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Abstract 

The PhD. thesis is based on the research conducted by the author under a 
joint guidance and advice within a French-Czech doctoral research project. 
The French part of the research was carried out at the Institut Francais 
de Mecanique Avancee in Clermont-Ferrand and was directed by Maurice 
Lemaire and Jean-Marc Bourinet. The Czech part of the work, guided by 
Zdenek Knesl, was elaborated at the Institute of Physics of Materials of the 
Academy of Sciences of the Czech Republic in Brno. 

This thesis is organised such as to provide the reader a balanced presen­
tation of fracture, fatigue, computational mechanics and reliability analysis 
methods. Together with original developments in direct differentiation of the 
fatigue life equation, this constitutes the set of tools that was leveraged in a 
novel architecture to develop a stochastic fatigue crack propagation analysis 
procedure meeting the requirements of robustness, speed and accuracy. 

The Czech part of the research was in the field of computational fracture 
mechanics. It is given a detailed exposure in an appendix not to break the 
continuity of the main text. It consisted in a continuum mechanics based 
study of the stress field around the crack front of a through-thickness crack 
in two and three dimensions. The main question to be answered was whether 
the special type of singularity at the intersection of the crack front with the 
free surface can be one of the sources of abnormalities in the behaviour of 
cracks in very thin foils. The theoretical bases of the concepts commonly 
used in fracture mechanics were reviewed to understand their applicability 
to problems with special geometries, such as the one of thin foils. A detailed 
numerical investigation of the stress conditions along and around the crack 
front was carried out. The carefully elaborated 3D finite element models of 
through cracks in thin foils exposed certain distinct trends in the contours of 
the stress field as the sheet metal becomes thinner. But these findings could 
not offer an explanation for the abnormal behaviour observed in fatigue tests 
on cracked thin foils. 

Despite the fact that the above hypothesis appeared ungrounded, this 
research helped to fully appreciate the assumptions behind two-dimensional 
fracture mechanics models as well as behind two-dimensional crack propa­
gation models. 

The larger part of the thesis, which also brings an original contribution, 
deals with numerical modelling and stochastic analysis of complex-geometry 
crack propagation problems. The use of numerical mechanical models for 
such analysis has so far been scarce because of prohibitively high computa­
tional effort. This thesis shows that through application of advanced com-
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putational mechanics and suitable reliability analysis techniques, the task is 
tractable even on a personal computer. 

The basic choice when solving a stochastic problem is a choice of the re­
liability analysis method. In this thesis, the First Order Reliability Method 
(FORM) was employed. From previous analyses of similar problems, it ap­
peared that the problem in hand showed no important non-linearity. F O R M 
also directly provides information on sensitivities. Further, F O R M proved 
to be very advantageous in that it does not require the mechanical model 
to compute responses with very low-probability realisations of the random 
variables. It may be quite difficult to ensure that the underlying computa­
tional model can deal with all low-probability configurations of the problem. 
Moreover, such configurations may result in a different type of failure than 
the one of interest in the analysis. 

A n essential step in the F O R M analysis is to transform the reliability 
problem in the physical space to a space of standard normal uncorrelated 
variables. A n intermediate step of the Nataf transformation employed here 
for this purpose is to solve an integral equation in order to calculate a 
correlation coefficient of a bi-variate normal distribution. While the usual 
approach is to use approximate solution formulae, it was solved in this thesis 
by an optimisation procedure to achieve a higher accuracy. 

It was assumed that the crack propagation velocity obeys the Paris-
Erdogan crack growth equation. Its parameters were obtained from actual 
fatigue test results (the well-known Virkler data). The fatigue life in simu­
lations using statistic models based on these data was extremely sensitive to 
the correlation of the two parameters of the fatigue equation. Considerable 
attention was paid to choice of an appropriate statistic model. A bi-variate 
model of normal multiplier and log-normal exponent of the equation gave 
satisfactory results. 

For problems involving crack-crack and crack-structure interactions, a 
solution of the underlying fracture mechanics problem by a numerical method 
becomes necessary. Classical finite element formulation requires updating 
the finite element mesh as the crack is growing. Remeshing introduces nu­
merical noise which can hamper the convergence of the F O R M reliability 
algorithm. The accuracy achievable with the finite elements that is quite 
satisfactory for deterministic purposes may be insufficient for F O R M . 

On the other hand, the Extended Finite Element Method ( X F E M ) avoids 
remeshing and offers a good numerical stability. X F E M was used in this 
thesis as a numerical solution method that is very well suited for reliabil­
ity analysis of crack propagation problems. The method approximates the 
displacement field in the vicinity of the crack through a sum of several dis-
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continuous shape functions, which add up to unity at all points. The nodal 
coefficients for these functions are found by invoking the minimum energy 
principle. 

F O R M requires the computation of the derivatives of the response func­
tion, which is in the present case the fatigue life integral. Numerical differ­
entiation is time consuming and introduces numerical errors. Several useful 
direct differentiation formulae were therefore derived and used. They speed 
up the computation dramatically. In test examples, the numerical differ­
entiation results appeared to approach the direct differentiation results as 
the differentiation step was refined. However, the response derivatives with 
respect to certain variables could only be obtained by employing numerical 
differentiation by means of the finite difference method. 

A n important challenge is to treat variable-amplitude loading. This is 
mainly due to the effect of crack growth retardation after overload. From 
among the various approaches available, the choice was made to apply the 
so called P R E F F A S method, well accepted in the French aerospace industry. 
In P R E F F A S , it is assumed that the loading consists of a repeated sequence 
of peaks and troughs, such as a standard design load sequence, and that the 
geometrical factor to the stress intensity equation changes only negligibly 
through a single application of the load sequence. The method is therefore 
applicable also to problems with multiple and interacting cracks, since the 
changing geometry interactions do not enter into the load transformation. 
P R E F F A S transforms the variable-amplitude load sequence into a constant-
amplitude load sequence, operating on the load sequence only, without any 
consideration to the structure itself. 

The author also had the opportunity to use a cluster of personal com­
puters running Linux operating system with the OpenPBS distributed com­
puting utility, which appeared to be perfectly suited and easy-to-use for 
reliability analysis purposes. The distribution of the computations of the 
structural response brought a further acceleration of the reliability analysis 
procedure. 

The computational implementation leveraged available software. The 
reliability analysis tools of the F E R U M code written in Matlab were em­
ployed. The crack propagation procedures were also scripted in Matlab, 
ensuring seamless integration with F E R U M . The X F E M code developed by 
the L A M C O S institute in Lyon was exploited to carry out fracture me­
chanics analysis. While the Matlab code can be run under an arbitrary 
operating system, distributed computing and the X F E M code need to be 
run on a Linux machine, which can be accessed through a network connec­
tion. Communication between the codes is enabled by launching executable 
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scripts from Matlab, data exchange takes place via text files and several 
custom scripts in Perl are used to manage the computational jobs. 

Two application examples are presented in the text. In the first, P R E F -
FAS load transformation was carried out separately prior to the analysis 
itself, in which the transformed constant-amplitude load was applied in a 
deterministic manner. A limited study of randomness in the P R F E F A S 
model was conducted within the first example. In the second example, the 
load transformation was an integral part of the overall stochastic analysis 
procedure and a material parameter of P R E F F A S was considered random. 
Both of the example problems had very low probabilities of failure. 

The implemented procedure appeared capable to analyse stochastic crack 
propagation problems, with a complexity at the level of industrial applica­
tions, with robustness, accuracy and reasonable requirements on computa­
tional hardware and time. The procedure is ready to be applied on a wide 
range of complex-geometry two-dimensional crack propagation problems. 

As the approach is based on the stress intensity factor and the Paris crack 
growth law, extension to three dimensions would require substantial changes 
in the methods used, despite the fact that X F E M has been developed for 
3D problems as well. 
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Abstrakt 

Tato disertace je výsledkem práce, která vznikla v rámci doktorského 
studijního programu autora pod společným francouzsko-českým vedením. 
Francouzským partnerem byl Institut Frangais de Mécanique Avancée v Cler­
mont-Ferrand, kde autorovu práci vedli prof. Maurice Lemaire a Dr. Jean-
Marc Bourinet. V České republice se na projektu podílel Ustav fyziky ma­
teriálů A V ČR Brno, kde autora vedl prof. RNDr . Zdeněk Knésl, CSc. 

Text disertace je strukturován tak, aby čtenáři poskytl vyvážený přehled 
teoretických východisek v oblasti lomové mechaniky, únavy, numerických 
metod mechaniky těles a metod analýzy spolehlivosti. Spolu s původním 
odvozením přímé derivace vztahu pro únavovou životnost jsou popsané me­
tody souborem nástrojů, na nichž je vystavěn nový přístup stochastické 
analýzy šíření únavových trhlin, který splňuje požadavky na robustnost, 
rychlost a přesnost výpočtové metody. 

Na českém pracovišti U F M A V ČR se autor zabýval především výpoč­
tovými metodami lomové mechaniky. Výsledky této práce jsou podrobněji 
rozvedeny v příloze s ohledem na plynulost hlavního textu. Jejím cílem bylo 
zkoumat z hlediska mechaniky těles v trojrozměrném prostoru pole napětí 
v okolí čela trhliny procházející materiálem. Zejména měla být zodpovězena 
otázka, zda specifický typ singularity v průsečíku čela trhliny s volným 
povrchem nemůže být jednou z příčin anomálního chování trhlin ve velmi 
tenkých kovových foliích. Teoretické základy metod běžně používaných v 
lomové mechanice byly prostudovány z hlediska správnosti jejich aplikace 
na problémy se specifickými geometrickými aspekty, zejména na problém 
tenkých folií. Byla provedena podrobná numerická analýza prostorového 
pole napětí v okolí čela trhliny. Pečlivě modelování trhliny procházející 
tenkou kovovou folií pomocí metody konečných prvků ukázalo na určité 
charakteristické jevy v prostorovém poli napětí v závislosti na tloušťce folie. 
Tyto jevy se však zřejmě nejsou vysvětlením pro anomální chování, které 
bylo u tenkých kovových folií pozorováno. 

Přestože se výše uvedená hypotéza této části výzkumu nepotvrdila, au­
torovi tato práce velmi přispěla k dobrému porozumění předpokladům, které 
stojí za běžně používanými rovinnými řešeními v lomové mechanice, a před­
pokladům rovinných modelů šíření únavových trhlin. 

Větší část disertace, v níž jsou rovněž prezentovány původní příspěvky 
k řešené problematice, se zabývá numerickým modelováním a stochastickou 
analýzou rovinných problémů šíření únavových trhlin se složitější geometrií. 
Využití numerického modelování příslušného problému mechaniky těles pro 
takovou stochastickou analýzu bylo dosud řídké z důvodu nepřiměřeně vysoké 
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výpočtové náročnosti. Tato disertace ukazuje, že díky aplikaci pokročilých 
numerických metod mechaniky těles a vhodných technik ve spolehlivostní 
analýze lze takovou úlohu řešit i na osobním počítači. 

Zásadním metodickým rozhodnutím je při řešení stochastického problému 
volba spolehlivostní metody. V této disertaci je využita aproximační metoda 
F O R M . To bylo možné díky zkušenosti z předchozích analýz obdobných 
problémů, v nichž funkce poruchy nevykazovala žádnou výraznou nelinear-
itu. V metodě F O R M rovněž přímo získáváme cenné informace o citlivosti 
spolehlivostního indexu na jednotlivé proměnné a parametry. Výraznou 
výhodou se ukázalo být také to, že není třeba, aby byl numerický mechanický 
model schopen spočítat odezvu také pro všechny velmi málo pravděpodobné 
realizace náhodných proměnných. Zajistit takovou robustnost numerického 
modelu může být nebývale obtížné. Zmíněné nepravděpodobné konfigurace 
navíc mohou vést na jiný způsob poruchy, než který je předmětem našeho 
zájmu. 

Základním prvkem metody F O R M je transformace spolehlivostního pro­
blému z fyzikálního prostoru proměnných do prostoru standardně normálně 
rozložených nekorelovaných proměnných. K tomu se v disertaci využívá 
Natafova transformace. Jedním z jejích kroků je vyřešení integrální rovnice, 
jejímž řešením je korelační koeficient dvojrozměrného normálního rozložení. 
Zatímco běžným přístupem je aplikace přibližných vzorců, v této disertaci 
byla řešení nalezeno s vysokou přesností aplikací optimalizačních metod. 

U rychlosti šíření vychází práce z předpokladu platnosti Parisova-Er-
doganova vztahu. Parametry jeho proměnných byly stanoveny z výsledků 
reálných únavových zkoušek (ze známých Virklerových dat). Únavová ži­
votnost ve výpočtech využívajících statistické modely založené na těchto 
datech byla extrémně citlivá na korelaci obou parametrů Parisova vztahu. 
K volbě vhodného statistického modelu se proto přistupovalo s náležitou 
péčí. Dvourozměrný model s normálním násobitelem a log-normálním ex­
ponentem Parisova vztahu umožnil reprodukovat realitu únavových testů 
s uspokojivou přesností. 

Problémy šíření trhlin, kde dochází ke vzájemné interakci více trhlin 
nebo k interakci trhlin s prvky konstrukce, kterou se trhliny šíří, vyžadují 
řešit příslušný problém lomové mechaniky numericky. V klasické metodě 
konečných prvků je třeba neustále aktualizovat sít konečných prvků s tím, 
jak se trhliny šíří. Změny sítě jsou zdrojem numerického šumu, který může 
i znemožnit konvergenci spolehlivostní metody F O R M . Přesnost metody 
konečných prvků, která je zcela postačující pro deterministické problémy, 
může být pro stochastické problémy řešené metodou F O R M nedostatečná. 

Nutnosti aktualizace sítě se lze vyhnout a numerické stability dosáhnout 
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nasazením rozšířené metody konečných prvků ( X F E M ) . Pro výhody této 
metody při řešení spolehlivostních problémů šíření trhlin byla X F E M ap­
likována v této disertaci. V metodě se pole deformací v okolí trhliny aprox­
imuje součtem několika nespojitých tvarových funkcí, jejichž součet je v kaž­
dém bodě jednotkový. Uzlové hodnoty každé z těchto funkcí se naleznou 
aplikací principu minimální energie. 

Metoda F O R M je v podstatě optimalizační metodou a vyžaduje proto 
výpočet derivací funkce odezvy, tj. v našem případě diferenciaci integrálního 
vztahu pro únavovou životnost. Numerická derivace klade vysoké nároky 
na výpočtový čas a je zatížena chybou. V rámci této doktorské práce proto 
bylo přímou derivací integrální rovnice odvozeno několik velmi užitečných 
vztahů. Jejich aplikace vede k dramatickému snížení výpočetní náročnosti. 
Správnost odvozených vztahů byla ověřena srovnáním s numerickou derivací. 
Ukázalo se, že výsledky numerické diferenciace měly tendenci se blížit vý­
sledkům odvozených vztahů s tím, jak se zjemňoval krok numerické dife­
renciace. Pro některé proměnné však nebylo možné derivaci funkce odezvy 
získat jinak než numerickou derivací metodou konečných rozdílů. 

Důležitým prvkem řešení problému šíření trhlin je uvážit proměnlivost 
zatížení. Ta se projevuje zejména zpomalením rychlosti růstu trhliny po 
přetížení. Z různých dostupných přístupů byla zvolena metoda P R E F F A S , 
která je široce akceptována ve francouzském leteckém průmyslu. Metoda 
vychází z předpokladu, že zatížení sestává z opakovaných sekvencí maxim a 
minim (například ze standardních zatěžovacích profilů), a z předpokladu, že 
vliv změny geometrie trhliny, k níž dojde během jediné aplikace zatěžovací 
sekvence, na součinitel intenzity napětí je zanedbatelný. P R E F F A S lze proto 
využít i pro řešení problémů s více vzájemně se ovlivňujícími trhlinami, 
protože měnící se geometrické poměry nemají vliv na transformaci zatížení. 
Metoda P R E F F A S transformuje zatěžovací sekvenci s proměnlivými am­
plitudami zatížení na sekvenci s konstantní amplitudou zatížení, a to bez 
potřeby jakékoliv informace o zatěžované konstrukci. 

Autor měl také možnost využívat cluster osobních počítačů s operačním 
systémem Linux a se systémem OpenPBD pro distribuci výpočetních úkolů, 
který se ukázal být výborným a snadno použitelným systémem pro spo-
lehlivostní analýzy. Distribuce výpočtů odezvy konstrukce přinesla další 
zrychlení celé spolehlivostní analýzy. 

Při počítačové implementaci navržené metody se využilo dostupného 
softwaru. Pro spolehlivostní analýzu se uplatnily algoritmy systému F E R U M 
napsaného v jazyce Matlab. Procedury simulace šíření trhlin byly rovněž 
napsány v Matlabu, což zajistilo snadnou integraci s kódem F E R U M . A -
nalýza problému lomové mechaniky byla provedena metodou X F E M napro-
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gramovanou ústavem L A M C O S univerzity INSA v Lyonu. Skripty v Mat-
labu lze spustit na počítači s libovolným operačním systémem. Distribuce 
výpočtů a program X F E M běží pouze na počítači se systémem Linux, k 
němuž může být i vzdálený přístup po síti. Komunikace mezi oběma Mat-
labem a X F E M je zprostředkována spustitelnými skripty volanými z Mat-
labu. Výměna dat probíhá prostřednictvím textových souborů a výpočetní 
úkoly jsou spravovány několika skripty v jazyce Perl. 

V disertaci jsou prezentovány dva příklady aplikace navržené výpočetní 
metody. V prvním příkladu je transformace zatížení metodou P R E F F A S 
provedena zvlášt před spuštěním vlastní analýzy, v níž pak bylo transfor­
mované zatížení o konstantní amplitudě aplikováno už jen deterministicky. 
V rámci prvního příkladu tak byla okrajově provedena i analýza náhodnosti 
v modelu P R E F F A S . V druhém příkladu byla transformace zatížení nedílnou 
součástí celkového postupu stochastické analýzy a materiálový parametr vs­
tupující do algoritmu P R E F F A S byl modelován jako náhodná proměnná. 
Pravděpodobnost poruchy v obou příkladech byla velmi nízká. 

Implementovaný postup se ukázal být dobrou metodou analýzy stocha­
stických problémů šíření trhlin, jejichž geometrie dosahuje složitosti aplikací 
v průmyslu, přičemž vykazoval robustnost, přesnost a přiměřenou náročnost 
na výpočetní prostředky a čas. Postup lze snadno uplatnit na širokou řadu 
rovinných problémů šíření trhlin se složitou geometrií. 

Vzhledem k tomu, že je vyvinutý postup založen na použití součinitele 
intenzity napětí a Parisova vztahu pro rychlost šíření trhlin, by rozšíření 
na prostorové úlohy vyžadovalo značné změny v používaných přístupech, 
a to i přesto, že numerická metoda X F E M byla vyvinuta i pro prostorové 
problémy. 

h 



Resume 

Cette these se basse sur la recherche réalisée par l'auteur sous direction 
conjointe de deux tuteurs dans le cadre d'un doctorat en cotutelle franco-
tchěque. L a partie francaise de cette recherche a été réalisée á l'Institut 
Frangais de Mécanique Avancée á Clermont-Ferrand sous la direction de 
Maurice Lemaire et Jean-Marc Bourinet. La partie tchěque du travail, 
guidée par Zdeněk Knésl, a été menée á l'Institut de physique de matériaux 
de 1'Académie des Sciences de la République Tchěque. 

La these est organisée ď u n e maniěre á donner au lecteur une presentation 
équilibrée des méthodes de la mécanique de rupture, de fatigue, de mécanique 
numérique et de 1'analyse fiabiliste. Ces méthodes, ainsi que des développe-
ments originaux en differentiation directe de 1'équation de la tenue en fa­
tigue, représentent la boite á outils qui a été exploitée dans une architecture 
originelle pour développer une procedure ďanalyse stochastique de la propa­
gation de fissure, qui répond aux exigences de robustesse, vitesse et precision 
du calcul. 

La partie tchěque da la recherche se situe dans le domaine de le mécanique 
numérique de rupture. Ce travail est présenté en detail dans 1'annexe afin 
de ne pas interrompre la continuité du texte principal. II consistait en une 
étude, fondée sur la mécanique de milieux continus, du champ tridimen-
sionnel de contraintes dans le voisinage du front ď u n e fissure passante á 
travers ď u n e plaque. L a question principále á répondre était si le type par-
ticulier de singularitě du champ á 1'intersection du front de la fissure avec 
la surface libře pourrait-t-il étre une des sources de comportement anormal 
de fissures dans des feuilles métalliques trěs minces. Les bases théoriques 
des approches couramment utilisées dans la mécanique de la rupture ont été 
révisées afin de bien apprécier leur applicabilité aux problěmes présentent 
des caractéristiques géométriques particuliěres, par exemple au probléme 
ďune plaque trěs mince. Une étude numérique détaillée du champ de con-
trainte le long du front de la fissure était menée. Une modélisation tridimen-
sionnelle par elements finis soigneusement élaborée de fissure traversant une 
feuille mince a fait ressortir á certaines tendances des contours du champ 
de contraintes en fonction de Pépaisseur diminuant de la feuille. Or, ces 
constatations ne constituent pas une explantation pour le comportement 
anormal observe dans des essaies en fatigue de feuilles minces fissurées. 

Malgré le fait que 1'hypothěse ci-dessus n'etait pas confirmée, cette re­
cherche a aidé á apprécier pleinement les hypotheses derriěre les moděles á 
deux dimensions de la mécanique de rupture, ainsi que derriěre les moděles 
á deux dimensions de propagation de fissures par fatigue. 
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La partie plus étendue de la these, qui apporte également une contribu­
tion originale, traite de la modélisation numérique et de ľ analyse stochas-
tique des problěmes de propagation de fissures présentant une geometrie 
complexe. Ľutil isation de moděles mécaniques numériques pour une telle 
analyse a jusqu'ici été limitée par un effort de calcul trop élevé. Cette 
these démontre que, par application des méthodes de mécanique numérique 
avancées et des techniques ď analyse fiabiliste convenables, la täche est 
tractable merne sur un ordinateur personnel. 

Le choix fondamental lors de la resolution ď u n probléme stochastique 
est le choix de la méthode ď analyse de fiabilité. Dans cette thése, ľapproxi-
mation de fiabilité de premier ordre (FORM) a été employee. D'aprés anal­
yses précédentes des problémes similaires, i l est apparu que le probléme 
en main n'a montré aucune non-linéarité importante. Aussi, la méthode 
F O R M fournit-elle directement les sensibilités de ľindex de fiabilité ä des 
différents paramétres. E n outre, F O R M s'est avérée trěs avantageuse en 
ce qu'elle n'exige pas que le modéle mécanique soit capable de calculer la 
réponse mécanique pour toutes realisations des variables aléatoires de trěs 
faible probabilité. II se peut avérer trés difficile ďassurer que le modéle 
mécanique numérique puisse traiter toutes les configurations de faible prob­
abilité du probléme. D'autre part, ces configurations de faible probabilité 
peuvent entrainer un autre type de défaillance que celui auquel on s'intéresse 
dans ľ analyse. 

Une etape essentielle dans ľ analyse F O R M consiste ä transformer le 
probléme de fiabilité de ľespace physique ä un espace de variables normales 
standards non-corrélées. Une etape intermédiaire de la transformation Nataf 
employee ici pour cet objectif est de résoudre une equation integrale afin de 
calculer un coefficient de correlation d'une distribution normale bi-variée. 
Alors que l'approche habituelle consiste ä se servir de formules approxima­
tives, ľéquation integrale a été résolue dans cette these par une procedure 
d'optimisation pour atteindre une precision plus élevé. 

II était suppose que la vitesse de propagation de fissure obéissait ľéqua­
tion de Paris-Erdogan. Ses paramétres ont été obtenus ä partir des résultats 
des essaies reelles en fatigue (les données bien connues des Virkler). La tenue 
en fatigue dans les simulations utilisant les modéles statistiques basées sur 
ces données a été extrémement sensible ä la correlation des deux paramétres 
de ľéquation de Paris-Erdogan. On a prété une attention soigneuse au 
choix ď u n modéle statistique approprié. Un modéle bi-varié de multipli-
cateur normal et exposant log-normale de ľéquation a donne des résultats 
satisfaisants. 

Pour des problémes présentant des interactions entre des fissures ou 

j 



des interactions d'une fissure avec la structure, une solution du probleme 
de mecanique de rupture sous-jacent par une methode numerique devient 
indispensable. La formulation classique de la methode des elements finis 
necessite la mise ä jour du maillage des elements finis chaque fois que la 
fissure s'accroit. Le remaillage introduit un bruit numerique qui peut nuire 
ä la convergence de l'algorithme d'optimisation de calcul de fiabilite. La 
precision realisable avec les elements finis, qui est tout ä fait satisfaisant ä 
des fins deterministes, peut etre insuffisante pour F O R M . 

Or, la methode des elements finis etendue ( X F E M ) evite le remaillage et 
offre une bonne stabilite numerique. X F E M etait utilisee dans cette these en 
tant qu'une methode de solution numerique tres bien adaptee pour l'analyse 
fiabiliste des problemes de propagation de fissure. L a methode construit 
une approximation du champ de deplacement en proximite de la fissure par 
une somme de plusieurs fonctions de forme discontinues, dont la somme et 
Turnte ä tous points. Les coefficients nodaux de ces fonctions sont trouves 
en invoquant le principe d'energie minimale. 

F O R M necessite le calcul des derives de la fonction de reponse, qui est, 
dans le cas present, l'integral de la tenue en fatigue. L a differentiation 
numerique prend trop de temps et introduit des erreurs numeriques. Plu­
sieurs formules tres utiles ont done ete derivees par differentiation directe de 
l'equation integrale. Elles accelerent le calcul consider ab lement. Dans des 
exemples d'essaie, les resultats de differentiation numerique semblaient ap-
procher les resultats de differentiation directe avec le raffinement du pas de 
differentiation. Toutefois, les derives de la reponse par rapport ä certaines 
variables ne pouvaient etre obtenus que en employant la differentiation 
numerique au moyen de la methode de differences finies. 

Un defi important consiste ä traiter le chargement d'amplitude vari­
able. II s'agit principalement de l'effet de retard de croissance de la fissure 
apres une surcharge. Parmi les diverses approches disponibles, le choix a 
ete fait d'appliquer la methode P R E F F A S , bien acceptee dans l'industrie 
aeronautique franchise. Dans P R E F F A S , i l est suppose que le chargement 
consiste en une sequence repetee de pics et vallees, comme par exemple 
les sequences de chargement de conception standards, et que le facteur 
geometrique de l'equation d'intensite de contrainte soit perturbe d'une faqon 
negligeable lors d'une seule application de la sequence de chargement. Cette 
methode est done applicable egalement ä des problemes de multiples fissures 
en interaction, car les interactions geometriques changeantes n'entrent pas 
dans la transformation de chargement. P R E F F A S transforme la sequence 
de chargement d'amplitude variable en une sequence de chargement d'am­
plitude constante, operant seulement sur la sequence de chargement, sans 
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aucune consideration ä la structure elle-méme. 
L'auteur avait aussi l'occasion d'utiliser un cluster de P C executant le 

systéme d'exploitation Linux avec ľoutil de calcul distribué OpenPBS, qui 
semblait étre parfaitement adapté et facile ä utiliser pour des fins de ľ analyse 
fiabiliste. L a distribution des calculs de la réponse mécanique a apporté une 
acceleration supplémentaire de la procedure ďanalyse de fiabilité. Dans la 
mise en ceuvre informatique, on exploitait les logiciels disponibles. Les outils 
d'analyse fiabiliste du code F E R U M écrits dans M A T L A B étaient employes. 
Les procedures de propagation de fissure ont été également écrites au format 
de scripts de M A T L A B , assurant une integration avec F E R U M sans inter-
facer. Le code X F E M développé par le laboratoire L A M C O S de INSA de 
Lyon a été exploité pour mener les analyses de mécanique de rupture. Alors 
que le code M A T L A B peut étre execute sous un systéme d'exploitation arbi­
trage, le calcul distribué et le code X F E M doit étre execute sur un ordinateur 
sous Linux, auquel on peut accéder également par le biais d'une connexion 
réseau. L a communication entre les codes est réalisée en lancant des scripts 
exécutables ä partir de M A T L A B . Ľéchange de données s'effectue par des 
fichiers texte et plusieurs scripts écrits en Perl sont utilises pour gérer les 
täches de calcul. 

