum logic (introduced 
by Neumann and Birkhoff, [BN36]) of projections on closed subspaces of a 
Hilbert space (we wil l describe this model later on in this section). This 
condition was considered by many authors (including Mackey) as an ad-hoc 
assumption which led to a research on how to replace the presence of axiom 
(VII) by additional abstract conditions. 

A different approach (developed in the work of Gudder) is to take the 
derived logic C as a primitive concept, while the observables and states as 
derived: observables are identified with a-homomorphisms x : B(M) —> £, 
this follows the assignment 

xA H> [A h> (A, A)]. 

Similarly, states are identified with probability measures C —> [0,1], this 
originates in the prescription 

s h> [(A, A ) h> p(s, A, A)] . 

11 



The two described approaches are on some level equivalent: Each pair ( £ , S) 
of a-orthocomplete orthomodular poset C and order-determining set of states 
S (probability measures on C) leads to a triple (S,0,p), where observables 
O are obtained as is described before and formula p(s, A, A ) := (s o x^ ) (A) 
holds. Such triple satisfies axioms (I-VII) and the corresponding quantum 
logic £ ' is isomorphic to C. 

In the standard model of quantum logic (introduced by J . von Neuman 
and G . Birkhoff in their seminal paper [BN36]) we assume some Hilbert space 
H and we define C as the lattice of all projections on closed linear subspaces 
of %, denoted Pro j (H) . In the case % is separable and of dimension at least 
3 the states correspond to density operators (i.e., linear, bounded, trace-class 
operators of trace equal to 1). The one-to-one correspondence is assured by 
the celebrated Gleason's theorem and is performed by Born rule: given a 
density operator A, each projection P G Proj (H) is sent to 

P i—> t r ( A P ) . 

For observables we take all projection valued measures B(M) —> Pro j (H) , 
which correspond to self-adjoint operators on W, this is a consequence of the 
well-known Spectral theorem. This model satisfies the Mackey'saxioms (in 
fact it served as a motivating example). 

Later on, various other approaches to quantum logic were introduced, 
which resulted in a vast class of algebras labelled as quantum structures. 
Even in the '70s, Fraassen described the variety of results as "Labyrinth of 
quantum logic" (see [Fra74]). We shall briefly describe two important classes 
of algebras: orthoalgebras and its generalisation: effect algebras (which is a 
basic structure in the thesis). 

A n orthoalgebra is a partial algebra (E, © , 0 , 1 ) , where © is a partially 
defined associative and commutative operation having 0 as a neutral element. 
Moreover, each element a G E asserts a unique complement a' such that 
a © a1 = 1 and if a © a exists, then a = 0. Orthoalgebras arise as a certain 
answer to the problem with tensor products of orthomodular structures. As 
is proved in[FR79], the category of quantum logics in Mackey sense is not 
closed under tensoring, which is a serious problem as the tensor product is an 
algebraic counterpart of compounding two physical systems. The category of 
orthoalgebras is argued to be the smallest category containing all the unital 
orthomodular lattices and yet be closed under tensor products. Moreover, 
orthoalgebras were advocated by a nice relation with the test spaces (an 
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important semantic for quantum logic introduced in the 70s and developed 
in the 80s by D. J . Foulis and C . H . Randall). 

Even more general algebraic concept for quantum logic is provided by 
the effect algebras. These arise from orthoalgebras by replacing the last (in 
previous paragraph) mentioned assumption by: a © 1 exists implies a = 0. 
The effect algebras were introduced by Foulis and Benett in 1994 [FB94], as 
algebraic semantic for so-called unsharp quantum logic developed (mainly) 
by Ludwig ([Ludl3]). The basic idea is to reflect the inaccuracy of measuring 
by some concrete macroscopic device. Which is sometimes called the second 
degree of fuzziness. We can simply demonstrate the idea on the Mackey's 
model following the construction in [CL94]: Mackey's axiom (III) (yet not 
mentioned in this section) assures for each observable A and a real Borel 
measurable function / existence of an observable f(A) (uniquely) given by 
the relation 

p(s,f(A),A)=p(s,A,f-l(A)). (1.1) 

Now, given a question (A, A), we have an observable XA(A), which is called 
an event. Hence the events are the observables, which result into yes-no an
swer (yield values in {0,1}). In Gudder's approach, where an observable A 

corresponds to an C-valued measure XA '• Biß) —> C, the observable f(A) cor
responds simply to XA°We can characterize events as these observables 
£"s satisfying 

if {0,1} C A C , 

if {0,1} C A , 

if 1 e A, 0 g A , 

if 0 e A, 1 g A . 

One can prove (from Mackey's axioms), that events are in one-to-one corre
spondence with the elements of the logic C Now, if we replace XA i n the 
definition of events, by some fuzzy set WA (i.e., WA : K —> [0,1] is a Borel 
measurable function with uj^iO) C A c ) we obtain kind of generalized events, 
which are called effects. A n d all the effects compose into so-called unsharp 
logic. The skip from the sharp sets coded by x '• Bß) x R —> {0,1} to 
fuzzy sets coded by some ui : Biß) x R —> [0,1] is interpreted in the concept 
of measurement as a skip from an idealized macroscopic device to a con
crete (non-accurate) macroscopic device. The incorporation of fuzziness is 
advocated by an idea formulated by R. Gilles (in [Gil70]) as "The physical 

p(s,E,A) 

0 

p(s,E,{l}) 

As,E, {0}) 
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significant assertions of classical or quantum mechanics must refer to phys
ically or concretely realizable device, for no other devices can actually be 
realized." A detailed investigation of the unsharp modification of Mackey's 
and Gudder's approach to quantum logic is in [CL94]. 

While Pro j (H) , % is a Hilbert space, is the prototypical example of the 
sharp quantum logic, in the case of the unsharp quantum logic we take £{%), 
whose elements are all the self-adjoin operators on % between 0% and 1%. 

1.2 Effect algebras and Abelian po-groups 
As we already have outlined in the previous section the effect algebras were 
introduced by Foulis and Bennett in [FB94] in the nineties to capture a 
general concept of quantum structures algebraically. 

D e f i n i t i o n 1.2.1. We call effect algebra a partial algebra (E;+,',0,1) of 
type (2,1, 0, 0), such that for each a,b,c<EE 

1. a+b=b+a, 

2. (a+b)+c=a+(b+c), 

3. a1 is the unique element such that a + a1 = 1, 

4- if a + 1 is defined then a = 0. 

Where we read the first two identities as: when one of the sides is defined, 
then the other is defined as well and equality holds. 

Moreover, we define a partial ordering on E as a < b iff there is c G E, 
such that a + c = b. Then the constant 0 (1, resp.) is the lowest (the greatest, 
resp.) element. 

Let us list several important algebras, that could be arranged as effect 
algebras: 

1. Boolean algebras, where we take for + the union operation restricted 
to the disjoint elements. 

2. More generally MV-algebras: That is algebras M = (M, © / , 0,1) of 
type (2,1,0,0), where ( M ; + , 0) is a commutative monoid and the fol
lowing identities are satisfied: 
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(i) a" = a, 

(ii) a © 1 = 1, 

(iii) a © (a © by = b © (b © a')'. 

One can define on every MV-algebra M an ordering < in analogy to 
the case of effect algebras. Then M turns out to be a lattice and we 
obtain an (lattice-ordered) effect algebra by restricting © to the pairs 
(a, b) with a < b'. 

3. Even more generally, every interval [0, u] in a partially ordered Abelian 
group (G, + g , <), (of course 0 < u), where we define the complemen
tation as a' = u — a and for + we take the restriction of +G-

4. The classical model of sharp quantum logic Proj(H) consisting of all 
projection in a Hilbert space T-L on its closed sub-spaces. 

5. The classical model of unsharp quantum logic S(H) of all Hermitian 
operators on a Hilbert space H between the zero operator and the 
identity operator. 

R e m a r k 1.2.2. the effect algebras which arise from MV-algebras (as 2. ex
ample describes) are called effect MV-algebras. These are defined in the class 
of effect algebras as the lattice ordered effect algebras satisfying the identity 
(aV b) © a = bQ (a Ab). By a result from [CK97] there is a natural one-to-one 
correspondence between MV-algebras and effect MV-algebras. The totaliza
tion of the partial operation + proceeds as a © b = a + (a' A b). Having this 
in mind we will sometimes treat some MV-algebra as an effect algebra. 

The interval effect algebras mentioned in the third point wi l l be the most 
important to us. We wil l denote them using the following notation: 

F{G,u) = {[0,u]-+;,0,u). (1.2) 

Let us briefly introduce some basic concepts from the theory of partially 
ordered groups (po-groups for short). A t first, note, that we wil l consider only 
Abelian groups, so we wil l not underline the abelian property, nevertheless, it 
wil l be indicated by using + for the group binary operation. A po-group is a 
group (G, +, 0) enriched with a partial ordering <, such that for all a, b, c G G 
we have a<b^a + c<b + c. We say that an element u G G is a strong 
unit, if 0 < u and each a G G is dominated by some n • u, n G N . A n ordered 
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pair (G, u) of a po-group G and its strong unit is called unital po-group. We 
call a po-group G directed if each pair a, b G G is dominated by some c £ G 
(note, that the unital po-groups are always directed). In particular, if each 
pair a, b G G has the supreme aVb, we call G a lattice-ordered group (/-group 
for short). 

A n important generalization of the lattice property is so called inter
polation property, which states, that for each gi,g2,hi,h2 £ G, inequalities 
9i,9i < hi, h2 entail an element k G G, such that gi, #2 < k < hi, h2. If (G, u) 
is a unital po-group with interpolation, the resulting interval effect algebra 
T(G, u) satisfies Riesz decomposition property ( R D P in short), which requires 
that if ai + a2 = b\ + 62, there are four elements {QJ G E: i,j G {1,2}}, 
such that a i = Cn + c i 2 , a 2 = c 2 i + c 2 2 , h = Cn + c 2 i and b2 = c12 + c 2 2 -
A basic reference to the theory of po-groups with interpolation is the mono
graph [G0086]. 

The structures we wil l be working with, wi l l always satisfy some kind 
of completeness, most frequently a monotone a-completness. A poset (P; < 
) is monotone a-complete if each ascending (descending, resp.) countable 
bounded sequence a\ < a2 < • • • < b (ai > a2 > • • • > b, resp.) of elements 
of P, has supreme (infimum, resp.). In the case of po-groups we call this 
property Dedekind a-completeness. 

Now having a countable system {at: t G T} of elements of an effect 
algebra E, we say, that the system is summable, if for each finite subset P 
of T , the element ap = X X a * : t <E P} exists in E, and in addition, if the 
element a = \/{ap: P Q T finite } is defined in E, the element a is said to 
be the sum of {at: t G T} and we write a = ^2t€Tat. Observe, that in the 
case of monotone a-complete effect algebra, every summable system has its 
sum. 

1.3 Representation theorems 
In this section, we wil l state several important and well-known theorems, 
which play a key role. The first one (proved by Ravindran in [Rav96]) pro
vides a representation of effect algebras with (RDP) as interval effect alge
bras. 

T h e o r e m 1.3.1. Prescription F, given by (1.2), defines categorical equiv
alence between the categories of unital po-groups with interpolation and the 
category of effect algebras with (RDP). 
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The statement of the theorem assumes a suitable concept of morphisms 
in the two categories. A n d these are naturally defined, so that they preserve 
the structure of effect algebras and unital po-groups, respectively. 

A n important addition to Ranvindran's theorem is the following Lemma 
(for poof see [G0086], Prop. 16.9): 

L e m m a 1.3.2. Given unital po-group (G,u), the effect algebra F(G,u) is 
monotone a-complete if and only if G is Dedekind a-complete. 

The two mentioned theorems provide great comfort in calculations in a 
monotone a-complete effect algebra E, as we can ignore the fact, that + is 
only partially defined in E with ( R D P ) . One only needs to check, that the 
result R of a calculation fits in the inequalities 0 < R < u. 

It is also worth noting that the categorical equivalence in Theorem 1.3.1 
restricts to the one between unital ^-groups and MV-algebras (see [Mun86]). 

The next representation theorem is a kind of Loomis-Sikorski theorem 
and it represents monotone a-complete effect algebras with (RDP) as o~-
projections of effect tribes of fuzzy sets. The result is prooved in [BCD06]. 

D e f i n i t i o n 1.3.3. Let Q, 7̂  0 be a set and T be some subset 0/[0, l]n. We 
call T an effect-tribe if it satisfies conditions: 

W 1 G T, 

(11) iffeT, thenl-f eT, 

(Hi) if f, g G T and f < 1 — g, then f + g G T , 

(iv) if (fn)n is a monotone sequence of elements of T, then its pointwise 
limit f (fn /* f) belongs to T• 

T h e o r e m 1.3.4. Let E be a monotone a-complete effect algebra with (RDP). 
Then there exists a convex space tt, an effect-tribe T of fuzzy sets on Q, with 
(RDP) and a a-homomorphism h from T onto E. 

We wil l capture some details of the proof of the just stated theorem in the 
section 2.2, where we wil l prove, that the projection TT satisfies the so-called 
lifting property. 

we wil l also utilize some classical theorems from probability. Assume a 
set Q, and a class V of its subsets. We call V a Dynkin system (or A-system) 
if it contains £1 and is closed under proper differences (i.e., for A, B G £>, 

A n Bc whenever A D B) and countable monotone unions. Next, we call a 
class C of subsets of Q, a TT-system if it is closed under finite intersections. 
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T h e o r e m 1.3.5 (Sierpiriki, [Kal02], Thm. 1.1). Let C be a 7r-system andV 
a X-system of subsets of a set tt, such that C C T>. Then for the a-algebra 
o~(C) generated by C we have o~(C) C T>. 

1.4 Basic properties of n-dimensional spec
tral resolutions and n-dimensional obser-
vables 

In the section, we introduce the crucial notions of the thesis - n-dimensional 
spectral resolutions and n-dimensional observables on a monotone a-complete 
effect algebra, and we present the main properties of n-dimensional spectral 
resolutions 

We wil l use two kinds of orderings on the n-tuples of reals: 

(ti,...,tn) < ( s i , . . . ,s n ) for each i,U < Si and for some i,U < Si, 

(tu ..., tn) < (si , ...,sn) <^> for each i, U < s,. 

D e f i n i t i o n 1.4.1. Let E be a a-complete effect algebra. Then we call n-
dimensional observable any a-homomorphism x : B(M.n) —> E, that is a 
mapping satisfying: 

(i) xiW1) = I, 

(it) x(A U B) = x(A) + x(B) whenever A n B = 0 , 

(in) {A{}i /* A implies \Jix{Ai) = x(A). 

If, given an n-dimensional observable x on E = F(G,u), it gives arise to 
its distributive function: Fx : Rn —> T(G, u) by 

Fx(si, ...,sn) = x ( ( -oo , si) x • • • x (-oo, sn)), (si , ...,sn)e Rn. 

We call Fx an n-dimensional spectral resolution of x. We wil l be mostly 
concerned with the opposite process: finding an n-observable for a given n-
spectral resolution. For we wil l treat n-dimensional spectral resolutions as 
an independent concept given by Definition 1.4.3. In the definition, the most 
intricate condition to handle is the last stated - so-called volume condition. 
Volume conditions basically assure that an n-spectral resolution prescribes 
non-negative volume to certain n-dimensional cuboids in W1. Let us intro
duce the following notation, which we wil l use throughout the whole thesis: 
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D e f i n i t i o n 1.4.2. Given a function F : W1 —> i ? (usually pseudo Tri
dimensional spectral resolution), an integer i, 1 < % < n and two reals a < b, 
by A{(a, b)F : W1 —>• E we denote the function given by the prescription 

(ti,...,ti-i,ti+i,...,tn) i y F(ti,... ,b,... ,tn) — F(ti,...,a,...,tn). (1.3) 

D e f i n i t i o n 1.4.3. Let (G, u) be a Dedekind monotone a-complete po-group 
and let n > 1 be an integer. A n n-dimensional spectral resolution on E = 
T{G,u) is any mapping F : W1 —> F(G,u) such that 

F(a1,...,an)<F(t1,...,tn) if ( s i , . . . , s „ ) < ( * i , . . . , t „ ) , (1-4) 

\ / F ( s i , . . . , s n ) = u , (1.5) 
(si,...,s„) 

V F ( a i , . . . , a n ) = F ( t i , . . . , t n ) , (1.6) 
(si,...,S„)<C(tl,...,tn) 

/ \ F ( s i , . . . , s i + i , . . . , sn) = 0 for i = 1 , . . . , n, (1.7) 

A i ( a i , 6 i ) • • • An(an,bn)F > 0, /or eac/i aj, 6j G R,a* < 6»,i = 1,...,n. 
(1.8) 

Moreover, if in the equality (1.5) on/y i/ie inequality "<" holds, and the other 
four conditions are valid, we call F a pseudo n-dimensional resolution. 

We wil l often simplify the term n-dimension spectral resolution to n-
spectral resolution (and similarly in the case of observables). 

It is important to note that the monotonicity of F and Dedekind o-
completeness of G entail that all the suprema and infima on the left-hand 
sides of (1.5)-(1.7) exist in G. Indeed, to see (1.5), let (s/)/ and (t/)/ be two 
non-decreasing sequences in W1 going to (+oo, . . . , +oo). The monotonicity 
of F entails that the following suprema exist in G and are equal 

\jF(Sl)= \/ F(s) = \jF(tl). 
I sGRn / 

A n d we can similarly argue in the case of (1.7) and (1.8). 
Next, we make several remarks on the volume conditions. 
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R e m a r k 1.4.4. When we iterate Delta operators, as we do for example in the 
formulation of volume conditions, there may occur a switch in coordinates. 
For example, an application of A i ( a i , &i)A2(a2,62) has the same effect as an 
application of A ^ c ^ , &2 )Ai(a i , hi). Obviously, the Delta operators commute 
in certain sense, but the exact formula capturing the commutativity is rather 
intricate: 

A , ( a ' , 6 ' ) A , ( a » , 6 » ) = ( A - - ( 0 ' ' ' ' " ) A i ( 0 ' ' , ' ) - * « < * (1.9) 

Hence we will follow the convection that by Yli^i Aj(aj, hi), for I C { 1 , . . . , n}, 
we mean Ah(ah, bh) • • • Aik(aik, bik), where k = \I\ and H < i2 < • • • < ik 
are all the elements of 1. 

R e m a r k 1.4.5. Every n-dimensional semi-closed block A = (a\,bi) x • • • x 
(an, bn) is given by 2n vertices a = ( cu i , . . . , an), where cti G {a^, b{\ for each 
i = 1,. . . ,n. For each vertex a = (cu i , . . . , an), we set \a\ to be the number 
of cti's coinciding with in a = (ai,...,an). Then the volume condition 
can be expressed also in the form 

A i ( a i , 6i) • • • An(an, bn)F(Sl, ...,sn) = ..., an). (1.10) 

R e m a r k 1.4.6. The volume conditions and monotony are special types of 
more general inequalities 

( Q a ^ A ^ f ^ o , ( i . i i ) 

where I C {1 , . . . , n } and ai < hi for each i £ I (I is one-element set for 
monotony and n-element set for volume conditions). It turns out, that all 
inequalities of form (1.11) are consequences of the described extreme cases, 
if all the conditions in Definition 1.4-3 hold. However, through the process of 
lifting, which is presented in the next chapter, these general volume conditions 
will be of equal importance, hence we will call volume condition any inequality 
of form (1.11). 

P r o p o s i t i o n 1.4.7. Let F be an n-dimensional spectral resolution. Then all 
the volume conditions hold, that is 

{Y[At(at,bt))F>0, 
i<=I 

for each I C { 1 , . . . , n} and reals a\ < b\, % = 1, . . . , n. 
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Proof. We wil l use a downward induction along | / | . The case \I\ = n holds 
by assumption. Now suppose the statement holds whenever \I\ > k > 1, 
and choose some / , such that | / | = k. The function Aj(aj, bi))F is 
monotone in each coordinate by the induction hypothesis and we can expand 
it to the form . . . , tn-k) — T,~(t\,..., tn-k), where both E + and E ~ are 
sums of 2k~1 non-negative summands, and they are monotone, as well as the 
difference (by the induction hypothesis). We wil l prove for each s2, • • •, sn-k G 
M. inequality 

/ \ [ E + ( t i , s 2 , s n - k ) - S " ( t i , s 2 , s n - k ) ] > 0, (1.12) 
ti 

which in particular implies the desired volume condition. To achieve the 
inequality (1.12), assume we have two non-increasing sequences (aj)j, (bi)i 
in (G,u) (substituting E + , E ~ , respectively), such that (a^ — bi)i is non-
increasing as well (by the (k + l)-dimensional volume conditions) and = 
A A = 0. We have 

/\(di - k) > 0 

<̂> (Vi) a, - bi > f\aj - f\bj 
i j 

<̂> (Vi) at + f\bj > bi + f\ctj. 
i j 

A n d the last inequality is a consequence of 

(Vi, j G N) i < j =^ aj + bj >h + aJ7 

which in turn follows from the monotonicity of — bi. • 

Of course each n-spectral resolution Fx (associated to na n-observable x) 
satisfies the definition 1.4.3. For example the volume conditions mean that 
if A = (ai,bi) x ••• x (a„,b„), ai < bi for each i = l , . . . , n , denotes an 
n-dimensional semi-closed interval, then 

A i ( a i , 6i) • • • An(an, 6 „ ) F x ( s i , . . . , sn) = x(A) > 0. 