Deux exemples d'application sont présentés dans le texte. Dans le pre­
mier, la transformation de chargement P R E F F A S a été effectuée séparément 
avant ľ analyse elle-méme, dans laquelle ľampli tude constante du charge­
ment transformé a été appliquée dans une maniere déterministe. Une etude 
limitée du caractěre aléatoire du modele de P R E F F A S a été menée au sein du 
premier exemple. Dans le deuxiéme exemple, la transformation du charge­
ment faisait une partie integrále de la procedure ďanalyse stochastique et 
le parametre de matériau de P R E F F A S était considéré aléatoire. Tous les 
deux problěmes ďexemple présentaient une probabilita de défaillance trés 
faible. 

La procedure proposée semblait capable ďanalyser des problěmes stochas-
tiques de propagation de fissure ď u n e complexité au niveau des applications 
industrielles, avec robustesse et precision, en ne posant que des exigences 
raisonnables sur le materiel informatique et le temps de calcul. La procedure 
est préte ä étre appliquée sur un large éventail de problěmes de propagation 
de fissure ä deux dimensions de geometrie complexe. 

Ľapproche est fondée sur ľutilisation du facteur ďintensité de contrainte 
et la loi de Paris de propagation de fissure. Pour cela, une extension ä trois 
dimensions nécessiterait des changements substantiels dans les méthodes 
utilises, malgré le fait que le code X F E M a été développé ainsi pour les 
problěmes 3D. 
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Chapter 1 

Introduction 

This PhD. thesis is based on the research conducted by the author under a 
joint guidance and advice within a French-Czech doctoral research project. 
The French part of the research was carried out at the Institut Frangais 
de Mecanique Avancee in Clermont-Ferrand and was directed by Maurice 
Lemaire and Jean-Marc Bourinet. The Czech part of the work, guided by 
Zdenek Knesl, was elaborated at the Institute of Physics of Materials of the 
Academy of Sciences of the Czech Republic in Brno. 

Accordingly, the presentation in this thesis evolves along two major axes. 
The Czech contribution consists in a continuum mechanics based study of 
the stress field around the crack front of a through-thickness crack in two 
and three dimensions. The main question to be answered was whether the 
special type of singularity at the intersection of the crack front with the free 
surface can be one of the sources of abnormalities in the behaviour of cracks 
in very thin foils. This part of the research was motivated by the efforts to 
identify the possible causes of the mentioned abnormal behaviour observed 
in experiments [37]. 

The theoretical background established by the above research helps to 
understand some of the issues involved in the fracture mechanics based mod­
elling of crack propagation, which is the subject of the French part of the 
research. 

It is also this latter part of the work where a majority of the original 
contributions of this thesis are put forward. The most significant result is a 
proposal, implementation and demonstration of an efficient approach for a 
reliability analysis of complex fatigue crack propagation problems. The com­
plexity here involves both complex 2D structural configurations requiring a 
finite element analysis and complex loading conditions. The inevitable con-
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sequence of including of these comprehensive considerations in the analysis 
results in the formulation of a computational task with formidable demands 
on computer resources. This barrier of excessive computer time has so far 
discouraged researchers and engineers from embarking onto a reliability anal­
ysis of crack propagation with finite element modelling. The contribution 
of this research is then the proposed efficient approach rendering this com­
prehensive analysis computationally tractable. 

1.1 The Crack Propagation Problem 

This section briefly outlines the general background for the engineering prob­
lem of interest in this thesis. The development of cracks is an important 
phenomenon in many engineering materials subjected to fatigue loading. 
The fatigue problem entered the field of engineering vigorously together 
with the expansion of railway transportation. Broek [15] reports how in­
credibly frequently serious fatigue failures occurred on the British railway 
in mid 19 t h century. In 1850's, Wholer pioneered fatigue testing on rail 
vehicle axles. He developed the concept of stress level - fatigue life curves, 
which has ever since been the design principle widely used by the engineers. 

In 1920's, Griffith [36] studied the material fracture itself. Three decades 
later, the description of the crack tip stress field [42], [97] laid the basis for 
a study of the current velocity of propagation of an actual crack. Paris [73] 
was the first to propose that the propagation velocity may be related to the 
general elastic state of stress at the crack tip. As a matter of fact, Paris 
thereby laid down the fundamentals for an engineering discipline concerned 
with the prediction of propagation of existing cracks, which is the field of 
interest of this thesis. 

1.1.1 Domains of Application 

Modelling of crack propagation is needed in industrial problems where we 
are interested in the remaining life under propagation of actually existing 
cracks. Explicitely said, we admit that the structure in operation does con­
tain cracks, but we continue operating it despite this knowledge. Such daring 
decision is only admissible for structures that are subject to periodic inspec­
tions. Often, this is not the case and modelling of crack propagation than 
makes no sense. However, in some sectors, namely in air and naval traffic, 
inspections are obligatory and modelling of crack propagation becomes an 
important tool in inspection scheduling and in verification of repair designs. 
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1.1.2 Objectives 

The objectives of this thesis can be formulated as follows: 

• review various crack propagation approaches: 

• propose an efficient approach allowing for stochastic crack propagation 
analysis with a finite element mechanical model: 

• develop and implement a full crack propagation procedure based on 
the proposed approach: 

• demonstrate the feasibility and utility of the developed procedure on a 
reliability problem of a complexity relevant to industrial applications. 

1.2 Organisation of the Thesis 

The significant contribution of this thesis consists in proposing a compre­
hensive approach to perform an efficient reliability analysis of fatigue crack 
propagation using finite element stress analysis. Rather than developing 
completely new methods, the approach is based on putting together pieces 
of available methods in efficient ways and in performing certain numerical 
operations in a more thoughtful manner than what would be an initial-choice 
engineering approach. 

In line with this, the thesis is organised in two parts. Part I presents the 
theory fundamentals as a basis for choosing the most appropriate method 
for the problem of interest. The presentation is developed to a greater detail 
when it comes to the analysis of stresses around the crack front, which was 
the area of concern of the Czech part of the research of the author, as 
mentioned above. Technical details of the presentation have mostly been 
moved to the appendices to keep the text concise. 

Readers familiar with the theory of fracture mechanics and fatigue 
(Chapter 2), crack front stress field analysis (Chapter 2.3), finite element, 
meshless and extended finite element methods (Chapter 3) or with reliability 
analysis (Chapter 4) may only quickly skim through the respective chapters 
of this part of the thesis. 

Based on the theory review presented in Part I, the second part of the 
thesis identifies the challenges of proper and efficient crack propagation mod­
elling. Then, the proposed crack propagation reliability analysis approach is 
developed. This includes statistical modelling and reliability analysis meth­
ods (Chapter 6), the actual crack growth simulation and integration algo­
rithm (Chapter 7) and distributed computing techniques used to further 
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accelerate the computations (Chapter 8). The validity of some of the pro­
posed techniques is then verified by a comparison with a purely numerical 
approach. Finally, an application of the developed approach is demonstrated 
on a full-scope crack propagation reliability analysis example. 



Part I 

Deterministic and Stochastic 
Crack Propagation Theory 

and Methods 
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Chapter 2 

Fracture Mechanics and 
Fatigue 

2.1 Introduction 

Practical modelling of fatigue crack propagation relies on engineering ap­
proaches that have been successfully used for decades, but that involve a 
number of simplifications. To put these models in contrast with the phys­
ical reality, the physical mechanisms of crack propagation and fracture are 
described first in Section 2.2.1. The crack propagation and fracture mod­
els that are still in use today were established in times when electron mi­
croscopy was not available and the developments were driven by a need for 
easily deployable crack propagation models. As a matter of fact, tractable 
engineering models of crack growth based on ab initio principles do not seem 
to be available. 

Section 2.3 reviews the theory of lienar elastic fracture mechanics as a 
prerequisite for comprehension of the crack propagation models. 

The crack propagation models that have proven efficient in use relate the 
propagation velocity or the fatigue life to the (general) level of stress. The 
objective is to present these practical crack propagation modelling methods. 
In Sections 2.5, 2.6 and 2.7, we review the deterministic models. Then, we 
will study in Section 2.8 the approaches allowing to take into account the 
inherent randomness in crack propagation. 

7 
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2.2 The Physics of Cracking and Fracture 

Before one starts discussing the modelling of crack propagation and fracture, 
it is useful to describe, albeit very briefly, the physical mechanisms behind 
crack nucleation, crack growth and fracture. The discussion here is limited 
to mechanisms relevant to metals. Moreover, certain processes that are not 
the subject of this thesis, such as thermal fatigue or stress corrosion fatigue, 
are left aside in the discussion. 

2.2 .1 Mechanisms of Crack Nucleation and Propagation by 
Fatigue 

Of a particular relevance to this thesis is the physics of fatigue damage, 
which occurs under cyclic loading of a magnitude a single application of 
which would not be sufficient to cause failure. Wood [99] proposed the 
following concept. A n application of a tensile stress results in a slip along 
the shear plane in a material grain whose crystallographic orientation with 
respect to the applied stress is favourable for a slip. The slip occurs first 
in those favourably oriented grains that are subject to increased stresses, or 
micro-defects and surface roughness, which act as local stress concentrators. 

Hardening on the slip planes results on the one hand in a slight shift of 
the plane along which the next slip upon stress reversal is going to take place, 
and on the other hand, it locks the movement of dislocations. This in turns 
gives rise to a formation of the so called slip bands oriented in the direction 
of the slip, through which the dislocations can move easily. In addition, 
reversing slips along parallel planes form intrusions and extrusion on the 
material surface. These two features mark the onset of crack initiation. 
Damaged grains contained within the material are not critical in terms of 
crack initiation, with fatigue being essentially a surface effect [15]. 

In the first phase, the cracking takes place in Mode II along the slip bands 
direction, which is inclined about 45 ° from the surface. Due to hardening 
in the surface grains, the slipping may cross the grain boundary to spread 
into the neighbouring grains. As the size of the crack increases, its tendency 
to follow the shear plane direction weakens and the crack turns towards the 
direction perpendicular to the applied stress. Cracks experiencing relatively 
higher stresses propagate faster and become what is often termed the leading 
crack. 

A mechanism of propagation in the second phase, when the crack tends 
to grow perpendicularly to the maximum tensile stress, was suggested by 
Forsyth [31]. The tip of the existing crack causes large stress concentrations. 
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A slip may then occur, starting from the crack front, along a slip plane 
inclined from the crack face and more or less matching the shear stress 
direction. Activation of other parallel and perpendicular slip planes results 
in an extention of the crack as well as in blunting of the crack tip. Stress 
reversal, or alone the compressive stresses persisting due to an action of the 
surrounding elastic material on the plastified region around the crack tip, 
will close the crack again and re-sharpen the crack tip. 

Over the load history, the successive crack tips and blunted crack faces 
create a pattern of the so called striation. These are well apparent on crack 
surfaces of materials exhibiting a manifold of possible slip planes to accom­
modate yielding along the usually curved crack front. In other crystallo-
graphic structures, cleavage may come into play and the yielding-induced 
striation is less apparent. Nevertheless, the essential mechanism of crack 
propagation is linked to local yielding at the crack tip, i.e. to a slip. How­
ever, slip can occur only along the slip planes of the grains. Depending 
on the local grain orientation and size, the crack advances on many and 
variably oriented mini-crack-fronts through the thickness of the specimen. 
Locally, the crack extension direction may deviate considerably from the 
overall crack growth direction. 

Fatigue crack evolution also depends largely on the residual compressive 
stresses existing around the crack tip due to overloads or due to the rough­
ness of the crack surface, which also makes the crack faces come into contact. 
Once the crack lips are separated, their surfaces will never match again per­
fectly, as the fractal theory explains. This effect is more pronounced in 
coarser grained materials. 

Other local effects may also intervene to alter the crack propagation 
direction. Inclusions from material phases contained in the material that 
cannot easily deform plastically as well as microcracks represent local stress 
concentrators, acting as crack attractors. Some second-phase particles can­
not be traversed by the crack, which is forced to bypass them. This results in 
crack defection and Mode II propagation, and effectively into slowing down 
of the growth rate. Macroscopic geometrical boundaries, such as openings, 
corners and nearby cracks, also act as stress concentrators and crack attrac­
tors. 

It is also known that commonly used engineering materials, including 
aluminium alloy sheets finding wide application in the aerospace industry, 
are anisotropic with respect to their strength, fatigue and fracture proper­
ties. Specimens of these materials exhibit different crack propagation speeds 
in fatigue tests, depending on whether the crack propagates in parallel or 
perpendicular to the rolling or extrusion direction of their manufacturing 
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process. 
The above notes suggest that the actual direction of crack propagation 

is on the one hand prevalently governed by the surrounding stress field, 
but on the other hand, it has also a random component, depending on a 
random distribution of inclusions and second phase particles, on random 
cryst alio graphic orientation within the grains, and on the size of the grains. 

2 . 2 . 2 Fracture Mechanisms 

Under extreme stresses occurring due to extreme loads or in structures where 
cracks have largely propagated by fatigue, fracture failure occurs. It is 
recognised that there are two major mechanisms of fracture, namely ductile 
and brittle fracture, depending on the crystalline properties of the material 
of concern and on the temperature [32], [15]. 

In certain materials, like austenitic steel or aluminium alloys, many ma­
terial grains are oriented such that their crystallographic planes are aligned 
with the direction of the shearing stresses, allowing for easy plastic defor­
mation by sliding along the dense atomic planes. Fracture is in such cases 
preceeded by apparent plastic deformation and one speaks of a ductile frac­
ture. In highly pure materials, sliding on conjugate slip planes gradually 
leads to necking down of the specimen to just a few percent of its initial 
section size. However, engineering materials contain inclusions that are in­
capable of much plastic deformation. In presence of high stresses due to 
deformations of the neighbouring alloy crystals, the inclusions tend to yield 
by cleaving apart, forming thus a large cavity in the material, which in­
creases the stresses locally. Meanwhile, smaller particles cannot take the 
same plastic deformation as the surrounding matrix and de-bond from the 
alloy. The material between the voids necks down by slip until the voids 
ultimately coalesce to to form a macroscopic crack. 

The crystallographic nature of certain other materials, including ferritic 
steel, makes them susceptible to cleavage of the material grains, rather than 
sliding along the dense atomic planes. In many other materials, low temper­
ature favours the occurrence of this brittle type of facture. Fracture than 
occurs by separation of crystallographic planes by breaking of atomic bonds. 
As the effective section of the material is weakened by the ruptured grains, 
the remaining grains are subject to an increased stress. The microcracks in 
grains whose cleavage plane is favourably oriented (perpendicular) with re­
spect to the applied tension may then propagate to the neighbouring grains, 
ultimately provoking a brittle fracture failure. This mechanism is termed 
transgranular fracture. The grain boundary phase of some materials, such 
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as cementite in iron, is particularly weak and brittle. In such situation, it 
is easier for the crack to travel along the grain boundary than through the 
grain. The so called inter-granular fracture occurs. 

It remains to note that from the engineering point of view, ductile and 
brittle fracture are distinguished based not on the microscopic fracture mech­
anism, but rather on the amount of plastic deformation occurring before 
fracture, which accompanies the above described ductile fracture mecha­
nism. However, the plasticity may be confined to a small volume and the 
overall plastic deformation remains relatively small. Then, the fracture is 
considered brittle in the engineering sense. 

2.3 Crack T ip Stress Field 

2.3.1 Introduction 

The parameters used in crack propagation theory largely derive from the 
theory of linear elastic fracture mechanics ( L E F M ) . In this Chapter, we 
show how the energy based description of fracture relates to the description 
building on the knowledge of the stress field around the crack tip. We will 
formally introduce the stress intensity factor (SIF) K that appears in the 
empirical crack growth laws reviewed in Section 2.5. It is of course not the 
aim of the presentation herein to give a complete review of these theoretical 
concepts. The scope will be limited to aspects relevant to this thesis. 

In Section 2.3.5, we will also study the behaviour of the stresses as they 
change along the crack front in three dimensions (3D). A numerical investi­
gation relating to this topic is presented in Appendix A.3. The conclusions of 
this study have a direct bearing on the extensibility of the crack propagation 
modelling approaches to 3D problems. 

This chapter has been compiled based on the theoretical studies and 
numerical simulations carried out by the author as that part of his doctoral 
thesis research, which was conducted in Brno, Czech Republic. 

2.3.2 Griffith's Energy-Based Approach 

The fundamentals of brittle fracture theory were laid down by Griffith in 
his 1921 paper [36]. His reasoning was that in a plate stretched by a fixed 
displacement, the energy needed to fracture the material and thus extend 
the crack comes from a release of elastic energy in the material. 

Considering also the work of external forces, the energy balance of an 
extension of the crack by da in the elastic body reads (neglecting the kinetic 
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energy): 

8 ^ (2 , ) 

where is the work done by the external forces, Wei is the elastic energy 
contained in the plate, and Wsep is the energy needed to separate the crack 
faces over a length da (assuming a unit thickness of the plate traversed by 
the crack). In words, the work delivered by the external forces is consumed 
by 1) augmenting of the elastic energy of the material, and in 2) separating 
of the crack faces. Griffith defined 7 to be bonding energy per unit surface. 
Then, for two crack lips in a plate of a unit thickness, Wsep = 27 da. This 
separation energy per unit crack extension defines the energy release rate G: 

G = dWsep = (Wext - Wel) . (2.2) 

The criterion for crack growth is then G > 27. 
Consider now a plate (domain fi) with traction Tf prescribed over a 

part 8£IT of its boundary d£l and displacements uf prescribed over d£lu, 
such that d£lTf)d£lu = dQ, and cftlr|J<9f2u = 0. 8£IT includes also the 
crack faces T, which are however considered traction free. The change in 
the elastic energy is: 

d f 1 , d f 1 , 1 f / dui dTi\ , . . 
—— / -ansa duj = — / -TiUids = - / [Ti— h m—— as, (2.3) 
8a Jn 2 lJ lJ da Jdn 2 2 J d n \ 1 da da J 1 K ' 

and the change in the work of the external forces is: 

dWext f ^du 
Tf-^ds. (2.4) 

da JdaT da 

Note that duf/da = 0 on d£lu and dTf/da = 0 on <9f2y. Equation 2.2 then 
reads: 

G = U U^-^ds. (2.5) 2 Jdn \ da da , 

2.3.3 Irwin's Relation between G and K 

The energy release rate G defined in Section 2.3.2 and the stress intensity 
factor K to be introduced in Section 2.3.6 were related to each other by 
Irwin [42]. 

Irwin's approach to relate the two quantities was based on the idea that 
the work expended in separating the crack lips over a length Aa is equal 
to the work done by a crack-face traction necessary to close the separated 
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crack faces over the length A a . In fact, the atomic bond forces in the non-
separated material are equated with the crack face traction on the separated 
crack faces and work is done by the bond forces on the displacements of 
closing or opening of the crack. 

A derivation of Irwin's relation using the stress and displacement for­
mulas deduced by Williams (see Appendix A) was shown in [48] or [16]. If 
you are interested, read the detailed derivation in Appendix A , Section A . l . 
The important result is: 

where 1 and 2 denote a state before and after the crack has extended by 
A a , respectively. T stands for traction, u are displacements, and Kj, KJJ 
and Km are the stress intensity factors for the respective fracture modes. 
The interesting aspect of Eq. 2.6 is that G depends only on the intensity of 
the crack-tip stress field (see Appendix A , Section A.2). 

2.3.4 The Elastostatic Problem 

For purposes of crack propagation modelling, the essential result of the frac­
ture mechanics theory is the knowledge of the crack tip stress field. The two-
dimensional (2D) linear elastic solution includes a magnitude factor termed 
the stress intensity factor (SIF) and denoted K. K is the parameter most ex­
tensively used as the crack propagation driver in the empirical crack growth 
laws, see Section 2.5. 

The understanding of the crack tip stress field solution is useful for sev­
eral reasons. Firstly, it is simply good to understand where the SIF one uses 
in crack propagation modelling comes from and what it means. Secondly, it 
is always advisable to be aware of the specific assumptions implicitly made 
in crack propagation modelling. Also, the definition of the SIF will shed 
light on the question of possible extension of the procedures developed in 
2D to three dimensional (3D) problems. 

The front of a crack is considered ideally sharp, which gives rise to 
stresses exceeding the elastic limit. However, as long as the crack-front 
plastic zone is contained within a small volume, an assumption of linear 
elasticity may be valid. In addition, the elasto-plastic fracture mechanics 
theories have been developed as an extension of the linear elastic fracture 
mechanics ( L E F M ) . Static L E F M is discussed in this section. 

The problem we will seek to solve is to find the displacement field and 
stress field in an elastic body containing a notch or a crack. The body 

(2.6) 
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is subject to a remotely applied static loading and all other surfaces are 
stress-free, including the faces of the notch or crack. 

In general, the solution to such three dimensional problem can be sought 
by representing it in terms of harmonic potentials. This leads to three partial 
differential equations for the three displacement components. However, such 
approach is very difficult and can provide a solution for a single specific 
geometry only. 

A more tractable approach is to apply variational calculus. A variational 
method using a special numerical discretisation was applied to solve the 
problem by Bazant & Estenssoro [7] - see Section 2.3.5. 

The 3D problem can of course also be solved numerically by the finite 
element method (FEM) or the boundary element method. F E M was used 
in this thesis to study the shape of the stress field in the vicinity of the crack 
front in 3D. 

Finally, for certain problems, such as through cracks in relatively thin 
plates, we can simplify the problem by reducing it to two dimensions. Then, 
solutions by means of complex potentials or Airy's stress function become 
available. The latter solution is presented in Appendix A.2. Important 
results are summarised in Section 2.3.6. 

2.3.5 3D Elastic Crack Front Field 

The assumption made in the stress analysis of cracks is that the crack front 
in 3D or crack tip in 2D are perfectly sharp. In elasticity, this results in a 
singularity in terms of infinite stresses at the crack front or crack tip. Stress 
singularity exists also at the tip or front of a V-notch, but it is of a different 
order than in the case of a crack. Note that a notch is a dent manufactured 
into the plate, not showing any fatigue damage. But from a mathematical 
point of view, a crack may be regarded as a special case of a notch, having 
a notch opening angle a = 0. 

The above distinction between two- and three-dimensional analysis and 
between crack tip and crack front is not an end in self. For most problems 
of plate fracture with through cracks, 2D modelling is a valid assumption. 
However, for surface cracks and in a rigorous 3D continuum analysis of 
through cracks, the effect of the intersection of the crack front and the 
body surface, which is termed the crack corner or crack vertex, needs to be 
considered. 

Dauge ([19],[20]) considers both the edge singularity and the corner sin­
gularity. In [20], it is shown how a combined edge-and-corner expansion of 
the stress field can be derived mathematically. The expansion consists of 
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both the edge singularity related stress intensity factor together with the 
respective shape functions (see Appendix A) , and the analogous coefficient 
of the corner expansion with a remainder of the respective shape functions. 
The cylindrical coordinate system of the edge expansion and the spherical 
coordinate system of the corner expansion are shown in Fig. 2.1. 

A number of researchers have been looking at the problem of the corner 
of a through crack, attempting to find an analytical solution for the stress 
field. Some authors ([29],[17]) accounted in their developments for the effect 
of the free surface, but did not explicitly include the corner singularity in 
their considerations. Their results disagree with the works, in which the 
corner singularity was explicitely considered ([10],[7]). 

It appears that a purely analytical solution to the crack vertex-edge 
problem is yet to be devised. Pook [75] even makes a remark that "the 
derivation of exact analytical solution does not appear to be possible". 

Of a particular interest is the paper of Bažant & Estenssoro [7]. The 
authors represented the stress field around the crack as follows: 

u = px r1'2 /(«£, 9), v = pX r1'2 g(cf>, 9), w = px r1'2 h(cf>, 9), (2.7) 

where u, v and w were the displacements in the directions p, <p and 9, 
respectively, of a spherical coordinate system with origin at the corner point 
and 0 = 0 being the direction of the crack front (cf. Fig. 2.1). However, 
only the (9, 0)-space was discretised by the finite element method. Then, the 
minium energy principle was invoked. The relevant solution in the (9, <fi)-
space depends on the exponent A on the third coordinate p, and A was 
obtained as an eigensolution of the finite element problem. 

The results obtained in [7] show that value of A depends on the Poisson 
ratio v and the local geometry, defined by the crack front termination angle 
(3 (measured from the edge formed by the intersection of the crack face and 

crack front 

Figure 2.1: Spherical and cylindrical coordinates 
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the free surface) and the crack plane inclination angle 7 to the free surface. 
For v = 0.3 and 7 = TT/2, the authors obtained values of A (characterising 
the behaviour of the displacements) decreasing with (3 becoming smaller. For 
0 = 7r/2 (crack front perpendicular to the free surface), A can be read from 
the plot in [7] to be about 0.547, i.e. A > 1/2. The value A = 1/2 corresponds 
in the cited results to an angle /3 of about 101°. This is in agreement with 
the results actually observed in fatigue tests on thicker specimens: the crack 
corners tend to trail beyond the mid-thickness region of the crack front. 

Behaviour of the Stress Field along the Crack Front 

The author has carried out a linear elastic finite element study of the stress 
field behaviour along the crack front. Since this level of investigation would 
be a little disruptive for the coherence of this concise theoretical background, 
the study is presented in Appendix A.3. The important result that can be 
learnt from this study is an evidence that the stresses around the crack front 
show a truly three-dimensional behaviour, see Fig. 2.2. 

S t r e s s y-y [Pa] 

Figure 2.2: Variation of stresses perpendicular to the crack face in the vicin­
ity of the crack front 

Consequences can be drawn for thick plate-like specimens and cracked 
bodies of a pronounced 3D nature, and to some extent also for very thin 
foils. In both cases, the stress distribution is influenced by the presence of 
the corner point singularity discussed above. However, in the latter case, it 
is a question whether a continuous mechanics investigation can give answers 



2.3. CRACK TIP STRESS FIELD 17 

to real-world phenomena, since in very thin foils, the microstructure effects 
may become prevalent. 

2.3.6 2D Elastic Crack T i p Field 

The classical fracture mechanics and crack propagation theory has been de­
veloped around a solution of the stress field in the vicinity of the crack 
that was made possible by a reduction of the problem to a two-dimensional 
domain. Once the problem is postulated in a plane, effective mathemati­
cal tools become available for its solution. Among them are the theory of 
complex potentials [62] and Airy's stress function. 

A rather complete derivation of the 2D solution using Airy's stress func­
tion is exposed in Appendix A.2. In this theoretical background overview, it 
will be sufficient to just outline the solution method and present the resulting 
solution. 

In 1957, Williams published a paper [97] in which he showed that the 
stress field has a singularity of the type 1/y/r at the crack tip, where r is 
the distance from the crack tip. He proposed a solution for the governing 
biharmonic equation 

V 2 V 2 $ = 0 (2.8) 

with $ being Airy's stress function: 

_ d 2 $ _ d2§ _ d 2 $ 
a x x ~ W axy~~d^,' a y v ~ d ^ > { ' 

in a factorised form with the polar coordinates r and 9 constituting multi­
plicative terms in the solution, together with a proportionality factor K§: 

$ = K^r2~sf(9). (2.10) 

Note that s will determine the order of singularity of the solution. Using 
the power 2 — s ensures that r can be factored out from Eq. (2.8) when 
we substitute Eq. (2.10) in it. What results is a homogeneous ordinary 
differential equation with 9 being the only variable. Symmetric loading 
conditions (Mode I, Mode II and Mode III) are then considered and the 
solution function f{9) is sought in the space of trigonometric functions. 

To determine the value of s, boundary conditions (stress-free crack faces) 
are applied. This leads to an eigenvalue problem and the complete solution 
is an eigenexpansion. The first eigenvalue determines the order of the sin­
gularity, which depends on the initial notch opening angle a. 
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For a crack, where a = 0, there exists also an eigenvalue equal to zero. 
This results in a constant stress term, called the T-stress. It has been 
shown [45] that accounting for the T-stress improves the prediction of crack 
propagation, especially for certain geometries of the problem. 

When the eigenexpansion is truncated after the first term (the remain­
der will thus include also the T-stress), the stress components in the polar 
coordinate system for the crack opening fracture Mode I are: 

Kj / 5 9 1 39 
arr = , - cos cos — 

A/2^f7V4 2 4 2 
Ki (1 9 1 39 

— cos - + - cos — 
A / 2 ^ V 4 2 4 2 

Ki (\ . 9 1 . 30 \ 
vre = - 7 = = f i s m - + i s m T ) . (2.11) 

2.3.7 Conclusions 

Next to shedding light onto the meaning of the stress intensity factor and the 
assumptions under which it is defined, the discussion above brings forward 
the three dimensional character of the crack front stress field. 

Notwithstanding the above, two dimensional modelling of fracture and 
fatigue is appropriate in most problems of a prevalently two dimensional 
nature. After all, experience has shown that 2D modelling can provide very 
useful results. Stress intensity factor (SIF) based crack propagation laws 
have turned out to be effective tools to predict crack growth. They appear 
to be a good operative means of relating the crack growth rate to the state 
of stress in the structure. And we have seen in Section 2.3.6 that it is indeed 
the stress intensity factor K which characterises the magnitude of stresses 
at the crack tip. 

However, care must be taken when using K. It has been defined as 
the proportionality factor in a solution for a 2D problem. We have also 
established a relation between K and the energy release rate G. Sure, G 
does have a sense as the energy to separate the crack faces over a certain 
area, which is a three dimensional description. But when its equivalence 
with the two-dimensional K is established, we implicitly assume that the 
area reduces to a distance of crack extension. A self-similar extension takes 
place everywhere along the crack front. 

The stress intensity factor has a sense as a global variable that can govern 
the advance of the crack front as a whole. When we use some analogy to 
calculate SIF at various points along the crack length, we are actually using a 
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theory developed under 2D assumptions for another problem. (Admittedly, 
this is exactly what is done in the numerical simulations in Appendix A.3). 

Various methods have been developed to calculate SIF varying along the 
crack front - their brief overview can be found in Section 3.7. These methods 
have been applied in crack propagation simulations. But perhaps due to the 
il l assumption on the direct extensibility of SIF to three dimensions, the 
validity of such methods is disputable. 

This has a direct bearing also on the extensibility of the stochastic crack 
propagation procedure developed in this thesis to three dimensions. It is 
based on SIF driven crack growth. Although the numerical method used has 
been successfully applied to 3D problems, the same cannot be said about 
the prediction of crack growth. 

2.4 Fatigue Life Phases 

The lifetime of structures subjected to fatigue loading consists of three dis­
tinct phases, in which different physical processes are taking place and which 
can therefore be analysed separately. These three phases are crack initiation, 
crack propagation and residual fracture strength. 

2.4.1 Crack Initiation 

Under high-cycle fatigue conditions, a vast majority of the fatigue life of 
structures is spent in the crack initiation phase. This fact permits to 
carry out an engineering assessment of the entire fatigue life until failure of 
the structure without modelling the crack propagation and fracture failure 
phases explicitely. Such engineering approaches have proven quite efficient 
in characterising the fatigue strength of structures. As a matter of fact, 
the actual physical mechanisms involved in crack initiation, as discussed in 
Chapter 2.2, are difficult to model and a simpler engineering approach is 
thus desirable. 

Around 1850's, Wohler [98] pioneered fatigue testing in his investigations 
why railway axles fail. Wohler conceived ingenious machines using which 
he subjected specimens to cyclic loading with partial or full load relaxation. 
He showed that the fatigue life of the specimens depended on the level of 
maximal stress and on the minimal to maximal stress ratio. The plot of 
stress S against the number of cycles iV known as the Wohler curve or the 
S — N curve conveniently describes the high-cycle fatigue data and remains 
in use in engineering fatigue practice until today. 
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S [MPa] 

log N [log of cycles] 

Figure 2.3: A illustration of an S-N curve. 

Figure 2.3 shows an illustration of a stress-life curve. The so called 
runout lives, at which the tested specimens fail, are often plotted in log 
scale since lives in the order of magnitude of 10 7 cycles are often needed to 
break engineering test specimens. Obtaining a useful S — N curve thus also 
requires a considerable number of very long fatigue tests. 

The S — N curves are constructed for sinusoidal loading varying with 
a constant amplitude. In general, the loading is a time history with vary­
ing amplitudes. In such case, one usually employs a convenient counting 
method. The Rainflow counting [57] is the most widely used one. The 
counting procedure transforms the complex loading history into k blocks 
of monotonous loading of rij cycles each. If iVj is the fatigue life given for 
the amplitude of the block considered, the damage of the structure can be 
accumulated using Miner's [60] linear damage accumulation hypothesis: 

The structure is considered failed if D > 1. 
The important issues in this methodology are test result censoring and 

including the test statistics (scatter) in the design for fatigue. Rich literature 
exists on these topics, but is not reviewed here since the S — N approach, 
although important, is not the subject of interest for the purposes of this 
thesis. 

A: 
(2.12) 
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2.4.2 Crack Propagation 

The crack propagation phase of the total fatigue life is the very focus of 
this thesis. While the physical mechanism of crack propagation was briefly 
described in Chapter 2.2, deterministic crack propagation models are pre­
sented in Sections 2.5 and 2.6, and stochastic crack propagation modelling 
is the subject of Section 2.8. 

2.4.3 Residual Strength 

In a situation of high cycle fatigue, where a very large number of fatigue load 
cycles is necessary before a failure occurs, the growth of the crack starts to 
accelerate after a certain time spent in the propagation phase. This growth 
rate acceleration is a sign of a different crack advance mechanism staring 
to gain ground, in particular the mechanism of fracture. In physical terms, 
it has been described in Section 2.2.2. For the purposes of the reliability 
analysis carried out in this thesis, the onset of fracture will be considered 
as the event of failure. It will be assumed that this event occurs when the 
stress intensity factor attains the value of the fracture toughness Kc. 

Strictly speaking, fracture failure does not automatically happen when 
Kc is reached. Especially under plane stress conditions and with ductile ma­
terials, the fracture resistance, defined as the energy release rate required 
to extend the crack, increases after an initial advance of the crack. De­
pending on how much additional load is supplied, the crack, propagating 
now already by fracture, may stop growing, progress in a stable manner or 
depart for a final unstable fracture. The fracture resistance is characterised 
by the so called "R-curves". For their discussion, the reader is referred to 
any standard fracture mechanics textbook, e.g. [15] or [2]. 

2.5 Empirical Crack Growth Laws 

In 1961, Paris et al. [74] were the first to propose that the velocity of crack 
growth was controlled by the stress intensity factor K. At that time, the 
response to this assertion was rejective. In his historical reflection, Paris 
[72] notes: 

Well, that paper was very promptly rejected by three of the 
world's leading journals. A l l of the reviewers simply stated that 
'no elastic parameter, e.g. K, could possibly correlate fatigue 
cracking rates because plasticity was a dominant feature'. They 



22 CHAPTER 2. FRACTURE MECHANICS AND FATIGUE 

proceeded to somehow totally disregard the facts clearly demon­
strated by the data! 

Indeed, using the stress intensity factor K characterising the stress field in 
the vicinity of the crack appears to be a suitable way of linking the crack 
propagation velocity to the stresses in the body, which are easy to determine. 
It is by fitting the crack growth equation parameters to actual crack growth 
data that one obtains a plausible model for engineering prediction of crack 
propagation in components and structures. In this way, one can abstract 
from the actual physical mechanisms of cracking. The determination of the 
crack growth law parameters is the subject of Section 6.2. 

logdK 

Figure 2.4: The range of validity of the Paris-Erdogan law 

While the model of Paris & Erdogan is a well-performing engineering 
tool, it should be noted that: 

• it is not based on the actual fatigue crack extension mechanism, which 
is a plastic slip, 

• the exponential form of the law allows for a good fit to the actual crack 
propagation data (see Fig. 6.1). But the parameters of the law are 
merely fitting coefficients without a clear physical meaning. Moreover, 
due to the exponential form of the law, their physical dimensions for 
the given specimen change with the optimum fit. 

Nevertheless, the so called Paris-Erdogan law [73] (called in the following 
just the "Paris law" for brevity) remains the most widely accepted crack 
propagation model. It is necessary to note that it is suitable for describing 
the medium range of the crack growth history (Phase II), while it fails to 
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capture the phases of crack initiation and short crack growth (Phase I) as 
well as the near-critical crack propagation phase, as K approaches its critical 
value, where the crack growth happens by fracture (Phase III), see Fig. 2.4. 
It is also recognised that the crack growth rate changes with the minimal 
to maximal stress ratio. Various modifications of the Paris law have been 
proposed to include the above effects, among which the Forman equation. 

It is also important to accentuate that we consider so far only a monoto­
nous cyclic loading with a constant amplitude and constant maximum, such 
as a sinusoidal load history. 

The Paris law has a very simple form: 

^ = C ( A J O m , (2.13) 

where the growth rate da/dN is expressed in terms of the increment of crack 
length da per an increment in the number of load cycles diV. AK is the 
stress intensity factor range and C and m are coefficients to be fitted from 
experimental data. 

Forman et al. [30] modified the Paris law to account for the acceleration 
of crack growth as K approaches the value of the fracture toughness KC and 
for the effect of the stress ratio R = c r m i n / ( j m a x : 

da = C{AK)M

 = C{AK)M

 ( 2 . 

dN (1 - R)KC - A K (1 - R) (KC - KMAX) ' 1 " ' 

where K m a x is the stress intensity value at the load peak. Equation (2.14) 
can be further extended ([82], [77]) to give a zero crack growth when the 
stress intensity factor range AK is below its threshold value AKQ: 

da = C (AK - AK0)M 

dN (1 - R) (KC - KMAX) • { - ' 

For steels and aluminium alloys, equation (2.15) gives satisfactory results. 
The widely used crack growth software N A S G R O utilises the equation 

developed by Newman [67], [68]: 

^ - = C(AKeSr) AK°«(q, (2.16) 
Olv I -y K m i 

where AKeg is the effective stress intensity factor range between the crack 
opening stress CTQ (see Eq. 2.23) and the maximal applied stress c r m a x . p 
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and q are material constants that characterise the crack growth behaviour 
near the threshold AKQ and the fracture toughness K C , respectively. The 
model extends the validity of the crack growth equation to these regions, 
but requires more material parameters to be determined. 

2.6 Propagation under Variable Ampli tude Load­
ing 

In Section 2.5, we have assumed that the structure in which the crack prop­
agates experiences a loading that oscillates periodically between some fixed 
minimum and maximum values. This may be the reality for structures sub­
ject to periodic loading due to machines and mechanisms attached to them 
or applied in a controlled fatigue test. 

However, a second important class of structures is one that experiences 
fatigue loading with peaks and troughs of varying amplitudes. This type 
of loading covers both a realisation of a random loading process as well as 
any deterministic complex loading spectra, such as typical loading sequences 
applied in the analysis of aircraft structures. 

The pitfall in variable amplitude stressing is that the rate of crack prop­
agation depends not only on the current elastic stresses in the body, but 
also on the loading history and the related history of plastic stresses in the 
vicinity of the crack tip. 

In 1970's Elber [24], [25], introduced an important concept of plasticity 
induced crack closure. This concept served as the basis for the development 
of several different models and procedures to take into account namely the 
retardation in crack growth occurring after an overload in the stressing se­
quence. These approaches are described below. 

The consequences of variable amplitude or "complex" loading are 
twofold. On the one hand, neglecting overloads may lead to an excessive 
overdesign of structures for fatigue. On the other hand, a structure that ex­
periences during its actual service life loading less severe in overloads than 
has been predicted may fail prematurely. 

In this Section, we review the various models that have been proposed 
to take account of variable amplitude loading. We briefly sketch the ap­
proaches based on the plastic zone size, which appeared in 1960's. Next, 
we introduce the concept of plasticity induced crack closure developed by 
Elber and discuss the methods based on the concept. Special attention is 
paid to the so called P R E F F A S model, which is the one that was actually 
chosen as the method to address variable amplitude loading within the crack 
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propagation reliability analysis framework proposed in this thesis. 

2.6.1 Models Based on Plastic Zone Size 

The first analytical approaches proposed to deal with the issue of crack 
growth retardation after overloads recognise the role of the plastic zone 
developed at the crack tip. 

rpo 

Figure 2.5: Wheeler crack growth retardation model 

Specifically, Wheeler [94] considers the size of the plastic zone due to an 
overload of KQ occurring at length oo: 

K2 

rPo = cv^- (2.17) 
°~ys 

and the theoretical plastic zone size at a length <n to which the crack has 
propagated after the overload: 

K2 

rpi = cp^-. (2.18) 
°~ys 

In the above equations, ays is the yield stress, K is the elastic stress intensity 
factor and cp is a factor applied to obtain a plastic zone size, which can be 
based on a simplified analytical model. The retarded crack growth rate 
is then obtained by multiplying the pure K-based crack growth rate by a 
correction factor corresponding to the ratio of rpi to the distance from a, 
up to the limit of the plastic zone ahead of the crack tip created by the 
preceeding overload: 

da ( rpi \ q da 
dNretarded \aQ + VpQ — a% ) dNlinear 

(2.19) 
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The power q is to be determined experimentally. 
Willenborg et al. [96] looked at the same situation of the overload and 

the current plastic zones from a somewhat different angle and sought the Ki 
that would make rpi extend to the limit of the overload plastic zone ahead 
of the crack tip. Thus, they first determined KitTeq, which is the Ki that 
would hypothetical^ be necessary to produce the same propagation velocity 
as before the overload. KijTeq can be obtained from 

K r e 

cp ^ r e q = a 0 + rp0 - a,i. (2.20) 
°~ys 

Looking for the way to use the information provided by i*Q,req, Willenborg 
et al. chose to use in the crack advance calculation a stress intensity factor 
range AKeg, which is the current stress intensity factor range AKi reduced 
by an amount of KTed = KijTeq — Kmax^. Using the Paris law (Eq. (2.13)), 
the retarded crack propagation rate is then given by: 

= C ( l - ReS)K™s, (2.21) 
C U V retard 

in which 

^ff = K ^K~A ' ( } 

' 'mas , ! -''•red 

2.6.2 Elber's Crack Closure Concept 

A far more popular concept in determining the retarded propagation rate is 
the one proposed by Elber [24], [25]. As a matter of fact, Elber observed in 
his crack propagation tests that the crack lips get separated only starting 
from a certain tensile load stress, denoted Co and termed the crack opening 
stress. Similarly as Wheeler and Willenborg et al, Elber considered that 
the plastic zone created by the previous stress peak closes the crack by an 
action on the still elastic material surrounding the plastic zone. 

The opening stress level cto,j of a load cycle i can be calculated from the 
peak c r m a X j j and the valley c r m i n ,j of the given cycle as follows: 

0o , j = crmax,i - URJ ( c r m a X j j - c r m m j j ) , URJ = auR + bu (2.23) 

with au + bu = 1, in which by is a material dependent parameter determined 
by specific fatigue tests. 

Elber's crack closure concept is the basis of the P R E F F A S model, see 
Section 2.6.3 below. 
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2.6.3 The P R E F F A S Mode l 

In his 1985 PhD. thesis [21], Davy proposed an approach to deal with 
variable amplitude fatigue loading in crack propagation, which gained a 
wide acceptance in the French aerospace industry. It is known under the 
acronym P R E F F A S , which stands for "Prevision de la fissuration en fatigue 
aerospatiale". This method relies on a transformation of the variable ampli­
tude time history of applied stress into a constant amplitude, sinusoidally 
varying stresses, making use of Elber's crack closure concept. 

The increment A a of the crack length over an applied load sequence with 
N cycles can be calculated using the Paris law as follows: 

N 

Aa = C {AKi)m , (2.24) 
i=l 

where Ki is the stress intensity factor occurring in the given load cycle and C 
and m are material parameters entering the Paris law, considered constant 
throughout the structure. 

In general, K depends on the current crack length through some geom­
etry function F(a): 

Ki = F{ai)ai (2.25) 

In addition, P R E F F A S is based on Elber's concept of opening stress (see 
Section 2.6.2), whereby only a part of AK is effective in making the crack 
tip advance. Pulling together the above, we can rewrite Eq. (2.24) as: 

N 

Aa = Y, CFm(ai) ( a m a X i i - a0A)m , (2.26) 
i=l 

P R E F F A S makes two major assumptions: 

1. the load sequence results in a crack growth that is small enough to 
consider that the relation between the crack length and the stress 
intensity factor remains unchanged: 

2. the crack opening stress is determined by the previous loading history 
and does not disappear with time. 

Note that when the first of the assumptions in satisfied, the use of the 
method can be extended to high-cycle fatigue problems with multiple and 
interfering cracks. 

Indeed, crack interference results in a change of the geometry factor 
relating the the crack tip stresses to the remotely applied stress. 
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PREFFAS operates at the level of the remotely applied stress. It trans­
forms the variable-amplitude load sequence into a constant-amplitude load 
sequence to be applied on the structure a single time. The assumption taken 
in P R E F F A S is that this single application of the load sequence brings about 
only a negligible change in the geometry of the problem. 

The geometry factor accounts for crack interaction with all discontinu­
ities. It needs to be updated every time that a significant change in the 
geometry of the problem takes place. But when the first assumption is sat­
isfied, this cannot happen during a single application of the load sequence. 
Therefore, crack interaction considerations do not enter into the stress trans­
formation by P R E F F A S . 

As the geometry factor F(a) does not change throughout the load se­
quence, it can be separated out of the sum in E q (2.26): 

N 

Aa = CFm(a) £ (amax4 - a^)m , (2.27) 
i=l 

We see that the sum 
N 

Es = ^ ( c m a x , i — CO,*)™- (2.28) 
i=l 

in Eq. (2.27) does not depend on a. Thus, under the above assumptions, we 
can calculate a stress sequence effect Es without any regard to the cracked 
structure itself. 

The P R E F F A S algorithm processes the remote applied stress history. It 
calculates the stress sequence effect on the basis of Elber's crack opening 
stress and on some significant history values of cycle peaks and valleys. The 
details are given in Appendix A.4. 

The P R E F F A S method can be used to obtain for a chosen number of 
equivalent load cycles Neq an equivalent load level aeq that will cause the 
same damage as the actual load sequence. 

The remarkable point about P R E F F A S is that a computer simulation of 
crack propagation using P R E F F A S can reproduce surprisingly well actual 
variable-amplitude fatigue tests. 

2.6.4 Randomness in P R E F F A S 

Eq. (2.23) involves a material parameter bjj. Davy [21] suggests to determine 
its value from two fatigue tests, one with a monotonous loading and one with 
an overload every 1000 cycles. For a value of crack length retardation rate 
TR observed and known m, one can read bjj from a graphical chart. 
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We will follow this approach, setting up a two dimensional grid of discrete 
values of by and m. For each pair of values, we will calculate the crack length 
retardation rate as TR = Esnooverload/Esoverload using Eq. (2.28), applying 
the correct opening stresses calculated from Eq. (2.23). 

The numerical map thus constructed can be inverted to obtain by for 
any pair of values T r and m. Then, assuming that the statistics of T r and 
m are known from experiments, Monte Carlo simulation (MCS) can be used 
to produce a sample of by and estimate its statistics. 

Note that the simulated scatter in by captures only the randomness due 
to considering only the material properties T r and m as random, while the 
uncertainty about the P R E F F A S model itself is completely disregarded. 

2.6.5 Strip Yie ld Mode l 

In Section 2.6.3 above, we noted that the transformation of the loading 
history to a constant amplitude loading by the P R E F F A S method takes 
place under the explicit assumption that the geometry factor to the stress 
intensity range does not change. It is thus applicable only to load sequences 
that are quite short with respect to the total fatigue crack propagation life 
of the structure. 

On the other hand, in the so called Strip Yield method [87], it is in 
principle possible to take the structural geometry explicitely into account. 

Similarly as P R E F F A S , the Strip Yield model relies on Elber's crack 
closure concept and the related crack opening stress. The essential difference 
is in the way the opening stress magnitude is calculated. Instead of using a 
very simple analytical formula as in P R E F F A S , Strip Yield takes advantage 
of a mechanical model. 

In this model, the material around the crack tip is idealised as narrow 
plastic-rigid bars. The unbroken bars in front of the crack tip carry load 
both in tension, when they can undergo permanent plastic deformation, 
and in compression, under which they are considered rigid. The bars in the 
wake of the crack act only in compression and retain their permanent plastic 
deformation from the time they were still in front of the crack. This bar 
model is employed to calculate the crack opening stresses. 

From the computational point of view, the advantage of the Strip Yield 
model is that the stresses and deformations in the hypothetic bars can be 
found from an elastic continuum model by superposing the elastic solutions 
of two problems. In each of them appears a crack with a length increased 
by the size of the plastic zone. The first problem has loading by the remote 
applied stress. In the second case, the part of the crack face corresponding 
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to the plastic zone is loaded in compression by the yield stress. In general, 
the solution method can also be a numerical one to account for complex 
geometrical configurations. 

2.6.6 Note on Full Numerical Calculation 

A further step towards realistic modelling of crack propagation is to employ 
a finite element model including plastic and contact capabilities to solve the 
mechanical problem at each increment of the crack length. Such full numer­
ical calculation requires advanced solution techniques. Elguedj et al. [26] 
have presented developments aiming at the implementation of such crack 
propagation simulation using the Extended Finite Element Method with 
plasticity and contact. Alizadeh et al. [1] have proposed a method to cal­
culate crack growth rates based on crack closure analysis in the context of 
cassical finite elements, relying on releasing of nodes as the crack propagates. 

2.7 Propagation Direction 

A n important part of modelling of crack propagation is to determine the 
direction in which the crack will next propagate. It this thesis, we are inter­
ested in two-dimensional problems. The direction of propagation depends 
on the stress field surrounding the crack tip. In terms of the fracture me­
chanics theory, it depends on the mutual proportion of the stress intensity 
factors for Modes I, II and III of crack propagation. 

The three most widely used criteria to determine the current crack 
growth propagation direction are the following: 

• the maximum hoop stress criterion [27]: 

• the maximum potential energy release rate criterion [40]: 

• the minimum strain energy density criterion [80]. 

It was shown in [11] that the three criteria provide practically the same 
results. We will thus detail only the first of the above criteria, which is also 
practical for application in that it provides a closed-form solution. 

The maximum hoop stress criterion assumes that the crack extension will 
occur in the direction that maximises the circumferential stress in the region 
close to the crack tip. In polar coordinate system r, 9, the circumferential 
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stress o~e and the shear stress are are given by 

, cos -
^7rf 2 

cos^ -KJJ sin 0 

1 
aRQ = — cos - [Kj sin 0 + KJJ(3cos 6> — 1)] 

2V27rr 2 
(2.29) 

The stress OQ will be a principal stress if oRQ = 0. This leads to the condition 

JRT/sin(9 + J R://(3cos(9-l) = 0. (2.30) 

Solving for 9, the crack propagation direction reads: 

1 / Kj 
9 = 2 arctan 

4 Kn 

(2.31) 

Equation (2.31) contains a ± sign. Of the two values of 9 given by the 
equation, the one resulting in the higher hoop stress OQ is taken as the 
direction of crack propagation. 

2.8 Stochastic Nature of Fatigue Crack Propaga­
tion 

As discussed in Section 2.2, the velocity of fatigue crack propagation de­
pends on a number of local circumstances of a random character, including 
the crystallographic structure, material impurity, presence of second-phase 
particles and grain size. In addition, the overload effect (see Section 2.6) 
comes into play under variable-amplitude loading, and many structures sub­
ject to fatigue loading experience random load histories. The modelling of 
these random aspects of crack propagation is the subject of this Section. 

Before a crack extends to a size provoking a failure of the structure by 
fracture, crack initiation and crack propagation take place. In high-cycle 
fatigue settings with low levels of the applied stress, the structure of con­
cern may spend a significant part of its lifetime before failure in the crack 
initiation phase. In general, there are two major modelling approaches. In 
the S — N curve approach (see Section 2.4.1), crack initiation is included in 
the total fatigue lifetime. Alternatively, crack initiation is modelled statis­
tically by considering a random life until the initiation of a macro-crack of 
a given size or a random length of an initial macro-crack at a given time. 
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cycles 

Figure 2.6: The Virkler crack growth data [89] 

The propagation phase of the initiated crack is then modelled by fracture 
mechanics techniques (see Section 2.5). 

Fatigue tests ([89],[34]) reveal randomness of crack propagation both in 
terms of differences from specimen to specimen, as well as within a single 
specimen. In a rigorous analysis, both the inter-specimen and the intra-
specimen scatter should be taken into account by the crack propagation 
model. However, if we are interested in an estimation of the lifetime of a 
component rather than in the exploration of the variability of crack prop­
agation during the lifetime, considering only the specimen-to-specimen dis­
persion should generally suffice. 

For completeness of presentation, we shall formally include also the intra-
specimen variability in the following discussion. In general, the stochastic 
crack growth equation can be written as follows: 

^ = Q(t,AK), (2.32) 

where we consider that the crack growth rate depends not only on the stress 
intensity factor range, but it is a stochastic process in time. Some authors, 
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e.g. [82], write down the equation (2.32) in a factored form: 

^=X(t)Q(AK) , (2.33) 

where X(t) is a positive-valued random process and Q is a (deterministic) 
crack growth law. In addition to the stress intensity factor range AK, Q may 
involve also other factors. A n example of Q is the Paris law (2.13). Assuming 
that Q is a known deterministic function and that X(t) is a constant mean 
value plus a Gaussian white noise, Sobczyk & Spencer [82] have derived a 
distribution of the crack size at a given time and the fatigue propagation 
life distribution. 

It was noted in [51] that the correlation structure of the process X(t) de­
termines the statistical dispersion of the time at which a given crack length 
a is reached. In two extreme cases, X(t) can be considered as totally uncor­
rected, leading to the smallest dispersion, and as totally correlated at all 
times, resulting in the highest scatter. The latter extreme correlation case 
is equivalent to replacing the stochastic process X(t) by a random variable 
X. 

The following sections present various approaches that have been applied 
in stochastic modelling of the fatigue crack propagation process. 

2.8.1 Stochastic Differential Equations 

A natural way to include uncertainties in the crack propagation analysis is 
to randomise the crack growth law used as the model for the crack advance. 
Considering the Paris law (2.13), its parameters C and m are taken as 
random variables. The stress intensity factor range AK is considered to 
be determined by the given deterministic loading history and structural 
configuration in time. The integration limits may also be random. The 
Paris law thus turns into a stochastic differential equation. 

It is in general very difficult to find an explicit solution to such nonlinear 
stochastic differential equation. To circumvent this difficulty, one usually 
postulates a reliability problem by taking a certain limit in terms of max­
imal allowable crack length or minimal required service life. In terms of 
solution methods, one usually resorts to Monte Carlo integration or reliabil­
ity approximation techniques. This approach is discussed below. 



34 CHAPTER 2. FRACTURE MECHANICS AND FATIGUE 

Random Variable Approach 

The number of cycles to failure can be expressed using the randomised Paris 
law as follows: 

where X{OJ) indicates a variable in the probability space and x(a) indicates 
a variable that is a function of the crack length. 

Given the uncertainty in crack detection and uncertainty about the ac­
curacy of the measurement of the initial crack length ao, it is natural that 
ao is considered random. 

The random or deterministic nature of the final crack length a/ depends 
on its definition. We may fix a certain deterministic crack length limit that 
we do not allow to be exceeded. Alternatively, we may define a,f for example 
as the crack length attained at the instant when the leading crack reaches 
a certain critical size. The critical size may be the crack length at which 
the stress intensity factor (SIF) reaches the fracture toughness. Fracture 
toughness tests show some scatter and the value of SIF may depend not 
only on the current crack size, but also on a random initial geometry and 
the resulting interaction of propagating cracks. Thus, af is in general also 
random. 

Special care needs to be taken to estimate the statistics of the parameters 
C and m from crack propagation test data. A correlation between C and m 
is an important issue, see Section 6.2. 

If we require the structure to survive Ng load cycles without failure, the 
reliability problem can be formulated with the following limit state function: 

The problem is then to determine the probability of failure or the reliabil­
ity index. It is amenable to solution through Monte Carlo simulation or 
reliability approximation methods, see Chapter 4. 

Note that once the realisations of the random variables including the 
random initial geometry are known, the crack propagation is completely 
deterministic. Thus, the random variable approach is capable of taking into 
account only the specimen-to-specimen scatter, but not the intra-specimen 
scatter. 

(2.34) 

G = NR-NS. (2.35) 



2.8. STOCHASTIC FATIGUE 35 

2.8.2 Stochastic Process Approach 

The stochastic nature of fatigue crack propagation has lead researchers to 
renounce on empirical crack growth equations and regard the crack prop­
agation as a stochastic process. Two essential types of stochastic process 
approaches to random crack growth are briefly outlined below. 

Markov Chain Models 

Markov processes constitute a special class of stochastic processes. A process 
is said to be Markovian if its future evolution is determined only by its 
present state and independent of how the process arrived to the present 
state. Here, we describe the discrete-time and discrete-state Markov chain 
modelling approach as put forward by Bogdanoff et al. [12]. The discrete 
time points are the ends of duty cycles, which are repetitive periods of loading 
histories. It is assumed that the damage can attain discrete states 1 . . . n. 