We enclose the section with an example of an n-dimensional observable 
and consequently of an n-dimensional spectral resolution: Let {tk}k be a 

21 



finite or countable set of mutually different elements of Rn and let {ak}k 
be a finite or countable family of summable elements of T(G,u) such that 
^2k at = u, where G is a Dedekind monotone a-complete po-group. Then 

x(A) = J2{^:tkeA}, A G B(Rn), 

is an n- dimensional observable and Fx is an example of an n- dimensional 
spectral resolution. 
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Chapter 2 

Extending n-spectral 
resolutions via lifting technique 

In the chapter, we establish a one-to-one correspondence between n-spectral 
resolutions and n-observables for monotone a-complete effect algebras with 
(RDP) . The result for the particular case of MV-algebras is then extended 
to the lattice-effect algebras, using the concept of blocks. We obtain the 
main results as an application of the method of lifting spectral resolution 
through some a-projection TT : T —> E satisfying so-called lifting property. 
The main result in lifting is formulated in a more general context of monotone 
a-complete interval effect algebras. However, in particular applications (to 
monotone a-complete effect algebras with (RDP)) such generality is unneces
sary, as for 7r we take the Loomis-Sikorski representation, which existence is 
proved by construction, and provides a natural choice of lift (for more details 
see [DL20a], Thm. 5.2.). Nevertheless, the general result in lifting seems to 
be interesting on its own and may have applications beyond those mentioned 
in the thesis. 

2.1 Lifting of n-dimensional spectral resolu
tions 

Suppose 7r : F —> E is a a-surjection of monotone a-complete effect algebras. 
If we are able to solve the spectral resolution extension problem for F, we 
may try to extend the result to E by lifting the spectral resolutions. In more 
detail: suppose F is a spectral resolution on E, find a spectral resolution F 
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on F, such that TT O F = F. Then extend F to an observable x and prove, 
that 7r o x is an observable extending F. 

This technique applies to the effect algebras, for which variant of Loomis-
Sikorski theorem holds. In the case of ordinary (one-dimensional) spectral 
resolutions, the lifting part is rather easy compared to the other steps. How
ever, assuming the general situation of an n-dimensional spectral resolution, 
the lifting part becomes the most difficult one. 

We begin by introducing some notations that allow us to handle the 
process of lifting of d-cuboids and to control the volume conditions in a 
comfortable way. 

Let D C { 1 , . . . , n}, d := \D\, and for each i = 1 , . . . , n, let ai, bi G M 
be such that < bi whenever i G D and = bi otherwise. Define C = 
{(*!,...,*„) : *i G {di,bi}}. We call C a d-cuboid. We wil l refer to the 
integer d by d imC := d, to the set D by Dim(C) := D and to the (bi, 
resp.) by af (&£, resp.). It is easy to see that any d-cuboid C has 2d elements. 
Next, any T C C which itself is an e-cuboid, e < d, is called an e-face of C. 
If e = 0, T is called a vertex of C. Clearly, given a cuboid C, the vertices of 
C correspond to the elements of C and by a slight abuse of notation we can 
identify them. It is also clear that the vertices of C can be partially ordered 
as they are elements of M.n. We call ( & i , . . . , bn) the top one or the first one, 
moreover, if a vertex a = ( * i , . . . , * „ ) G C has a^s for m indices % G Dim(C), 
we say a has an order ordc(a) := m + l in C (i.e., the top vertex has an order 
1 and ( a i , . . . , an) has an order d imC + 1). We say that some cuboid T> is 
inside a cuboid C, if for each i < n, af < af < bf < b^. In particular, every 
face of a cuboid C is inside C. 

As almost all essential steps in the process of the lifting wil l be achieved 
by an induction over dimension, the co-dimension one faces wil l be very 
important to us. For each d-cuboid C and % G Dim(C), we define a (d — 1)-
cuboid diC := { ( * i , . . . , * „ ) G = &£} and d'fi := { ( * i , . . . , * „ ) G C\*i = 
aCi }. Clearly dfi and d[C, i = 1 , . . . , n, are all the (d — l)-faces of C and they 
are called facets of C. Moreover, we say a facet is an upper (lower, resp.) 
facet of C if it arises by di (d[, resp.) for some i G Dim(C). We note that each 
facet is either an upper or a lower one. A n easy but important observation 
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is that whenever i,j G Dim(C), % ^ j, we have 

(diodj)(C) = 0,(0) n 0,(0) = (03 odi)(C), (2.1) 

(Oi o &.){C) = 0,(0) n 0'0(C) = o di)(C), (2.2) 

(3 o 0>(C)) = 01(C) n 0>(C) = (&3 o 0>)(C). (2.3) 

Take a free Abelian group AQ generated by all cuboids in W1 and factorize 
it by the subgroup generated by all the elements 

C - Oi(C) + &i(C), C is a cuboid, i G Dim(C). 

The resulting quotient Abelian group is denoted by A . B y an abuse of 
notation we wil l stil l refer to elements of A by cuboids. So in A 

C = 0,(C) - 01(C) (2.4) 

holds for each cuboid C and i G Dim(C). 

D e f i n i t i o n 2.1.1. Suppose we have cuboids C, C\ andCi of the same dimen
sion. We say that a couple C\ andCi is a splitting ofC, if there isi G Dim(C), 
such that 0[(d) = 0[(C), = & n C2 = and 0t(C2) = 0t(C). In 
other words, there is a real c, af < c < 6f, such that C\ shares with C all 
its coordinates unless b^ = c and C2 shares with C all its coordinates unless 
a? = c 

Observe that for the three cuboids from Definition 2.1.1, we have in the 
group A 

C = 0t(C2) - 3(Ci) = (0i(C2) - 0i(C2)) + ($(&) - 01(d)) = Ci + C2. (2.5) 

L e m m a 2.1.2. Each cuboid C G A could be uniquely (up to order of sum-
mands) written in the form 

C= (-l)°rdc[a)+1a. (2.6) 
a is a vertex in C 

Hence, a vertex a occurs with +1 sign if it is of odd order in C and with —1 
sign if it is of even order in C. Consequently, A is in fact a free Abelian 
group generated by all the vertices (elements ofM.n). 

Proof. The formula (2.6) follows by an inductive use of the formula (2.4). • 
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Let L be a partial mapping from W1 to F(G,u). Using (2.6), we can 
extend L to a group homomorphism | • |L : A L —> G, where A L is the free 
subgroup of A generated by all vertices in Def(L). Hence | • \L associates to 
each cuboid C having vertices in Def(L) its "volume" element \C\L G G. 

In this section, we wil l suppose that we have fixed two Dedekind o-
complete unital po-groups (G, u) and (H, v) with interpolation and let 7r : 
[G, u) —> (H, v) be a fixed homomorphism satisfying following property (note 
that the property implies surjectivity). 

D e f i n i t i o n 2.1.3. Given a po-group homomorphism TT : (G,u) —> (H,v) we 
say that TT satisfies lifting property (LP), if for each L,U C F(G,u) finite 
and h G H such that L < U and 7r(L) < h < TT(U), there is g G G sat
isfying Tr(g) = h and L < g < U. In the same way we define (LP) for a 
homomorphism of effect algebras. 

Let F : MJ1 —> F(H,v) be an n-dimensional spectral resolution and let 
7r : (G, u) —> (H, v) be a homomorphism of unital po-groups which satisfies 
the lifting property. We say, that a partial mapping L : W1 —> F(G, u) is a 
partial lift of F, if TT O L = F|Def(L) and for each cuboid C C Def(L) we have 
\C\L G F(G, U). That occurs if 0 < L(a) < u and \C\L > 0 for all vertices a's 
and all cuboids C's in the definition domain of L. We call the inequalities of 
the second type volume conditions. We note that the volume condition of a 
cuboid does not imply the volume conditions of its proper faces. 

Our strategy wil l be to find a partial lift on the countable set D = (Z[^])n, 
where Z[^] = {k/2l: I > l,k G Z } , which is dense subset of M.n. In the 
construction, we wil l be extending a partial lift in kind of point by point 
way. So to assure the existence of partial lift on whole D we wil l need the 
countable axiom of choice. 

It is important to note, that even if the volume conditions in the defi
nition of spectral resolutions are required only for the n-cuboids (1.4) and 
the 1-cuboids (1.8) (the other cases consequently hold), for partial lifts the 
Proposition 1.4.7 does not work. Hence we have to concern ourselves with the 
volume conditions of all dimensions. Following Lemma describes the case, 
when we extend a partial lift L to L' = L U {(a,g)} such that some new 
cuboid C C Def(L') of any dimension occurs. 

L e m m a 2.1.4. LetC be a d-cuboid, a be its vertex, L be a partial lift defined 
on C\ {a}. For an extension V = L U {(a, g)}, g G F(G, u), we have: If a 
is of odd order in C, then a — C G A L and the volume condition \C\L' > 0 
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holds iff \a — C\L < Q- If ct is of even order in C, then a + C G A L and the 
volume condition \C\L' > 0 holds iff g < \CX + C\L-

Proof. If a is of odd (even, resp.) order, it occurs in (2.6) with +1 (—1, 
resp.) sign, hence a is canceled in a — C (a + C, resp.). Consider the odd 
case: \C\L> > 0 <̂> \C-u\y + \a.\y > 0 \a\L> > -\C-a\y ^ g > \a-C\L> = 
\a - C\L. The even case: \C\L> > 0 <̂> \C + a\L> > \a\L> ^> \C + a\L > g. • 

L e m m a 2.1.5. Let C be a d-cuboid, a its top vertex, and L\ a partial lift 
defined on C\ {a}. Then 

\a-C\Ll > 0 . (2.7) 

If d > 1, let P be some vertex which is in C of the second order and L2 be 
a partial lift defined on C \ {/?}. Denote i G Dim(C) such that ft is the top 
vertex in d[{C). Then 

u>\C + (3\L2 > \(3-d:(C)\L2>0. (2.8) 

Proof. We first prove (2.7) by an induction on d. The case d = 0 is trivial. 
Suppose d > 1. We have \a - C\Ll = \a - di(C) + d[(C)\Ll = \a - di{C)\Ll + 
Ic^C)^! - As 81(C) misses a, ^ ( C ) ! ^ > 0 and by the induction hypothesis 
I a — 9 i ( C ) | i 1 > 0 as well. 

Let us prove inequalities (2.8): We prove the first one by an induction on 
d. The case d = 1 is trivial. Let j i, i.e., j3 £ dj(C) and j3 is in dj(C) of 
order 2. Then \C + (3\L2 = \dj(C) - &3{C) + (3\L2 = \dj(C) + (3\L2 - W3{C)\L2 < 
\dj(C) + /3\L2, and the last one is < u by the induction hypothesis. The next 
inequality follows by: \(3 + C\L2 > \(3 - a | (C) | L a & \(3 + C\L2 -\(3- ^ ( C ) | L 2 > 
0 ^ \C\L2 + | ^ ( C ) | L 2 > 0. But \C + ^ ( C ) | L 2 = \di(C)\L2 > 0 as L2 is defined 
on the cuboid di(C). 

Finally, \/3 — > 0 follows from the already proved inequality (2.7) 
(f3 is the top vertex in 81(C)). • 

L e m m a 2.1.6. Let C be a cuboid and T(C) be a collection of some of its 
facets such that, for each i G Dim(C), the facet di(C) or d[(C) does not belong 
to F(C). Then for each sub-cuboid T> C C, which satisfies T> C \}T(C), 
there is some T G F(C) such that T> C J7. Consequently, if L is a mapping 
L : | J T —> G whose restriction to any T G F(C) is a partial lift, then L 
itself is a partial lift. 

Proof. Suppose a cuboid V C I J J 7 ^ ) which is not a sub-cuboid of any 
J7 G F(C). Take any T G F(C) and denote ij- the unique integer such that 
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Dim(J r ) U {ijr} = Dim(C). We have either ijr G Dim(2?) or ijr £ Dim(2?) and 
af^ = bf 7̂  af = bf. Since otherwise P C J 7 . Consequently, in V there is 
a vertex a such that af ^ af for each T G T{C). So a is not a vertex of 
any of T G T(C), which is a contradiction. • 

L e m m a 2.1.7. Let C\,Ci be a splitting of a cuboid C, c,i be as in Defini
tion 2.1.1 and V C C\ UC2 be a cuboid such that but V <£. C. Then V C C\ 
or T> C C 2 - Consequently, if L : C i U C2 —>• r ( G , M ) and t/ie restrictions of L 
to C\ and to C2 are both partial lifts, then L is a partial lift as well. 

Proof. The i-th coordinates of the vertices of V belong to {aCi, c] or {c, bCi}, 
the first case implies D C Ci, the other one implies T> C C2. • 

L e m m a 2.1.8. Let C be a cuboid in M.n and L be a partial lift in C such that 
the definition domain of L equals one of the following sets 

(ii) one lower facet, that is d[{C) for some i G Dim(C), 

(iii) a union of one upper facet di(C), i G Dim(C), and a collection of lower 
facets dj(C), j G J, for some J C Dim(C) \ {i}. 

Then we can extend L on the whole cuboid C. 

Note that if C is of dimension 2, the case when all vertices up to the top 
one are lifted is excluded. 

Proof. We wil l use an induction on d imC. The case d imC equals 0 or 1 is 
trivial. Suppose d imC > 2 and the case (i). Take any upper facet T of C 
and use the case (i) of the induction hypothesis to define L on T. We have 
arrived at the case (iii). 

If the case (ii) holds, pick any j G Dim(C) \ {i}. If we extend L to 
T = dj(C), we wil l arrive at the case (iii) again. Since d[(C) n T = d'^J7) is 
a lower facet of J 7 , we can use the case (ii) of the induction hypothesis to T. 
So we obtain a partial lift L' on T and by Lemma 2.1.6, L U L' is a partial 
lift. 

Hence, it remains to prove the case (iii). Take any lower facet T = d'k(C). 
If j £ J, we extend L on T: Since the upper facet di(C) of C intersects T 
in an upper facet of T and similarly each lower facet dj(C), j G J , intersects 
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J 7 in a lower facet of J 7 , we can by the case (iii) of the induction hypothesis 
and Lemma 2.1.6 extend L on J 7 . 

Hence, we can assume J = Dim(C) \ {i}. That is, the only vertex that 
remains to lift is j3 : = ( 6 1 , . . . , ai7 bi+i,..., bd). Note that j3 is of order 2 
in C. We have to find an extension L' = L U {(/3,g)}, g G F(G,u), such that 

\C\v > 0, (2.9) 

mC)\L,>0. (2.10) 

We claim, that if these two volume conditions hold, then all the volume 
conditions hold in C. A t first note that \dj(C)\L> > 0 holds for each j G 

Dim(C) \ {i} (the case j = i holds by the assumptions): \dj{C)\Li = \C\Li + 
\&j(C)\L> > 0, since \d'-{C)\L, = |d$(C)| £ > 0 and (2.9). Hence the volume 
condition holds in each facet of C. Next let J 7 be a face of C which contains 
(3 and is in C of co-dimension e > 2. It follows T = 8 ^ o • • • o Qie(C), where 
each Qik G {dik,d'ik}. Since T contains j3 which is a vertex of order 2 in C, 
the number of k, so that Qik = d'ik is at most 1. In particular, there is k < e 
such that Qik = dik and so T is of the form dik{To) (by commutativity (2.2)). 
Now we use the formula 

| - F | l ' = | ^ ( J - 0 ) | l ' = | - F o | l ' + | ^ ( J o ) | l ' . 

Since \d[ {TQ)\L> = |^ f c (-^o)U — 0 ( a s ^ misses j3) it is enough to prove the 
volume condition for the face with less co-dimension in C. In other words, 
we can use an induction on co-dimension to finish the proof of the claim. 

As f3 occurs in C as an element of order 2 and in d[{C) as an element of 
order 1, by Lemma 2.1.4 we can replace inequalities (2.9), (2.10) by equivalent 
conditions 

\C + (3\L>g k g>\(3-d:(C)\L. 

We finish by applying (LP) with bounds {u, \C + /3\L} > {\/3 - ^ ( C ) | L , 0 } 
which are consistent by Lemma 2.1.5. • 

In the following lemma S figures as a section of C orthogonal to the i-th 
axis. 

L e m m a 2.1.9. Let C\ and C2 be a splitting of a d-cuboid C, i,c be as in 
Definition 2.1.1 and denote S the (d — \)-cuboid di(C\) = C\ Pi C2 = d[{C2)-

Next let L be a partial lift defined on all the vertices of C and [j ̂ (S), where 
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F(S) is the collection (possibly empty) of facets of S such that for each 
j G Dim(C), dj(S) or dj(S) does not belong to F(S) and in ̂ (S) is at most 
one upper facet of S. Then there is a partial lift which extends L on the 
whole S. 

Proof. We first maximalize the collection .F(<S) using an induction. Let j G 
Dim(iS) be such that neither dj(S) nor dj(S) belongs to F. We like to extend 
L on dj(S). As each upper facet in T(S) intersects dj(S) in an upper facet 
of dj(S) and each lower facet in T(S) intersects dj(S) in a lower facet of 
dj(S), we can use the induction hypothesis, where we take dj(C) for C and 
d'/i^iS)) for T(S). So we obtain a partial lift V defined on d'^C) U d'^S). 

We have to prove LUL' is a partial lift. For this it is enough to realize that, 
whenever for some cuboid V, we have V C (d'^C) U U ( C U ( U ^(«5))) 
(the definition domain of L U L'), then T> C dj(C) U dj(S) (the definition 
domain of L) or V C C U {{jF{S))) (the definition domain of U). If V C C, 
we are done. Otherwise by Lemma 2.1.7 we have D C Ci or D C C2. We can 
treat the both cases in similar fashion. We present a proof of the one where 
V C C i . Then 0 4 (D) C ( U U d]{S). B y Lemma 2.1.6 two cases may 

occur: d^V) C U ^ O 5 ) . a n d t h e n P ^ C u ( U - ^ O 5 ) ) , o r £ and 
then 2? C d'j(C) U d J ( S ) . 

So we can assume for each j G Dim(iS) either dj(S) G T(S) or 6^(5) G 
^( iS) . Two cases possibly occur: (i) all facets in T(S) are lower and the top 
vertex f3 of S is the only one which remains to lift, or (ii) there is k, such 
that dk(S) G F(S) and 7 the only vertex which remains to lift has order 2 
in S. 

Assume the case (ii). For some g G F(G,u) define L' = L U {(7 , g)}. We 
note that 7 has order 2 in Ci and in S and order 3 in C2 and in C. To assure 
L is a partial lift on C\, the following volume condition has to hold: 

\CI\L> > 0 , (2.11) 

l ^ ( C i ) U ' > 0 . (2.12) 

The case of C2 requires these volume conditions: 

\C2\v > 0, (2.13) 

l ^ ( C 2 ) U ' > 0 , (2.14) 

| ^ ( C 2 ) U ' > 0 , (2.15) 

\d'kocyt(C2)\L/ > 0 . (2.16) 
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We claim inequations (2.13)-(2.16) are sufficient. Let T be any face of C2; it 
has a form 

J = e i l o . . . o 9 i e ( C 2 ) , e<dim<S, (2.17) 

where each Qik G {dik,d'ik}. We first prove by an induction on the number 
of occurrences of dik

Js in (2.17), that it is enough to treat the cases when 
each Qik = d[ . Since whenever T has form T = dj{To), then \J7\u = 
|<9j-(-7"o)U' + l-^oU'- If the two summand are > 0, so is the left hand side. 
However, if T = &ix o • • • o d'ie(C2) contains 7, each i^s belongs to {i, A;}, as 7 
is the top vertex of dk o ^ ( C 2 ) . So (2.13)-(2.16) are all the volume conditions 
that matter. 

Note that (2.15) and (2.16) are volume conditions for sub-cuboids of 
Ci (since ^ ( C 2 ) = di(d)), and hence they follow from (2.11) and (2.12). 
To assure L' is a partial lift, inequalities (2.11)-(2.14) give us according to 
Lemma 2.1.4 the following bounds: 

5 < I t + C I U , (2.18) 

l 7 - $ L ( C i ) U < 0 , (2-19) 
h-C2\L<g, (2.20) 

g<\l + d'k(C2)\L. (2.21) 

We already know by Lemma 2.1.5 that (2.18) and (2.19) are consistent. So 
are (2.18) and (2.20), since: \J-C2\L < \l+Ci\L \C1+C2\L > 0 ̂  \C\L > 0. 
Next | 7 - &k{C,)\L < | 7 + d'k(C2)\L & 0 < | ^ ( C i ) + &k(C2)\L = \d'k(C)\L. 
Finally, | 7 - C2\L < | 7 + d'k(C2)\L & 0 < \C2 + d'k{C2)\L = \dk(C2)\L. Hence, 
we can apply the lifting property to obtain the desired lift in 7. The lift 
necessary belongs to T(G,u) due to inequalities (2.8) in Lemma 2.1.5. 

Next assume the (easier) case (i). Again define L' = LU{(/3, g)} for some 
g G G. B y the analogous arguments as in the case (ii), it is enough to assure 
volume conditions 

\Ci\v>0, (2.22) 

\C2\v > 0, (2.23) 

| ^ ( C 2 ) U ' > 0 . (2.24) 

But ^'(£2) = di(Ci), hence the inequality (2.22) implies the equality (2.24). 
B y Lemma 2.1.4, 

I Č - C 1 U <g< \(3 + C2\L 
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is equivalent condition to (2.22) and (2.23). These bounds are consistent as 
1/9 - Ci\L < \P + C2\L & 0 < \d + C2\ = \C\L. Moreover, Lemma 2.1.5, 
inequalities (2.7) and (2.8) guarantee 0 < \/3 — C\\L < \/3 + C 2 U < M- Hence, 
we can finish the proof by application of the lifting property. • 

L e m m a 2.1.10. Suppose we have real numbers al

0 < a\ < • • • < al

m., rrii > 1, 
for each i < n. Denote X := { ( r i , . . . , rn) G MJ1 : Vi,r\ G {a\,..., a^.}} and 
C the cuboid given by af = al

Q, of = a^.. Let .F(C) 6e a collection of facets 
of C, such that for each i < n facet di(C) or &t{C) does not belong to T(C) 
and T(C) contains at most one upper facet. 