The initial state of damage is described by the initial probability density 
Po = [TTI , 7T2,..., 7rn], where 7Tj is the probability that the damage is initially 
in state i. The elements {Pij} of the transition matrix P are the probabilities 
that the damage will be in state j after the duty cycle given that in was in 
state i before the duty cycle. 

The state of damage at time t is described by the probability density 
P( = [-Pt(l), - P * ( 2 ) , . . . , Pt(n)], where Pt(i) is the probability that the damage 
is in state i at time t. Pt can be calculated as follows 

We note that the estimation of {Pij} is a difficult and laborious task. 

Cumulative Jump Stochastic Processes 

The cumulative jump approach, proposed in [83], models fatigue crack prop­
agation by random sums of random crack increments: 

N(t) 

where ao is the initial crack length, which may be a random variable, Yi(u) 
are the random crack increments and N(t) is a stochastic counting process 
such as the Poisson process or a birth process. 

It is shown in [82] how the distributions of the crack size at a given time 
and that of the fatigue life can be derived. 

P* — P0P1P2 • • • P<-iP< • (2.36) 

(2.37) 
i=l 
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The parameters of the model (the intensity of the Poisson process and 
the parameters of Yi(w)) need to be estimated from crack propagation test 
data. In [82], it is suggested to take the Poisson process intensity as the 
average number of maxima in the load history. In the cited monograph, 
it is further proposed to relate the parameters of Yi(u>) to the Paris law 
parameters by minimising the mean-square difference between the prediction 
of the stochastic process model and the prediction of the Paris law. 

General Note on Parameter Estimation 

We can make a generally valid observation that the estimated parameters of 
the crack propagation stochastic process account for the material effects, for 
the crack and structure geometry, and for loading. Thus, they need to be 
estimated anew every time the crack trajectory, the structural configuration 
or the loading changes. 

On the other hand, the parameters of empirical crack growth equations 
capture only the material effect. The geometry and loading effects are ac­
counted for through the stress intensity factor range. The latter may be 
given by an analytical formula or obtained from a numerical solution. 

2.9 Conclusions 

In this Chapter, we have reviewed the elastic theory of the crack tip stress 
field and saw the nature of the related assumptions that are inherent to the 
classical crack propagation models. 

We also discussed some of the most common methods in deterministic 
and stochastic fatigue crack propagation modelling. As a matter of fact, two 
general classes of stochastic crack propagation modelling approaches can be 
discerned. 

The first class relies on continuum mechanics modelling of the underly­
ing mechanical problem. The random nature of crack growth is accounted 
for through a randomisation of the material-dependent parameters of the 
empirical crack growth laws. Loading is represented by a time-domain load 
history and load interaction effects are modelled by means of simplified me­
chanical models, such as the P R E F F A S method, or the strip yield model. 

The other class of approaches is inspired by the fact that fatigue crack 
propagation is a highly random phenomenon. These approaches therefore 
renounce on any mechanical modelling and consider the crack growth as a 
stochastic process. They are able to describe the scatter of crack growth 
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within the specimen. But next to this, the process has to adequately cap­
ture all of the load history, material and geometrical aspects. The somewhat 
wanting propositions how to model curvilinear crack growth [84] or load in­
teraction effects [82] reveal about the difficulty of stochastic process models 
to account for these aspects. Certainly, the process parameters can be esti­
mated for particular geometrical configurations and loading processes. But 
the use of stochastic processes to predict crack growth appears to be trou­
blesome. 

In summary, stochastic process based modelling can directly provide 
mathematically elegant answers as to the distribution of fatigue life or crack 
length at a given instant. But for predictive purposes, mechanistic models 
seem to have the edge on stochastic processes precisely in that they dispose 
of the mechanical model. As we will see in Part II of this thesis, this is at 
the expense of immense computation effort and precautions that necessarily 
need to be taken in the implementation. 

A final note is made about the ability to capture the scatter in crack 
growth within a specimen or just the random variability from specimen to 
specimen. In engineering application, it is often the total life under fatigue 
crack propagation that is of interest. Therefore, for the purposes of this 
thesis, the random variable approach, where the parameters of the empirical 
crack growth laws are random variables with a single realisation applicable 
to the entire specimen, is considered sufficient and appropriate. 
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Chapter 3 

Solution Methods for Elastic 
Continuum Problems 

3.1 Introduction 

In Chapter 2.3, we have investigated the nature of the stress field around 
the crack front when the problem is analysed in three dimensions. In many 
practical applications, simplification of the problem to two dimensions has 
been shown to provide very useful results. 

In Section 2.3.6 (and Appendix A.2), the solution for the problem of 
a single two-dimensional crack in an infinite 2D body has been presented. 
Analytical solutions can also be derived for various configurations involving 
multiple cracks. However, practical crack propagation prediction problems 
give rise to complicated structural geometries that require numerical analy­
sis. 

In certain predictive applications, such as the design and assessment 
of repair and crack arrest interventions or inspection scheduling, a correct 
calculation of stresses in the vicinity of the crack tip in complex structural 
configurations is a crucial component of the analysis. 

This chapter reviews several numerical methods suitable for the solution 
of complex-geometry crack problems. The objective is to prepare grounds 
for choosing a numerical method to use in stochastic crack propagation 
analysis. 

39 
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3.2 Variational Methods 

In Section 2.3.6, we sought a solution (i.e. the stress and displacement field) 
to the boundary value problem (BVP) of a crack in an infinite plate. We 
were looking for solutions satisfying the governing biharmonic equation and 
the boundary conditions. 

A n alternative solution approach is based on the minimum energy prin­
ciple. Instead of seeking a solution to the governing differential equation 
satisfying the boundary conditions, we look for solutions minimising the 
potential energy of deformation or the so called complementary energy. 

This approach lends itself to various approximations of the sought func­
tion. With the approximation, the energy will be somewhat higher than the 
minimum (that is why finite element models are "stiffer" than the reality), 
but the minimisation can be used to find the parameters of the approximat­
ing functions. 

We shall consider a loading varying in time. But at the same time, we will 
always assume that the rates of change of the loading and the displacements 
involved are such that inertia forces are negligibly smaller as compared to the 
applied loads and the elastic forces. We shall therefore limit our attention 
to solution methods for static problems. 

3.2.1 The M i n i m u m Potential Energy Principle 

In the process of elastic deformation, the energies involved are the work W 
done by the external (surface and body) forces and the strain energy. The 
strain energy U stored in a volume f2 can be quantified as: 

Let us suppose that a body f2 is in equilibrium under the action of given 
surface forces T and body forces X. The surface forces T are prescribed 
over a portion Ft of the surface, while on the remaining part of the surface 
Fu, the displacements are known. The displacements of the equilibrium 
state are denoted u. Now, consider arbitrary virtual displacements u+5u 
with 5u vanishing over Fu. The work done by the external forces T and X 
through the virtual displacements Su is: 

or, in tensor notation: 
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The strain energy U is equal to the work done by the external forces in 
deforming the body. Thus: 

m = S Qj aedtl- J TudF - J X « d f i j = 0 , (3.3) 

or, in an abbreviated notation: 

5U = S(U- W) = 0. (3.4) 

Eq. 3.4 above indicates that the potential energy has an extremum at equi­
librium. For a stable equilibrium, it can be shown that for any virtual 
displacement, the change in the potential energy is positive. Therefore, the 
state of stable equilibrium corresponds to a minimum. This is formulated 
in the Minimum Potential Energy Principle, stating: 

Of all displacements satisfying the given boundary conditions, 
the displacements satisfying the equilibrium conditions make the 
potential energy an absolute minimum. 

3.2.2 The M i n i m u m Complementary Energy Principle 

When the body and the external forces are at equilibrium, we may vary the 
stresses instead of varying the displacements. In addition to the equilibrium 
and the boundary conditions that must be fulfilled, the stresses must also 
fulfil the compatibility conditions, i.e. for two dimensional problems: 

92^xx _j_ d2eyy _ d2exy 

Qy2 gx2 dxdy 

The stress variations 5cr satisfy the equilibrium conditions within £1 

d5oXx d5oxy _ ddoyy d5oxy 

ox oy oy ox 

as well as the boundary conditions in terms of prescribed stresses on TT 

n\5oxx + n2Soxy = 0 , n 2 o a T O + n\boxy = 0 , (3.7) 

where n i , n2 are the outward normals to FT, but they give rise to variations 
5T in boundary surface forces on Fu. Let us not require that the stress 
variations 5cr satisfy the compatibility conditions (3.5). 

If we define the complementary energy as 

IT = U- f TudF, (3.8) 
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it can be shown (see e.g. [91]) that 

on* = 5 (u - J Tu&T^j = 0. (3.9) 

Eq. (3.9) proves the Minimum Complementary Energy Principle: 

With the stresses satisfying the equilibrium conditions in Q, the 
boundary conditions on T and the compatibility, the complemen­
tary energy functional n* attains an absolute minimum. 

3.2.3 The Ritz Method 

The above minimum energy principles can be used to derive the differential 
equations for specific problems (see e.g. [85]). More importantly, they can 
be employed to construct series of functions converging to the solution of 
the respective differential equation. The latter use of these principles was 
exploited by Ritz [78] and his method is exposed below. 

Recall from Eq. (3.3) that the potential energy of deformation is 

n = - f aedfl- f TudF- f Xudtt. (3.10) 
2 Jn Jr Jn 

If one substitutes a certain set of functions, e.g. in two dimensions Uk(x, y) = 
Ylk=i aWk{x, y), satisfying the boundary conditions, into Eq. (3.10), the 
unknown parameters a^ can be determined from a system of k equations 

<9n , , 
— = 0, fc = ( l , 2 , . . . , n ) . 3.11 
oak 

With such function v,k{x,y) substituted, the energy functional will yield 
some value H(u) that will be different from the minimal energy value THE = 
H(u) corresponding to the exact solution u(x,y). If the set of functions 
constructed by increasing the number of parameters k is relatively complete, 
then 

lim n(u) = minn and lim Uk{x,y) = u(x,y). (3-12) 
k—>oo k—>oo 

3.2.4 The Galerkin Method 

In 1915, Galerkin [33] proposed a solution method, which can be shown 
to be equivalent to the Ritz method in the case of problems of linear self-
adjoint differential equations, but which is more general, since it does not 



3.3. THE FINITE ELEMENT METHOD 43 

require to formulate the energy functional. Moreover, it can be shown that 
the Galerkin method gives the best approximation of the actual solution. 

The method is based on the following consideration: If the sought solu­
tion u to the differential equation L(u) = 0 is represented in terms of a series 
un = Yl?=i aifi with suitable properties, then the orthogonality conditions: 

are equivalent to L(u) = 0. If the series un has n terms, Eq. (3.13) provides 
a set of n simultaneous equations to determine the coefficients a%. 

The equivalence postulated above tells us why in the formulation of finite 
element equations we multiply the governing differential equations with the 
trial functions to obtain the set of simultaneous equations. Naturally, the 
trial and test functions must posses certain properties for the orthogonality 
property to hold. In the finite element and related methods, these properties 
are enforced by applying the partition of unity principle - see Section 3.3. 

We will end the discussion here, having presented the principles of the 
energy methods. Readers who want to dwell into more detail of the theory 
can continue reading in Appendix B . l , where a simple example is presented 
that illustrates the application of the minimum energy principle and of the 
Galerkin method. 

In Section 3.2.4 above, we introduced the Galerkin method, which is the 
mathematical foundation for the finite element method (FEM) as well as 
for its generalisations going by the names of the Extended Finite Element 
Method ( X F E M ) and meshless methods. In this Section, we briefly outline 
the formulation and the resulting static equations of the F E M . The F E M 
theory is well known and a detailed presentation in the main text is thus 
not considered necessary. For interested readers, there is more detail in 
Appendix B.2. 

From a historical perspective, the rise of the finite element method as 
a tool to solve a wide variety of engineering problems was triggered by the 
1956 paper of Turner et al. [88]. A n earlier (1943) paper of Courant [18] did 
not awake that much attention due to the fact that the extensive computa­
tional means that make the finite element method convenient were not yet 
available. However, the paper presented the basis of the modern finite ele-

as n DC (3.13) 

3.3 The Finite Element Method 
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merit method. Courant used a variational formulation with piecewise linear 
approximation over the domain decomposed into triangular elements. 

Once the potential of the F E M was recognised, huge development efforts 
were devoted to the method. Among the milestones, let us mention the 
1965 paper [102] of Zienkiewicz & Cheung, where F E M was first applied 
to other than structural problems. In his 1972 book, Oden [71] introduced 
nonlinear finite element analysis. A comprehensive bibliography on finite 
element developments up to 1975 can be found in [95]. 

3.3.1 The Boundary Value Problem 

The static equilibrium equation reads: 

D e r + / + T = 0, (3.14) 

where D is the gradient operator matrix, er= E e is the stress tensor, 
e= D • u is the strain tensor, / are the body forces and T = n<x are the 
boundary tractions satisfying the natural boundary conditions. 

Equation (3.14) is called the strong form equilibrium equation, since it 
requires that equilibrium be satisfied at each point. We relax this strong 
requirement by demanding that equilibrium be satisfied in a weaker, integral 
sense: 

f D-erdft + f fdn+ [ T d r 4 = 0. (3.15) 
Jn Jn JTt 

This is called the weak form of the equilibrium equation. Applying the 
Galerkin method, we approximate the solution by functions u in the trial 
functions space, satisfying the essential boundary conditions, and multiply 
Eq. (3.15) by variations v from the test function space: 

f e (v ) -Ee(u)dO+ f « • / d f i + [ v TdTt = 0 . (3.16) 
Jn Jn JTt 

3.3.2 Finite Element Approximation 

Up to now, the only assumption made about the trial and test functions 
was that they are of a form fulfilling Galerkin's orthogonality condition, see 
Eq. (3.13). This condition is assured in finite elements by requiring that 
the base functions satisfy the partition of unity principle. It states that 
the displacement at a material point £ is the sum of contributions from the 
shape functions whose support domain includes the point £. The concept 
can be expressed as follows: 
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- The domain is covered by overlapping sub-domains fij. 

- Each sub-domain fij is the support of a shape function iVj. 

- iVj 7̂  0 only within its support domain: £ £ fij. 

- The shape functions fij verify: 

In F E M , the domain f2 is broken up into individual elements, on which 
the displacement field is approximated by base functions called the shape 
functions with a support domain (i.e. the domain where the shape func­
tions have a non-zero value) consisting of the elements sharing the node 
to which the shape function belongs. The F E M approximation uh of the 
displacements is expressed for any displacement component as: 

I 
uh(x) = J^« i JV i (x) J (3.17) 

i=i 

where Ui are the nodal values of the displacement component and iV, are 
the shape functions. Note that the derivative of the displacement w.r.t. to 
a coordinate direction Xj is then 

Expressing the trial and test functions in Eq. (3.16) in terms of the F E M 
shape functions, we obtain: 

0 T / B T E B dfl U + 0 T / N T f dn + @T [NTT d r = 0, (3.19) 
Jn Jn Jr 

where B is the matrix of shape function derivatives and U is a vector of 
nodal displacements. Invoking the arbitrariness of the variations, the nodal 
displacements 0 of the test functions disappear from the equations. Intro­
ducing the following notation: 

Stiffsness matrix : K = / B T E B df2, 
Jn 

Body force vector : F s = / N T f d f 2 , 

Traction force vector : F* = / N T T d r 
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we arrive at the familiar static finite element equation: 

K U = F s + F* . (3.20) 

Note that due to the support domain of the shape functions being limited to 
the elements surrounding the given node, the stiffness matrix K is banded, 
provided that an appropriate node numbering is used. 

3.4 The Extended Finite Element Method 

Researchers realised that next to the finite element shape functions, there 
were other ways to approximate the displacements that conform to the parti­
tion of unity concept and that may indeed be more advantageous for certain 
problems involving evolving discontinuities such as cracks and interfaces. 

The earliest numerical method that was not based on element-wise ap­
proximation was the so called smooth particle hydrodynamics [35], which 
is best suited for modelling the interaction of a large number of particles. 
A field approximation method that has been successfully applied in solid 
mechanics is the moving least squares (MLS) approximation proposed by 
Lancaster & Salkauskas [47]. Nayroles et al. [65] were the first to employ 
M L S in a Galerkin method. The approach was popularised under the name 
of Element Free Galerkin Method (EFGM) or "meshless" method by Be-
lytschko et al. [9]. The meshless methods are discussed in Section 3.5. 

Of interest here is another approach to approximate the displacement 
proposed by Moes et al. [61]. Basing themselves on the partition of unity 
finite element method put forward by Melenk & Babuska [4], they enriched 
the finite element approximation space locally with problem-specific shape 
functions. 

3.4.1 X F E M Equations 

X F E M is an extension of the finite element method and as such, it is derived 
in much the same way by the Galerkin's method, see Section 3.2.4. Thus, 
we can take also here Eq. (3.16) as the point of departure. The difference 
is that we substitute for displacements into the equation the displacements 
approximated by functions corresponding to the known shape of the dis­
placement field. In the case of a crack in a linear-elastic 2D body under 
plane strain or plane stress, the approximation reads: 

m nj nK / 4 \ 
u h (x) = ^ ^ ( x ) + ^ 6 J ^ ( x ) ^ ( x ) + ^ A T f c ( x ) ^ c i F z ( x ) , (3.21) 

i = l j=l k=l \l=l / 
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Figure 3.1: Crack tip enrichment function r sin ö 

where Ui are the classical finite element nodal displacements, bj and are 
additional nodal parameters related to the enriching shape functions, nj 
and HK are the sets of enriched nodes along the crack and around the crack 
tip, respectively, H(x) is a jump function of the discontinuity enrichment 
having the value 1 "above" and -1 "below" the crack, and there are four 
crack tip enrichment functions used, defined as: 

{Fi(r,9)} 'r cos • 'r sin • IT sm V sin • IT sm V cos • (3.22) 

where (r, 9) are the local polar coordinates at the crack tip. The functions in 
Eq. (3.22) span the crack-tip displacement field. Note that by multiplying 
the enrichment functions H(x) and Fi(r,9) with the finite element shape 
functions in Eq. 3.21, the enrichment is effectively localised to the region 
around the crack; at the same time, the partition of unity is enforced. 

3.4.2 Integration and Solution 

Note that the jump function H(x) and the tip-enrichment function y 7^ sin | 
are discontinuous across the crack, while the remaining functions in F[(r, 9) 
are not smooth across the crack. But the Gauss integration routinely used 
in finite element solutions only performs well with continuous and smooth 
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Figure 3.2: Generalised Heaviside function H(x) used for enrichment along 
the crack 

functions. Therefore, each element intersected by a crack must be subdi­
vided into sub-triangles as shown in Fig. 3.3, except for cases where the 
area of the parent element cut off by the crack is negligibly small. Note 
that such partitioning is for integration purposes only and no new nodes 
or elements are created, as the displacements are still interpolated over the 
parent elements. 

In a static analysis, the variational calculus on weak form yields the 
familiar finite element equations K u = f, in which appear the additional 
nodal degrees of freedom due to the enrichment. In particular, the enriched 
element contributions to the stiffness matrix K and the external force vector 
f are: 

where b and c denote the enrichment degrees of freedom, cf. Eq. 3.21, and 
the sub-matrices k^ appearing in Eq. 3.23 are: 

(3.23) 

(3.24) 

(3.25) 
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In Eq. 3.25 above, E is the elasticity matrix and B " , B^ , and B? are the 
matrices of shape function derivatives given by: 

B " 

B 

B -

B^ 

N 0 
0 iV, 

Ni,y N h 

(NiH)jX 0 

0 (NiH) 

(NiH)iy (NiH) 

[Bf B f B f B f ] , 

0 (Ntf) (I = 1,2,3,4) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

While the part of the stiffness matrix constructed using Eq. (3.26) remains 
invariant throughout the crack growth analysis, new enrichment degrees of 
freedom and/or integration points are added to the remaining parts of K 
whenever the crack advances. Therefore, K has to be re-factorised each 
time. 

3.5 Meshless Methods 

Meshless methods were the first among the numerical methods success­
fully applied to evolving boundary value problems which the finite element 
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method does not treat very efficiently due to a need for remeshing. The 
pioneering works on meshless methods were cited in Section 3.4. A rather 
comprehensive treatise of meshless methods can be found in a monograph 
by G.-R. L iu [52]. A good review of meshless methods can be found in 
Belytschko et al. [8]. 

In meshless methods, displacement approximation is constructed from 
values at discrete nodes. However, a background mesh is still usually used 
to evaluate the underlying integrals. But the discontinuities can stretch 
arbitrarily among the nodes. 

In this brief presentation of the meshless methods, we will focus on the 
Element Free Galerkin Method (EFGM) [9] using the moving least squares 
(MLS) approximation [47]. 

3.5.1 Moving Least Squares Approximation 

Similarly as in the case of the extended finite element method, the main 
difference in the formulation of the E F G M as compared to F E M is in the 
method of approximation of the displacement field. 

Let us come back to the finite element approximation. The support 
domain of a finite element shape function is defined as the domain delimited 
by the elements sharing the node to which the shape function belongs. Thus, 
each element is covered by a number of overlapping domains equal to the 
number of the element's nodes. 

In M L S , the discretised domain is also covered by overlapping support 
domains belonging to individual discrete nodes. The value of the displace­
ment field component at any given point is influenced by the values at all 
nodes whose support domain contains the point. To evaluate the integrals 
in Eq. (3.16), we are interested in the values of the M L S shape functions 
and their derivatives at the integration points. 

A complete derivation of the M L S approximation is exposed in Ap­
pendix B.3. It is shown there that the M L S shape functions can be con­
densed to the form 

uh(x) = * / ( £ , x)uj, (3.30) 

much resembling the form finite element approximation and nothing pre­
vents us from using it as the trial and test functions in a Galerkin method. 
In the above equation, £ is the integration point for which the approximation 
is constructed and uj is the nodal value. 
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3.5.2 Treatment of Discontinuities 

It has been said above that in E F G M , cracks can pass arbitrarily among the 
nodes. Let us then briefly look how discontinuities are treated in E F G M . 
A common approach is the visibility method, illustrated in Figure 3.4. 
Figure 3.4 depicts a discontinuity line, E F G M nodes, a point, marked with 

Figure 3.4: Treatment of discontinuities in EFGM. 

a cross, for which the M L S approximation is constructed, and two support 
domains of two distinct nodes. We see that the support domains are cut 
off by the discontinuity by applying the criterion of visibility of the support 
domain points from the respective node. Thus, while the node whose sup­
port domain is delimited by the dashed-line will be taken into consideration 
in constructing the M L S approximation for the point of interest, the node 
of the dotted-line support domain will not. The nodes hidden behind the 
discontinuity have no influence on the field value at the point of interest. 

3.5.3 Note on Computational Effort 

Equations (B.58) and (B.59) give the formulae to construct the shape func­
tion and its derivative, respectively. Remember that in the M L S approxima­
tion, the shape functions need to be constructed anew for each integration 
point. 

This is a key issue for the difference in computational time required for 
the F E M and X F E M methods on the one hand and the E F G M on the other 
hand. In F E M and X F E M , the shape functions are known beforehand, in 
E F G M , they are not and need to be constructed for each of the integra­
tion points. It can be seen from Equations (B.58) and (B.59) that a matrix 
inversion and a number of matrix multiplications are involved in their con­
struction. Notwithstanding the small size of the matrices, this still adds a 



52 CHAPTER 3. SOLUTION METHODS 

significant computational burden. 

3.6 The Finite Element Alternating Method 

A boundary value problem solution method that is applicable to crack 
propagation problems is the analytical-numerical finite element alternat­
ing method ( F E A M ) , used for the multi-site damage problem by Nish-
ioka & Atluri [70], Wang et al.[92], among others. A n example of F E A M 
application in a stochastic crack propagation problem can be found in [66]. 

The algorithm of F E A M alternates iteratively between an F E solution 
for a finite body without cracks, and an analytical solution for stresses in an 
infinite body due to traction on the faces of cracks contained in this body. 
The underlying principle of F E A M is the following concept: by subtracting 
the stresses in the analytical solution from the stresses in the F E solution, 
one obtains the stress field of the finite body with cracks. 

Assuming a linear behaviour: 

T = ApE tFE , ta = AAN T, (3.31) 

where T is the crack face traction, tFE is the stress applied on the boundaries 
of the F E model, ta are the resulting stresses at the locations of the finite 
model boundary, obtained in the analytical solution, and AFE and AAN are 
linear operators. This is illustrated in Fig. 3.5. 

ta 
. A A J A i l 114 ii_A_A_ 

T 
A A I I Ü A A 

K , A 

c) 

Figure 3.5: Constructing the solution for a finite body with cracks from 
solutions for a finite body without cracks, and for stresses in an infinite body 
due to crack face traction. 

The same tractions T are applied on the crack faces both in the analytical 
and the F E solution. The stress on the boundary of the body have to be 
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equal to the applied stresses tQ. The stress tpE for which tQ = tFE — ta can 
be calculated by iteration. The iteration step is broken into the F E and the 
analytical solution: 

T1 = KpEto, 
ta = KANT1 = tr , 

Ti+1 = KFEtFE = KFE (t0 + i) , (3.32) 

where i denotes the current iteration step and t\ the residual stress or the 
difference between tQ and tFE — ta, which approaches zero with the iteration 
and which occurs due to the crack face traction: t\ = tFE — t0 = tl

a. It is seen 
in Eq. 3.32 that the iteration takes the form of a Neumann series expansion, 
although other methods, such as relaxation methods, would certainly also 
apply here. At k iterations, t^ will be small enough to be neglected and the 
stresses on the finite body boundary will be ^ tFE = to + ^2 tl

a. 

3.6.1 Analytical Solution for Embedded Straight Cracks 

The analytical solution for F E A M used in this paper is based on Muskhel-
ishvili's [62] solution for stresses acting on a straight cut in an elastic plane. 
A solution for a single crack is used together with superposition of traction 
to construct the solution for n cracks. 

The stresses are obtained from a complex potential function, which in­
volves an improper integral evaluated along the crack path. Wang et al. [92] 
presented an explicit solution to this integral, approximating the distribu­
tion of the crack face traction by a sum of piecewise constant and piecewise 
linear base functions. This solution was implemented also for the purposes 
of the the present paper. 

The tractions Tj on the face of a particular crack j give rise to stresses 
also at the locations of an other crack i. The residual stresses T j i r = AANJTJ 
have to be removed. The stress field is determined by linear operators, hence 
by means of influence coefficients one can find a distribution of stresses X 
such that on each crack face this stress X and the residual stress due to 
traction on other crack faces add up to the crack face traction T of the F E 
solution (see also [92]). 

3.7 Stress Intensity Factor Calculation 

The stress intensity factor is the magnitude factor of first term of the crack 
tip stress field expansion, see Section 2.3.6. As such, it characterises much 
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of the properties of the crack tip stress filed. The stress intensity factor 
is therefore the variable that is most often used to predict crack growth 
velocity and direction. 

When a numerical mechanical model is used, we need only a few char­
acteristic values to provide the connection between the numerical model of 
the current crack configuration and the crack propagation simulation model. 
The stress intensity facor is a suitable characteristic to build this bridge. 

It is obvious that a reliable and accurate method of computation of the 
stress intensity factor is central to any crack propagation approach using 
a numerical mechanical model. A number of methods to evaluate stress 
intensity factors and strain energy release rates from numerical results have 
been proposed in the literature ([63], [81], [41], [69], [79]). We will briefly 
review a few of them in this section. 

3.7.1 Stress and Displacement Fitt ing 

A method that is eminent when looking to find the SIF is fitting the SIF as 
a parameter of the theoretical stress distribution from the numerical results. 
The stress data in planes perpendicular to the crack front are compared with 
William's [97] 2D solution, which is in stresses. One only needs to choose 
the interval in terms of distance from the crack tip, in which the fitting to 
the numerical data is performed, such that this region is SIF dominated and 
that the numerical errors in the vicinity of the crack tip are avoided. Note 
that the resulting SIF depends to some extent on the choice of such interval. 