Finally, letY C X be the set of all the points in X which are inside some 
facet in T(C) and L be a partial lift defined onCUY. Then there is a partial 
lift defined on whole X, which extends L. 

Proof. We proceed by an induction on \X\. If mi = 1 for each i, X = C, then 
there is nothing to prove. Otherwise some rtii is at least 2, without loss of 
generality assume m\ > 2. Let Ci, C2 and S be as in Lemma 2.1.9 where we 
set c = a\. Note that SilY can be expressed as a union UJ r (iS), where T(S) is 
the collection of facets of S, which satisfies the condition in the statement of 
Lemma 2.1.9 (elements of ̂ (S) correspond to those in J7(C)\{di(C), d[(C)}). 
So we can apply Lemma 2.1.9 to extend L on S; denote by L\ the extension. 
We claim Lx is a partial lift. We prove: each cuboid V C Y U C U S (the 
definition domain of Li) satisfies V <Z C UY OT V <Z C U S. In the first case 
T> belongs to the definition domain of L so the volume condition holds for 
T>, in the second case the volume condition holds as well by Lemma 2.1.9. 

On the way of contradiction suppose V C YUC U S and there are vertices 
a,/3 ET>, a <E S\Y and f3 G Y\ (SUC). In coordinates a = (a\,x2, • • •,xn), 
where Xj G {aJ

0,aJ

m.} and /3 = (yi,... ,yn), where at least for one j, yj £ 

Wo^L,} i n t h e c a s e j > 2 or yj {aJ

0, a{, a3

m.} in the case 7 = 1. F ix 
concrete such j. Since T> is a cuboid, there is a vertex f3' G T> which shares 
with a all the coordinates, except the j - t h , where it has a value yj (so f3' G 
( r u l S u C ) \ ( C u 5 ) = Y\(CUS)). We know that (3' is inside some 7 G 7{C) 
(as it belongs to Y), let T = e\(C) ( J 7 = d'k(C), resp.). That is, (3' has on 
fc-th coordinate a value ag ( a * , resp.). Hence k j. But that entails a has 
on fc-th coordinate the value (a£ , resp.) as well. Therefore, a is inside 
dk(C) (d'k(C), resp.) and so it belongs to Y, which is a contradiction. 

Now we can finally use the induction hypothesis. If <9i(C) G 7(0) (that 
is, di(C) is the only upper facet in the collection), then take for a new C the 

32 



cuboid C2, for a new X take all the elements of the old X which are inside C2 

and for the new collection of facets take J7^) which contains <9i(Ci) = d\(C) 
and moreover it contains dj(C2) (dj(C2), resp.), for j ^ 1, whenever the 
original ? ( € ) contains dj(C) (dj(C), resp.). The induction hypothesis gives 
us a lift defined on all elements of X, which are inside C2. Then apply the 
induction hypothesis in a similar fashion to C\. In the case d\{C) (fc T(C) we 
apply the induction hypothesis to C\ in first place and then to C2. Otherwise, 
it could happen that the collection T[C\) does not meet the conditions in 
the statement. 

We have obtained a mapping L2, which satisfies the volume condition 
for each cuboid having vertices in X and which is inside C\ or C2. Each 
cuboid D C I could be in the obvious way split into T>i and T>2, where T>\ 
is inside Ci, V2 is inside C2 and in A we have V = T>i + T>2. Consequently 
\V\r* = \VI\L2 + \V2\L2 > 0 . • 

P r o p o s i t i o n 2.1.11. Let (G,u) and (H,v) be unital Dedekind monotone 
a-complete po-groups and let TT : (G, u) —> (H, v) be a homomorphism with 
(LP). Let F be an n-dimensional spectral resolution on (H,v). Then there 
is a countable and dense subset D C R n and a partial lift L of F which is 
defined on D. 

Proof. Define for each I G No the set Ui of all n-cubes with coordinates in ̂ -Z 
which have edges of length ^ (e.g., all n-cuboids C, for which a^,b^ G 
and bCj — af- = ^ for each j, 1 < j < n). Our strategy is as follows: We 
will inductively construct a sequence of partial lifts LQ C L\ C • • • such that 
each Li is defined on Di := IJi<2^- The set D := 1 J Z > 0 A is countable and 
dense in W1 and a partial mapping IJz>o wil l be the desired partial lift. 

Claim We can list all the n-cubes in Ui, I > 0, so that the following 
property (*) holds: For each m G N , we have £m Pi ({Jj<m£j) is of one of the 
following types: (i) empty, (ii) one lower facet of £m, (hi) union of one upper 
facet dk(Cm) and a collection of lower facets dj(£), where J C { 1 , . . . , n}\{k}. 

Using Cla im, it is rather easy to construct the L/ 's : Suppose Ci,C2,... is 
the list from Cla im of all the elements in UQ. We first apply Lemma 2.1.8 to 
Co, then to C\ and so on inductively we define a lift L0. In next step we like 
to extend L 0 on each point with coordinates in | Z , that is on Di = [jUi. 
To achieve this, we use another induction process. A t the first step, we use 
Lemma 2.1.10 to the first n-cube C\ G UQ\ We leave the set F(Ci) from the 
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statement empty and we set a*'s such that the points in X are exactly the 
ones of Di we want to lift (we set for each i, rrii = 2, a\ = aCl+bCl). In 
the m-th step we use Lemma 2.1.10 in a similar way, the only difference is 
that we cannot set -77(Ci) empty, since points inside some facets of Cm have 
already been lifted, but the collection of these facets is, by the property (*), 
in a convenient form. 

In the next step we use an analogous induction process, but with IA2 in 
place of U\. So we find lifts in all points with coordinates in ^ - Z . Similarly 
we find partial lifts L 3 C L4 C • • •. The desired dense set and partial lift are 
D := [Jm€nDm and L := l J m g N L m . The construction guarantees for each 
Lm the volume condition | C | i m > 0, only for C being a face of some cuboid 
in Um. However, it is clear that each cuboid with vertices in Dm has (as an 
element of A) a decomposition C = T>\ + • • • + T>k, such that all 2Vs are 
already faces of some cuboids in UM. Finally, each volume condition \C\L > 0 
holds, where C C D, since C C Dm for some m , as C has only a finite number 
of vertices. 

Proof of Claim. It obviously suffices to consider only the case UQ, as the 
lattices Dfs are all isomorphic. In the rest of the proof, we assume all 
mentioned cuboids have integral coordinates. Suppose we have already listed 
all unit cuboids inside some n-cuboid C, such that (*) holds, denote the list 
I. We show, that if we enlarge C in any of the directions by one, then we can 
add all the unit n-cuboids newly occurring inside extended C to the list. 

Suppose we enlarge C in some direction parallel to i-th axis, this corre
sponds to coordinate change: (1) af af — 1 or (2) 6? ~» 6? + 1. Suppose 
for simplicity i = 1. In both cases denote W the collection of Hj>2(^j — af) 
unit cuboids, we need to add to the list I. 

In the case (1) each cuboid in W shares exactly one of its upper facets 
with a cuboid in I. As cuboid in W form an n — 1 dimensional table, we can 
(linearly) order W using the lexicographic ordering (naturally defined). W i t h 
respect to this ordering each cuboid in W shares with the previous ones only 
lower facets. Hence 

lUU', 

whereby U we mean join of the sequences, satisfies (*). 
The case (2) is more complicated. Now each cuboid in W shares exactly 

one of its lower facets with a cuboid in I. The simple idea of using the 
lexicographic ordering from (1) does not work. Consider a decomposition 
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B A B 
A A A 
A A B 
A B A 
A B B 

Figure 2.1 

W = U[ U • • • U U'm, which correspond to dividing the cuboids to levels with 
respect to the 2nd coordinate (so m = b% — a%). If we manage to somehow 
order U'm so that lUli'm, satisfies (*), we can add the other levels in following 
way. Lets order each U[, j < m by the lexicographic ordering and add them 
to the list: 

L>:=lYAU'mnU'm_ln...YAU[. 

Hence the resulting ordering on Wm_l U • • • U U[ is kind of lexicographic 
ordering, where we turn over the direction of ordering in the coordinate with 
the highest priority. So each cuboid V G bt[ U • • •Wm_x would share exactly 
one upper facet d^D with the ones foregoing in / and some collection of lower 
facets d'p, j f 2. 

Finally, we can deal with Wm by iterating the same idea. That is, we divide 
U'm into levels with respect to the 3rd axis and so on. A t the bottom of the 
induction process we are adding to / a single cuboid V0 G W (the one which 
has the highest position among cuboids form W, with respect to ordinary 
lexicographic ordering), which is allowed by the point (ii) in the condition 
(*). The list in figure 2.1 demonstrates the resulting "twisted lexicographic 
ordering" on words of length 3 over B}. 

Now the Cla im easily follows: we can begin the list / with any cuboid in 
IA\. Then we wil l be step by step extending the area of listed cuboids using 
the just described technique. Obviously, we can proceed in such a way, that 
we reach any unit cuboid in a finite amount of steps. • 

A n d so we are done with the whole proof. • 

Now, we present one of our main results - lifting of spectral resolutions: 
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T h e o r e m 2.1.12. [Lifting of Spectral Resolutions] Let IT : (G,u) —> (H,v) be 
a a-homomorphism of unital Dedekind monotone a-complete po-groups and 
let 7T satisfy (LP). Then each n-dimensional spectral resolution F : M.n —> 
(H, v) can be lifted to an n-dimensional spectral resolution K : W1 —> (G, u) 
such that 7T o K = F. 

Proof. According to Proposition 2.1.11, there is a countable subset 

D = {{t1,...,tn)\tieZ[^]}cWl 

dense in W1 and a partial lift L : D —>• G. Observe that D is of the form D™, 
where Dn is dense in R and L is monotone on D. Define KQ : M n —>• G by 
prescription 

K0(t)= \ / L(s) . (2.25) 

Note that the supremum exists because if we take two sequences (SJ)J 
and (iij)j of elements of D such that Sj ,Uj < t G K n for each j > 1 and 
Sj / * t and Uj t, then monotonicity of L implies that 

V^Si) and y L(uj-) 

exist in G and 
\jL(Sj) = \jL(uj). 
i j 

Hence, i f 0 ( t ) is correctly defined and 

K0(t) = \ / L ( S i ) = \ / L ( s ) -
j s6D,s«t 

Now, KQ is monotone in each component (directly from definition) and 
all volume conditions hold: Given any d-cuboid C in W1, we can write the 
volume condition in the form 

K0(ai) + ••• + K0(a#-i) < K 0 ( A ) + • • • + K0(fa-i), (2.26) 

where a^s are all the vertices in C (hence n-tuples of reals) with even order 
and fa's are all the vertices in C with odd order. B y the construction of D , 
for each e > 0, there exists a d-cuboid V C D, which is sufficiently close to C: 
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For each i = 1, . . . , n, we find a f , o f G D ^ , such that a f — e < a f < af and 
of — e < o f < of (and hence the vertices of the cuboid 2? given by a f ' s and 
a f ' s belong to D ) . Moreover, we can assume a f = bf for each i ^ Dim(C). 

Given any a[,..., oi2i_x G .D such that for each % = 1, . . . , 2 d _ 1 , <C a^, 
there is e > 0, for which a- C - e for each cti, where e = ( e , . . . , e) G M.n. 
Hence, as we have proved above, there is a d-cuboid T>, such that for each 
i = l,..., 2d~1 we have oli < ji < cti, where 7$ is the corresponding vertex of 
V. From the volume condition for V we deduce 

L(a[) + ••• + L(a ' 2 d _ 1 ) < L ( 7 i ) + • • • + L(j2d-i) < 

<L(5i) + • • • + L ( 5 2 d - i ) < K 0 ( A ) + • • • + K0(/32d-i), 

where S^s are all the vertices in T> with even order. In the inequality, if we 
take the supremum over all c^'s (c^ <C c^), we get (2.26), thanks to the fact 
that + distributes over V . 

The function KQ yet does not have to vanish when some coordinate goes 
to - c o . We have to repair this. Define 

K0(-oo, t2,..., tn) := f\K0(t, t2,..., tn) 
t 

(it exists since KQ is monotone) and 

Ki(ti,... ,tn) := K0(ti, . . . , t n ) - K0(-oo,t2,.. .,tn). 

Obviously f\h Ki(ti,... ,tn) = 0. We wil l verify that Kx : Rd -)• G satisfies 
the volume conditions for 1 and n dimensional cuboids. The verification of 
the volume conditions is easy for the cuboids C such that 1 G Dim(C), as in 
that case we realize that \C\KX = \C\K0'- For any edge e with Dim(e) = {1} 
clearly \e\x0 = and C could be written as a sum of such edges (since 
1 G Dim(C)). Hence we only need to prove a monotonicity of K\ in j - t h 
coordinate for j > 2. Without loss of generality assume j = 2. Hence given 
some reals s, s', ti, £ 3 , . . . , tn G K , s < s' we like to prove that the middle 
expression in 

-Ki(ti,s,U, ...,tn)< Ki(ti,s' ,U, . . . , t n ) - Ki(ti,s,U, ...,tn)< 

< Ki(ti,s',U,.. .,tn). 

is non-negative. From the already proved versions of volume conditions we 
know, that all the three parts of the later expression are monotone in the 
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first coordinate. Hence 

- K i ( - o o , s , t 3 , . . . ,tn) < / \ [ i ^ i ( t i , s ' , t 3 , . . . , t n ) - K i ( t i , S , t 3 , . . . ,tn)] < 
ti 

< K i ( - o o , s ' , t 3 , . . . ,tn), 

and as the left and the right hand side are equal to 0, we yield the desired 
monotonicity of K\ in the second (and so in any) coordinate. 

Similarly, K\ is still continuous: assume cti /* a := (ti,..., tn), then 

K^a) > ^ i ( « i ) > 
> Kofe) - K0(-oo,t2,... ,tn) /• K0(a) - K0(-oo,t2,.. . ,*„) = -^i(a)-

If i^o(^i) * * *, ti—i, —oo, U,..., tn) = 0 for some i, clearly 

Ki(ti,..., U-i, —oo, t j+ i , . . . , tn) = 0 

as well. As K\ satisfies all volume conditions it is monotone. 
Finally, the equality iroKi = F still holds, since TT(KQ(—OO,t2,... ,tn)) = 

0 for each reals ti's, because TT is a a-homomorphism. 
Then we repeat the above procedure for each coordinate. That is, we 

inductively define for i < n 

Ki+1(ti,... ,ti, —oo,ti+2, ...,£„)= / \ Ki(ti,... ,tn) 
U+i 

and 

Ki+i(ti, • • •, tn) = Ki(ti,...,tn) — Ki(ti,... ,ti, — o o , U + 2 , . . . , tn). 

The same reasoning as in the case of K\ applies to each induction step. 
Hence we obtain a sequence 0 < Kn < Kn_i < • • • < K\, where the Kn 

satisfies all the conditions in Definition 1.4.3 except (1.5). A n d so Kn is 
pseudo n-dimensional spectral resolution. Denote v! := V Kn(ti,..., tn), 
then TT(U — v!) = 0 so 

K u t , = (Kn(tl,...,tn) + (u-u'), if 0 < ( t i , . . . , t n ) 

1 Kn(t\,... ,tn), otherwise 

is the desired lifted n-spectral resolution. • 
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2.2 Extending of spectral resolutions 
In this section we apply the results from the previous one and give various 
examples of effect algebras for which one-to-one correspondence between n -
spectral resolutions and n-observables holds. The most general theorem is: 

T h e o r e m 2.2.1. Let E,T be a pair of monotone o-complete effect alge
bras which could be represented as intervals of po-groups E = F(G,u), T = 
F(H,v) and let TT : (H,v) —> (G,u) be a a-homomorphism of unital po-groups 
satisfying lifting property. Then for E each n-spectral resolution uniquely ex
tends to an n-observable whenever it holds for T. 

Proof. Given F an n-spectral resolution on E, we can thing about it as an 
n-spectral resolution on (H,v). Using Theorem 2.2.1 we can lift F to F an 
n-spectral resolution on (G,u). Now, F extends to an n-observable x such 
that x := 7r o x is the desired n-observable extending F. 

Uniqueness of x: Let y be another n-dimensional observable extending 
F. The set V = {A C B(Rn)\x(A) = y(A)} is a Dynkin system (it contains 
0 and is closed under complements and countable disjoint unions) which 
contains all intervals ( — o o , t i ) x ••• x (—oo,tn), so that by the Sierpihski 
Theorem 1.3.5, T> = B(Rn), which shows x = y. • 

The prime example of an effect algebra which could play the role of T in 
Theorem 2.2.1 is an effect tribe (Definition 1.3.3). 

L e m m a 2.2.2. Let T be an effect-tribe. Then each n-spectral resolution 
F : Rn —> T extends to a unique n-observable. 

Proof. For each fixed UJ G O, the function Fu : M.n —> [0,1] defined by 

Fw(h, . . . , £ „ ) : = F(tl7.. .,tn)(u), 

ti,...,tn G K , is left continuous, going to 0 if U —> - c o with non-negative 
increments. According to [Kal02, T h m 2.25], there is a unique a-additive 
finite measure P^ on B(Rn) such that Pu((—oo,ti) x ••• x (—oo,tn)) = 
Fu(ti,... ,tn). Therefore, we have a mapping x : B(Rn) —> [0, l]n such 
that x(A)(cj) = Pu{A) for all A G B(Rn) and all u G Q. We denote by 
K = {Ae B(Rn): x(A) G T). Then K contains Rn, all intervals of the form 
( — o o , t i ) x ••• x (—oo,tn), and is closed under complements and unions of 
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disjoint sequences, i.e. JC is a Dynkin system and by the Sierpiriski Theo
rem 1.3.5, JC = B(Wl). Then x is an n-dimensional observable on T such 
that x ( ( - o o , ti) x • • • x ( - 0 0 , tnj) = F(ti,..., tn), tu ..., tn G R. 

The uniqueness of x follows by the very same argument as in the proof 
of Theorem 2.2.1. • 

the classical models of quantum logic turn out to be representable as 
tribes. 

T h e o r e m 2.2.3. For £{%) and Pro j (H) , where H is a Hilbert space over 
the field of reals, complex numbers or quaternions, one-to-one correspondence 
between n-observables and n-spectral resolutions holds. 

Proof. The statement follows from an observation, that £{H) and Proj(H) 
are isomorphic to effect tribes. Take for iz('H) the set of unit vectors in Ti. 
To each A G £(H) we associate HA '• —> [0,1] as HA '• OJ i-> (Aui,ui). 
Now one can proof that T(H) = {/J>A\A G £{%)} is an effect tribe and the 
described mapping A 1—> \IA is an isomorphism. 

The case of Proj (H) could be treated in the same way. • 

T h e o r e m 2.2.4. Let E be a monotone a-complete effect algebra with (RDP). 
Then each n-spectral resolution uniquely extends to an n-observable. 

Proof. The Loomis-Sikorski theorem represents the effect algebra E as a 
homomorphic image of an effect tribe 7r : T —> E. We like to apply The
orem 2.2.1 utilizing lifting through 7r, hence we need to verify the lifting 
property first. To do so, we have to capture some details of the construction 
of T (for the whole proof see [BCD06]). 

For E (or any other monotone a-complete effect algebra with (RDP)) the 
effect-tribe T is constructed as follows: for the set ÍŽ we take the set S(E) 
of all states on E. The set of states is known to be convex and the set of 
extremal states deS(E) is endowed with certain topology (induced by point-
wise convergence of the states). Following standard duality construction, we 
associate to each o e £ a n element a : —> [0,1] by prescription o : s 4 s(a). 
For T we take all the fuzzy sets / ' s on ÍŽ, such that there is a G E with 
{s G deS(E)\á(s) Ý fis))} is a meager set (i.e., countable union of nowhere 
dense sets); we indicate that relation as / ~ a. One could prove the T really 
is an effect-tribe and 7r : T —> E sending / to a unique a with / ~ a is a 
a-homomorphism. 
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Now we wil l verify the lifting property for TT. Assume finite L , U C T such 
that L < U and some a G E fitting in 7r(L) < a < 7r(C/). For any / G L and 
g G U we have / (s) < d(s) < g(s) up to a meager set. Hence, as the collection 
of meager sets is closed under finite unions (in fact it is a a-ideal in the subsets 
of Q) there is h ~ a, such that m a x { / ( s ) | / G L} < h(s) < mm{g(s)\g G U} 
for all s G S(E). A n d h is the desired lift. • 

Loomis-Sikorski theorem is also known for MV-algebras and a similar 
proof could proceed in this case (as is done in [DL20a]). Nevertheless, 
one could treat MV-algebras as a special kind of effect algebras see Re
mark 1.2.2) with (RDP) . Hence the case of MV-algebras is a consequence of 
Theorem 2.2.4. 

C o r o l l a r y 2.2.5. Let M be a a-complete MV-algebra, then a one-to-one 
correspondence between ite n-observables and n-spectral resolutions holds. 

The last corollary could be extended to the case of a-complete effect 
algebras using the concept of blocks. We say that two elements a, b of an 
effect algebra E are compatible, if there are three elements a i , c , b\ G E, 
such that a = a\ + c, b = b\ + c and a\ + c + b\ exists. We call a block any 
maximal system of pairwise compatible elements. In the case of a lattice-
effect algebra E, every system of pairwise compatible elements can be (using 
the Zorn's lemma) completed to a maximal one, and the result is a sub-
effect algebra, which turns out to be (essentially) an MV-algebra (see [DPOO], 
Thm. 1.10.20-21). Moreover, if the algebra E is a-complete, its blocks are 
a-complete MV-algebras (Thm. 4.3. in [RieOO]). 

T h e o r e m 2.2.6. Let E be a a-complete effect algebra, then a one-to-one 
correspondence between its n-observables and n-spectral resolutions holds. 

Proof. It suffices to prove, that an image of any n-spectral resolution F 
consists of pairwise compatible elements, then by [Rie98] there is a block 
containing F(M.n). Consequently, we can restrict ourselves to the situation 
of MV-algebras, which is covered by Corollary 2.2.5. 

Hence, assume two n-tuples t, s G M.n, we have to prove a := F ( t ) and 
b := F(s) are compatible. Denote by t A s ( t V s , resp.) infimum (supremum, 
resp.) in Rn (considered as a lattice). We set a\ = F(t) — F(t A s), b\ = 
F(s) — F(t A s) and c = F ( t A s). Obviously a = a\ + c and b = b\ + c, so 
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it remains to prove a\ + c + b\ exists. It is a consequence of the following 
formula, where only the inequality is nontrivial: 

G l + c + 61 = F ( t ) + (F (s ) - F ( t A s)) < F ( t ) + (F( t V s) - F ( t ) ) = F ( t V s). 

We prove F(s) - F(t A s ) < F(t V s) - F ( t ) . Denote / := {i\si < U} and 
without loss of generality assume / = { 1 , . . . , k}, for some k < n. Consider 
(k+ 1) x (n — k + 1) table ( r^)^- , i = 0 , . . . , k, j = 0 , . . . n — k of n-tuples of 
reals, where r 0 jo := t A s and skipping in rows from the {i — l ) - th to the i-th 
corresponds to rewriting (increasing) the i-th coordinate from Si to U, and 
similarly, skipping in columns from the (j — l ) - th to the j - t h corresponds 
to rewriting (increasing) the j - t h coordinate from tj to Sj. Now, we have 
rk:o = t, roin_fc = s and Yk,n-k = t V s . Moreover, the volume conditions on 
F guarantee 

f ( r « - i ) - ^ ( r i - i j - i ) < F(Tid) - F(Ti-ld), 

for each i = 1,. . . k and j = 1 , . . . , n — k. Finally, summing all these inequal
ities we obtain desired 

F ( s ) - F ( t A s ) < F ( t V s) - F ( t ) . 

• 

2.3 Join observables on MV-algebras 
Finally, the Theorem 2.2.5 has an application in the construction of a joint 
observable on an MV-algebra. We wil l utilize the following lemma ([DP00], 
Prop. 7.1.4.): 

L e m m a 2.3.1. Let {x{: i G /} be a system of elements of an MV-algebra 
M. 

(1) Let V i e / xi exist in M, and let x be any element of M. Then \JieI(xA 
Xi) exists in M and 

\J(xAxi) = xA\Jxi. (2.28) 
i€l i€l 

(2) If /\i€lXi exists in M, then for each x G M, the element f\i€l(x V S j ) 

exists in M and 

f\(xV Xi) = xV f\xi. (2.29) 
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T h e o r e m 2.3.2. Let Xi,...,xn by one-dimensional observables on a o~-
complete MV-algebra M. Then there is a unique n-observable x, such that 

n 

x ( ( - o o , U) x • • • x ( - 0 0 , tn)) = f\Xi((-oo, U)), (2.30) 

for all ti,..., tn G K . 

Proof. Let Fi(s) = 00, s)), s G K , be a one-dimensional spectral reso
lution corresponding to ajj. One can prove, using Lemma 2.3.1, the mapping 
F : M " -> M defined by F ( s x , . . . , sn) = A L i Fi(si), s u . . . , s n e R , satisfies 
conditions (1.5-1.7). We show here in detail the left continuity condition: 
Given t = (ti,..., tn) G M.n we have 

\J Fi(si) A • • • A Fn(sn) = V ••• V -^ i ( s i ) A • • • A Fn(sr, 
S<St S l < t l sn<tn 

= V " ' V % ) A - A F „ - i ( a n _ i ) A \ / F n ( S n ) = 
S l < t l S n _ l < t „ _ l sn<tn 

= V " " V f l ( « l ) A - A F n - l ( i n - l ) A F n ( t « ) = 
S l < t l S „ _ l < t „ _ l 

=Fn(tn) A \f • • • \f F i ( s i ) A - - - A F n _ i ( s n _ i ) = 
S l « l S „ _ l < t „ _ l 

=Fn(tn) A • • • A F i ( t i ) . 

Hence it remains to verify the volume conditions on F . B y the well-known 
Chang Subdirect Representation Theorem (see e.g. [Mun07]), each M V -
algebra could be represented as a subdirect product of MV-chains (linearly 
ordered MV-algebras). Therefor we can without loss of generality assume M 
is linearly ordered and obtain the desired volume conditions as a consequence 
of the following Claim: Claim: Let (L,u) be a linearly ordered unital l-group 
and let xl

0,x\, for % = 1, . . . , n, be elements of L, such that 0 < xl

0 < x\ < u 
for each i. Then 

0 < s g n ( $ . / \ 4 ( i ) < « , (2.31) 
^elo,!}*1"-""} * 

where sgn(̂ >) equals +1 iff |(/)_ 1(0)| is even and equals —1 otherwise. 
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Proof. We use an induction on n. In the case n = 1 the formula (2.31) 
has a form 0 < x\ — XQ < u, which clearly holds. Now suppose the case 
n > 1. There is some k for which XQ is the least element among all x*'s. The 
expression in the center of (2.31) equals 

-sgn(^) • xk

0 A / \ + sgn(^)-a;f A / \ 4 ( i ) . 
>̂G{o,i}{1>->™>\-tfc} i/fe ^e{o,i}{1.---,"}\{fc} i/fe 

The first summand vanishes as it equals — X ^ S 1 1 ^ ) ' xo> where 0 goes 
through the functions in {0, l } l 1 ' - ' I 1 } \ l f e } ; we see that exactly a half of the 
functions have negative sign. The second summand satisfies (2.31) by the 
induction hypothesis, where we redefine x\ as x\ A i J , for each i ^ k, j = 
0,1. • 

Finally we can apply Corollary 2.2.5 to yield a unique n-dimensional 
observable x on M satisfying (2.30). • 

The n-dimensional observable x from the latter theorem is said to be an 
n-dimensional meet joint observable of X\,... ,xn. Observe, that XOTT'1 is an 
observable (where 7Tj : W1 —> 1R is the i-th projection), which coincide with 
X{ on the intervals (—oo,t), t e l . Hence we can apply Sierpihski Theorem, 
to show 

X(K-\A)) =Xi(A), AeB(R), i = l,...,n. (2.32) 

In addition, using (2.32) for each % = 1,. . . ,n, we can prove 
n 

x(A1 x ••• x An) < f\xi(Ai), A1,...,AneB(R), (2.33) 

and in general, it can happen that in (2.33) we have strict inequality. 
Now, we define a second type of joint n-dimensional observables on M V -

algebras with product. 

D e f i n i t i o n 2.3.3. We say, that an algebra M = (M, ©, •/ , 0,1) is a product 
MV-algebra, if (M, © , ' , 0 , 1 ) is an MV-algebra and • an additional binary 
operation satisfying for all a,b,c G M 

(i) (a • b) • c = a • (b • c), 

(ii) a • b = b • a, 
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(in) (a@b)-c = {a-b)®{b-c), 

(iv) a • 1 = a. 

The MV-algebra of the real interval M = r ( R , 1) with product of reals is 
a product MV-algebra. Some basic properties of product MV-algebras are 

(a) a • 0 = 0 = 0 • a, 

(b) if a < b, then for any c G M, a • c < b • c and c • a < c • b. 

(c) If M is a-complete, then {ai}i / * a implies {b • a{}{ /* b • a. 

We prove the property (c): First note that 0 < b • a — b • ai = b • (a — ai) < 
a — di \ 0 leads to 0 = ^(b-a — b-ai). A n d consequently, 0 = /\^ 6- (a — â ) = 
b • a - Vjfr • <k-

T h e o r e m 2.3.4. Let xi,..., xn be one-dimensional observables, n > 1, on 
a a-complete product MV-algebra M and let . . . , Fn be the corresponding 
one-dimensional spectral resolutions. If we set 

n 

F(si,..., sn) = Y[ Fi(si), si,...,sneR, 
i=l 

then F is as n-spectral resolution on M and there is a unique n-dimensional 
observable x, such that 

n 

x(Ai x ••• x An) = Y[xi(Ai), A1,...,AneB(R). (2.34) 
i=l 

Proof. The mapping F satisfies (1.4)-(1.7), that is rather easy to prove. To 
show the volume conditions, let a semi-closed rectangle (ai, b\) x • • • x (an, bn) 
be given. Using the distributivity of the product we can transform a volume 
condition (inequality 1.8), to the form 

n 

Y[{Fi{bi) - Fi{oi)) > 0 
i=l 

which is obviously true. Applying Theorem 2.2.5, we see that there is a 
unique n-dimensional observable of determined by the n-dimensio
nal spectral resolution F. 

Using mathematical induction and applying the Sierpihski Theorem, it is 
possible to establish (2.34). • 
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The n-dimensional observable x from Theorem 2.3.4 is said to be an Tri

dimensional product joint observable of x i , . . . , xn. Clearly, we have 

n n 

n ^ ) < A f i ( * i ) » h,...,tn e l , 
i=l i=l 

however, in general situation n-dimensional meet joint observable is different 
from the n-dimensional product joint observable of one-dimensional observ-
cables x *... * x . 
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Chapter 3 

Spectral resolutions on 
lexicographic effect algebras 

Establishing a one-to-one correspondence for a number of effect algebras 
a natural question arises: is the class of effect algebras where the corre
spondence of our interest holds, closed under some (algebraic-categorical) 
operations, i.e. the product of effect algebras and so on? Denote ( S R E n ) 
the property of an effect algebra that each n-spectral resolution uniquely 
extends to an n-observable. This chapter concerns the effect of the lexico
graphic product on the ( S R E n ) . 

We assume unital po-group (H, u) and directed monotone a-complete po-
group G, for which ( S R E n ) holds (e.g., interpolation group). H and G wi l l 
have this meaning throughout the whole chapter. For such G , H consider the 
lexicographic effect algebra 

E := F(H^G, (u,0)). 

Now E is not in general monotone a-complete, only its radical is so. This 
leads to some pathological cases of spectral resolutions which do not extend 
to observables. However, the set of spectral resolutions which do extend to 
observables is easy to describe by the so-called fmiteness property. 

The problem in concern is treated in several papers of Dvurecenskij and 
various collaborators. Firstly, the simplest case of perfect iWV-algebras 

r ( z ^ G , ( i , o ) ) , 

where G is a a-complete /-group, is in [DDL19]. Then generalization to k-
perfect case and effect algebras with (RDP) is done in [Dvul9] and [DL20b]. 
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Finally, the problem in a general setting of lexicographic effect algebras is 
treated in [DL19],[DL20d] and [DL20a], where the dimension is assumed to 
be one, two, and any finite (respectively). In this thesis, we present the one-
dimensional case in the first section and then we wil l , in the next section, 
extend the result to all finite dimensions. 

As in the chapter every effect algebra is of the form E = F(H x G, (u, 0)), 
where (H, u) is a unital Abelian po-group and G is a directed monotone o~-
complete Abelian po-group (sometimes with interpolation). We wil l usually 
in the statements of the theorems take those rather lengthy assumptions for 
granted. 

3.1 Observables on lexicographic effect alge
bras 

For each h G [0,-u]# := {h G H: 0 < h < u}, we denote by Eh the set of 
elements of E, whose first coordinate is h. Clearly, E = {J{Eh: h G [0, U]H} 

is a disjoint union of all E^s with h G [0, U]H, and E^ ^ 0 . We can also write 
E = (Eh: h G [0,u]H)- Clearly if hi,h2 G [0,u]H, hi < h2, then Ehl < Eh2. 
As posets, the set E0 is isomorphic to G+, Eu is isomorphic to G~ and all 
others E^s are isomorphic to G. Moreover we call EQ the radical of E. 

D e f i n i t i o n 3.1.1. A g-effect tribe (g stands for group) is a system T of 
bounded real-valued functions defined on a non-empty set Q, such that (i) 
In G T, (ii) if f,g G T, then f ± g G T , and (in) if {fn}n is a monotone 
sequence of elements ofT, fn < fn+i, n > 1, such that there is fo G T with 
fn{u) < fo{u) for each co G O, then f = l i m n / n G T . 

It is evident that each g-effect tribe (T, In) is an Archimedean, monotone 
a-complete unital po-group where all operations are defined pointwise. 

T h e o r e m 3.1.2. [Loomis—Sikorski T h e o r e m for U n i t a l po-groups] 
Let (G, v) be a monotone a-complete unital po-group with interpolation. Then 
there exist a g-effect tribe T with interpolation of bounded functions on some 
set Q, 0 and a po-group a-homomorphism TT from T onto G and 1Q to V. 

Moreover, whenever 7r(/) < a < ir(g), where f < g are elements of T 
and a G G, there is h G T such that n(h) = a and f < h < g. 

Proof. The existence of T and of the a-epimorphic mapping TT follows directly 
from [BCD06, T h m 5.3]. To be more precise, given x G G, let x be a mapping 
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from S(G,v) —> R defined by x(s) = s(x), s G S(G, v). Then x is an affine 
and continuous mapping on the convex set S(G, v), and the mapping i 4 x 
is injective. Let T be the system of all bounded functions / on = S(G, v) 
for which there is an element x G G such that {s G dS(G,v): f(s) x(s)} 
is a meager subset of dS(G,v). For / G T and x G G we write / ~ x if 
{s G dS(G,u): f(s) x(s)} is a meager set. Then T is a g-effect tribe in 
question, and the mapping 7r(/) = x iff / ~ x is the desired a-epimorphism. 

The second part follows from the proof of [BCD06, T h m 4.1]. More 
precisely, if ho G T is a such function that 4>{ho) = a, then using technique 
described in the above paragraph, it is possible to show that the function 
h = max{ / , min{/io, g}} belongs to T and n(h) = a with / < h < g. • 

The following lemma provides a simple criterion that enlightens which 
suprema and infima exist in E. 

L e m m a 3.1.3. Let (a„)n be a monotone sequence of elements from an effect 
algebra E = F(H x G, (u, 0)), where (H,u) is a unital po-group and G is a 
a-complete po-group. Then \Jnan (/\nan), resp.) exists and belongs to Eh 
for some h G [0, U]H if and only if there is some upper (lower, resp.) bound 
a G Eh of (an)n and there is some an G Eh-

Proof. Suppose a = \Jnan exists and belongs to Eh- Then each an belongs 
to some Ehn with hn < h, hn G [0,-u]#. If there was no an in Eh, then any 
b G Eh would dominate all a n 's, which contradicts that a is the least upper 
bound for {an}n. So some of a n ' s belongs to Eh and the supremum is the 
needed upper bound. 

On the other hand, if a G Eh dominates {an}n and := {n G N : an G 

Eh) is non-empty, then \J{an: n G A^} exists (since G is monotone o~-
complete) and dominates all a n 's, and so it is equal to the supremum. 

The dual case is analogous • 

Recall that a set { a n } n £ N of elements of E is summable if all the partial 
finite sums of {a n }„ e pj exist in E and 

/CN,|/|<oo nel 

exists in E as well. 
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L e m m a 3.1.4. Let E = F(H x G, (u, 0)), where (H,u) is a unital po-group 
and G is a monotone o-complete po-group and let {an}n be a summable finite 
or infinite sequence of elements of E such that Yln

an = a- Then 

(i) all but finitely many an's belong to EQ, 

(ii) every subsequence {ani}i of {an}n is summable with sum in E, 

(Hi) let {an}n be infinite and let N = U ^ i Ni> where iVj D Nj = 0 for i ^ j, 
Ni 0 for each i. Then cti = ^2{an: n G N{} exists in E for each i, 
and {cti}i is summable with CKJ = a. 

Proof. If the sequence in question is finite all points (i—ii) are trivial, so 
assume infinity. 

(i) Define partial sums bn = a\ + • • • + an, n G N . As bn /* a, all the 
n G N with an G" E0 are below some no, by Lemma 3.1.3. Consequently, 
the sets A Q := {n\an G -E^} and A \ := N \ A Q are such that A Q U A \ = N 
and \ A 0 \ < oo. Moreover, ^2n€Ao an exists (in E0) as the partial sums are 
bounded by a - J2n€Al an. 

(ii) For the given subsequence define A ' Q := A 0 Pi {n^i G N} and denote 
the partial sums Q := ani + • • • + ani, for each % G N . W i t h no having the 
same meaning as in part (i), there is E ^ , so that Ci <E E ^ , whenever n^ > no-
A n d the Q'S are bounded in E 1^ by c n o + X^n>n0

 a " ' n e n c e t n e sum 6 = ani 

exists again by Lemma 3.1.3. 
(iii) B y point (ii) all the partial sums CKJ'S exist. Moreover, as is clear 

from the part (i), all a/s but finite number of, belong to E 0 . A n d {cti\i G N} 
is summable as each finite partial sum is bounded by a and clearly for n 
great enough the sum « ! + ••• + an belongs to the same E^ as a. Hence the 
sum a = an exists and equals a, as a dominates all the partial sums of 
cjj's. • 

T h e o r e m 3.1.5. Let G be a directed monotone a-complete po-group and 
(H, u) be a unital po-group. Let x be an observable on E = T(H x G, (u, 0)). 
Define for each i G l 

xt := x((—oo, t)). (3.1) 

We have for each s, t G M 

xt < xs ift<s (3.2) 

(3.3) 
V 

50 



\Jxr = xs. (3.4) 
r<s 

There is a finite sequence 0 = ho < hi < • • • < h„ = u of elements of 
[0, U]H and real numbers So = t\ < • • • < tn = tu such that 

(Eho ift<tu 

xt G < Ehi iite(ti,ti+l],i = l,...,n-l, (3.5) 

[Ehn iftn<t. 

In addition, for each % = 1, . . . , n, the element 

at := f\ xt (3.6) 
ti<t 

exists in E and it belongs to E^. 
Moreover, for each s G M., we have x({s}) = /\t>s(xt — xs). 

Proof. Equation (3.2) follows from monotonicity of x. Since {(—oo,n)}„ / * 
K and { ( - c o , — n)}n \ 0 applying properties of observables (3.2), we get 
(3.3). In a similar way, we can deduce left continuity (3.4). 

For each h G [0,-u]# such that Eh contains at least one xt (clearly EQ and 
Eu have this property), define th = inf{t: xt G EfA- and Sh = sup{t: xt G E^} 
(obviously to = - c o and su = oo). Take any real t 6 R, then xt G Eh for 
some h G [0, U]H- Define := (—oo,t— i ) , i>l, and A = (—oo,t). We see 
that {Ai}i /• A, hence xt = x(A) = \/ix(Ai). According to Lemma 3.1.3, 
there is some x(A{) G Eh- Considering the special cases, when t equals Sh 
or th, we get xSh G Eh, but xth £ Eh (with the exception of the cases su,to, 
where xt is not defined). 

Hence for h G (0, u)H •= {h G H: 0 < h < u], if Ih := {t G R : xt G Eh} 
is non-void, then Ih = (th, Sh], and (so, tu] is covered by these non-empty half 
open intervals. Now we want to prove that there are only finitely many such 
4 ' s . 

If so = tu, the claim is settled. Assume thus so < tu. 
Let for u ̂  h G [0,U]H, h ^ 0- Define Bi = [sh, Sh + 7), i > 0, and B = 

{sh}- As {Bi}i \ B, we have x(B) = f\ix(Bi). So Lemma 3.1.3 states there 
is some io such that for each i > io, x({sh}) and x([sh, Sh + 7)) = x

Sh+± ~ xsh 

both are elements of some E^. Consequently, there is /12 G [0, U]H such that 
each xt is an elements of E^2, whenever Sh < t < Sh + j^- We have just proved: 
Unless the case u = h, each Sh equals thx for some h\ G [0,-u]#. Hence, for 
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each convenient h G [0,-u]#, we can define an open interval Jh = (th,Sh), 
where §h is an appropriate real number between th and Sh, such that Ih Q 
Jh Q h U Ihi- We see that each Jh covers the closed interval [so>£fc] (already 
Ifi's do so). From compactness, there is a finite collection of J/^'s covering 
the whole interval and when we add Jo and Iu we have a cover of the whole 
R. Since each Jhi C U for some / i G [0,M]#, there is a finite collection 
of intervals TVs which covers the whole R, and in particular it covers [so, tu]. 

Inasmuch as each xt belongs to a unique Eht G [0, U]JJ, and the system 
{xt: t G R} is linearly ordered, then so is linearly ordered the system {/i t: t G 

R } . 
Since {s} = f]t>s ((—oo,£) \ (—oo,s)), we have that x({s}) = f \ t > s { x t ~ 

xa). Hence, f\t>t.{xt - xu) exists in E 1 , and x ( { t j ) = f\t>t.{xt - xu) = 
(At>t x*) ~xti- Hence, x({ti})+xti = f\t>t xt = a,i is defined in E. Applying 
Lemma 3.1.3, we see that x{ti) exists in E and it belongs to E^. • 

The Theorem 3.1.5 indicates that a spectral resolution (xt)t on E satis
fying conditions of Definition 1.4.3 may not corresponds to any observable. 
Let us see two basic examples of this phenomenon. 