SIF can also be fitted from the displacements obtained from a numerical 
solution. In this case, however, one needs to assume either plane strain or 
plane stress to relate the displacements to the stress solution of [97]. A 
method employed by the post-processing routines of some F E M packages 
(e.g. [86]) is based on fitting SIF from the displacements of three points 
on the crack face. Ingraffea & Manu [41] used the property of quarter-
point elements [5] that the displacements on the element behave as ^J~p. 
They expressed the crack opening displacement in terms of the quarter-
point element shape functions and compared the leading order terms with 
the theoretical formula for displacements under plane strain or plane stress. 
The SIF can thus be obtained as a function of the quarter-point element 
nodal displacements only. 
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3.7.2 Global Energy Approach 

In the well-known global energy approach, the strain energy release rate G 
(and corresponding SIF) may be obtained by performing two analyses with 
the original crack length and a crack length grown by a small amount. The 
strain energy is in such case obtained from the work of the loads acting 
on the displacements at the corresponding load action points. The strain 
energy release rate G then represents a global quantity, giving no indication 
of its variation along the crack front. 

3.7.3 Local Energy Approach 

One is tempted to adopt an analogy to 2D also here and try to use the 
J-integral on contours lying in successive planes perpendicular to the crack 
face. However, when this was attempted and an integration path distant 
enough from the crack front was used to avoid high solution gradients, the 
J-integral showed no significant variation along the crack front of energy 
flow to the crack tip region. This suggests significant 3D effects in the 
corner region. 

More rigorous domain integral formulations for three dimensions were 
proposed by Nikishkov & Atluri [69] and Wen et al. [93]. 

Another approach to calculate strain energy release rate G is Irwin's 
crack closure integral. The concept is based on the idea the energy absorbed 
by fracturing over a small length is equal to the work necessary for closing 
the crack again by the same length. Rybicki & Kanninen [79] modified 
the method by considering the stresses in in front of the crack front and the 
displacements behind the crack front, avoiding thus the need to perform two 
numerical analyses. It was shown in [79] that the accuracy of this modified 
crack closure integral (MCCI) method is good. In the F E M formulation, 
M C C I calculates with nodal forces, obtained from stresses using the element 
shape functions. Implementations of M C C I for specific element types were 
then developed, see e.g. Ramamurthy et al. [76] and Narayana et al. [63]. 
Singh [81] proposed a M C C I method independent of the numerical method 
by which the stresses and displacements were obtained. 

3.7.4 The Interaction Integral 

A method of calculation of SIF that is particularly well adapted for finite 
element post-processing is the method of the interaction integral [100], which 
is equivalent to SIF calculation using the independently developed "G-6>" 
method [59]. 
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The well known Rice's contour integral is defined as: 

dm. 
J Will — Cijllj 

Ox dr. (3.33) 

Its value is related to the Mode I and Mode II stress intensity factors: 

K2 K2 

j = 4 L + £ y i , (3.34) E ' 

where 

E 
E for plane stress 

for plane strain 

with E being the Young's modulus and v the Poisson's ratio. 
Two states of the cracked body considered: 

the actual state (1): 

an auxiliary state (2): 

( i ) ( i ) ( i ) 4 ' Hi ' ui 

a{2) e(2) u(2) 

such that u~f\x,y) = vf?\x,—y) and a^\x,y) = a^\x,—y), i.e. asymp­

totic Mode I field is chosen such that K (2) 
1 - 1 and KP = 0. The J-integral 

(3.35) 

for the sum of the two states is 

j ( l + 2 ) = j ( l ) + j ( 2 ) + j ( l + 2 ) 
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where / ( 1 + 2 ) is the interaction integral 

rijdT (3.36) 

and VF( 1 + 2 ) is the interaction strain energy 

(3.37) 

Multiplying the integrand in Eq. (3.36) by a weighting function q that equals 
a unity on the inner integration contour and vanishes on the outer integration 
contour (cf. Fig. 3.6), and by virtue of the divergence theorem, the contour 
integral is converted to an area integral: 

Wi th the state 2 chosen as the asymptotic field for Mode I, we have: 

Kjj may be calculated in an analogical way by choosing the state 2 to be 
an asymptotic field for Mode II. 

By conveniently choosing the function q, the integration area can be 
made to coincide with a band of elements forming a ring around the crack 
tip - see Fig. 3.6. 

3.7.5 SIF in the Finite Element Alternating Method 

In the Finite Element Alternating Method outlined in Section 3.6, the stress 
intensity factor comes directly from the analytical part of the solution. Thus, 
no finite element post processing is necessary and the accuracy of the cal­
culated SIF is very good. 

3.8 Conclusions 

In this Chapter, we have reviewed several numerical methods that have 
been applied in the analysis of fracture mechanics problems. The discussion 

(3.38) 

(3.39) 
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F E M X F E M Meshless F E A M 
geometry remeshing, au­ base function reconstruction through 
update tomated algo­ enrichment, of approxima­ analytical 

rithms exist automated tion, automated model 
general yes yes yes no 
geometry 
compu­ high in additional high in recon­ iterations 
tational remeshing D O F struction of ap­
effort proximation 
stability, mesh depen­ good good good 
accuracy dent 

Table 3.1: Summary of important features of the finite element (FEM), 
extended finite element (XFEM), meshless and finite element alternating 
method (FEAM). 

has revealed some of the advantages and disadvantages of the individual 
methods. Table 3.1 attempts to summarise the features and the pros and 
cons of the methods in the view of crack propagation modelling applications. 

The important properties for crack propagation modelling of the indi­
vidual methods follow from the strategy that each method uses to track 
the geometry of the evolving crack. The finite element method relies on 
remeshing, while the remaining methods reviewed do not. Remeshing intro­
duces numerical noise, which is the cause of the deficiency of F E M in terms 
of stability of results. Though highly performing remeshing algorithms are 
nowadays available, they are available only as a part of expensive software 
systems and the remeshing process consumes a significant computer time. 

On the contrary, the X F E M and meshless methods liberate the analyst 
from the remeshing work. Geometry update to follow the crack is carried 
out through enrichment of the base function space in the case of X F E M and 
through reconstruction of the meshless approximation of the displacement 
field in the case of the meshless method. In both cases, these procedures are 
usually integrated in the overall analysis algorithm. 

While enrichment increases the number of D O F and thus the size of the 
matrix to be factorised every time the crack advances, reconstruction of the 
field approximation is by far more costly in terms of computer time. This 
represents an advantage of X F E M over the meshless methods. 

A significant drawback of the finite element alternating method is that 
the analytical solution must be known for a crack with an arbitrary shape 
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and arbitrary crack face loading. This makes an automation of the method 
difficult, if it should be capable of application to arbitrary geometries. 
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Chapter 4 

Reliability Analysis 

4.1 Introduction 

Due to uncertainties in the inputs, which include material, geometrical and 
loading uncertainties, the response of structural models is also uncertain. 
The scatter in the input variables is conveniently characterised by statis­
tical modelling. The available information on the statistical dispersion is 
summarised by means of random variables. And where spatial variability is 
of concern, random fields can be used. In this thesis, the attention is limited 
to reliability models involving random variables only. 

Given the statistical models of the input variables, the objective of prob­
abilistic analysis is to determine the statistics of the response (sensitivity 
analysis) and/or the probability of failure (reliability analysis). The meth­
ods to achieve this, including Monte Carlo simulation, advanced simulation 
techniques and reliability approximation methods, are described in the sec­
tions to follow. 

Note that there is also an uncertainty about the accuracy of the models 
used. However, this concerns the question how well does the model represent 
the actual physics of the problem. Most often, one can expect a systematic 
bias or limited applicability of the model rather than a randomness in its 
performance. 

4.2 Probability Transformation 

A classical approach in reliability analysis is to transform the problem from 
the physical domain to the so called standard normal space, in which uncor­
rected Gaussian variables with zero mean and unit variance U correspond 
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to the variables A having their actual distributions in the physical space. 
The transformation is termed the probability transformation because the 

corresponding pairs of values of the variables x <-> u in the transformation 
have the same probabilities of occurrence. 

As we will see in Section 4.3, this transformation is indispensable for 
the reliability approximation methods. It will also prove useful in sampling 
from correlated distributions. 

4.2.1 Independent Variables 

When the variables are independent, each variable A j can be transformed 
independently of the remaining variables. We invoke the principle of equal 
probabilities in the physical and the standard normal space Fx^Xi) = $(ttj), 
where Fxt is the cumulative density function of the variable A j and $ is the 
standard normal cumulative density function. The transformation is then: 

xiZui = Q-1(Fxi(xi)) • (4.1) 

When the variable A j is normal, the transformation is simply: 

ut = X-l^, (4.2) 

with and oxi the mean and the standard deviation of A j , respectively. 
For lognormal A j , the transformation becomes: 

I n A j - A 
Ui = with (, H l + V ) ,A = l n M X i - l c 2 - (4-3) 2 

If the inverse of Fxt exists, the inverse transformation back to the physical 
space reads: 

m T ^ X i = F£ (*(ui)) • (4.4) 

From the principle of equal probabilities, it follows that the origin of the 
normal space corresponds to the joint median of the physical variables, not 
to their mean. 

4.2.2 Nataf Transformation 

Various transformations have been proposed and successfully applied for the 
probability transformation of correlated variables. The reader is referred to 
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[49] for a comprehensive review of the various methods. The presentation 
here will be limited to the Nataf transformation. 

The Nataf transformation, proposed in [23], requires the knowledge of 
only the means pXi and the standard deviations aXi of the marginal distri­
butions, and of the correlation matrix pij. 

The authors [23] made use a transformation originally developed by 
Nataf [64]. The joint probability density of two physical-space variables 
X j and Xj with a correlation coefficient p^ can be expressed in terms of two 
joint-normally distributed variables Ui and Uj with a correlation coefficient 
Po,ij-

JXi,Xj {xi, XJ) = (t>2 [Ui, Uj,p0,ij) p , p , , (4.5) 
(p [Ui) (p \Uj) 

where 4>2 (ui,iij, Po,ij) is a bivariate normal probability density. The corre­
lation coefficient po,ij must be found such that 

f°° f°° Xj - pXi Xj - PXj A fXi (Xj) fXj (Xj) 
Pij= / -fo(ui,Uj,p0,ij) • (4-6) 

J . o o J . o o aXi 0-XJ (f>[Ui)(t>[Uj) 

For any couple of variables Xi and Xj, the Nataf-modified correlation coeffi­
cient po^j can be found numerically by a minimisation procedure, p^ can be 
used as the point of departure, for which the integral (4.6) will yield a value 
~p~ij. The optimisation then consists in finding the minimum of the absolute 
value of the error \pij — ~Pi~j\. 

The components of the full Nataf-modified correlation matrix Ro are 
the one-to-one correlation coefficients obtained from Eq. (4.6). The Nataf 
transformation reads: 

^ T o , ^ " 1 (FXj(Xj)) , (4.7) 

where TQ is the inverse of the lower triangular matrix of Cholesky decom­
position Lo of the Nataf-modified correlation matrix Ro. The cases where 
the fictive correlation matrix Ro is not positive definite are rather rare in 
physical problems [49] and the decomposition can thus usually be performed. 

In summary, the transformation of the variables is performed in the 
following steps: 

- compute the modified the correlation matrix R Q using Eq. (4.6): 

- compute Cholesky decomposition of R Q : R Q = LQLQ] 
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- transform the variables Xi to centred, unit-variance, but correlated 
variables Ui by Eq. (4.1): 

- de-correlate the variables by applying the following formula: 

U = r 0 U . (4.8) 

4.2.3 Sampling from Correlated Distributions 

When performing a Monte Carlo Simulation, in which the random variables 
are correlated, it is necessary to sample from a joint distribution function, 
or in the Nataf sense, from correlated distributions. 

While alternative approaches exist, it is possible to use the Nataf trans­
formation described in Sec. 4.2.2. We sample an uncorrelated vector U in 
the standard normal space and transform it to a correlated, centred and 
reduced (unit-variance) vector U: 

U = L 0 U . (4.9) 

The variables Xi are obtained using Eq. (4.4): 

xi = F~i mui)). 

4.3 Approximation Methods 

The state of failure of a structure is defined through a deterministic limit 
state function G. A n evaluation of G may involve a possibly computationally 
demanding numerical analysis. G is a function of a particular realisation of 
the problem random variables x. By convention, a negative or zero value of 
G defines the failure domain: 

G(x) =G(xl,x2,...,xn) < 0. (4.10) 

Each combination of the random variables, i.e. each point in the n-dimen-
sional space with the coordinates x\, X2, • • •, xn, is assigned a probability 
density. The probability of failure is then given by the n-dimensional integral 

pf = P\X.\G(X) <0]= f / x ( x ) dx , (4.11) 
JG(x)<0 

where / x ( x ) is the joint probability density function of the variables X . A n 
example of the joint probability density function with an indication of the 
failure domain Df is shown in Figure 4.1. 
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f(x\,x2) 

0 

Figure 4.1: Probability mass in the failure domain 

A closed form integration of Eq. (4.11) is possible only in exceptional 
cases. In most cases, the integral in Eq. (4.11) has to be resolved by means 
of numerical methods such as the Monte Carlo Simulation or through the 
reliability approximation methods, which are the subject of this Section. 

In the standard normal space, the First Order Reliability Method 
(FORM) and Second Order Reliability Method (SORM) approximate the 
limit state function G by a linear or quadratic function, respectively, at the 
so called design point and provide an estimation of the integral (4.11). A 
linearisation (in F O R M ) of G(x) about the design point will be denoted 
G(x) and is illustrated in Figure 4.2. 

If all the variables were normal, the integral would be calculated exactly 
for a linear limit state function. In other cases, the basic variables X need to 
be transformed [38] to the standard normal space of uncorrelated Gaussian 
variables, see Section 4.2. 

The design point x* is the point on the limit state function having the 
highest probability density in the standard normal space 

As a consequence, in the standard normal space, the transformed coordinates 
of the design point u* give the point on the transformed limit state function 
G (u(x)) = 0 that is the closest to the origin of the standard normal space. 
This distance is a measure of reliability and is termed the Hasofer-Lind 
reliability index (5HL [38]. 

x* : x £ x : G(x) = 0 A / x ( x * ) = max ( / x (x ) ) . (4.12) 
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U2 

ä ( u ) = o 
S2 

g(u) = 0 

Figure 4.2: Limit state function linearisation in FORM 

The fact that u* is the limit state function point lying closest to the 
origin means that it can be found through constrained minimisation: 

Having found u*, the F O R M approximation of the probability of failure 
is easily determined using the distribution function $ of standard normal 
distribution 

A very instructive overview of optimisation algorithms suitable for the 
present problem can be found in [49]. A n essential procedure on which 
these methods rely is the calculation of the response function derivatives, 
or sensitivities. The following Section 4.4 briefly discusses the respective 
computational approaches. 

4.4 Sensitivity of the Response Function 

In computational reliability analysis by the approximation methods, the 
calculation of the sensitivities of the response is indeed critical. On the one 
hand, the sensitivities are required to be computed with high accuracy. And 
on the other hand, the computational time spent in their calculation may 
be excessively high. Methods allowing for an accurate and fast computation 
of sensitivities are therefore of a great value. 

u* = arg min { u|| |G(u(x)) = 0} (4.13) 

(4.14) 
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This is also one of the concerns of this thesis: to improve the computa­
tional efficiency, accuracy and stability in the calculation of the sensitivities 
of the life under fatigue crack propagation governed by an empirical crack 
growth law. 

In principle, the sensitivity of the response to a certain variable or pa­
rameter can be calculated in two ways. The first class of methods are various 
finite difference methods (FDM), such as the forward finite difference (FFD) 
method or the central difference method, which differ from each other by 
their respective level of accuracy and computational performance. 

In the direct differentiation method, the response derivatives are not ob­
tained numerically as in F D M , but by differentiating the underlying equa­
tions. 

4.4.1 Direct Differentiation Method 

This section discusses briefly in Subsection 4.4.1 the direct differentiation 
method. The details would encumber the continuity of the presentation. 
But the reader is encouraged to read Appendix C or the original reference 
[39]. 

When the mechanical response is obtained using a finite element model, 
many of the response sensitivities can be calculated together with the re­
sponse itself by implementing in the finite element code the Direct Differen­
tiation Method (DDM). 

The bases of D D M were laid down in [3]. Its extension to geometrically 
nonlinear problems is presented in [53]. A very instructive and complete 
presentation of D D M and its extension to material nonlinearities can be 
found in [39]. In Appending C, the techniques of D D M are set out in a rather 
detailed manner, but still as just a specialisation of the formulae found e.g. in 
[39] for the static linear-elastic case. This is, however, considered sufficient 
for expounding the ideas of the method and the reader is referred for further 
details to the cited literature. 

For purposes of reliability analysis and optimisation of problems involv­
ing crack propagation, one is interested in the sensitivity of the fatigue prop­
agation life NR to the variables involved. The direct differentiation method 
was developed as a method to calculate sensitivity of finite element results 
to finite element model loads, geometry and material parameters. 

D D M can for example be employed to calculate the sensitivity of the 
current stress intensity factor at the crack tip to the current crack length. 
However, the sensitivity of the fatigue propagation life to e.g. a previous 
crack length can only be determined based on the crack growth law, which 



(i.N CHAPTER 4. RELIABILITY ANALYSIS 

governs the crack propagation and which is completely external to any finite 
element procedures. 

In Sections 7.4.1 through 7.4.4, equations for the sensitivities of the fa­
tigue propagation life to certain variables will be derived. By differentiating 
the fatigue life integral formula, and sometimes taking certain simplifying 
assumptions, straightforward sensitivity equations will be derived. In some 
cases, such as the case of sensitivity to the initial crack length, the assump­
tions taken that will lead to particularly simple sensitivity formulas. This 
may be regarded as a specific contribution of this thesis. 

4.5 Sensitivity of the Reliability Index 

Within the reliability approximation method, the sensitivities of the relia­
bility index to each of the random variables, to their distribution parameters 
and to the parameters of the limit state function can be obtained in a rather 
straightforward way. The presentation here is limited to the sensitivity to 
the random variables. Sensitivities to the above mentioned parameters are 
discussed e.g. in [49]. 

4.5.1 Sensitivity in the Standard Normal Space 

The F O R M the limit state function is linearised about the design point: 

where we used the fact that G(u*) = 0 and scaled the limit state function 
by the norm of its gradient VG(u*) , calculated at the design point. Note 
that a are the direction cosines of the gradient vector VG. 

From the above Eq. (4.15) 

G(u) G(u*) + V G ( u * ) T ( u - u * ) 

(4.15) 

PHL = - a T u => 
df3HL (4.16) = —Qt . 

u* 

This shows that the direction cosines a express the sensitivities of the relia­
bility index (3HL to the individual variables u in the standard-normal space. 
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4.5.2 Sensitivity to the Physical Variables 

When the variables x are statistically independent, the direction cosines 
in the standard normal space express correctly the sensitivity of (3HL also 
to the corresponding physical variables. However, when x are dependent, 
the importance of the variables in the physical space differs from a due 
to the (nonlinear) probability transformation between the physical and the 
standard normal space. The sensitivities to the physical variables can be 
obtained as follows (based on [22] and [49]). 

The probability transformation is linearised at at the design point 

u « u * + J u , x ( x - x * ) (4.17) 

where J u x is the Jacobian of the probability transformation at the design 
point 

02i(x) 
J u,: dxj 

(4.18) 
X* 

Separating out x, Eq. (4.17) can be rewritten as 

X ~ J u , x ( u - O + X* 
or x = J ~ x ( u - u*) + x* . (4.19) 

The variables x* for which the equality sign holds in Eq. (4.19) differ some­
what from x. But more importantly, they are given by a linear function of 
u and are therefore joint normally distributed, with the mean vector and 
variance matrix given by 

A*x — x — j u x u 

S = Ju",x (Ju,!c)T • (4-20) 

In terms of these variables x*, the linearised probability transformation 
(4.17) reads: 

u = u* + J u , x ( x - x*) . (4.21) 

Substituting the latter relation into the linearised limit state function (4.15), 
we obtain 

G(u) = o J u , x ( x - x * ) . (4.22) 

The mean and variance of G are 

..TT t - 1 = ~ a J u , x J u , x u * = ßHL 
o> = o T J U i X S J ^ x o = 1. (4.23) 
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The variance of G involves both variances and covariances of x. To isolate 
the contributions from the individual variances, the covariance matrix E is 
decomposed as follows: 

E = a ± a ± + E - a ± a ± , (4.24) 

where er^ is a diagonal matrix of the standard deviations of X . Expanding 
Eq. (4.23) through this decomposition, it comes out that 

O~Q = OiTJU)X(T^(T^Ju x £ * + Q T J u , x (E — ( T ^ d ^ j J ^ x a = 1. (4.25) 

The first member in the above equation is identified as the contribution of 
the individual variables x. The first member itself is no longer equal to 
unity. If we consider not the square term but only cxT

 J U X ( T ^ and normalise 
it, we finally obtain a vector 7 expressing the sensitivities to x: 

7T = "I3"*** . (4.26) 
« u , x " " x l l 

4.6 Monte Carlo Simulation 

A n alternative way to evaluate the probability of failure integral in Eq. (4.11) 
is to use the so called Monte Carlo integration, more often referred to as 
Monte Carlo simulation (MCS). 

Instead of integrating just over the failure domain, in M C S , we integrate 
Eq. (4.11) over the entire domain, but multiply the integrand by an indi­
cator function 7(G(x)) which returns 0 if the integration point is in the 
safe domain (G(x) > 0) and returns 1 if it belongs to the failure domain 
(G(x) < 0): 

P / = j T j ( G ( x ) ) / x ( x ) d x . (4.27) 

It is clear that (4.27) is the expected value of I (G(x)). Thus, from statistics, 

1 N 

P / « ^ M C = ^ E J ( G ( X ) ) • ( 4 - 2 8 ) 
i = l 

where Xj is the i-th of the total of realisations of the random vector x 
sampled from /x(x). 

Since G (X) is a random variable in X , / (G(X)) is also a random variable. 
Considering the sum in Eq. (4.28) and invoking the central limit theorem, 
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it follows that 3MC approaches a normal distribution as N —> oo. The mean 
of 3MC is thus estimated by 

N 1 
W m c = E [3MC] = E >7 E [ J ( G ( X ) )1 = E [ J ( G ( X ) )1 ' ( 4 - 2 9 ) 

i=i 

which is equal to 3MC- By the same token, the variance of JMC is estimated 
by 

N A2 

alMC = E [OMC - MMC)\ = £ ^ v a r [/ (G(X))] = . (4.30) 
i=l 

It is seen that the standard deviation of 3MC is inversely proportional to the 
square root of the number of simulations o~iMC oc and proportional to 
the standard deviation of the indicator function oyMC oc cr^c^x))-

It follows that there are two ways to improve the accuracy of the M C S 
estimate of the integral (4.11): increase the number of simulations, or, more 
efficiently, reduce the variance of I(G(X)). One of the variance reduction 
strategies is the so-called importance sampling technique, discussed briefly 
below. Other techniques have been developed and are described in reliability 
monographes, e.g. [49]. 

4.6.1 Importance Sampling 

A way to reduce variance in / (G(X)) is to limit the simulations to the region 
of interest, which is essentially the region around the design point [13]. This 
is achieved by doing the following manipulation on Eq. (4.27): 

pf = J / ( G ( x ) ) g g / i s ( x ) d x , (4.31) 

where / i s ( x ) is termed the sampling density function. The integral (4.31) 
is now an expectation on / (G(x)) . A n estimate of the probability of 
failure is then 

i=i 

Note that the sampling is now from the sampling density hs (x). The choice 
of hs (x) controls the variance in 3JS • A good choice can significantly reduce 
the variance, while a poor choice may increase it. 
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4.6.2 Latin Hypercube Sampling 

Latin Hypercube Sampling (LHS) is a simulation method that has proven 
effective for problems where only a small number of simulations is compu­
tationally affordable [58]. 

The domain of definition of the marginal distribution of each of the n 
variables is partitioned into iV intervals with equal probability content. A 
representative sample is then chosen from each of the Nn intervals. Simu­
lation is carried out not by sampling from a distribution, but by randomly 
combining the intervals. The resulting samples will show some correlation, 
which is different from the correlation between the variables. A method 
based on simulated annealing has been proposed [90] to introduce the de­
sired correlation. 

A n additional indicator function Wij is introduced that returns 1 if the 
interval j of the random variable i belongs to the random sample, and 0 
otherwise. The estimator for the failure probability than reeds: 

where summation is done over all of the intervals. 

4.6.3 Estimation of a Variable's Importance 

In the approximation methods, the sensitivity of the probability of failure 
to each of the random variables, or in other words the importance of each 
variable, was directly related to the coordinates of the design point. In 
the context of Monte Carlo simulation, such information is in general not 
available. 

However, rough estimates of the variables' importance can be made based 
on correlation between the sampled realisations of a random variable and 
the corresponding values of the limit state function. 

4.7 Conclusions 

In this Chapter, we have reviewed the essentials of basic structural reliability 
methods, which represent the means to work with the uncertainties inherent 
to fatigue crack propagation, the problem in the focus of this thesis. Note 
that there are certain issues that arise in particular in the analysis of crack 
propagation problems. These include: 

(4.33) 
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• accuracy of calculation of the limit state function value and of its 
derivatives, which is key to the convergence of the deign point search 
algotithm, 

• low-probability configurations in Monte Carlo Simulation, 

• heavy computational effort. 

The above issues are discussed in the following Chapter 5, where they are 
addressed together with other challenges faced when analysing complex fa­
tigue crack growth problems. 
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Chapter 5 

Challenges 
Strategies 

and Coping 

5.1 Challenges in Crack Propagation Modell ing 

The phenomenon of propagation of an existing crack can be viewed and ap­
proached from several perspectives, including microstructural, phenomeno-
logical or engineering considerations. In a reliability analysis of crack prop­
agation problems, the life until failure is of interest. The purpose of this 
Chapter is to identify the challenges faced when designing a numerical model 
to calculate this failure life. Where appropriate, various possible approaches 
to deal with these challenges are also discussed. In Section 5.2, the strategies 
to appropriately include the key issues in the modelling will be formulated. 

5.1.1 Scatter in Crack Initiation 

Point of crack initiation 

It was argued in Section 2.2.1 that cracks initiate in material grains favou­
rably oriented for slip and experiencing increased stresses due to notches, 
indents or surface roughness. Then, cracks finding themselves in regions 
with generally higher stresses take on the role of the leading cracks. In an 
ab initio approach, the analysis would depart from local effects, the random 
distribution of which would be discussed more appropriately as a material-
related one. However, considering just the leading cracks, it is reasonable to 
model cracks initiating from known points of major stress concentrations, 
such as notches, corners and holes, and to alter the respective initiation 
point by a random distance to account for the presence of randomly located 
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micro-defects favouring crack initiation. 

Initial crack size 

Except for controlled laboratory tests, the size of an existing macro-crack at 
a given instant is uncertain. Therefore, a probability distribution is consid­
ered for the crack size at the instant when the propagation simulation starts. 
A n alternative approach is sometimes adopted, which consist in considering 
a randomly distributed number of load cycles at which a macro-crack of a 
given size occurs. 

5.1.2 Scatter in Crack Propagation 

The statistical dispersion in crack propagation can be seen to have two 
components: the dispersion in the propagation velocity and the uncertain 
direction of propagation at any given instant. 

Crack growth rate 

The rate or velocity of crack growth depends on multiple factors, among 
which the material properties. It was noted in Section 2.5 that empirical 
crack growth laws constitute a useful model to represent crack propagation, 
whereby the model coefficients can be fitted to actual fatigue test results. 
This approach is adopted also here. 

A possible way to take into account the scatter inherent to crack prop­
agation velocity is to introduce into the crack growth equation a random 
process as suggested by equation 2.32, or to simply "randomise" the crack 
growth law by modelling its parameters as random variables. The crack 
propagation model adopted in this thesis uses the latter approach. 

Let us return to the Paris-Erdogan crack growth law defined in equa­
tion (2.13). Both its parameters C and m are considered to be random 
variables. Their parameters can be estimated from fatigue crack propaga­
tion experiments. 

In the present approach, the scatter and dependence of C and m was 
modelled by considering normally distributed correlated random variables 
InC and m, the statistical parameters of which were established from the 
Virkler data [89]. Taking the exact values of the estimated statistical pa­
rameters, Virkler's results were reproduced with certain accuracy. Section 
6.2 studies also various other statistical models for C and m. It appears 
that the extremely high sensitivity of the calculated failure probability to 
the correlation of InC and m is a weak point of the model as it requires 



5.1. CHALLENGES IN CRACK PROPAGATION MODELLING 79 

extreme precision in the prescribed correlation coefficient as well as in the 
sampling from the correlated distribution. 

When the fatigue life is so much sensitive to the accuracy of the statis­
tical model, the question of accuracy of the mechanical model also arises. 
Reference [14] shows how the correct failure probability can be calculated 
through introducing a random model error with appropriate statistical pa­
rameters. 

But in particular, it shows how the issue of high sensitivity to correlation 
can be circumvented by reformulating the statistical model. The modified 
statistical model had two uncorrelated variables and employed a formula 
derived from the regression analysis. The stringency of using only a single 
random variable and having the other functionally dependent was elegantly 
overcome by considering as the second random variable just the difference 
~inC between InC and the expectation on InC coming from the regresion. 
EinC and m appeared to be uncorrelated and the sensitivity to their corre­
lation of was negligible. 

A combination of this decorrelation of the random variables and the 
model error seems to be the best modelling approach. However, for the 
purposes of this thesis, we will satisfy ourselves with the statistical model 
considering InC and m normally distributed, together with the accurate 
correlation coefficient. We will also renounce on introducing the random 
model error. 

Direction of Crack Propagation 

The direction of crack extension is essentially governed by the surrounding 
stress field; various criteria to choose the crack extension angle have been 
described in Section 2.7. However, as fatigue tests reveal, the actual crack 
path is far from being smooth and the directions of the crack extentions at 
the individual load cycles are seen to have some random component. 

In Section 2.2.1, it was argued that the crack extension direction may 
change due to the effect of microstructural features, the distribution of which 
can be considered random. In addition, the randomness in multi-axial load­
ing also leads to random crack paths. It is useful to recall at this point 
that a crack path in two dimensions is an idealisation and that the actual 
fatigue crack surface will be knurled over its area. Thus, we seek a model 
to describe the observed crack deflection from its 2D path rather than to 
relate the crack path to complicated three-dimensional microstructural fea­
tures. In [54], the crack extension angle was determined by the governing 
deterministic criterion combined with a randomly distributed direction vari-
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able, which had a joint probability density function with the length of the 
crack extension. This corresponds to the expected behaviour that the crack 
deflection over a short distance can be greater. 

On the other hand, in [84], the authors considered a random length of 
crack increment uncorrelated with a random deflection angle at each step of 
crack growth. 

No systematic experimental results are available that would allow for 
estimation of the random crack deflection characteristics and the predictions 
of the above cited models cannot be verified in the light of experimental 
evidence. 

In the present approach, the randomness in crack growth direction is 
neglected and the direction is governed only by fracture mechanics consid­
erations. 

Elastic Material Constants 

Within the framework of linear elastic fracture mechanics, the stress and 
strain field that governs the crack propagation velocity and direction de­
pends on the elastic constants of the material, i.e. on Young's modulus E 
and Poisson's ratio v. Because of inherent material inhomogeneity, the elas­
tic constants may be considered to vary with the position in the material as a 
random field, or may be considered as random variables representing a char­
acteristic value applicable to the whole body. However, it can be reasonably 
assumed that the effect of local stress concentrators is more important than 
the spatial variability of the elastic constants. And when we did not take 
account of the local material inhomogeneities, it would not be consistent to 
consider the less important variability of the elastic constants. 

5.1.3 Complexity and Randomness of the Loading 

In a number of engineering applications, the cyclic loading experienced by 
cracked structures is not only complex, but often includes a random com­
ponent. The complexity is usually accommodated by considering standard 
time records of loading for the application in question and including the 
effect of retardation after overloads in the model (see Section 2.6). This ap­
proach, which corresponds to the industrial practice, was adopted also within 
the analysis procedure proposed in this thesis. Randomness of the loading 
can be conveniently represented by modelling the loading as a stochastic 
process. In this thesis, this is not done, as measured loading data are not 
available to the author. It would be interesting to evaluate the importance 
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of randomness in the loading. The fact that this randomness is neglected in 
the analysis should be kept in mind when interpreting the calculated proba-
blility of failure. On the other hand, the loads can hardly be controlled and 
the importance factor for loading can therefore not serve to the operator as 
a guidance where to direct resorces in orther to improve reliability. 

5.1.4 Remeshing 

A major difficulty in numerical modelling of crack propagation stems from 
the necessity to update the crack geometry. Two major axes of development 
can be identified today. The first one focuses on the remeshing process 
itself. Very powerful remeshing algorithms have now become commercially 
available. 

It is however necessary to note that removing the burden of remeshing 
does not mean that all problems have been solved. Keeping in mind that the 
response of finite element models is mesh dependent, remeshing inevitably 
leads to noise in the calculated response. This has troublesome connotations 
in all applications when response sensitivity is of interest, including relia­
bility analysis. Response derivatives need in many cases to be evaluated by 
finite difference methods. The change in the response is then not only due 
to a perturbation of the geometry, but also due to remeshing noise. 

Numerical noise in the calculation of the life under crack propagation 
often leads to a failure of the design point search procedure to converge. 
Computational accuracies that are quite satisfactory in determin­
istic analysis may prove insufficient in reliability analysis. 

The competing approach goes to the root cause of the difficulty and seeks 
to replace classical remeshing by other techniques. The various techniques 
have been described in Chapter 3. The novelty of the modelling approach 
adopted in this thesis is to combine the Extended Finite Element Meth­
ods with reliability methods to present an efficient approach for stochastic 
analysis of crack propagation with a numerical mechanical model. 

5.1.5 Structural interactions 

Engineering crack propagation problems often involve complex geometries or 
interaction of cracks. Examples include the modelling of wide-spread fatigue 
damage or of crack propagation in aircraft fuselage. For such problems, 
analytical expressions for calculation of fracture parameters are inadequate 
and numerical models of the underlying real structure are required. 

The fundamental concept determining the crack propagation modelling 
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approach adopted in this thesis is that the evolving crack geometries in the 
process of crack propagation are important because the geometries of various 
cracks may influence the velocity of crack growth as well as the severity of 
the accumulated damage in terms of the crack length. These two effects 
have the following consequences: 

- the crack propagation velocity, 

- the critical crack size, and 

- the current direction of crack propagation 

all depend on the path (geometry) of the respective crack itself as well as 
on the size and path of any other cracks. Consequently, crack propagation 
models considering only the size of the leading crack, as presented namely 
in Section 2.8, may be inadequate given the above considerations. 

5.1.6 Accuracy in F O R M 

Mechanical Model Response 

As it has been already noted above, an implementation of a crack prop­
agation model relying on a numerical (finite element based) prediction of 
fracture parameters, namely the stress intensity factors, brings up the is­
sue of numerical accuracy, which is particularly relevant in the context of 
reliability analysis. 

The (in)accuracy of the mechanical model can be assessed at two levels. 
First, there is the question of how truly does the model represent the actual 
physics. The other dimension of model accuracy is important when one 
needs to evaluate the sensitivity of the response. The desirable property of 
the model is that the calculated response correctly and consistently reflects 
small changes in the input parameters, including the geometry. Probably the 
best way to achieve this is to analytically differentiate the equations of the 
numerical model. This approach has been termed the Direct Differentiation 
Method and is outlined in Section 4.4.1. 

However, such direct differentiation may in some cases be rather difficult 
and finite difference methods become the most practical solution. It then 
matters very much that the calculated difference in the response correctly 
translates nothing but the perturbation in the variable with respect to which 
the sensitivity is calculated. Where the response difference contains a signif­
icant portion of numerical noise, convergence of the First Order Reliability 
Method (i.e. the design point search, see Section 4.3) can be lost. 
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Crack Propagation Life Integration 

Another source of inaccuracy, which occurs regardless of whether one uses 
F O R M or Monte Carlo Simulation, is the numerical integration of life under 
fatigue crack propagation from the initial to the critical crack size. The 
crack growth law has the form of a differential equation. To calculate the 
fatigue crack propagation life, the equation is inverted and integrated, with 
the integration limits being the initial and the final crack length. Two factors 
come into play as concerns the integration accuracy: 

• Integration step size. The integrand of the propagation life integral 
depends on the stress intensity factor (SIF), which is calculated in the 
present approach by a numerical mechanical model. For practical rea­
sons, SIF is evaluated only at discrete increments of the crack length. 
Obviously, there is a trade off between the accuracy and the compu­
tational effort, which both come hand in hand with a finer integration 
step size. Not only does a small step size require a higher number of 
SIF computations, but it usually also necessitates a finer mesh. 

• Integration method. 

— A quadrature rule is the standard numerical integration method. 
In crack propagation context, a quadrature rule for non-uniform 
interval lengths must be used. It can be easily developed e.g. 
based on Lagrange polynomials. As the integrated curve of life 
spent in propagating the crack over a unit length is highly non­
linear, only higher order quadratures can perform successfully. 

— Analytical integration of a curve fitted to the data can prove ad­
vantageous, in particular when the numerical method used to 
evaluate SIF is unstable in the prediction of the SIF. Any outlier 
points on the plot of the SIF versus the crack length can result 
in gross errors in quadrature based integration. However, fitting 
a conveniently chosen function to this curve and integrating the 
function analytically has proven to be a stable and accurate in­
tegration method, also in cases of rather smooth SIF curves. 

5.1.7 Low-probability Configurations in Monte Carlo Simu­
lation 

Notwithstanding that Monte Carlo Simulation is known to be a rather robust 
probability integration method, it is also known to have some drawbacks. 
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Variance reduction methods and Latin Hypercube Sampling have done away 
with the extremely high numbers of simulations needed in reliability analysis 
of low-probability failure scenarios. 

A less often discussed problem of simulation methods is that they require 
the underlying mechanical model to calculate the response at extremely 
low-probability realisations of the random variables. Note that with the 
reliability approximation methods, the response is generally evaluated in 
the region surrounding the mean and the most probable failure point. 

Numerical mechanical models are commonly built with the usual geomet­
rical configurations in mind. With common values of the variables involved, 
the mechanical models behave as expected and the specific mode of fail­
ure that one wants to analyse then also occurs. Such models may however 
fail to compute the response for low-probability geometries, mainly because 
a different mode of failure occurs that the one considered in the analysis. 
The mechanical model may then fail to compute the response for numeri­
cal reasons. Examples may include cracks growing in unexpected directions, 
arriving at cold spots where their propagation is halted, intersecting or merg­
ing with other cracks, or growing through the entire ligament without the 
failure condition (e.g. fracture toughness or overall plastic collapse of the 
structure) being reached. To be used in Monte Carlo Simulation, the model 
must be developed such as to provide a correct response in all such geomet­
rical configurations. In some cases, such robust models may be difficult to 
construct. And what is also important to note is that we then start solving 
a different reliability problem than the one with which we started. 

5.1.8 Heavy computational effort 

Computational reliability analysis in general, and Monte Carlo Simulation 
in particular, require a large number of evaluations of the structural re­
sponse. With crack propagation simulation, the situation is yet more ag­
gravated: multiple numerical mechanical model responses (SIF calculations) 
are needed to evaluate a single response in terms of the life under fatigue 
crack propagation that is of interest. This adds up to an extraordinary 
computational effort that has so far discouraged many researchers and engi­
neers from pursuing the path of stochastic crack propagation analysis using 
a numerical mechanical model. 
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5.2 Coping Strategies and Objectives 

In the above, we have discussed the difficulties and challenges of the reliabil­
ity analysis of crack propagation problems. Some approaches to face these 
challenges were also outlined. This section highlights the most important 
strategies used in this thesis to develop an efficient and robust reliability tool 
for crack propagation problems, being aware of the issues identified above. 

The proposed method can be seen as a particular development of the 
fundamental concept of integration of mechanical and probabilistic 
models, which was put forward already in 1970's, see e.g. [50]. As a matter 
of fact, extremely high computational effort has been preventing researchers 
and in particular the engineers in the industry to exploit numerical mechan­
ical models in a stochastic analysis of crack propagation problems. This 
thesis hopefully shows that by choosing appropriate numerical methods and 
computational techniques, a feasible procedure can be developed to leverage 
the benefits of both a numerical mechanical model offering clear physical 
interpretations, and of the use of the available statistical information, in 
order to provide a basis for better informed and better grounded decisions 
on real industrial problems involving propagation. 

5.2.1 Reliability Analysis 

When analysing crack propagation, one is confronted with an extraordinary 
amount of dispersion in crack initiation times and crack propagation rates, 
even under well controlled conditions. At the same time, experimental evi­
dence has show that this scatter is very well described by statistical models. 

With increasing level of randomness, it becomes increasingly less justified 
to use deterministic models, even if these have a relation to the statistics of 
the random variables involved, e.g. through partial safety factors. 

Stochastic analysis makes it possible to rigorously account for the dis­
persion in the underlying variables and, using the mechanical model, to 
learn about the actual dispersion of the response, the true probability of 
failure and the importance of each of the variables. Compared to taking 
a large safety factor, such richer information allows the engineer to better 
understand the problem and make better informed decisions. 

5.2.2 Equivalent Monotonous Spectrum Loading 

The length of life under fatigue crack propagation is heavily influenced by 
specific features of the time history of the applied load. More than on the 
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statistical properties of the loading process, the fatigue life depends on the 
sequence of peaks and valleys in the load history. 

Fatigue life evaluation therefore cannot make use of statistical or spec­
tral methods and has to work in the time domain. Simple models have 
been developed to account for the effects of overloads and underloads. A 
method that has gained much acceptance in the aeronautical industry is 
the P R E F F A S method, [21] which is remarkable for its ability to reproduce 
actual fatigue test results. P R E F F A S is used also in the developments of 
this thesis. 

5.2.3 Numerical Methods without Remeshing 

A computational method that is to accommodate arbitrary geometries in­
volving multiple cracks cannot do without a numerical mechanical model. A 
vast majority of the computational time in the reliability analysis of crack 
propagation problems using a numerical mechanical model is spent in the 
calculation of the structural response upon all updates of the crack geome­
try. The efficiency of this computation is thus of paramount importance. In 
addition, the accuracy of the calculated response affects the stability of the 
fatigue life calculation. 

The computation of the static structural response (e.g. of stress intensity 
factors) comprises the following major operations: 

• geometry update, 

• assembling of the stiffness matrix, 

• matrix factorisation, 

• post-processing. 

A factorisation of the stiffness matrix invariably needs to be carried out every 
time a new geometry is analysed, regardless of the features of the particular 
numerical method used. Post-processing of the numerical analysis results to 
calculate the response of interest is also similar using any of the numerical 
methods - none of the methods offers any particular advantages that could 
expedite the response calculation. 

Some improvement in efficiency could be attained by rebuilding just the 
part of the stiffness matrix that is concerned by the geometry change. 

The strength of the meshless and extended finite element ( X F E M ) ap­
proximations comes forth in the update of geometry in the numerical model. 
In contrast to classical finite elements, which rely on automated or guided 
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remeshing to ensure that the mesh aligns with the discontinuities, in the 
meshless and X F E M methods, discontinuities can pass independently of the 
discretisation. This both avoids remeshing and improves the stability, since 
numerical noise due to remeshing is also reduced. 

These improvements are at the expense of additional computational ef­
fort that is necessary to search for the nodes in the neighbourhood of the 
geometry change (e.g. a crack tip). Depending of the efficiency of the search 
algorithm, this operation may take a considerable amount of time. On the 
other hand, it can be and usually is fully automated and reliable. 

As compared to X F E M , the shape functions are a priori unknown in 
meshless methods and need to be reconstructed for each integration point. 
As far as computational effort is concerned, this represents a major drawback 
of meshless approximations. 

In the application part of this thesis, the structural response is calculated 
and post-processing to evaluate the stress intensity factors is carried out 
within an X F E M package, developed at the L A M C O S laboratory of INSA 
de Lyon. 

5.2.4 Direct Differentiation Method 

In all applications requiring the evaluation of sensitivities of the structural 
response (optimisation, reliability), the efficiency and accuracy of computa­
tion of the partial derivatives of the response is a key issue. 

In applications where the response of interest for the reliability or opti­
misation analysis is directly obtained from a numerical mechanical model, 
there are in general two methods to calculate the response sensitivity. The 
better of them, termed the Direct Differentiation Method (DDM) [39], con­
sists in differentiating the equations of the discretised mechanical model 
with respect to the variable of interest. The advantage of D D M is that 
that the calculation of sensitivities is much faster and always consistent (the 
derivatives are found as a solution of the differentiated equations). 

D D M can be qualified as an "intrusive" method in that it requires mod­
ifying the finite element or other code. When one wishes to use a standard 
(commercial) finite element software, one needs to put up with a finite dif­
ference scheme to calculate the sensitivities. However, in case of the crack 
propagation problems, sensitivities to the variables entering just the crack 
propagation life integral and not the numerical mechanical model can be 
calculated by "non-intrusive methods", see below. This fact is exploited in 
this thesis and simple sensitivity equations are derived, which improve the 
accuracy and speed of computation of the sensitivities. 
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Finite difference methods are known to lack computational speed (mul­
tiple evaluations of the response are necessary) and accuracy. The latter 
depends on the finite difference step size. It may be too small such that the 
difference in the response is more due to numerical noise than due to the per­
turbation of the variable of interest. It may also be too large, which leads 
to inaccuracy resulting from a failure to correctly capture the non-linear 
character of the response. 

Sensitivity of Crack Propagation Life 

In the present work, we are interested in the sensitivity of the life under 
fatigue crack propagation. Numerical mechanical model is used here to 
calculate the structural response at discrete points of the crack length until 
the critical crack size at the time of failure, which is the variable of interest 
in the reliability analysis. 

The fatigue life is then calculated using the numerical model responses 
at the discrete crack length by integrating the inverse crack growth rate over 
the crack length. Sensitivity to many of the random variables of interest can 
be calculated by differentiating the integral formula. Sensitivity equations 
are derived in this way in Sections 7.4.1 through 7.4.4. 

This approach is thereby "non-intrusive" to the numerical code, as far 
as the calculation of the sensitivity of interest does not involve a derivative 
with respect to the stress intensity factor. 

5.2.5 Distributed Computing 

Reliability analysis is a typical example of computational task that is suit­
able for distributed computing. The mechanical models of many reliability 
problems can today be solved on inexpensive personal computers. What 
makes reliability analysis computationally non affordable is the necessity to 
evaluate the response many times. Either, this is due to a large number of 
simulations needed to analyse the reliability of problems with low probability 
of failure by Monte Carlo Simulation. Or, the multiple response evaluations 
come with the need to calculate the response and its derivatives at each 
step of the design point search in the reliability approximation methods (see 
Section 4.3). 

Distribution of computing in reliability analysis (and for that matter also 
in optimisation) of problems modelled by numerical mechanical models, a 
single solution of which is not particularly computationally intensive, is made 
simpler and cheaper by the fact that the computer architecture can be built 
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as a cluster of relatively inexpensive personal computers. 

5.3 Conclusions 

In this chapter, we have reviewed the major challenges faced when devel­
oping an efficient procedure for the reliability analysis of crack propagation 
problems. The strategies to cope with these issues that can be identified as 
the feasible ones can be summarised in the following points. 

• Carry out a stochastic analysis to account for the extraordinary 
amount of dispersion in crack propagation and provide for better in­
formed engineering decisions. 

• Use a numerical structural model to capture the geometrical interac­
tions inherent to complex crack propagation problems. 

• Improve the efficiency, ease and accuracy of structural response eval­
uation by using the Extended Finite Element Method. 

• Apply an accurate and stable integration procedure for the calculation 
of the life under fatigue crack propagation. 

• Employ the direct differentiation approach to evaluate the sensitivities 
of the crack propagation life with respect to most of the variables 
entering the crack growth law. 

• Make use of a cluster of PCs available at I F M A Clermont-Ferrand to 
enhance the computational speed of the reliability analysis. 

The rest of the thesis will be concerned with the development, implemen­
tation and application of a computational approach based on the above 
strategies. 
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Chapter 6 

Statistical 
Reliability 

Modelling and 
Analysis 

6.1 Introduction 

This Chapter deals with the statistical and reliability modelling used for 
purposes of the analysis of the stochastic crack propagation problem. The 
choice of appropriate statistical distributions and the estimation of their 
parameters is a crucial point. Reliability analysis only makes sense when we 
have a knowledge about the statistical properties of the underlying variables. 
Only then can reliability methods be used to provide valuable information 
about the statistics of the structural response. 

Section 6.2 focuses on the estimation of the two material dependent 
parameters of the Paris law. This issue has attracted considerable attention, 
in particular as concerns the correlation of the two parameters and the 
appropriate statistical model to be used. 

In the remaining sections of this Chapter, we will define the failure model 
and make a choice of a reliability method to suit the needs of crack propa­
gation analysis. 

6.2 Estimation of the Paris Law Parameters 

The most commonly used models to predict the rate of crack propagation 
are based on the Paris law [73] 

rn (6.1) 

91 
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which models the crack propagation rate ^ as a function of the stress 
intensity factor range AK. Its validity is limited to the crack propagation 
stage from a time when the crack has already been well initiated until the 
time when the crack growth accelerates before fracture failure occurs. 
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Figure 6.1: ^ (A-K") plot based on the Virkler data [89] 

It is interesting to examine the general shape or trend of the 4^ (A-K") 
curves. To do this, we need the corresponding data. The well known Virkler 
[89] fatigue data set was used for this purpose. Virkler performed his tests by 
measuring the number of load cycles iV at predetermined crack lengths a on 
68 identical central crack tension (CCT) specimens, for which an analytical 
expression giving the stress intensity factor is known. Virkel took good care 
to ensure that the test conditions be identical in all of the tests. 

First, the crack propagation velocity or the slope of the N(a) curve is 
determined at each crack length by numerical differentiation. Rather than 
finding the slope between two consecutive crack lengths, a straight line is 
fitted through five consecutive pairs of the [a, N] values observed by Virkler. 
The stress intensity factor at each of the predetermined lengths is calculated 
using the analytical formula for C C T . The resulting pairs of AK and 4fr, 
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connected into lines, are plotted in Fig. 6.1. 
Note that the numerical differentiation and the use of the analytical 

equation both constitute a part of a model that we chose for processing of 
the fatigue data. The errors of these modelling approaches will be inherent 
to any results that we will obtain. 

It can be seen in Fig. 6.1 that despite the averaging of the slope over five 
points, as described above, the curves are quite misbehaved. However, one 
may observe a general exponential trend of the ^ (AK) function. This is 
consistent with Paris and Erdogan's [73] choice to model the dependence of 
the crack growth rate on the stress intensity factor by the exponential form 
of their law. 

It is thereby important to note that the Paris law is a satisfactory model 
for the Virkler data within Phase II of crack propagation (after crack in-
nitiation and before the onset of unstable fracture). As it can be seen in 
Fig. 6.2, the domain of the crack growth physics into which the Virkler data 
fall is indeed the linear domain. 
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Figure 6.2: A log-log plot of ^ (AK) based on the Virkler data [89] 

Taking a logarithm of an exponential function, we get a linear relation. 
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Plotting the same ( A K ) data in log-log scales, one gets the picture as in 
Fig. 6.2. The data points for just a single specimen are shown in Fig. 6.4. 
The straight line in the latter Figure is the line In ^ = InC + mln(AK). 

Randomisation of the Paris Law 

We can now proceed to estimate the parameters C and m of the Paris 
law, Eq. (6.1). This implies that we consider the parameters to behave as 
random, a property evidenced by the crack propagation test results. 

We will perform the statistical estimation on data obtained by a linear 
regression on the Paris law using all points of the 4^ (AK) curve for the 
given specimen, determined as described above (averaging over 5 points, use 
of anlytical formula to calculate K). This will give us a single value of C and 
a single value of m for the specimen. The Paris law curve C{AK)m is plotted 
in Fig. 6.3 using the two values C and m for the respective specimen. The 
Figure shows also the data points from which the two values were estimated. 
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Figure 6.3: A plot of the ^ (A-KT) data points and the fitting curve for a 
single CCT specimen. [89] 

Note that we are thus considering only the average crack growth velocity 
on the given specimen. The variability of crack growth rate thus determined 
will therefore account only for variability of the average crack growth rates 
on the individual specimens. In this approach, we are loosing some of the 
information contained in the Virkler data, in particular the information on 
the variability within the specimen. 
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In AK 

Figure 6.4: A log-log plot of the 4^ (AK) data points and fitting curve for 
a single CCT specimen. [89] 

To be able to model and estimate this intra-specimen variability, the 
crack growth within the specimen would need to be viewed as a random 
process. However, it is a question whether the extra effort in carrying along 
this richer information pays off in terms of any increased precision of the 
estimation of the total lifetime of a specimen under propagation of cracks. 

Here, we are in fact questioning the accuracy of the Paris crack growth 
law model. While the exponential model appears feasible, one can see e.g. 
on the example of the crack growth rate in a single specimen shown in 
Fig. 6.3 and Fig. 6.4 that the experimental data deviates from the fitted 
curve. What we are witnessing here is a model error. 

A plausible approach to address this model error issue is to explicitely 
introduce the model error into the model by means of a random variable, like 
it has been done in Reference [14]. In the context of the overall crack prop­
agation analysis, this additional random variable may capture well enough 
the discrepancy between the Paris model and the reality, without the neces­
sity to make recourse to random process. Indeed, the results in [14] show 
that this approach can provide accurate probablility of failure. 

6.2.1 Parameter Estimation 

Linear Regression 

We see that the points in Fig. 6.2 lie roughly on a line. This leads us to 
estimate the parameters C and m of the Paris law by making a straight line 
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pass through the points in the log-log scale, see Fig. 6.4. This approach, 
making possible the use of linear regression, is the natural way any analyst 
would take to tackle the task, and is thus the common method to estimate 
C and m of the given specimen. 

Before we proceed to the regression analysis, let us make one important 
comment. Regression coefficients are always correlated. In particular, linear 
regression consists in solving a linear problem, so a high correlation of the 
determined coefficients must be expected, no matter what the form of the 
fitted curve is. The correlation is also bound to increase with the number 
of regression coefficients decreasing. In the present case, the coefficients to 
fit are merely two, since we are fitting a straight line y = ax + 6. Imagine a 
cloud of points we want to fit the line through. If we change the intercept 
b, the slope a cannot change independently of b - the line still needs to pass 
through the cloud of points. The correlation is negative. More concretely, 
if InC increases, m will decease, and vice versa. 

The linear regression on In C and m to fit the straight line 

l n - ^ = l n C + m l n ( A K ) (6.2) 

through all the points of each single specimen separately gives us 68 pairs 
of C and m values. The estimators of the sample mean, standard deviation 
and correlation are listed in Table. 6.1. 

InC m 
mean -26.0564 2.8553 
standard deviation 0.9302 0.1658 
correlation -0.99795 

Table 6.1: Estimates of the In C^m sample statistics. 

We were prepared to expect a high correlation between In C and m, but 
the correlation coefficient p\ncm = —0.99795 differs from minus unity by 
about 2%o only. Notwithstanding the fact that this correlation is due to 
the regression method used to estimate InC and m, this high correlation 
motivates us to reduce the number of random variables by one and consider 
InC as a function of m or vice-versa. However, as we will see later, this 
solution does not yield satisfactory results. 

Non-linear Regression 

Before we test any such models, let us renounce for a while on the use 
of the log-log scale in the regression to see what comes out if we perform 
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a non-linear regression on the equation ^ = CAKM to estimate C and 
m directly, using a numerical minimisation of the least-square error. The 

C m InC calculated 
mean 9 .040M0" 1 2 2.8560 -26.0329 
standard deviation 1.6657-10"11 0.1672 0.9451 
pcm from non-linear regression -0.75313 

PinCm calculated -0.99770 

Table 6.2: Estimates of the C^m sample statistics. 

estimators of the sample mean, standard deviation and correlation of C and 
m are listed in Table. 6.2. In addition, the Table gives the estimates for In C , 
where In C was computed by simply taking the logarithm of the C obtained 
from the non-linear regression. While the correlation between C and m is 
only moderate, we can see that the coefficient of correlation between InC 
and m thus estimated does not differ much from the one coming from the 
linear regression. 

Suppressing the Dimensional Dependence 

To expore another possible reason for the correlation, we examine also the 
dimensional dependence between C and m, since, by the Paris law, the units 
of C depend on those of m. For this purpose, we modify the Paris law as 
follows 

^ = c ' { i r ^ w „ - 1 ) > ^ x i - * ) * 0 . <^> 

In the above equation, KQ is a normalising stress intensity factor. It may be 
for example the threshold value below which there is no crack propagation, 
which is ensured by subtracting a unity from the ratio AK /(I — R)KQ. Note 
that since AK and KQ have the same dimension, the term r f ^ y ^ is a di-
mensionless normalised magnitude of the stress intensity factor. Therefore, 
the dimension of C does not change when m' changes. The primes are used 
on C and m' to mark their difference from the Paris law constants. 

Table. 6.3 shows the estimators of the sample mean, standard deviation 
and correlation of these primed variables C and m'. It can be seen that the 
suppression of the dimensional dependence between In C' and m' leads to 
no significant reduction in the magnitude of the correlation coefficient. 
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lnC" m' 
mean -14.6404 2.5945 
standard deviation 0.0959 0.1503 
correlation -0.97993 

Table 6.3: Estimates of the InC'^m' sample statistics with the dimensional 
dependence between In C' and m' suppressed. 