E x a m p l e 3.1.6. Let E := T(Z ~x R, (1,0)) and 

_ r (o,o) if t<o, 
X t - \ (1,1) if 0 < t . 

Then {xt: t G R} is a spectral resolution for which the infimum Ao<txt does 
not exist. Hence the hypothetical observable x fails to well define x((—co, 0]). 

E x a m p l e 3.1.7. Let E = T ( Q ^ R , (1,0)) and, for every t G R, we define 

(0,0) if t<0, 
( l / 2 n , 0 ) if l/2n < t < l/2n-\ n > 1, 
(1,0) if 1 < t. 

Then {xt: t G R} is a spectral resolution but the finiteness property fails. 

In [DL19], there is introduced a notation of characteristicj^oints of a 
spectral resolutions on lexicographic effect algebra E = F(H x G,(u,0)). 
Let {xt: t G R} be a system of elements of E satisfying the conditions (3.2)-
(3.4). Then for each h G H denote Ih = {t G R : xt G Eh} ^ 0. It is rather 
easy to prove that each nonempty Ih is of form (th,Sh\, Sh,th G R. A n d 
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the reals thS are called characteristic points of (xt)t- Now (xt)t is called a 
spectral resolution (on lexicographic effect algebra) if moreover all the infima 
ah '•= Aixt '• t G Ih} exist in E. 

Hence the system [xt)t from Example 3.1.6 fails to be a spectral resolution 
in the sense of [DL19]. While (xt)t from Example 3.1.7 is a spectral resolution 
on lexicographic effect algebras but fails in the finiteness property. One 
can prove that both of the defects described by the two examples could be 
prevented by an assumption, that As<txt exists for all s G R . 

Now we present the main result of the section which is a converse to 
Theorem 3.1.5. We need the following notion: 

D e f i n i t i o n 3.1.8. Let G be a directed monotone a-complete po-group. A 
mapping x : B(M) —> G+ is said to be a G-observable if (i) x(A U B) = 
x(A) + x(B) whenever A and B are disjoint Borel sets, and (ii) if {Ai}i is a 
sequence of mutually disjoint Borel sets, A = [J{ A{, then {x(Ai)}i is bounded 
above and x(A) = \Ji(x(Ai) + • • • + x(AA). 

Easy consequences of the previous definition are: rr(0) = 0 and x(B\A) = 
x(B) — x(A) whenever A C B. 

T h e o r e m 3.1.9. Let E = T(H^< G,(u,0)), where (H,u) is a unital po-
group and G is a monotone a-complete po-group with interpolation and with 
strong unit. Let {xt G E: t G K } be a system of elements of E and ho < hi < 
• • • < h„ be elements of [0,U]H and real numbers so = t\ < • • • < tn, such 
that conditions (3.2)-(3.6) are satisfied. Then there is a unique observable 
x on E such that xt = x((—co, t)) for each t G M . 

Proof. Let v be a strong unit of G. B y the Loomis-Sikorski Theorem for 
monotone a-complete unital po-groups, Theorem 3.1.2, there are a g-effect 
tribe of bounded functions T on £1 ̂  0 and a a-homomorphism TT from T 
onto G such that 7r(ln) = v. Let irH • T(H x T , (u,0)) —> E be a mapping 
defined by 7T//(/i,/) := (h,7r(fj), h G [0,-u]#, / G T . Then -KH is a surjective 
a-homomorphism from F(H x T , (u, 0)) onto E = F(H x G, (u, 0)). 

We see that h0 = 0 and hn = u, otherwise (3.3) would not hold (see 
Lemma 3.1.3). In order to simplify the proof, let us define to := - c o , tn+\ := 
co and x_oo := (0,0), Xoo := (u, 0). For each integer i, 0 < % < n, and for 
each t G M, we define 

{ 0 if t < U, 

Xt — f \ t i < s

 xs if U < t < tj+l, 
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Note that the system {x\: t G R} is stil l monotone, left continuous and all 
x\'s are in EQ. Let r i , r 2 , . . . be any enumeration of rational numbers in the 
interval Set bl

Q G T + any element of T + such that (0,7T(6Q)) = a;i 
(e.g., 1Q in case i = n). One can by an induction find further elements 
bl

n G T , n > 1, such that (0,^(6^)) = and 6^ < 6^ < 6Q whenever 
fn < ?"m ( s e e Theorem 3.1.2). 

Since rational numbers are dense in R, we can define for each real r an 
element c\ = \frn<rbl

n (which is well defined since all b%

n with rn < r are 
dominated by bl

Q). Since IT is a a-homomorphism, (0,7r(c*)) = holds. We 
may replace c\ by — f \ t < t c \ (note that the infimum exists, since all cj's 
are from T + and v r ( / \ t < t c j ) = 0) to assure /\s<tc\ = On- Finally for t <U 
define c\ = 0Q and for ti+i < t define c\ := c\ . See that c\, t G M, is 
non-decreasing, left continuous and A t c t = On

Now, for each w G H and t G M we define -F^(i) := c\(uS). For each a;, 
F^ is a non-decreasing, left continuous function such that l i m ^ - o o F^(t) = 0 
and l im^oo F^(t) = c\ (uS). That is, F^ is a distribution function of some 
finite a-additive measure on i3(R), see [Hal74, T h m 43.B]. 

Define a mapping : —>• T + , by prescription £j(.5)(u;) = F^(B), 
B G ß ( R ) , specially &( ( -oo , t ) ) = cj G T + . In order to prove &(B) G T + for 
each Borel set B, we wil l use following argument: The system JC of Borel sets 
with this property forms a Dynkin system, i.e. a system of subsets containing 
its universe and which is closed under the set theoretical complements and 
countable unions of disjoint subsets, [Kal02], and containing all intervals 
(—oo,t), t G K . These intervals form a 7r-system, i.e. intersection of any 
two sets from the 7r-system is from the 7r-system. Hence by the Sierpihski 
Theorem 1.3.5, K is a a-algebra, which proves K = B(R). 

Define y^B) := (0, n(&(B))), B G B(M). Given a G E, we define 0-a := a 
and 1 • a := a. Now we finally set 

n n 

x(B) := 5 > ( S ) + .(/\xt-xti). (3.7) 
i=0 i=l U<t 
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The sum is well defined for every B G B(R): For each i < n 

Vi(B) + X{u}{B) -{f\xt- xti) < yi(R) + /\(xt- xu) 

= [xU+i - f \ xt] + [(f \ xt) - xu] 
ti<t ti<t 

Xti+i Xii . S{. 

As {5i: % = 0 , . . . , n} is obviously a summable sequence with sum x^—x_oo = 
(u, 0), formula (3.7) could be summed as well. A n easy computation (similar 
to the just computed evaluation at M) leads to x((—oo, t)) = xt, for each real 
t. 

It remains to prove x is an observable on E (Definition 1.4.1). We have 
already proved x(M) = (u,0). To the second part: Let Aj G B(M), j > 1, be 
pairwise disjoint sets whose union is A. A t first, we prove the condition for 
each Using both: ^ is a T-observable and 7r is a a-morphism, we get 

•iQjAj) = (0,7r(6(U )̂)) = ( 0 , v r ( ^ 6 ( ^ ) ) ) 

which we read as Y^jVi{Aj) is summable and its sum is Vi(A). Similarly, 
X{ti}(Aj) is trivially summable as it has at most one non-vanishing sum-

mand if U belongs to some Aj, equivalently, if U belongs to A. Putt ing these 
facts together, we can derive a-additivity of x: 

E > ( ^ - ) = J2 E > ( ^ - ) + • ( A x t -
j j L i=0 i=l ti<t 

- n -i n 

i=0 j i=l 

i=0 j J i=l j ti<t 
n - i n 

J2vi(A) + ^ X { t ! } ( ^ ) - (/\xt-xtt) 
i=0 i=l 

x(A). 
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Now we establish uniqueness of x. Assume, that y is any observable on 
E such that y((—oo,t)) = xt, t G R. Let T be the system of Borel sets 
F G B(R) such that x(F) = y(F). Hence, J 7 is a Dynkin system containing 
all intervals of the form (—oo,t), t 6 R . Similarly as above, the Sierpihski 
Theorem implies J 7 is a a-algebra, which proves T = B(M) and x = y. • 

3.2 Finite-dimensional case 
In the previous section, we have mentioned the notation of characteristic 
points of a spectral resolution on F(H x G, (u,0)). Given a spectral resolu
tion F, characteristic points of F are these real numbers t's, where the value 
of F skips in the first coordinate. Moreover, the number of characteristic 
points is finite whenever F determines an observable, in which case the char
acteristic points provide a decomposition of the real line into a finite number 
of intervals. It turns out that in the finite-dimensional case, each n-spectral 
resolution F which corresponds to an observable satisfies finiteness property 
as well (i.e., F~1(Eh) is non-empty only for a finite number of h's). A n d so 
provides a finite decomposition Rn = [Jh€H F~1(Eh). The decompositions of 
M.n which arise in this way are rather easy to characterize. 

In one dimensional characteristic point is an infimum of some 
nonempty 

Bh:=F-\Eh), (3.8) 

h ^ 0. However for F an n-spectral resolution, in the sense of Definition 1.4.3, 
Bh '•= F~1(Eh) may has more than one minimal element. Nevertheless, for 
each s G Bh there is exactly one minimal element of Bh which is below s. 

In the section each nonempty set of form (3.8) is called a block. 

L e m m a 3.2.1. Let F be an n-spectral resolution on T(H ~x G, (u, 0)) ; h G H 
and s G F ~ 1 ( £ ' / l ) . Denote 

t := inf{r G Bh\r < s}. (3.9) 

Then some r < s belongs to Bh if and only i / t « r < s . 

Proof. The if part: suppose t <C r < s. Then there are r l 5 . . . , r n , elements 
of Bh, such that for each i, the i-th coordinate of is smaller than the 
i-th coordinate of r. Moreover, we can assume each r*j shares with s all 
coordinates unless the i-th one. We show that r 0 := belongs to Bh, 
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which leads to r G Bh as Bh is (as a subset of poset) convex. Now the r^'s 
define an n-cuboid C, the one having s as the first vertex, r^'s as the vertices 
of second order and 1*0 as the bottom vertex (in the sense of Chapter 2). 
One can prove, using the volume conditions to faces of C, that for each edge 
(r', r"), r ' < r", of C, we have F ( r " ) - F ( r ' ) < F ( r , ) - F(s) G E0 for some i. 
Hence we can proof by an induction that all vertices of C belong to Bh, and 
so in particular F ( r 0 ) G Eh-

Next we prove the only if part. If some r < s does not satisfy t < r, then 
r obviously cannot belong to Bh- If r satisfies only t < r (but not t « r) , 
then there is a monotone sequence r*j / * r, with < r for each i G N . The 
rj's do not belong to Eh and so r neither, by the continuity of F. • 

We call characteristic point of an n-spectral resolution any n-tuple t G R™ 
given by (3.9) for some h G H and s G F~1(Eh). 

L e m m a 3.2.2. Let t i , t 2 , s G M.n, t i < t 2 , 0 < s and F be an n-spectral 
resolution. If the set I of indices of coordinates where s is nonzero and the 
set J of indices of coordinates where t i differ from t 2 are disjoint, then 

F ( t 2 + s) - F ( t i + s) > F ( t 2 ) - F ( t i ) . (3.10) 

Proof. Choose sequences 0 = s 0 < Si < • • • < Sk_i < Sk = s and t i = r 0 < 
1*1 < • • • < r i _ i < r i = t 2 such that (in both sequences) any to consecutive 
elements differ only in one coordinate. B y volume conditions we have for 
each i < k,j < I inequality 

F ( r j + 1 + s i + i ) - F ( r j + s i + 1 ) > F ( r j + 1 + S i ) - F ( r j + s ;). 

Composing such inequalities for all i's we yield 

F ( r j + 1 + s) - F ( r j + s) > F ( r j + 1 ) - F( r j ) , (3.11) 

for each j < I. A n equivalent form of (3.11) is F(r$+1 + s) — F ( r j + 1 ) > 
F(r j + s) — F(r_j), we can again compose these inequalities to obtain the 
desired inequality (3.10). • 

L e m m a 3.2.3. Let s1,s2 G R™, s x < s 2 , and F an n-spectral resolution. 
Then S i , s 2 belong to different blocks Bh's if and only if there is a character
istic point t, such that t < s 2 but t <^ s1. 
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Proof. We begin with the " i f part. Suppose a characteristic point t e B/ , , 
such that t < s 2 but t ^ S i . We want to prove F(s2) — F(si) (j£ E0. There 
has to be some % < n, such that the i-th coordinate of s i , denoted by y, is 
smaller or equal to the i-th coordinate of t. Define by s'x an element of MJ1 

which arises from S2 by rewriting the i-th coordinate to be y. Hence we have 
s i < s i < s2, t s'x and by monotonicity we obtain 

F ( s 2 ) - F ( S l ) > F ( s 2 ) - F ( s i ) . 

B y definition of characteristic points, t is given by formula (3.9) for some 
Bh, and there is s G Bh, such that s <C s 2 . As the next step define s 2 and 
s" by decreasing in s 2 and s' l 5 respectively, all but the i-th coordinate to the 
corresponding coordinates of s. B y Lemma 3.2.2 and monotonicity (s 2 > s) 
we have 

F ( s 2 ) - > F(s2) - F(s'l) > F(s) - F(s'l). 

Finally si' < s and t <t s i , hence s'i ̂  Bh and so F(s) - F(s ' i) ^ E0. 
The "only if" part of the lemma is trivial, we take for t the characteristic 

point given by (3.9), where we set s = s 2 (and so Bh is the block containing 
s 2 ) . • 

The following theorem gives us a picture of how the decomposition of W1 

to the blocks BhS for a given F, looks like. 

T h e o r e m 3.2.4. Let F be n-spectral resolution. For each characteristic point 
t define Ct = {s G Rn\t < s and t <^ s}. Each Ct cuts Rn into two disjoint 
components as 

R™ = { s | t <t s} U {s|t < s}. (3.12) 

The joint cutting of W1 along all the Ct's refines the decomposition 

K™= |J Bh. 
he[o,u]H 

Proof. Suppose we have s i , s 2 G M.n belonging to different blocks, say s i G 
Bhx and s 2 G Bh2, hi 7̂  / i 2 - To prove the Theorem we need to find a 
characteristic point t which divides the two points in the sense of (3.12). 
If si < s 2 or s 2 < si then Lemma 3.2.3 assures the t. Otherwise, we take 
s := si A s 2 (we thing of Rn as a lattice). Now s belongs to some Bh, where 
h < h\,h,2 and for some i = 1,2, h < hi. Say i = 2. Hence Lemma 3.2.3 
gives us a characteristic point t, t <C s 2 but t s. The characteristic point 
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Figure 3.1: Decomposition to blocks 

t is the desired one. Indeed, if t <C S i , we would have s 
well, which is a contradiction. 

Si A s 2 > t as 
• 

In Figure 3.1 we have a schematic picture of decomposition to blocks in a 
two-dimensional case. In the pictured situation we have seven characteristic 
points and eight blocks (in the case hi& are pairwise different). However, it 
may happen that h := h2 = /13 = /14, in which case Bh = F~1(Eh) would 
consist of three disjoint components. 

T h e o r e m 3.2.5. Each observable x on E gives arise to a spectral resolution 
F with only finitely many characteristic points. Moreover V t < s F ( s ) exists 
for each characteristic point t. 

Proof. Take any tu = (ti,... ,tn) G Bu. B y Lemma 3.2.3 tu is strictly over 
each characteristic point t (i.e., t <C tu). Next take any i = 1,. . . ,n and de
note by U the line parallel to i-th axis passing through tu. We can parametrize 
all the points on /j by its i-th coordinate as U = {sy\y G K } . We claim, that 
two points sy < sz lying on the line k belong to different B^s if and only if 
there is some characteristic point with i-th coordinate equal to some w G M 
such that y < w < z. This follows from Lemma 3.2.3 combined with the 
fact, that for some characteristic point t it could happen t <t s s only in the 
case, when the i-th coordinate of t is greater or equal to the i-th coordinate 
of s,,. 
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Now F restricted to U gives a (one-dimensional) t pseudo-spectral reso
lution Fi assigned to an observable Xi : B(li) —> F(H x G,v), where v := 
Vy€RFi(y) defined by 

Xi : A i-> x((—oo, ti) x • • • x (—00, x T4 x (—00, x • • • x (—00, £„)). 

Hence, the image of Fi meets only finitely many E^s by Theorem 3.1.5. 
This entails, only finitely many reals occur as the i-th coordinate of some 
characteristic point. Using such argument to all coordinates we observe, 
there are only finitely many characteristic points. 

The second part of the statement is trivial. • 

Our next aim is to prove the opposite of Theorem 3.2.5. That is, the two 
mentioned conditions are sufficient for n-spectral resolution to be extendable 
to an n-observable. 

D e f i n i t i o n 3.2.6. We say that a spectral resolution F satisfies the finite-
ness property, if F has only finitely many characteristic points and asserts 
infimum At<^sF(s) for any characteristic point t. 

Assume an easy case, when F is 2-spectral resolution h supreth a unique 
characteristic point t = (ti, t2). If we distribute the right hand side of equality 

R2 = [(-00, h) U {h} U (tu 00)] x [(-00, t2) U {t2} U (t2, 00)], (3.13) 

we yield a decomposition of M 2 into nine disjoint sets, where each of them 
contains no characteristic point or only characteristic point. This decompo
sition corresponds to the decomposition of F, which arise by distributing the 
right hand side of (rather intuitive notation of substituting t+ to a function 
is precisely defined by formula (3.15)) 

F(s1,s2) = [ A i ( - o o , m i n { t i , s i } ) + A i ( m i n { t i , s i } , m i n { ^ , s i } ) + 

+ A i ( m i n { ^ , s i } , s i ) ] • [A 2 (-oo,min{t 2 ,s 2 })+ 

+ A 2 ( m i n { t 2 , s 2 }, m i n { 4 , s 2 }) + A i ( m i n { # , s 2 }, s2)]F. 

The equality follows from following equation of operators 

A i ( - o o , m i n { t i , s i}) + A i ( m i n { t i , Si}, min{t+, s i}) + Ai(min{t+ , Si}, Si) = 

= A i ( - o o , s i ) . 
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It turns out, that the summands in the decomposition of F are in fact pseudo-
spectral resolutions, which are of either kind: have no characteristic point or 
are two-valued. In both cases, we can extend them to pseudo n-observables, 
which supports are included in corresponding summands in the decomposi
tion (3.13). 

The just-described example directly generalizes to the general case of our 
interest. We only have to cut M.n in more dimensions and in more characteris
tic points. Our next aim is to prove that the summands in the decomposition 
of F are pseudo n-spectral resolutions. To achieve this, we have to prove sev
eral technical lemmas. 

The following lemma states that the volume formula satisfies certain con
tinuity properties: 

L e m m a 3.2.7. Suppose we have 2m, m G N , sequences (a\)i, S G {0, l}m, 
of elements of an effect algebra E = T(H x G, (u,0)), such that all the se
quences are non-decreasing (non-increasing, resp.) and have suprema (in-
fima, resp.) in E, for each S. Moreover, denote by 7r(S) the number of zero 
coordinates in S = (Si,..., Sm). 

If (52s(~l)n as)i ^s non-decreasing, then 

Proof. For the sake of simplicity we demonstrate the proof in the situation 
where m = 2. In the general case only more summands are involved. Hence 
we assume four monotone sequences (aj)j, (6j)i, (c$)j and which have 
sumprema (infima, resp.) a, 6, c, and d. According to Lemma 3.1.3 we 
can without loss of generality assume the four sequences are constant in the 
first component (recall E = T(H x G, (u,0))), and hence so is the sequence 
(a* + di-bi- Ci)i. 

1)" ' { 'OJ )J is non-increasing, then 
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First assume the four sequences are non-decreasing (with sumprema a, 
b, c, d) and (c^ — bi — C{ + di)i is non-decreasign as well. The supremum 
S = Vi(° i + di — b{ — Ci) exists by Lemma 3.1.3, having a + d — b\ — c\ as 
the upper bound. Then for each i, we have + di < S + bi + q , hence 
a + d < S + b + c which gives us one inequality. To prove the second one, we 
have to verify that for each i we have the inequality a,+d—bi—Ci < a+d—b—c. 
Equivalently, 

a{ + di + b + c < bi + Ci + a + d. (3.14) 

But due to monotonicity of (a^ + 6j — Q — di)i, for each j > i, we have 
di + di + bj + Cj <bi + Ci + dj + dj. Which yields (3.14). 

Next assume (a^ + di — bi — Ci) is non-increasing and denote S = Ai(° i + 
di — bi — Ci), which exists again by Lemma 3.1.3, having a\ + d\ — b — c (or 0 
in the case of EQ) as lower bound. We have + di > S + bi + Q for each i, 
which gives u s a + d — b — c> S. A n d for each i, a — b — c + d < ai — bi — Ci + di, 
as this is equivalent to a + d + bi + Q < b + c + + , which follows from: 

Vj > i , dj + dj + 6i + Ci < bj + Cj + di + di. 

The other two cases (when the four sequences are non-increasing) are 
dual to the two just described. • 

We wil l simplify future expressions a lot using the following notation: For 
any (usually a pseudo n-spectral resolution) F : M. —> E and an integer i < n 
we define 

F(tu...,tt,...,tn) := / \ F(h,...,s,...,tn), (3.15) 
U<s 

F(tu...,tr,...,tn) := \ / F ( t i , . . . , s , . . . , t n ) . (3.16) 

For general monotone mapping F the right hand side may not be defined, 
however for n-spectral resolutions we can even well-define F^1,... ,t"n), 
where o~i equals + or — or is empty (Lemma 3.2.9). 

We wil l also naturally extend the linear order <: for each r, s G 1R we set 
r~ < r < r+ and r C T l < sCT2, for s ^ s, if and only if r < s, for any o~\, a2 G 
{+,—,null}. Moreover, —oo+,oo~ are the least and the greatest element, 
respectively. In following text we prefer to avoid a special treatment of ± o o , 
observe that computation of infima or suprema of pseudo spectral resolution 
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F in ±00 behaves quite similar to the case of finite real: by definition of 
supremum and infimum we have 

V F(t) = 0 = F(~°°), (3-17) 
t< — oc 
/ \ F(t) = 1 > F(+oo). (3.18) 
DO<£ 

In the following part, we wil l be frequently proving that some mapping 
satisfies the condition of spectral resolutions. We have to keep an eye on the 
finiteness condition, as in general, some infima of an n-spectral resolution may 
not exist. The following equivalent formulation of the finiteness condition 
shows to be useful. 

L e m m a 3.2.8. Let F : MJ1 —> E be an n-spectral resolution. Then F satisfies 
finiteness condition if and only if F has all infima of the form 

F ( ^ , . . . , < " ) , (3-19) 

where for each % = 1 . . . , n we have Si G K U {—co} and o~i G {+, —, null} (we 
allow also —oo+). 

Proof. The "only if" part: suppose F satisfies finiteness condition. First 
observe, that if in (3.19) some s^* equals —oo +, then the expression values 
0 (by definition of n-spectral resolution). Hence we may assume all Sj's are 
finite. Now, investigating infimum (3.19) we may without loss of generality 
assume there is an integer k < n, such that the expression in concern is of the 
form F(si,..., Sk, s^+1..., s+). As F has only finitely many characteristic 
points, there is q G Rn~k, (sjt+i,... ,sn) <C q, such that for all r G Rn~k, 
with 

( s f c + i , . . . , s „ ) < r < q , (3.20) 

the n-tuples (s\,..., Sk, ri,..., rn-k) belong to the same Bh = F~1(Eh), 
for some h G H. Two cases could happen: either h = 0 in which case 
the F(si,..., Sk, . . . ,rn_fc)'s has 0^ as lower bound, or h ^ 0, in which 
case by Lemma 3.2.1, there is the unique characteristic point t, such that 
F(tf,..., £+) G Eh is lower bound for all F(si,..., Sk, r\,..., rn_fc)'s (r sat
isfies (3.20)). In both cases Lemma 3.1.3 assures the existence of the desired 
infinum. 

Now the "if" part: Suppose all the infima F(sa

l

1,..., sn

n), where s^'s 
are as in the statement, exist. We only need to verify the finiteness of the 
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number of the characteristic points. On the way of contradiction assume F 
asserts infinitely many characteristic points. Hence for some integer i, the 
set 

{t G M\t occurs as i-th coordinate of some characteristic point of F} 

is infinite. Suppose i = 1. Take any tu G Bu, then tu = (tf,..., t£) is over all 
the characteristic points. Hence the line L := {(y, t%,..., t™)\y G K } meets 
by Lemma 3.2.3 infinitely many B^s. Now the decomposition W1 = [Jh€H 

restricts to infinite decomposition of L to intervals (see Theorem 3.2.4). For 
the sake of simplicity let us identify L = R , then the decomposition is as 
follows 

L = ( - o o , s 0 ] U ( (J (th,sh]jU(tu,oo). 

Where (th, Sh] = LilBh- B y the compactness of interval [so> the reals s^'s 
have some cluster point s. However, as both supremum F(s~, t^, • • •, and 
infimum F(s+, t%,..., t™) exist, by Lemma 3.1.3 there exists a real e > 0, 
such that there is no Sh in (s — e, s + e) \ {s}, which is a contradiction with 
s being cluster point. • 

L e m m a 3.2.9. Let F : W1 —> E be an n-spectral resolution satisfying finite-
ness condition. Then the value 

F(tV,...,t°n), 

where o~i G {+, —} is well defined. That is, whenever we have an expression 
of the form S i • • • S n F ( s i , . . . , sn), where each Sj is either V t > s

 o r A t <s•> 
the expression has well defined value and we may change an order of the Sj's 
without changing the value. 

Proof. We proceed by an induction over n. If n = 1, there is nothing to 
prove. Now the induction step: by fixing any coordinate in F, we get an 
(n — l)-dimensional pseudo spectral resolution, so we can freely permute the 
S 2 , • • •, S n by the induction. Using this and some re-indexing, it is enough 
to prove for each t G ( R U { ± c o } ) n the following equation is well defined and 
holds 

V ••• V A ••• A F(si,...,sn) = 
S l < t l Sfc<tfc t f c + l < S f c + l t„<s„ 

= A ••• A V ••• V n*i,-,sn). 
s k + 1 < t k + 1 sn<tn si<ti sk<tk 
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Let us rewrite it in an easier form: For each s G (R U {±oo}) f c and t G 
(R U { ± o o } ) n _ f e , 

V / \ F ( q , r ) = / \ F ( s , r ) . (3.21) 
q<gs r»t r»t 

(We have used the continuity property on the right hand side.) The right 
hand side is well defined by Lemma 3.2.8. Hence, as for existence, we only 
need to look after the left hand side. For each q C s and r ' ^> t, we shall 
prove the second inequality (the first one is trivial) in 

0 < / \ F{s, r) - / \ F ( q , r) < F ( s , r') - F ( q , r ') . (3.22) 
r»t r»t 

If we prove (3.22), we are done, as the last expression clearly goes to 0 as q 
goes to s, which implies the left hand side in (3.21) exists and equals to the 
right one. Now inequality (3.22) obviously follows from following equality 

/ \ F(s, r) - / \ F ( q , r) = f\[F(s, r) - F ( q , r)]. (3.23) 
r»t r»t r»t 

In proving (3.23) we would like to apply Lemma 3.2.7 (m = 2), but the infima 
are not taken over countable non-increasing sequences. The two infima on the 
left hand side may be in the obvious way (using monotonicity of F) rewritten 
to be taken over countable monotone sequences. In the case of right hand 
infimum, we have to verify that whenever 1*0 < r i then 

F(s, r 0 ) - F ( q , r 0 ) < F(s, r x ) - F ( q , r x ) 

(which in fact proves the infimum is well defined). But the last is direct 
consequence of Lemma 3.2.2. 

Hence, we can apply the Lemma 3.2.7, to prove (3.23) and so to finish 
the whole proof. • 

There is no problem in substituting t~ (t+, resp.) to the A-operators, e.g. 
Ai(sf, -oo+) is a shortcut for (tu . . . , £ , . . . , * „ ) H> \fSt<tt F(t) - /\t. F(t). 
However, we have to verify several properties which were rather trivial for 
the ordinary A-operator. We shall prove the A-operators in this extended 
manner when applied to finite-dimensional pseudo spectral resolution are: 

• commutative (Lemma 3.2.10), 
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• distributive over + (Lemma 3.2.13), 

• and moreover they preserve the class of finite-dimensional pseudo spec
tral resolutions (Proposition 3.2.12). 

In the proof of the next lemma we are using following notation which 
simplifies formal manipulation with substitutions to functions: given a func
tion F(ti,... ,tn) of variables ti,...,tn and a real s, by F(s/U) we mean a 
substitution of s to the i-th coordinate in F. That is the function 

(ti,...,U,...,tn) i-> F(ti,... ,s,... ,tn). 

Hence we can write Aj(s j , r j )F( t ) = F(ri/U) — F(si/ti). 

L e m m a 3.2.10. Let F be a pseudo n-spectral resolution, 1 < i < j < n 
integers and < Si, Tj < Sj be elements o / K U { ± c o } . Assume 

F^/U^/tj), F(C/U, sf/tj), Ftffarffa), Ftf/U, sf/tj) 

exist (e.g., if F satisfies finiteness condition by Lemma 3.2.8), where o~\,o~2, 

Si, 52 freely substitute the symbols in {+, —, null} such that +co + ,— co~ do 
not occure. Then 

AtiCs^Ajir^sf )F = A^ir^s^AtiCs^F. 

Proof. We shall demonstrate the proof on one particular case 

A 4 ( r+ S r ) A j ( r + , S T ) F = A ^ r i , ^ ) A , ( r + , sr)F, (3.24) 

but one can prove all the cases by the very similar way. The left hand side 
equals (by definition) 

[Fi-sj/tj) - F(rptMs-/U) - {Fis+ftj) - F(sf/t^t/U)- (3.25) 

We wil l first evaluate the first summand of (3.25). B y Lemma 3.2.7 F(sJ/tj) 
is monotone in the i-th coordinate and (by Lemma 3.2.9) 

V Fis/t^sptj) = Fisr/t^sptj). 
S<Si 

Similarly, F{rJ/tj) is monotone in i-th coordinate and 

V Fis/turf/tj) = Fisr/t^rptj). 
S<Si 
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Next F(SJ /tj) — F(rj~/tj) is monotone in i-th coordinate as well: for s < s' 
we have 

Hs/tusj/tj) - F{sfa,r+fa) < F(s'fa,sjfa) - F(s'fa,r+fa) 

& F(s'fa,rj fa) - F(s/U,r+fa) < F(s'fa,sjfa) - F(s'fa/,sjfa) 

& [F(s'fa) - F(sfa)](rffa) < [F(s'fa) - F(sfa)](sj fa), 

where the second equivalence follows by Lemma 3.2.7 (with m = 2). The 
last inequality is clearly valid if Tj < Sj (F(s'/U) — F(s/t{) is monotone by 
the volume conditions). In the case Tj = Sj we only need to reverse the three 
inequalities. 

Now we can finally apply Lemma 3.2.7 (with m = 2) and yield 

[F(sjfa) ~ F(r+fa)](s-fa) = F(s;fa,sjfa) - F(Sr fa, sj fa). 

The same argumentation applies to the second summand in (3.25) and to 
the right hand side of (3.24) as well. Hence both, the left hand and the right 
hand side of (3.24) are equal to 

F{s-/U, s+fa) - F{s-/U, sjfa) - F(r+fa, 8+fa) + F{rf fa, sjfa). 

One can realize, that the concrete choice of symbols +, — we have in the 
desired equality affects the proof only in which variant of Lemma 3.2.7 we 
use. Also observe that particular cases = — o o + or sj = oo~ cause (in 
applying Lemma 3.2.7) no problems. • 

O b s e r v a t i o n 3.2.11. If F is a -pseudo n-spectral resolution, i = l,...,n 
and r < s are reals, then F' := A$(r, s)F is a pseudo (n — 1)-dimensional 
spectral resolution. 

Moreover F' satisfies finiteness condition whenever F does. 

Proof. Suppose % = 1. monotonicity and volume conditions obviously follows 
from those for F. Continuity in j - t h coordinate: 

A J ( S T ; S j . ) A i ( r i , si).P = A i ( r i , s i ) A j + i ( s T ) S j . ) F = A i ( r , s)0 M n-i = 0 K n - 2 . 

The fact that / \ i g R A i ( r , s ) F ( s 2 , . . . , tj,..., sn) = 0, for each choice of Sj's, 
follows by another application of Lemma 3.2.7. 
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Applying Lemma 3.2.7 (in the way we have done several times) we deduce 

We have already proved the commutativity of two A-operators applied to 
a pseudo n-spectral resolution (Lemma 3.2.10). We like to extend this result 
to the commutativity of any number of A-operators by induction, to do so 
we need the following Proposition. 

P r o p o s i t i o n 3.2.12. If F is a pseudo n-spectral resolution on effect algebra 
E = r(H x G,(u,0)), i < n an integer, and r < s are reals, then F' = 
Ai(rai,sa2)F is a pseudo (n — 1)-spectral resolution whenever rai < sa2. 
Moreover, F' satisfies finiteness condition whenever F does. 

Proof. For simplicity assume i = 1 and denote F' := Ai ( r C T l , s a 2 )F . mono-
tonicity in j - t h coordinate is equivalent to 0 < A J ( T J , S j ) A 1 ( r C T 1 , s a 2 ) F , for 
each Tj < Sj. But the last equals (Lemma 3.2.10) A i ( r C T l , sa2)Aj+i(rj, Sj)F, 
which is non-negative (e.g., by Observable 3.2.11). Using Lemma 3.2.10 and 
Observation 3.2.11 we deduce 

(A1(r,s)F)(s2,...,sk,s^+1... 

F(s, s2,..., sk, s^+1..., s+) -

so by Lemma 3.2.8, F' satisfies finitenes condition whenever F does. • 

A x ( n , 5i) • • . A n _ i ( r „ _ i , S n - O A i ^ 1 , sa2)F = 

= A 1 ( r C T 1 , 5 C T 2 ) A 2 ( n , 5 i ) • ••An(rn-1,sn-1)F. 

and the last expression is non-negative. 

Infimal condition: choose any Sj G M 

F'isj/g - F'i-oo/g = A , ( - o o , S , ) A i ( r C T 1 , 5

C T 2 ) F = 

A 1 ( r C T l , 5 C T 2 ) A j + 1 ( - o o , S j ) F = A1(r"l,sr*)[F(sj/tj+1) - 0 M „-i] = 

F>(Sj/t>). 
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So F'(—oo/t'j) = 0 R n - i . Suprema condition: we already know A i ( r C T l , sa2)F 
is monotone and so is F(rai/ti) and F(sai/ti). Lemma 3.2.7 (with m = 2) 
assure 

V A 1 ( r - , S - ) F = \ / F^/sT)- V nh/r?) 
Rn-1 Rn-1 R n-1 

exists. 
It remains to deduce the fmiteness property. B y Lemma 3.2.9, for each 

k < n and s2, • • •, sn G M U {-co} the values F(rai,s2,... ,sk,sk+l,..., s+) 
and F(ra2,s2,..., sk, s k + l , . . . , s+) exist, and hence by Lemma 3.2.7 

(A1(rai,sCT2)F)(s2,... ,sk,sk+1,..., s~j) 

exists as well. • 

L e m m a 3.2.13. Let F be a -pseudo n-speetral resolution and i,j a pair of 
integers, such that 1 < % < j < n. Then 

^ ( r f S O I A ^ . t i * ) + &j(uf,sf)]F = 

= A , ( r f , s p ) A j (r*, ) F + A , ( r f , « p ) A , ( « * , 

Proof We can yield the identity by following deduction 

L H ' S =Al(C,sr)AJ(rf,sf)F 

=Aj_l(rf,sf)Ai(C,s?)F 

=Aj_1(r5

j\uf)Ai(C,s?)F + Aj-i{uf, s f ) ^ , ^ 

=RH'S . 

• 
Now let us come back to our main problem. We have an n-spectral 

resolution F : W1 —> E. Suppose F has only finite amount of characteristic 
points and all of them are elements of the set Y\^=i{t\,t2, • • • ,t\.}, where 
t\ < t\ < • • • < t\., I G N , are reals (such that all the i-th coordinate of the 
characteristic points of F are among them). In analogy to the motivating 
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example in the introduction to this section we consider equality 

F ( t ) =]\ ( A i ( - o o , m i i i { t i , t i } + J2 [A i (mi i i { t i , t }} ,mi i i { t i , t } + } 

+Ai(mm{ti,t) },mm{ti,t)+l})] + A ^ m i n ^ , min{^ , ^ }) 

Now, due to the previous lemma we can distribute the product to (2Ẑ  +1) 
summands. Each of the summands arises by applying iteration of some A 
operators on F, which (by definition) results in a real number. However, in 
order to acquire a decomposition of F, we need to thing of the summands as 
functions in variables (ti,... ,tn). We need to prove the last technical lemma 
of this chapter, in order to verify conditions of spectral resolutions for the 
summands. 

L e m m a 3.2.14. Let F : M.n —> E be an n-dimensional -pseudo spectral 
resolution. For every i = l,...,n and reals s < r, each of the mappings 
F!:Rn->E,i = l,2,3,4, defined as 

F[{h, ...,tn):= (A j ( -oo ,min{s , t j } )F ) ( t i , ...,iu... ,tn), 

F'2{tu ...,tn):= ( A i ( m i n { s , t i } , m i n { s + , t i } ) F ) ( t i , . . . ,tu .. .,tn), 

Fg(£i, ...,tn):= ( A i ( m i n { s + , t i } , m i n { r , t i } ) F ) ( t i , . . . ,tu .. .,tn), 

K(ti, ...,tn):= ( A i ( m i n { r + , t i } , t i ) F ) ( t i , .,tn), 

is an n-dimensional pseudo spectral resolution. Moreover, the characteristic 
points of F{'s are subsets of the characteristic points of F. In more details, 
a characteristic point ( s i , . . . , sn) is characteristic point of: 

• F[ iff Si < s, 

• F'2 iff Si = s, 

• F^ iff s < Si <r, 

• F'Aiffr < Si. 

U-i 

(3.26) 
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Proof. We may without loss of generality assume % = 1. A l l the discussed 
cases are of the form F'(t) := (Ai(min{s C T 1 , ti},min{rCT2, t i } )F ) ( t 2 , • • •, tn) 
(where sai = —co + in the case of F[ and rC T 2 = co~ in the case of F Q . So 
we can threat all the cases at once. Consider an expression A 1 ( s ' , r ' ) F / , for 
some a' < r', it equals (by definition) 

F{mm{r°\r'}/h)-F{rmn{r°\s'}/h) 

- F ( m i n { s C T 1 , r ' } / t i ) + F(mm{sai ,s'}/h). ^ ' ' 

Two cases could occur: 

a' = mm{sai, r°2, a', r'} < sai or a' > min{s C T 1 , r°2, a', r'} = sai. 

In both cases two of the summands in (3.27) cancel each other. So we obtain 

F ( m i n { r C T 2 , r ' } / t i ) - F ( m i n { s C T l , r ' } / t i ) 

in the first case and 

F ( m i n { r C T 2 , r ' } / t i ) - F(min{r C T 2 , 

in the second case. Moreover 

F ( m i n { s C T l , r ' } / t i ) > F(s'/h) = F(min{rC T 2,s'}/h) 

in the first case and 

F ( m i n { s C T l , r ' } / t i ) = F(sC T l/h) < F(min{rC T 2,s'}/h) 

in the second case. Hence we can express (3.27) (in both cases) using only 
one A-operator as 

A i ( m a x { min{s C T 1 , r'}, min{r C T 2 , s '}}, min{r C T 2 , r ' } ) F (3.28) 

Moreover, as the four elements aai, r C T 2 , a', r' are linearly ordered, the oper
ations of min and max distribute over each other. Using distributivity it is 
straightforward to transform the (3.28) to the form 

A ^ m i n { r < T 2 , r / , m a x { s < T 2 , s / } } , m i n { r < T 2 , r / } ) F . (3.29) 

As consequence we can express any sequence of A-operators applying to F' as 
a sequence of A-operators applying to F . A n d so, all the volume conditions 
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(containing monotonicity) hold for F'. One can deduce the continuity and 
infimal conditions in j - t h coordinate, j > 2, by the similar way as is done 
in Lemma 3.2.12. For the case of first coordinate, F'(t) equals 0 whenever 
t1 < sai (infimal condition) and as s' goes to r', A 1 ( s ' , r ' ) F / goes to zero, this 
follows by discussing several cases in identity (3.29). Finally, the supremum 

\ / n t ) = V / A i ( s C T l , s C T 2 ) F 
tGK" t2,...,i„eM 

exists by Lemma 3.2.12. 
The identity (3.29) is also useful in concern of the characteristic points. 

Some (ti,..., tn) is a characteristic point of F' if and only if 

a:= A 1 ( t 1 , t f ) - - - A n ( t n , t + ) F / 

does not belong to the radical of E. Thanks to already proved part we have 

a = A x (min {r° 2 , tf, max{s C T 2 , tx} }, min{r C T 2 , tf })A 2(t 2, t%)... An(tn, t+)F. 

The last expression equals 0 if ti < sai (in which case Ai(tf, t±)F occurs) or 
if rC T 2 < ti (in which case A i ( r C T 2 , r"2) occurs). We are left with the case sai < 
ti < r C T 2 , when a simply equals Ai(ti,tf) • • • An(tn,t+)F. Consequently t is 
a characteristic point of F' if and only if it is a characteristic point of F and 
sCT1 < ti < r"2. Hence all the cases in the statement of the lemma follow. • 

Finally, we exhibit the main and the last theorem of this chapter: 

T h e o r e m 3.2.15. Let E = T(H^< G, (u,0)), where (H,u) is a unital Abe-
lian po-group and G is a directed monotone a-complete Abelian po-group 
with interpolation. Then any n-spectral resolution F on lexicographic effect 
algebra E, having only finitely many characteristic points, extends to an n-
observable. 

Proof. Consider decomposition of F as in (3.26). Using Lemma 3.2.14 re
peatedly, we verify, that all the summands are pseudo n-spectral resolutions. 
Moreover each summand F' is of one of following two kinds: its image is in 
the radical of E and hence has no characteristic points, or it has exactly one 
characteristic point and its image is two-element. In any case we can extend 
a summand F' to the pseudo n-observable Xp> using Theorem 2.2.4 (in the 
first case) or find the observable directly in the trivial second case. Now the 
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sum x := J2F' XF' ^ s ^ n e desired observable. To verify it realy extends F 
rather trivial: Let t G l n and / := {s|s <C t } . Then 

x( / ) = ^ x F , ( / ) = E i ? / ( t ) = F ( t ) -
F' F' 
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Chapter 4 

Classical approach to measure 
extension 

The problem of correspondence considered in the previous sections is re
lated to so called measure extension problem, which Sikorski formulated 
as (see [Sik69], paragraph 34): Given a Boolean algebras homomorphism 
ho : BQ —> S such that f\nh(An) = O5, whenever An \ 0g 0 . Under which 
circumstances it extends to a a-homomorphism h : B —> S, where B is o-
generated by Bo1. When S satisfies all such extensions, we say that S have 
weak a-extension property. 