It can thus be said that while having parameters with unclear and chang­
ing physical dimensions is generally undesirable, the dimensional dependence 
of C and m was shown not to be the source of the correlation. 

6.2.2 Statistical Models 

Distribution Types of C and m 

Without presenting detailed hypothesis testing results, it can be said that 
the parameter m is appropriately modelled as a normal random variable and 
the parameter C as a lognormal random variable. This holds also for the 
statistical models of the variables lnC" and m', the dimensional dependence 
of which has been suppressed - see above. Figure 6.5 is presented as an 

Figure 6.5: Goodness of fit illustration for lognormal C (left) and normal m 
(right). 

illustration of the goodness of fit of lognormal C and normal m. 
Thus, in the following, we will consider only statistical models randomis­

ing the Paris law that will involve lognormal C and normal m. 
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Goodness of a Model 

Having tried various meaningful approaches to estimate C and m, we can 
now propose and test various statistic models of the random variables C and 
m. As the testing criterion, we will take the mean and the scatter of the 
final fatigue life observed in the original Virkler's tests, listed in Table 6.4. 

mean standard deviation 
total fatigue life 2.5716-105 1.8447-104 

Table 6.4: The sample statistics of fatigue life of the original Virkler tests. 

These reference values will be compared with the statistics of simulated 
fatigue lives. Each simulated life is obtained by generating a pair of C and m 
realisations from the underlying statistical model considered and integrating 
the Paris law from the initial to the final crack length using AK values given 
by an analytical model for the centre crack tension (CCT) specimen. Note 
that such result involves any error as a discrepancy between the analystical 
formula and the reality. 

Bivariate Normal InC and m 

First, let's consider a statistical model of a bivariate normal distribution of 
In C and m with the sample statistics and correlation coefficient as indicated 
in Table 6.1 above. 

mean standard deviation 
total fatigue life 2.5030-105 1.610M0 4 

error -2.5% -12.7% 

Table 6.5: The statistics of fatigue life simulation using a joint normal model 
for In C and m. 

Table 6.5 gives the statistics of the simulated lifetime. It can be seen 
that the model reproduces the observed fatigue lives fairly good in terms of 
both mean and scatter. A discussion in Section 6.2.3, elaborating on the 
results of [14], sheds more light on the agreement between the expriment and 
the reality, showing that it is not quite satisfactory. As a matter of fact, the 
scatter is underestimated by some 13%. This suggests that by neglecting 
the intraspecimen error and modelling all of the complex physics of crack 
propagation within the specimen through the rigour of the Paris formula 
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allowing only two random parameters, one may perhaps be oversimplifying 
the reality. 

Correlated Lognormal C and Normal m 

The next model evaluated here is a statistical model involving a lognormal 
distribution of C and a normal distribution of m, with the two random 
variables being correlated. The parameters of these distributions have been 
estimated in Table 6.2. In particular, the correlation coefficient was -0.75313. 

Note that the correlation coefficient of -0.75313 has been estimated from 
data fitting using a minimisation procedure. It may thus bear some impre­
cision. In addition, this magnitude of correlation is on the verge of what is 
numerically attainable when the realisations of the variables are generated 
as described in Section 4.2.2. As a consequence, the generated realisations 
of the correlated variables may not be fully correct. 

mean standard deviation 
total fatigue life 3.0103-105 9.6144-104 

error +17.0% +521.2% 

Table 6.6: The statistics of fatigue life simulation using correlated lognormal 
C and normal m. 

The statistics of the total fatigue life simulated using the statistical model 
considered here are shown in Table 6.6. It can be seen that the scatter has 
dramatically increased. Perhaps, this gross error in the dispersion of the 
fatigue life is attributable to the inaccuracies in the estimation of sample 
statistics and in the generation of variables from the correlated distributions. 
As we will see later, the dispersion of the total fatigue life is extremely 
sensitive to the correlation coefficient. 

m a Function of Normally Distributed In C 

Let us now consider a model that one is tempted to use seeing the extremely 
high correlation of In C and m. Consistently with the bivariate normal model 
above, a normal distribution is used for InC, but m is now a linear function 
of InC. The mean and standard variation of InC are again those listed in 
Table 6.1. 

As it can be seen in Table 6.7, the standard deviation in the total fatigue 
life simulated using the above statistical model is markedly reduced. Taking 
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mean standard deviation 
total fatigue life 2.4985-105 2.9115-103 

error -2.8% -84.2% 

Table 6.7: The statistics of fatigue life simulation using normal InC and m 
a linear function o / l n C . 

a linear function instead of a correlation of -0.99795, the dispersion drops 
by 85%. This shows an extreme sensitivity to the correlation coefficient. 

In C a Function of Normally Distributed m 

Let us examine the same approach changed-round, with m being the random 
variable and In C the dependent variable. The statistics of the total fatigue 
life simulated based on this statistical model are given in Table 6.8. The 
underestimation of the standard deviation is as serious as before. 

mean standard deviation 
total fatigue life 2.4986-105 3.9139-103 

error -2.8% -78.8% 

Table 6.8: The statistics of fatigue life simulation using normal m and InC 
a linear function of m. 

6.2.3 The Correlation of C and m 
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Figure 6.6: A plot of the C^m data and the InC^m data. 

We have seen that whether we use a linear or a non-linear regression, 
we observe an extremely high correlation of the estimated InC and m. We 
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have also proven that this is not due to the dimensional dependence. At the 
same time, the correlation of C and m is only moderate - indeed, the values 
in the left-hand chart of Fig. 6.6 do not lie on a line. 

We were trying to estimate the parameters of a mathematical model that 
had been put forward as one that can represent well the dependence of the 
crack growth rate on the range of the stress intensity factor. Empirical data 
verify the correctness on the model to a certain extent. Note, however, that 
the two parameters of the model do not have a clear physical interpretation. 
This make also the interpretation of their correlation difficult. 

Most of the correlation is probably attributable to the fact that C and 
m are obtained by regression as the parameters of the exponential model. 
C and m are bound together by the virtue of being two parameters of a 
single exponential curve. However, we have seen that replacing the strong 
correlation by an explicite linear dependence of m on In C leads to a great 
underestimation of the standard deviation in the simulated fatigue life. 

So it appears that the effect of C and m deviating from the relation tying 
them together is extremely important. As a matter of fact, generating m a s a 
random variable correlated to In C results in just a slightly higher standard 
deviation in m as compared to m tied to a random InC by a function. 
But the crack growth rate given by the Paris law should be expected to be 
highly sensitive to m, the exponent on the stress intensity factor range. In 
addition, the effect of this slightly more dispersed m builds up through the 
integration of the fatigue life over the crack length. This can be a physical 
interpretation of how the sensitivity of the fatigue life to the correlation of 
InC and m arises - the dispersion is magnified by being in the exponent 
and through integration. 

Model Error and Decorrelation 

Bourinet and Lemaire [14] have carried out a detailed study of the Virkler 
[89] data, proposing an accurate method to calculate sensitivity to correla­
tion and investigating the accuracy of fatigue life prediction with respect to 
the real experiment. 

From their analysis, it appeared that a simulation employing the model, 
which involved a statistical model of bivariate normal m and InC and a 
use of the Paris carck growth law together with an anlytical formula for 
the stress intensity factor to calculate fatigue life, misclassified seven of 
the specimens that actually survived as specimens failing, and misclassified 
one actually surviving specimen as failed. The line between the safe and 
the failure domain was thereby drawn between the experimental specimens 
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having the 7 and 8 shortest life, respectively. 
The authors turned their interest to the difference between the fatigue 

life prediction through the simulation model and the actual fatigue life in 
the experiment. This difference was then explicitely introduced into the 
simulation model as a random variable. With this, the previously misclassi-
fied experiments were already correcly placed within the safe and the failure 
domain, and the probability of failure corresponded very well to the ex­
perimental data. Although it can be argued that the bias of the model is 
perhaps more systematic than random, the correct classification of all of the 
experimental specimens as failed or surviving by the simulation proves the 
feasibility of this apprach. 

We have seen above that a statistical model having only one random 
variable and the other one functinally related results in a gross underesti­
mation of the scatter. To overcome this problem and to avoid the extreme 
sensitivity to the correlation at the same time, the authors took the follow­
ing approach. Instead of considering In C as a random variable, they chose 
a model which considers only the difference between the value of In C and 
the expectation £7[lnC|m] on InC coming from regresion analysis. This dif­
ference, denoted £\nc thus became uncorrelated to m. The sensitivity to 
the correlation of E\nc a n d m was close to zero. 

6.3 Crack Initiation 

The physical mechanisms behind the initiation and the propagation of cracks 
were described in Section 2.2.1. Crack initiation could thus be defined as 
the occurrence of a crack that grows already by the mechanisms present in 
the crack propagation phase. 

For the purposes of our crack propagation simulation, we will assume 
that crack initiation has already taken place at known or supposed locations 
and the existing cracks have such sizes that they already follow the Paris 
law. The size of the crack at a given instant or the time at which a crack 
will attain a given size is uncertain. 

We will therefore not engage into any phenomenological or damage ac­
cumulation based modelling of crack initiation. We will instead treat crack 
initiation statistically. 

There are basically two approaches to statistical modelling of crack ini­
tiation. Either, one can consider a random number of load cycles to the 
initiation of a crack of a given size. Or the crack length at a given time is 
taken as random. 
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The latter approach is retained in this thesis. The reason is that it finds 
application in Bayesian updating of the crack length based on inspection 
results. 

In this thesis, no such relation to actual inspection data is made. The 
parameters of the statistical distribution of the initial crack length are simply 
assumed. This is undoubtedly a shortcoming when one attempts to present 
a complex crack propagation modelling approach. However, the focus of the 
thesis is on the propagation phase. Bayesian updating of the crack length 
has been described abundantly in the literature, in particular in the context 
of inspection planning [55], [56], [43]. 

Random initial crack lengths are often modelled by exponential or log-
normal distributions. 

6.4 Failure Mode l 

In Section 2.4, we have defined for the purposes of this thesis the physical 
failure as the state when the value of the stress intensity factor characterising 
the stress field around the tip of the crack reaches the fracture toughness. 

Ductile structures may also fail by plastic collapse. The ligament to 
which the grown cracks have reduced the material resisting the load may 
plastify completely and fail. When the two failure modes, i.e. fracture and 
plastic failure, compete, the so called R6 criterion [44] may be used. 

However, empirical computational experience has shown that for the 
type of problems considered here, the fracture failure mode almost always 
prevails. Therefore, we will simply compare the stress intensity factor to the 
fracture toughness to see whether structural failure has yet occurred: 

structural failure if Keq > Kjc . (6-4) 

In the above equation, Kjc is the Mode I fracture toughness of the material 
and Keq is the Mode I-equivalent stress intensity factor that will be defined 
in Chapter 7. 

Eq. (6.4) defines the event of structural failure. In our crack propagation 
problem, failure for the purposes of reliability analysis will be defined to 
occur if Eq. (6.4) becomes satisfied at a sustained crack propagation life NR 
that is less than the required life under crack propagation N$'-

reliability failure if NR < N$ • (6-5) 

The life will be measured in load cycles. Other units could be used, including 
duty-cycles or number of aircraft flights. This thesis relies on the use of 
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characteristic load sequences specified for structures or machines of a given 
type to capture the complexity of loading. These are essentially sequences 
of peak and valleys, i.e. of load cycles with varying amplitude. Moreover, 
in reliability analysis with approximation methods, it is desirable that the 
response be a continuous variable rather than a discrete one. Therefore, we 
will measure life under crack propagation in cycles within the given load 
sequence rather than in multiples of the load sequences. 

The reliability analysis works with the failure criterion rewritten as the 
performance function. Based on equation (6.5), we will define the perfor­
mance function as follows: 

where x is the vector of random variables. The logarithmic form of the per­
formance function was chosen for its advantages in optimisation numerics. 
It is preferable that the value of the performance function is a small rather 
than large number. 

Load carrying engineering structures are required to have very low probabil­
ities of failure. We thus need a reliability method that is capable of dealing 
with low-probability events. 

In Chapter 4, we have seen that we can essentially choose between two 
major reliability analysis approaches: approximation methods or Monte 
Carlo simulation (MCS). To analyse low-probability failure events, M C S re­
quires a large number of simulations. Wi th growing number of simulations, 
there will be more samples of the random variables taken from the tails of 
their respective distributions. In Section 5.1.7, we have raised the issue of 
low-probability structural configurations. These require a particularly ro­
bust mechanical model, capable of calculating the response of configurations 
that are far from the usual features of the problem. 

For these reasons, the approximations methods are used in this thesis. 
By applying the First Order Reliability Method (FORM), we will also take 
advantage of the straightforward computation of sensitivities of the reliabil­
ity index within the method, see Section 4.3. 

F O R M appears appropriate for the present problem of crack propagation 
life. We will see that the solution algorithm converges. It also appears that 
we are dealing with a single design point only. 

(6.6) 

6.5 Reliability Methods Used 
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To evaluate some of the derivatives of the response needed at each step 
of the design point search, we will apply the sensitivity equations derived 
by direct differentiation in Sections 7.4.1 through 7.4.4. The remaining 
derivatives will be computed by the forward finite difference method. 

6.6 Conclusions 

The statistical analysis of the crack propagation data in Section 6.2 exposed 
the importance of correct statistical modelling of the random variables. Un­
justified assumptions introduced in the statistical model may lead to a gross 
error in the response of the model. 

It was shown that for the parameters of the Paris law, the bivariate nor­
mal model of In C and m allows for a reproduction of the crack propagation 
data based on which the statistics of the parameters were estimated. The 
extremely high correlation of the two variables is mostly due to obtaining 
the In C—m couples as the parameters of the exponential Paris model by 
regression on the 4^ (A/ Í ) data. In addition, the life under fatigue crack 
propagation is extremely sensitive to the value of the correlation coefficient. 
This is due to a magnification of the amount of dispersion of the parameters 
by m being in the exponent of the Paris law and by integration. 

In contrast to the careful statistical analysis of the crack propagation 
data, the crack initiation model was only assumed, using an exponential 
model for the initial crack size, which is a common approach. This model 
allows for Bayesian updating based on actual inspection results, but this 
procedure is not carried out within the scope of this thesis. 

A simple failure model is used. The "resistance" is the total life under 
crack propagation NR, which ends when the stress intensity factor attains 
fracture toughness. The "load" is then the required life Ng. 

Approximation methods will be used in reliability analysis because they 
do not require the mechanical model to provide response for low-probability 
structural configurations and allow for a straightforward computation of 
sensitivities of the reliability index. 
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C Urr — £ (&curr)\/&curr 

postprocessing =>Ke, eqk 

integrate failure life NR = J X i \ C ' + 1 l^da 

Figure 7.1: T/ie cracA: propagation simulation procedure 
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7.1 Introduction 

This Chapter describes the crack propagation procedure developed based on 
the strategies put forward in Chapter 5. This procedure is used to calculate 
the total life NR under fatigue crack propagation. The value of NR enters 
the performance function (6.6) in the reliability analysis. 

The crack propagation procedure consists of three phases: 

1. Load sequence preprocessing by P R E F F A S . 

2. Simulation of crack propagation as the multiple cracks follow their 
paths. The propagation velocity is governed by the Paris law, the di­
rection by the maximal hoop stress criterion, Eq. (2.31). The stress 
intensity factors are regularly updated by solving the numerical me­
chanical model with the current geometry. 

3. Fatigue propagation life integration. 

The P R E F F A S method has been described in Section 2.6. The crack propa­
gation simulation and fatigue life integration procedures are described below. 

7.2 Simulation of Propagation of Mul t ip le Cracks 

The lifetime under fatigue crack propagation NR entering the performance 
function (Eq. (6.6)) is obtained by a numerical simulation of crack propaga­
tion involving structural analyses by the Extended Finite Element Method 
( X F E M ) to compute the stress intensity factors (SIF). 

The following assumptions are made. The cracks, which can be sev­
eral, propagate in a linear elastic, isotropic, homogeneous body idealised 
as a two-dimensional plate. The propagation takes place in the plane of 
the plate under mixed mode conditions, and may thus be curvilinear. In 
the modelling, the curvilinear crack trajectory is replaced by a piece-wise 
linear shape. The plate may have an arbitrary geometry, including various 
openings in it. 

A l l sequence and overload effects are assumed to have been accounted for 
through the P R E F F A S method. Thus, it suffices to use a linear-elastic me­
chanical model describing a quasi-static crack propagation under constant-
amplitude loading. 

Given that the crack growth rate is modelled by the Paris law, NR is 
obtained as: 

(7.1) 
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C and m are the parameters of the Paris law and R the stress ratio. The 
term 1/C [(1 - R)Keq]m will be denoted ^ in the following. 

The lower integration limit aj is of course the initial crack size, an im­
portant variable in terms of reliability analysis. The final crack length a/ is 
defined as the crack length at which the equivalent Mode I stress intensity 
factor Keq [15] attains the fracture toughness Kjc: 

KIc = Keq E E Ki cos 3 °- - 3Kn cos2 °- sin °- , (7.2) 

where Kj and KJJ are the Mode I and Mode II stress intensity factors, 
respectively, and 9 is the crack propagation angle determined based on the 
maximal circumferential stress criterion, see Eq. (2.31). 

If multiple cracks are present, NR corresponds to the lifetime when the 
criterion 6.5 is first fulfilled at the tip of any of the cracks. 

7.2.1 The Simulation Procedure 

As there may be multiple mutually interfering cracks, each of which propa­
gates with a different rate governed by the intensity of the stress field around 
its tip, it is not a priori known at which crack the critical stress intensity 
Kjc will be attained first and at which crack length a,f this will happen. 

This precludes a prior discretisation of the integration domain between 
en and a,f and requires that the actual evolution of the cracks and the 
stress intensity factors at their tips be tracked along the loading 
history. 

Using the random variable approach (see Section 2.8.1), the crack prop­
agation smulation procedure starts from a set of current realisation of the 
random variables, cf. Fig. 7.1 on page 108. With these variable values, 
including those determining the crack lengths, a first numerical mechanical 
analysis by X F E M is carried out to establish the stress field and the corre-
spoding crack tip stress intensities and crack propagation directions at the 
beginning of the crack propagation history. 

The cracks are then assumed to propagate obeying to the Paris law. 
The Paris equation is the central node of the crack propagation procedure 
(Fig. 7.1) and determines the crack length increment: 

Aa = C (AKeq)m AN = C [(1 - R)Keq]m AN (7.3) 

The load cycle increment A i V is taken equal to a single cycle: A i V = 1. 
Where the crack increment per cycle is negligeble, the load cycle increment 
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can be taken as different number given by a convenient function of the 
current inverse crack propagation rate ^p. 

The length of each crack i has now grown by an increment of Aaj . We 
could go back to the numerical mechanical model and update the stress 
filed. However, it would be inefficient and could lead to numerical problems 
in X F E M to calculate Keq by a numerical analysis at very similar crack 
lengths after each load cycle (increment). Therefore, SIF are obtained by 
X F E M post-processing only every time an increment of the length of any 
of the cracks exceeds a predetermined user-defined value of AO-FE- This 
is chosen with due consideration of the mesh size. For numerical stability 
in X F E M , the crack tip should advance beyond the area of a single finite 
element. 

At intermediate crack lengths, Keq is extrapolated from previous values, 
cf. Figure 7.1. The extrapolation is carried out as follows. It is assumed 
that the equivalent stress intensity factor for each crack can be as a linear 
function of the square root of the crack length a: 

The linear factor q here accounts for all load and geometry effects, safe for 
the crack length itself. Separating out t; from (7.4), we can calculate it for 
two previous X F E M update points at and a^ - i , and extrapolate it based on 
the crack lenthts a& and a^-i to the current crack length a c u r r . Keq at the 
current crack length o c u r r is obtained by simply inserting the extrapolated 
<j and the current a c u r r into equation (7.4). 

Linear extrapolation usually suffices. In case that numerical noise would 
occur and one of the last update points would be lying somewhat off the 
Keq(a) curve, higher order extrapolation could amplify the extrapolation 
error. It is important to note that the extrapolation is used only to determine 
the discretisation and approximate trajectory of the crack between a% and 
df for integration purposes. Keq entering Eq. (7.3) is obtained from X F E M 
analysis. 

At the X F E M update point, the crack direction may change, being de­
termined from Eq. (2.31). 

The criterion (7.2) is checked at every load cycle of the above procedure. 
When it becomes fulfilled, the procedure is continued until Aa is attained 
by the increment of any of the cracks, and then stopped. Thus, we have 
available additional numerical analysis results for a point beyond the failure 
point. We will see in Section 7.3 how this will be useful. 

The simulation procedure is thus very simple. We increment the length 
of each crack by Aaj based on the Paris law and the load cycle incrememt 

(7.4) 
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AN. Then we update the stress intensity factors by either X F E M or ex-
ptrapolation, and recycle to increment the crack lengths. When updating 
by X F E M , new crack propagation direction is determined. This is repeated 
until the toughness value is attained by the stress intensity factor ant any 
of the crack tips. 

7.2.2 Simulation Output 

As an output of the simulation, we have for each crack a set of n pairs of 
equivalent stress intensity factors Keq and crack lengths a, at which the Keq 

were calculated by X F E M . 
The final point of crack propagation is determined for the leading crack 

(at which the failure actually occurred) by interpolating between the last few 
points of the Keq(a) history to obtain a/ at which the value Kjc was actually 
attained. For the trailing cracks, Keq is not yet equal to Kjc at the instant 
of failure at the leading crack. Therefore, for each crack, say the j - t h crack, 
a quadratic least-square fit of the curve a,j (acr) is constructed, expressing 
the relation between the length of the j - t h crack a,j and the leading crack 
length acr. a/ for the j-th crack can then be calculated by interpolation 
using the value of a/ obtained for the leading crack. 

By the Paris law, Keq are easily converted to We thus obtain the 
discrete points of the ^ ( o ) curve. Integrating this curve, we can calculate 
the life under crack propagation. 

7.2.3 Numerical Aspects 

While crack propagation has been successfully modelled using X F E M , an 
application of this numerical model in a probabilistic analysis is a novel 
approach. X F E M has effectively eliminated tedious remeshing to update 
the crack length as well as some numerical noise due to changing mesh. 
However, certain recommendations specific to X F E M need to be kept in 
mind. 

In particular, the time stepping in the calculation of SIF should be such 
that the crack tip in the next step along the crack line polygon should lie 
within another element, otherwise numerical issues arise. Considering the 
algorithm described above, special care needs to be taken in this respect in 
problems with multiple crack where some cracks may propagate faster than 
others. 

A second remark concerns the interaction between the crack line and 
the mesh. Remember that in X F E M , cracks can pass arbitrarily across the 
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elements. If the angle between the crack and an element edge is very acute, 
extremely pointed integration triangles are created, which leads to numerical 
problems that may affect the accuracy of calculation of the SIF. 

This issue may be circumvented by choosing the integration zone for SIF 
computation (cf. Section 3.7.4) further away from the crack tip. Experience 
has shown that the SIF values calculated by integrating in a band made up 
from the third row of elements around the crack tip were less than 2% lower 
than the SIF integrated over the second row of elements. This is considered 
a fully acceptable trade-off in the interest of better stability of the results. 

Elimination of Noisy Values 

Any possible outlying points on the ^nr(a) curve can result in a grossly in­
correct integration result. In X F E M , such outlier points were observed only 
in cases of the acute angles of element edge-crack trajectory intersections 
mentioned above. Wi th wider SIF integration bands, the ^nr(a) curve was 
quite smooth. 

In general, if such outlier points occur due to numerical problems arising 
in any numerical methods used to calculate the structural response, it might 
be a good idea to use the integration based on curve fitting as proposed in 
Section 7.3 below, instead of a classical quadrature rule. In addition, the 
following procedure was tested and proved efficient in eliminating the outlier 
points. 

Outliers are first considered with respect to the curve Keq(a). In the first 
step, the monotonous increase of Keq with growing a is checked. In general, 
Keq may also drop with increasing a, but in many problems, Keq can be 
assumed monotonously rising as the crack propagates. If this is the case, 
all points at which Keq is lower than at the previous crack length should be 
removed. 

Next, it is checked whether the first and last of the discrete values are 
outliers. The reference value is taken as the value of life time under fatigue 
crack propagation evaluated numerically using the formula (7.5) with the 
actual initial and final crack size as the integration bounds, but considering 
only the internal discrete points of the history. If, after evaluating the 
formula (7.5) considering also the first and the last point of the ^p history, 
respectively, the value of the integrated life time changes by more than 1% 
with respect to the reference value, the respective extreme point is rejected 
as an outlier. 

Finally, the internal points are checked for outlying. As a reference value, 
the life time is integrated using all of the ^p points not removed so far, using 
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a quadrature whereby a second order Lagrange interpolation polynomial is 
passed through three consecutive points. The integration with Lagrange 
interpolation is then repeated with one of the internal points removed at 
a time. If the resulting life time differs by more than 1% from the above 
reference value, the respective extreme point is rejected as an outlier. 

Note that "jackknife" resampling statistics of the integral in (7.5) ap­
peared to be powerless in removing the outliers in this application. 

7.3 Fatigue Propagation Life Integration 

For each crack, we have n discrete points of the ^p(a) curve available from 
the simulation described above. A n accurate integration of this curve is 
needed to obtain accurate values of the limit state function and the gradients. 
A failure to integrate accurately may hamper the convergence to the design 
point in the reliability approximation methods. 

Note that the intervals of discretisation of each crack are in general not 
of uniform length. This is because the discretisation points (at which K E Q 

was calculated) are set at times when the length increment of the leading 
crack reaches ACIFE, while different cracks may be leading at different times. 

The integration of (7.1) is carried out interval by interval, i.e.: 

where at and at+i are the lower and upper limit of the fc-th interval, respec­
tively. In the last interval, the upper limit an = a/, where a/ is obtained 
for the loading and trailing cracks, respectively, as described above. 

To integrate the fatigue life from the discrete, non-equidistant 4^ points, 
we need an accurate integration procedure. We could use an integration 
quadrature or fit a curve to the discrete points. 

A quadrature rule can be constructed as follows. A second-order La­
grange polynomial is passed through the three points of two neighbouring 
intervals between and Xj+i. The integral over the two intervals reads: 

(7.5) 

(7.6) 
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where Lj is the second-order Lagrange polynomial for xy. 

_ (X - Xj) (x - Xj+l) 
Lr_ 

(Xj-l - Xj) (Xj-l - xj + 1) 
_ (X - Xj-!) (X - Xj+l)  

3~% (Xj - Xj-!) (Xj - Xj+l) 

(x — Xj-l) (x — Xj) 

(Xj+l - Xj) (Xj+l - Xj-l) Lj=i+i = — Z7T7Z 1 \ • {'•') 

The integral of L{j) is easily found. Note that this integration scheme for 
non-equidistant intervals corresponds to the Simpson formula for equidistant 
intervals. 

If one of the point \jj deviates from the general trend due to numerical 
error, the above quadrature scheme will yield an erroneous value of the 
integral over the intervals in question. It appears judicious to take into 
account the information also from the neighbouring interval. 

Rather than making a Lagrange polynomial pass through the points, we 
shall fit a curve of a suitable form through all of the points considered. The 
equation of this curve can be integrated analytically. 

In the current application, we deal with the 4^ curve. Considering its 
relation to the underlying variables, we will fit the integrand of (7.5) using 
the following form: 

diV _2/m 2 (t-r 
—— = ctio ' + otia + 0 3 0 + 0 4 . (7-oJ 
da 

The coefficients ai to 04 are fit in the least square sense to the discrete 
points of the curve. Using four points of the discrete ^nr(a) history that lie 
the closest to the k-th interval lead to an integration scheme that was both 
accurate and stable. 

7.4 Calculation of Sensitivities 

We have seen in Section 7.3 that the total life under fatigue crack propaga­
tion, entering the performance function of the reliability analysis, is calcu­
lated by integrating the inverse crack propagation rate ^j- from the initial to 
the final crack length. While the values are derived from finite element 
results, the integration is a procedure independent of the numerical solution 
method. 

The classical Direct Differentiation Method [39] deals with the calcula­
tion of derivatives of finite element responses. But in the crack propagation 
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context, the fact that the fatigue life is calculated by integration over the 
finite element results makes the computational procedure particularly suit­
able for an easy application of direct differentiation. 