The problem on the level of Boolean algebras have satisfying answer: 
the weak a-extension property is equivalent to weak a-distributivity, which 
states, that given any countable matrix (a>i,j)ij=i of elements of S, such that 
for each i we have a y \ 0 (as j —> 00), then 

The sufficiency of weak a-distributivity was given by Mathess ([Sik69], The
orem 4, paragraph 34), while the necessity is a result of Wright [Wri71], who 
in fact considered the problem on the level of lattice-ordered vector spaces. 

Now, given an n-spectral resolution F : M.N —> E, with values in an effect 
algebra E, it gives rise to a finitely additive measure xo : Bo —> E, where Bo is 
the Boolean subalgebra of B(RN) generated by half open intervals [ai,&i) x 
••• x [an,bn) (for each i, a\ < bi). A n d the question is: For which effect 
algebras E the measure x0 extends to a a-measure x on the <r-algebra B(RN), 
which is a-generated by BQ. Hence, in comparison to Sikorski's question, we 

(4.1) 
</>eNN i 
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have restricted the situation in definition domain to one particular class of 
Boolean algebras (B(M.n), n e N) , while the Boolean algebra S is replaced 
by much more general structure of effect algebras. 

Among the results in research of weak a-distributivity, the ones in [RT97] 
seem to be the closest to our ones. In [RT97], Riecan and Neubrunn used 
weak a-distributivity to provide an extension of a spectral resolution on a 
weak a-distributive a-complete MV-algebra. The proof is divided into two 
parts. First, it is shown, that each spectral resolution F : R —> M gives 
rise to a measure xo on the ring of sets generated by half-open intervals 
[a, 6) C R, and such that x 0 : ( A A \ 0, whenever A{ \ 0. This part is called 
(in [RT97]) Alexandrov's theorem. Then, some general results on measure 
extension are applied. Both parts essentially use weak a-distributivity. 

It is worth noting that the technique used by Riecan and Neubrunn was 
introduced by Fremlin in [Fre75], and could be interpreted as a tricky sim
ulation of the classical e, 5 calculus inside an MV-algebra. Nevertheless, the 
Fremlin's tricks with weak a-distributivity strongly use the lattice structure, 
and the attempt to move to more general effect algebras leads to only partial 
results, in [Rie98] Riecan proved Alexandrov's theorem for so-called weakly 
regular effect algebras. 

In this section, we present the extension construction for the case of a 
monotone a-complete interval effect algebra E, having a faithful a-state s 
(i.e., s(a) = 0 = > a = 0). For example, measure algebras (the case when 
E is a Boolean algebra) and probability MV-algebras are covered by these 
assumptions. The existence of the faithful a-state is essentially a stronger 
assumption than weak a-distributivity, which is a price for the absence of 
lattice structure. For example, any monotone a-complete effect algebra with 
(RDP) having faithful a-state is already an MV-algebra (see [G0086], Prop. 
16.5). The proof of the main result of this chapter (Theorem 4.1.4) is based 
on ideas in [DL20c]. 

4.1 Interval effect algebras with faithful a-
state 

To the purpose of this chapter denote 1Z C 73(R n) a ring of sets (i.e., system 
of sets closed under union and relative complements) generated by the semi-
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closed intervals of the form 

[ai, &i) x • • • x [an, bn), where au k G l . a ; < bt. (4.2) 

In the chapter by a semi-closed interval we wil l always mean an interval of 
form (4.2). 

O b s e r v a t i o n 4 .1 .1 . Each set A G TZ is a disjoint union of semi-closed 
intervals of form (4.2). 

We wil l apply standard results concerning measure extension from a ring 
of sets to its generated cr-ring, which is achieved using the concept of outer 
measures. First, recall the concept of a measure on a ring: cr-finite measure 
on a ring TZ is a real-valued mapping \i : TZ —> R, such that for each A, B, Ai, 
i G N , pairwise disjoint sets in TZ, we have 

fji(A) > 0, 

fi(A\JB) = fi(A) + fi(B), 

/j,(\^jAi) = ^^yu(y4i), whenever Aj G 1Z. 
i i i 

A n d each B G 1Z could be covered as B C \Ji Bi7 where BiS form countable 
family of sets in 1Z with finite measure (cr-finiteness). Following theorem is 
essential (for proof see [Hal74], Thm. 13.A.): 

T h e o r e m 4.1.2. Let n be a a-finite measure on a ring of sets TZ. Then there 
is a unique a-finite measure jl, which extends \i on the a-ring generated by 
TZ. 

Moreover, as follows from the section 12 in [Hal74], the extended measure 
j2 satisfies formula 

DO OC 

fi(A) = ini{J2 li(Ai)\Ai e7Z,Ac\jAi, for % ± j, A{ n Aj = 0 } . (4.3) 
i=l i=l 

In our case, as TZ is a ring generated by semi-closed intervals, the generated 
a-ring equals B(RN). 

T h e o r e m 4.1.3. Let F : M . N —>• E be an n-spectral resolution with values in 
an interval effect algebra E = F(G,u), where G is Dedekind a-complete with 
strong unit u. Then there is a unique mapping XQ : TZ —> E such that: 
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(i) x0([ai,bi) x • • • x [an,bn)) = A i ( a i , & i ) • • • An(an,bn)F, 

(ii) for each finite collection of disjoint sets Ai,..., Am ElZ we have 

m 

x0(U™1Ai) = J2xo(A)-
i=l 

Moreover, if E has a faithful a-state s, we have 

(Hi) if Aj \ 0 is a sequence of elements ofTZ, then /\ixo(Ai) = 0, 

(iv) Let Ai, i G N , be a collection of disjoint Borel sets such that 
\JiAi = A e n . Then £ . M A i ) = xo(A). 

Proof. First note, that every A G 1Z is a disjoint union of semi-closed intervals 
(from the generating collection). Hence we can uniquely define Xo following 
the conditions (i- i i) . 

We first prove, that Xo is well defined mapping. Assume A = \ \i Ai = 
U • A'j are two disjoint unions of semi-closed intervals. We obtain a third 
disjoint union as 

A = ( j A n 4 . 

Hence, we only need to prove 

x0(Ai) = J2xo(Ain A'j)and *o(A'j) = n A)- (4-4) 
3 i 

That is, we have to show xo is additive on the semi-closed intervals. If a 
decomposition of a semi-closed interval B = Uj5j arises by chopping B in 
a collection of hyperplanes, the additivity is obvious. Otherwise, we take 
a further refinement of the decomposition, which decomposes each Bi in a 
convenient way. 

Next, we prove the condition (iii). Let us begin with a useful Cla im 
Claim: Given a set A G TZ and e > 0, there are C G TZ and a compact 

K G B(Rn), such that C C K C A and 

(sox0){A\C) < e. 
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Proof. It is clearly enough to verify the claim for A a semi-closed interval. 
So assume A = [ai, &i) x • • • x [an, bn) and for each j G N denote Ci = [ai, b\ — 
\ ) x • • • x [an, bn — | ) . We can apply Lemma 3.2.7 to assure XQ(CA /* XQ(A). 

As s is u-state, we can take for C some Cj , with i great enough, and for K 
the interval [ai, 6 1 — ^] x • • • x [an, bn — ^]. • 

Given a sequence Y4J \ 0 of elements of TZ, the claim entails the elements 
Ci ETZ and compact sets Ki7 i G N , such that Cj C Ki C TIJ and 

2 l 

Now 

( S o x 0 ) ( H ^ \ n c » ) ^ ( s ° ^ ) ( i j ( ^ \ ^ ) ) 
z=i 

< ^ ( S o x 0 P A ^ < ^ - e < , 
2=1 Z=l 

;=1 1=1 1=1 (4.5) 

Since Aj's have empty intersection, so do K^s. Using compactness of K^s, we 
obtain some IQ G N SO that f]]=1 Ki = 0 for each i > i0, and so f ^ = 1 Ci = 0, 
for each % > io, as well. Equation (4.5) for i > io gives us 

i 
(s o z 0 ) ( A ) = (s o x 0 ) ( p | A ) < e. 

A n d as e was arbitrary, there is (soxo)(Ai) \ 0. Consequently a = A j X o ( A ) 
satisfies s(a) = 0 and so a = 0 by faithfulness of s. 

The last point (iv) is a consequence of (iii). Clearly, £ j # o ( A ) < XQ(A), 

and £o(^4) — X ^ x o ( ^ ) < ^o(^4 \ U i e / ^ ) ' ^ o r e a c n finite J c N . As / goes 
to N the XQ(A \ {Ji€l Ai) goes to 0, by the point (iii). • 

Now we wil l prove the main theorem of the chapter. 

T h e o r e m 4.1.4. Let E = T{G,u) be a monotone a-complete interval effect 
algebra and s a faithful a-state on E. Then each n-spectral resolution extends 
to an n-observable. 
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Proof. Let us denote \i = s o xo : TZ —> [0,1] C R , where xo is given by 
Theorem 4.1.3. We first prove, that yu is a-additive. Assume a disjoint union 
B = [J^Bi, in the ring 1Z. Define Ai := B \ [Jl=1B[. The system of 
A/s has empty intersection and so by Theorem 4.1.3, part (iii), /J.(Ai) \ 0, 
equivalently /x(U/=i A ) / * M - 6 ) -

Now we can apply Theorem 4.1.2 to obtain an extension fi : B(R) —> [0,1]. 
Given any A G B(Rn), we like to define x(A) G E. To do so, take for each 
j e N a disjoint cover A C ( J ° ^ of Y4 by sets in 7?., and such that 

J > ( 4 ) \ / Z ( A ) , 

as j —>• oo, which is possible by equation (4.3). Let us define 

A I > ( 4 ) . (4-6) 

We wil l verify the just defined x satisfies all conditions of observable. We 
begin by proving two Claims first: 

Claim 1: Given two disjoint systems (Ai\i G N) and (Bi\i G N) , of sets in 
the ring K. If \Ji M C \J. Bh then x0(Ai) < x0{B%). 

Proof. B y definition of the infinite sum, it is enough to prove Ylici xo(A{) < 
J ] i Xo(-Bi ) for each finite I C N . A n d as IS additive, we can without loss 
of generality assume I is one-element set. Hence assume A C Uj-Bj . B y 
cr-additivity of x 0 , we have x0(A) = J2ixo(A ^ ^») — S i ( - ^ i ) - ^ 

Claim 2: Given two systems (Ai\i G N) and (Bi\i G N) , of disjoint sets 
in the ring TZ, such that A <z\JiAi and A C U i - ^ - Then there is a third 
system (Ci\i G N) , such that 

A c g c i c ( U ^ ) n ( U 5 i ) . 
2 2 2 

Froo/. We take Q ' s such that {d\i G N} = { A n j G N} . • 

We assert the value x ( A ) defined by (4.6) is independent on choice of the 
sets {A\\i G N)'s. Assume another systems (Bj\i G N) , j G N , having the 
same properties as Aj ' s . Then applying Cla im 2 we yield is a third collection 
of covering systems (C?\i G N) , j G N , such that for each j G N , 
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Moreover, we can by inductive use of Cla im 2, assume {JiCJ+1 C [ J i^ f -
So by Cla im 1: c := A j E i x o ( C i ) is below both a := A j E i x o ( ^ ) and 
6 := / \ • J2i xo(Bi )> but s(a) = s(c) = s(6), so a = c = 6, by faithfulness of s. 

Observe that the constructed mapping x extends each i e ? l 
obtains a trivial cover A Q AU ( J ^ 0 , which leads by Cla im 1 to x(A) = 

XQ(A). Moreover, x is monotone, that follows easily from definition of x. 
Next we prove additivity. Given two disjoint sets A , B G B(Rn), we need 

to prove x(A U B) = x(A) + Choose systems (A{\i G N) , (£?/|i G N) , 
j G N , of disjoint covers of A and B, that is A C (J^ T4] and £> C ß | 
for each j G N , and such that x(A) = /\. ^2ixo(M), X(B) = A j X ^ o (#?')• 
Moreover, denote Y4J := U j ^ i ' : = U i - ^ i a n d assume (using Cla im 1) the 
two systems are monotone in j (i.e., A ^ + 1 C Ä7' and C _B J , for each 
j G N) . 

We wil l construct inductively a disjoint covers AU B C i j j C / and 0 = 

i n ß C I J . ^ ' , as follows. For each j G N , we set C[ := A{ and D{ = 0 , 

:= B{ \ A{ and D\ := ß^' n 4 , C{ := 4 \ 5? and D{ := A J

2 n B{ , 

and so on. In {2k - l ) - th step, k G N , we set C ^ f c _ 1 := \ (U l<fc- Bi) a n d  

ß £ = 4 n U < f e ^ while in 2fc-th step, k G N , we set C^ f e := flj \ (\Jl<k A{) 

and D{ = Bj

kr\ Ui< f c 4 - Observe that C j := \J{ C\ = Ä> U B> and := 
U Di = U i , * ^ n ßfe = A J n ß i > h e n c e i n Particular C / + 1 C \J.C{, for 
each j G N , and so do Df 's . 

Next we define for each j G N a 2 x 2 table (£ij)ij=i,2 of elements of .E. 
We set 

41 = E x < Ä - i ) , (4-7) 
it 

4 2 = ^ ^ ( 0 ^ ) , (4.8) 
k 

4,i = J2x°(cL), (4-9) 
fc 
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The sums of the rows are known to converge to the values of x(A) and x(B): 

/\(4}l + x{}2) = x(A), (4.11) 
3 

/\(4,i + 4,2) = <B). (4.12) 
3 

While the sums of the columns satisfy 

\J(4,i + 4,i) > x(A U B) (4.13) 
3 

A ( 4 i + 4 a ) = o- ( 4 - 1 4 ) 
3 

The second equality follows from 

fi(A UB)< s(x{,i) + s(4,i) < (s(4,i) + s(4,i)) + (s(x{2) + s(x{2)) = 

=(s(4,i) + s(4,2)) + (s(4,i) + s(4,2)) = + HBj) \ KA) + KB). 

Hence, by additivity of \i we have 

o = A ^ K ? ) + 5 ( 4 , 2 ) ] = A -<XU + 4 , 2 ) = ̂ j\{4,2 + 4>2). 
3 3 3 

Where we are using the u-additivity of s in the last step. A n d as s is faithful, 
the desired equality follows. 

Finally, we calculate 

x(A) + X{B) = /\{4tl + 4>2) +/\{4tl + 4>2) 
3 j 

~~ / \ l x l , l ' x l , 2 ' x 2 , l ' X2,2J — 

3 

= /\(4,i + 4,i) + /\(4,2 + 4,2) > <A U B). 
3 3 

When we apply the state s, we obtain s(x(A) + x(B) — x(A U B)) = 0, 
which leads to the desired addititvity of x by faithfulness of s. 

The a-additivity of x is now easy to prove: Given monotone sequence 
Ai /• A of Borel sets. B y monotony of x, we have \/ix{Ai) < x(A). But 
s ( V i x(Ai)) = s(x(A)), hence the a-additivity follows by the argument with 
faithfulness of s again. • 
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1 Introduction 
The PhD thesis concerns the question for which algebras related to the 
logic of quantum mechanics there is a one-to-one correspondence between 
observables and spectral resolutions. Observables are by definition certain 
cr-homomorphisms from Borel a-algebra B(M) to a quantum structure C (typ
ically an effect algebra) and each observable gives rise to a spectral resolution 
as its distributive function. The hardest part of the problem in question is 
to find some conditions on C, such that the spectral resolutions (considered 
as an independent concept - certain mappings B(M) —> C) uniquely extend to 
observables. 

The problem is an abstraction of the well-known result in the classical prob
ability theory where the Borel probabilistic measures are in one-to-one corre
spondence with their distribution functions. The reconstruction of a measure is 
possible (in the classical case) by the Caratheodory's extension theorem, which 
states that each a-additive measure on a ring of sets has a unique extension to 
a a-additive measure on the generated a-algebra. In our case, we take for the 
ring the one generated is by all half-open intervals [t, s), t, s £ ffi (each spec
tral resolution naturally defines such sub-additive measure). In the literature, 
looking for the extended measure is known as the measure extension problem, 
and when the answer is positive, we say that measure extension property (MEP) 
holds. 

As time passes the problem of measure extension was considered for mea
sures with values in more general algebraic structures. R. Sikorski in [Sik69] 
threats the case of Boolean algebras - he showed there that the so-called weak 

1 



cr-distributivity condition on the Boolean algebra has a key role. Sikorski pro
vided proof (which arises by communication with him and K . Matthes) that the 
weak a-distributivity is a sufficient condition for (MEP) . On the other hand, 
J . D. Wright in 1971 (see [Wri71]) proved, that the weak a-distributivity is a 
necessary (and so equivalent) condition for the measure extension (to be pre
cise, Sikorski distinguished strong and weak a-MEP, where the weak one is 
equivalent to weak a-distributivity). Wright dealt with the problem on a more 
general level of lattice ordered vector spaces. These results were later reproved 
by Fremlin in [Fre75] in a simpler way. Fremlin's proof is elementary in the 
sense that no representation theorems are used and the proof utilizes only the 
countable axiom of choice. The proof is proceeded inside the algebraic structure 
of Riesz spaces and could be interpreted as a tricky simulation of the classical 
e, 5 calculus using weak-a-distributivity. 

Fremlin's approach was then adopted by B. Riecan to measure extension 
construction on MV-algebras (1-groups) provided in [RT97], where probability 
theory for MV-algebras systematically builds. Riecan also has some partial 
results for non-lattice ordered effect algebras in [Rie98], but a full measure 
extension construction is given (in the cited article) only for the a-complete 
MV-algebras. Hence, it seems to be the case, that Fremlin's technique is limited 
by a lattice structure. 

In contrast to the mentioned results, in the thesis, we will consider the 
measure extension problem only for measures based on the Borel subsets of R™. 
While for the range structure we will take some quantum structure, typically an 
effect algebra with (RDP), hence a more general structure than an MV-algebra 
in the work of Riecan. 

A n important moment in the research of the algebraic quantum logic was an 
observation, that most of the important quantum structures are representable 
as intervals in the partially ordered Abelian groups (as is argued by Foulis and 
Greechie in [GF95]). This observation led to a bridge between quantum logic 
and the well-developed theory of po-groups. Two important representation the
orems, which have prime importance in the PhD thesis, were achieved thanks 
to this bridge: Each effect algebra with Riesz Decomposition Property is repre
sentable as an interval in a po-group satisfying interpolation property (in fact 
there is a categorical equivalence between the category of effect algebras with 
(RDP) and the category of unital Abelian po-groups with interpolation - a result 
of K . Ravindran [Rav96]). The second important theorem is a kind of Loomis-
Sikorski theorem: Each monotone a-complete effect algebra with (RDP) can 
be represented as a a-homomorphic image of so-called effect tribe of fuzzy-sets 
(proved in [BCD06]). 

The second mentioned theorem is the main tool for applications of the lifting 
technique presented in the PhD thesis: extending spectral resolution F on an 
effect algebra E for which we have Loomis-Sikorski representation 7r : T —> 
E proceeds in three steps. First, we lift the spectral resolution to a spectral 
resolution F on T, the lifted spectral resolution can be using some standard 
results from the probability theory extended to an observable x, which gives the 
desired observable X by composing with n. Just described technique was used 
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in [DK14] for E being a monotone a-complete effect algebras with (RDP). Note 
that this case has not been approached by Fremlin's technique. 

In the PhD thesis, after introducing basic concepts in the Chapter 2, there 
are provided generalisations of the results of Dvurecenskij and Kukova in several 
directions: 

(I) generalisation to finite-dimensional observables (i.e., these having as do
main 6 ( R " ) , n € N), 

(II) weakening the monotone completeness, by considering lexicographic inter
val effect algebras F(HxG, (u, 0)), where (G, u) is a Dedekind a-complete 
po-group with interpolation and (H, u) is any unital (Abelian) po-group, 

(III) combination of (III) . 

In the first generalization, described in Chapter 2, the lifting process become 
much more complicated, in contrast to the one-dimensional case, where the 
lifting is a rather simple part. The lifting of finite-dimensional resolutions is 
presented in the general situation of a a-projection -K : (H, v) —> (G, u) of mono
tone a-complete Abelian po-groups. It turns out, that so-called lifting property 
(certain strengthening of surjectivity which holds in the cases of Loomis-Sikorski 
theorems) is a necessary and sufficient condition for the lifting process. The lift
ing is achieved by iterating the inductive process and, as one might expect, it 
strongly utilizes (a countable version of) the axiom of choice. This part of the 
PhD thesis covers the results from [DL20d] and [DL20a]. 

In the second and the third generalization, described in Chapter 4, only 
spectral resolutions satisfying certain additional properties extend to observ
ables. The generalizations are characteristic by a need to refine the arguments 
of most of the proofs. The main result considering a finite-dimensional observ
able on a lexicographic effect algebra is reached through many technical lemmas. 
This part generalises the results form [DL20b],[DL19],[DL19] and [DL21]. 

In the last Chapter 5, a classical approach to measure extension (via outer 
measures) is exhibited in the case of monotone a-complete interval effect alge
bras having faithful a-state. The assumption of the existence of faithful a-state 
is a strong one, for example, each monotone a-complete effect algebra with 
(RDP) is a lattice, whenever obtains such a state. Nevertheless, in Chapter 5, 
the property of (RDP) is not assumed, hence the main result is not covered by 
the ones from the previous chapters achieved by the lifting procedure. 

2 The aim of the PhD thesis 
A general aim of the PhD thesis is to establish a one-to-one correspondence 
between (finite-dimensional) observables and spectral resolutions for as many 
quantum structures as possible. In more detail, the original motivation was to 
develop methods from [DK14] to finite-dimensional cases and to study the effect 
of the lexicographic product on the correspondence in question. 



3 Methods 
The approach to the problem is based on and limited by several representations 
theorems: the ones representing effect algebras as intervals of partially ordered 
groups and Loomis-Sikorski-like representations of certain effect algebras as a 
cr-projections of tribes of fuzzy sets. Moreover, some well-known results from 
the measure theory are used. 

4 Main results 
The main results are as follows 

1. A one-to-one correspondence between finite-dimensional observables and 
spectral resolutions is established for the monotone a-complete effect al
gebras with Riesz Decomposition Property. 

2. Given a a-projection 7r : T —> E of monotone a-complete interval effect 
algebras satisfying so-called lifting property, a process of lifting the finite-
dimensional spectral resolutions of E to the ones of T is described. 

3. For interval effect algebra F(HxG, (u,0)), where (H,u) is an unital po-
group and G is a monotone a-complete po-group with interpolation, a 
classification of the spectral resolutions which extend to observables is 
given. 

4. The classical approach to the measure extension (via outer measure) is ap
plied to establish the correspondence in question in the case of a monotone 
a-complete interval effect algebras with a faithful a-state. 

5 Basic definitions 
The basic concept in the thesis is the effect algebras: 

Definition 5.1. We call effect algebra a partial algebra (E;+,',0,1) of type 
(0,0,1, 2), such that for each a,b,c £ E 

1. a+b=b+a, 

2. (a+b)+c=a+(b+c), 

3. a' is the unique element such that a + a' = 1, 

4- if a+ 1 is defined then a = 0. 

Where we read the first two identities as when one of the sides is defined then 
the other is defined as well and equality holds. 

Moreover, we define a partial ordering on E as a < b iff there is c £ E 
such that a + c = b. Then the constant 0 and 1 are the lowest and the greatest 
element, respectively. 
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Prom the logico-physical perspective, we think of elements of statements 
about a physical system of form: during measurement x we observe the value 
was in Borel set B. 

Let us list several important algebras, that could be arranged as effect alge
bras: 

1. Boolean algebras, where we take for + the union operation restricted to 
disjoint elements. 

2. More generally MV-algebras ( M , 0 , -i), where we take for + restriction of 
© to pairs a, b with a < -16. 

3. Even more generally, every interval [0, u] in partially ordered Abelian 
group (G ,+G ,< ) , (of course 0 < u), where we define complement as 
a' = u — a and for + we take the restriction of +G-

4. Given a set fi, every system of functions in T C [0, l]n is an effect algebra 
if T (i) contains In, (ii) is us closed under pairwise addition (whenever 
the result is below 1Q) and (iii) is closed under complement operation 
/ t—> 1Q — / . When T is also closed under pairwise monotone countable 
suprema, it is called an effect-tribe. 

5. Classical model of sharp quantum logic 11(H): which consists of all pro
jections on closed subspaces of given Hilbert space %. 

6. Classical model of unsharp quantum logic: £(H) of all Hermitian operators 
on Hilbert space H between zero operators and the identity operator. 

The interval effect algebra mentioned in third point is denoted r ( G , u) and these 
are the most important ones in the PhD thesis. Following notation is important 
in the PhD thesis: unital po-groups is an ordered pair (G, u) of (Abelian) po-
group G and and element u £ G + , so called stron unit, such that {n • u\n £ N} 
dominates whole G. A po-group is said have interpolation, if given any four 
elements a,b,c,d £ G such that {a,6} < {c,d}, there is e £ G, satisfying 
a,b < e < c,d. A n analogue property for effect algebras is Riesz decomposition 
property (RDP), which requires on an effect algebra E: given a, &i, 2 £ E, such 
that a < bi + &2, there is decomposition a = ai + 02, such that a, <bi,i = 1, 2. 

Following two results on representations of effect algebras with (RDP) are 
of prime importance in the PhD thesis: 

Theorem 5.2 (proved in [Rav96]). Let E be an effect algebra satisfying (RDP). 
Then there is a unital po-group (G, u) with interpolation, such that E = T(G, u). 

Theorem 5.3 (proved in [BCD06]). Let E be a monotone a-complete effect 
algebra. Then there is a set fi, an effect tribe T C [0, l]n and a a-homomorphism 
7r : T —> E, which is onto. 

Now we define the crucial notions of the PhD thesis - n-dimensional spec
tral resolutions and n-dimensional observables defined on monotone a-complete 
effect algebras and a-complete MV-algebras. 
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We will use two kinds of orderings on n-tuples of reals: 

(ti,...,tn) < ( s i , . . . , sn) •<=> for each i, U < and for some i, U < Sj. 
( t i , . . . , tn) < ( s i , . . . , s„) /o r eac/i i , tj < 

Definition 5.4. Let E be a a-complete effect algebra. Then we call n-
dimensional observable any a-homomorphism x : R™ —> E, that is a mapping 
satisfying: 

(i) x(Rn) = 1, 

(ii) x(A U B) = x(A) + x(B) whenever A n B = 0. 

(Hi) {Ai]i /• A implies \Jix{Ai) = x(A). 

If, given an n-dimensional observable x on E = Te

a{G, u), it gives arise to its 
distributive function: Fx : W1 Ye

a(G,u) by 

Fx(s1, ...,sn) = x((-oo, si) x • • • x (-oo, sn)), ( s i , . . . , sn) e Rn. 

We call Fx an n-dimensional spectral resolution of x. We are concerned with the 
opposite process: finding an n-observable for a given n-spectral resolutions. We 
will treat n-dimensional spectral resolutions as an independent concept given by 
Definition 5.5. In the definition, the most intricate condition to handle with, is 
the last stated - so called volume condition. Volume conditions basically assure 
that the n-spectral resolution prescribes non-negative volume to certain half-
open intervals in K " . The volume conditions are handled by following notation: 
Let F : R™ —> E be any mapping (but usually pseudo m-spectral resolution), 
i = l , . . . , n , and a,b G R, such that s a < b. Then we define a mapping 
A;(a, b)F : R™ —> E given by prescription 

(ti,..., t i - i , . . . ,tn) i ^ F(t\,..., b,..., tn) — F{t\,..., a,..., tn). (1) 

Definition 5.5. Let (G, u) be a Dedekind monotone a-complete po-group and 
let n > 1 be an integer. A n n-dimensional spectral resolution on E = Ye

a{G,u) 
is any mapping F : R™ —> Te

a{G, u) such that 

F ( s i , . . . , s „ ) < F(t1,...,tn) if ( s i , . . . , s „ ) < ( t i , . . . , t n ) , (2) 

V F ( a i , . . . , a n ) = u, (3) 
(s i , . . . , s„) 

V F ( S l , . . . , s „ ) = J F ( t 1 , . . . , t „ ) , (4) 
(S l , . . . , 8 „ )« ( t l , . . . , t „ ) 

/ \ F ( s i , . . . , S i _ i , t i , s i + i , . . . , s „ ) = 0 for i = l , . . . , n , (5) 
u 

A1(a1,b1) • • • An(an,bn)F > 0, for each at,bi £ R, at < bt,i = l , . . . , n . (6) 
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6 Lifting of n-dimensional spectral resolutions 
Suppose 7r : F —> E is a a-surjection of monotone a-complete effect algebras. 
If we are able to solve the spectral resolution extension problem for F, we may 
try to extend the result to E by lifting the spectral resolutions. In more detail: 
suppose F is a spectral resolution on E, find a spectral resolution F on F, such 
that 7r o F = F. Then extend F to an observable x and prove, that 7r o x is an 
observable extending F. 

This technique applies to the effect algebras, for which variant of Loomis-
Sikorsky theorem holds. In the case of ordinary (one-dimensional) spectral 
resolutions, the lifting part is rather easy compared to the other steps. How
ever, assuming the general situation of n-dimensional spectral resolution, lifting 
becomes the most difficult part. 

The main result in the PhD thesis concerning lifting finite-dimensional spec
tral is Theorem 6.1. The lifting procedure proceeds by lifting a spectral res
olution F : W1 —> E first in the lattice of integral points Z™ C M.n, then the 
definition domain of the partial lift is inductively refined to the subsets • Z, 
n £ N (the induction is over n). As a result, we obtain a partial lift defined 
on a dense subset of W1. The final desired lift is obtained by extending the 
previous one in a way that follows the condition of left continuity. Each step 
utilises some inductive process and is rather complicated. Even finding a lift 
only in the vertices of a unit cube in W1 is non-trivial () as one needs to control 
all volume conditions (2™ inequalities of form "0 < some expression < 1") when 
lifting. In the construction, we also strongly use the axiom of choice, even if 
only a countable version. 

Theorem 6.1. [Lifting of Spectral Resolutions] Let IT : (G,u) —> {H,v) be a 
a-homomorphism of unital Dedekind monotone a-complete po-groups and let -K 
satisfy (LP). Then each n-dimensional spectral resolution F : R™ —> H can be 
lifted to an n-dimensional spectral resolution K : W1 —> G such that ir o K = F. 

7 Extending spectral resolutions 
The results in lifting are then applied to several classes of effect algebras, for 
which a variant of Loomis-Sikorski theorem is known, to establish a one-to-one 
correspondence between n-spectral resolutions and n-observables. The most 
general theorem is: 

Theorem 7.1. Let E,T be a pair of monotone a-complete effect algebras which 
could be represented as intervals of po-groups E = T(H, v), T = T(H, v) and let 
7r : T —> E be a a-homomorphism of effect algebras satisfying lifting property. 
Then E has SPOn correspondence whenever T does. 

Lemma 7.2. Let T be an effect-tribe. Then each spectral resolution F : lZn —> 
T extends to a unique observable. 

The previous lemma together with Loomis-Sikorski theorem and Theo
rem 7.1 give us: 
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Theorem 7.3. Given monotonous a-complete effect algebra E with (RDP). 
then one-to-one correspondence between n-spectral resolutions and n-observables 
holds. 

8 Spectral resolution on lexicographic effect al
gebras 

Establishing a one-to-one correspondence for a number of effect algebras a nat
ural question arises: under which constructions the class of algebras satisfying 
this correspondence (which we denote SVO) is closed. The PhD thesis concerns 
the effect of the lexicographic product. Assume unital po-groups (H, u), directed 
monotone a-complete po-group G with interpolation and define an effect algebra 

E:=T{H^G,(u,0)). 

Now E is not monotone a-complete (in general), only its radical is so. This 
leads to some pathological cases of spectral resolutions which do not extend 
to observables. However, the set of spectral resolutions which do extend to 
observables is easy to describe by the so-called finiteness property. 

The problem in concern is treated in several papers of Dvurecenskij and 
various collaborators. Firstly, the simplest case of perfect MF-algebras M = 
r(Z x G, (1,0), where G is a-complete l-group) is solved in [DDL19]. Then 
generalisation to fc-perfect case of effect algebras with (RDP) is done in [DL20b]. 
Finally, the problem in the general setting of lexicographic effect algebras is 
treated in [DL19] and [DL21] where the dimension is assumed to be one and any 
finite (respectively). In the PhD thesis, the one-dimensional case is considered 
first, and then the general situation of any finite dimension. 

Theorem 8.1. Let G be a directed monotone a-complete po-group and (H,u) 
be a unital po-group. Let x be an observable on E = F(H x G, (u, 0)). Define 
for each t G R 

xt := x{{-oo,t)). (7) 

We have for each s G R 
xt < xs ift< s, (8) 

f\xt=0, \Jxt = l, (9) 
t t 

\fxt = xs. (10) 
t<s 

There is a finite sequence 0 = ho < hi < • • • < hn = u of elements of [0, u] H 
and real numbers SQ = t\ < • • • < tn = tu such that 

lit < tl, 
xte{Ehi if t G i = l , . . . , n - 1, (11) 

if t„ < t. 

8 



In addition, for each i = 1,... , n, the element 

Oi : = f\ xt (12) 
ti<t 

exists in E and it belongs to • 
Moreover, for each s € 1, we have x{{s}) = f\t>s{xt — xs). 

The opposite direction is treated in theorem: 

Theorem 8.2. Let E = F(H x G, (u, 0)), where (H,u) is a unital po-group 
and G is a monotone a-complete po-group with interpolation and with strong 
unit. Let {xt £ E: t £ M} be a system of elements of E and ho < h\ < 
• • • < hn be elements of [0, U]H and real numbers SQ = h < • • • < tn, such that 
conditions (8)-(12) are satisfied. Then there is a unique observable x on E 
such that Xt = x{{—oo, i)) for each t £ M . 

The n-dimensional case, for n > 2, is done through several technical lemmas. 
The main results are: 

Theorem 8.3. Let x be an observable on T(H ~x G, (u, 0)). Then lva(-KH ° x) 
meets only finitely many elements of H. 

A notation of characteristic points of spectral resolution is introduced. Char
acteristic point of F : R™ —> F(HxG, (u,0)) associated to an element h £ H is 
an n-tuple t £ ]Rn which is roughly speaking a locally minimal over the points 
in x G). In the PhD thesis, a possible decomposition of R™ which 
arise as a union J2heH(NH ° - F ) - 1 ^ ) are investigated. The participants of the 
decomposition are called blocks. The following theorem provides an inside into 
the decomposition into blocks (see also figure 1 which illustrates possible block 
configuration in the two-dimensional case). 

Theorem 8.4. Let F be n-spectral resolution. For each characteristic point 
t define Ct = {s £ R n | t < s and t s}. Each Ct cut R™ into two disjoint 
components as 

R" = { s | t^s}U{s | t<s} . (13) 

The joint cutting o/M™ along all the Ct's refines the decomposition R™ = \Jh Bh-

9 



t B h2 
B h5 

B h3 
B h6 

B 
Br 

hi 

B I14 

Figure 1: Decomposition to blocks 

The main theorem of the section is a characterisation of n-spectral resolu
tions which arise from some n-observable: 

Theorem 8.5. Each observable x on E gives arise to a spectral resolution F 
with only finitely many characteristic points. Moreover \Jt^sF{s) exists for each 
characteristic point t. These to conditions are also sufficient conditions on an 
n-spectral resolution have extension to an n-observable. 

9 Classical approach to measure extension 
In the last chapter of the Thesis, we present the construction of extension of n-
spectral resolutions for the case of a monotone a-complete interval effect algebra 
E, having a faithful a-state s (i.e., s(a) = 0 => s(a) = 0). For example the 
measure algebras (the case when E is boolean algebra) and the probability M V -
algebras are covered by these assumptions. The existence of the faithful a-state 
is a strong assumption, for example, any monotone a-complete effect algebra 
with (RDP) having faithful a-state is already an MV-algebra (see [G0086], Prop. 
16.5). The proof of the main result of this chapter (Theorem 9.3) is based on 
ideas in [DL20c]. 

Denote TZ C B(M.n) a ring of sets (i.e., system of sets closed under union and 
relative complements) generated by semi-closed intervals of the form 

[01, 61) x • • • x [an, b„), where at, h eR,at < h. (14) 

Each n-spectral resolution on E naturally defines a measure on TZ (with values 
in E). The chapter aims to extend such measure to B(M.n), which is as a 
field a-generated by TZ. Our strategy is to apply the following standard result 
concerning measure extension (using the concept of outer measures). 

Theorem 9.1 ([Hal74], Thm. 13.A.). Let fx be a a-finite measure on a ring 
of sets TZ. Then there is a unique a-finite measure p,, which extends ji on the 
a-ring generated by TZ. 
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Moreover, as follows from section 12 in [Hal74], the extended measure /J, 
satisfies formula 

oo oo 
fi{A)=mf{^u{Ai)\Aiell,Ac{jAi, for i ^ j, At n Aj = 0}. (15) 

i = l i = l 

Theorem 9.2. Let F : R™ —> _E fee on n-spectral resolution with values in an 
interval effect algebra E = Y(G, u), where G is Dedekind a-complete with strong 
unit u. Then there is a unique mapping XQ : 7Z —> E such that: 

(i) x 0 ([ai ,&i) x ••• x [an,bn)) = A i ( o i , bi) • • • A„(o„ , bn)F, 

(ii) for each finite collection of disjoint sets A±,..., Am e TZ we have 

m 
x0(uT=1Ai) = J2x0(Ai). 

i=l 

Moreover, if E has a faithful a-state s, we have 

(Hi) if Ai\$ is a sequence of elements ofTZ, then /\ÍXQ(AÍ) = 0. 

(iv) Let Ai, i e N , be a collection of disjoint Borel sets such that U I Ai = 
A ell. ThenY,ixo{Ai) = xo{A). 

The main result of the chapter is: 

Theorem 9.3. Let E = T(G,u) be a monotone a-complete interval effect alge
bra and s a faithful a-state on E. Then each n-spectral resolution extends to an 
n-observable. 

10 Shrnutí v českém jazyce 
V disertační práci je řešen problém existence korespondence mezi observables 
(zaběhnutý český překlad neexistuje) a spektrálními rozklady pro různé třídy 
algeber zkoumaných v oblasti kvantové logiky. Motivačním příkladem je známý 
fakt z teorie pravděpodobnosti: Každá pravděpodobnostní míra v : £>(R) —> 
[0,1] je jednoznačně dána svou distribuční funkcí a naopak každá monotónní 
zleva spojitá funkce F : B (M.) —> [0,1] splňující jisté limitní podmínky v ±oo je 
distribuční funkcí právě jedné pravděpodobnostní míry. 

Přístup k problému, užitý v disertační práci, vychází ze dvou důležitých 
reprezentačních vět. První z nich říká, že každá efektová algebra splňující 
Rieszovu dekompoziční podmínku je isomorfní intervalu v částečně uspořádané 
(Abelovské) grupě s interpolací (dokonce existuje kategoriální ekvivalence mezi 
kategoriemi popsaných efektových algeber a grup; autorem výsledku je K . 
Ravindra [Rav96]). Druhou důležitou větou je následující zobecnění Loomis-
Sikorského věty: Každá monotónně a-úplná efektová algebra je a-homomorfním 
obrazem takzvaného efektového tribu fuzzy množin ([BCD06]). 

11 



Druhá zmíněná věta je hlavním nástrojem konstrukce rozšiřování spektrálních 
rozkladů, která je popsána v disertační práci: Mějme efektovou algebru E, pro 
kterou existuje Loomis-Sikorského reprezentace T —> E. Spektrální rozklad 
F : K —> E rozšíříme na observable ve třech krocích. Prvně zdvihneme F 
(vzhledem k n) na spektrální rozklad F na T• Získaný spektrální rozklad F 
lze pomocí standardních vět z teorie pravděpodobnosti rozšířit na observable x. 
Hledaný observable x dostaneme jako kompozici ir o x. Aplikace této metody 
byla předvedena v [DK14] na řadě algeber (Boolovské, M V algebry, (RDP) 
efektové algebry). 

V disertační práci jsou popsány tři směry zobecnění výsledků z [DK14]: 

(I) přejití na více dimenzionální spektrální rozklady F : R™ —> E, 

(II) oslabení podmínky monotonní-a úplnosti (přejitím k takzvaným lexiko
grafickým efektovým algebrám), 

(III) kombinace situací (I II). 

Pro (I) je charakteristické zkomplikování procesu zdvihání spektrálních rozk
ladů (z nejsnadnějšího kroku se stane nejobtížnější). Tato část dizertační práce 
pokrývá výsledky z článků [DL20d] and [DL20a]. Pro zobecnění (II-III) (kde ko
respondence jedna ku jedné mezi spektrálními rozklady a observables v obecné 
situaci neplatí) je charakteristická potřeba zjemnit argumentaci většiny důkazů 
(nebot E chybí některá supréma), což je provedeno skrze množství pomocných 
technických lemmat. Tato část disertační práce zobecňuje výsledky publikované 
voláncích [DL20b], [DL19],[DL19] a [DL21]. 

Hlavní výsledky disertační práce jsou shrnuty v následujících větách: 

Theorem 10.1. Ai ir: (G,u) —> (H,v) je a-homomorfismus unitární dedekin-
dovsky monotónně a-úplná částečně uspořádaná grupa. Dále ain splňuje (LP). 
Potom každý n-dimenzionální spektrální rozklad F : M.n —> H lze zdvihnout na 
n-dimenzionální spektrální rozklad K : M.n —> G takový, že ir o K = F. 

Theorem 10.2. Pro každou monotónně a-úplnou efektovou algebru E splňující 
(RDP) existuje bijektivní korespondence mezi n-spektrálními rozklady a n-
observables. 

Theorem 10.3. Ai E = F(HxG, (u, 0)) je lexikografická efektová algebra, kde 
(G, u) je dedekindovsky monotónně a-úplná částečně uspořádaná grupa s in
terpolací a (H,u) je libovolná (Abelovská) unitární částečně uspořádaná grupa. 
Potom každý n-observable x zadává n-spektrální rozklad F takový, že: 

(i) Im(7rff o F) je konečná množina, 

(ii) At< s-F(s) existuje pro každý charakteristický bod t, 

kde t je charakteristickým bodem, právě když existuje h e H o s e M n takové, 
že nHoF(s) = h a t := inf{r e Rn\nH o F(r) = h, r < s}. 

Na druhou stranu, každý n-spektrální rozklad na E splňující podmínky (i —U) 
lze rozšířit na observable. 
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