In Sections 7.4.1 through 7.4.4, the integral equation (7.1) giving the 
life under fatigue crack propagation is differentiated with respect to various 
variables entering the equation to provide explicite formulae for the calcula­
tion of sensitivities of the fatigue life. In some cases, the derived sensitivity 
equations are very simple. 

In the stochastic crack propagation analysis procedure developed in 
this thesis, these sensitivity equations are advantageously used to improve 
the speed, accuracy and stability in the reliability approximation method. 
Where the fatigue life integral cannot be directly differentiated with respect 
to a particular variable, or where the variable is a function of the numerical 
model response, the respective sensitivity is calculated by the forward finite 
difference method. 

We are thus mixing two approaches to calculate sensitivities: direct dif­
ferentiation and finite differences. However, it is probably better to be accu­
rate where possible, rather than to be consistently inaccurate. To this point, 
it can be noted that one is inevitably inconsistent also when calculating the 
derivatives purely by finite differences. This is because the step forward, 
taken to calculate the difference, can hardly be chosen consistently for all 
variables given the varying units and statistics of the variables in the phys­
ical space. As a matter of fact, the calculation of derivatives through direct 
differentiation is consistent with the way the response itself is calculated. 

By using the direct differentiation formulae, the reliability approximation 
method becomes faster and more stable. 

7.4.1 Sensitivities in the Paris Equation 

Assuming that the fatigue crack propagation obeys the Paris law, see equa­
tion (2.13), the number of cycles at failure NR is evaluated from the Eq. (7.1), 
which is shown also here for convenience: 

In the above equation, C and m are the Paris law parameters for the given 
material, oo is the initial crack length from which the propagation is consid­
ered to start, cif is the crack length at failure, R is the minimal to maximal 
stress ratio and Keq is the Mode I-equivalent stress intensity factor (SIF). 

(7.9) 
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In general, Keq could be the effective SIF, considering the plasticity at 
the crack tip to account for retardation (see Sec. 2.6). However, we will 
assume in the following that Keq is a function of nothing else but the crack 
length, the remote applied stress and geometry. 

In this Chapter, we will consider the sensitivities of NR which can be 
obtained by differentiating the above Eq. 7.9 with respect to the parameter 
of interest. These parameters include, with the notation introduced above, 
ao (Sec. 7.4.2), C , m, R and the remotely applied stress aapp (Sec. 7.4.3). 

7.4.2 Sensitivity to Initial Crack Length 

The initial crack length ao appears to be one of the most critical factors 
influencing NR. In practical problems, ao may be uncertain, given that 
it comes from measurements with uncertain accuracy and that some of the 
existing cracks may be overlooked in the inspection. This leads us to consider 
ao as random. Consequently, the sensitivity with respect to the initial crack 
length 5 ^ is of major interest for reliability analysis. 

In line with the procedure described in Section 7.2, the number of load 
cycles at failure NR is obtained by summing up the cycles numerically inte­
grated on each of the intervals 1... k ... n along the crack length: 

N R = Y1 
k=l 

1 "A: 
• da or Nk = i Y f c _ ! + 

x C(AK)' 
• da 

(7.10) 
where the shorthand notation AK = (1 — R)Keq has been used. Note that 
a-k-i = ao on the first interval and a& = aj on the last interval. 

In the same spirit, the derivative ^p 2- can be expanded it by the chain 
rule: 

dNR = dNR  

düQ ON, 
dN, n—k 

n—1 dN n—k—l 

dNi 
da0 

(7.11) 

Since the fatigue life over a single interval It = (N^ — N^-i) is an integral 
quantity, 9 ® I h is a derivative of an integral functional with respect to the 
lower integration limit. Consider a general case of an integral with respect 
to t that is a function of another variable x and has variable integration 
limits a(x) and b(x): 

y(x) 
b(x) 

a(x) 
f(x,t)dt. (7.12) 
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A derivative of such integral with respect to x is given by [6]: 

<9x <9x <9x Ja(z) ^ 

Applying this result to the integral of iVj, we have: 

Oft I 
da 

c 'í \ /v y» x C ( A K ) m <9afc_i 9a f c _i 

<9afc 1 5a f c _i 1 
9a f c _! C (AK(ak))m da^ C ( A ř ( a n ) ) m  

+ Í" J - f ^ U l d a (7.14) 

At this point, we make an important assumption. This assumption is 
that neither the path of the crack nor the final crack length af depend on the 
initial crack length OQ. In a structure with a single crack, this is rather obvi­
ous. Wi th multiple cracks, the interaction of other cracks could compromise 
the assumption. However, since we are concerned in differentiation with an 
infinitesimal change in ao, the assumption remains valid. It also corresponds 
to studying the sensitivity to the initial crack length, with everything else 
unchanged. 

Then, we can consider the interval-end crack lengths a\... a& . . . af fixed 
when differentiating Eq. (7.10), with only ao varying (infinitesimally). This 
has several useful consequences that simplify the calculation. 

First, the quantities I<i... Ik • • • In will not change and thus the deriva­
tives i 9 ^ V "~ f c - in Eq. (7.11) will be equal to one. 

Second, the derivative of AK in Eq. (7.14) with respect to a^-i is zero. 
Thus, the last term in Eq. (7.14) vanishes. 

And by the same token, = Q. Thus, all that is left of Eq. (7.14) is 
the second term: 

da f c_! C ( A K ( a f c _ ! ) ) m - { ' - ° j 

Summarising the above, we obtain the result: 

dNR 1 

da0 C(AK(a0)y 
(7.16) 

As a matter of fact, Eq. (7.16) allows to enumerate the sensitivity of NR 
to the initial crack as a function of the Paris law parameters and the stress 
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intensity factor at ao, even before the crack propagation simulation has 
started. 

The surprisingly simple formula of Eq. (7.16) is due to the above as­
sumption of invariability of crack path and final length. This assumption 
is equivalent to counting the propagation cycles along the same crack path, 
but starting a bit later - at the infinitesimally increased initial length. 

Verification of the Sensitivity Equation for Initial Crack Length 

The sensitivity equation (7.16) is verified here by comparing the results 
with sensitivities obtained by the forward finite differences (FFD) method. 
The F F D as a numerical differentiation technique consists in evaluating the 
response quantity V, in perturbing one input variable at a time by a 
small step size hk, in evaluating V at the perturbed point in the space of 
the input variables X ( M and obtaining the sensitivity as: 

This numerical evaluation of the sensitivities will inevitably show some de­
pendence on the step size h^. 

The performance of the simple analytical formula in Eq. (7.16) in evaluat­
ing the sensitivity w.r.t. the initial crack length was tested on two examples. 
First, a centre crack tension (CCT) specimen was considered, which has a 
single crack. 

Analytical Mechanical Model For a C C T , an analytical expression pro­
viding the stress intensity factor for a given crack length is known. We can 
thus directly use Eq. (7.9) to calculate the fatigue life, with Keq supplied by 
the analytical equation. The integral in Eq. (7.9) is evaluated numerically 
using n integration intervals. 

The perturbation of the initial crack length was introduced in one nu­
merical study only to the initial crack length itself, with all other integration 
interval ends being unchanged w.r.t. the reference configuration. In another 
study, the positions of all interval ends were augmented by the perturbation, 
except for the final crack length. 

Figure 7.2 shows the calculated F F D sensitivities to the initial crack 
length as a function of the chosen initial crack length perturbation size. 
The horizontal line indicates the value calculated by direct differentiation 
(DDM), while the two sloping lines are the F F D values calculated consid­
ering the two integration interval end perturbation approaches described 

dv _ y ( x , f c ) - y ( x ) 
X ( M — X\, • • • , Xk + /ifc, • • •, xn (7.17) 
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Figure 7.2: FFD results for sensitivity to initial crack length as a function 

of the perturbation size. 
above. It can be seen that for small perturbations, the values obtained by 
F F D and by D D M are similar. 

Figure 7.3 illustrates the dependence of the calculated sensitivity on 
the number of integration intervals, into which the crack length is divided. 
Wi th the number of intervals increasing, the discrepancy between the direct 
differentiation value and the finite difference results becomes small. The 
D D M value thereby appears as the limiting value that the F F D results seem 
to approach. 

Numerical Mechanical Model The above results could encourage us 
to use Eq. (7.16) indiscriminately for the prediction of sensitivity of fatigue 
propagation life to the initial crack length. Let us, however, consider a 
somewhat more complex example, in particular a specimen containing two 
cracks. Here, the equivalent stress intensity factor Keq entering Eq. (7.9) will 
be calculated by a numerical mechanical model - the full fatigue propagation 
life calculation procedure as described in Chapter 7 will be used. 

Figure 7.4 shows the evolution of the sensitivities calculated by F F D 
with the perturbation size for the leading crack, i.e. for the crack at the 
tip of which the stress intensity factor first reached the fracture toughness. 
This is how failure has been defined. 

In the Figure, the F F D values seem to approach the D D M value for 
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Figure 7.3: FFD results for sensitivity to initial crack length as a function 
of the number of integration intervals. 

reasonable sizes of the initial crack length perturbation. The asymptotic line 
seems to correspond to a weaker sensitivity than the one obtained by direct 
differentiation. This might suggest that the computation of the sensitivity 
to the initial crack length by F F D is influenced by and sensitive to the 
domain discretisation and the errors building up in the integration of the 
stress intensity factors. 

Yet, a discrepancy of about 20% should not incite us to reject the sen­
sitivity equation (7.16) as invalid. It can be seen in the figures referred to 
previously that the choice of perturbation size and integration step size leads 
to even higher differences in the sensitivities predicted by F F D . 

The picture changes dramatically when the same results are plotted for 
the trailing crack, i.e. the other crack than the one at the tip of which the 
failure event occurred. The comparison of sensitivity to initial crack length 
calculated by F F D and by D D M is presented in Figure 7.5. 

It can be seen in the Figure that this time the D D M prediction is com­
pletely off the range of the F F D results. The reason is clear. We are studying 
the sensitivity of failure life to the initial length of the trailing crack, but 
the fatigue propagation lifetime is controlled by the leading crack. 

Remember that we made the assumption in deriving the D D M formula 
for the sensitivity to the initial crack length that neither the path nor the 
final crack length change. However, the stress intensity factor at tip of the 
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Figure 7.4: FFD results for sensitivity to initial crack length for the leading 
crack. 

trailing crack does not reach toughness. Over the propagation lifetime of 
the leading crack, the trailing crack will thus grow beyond the final length 
af of the reference configuration when the initial length is increased. Thus, 
the assumption made above is violated. 

We observe in Figure 7.5 that the sensitivities calculated by F F D are 
much weaker than the sensitivity predicted by D D M . In fact, we are studying 
here an influence of the initial length of a crack on a failure event that 
occurred somewhere else in the structure. The sensitivity of this failure 
event to the initial length of the trailing crack considered must as a matter 
of fact be expected to be much lower than in a case where failure would 
actually occur at this crack. 

Limited Applicability of the Sensitivity Equation It can be con­
cluded that the applicability of Eq. (7.16) to compute the sensitivity to the 
initial crack length is limited to the leading crack. In complex structural 
configurations, it is difficult to predict which crack will in fact be leading. 
But once the crack propagation simulation has been carried through, it is 
known which crack is the leading one. Sensitivity of fatigue propagation 
lifetime to the initial length of this crack can be computed using Eq. (7.16), 
while the sensitivities to the initial lengths of all remaining cracks need to 
be evaluated by a finite difference calculation. 
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Figure 7.5: FFD results for sensitivity to initial crack length for the trailing 
crack. 

7.4.3 Sensitivity to Paris Law Parameters, the Appl ied 
Stress and the Stress Ratio 

Eq. (7.9) can also be differentiated w.r.t. the Paris law parameters C and 
m, the remote applied stress cr a p p and the stress ratio R. Recall that the 
calculated fatigue propagation life NR is composed of contributions from 
individual intervals over the crack length, evaluated from Eq. (7.10). The 
propagation life on a single interval k is: 

h 
1 

• da (7.18) 

Consistently with the propagation simulation procedure described in Section 
7.2, the term 1/C[(1 — R)KEQ]M is considered to be given by a formula, 
which is a suitable function of the crack length a, the coefficients of which 
are fit by the least squares method to finite element results for K E Q . Recall 
that the curve fitting formula Eq. (7.8) used to integrate Eq. (7.18) is: 

1 
C [(1 - R)KEQ]R 

diV —2/m 2 (i-r -\ r\\ 
——K, ot\a ' + a^a + 0 3 0 + 0 4 , (7-19) 
da 

Invoking the rule of differentiation under the integral sign when the limits 
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Figure 7.6: FFD results for sensitivity to the Paris law multiplier C. 

are not functions of x: 

0_ 
Ox 

f(x) dx 
df(x) 

Ox 
dx. (7.20) 

we see that the derivatives of NR (Eq. (7.10)) will also be composed of con­
tributions from individual intervals. When we use Eq. (7.20) to differentiate 
Eq. (7.18), we obtain for the sensitivity to C: 

Oh 
OC ak-l 

1 1 
c2 [(i - R)Keqrda cIk 

(7.21) 

Thus, once the fatigue life has been integrated, the its sensitivity with re­
spect to C is obtained very simply using the above Eq. (7.21) without any 
additional integration being necessary. 

Differentiating Eq. (7.18) with respect to m, the resulting sensitivity 
formula reads: 

0 h = y°* In [(1 - R)Keq] 
dm 

• da (7.22) 
lah_x [{l-R)Keq\ 

Here, an additional logarithm appears and the following equation is used 
to approximate the integrand, with its coefficients fit also here by the least 
squares method to finite element results for Keq: 

In [(1 - R)Keq] = dN 
" [(1 - R)Keq]m da 

ot\ In a + 0120? + 03a + 04 . (7.23) 
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For completeness, the integral of Eq. (7.23) is: 

——da « a i a m a — a\a + — a + — a + 04a + const. (7.24) 
CltJ o Z 

The sensitivity of the propagation life over an interval Ik to the stress 
ratio R is obtained as: 

Oh 
dR 

mK, <<i 

a-k-
rn 

^C[(l-R)Keg] m + l 
da 

1 
• da 

1 - Ä 
4 (7.25) 
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Figure 7.7: FFD results for sensitivity to the Paris law exponent m. 

To be able to consider in the overall analysis the effect of varying applied 
stress cr a p p , we will also need the sensitivity of the propagation life NR to 
Capp- When the equivalent stress intensity factor is expressed as a product 
of the stress by a function of a crack length, i.e. K, <<i 'app 7(a), the 
contribution to this sensitivity over an interval Ik can be calculated as: 

9a, ai)i) 

-m( l - Rh{a) 
C [(1 - JR)a a pp 7(a)] m + l 

da 

in 

Co: app Jak 

"I, 

. ^ [ ( í - A ^ r 
da in 

Co: 

h (7.26) 
app 
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Similarly as in the case of sensitivity with respect to C, the sensitivities 
of fatigue life to the stress ratio R and the applied stress o~app are directly 
obtained once the fatigue life itself is known. 

Verification of the Sensitivity Equations 
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Figure 7.8: FFD results for sensitivity to the stress ratio R. 

Unlike with the sensitivity to the initial crack length, the sensitivity to 
the Paris law multiplier C calculated by finite differences corresponds well to 
the value predicted by direct differentiation of the Paris law and approaches 
the D D M prediction in an asymptotic-like fashion as the F F D perturbation 
becomes finer. The same is true for the sensitivity to the Paris law exponent 
rn. 

Figures 7.6 and 7.7 show the sensitivities w.r.t. C and m, respectively, 
calculated with various finite difference perturbations. The perturbations 
are indicated as fractions of the standard deviation of the respective vari­
ables. The standard deviation considered for C was 0.97165 and the stan­
dard deviation used for m was 0.16584. For justification of these values, see 
Section 6.2. 

The horizontal lines which the finite difference results approach mark 
the values computed by the direct differentiation Eqs. (7.21) and (7.22). 

Note that here as well as in the case of the stress ratio, we are examin­
ing the sensitivity to a parameter that influences the lifetime under fatigue 
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propagation of all cracks and hence also at the leading crack. 
It can be seen in Figure 7.8 that also for the stress ratio R, the sensi­

tivity calculated by F F D quickly approaches in an asymptotic manner the 
D D M value coming from Eq. (7.25) as the perturbation is refined. In the 
Figure, the perturbation size is again indicated as a fraction of the standard 
deviation of R, which was in this case OR = 0.2. 

Figure 7.8 also shows that precision is lost once the perturbation becomes 
too small. But perturbations within the range of OR/20 to OR/50 yield valid 
results. 

7.4.4 Sensitivity to Toughness 

The final crack length a/ is defined as the length at which Keq attains the 
Mode I fracture toughness Kjc. Its determination involves interpolation on 
the numerically obtained points of the Keq(a) curve (see Sec. 7.2) to find 
the length at which Keq = Kjc. Thus, the sensitivity to Kjc (involving 
the derivative dNR/daf) cannot be obtained by differentiating Eq. 7.9 and 
must be calculated by finite differences. However, since this does not re­
quire performing an additional complete crack propagation simulation, the 
description of the approach to calculate the sensitivity to Kjc is included in 
this Chapter. 

We consider a certain perturbation 5Kjc for the finite difference calcula­
tion at the perturbed point Kjc + 5Kjc. We interpolate the same numerical 
data of the Keq(a) curve as we used in the current computation of fatigue 
propagation life to find the crack length af + Saf at which Keq = Kjc + óKjc. 
Then we integrate the diV/da(a) curve fitted to the finite element results for 
Keq from oo up to the upper limit of a /+ 5a/, the result being the perturbed 
fatigue propagation life: 

(7.27) 

The sensitivity of NR to the toughness is then simply: 

dNR _ (NR + SNR) - NR 
(7.28) 

dKIc (KIc + SKIc) - KIc 

7.4.5 Concluding Remarks 

Driven by the effort to improve the accuracy, stability and computational 
effectiveness in the evaluation of response sensitivities, researchers have de­
veloped techniques that avoid the use of finite difference method. The direct 
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differentiation method [3], [39] has been elaborated as a method of direct 
computation of sensitivities within the finite element context. 

One of the concerns of this thesis was similar: to improve the computa­
tional efficiency, accuracy and stability in the calculation of the sensitivities 
of the life under fatigue crack propagation governed by an empirical crack 
growth law. 

This section constitutes an important part of this thesis. The formulaefor 
the computation of the sensitivities of the fatigue propagation life derived 
herein represent a key concept in the stochastic crack propagation procedure 
proposed in this thesis. On the one hand, their application provides for the 
necessary accuracy that is required for the reliability approximation methods 
to converge. And on the other hand, the use of these sensitivity equations 
reduces the computational time as compared to sensitivity calculation by the 
finite difference method by a significant amount. This, in some applications, 
will be decisive for the sheer feasibility of analysing the crack propagation 
problem stochastically. 

From the verification examples, it appears that in case of the Paris law 
parameters and the stress ratio, the equations for the sensitivity of the life 
under fatigue crack propagation derived in this section yield results that 
are only attainable with an optimal perturbation in the finite difference 
computation of sensitivities. 

The values predicted by the direct differentiation based formula for sensi­
tivity to the initial crack length indicate a stronger sensitivity than obtained 
by the finite difference method. However, the differences in F F D predictions 
for various perturbation sizes are higher than the discrepancy between F F D 
and D D M . 

In conclusion, two important observations can be made based on the 
verification examples: 

• In a differentiation by the finite difference method, the size of the 
perturbation taken to compute the differential responses has a great 
effect on the obtained value of the derivative. It is therefore advisable 
in a F F D calculation of derivatives to perform a convergence study 
to choose the correct perturbation size. In the example presented in 
Chapter 9, the perturbation sizes will be chosen based on the F F D 
convergence results plotted in the charts presented in this section. 

• It is believed that all of the sensitivity equations derived by direct dif­
ferentiation in this section can be trusted to provide reliable sensitivity 
results for use in reliability analysis. 
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7.5 Conclusions 

This Chapter described the essentials of the implementation of the crack 
propagation model for the purposes of stochastic analysis. This computa­
tionally efficient and stable procedure is based on load history preprocessing 
by the P R E F F A S method, simulation of crack growth with an update of the 
stress intensity factors by a structural analysis using the Extended Finite 
Element Method, and on an accurate and robust integration of the life under 
fatigue crack propagation. 
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Chapter 8 

Distributed Computing 

8.1 Introduction 

In the calculation of response derivatives by the finite difference method, in 
the search for an optimal size of the step to take in the minimisation algo­
rithm of reliability approximation methods and in Monte Carlo simulation, 
it is necessary to obtain several structural responses at a time. 

If one has multiple networked computers available, distributed comput­
ing can be put in place so that the individual structural responses needed 
at a time can be computed in parallel. In such application, we deal with 
distributed computing, where a full but not extraordinarily large analysis is 
executed on a machine, as opposed to parallel computing. The latter com­
putational method is used for the analysis of large systems, e.g. a parallel 
solution of a particularly large matrix, and requires parallel solution routines 
to be implemented within the analysis code. 

On the other hand, all that is required for distributed computing is the 
possibility of remote execution of code in the networked system and the 
analysis software installed on each of the nodes (machines) in the system, 
with sufficient licenses available for the number of jobs to be executed. With 
commercial finite element packages, the latter condition can turn out to be 
prohibitively expensive. 

The distribution of the computational tasks can advantageously be man­
aged by a job distribution software. Alternatively, scripts written in Perl or 
other scripting language can also be used to control the remote job execu­
tion. 

131 
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8.2 Computational Resources Available 

The author had the opportunity to use for the purposes of this thesis 
the computational cluster, available at the Institut Frangais de Mecanique 
Avancee (IFMA) in Clermont-Ferrand. The cluster is built of I B M personal 
computers installed in a single rack. It consists of one master and 27 slave 
nodes running under Linux, each of which has two hyper-threaded X E O N 
bi-processors. A l l in all, 108 virtual processors are available, which makes it 
possible to run 108 computations at the same time. The OpenPBS platform 
was used for job submission and control. The implementation of distributed 
computing was further facilitated by mirroring of the user directories to each 
and all of the slave nodes. 

8.3 Implementation 

The jobs actually submitted to the individual nodes for execution were U N I X 
scripts, which involved changing to the appropriate directory, calling the 
analysis, moving the files with the necessary results to the target directory 
and deleting the results not needed. These local execution scripts were in 
turn created by a master script written in Perl and launched from within 
the crack propagation simulation run in Matlab. The control of execution 
of the individual analyses was based on directory names involving a unique 
numerical identifier of the job. 

The overall computation was steered by a Matlab code, cf. Fig. 8.1. 
The crack growth prediction with the stress intensity factor (SIF) being ex­
trapolated from previous finite element ( X F E M ) results (see Section 7.2) 
takes place in a single Matlab run for all of the required response calcula­
tions. Once that all of the crack growth simulations require an update of the 
SIF by an X F E M analysis (crack increment exceeds AO-FE), Matlab invokes 
the master script mentioned above that takes care of the execution of the 
X F E M analysis for all jobs in which failure has not yet occurred. Finally, 
when all of the crack growth simulations have reached failure, the fatigue 
life is integrated within the Matlab run. 

At this point, we note a very significant advantage of the Extended 
Finite Element Method in distributed computation. The geometry of all 
discontinuities is defined in an ASCII file. This file is read by the X F E M 
code, while the same mesh file is used for all of the computations. 

Note also that the same master script is called also when reliability anal­
ysis is carried out by means of Monte Carlo simulation. The Matlab script 
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allows for dividing the simulations into batches of the maximum number 
of jobs that can be taken by the system simultaneously. However, when 
using OpenPBS, splitting into batches is not necessary. The jobs are simply 
waiting in a queue for the slave nodes to complete the execution of pending 
jobs. 

8.4 Conclusions 

Distributed computing can make affordable many reliability analyses involv­
ing high computational effort. As in the current application, the individual 
machines do not need to have any particularly high performance. Connect­
ing multiple P C workstations commonly available in many laboratories and 
firms into a network can be sufficient, provided that enough licenses are 
available for the structural analysis code. Under Unix and Linux operating 
systems, tools such as job distribution management, directory mirroring and 
scripting languages are available, which greatly simplify the implementation 
of distributed computing. 
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Figure 8.1: T/ie architecture of distributed computing 



Chapter 9 

Application Examples 

9.1 Introduction 

In this Chapter, we finally put to work the techniques, procedures and anal­
ysis approaches proposed and developed in this thesis. Two stochastic crack 
propagation examples are presented in this chapter. They both consider 
a problem of a crack plate subjected to variable amplitude fatigue load­
ing. These examples are a demonstration of a full implementation of the 
approach proposed earlier in this thesis, including distributed computing. 

In the first example, the conversion of the variable amplitude loading to 
constant amplitude loading through P R E F F A S and the crack propagation 
simulation are separated. This allows us to study the randomness in the 
material parameter bjj entering into the P R E F F A S conversion algorithm. 
In the crack propagation simulation, the loading is considered determinis­
tic. By running the two examples, we will have an opportunity to compare 
the reliability results obtained when loading is considered deterministic and 
when the procedure is applied in full scope, integrating also the P R E F F A S 
load transformation and the random variables entering into it. 

Within the first example, we will also compare the reliability results 
obtained when forward finite difference (FFD) method and direct differen­
tiation method (DDM) are combined to calculate the response derivatives 
with results coming from a purely F F D calculation. 

The two examples also have a different geometry. The first considers a 
problem with two cracks, the second with four cracks. For convenience, a 
procedure was developed to set the geometry of a plate with holes and cracks 
just by changing the control parameters. This of course does not preclude 
applying the crack propagation algorithm to other 2D geometries. 

135 
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9.2 First Example 

9.2.1 Problem Description 

In the first example, we will consider a two-dimensional problem of propaga­
tion of cracks in a plate containing two holes, from which two cracks depart, 
facing each other, see Figure 9.1. 

a=70 MPa, R=0.2 
7|\ /|\~ /jT/J\~/j\"/j\"/j\ "| /J\ 7|\ /j\ ~f ~f~f 

r=10 mm 

1 

di=40 mm 

7 / / / / / / , 

A 

c 
CO 

\/ 

6=90 mm 

Figure 9.1: Geometry of the problem - example 1 

The plate is constrained for both rotational and translational degrees of 
freedom along its bottom edge and a uniformly distributed traction loading 
is applied along the top edge. 

9.2.2 Statistical Scatter in b, 

In a first step, we will study the randomness in P R E F F A S , focussing on 
the statistical scatter of the material parameter bjj of Elber's crack closure 
model, cf. Eq. 2.23. 
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Figure 9.2: Finite element mesh - example 1 

The parameter bjj can be determined as decribed in Section 2.6.4 when 
the crack grow retardation rate TR and the Paris law exponent m are known. 
The statistics of m were estimated from the Virkler's experiments. Due to a 
lack of experimental data on T R , we will assume a uniform distribution over 
the range of values indicated by Davy [21] on the basis of a scatter within 
a single set of crack propagation experiments (with and without overload). 
The statistics of TR and m are shown in Table 9.1. The correlation coefficient 
of T R and m is 0 .427 and can thus be neglected as weak. 

variable type parameter 1 parameter 2 
TR uniform min. 6.5 max. 16.0 

m normal mean 2 .8553 st.dev. 0 .1658 

Table 9.1: Statistics of the Paris law exponent m and the crack length re­
tardation rate TR 

A simulation using the statistics in Table 9.1 yields a sample of by values. 
Its estimated statistics are shown in Table 9.2. A Chi squared test showed 
that the distribution of bjj can be considered normal. 
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Figure 9.3: Reliability index ßuh 

variable type mean st. deviation 
bu normal 0.5562 0.0215 

Table 9.2: Estimators of the statistics of the parameter bu 

Together with the scatter in m, the statistics in Table 9.2 result in a 
coefficient of variation of the equivalent load stress aeq of only about 8% 
when simulations are performed using P R E F F A S . 

9.2.3 Fatigue Crack Growth Simulation 

The only variables considered random in this example were the two initial 
crack lengths an and aj2, and the Paris law parameters C and m. Their 
statistics are given in Table 9.3. 

A deterministic constant amplitude sinusoidal loading between a mini­
mum of 14 M P a and a maximum of 70 M P a was applied to the structure 
(Fig. 9.1) and fatigue crack propagation was simulated using the procedure 
described in Chapter 7. The value of the fracture toughness entering into 
the fhysical failure criterion, cf. Eq. 6.4, was 1100 MPa^/mm. 

The finite element mesh used is shown in Figure 9.2. Discontinuities 
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Figure 9.4: Design point u* (DDM) 

variable distribution type mean std. dev. correlation 
Ojl, aj2 i.i.d. exponential 1.5 1.5 
logC normal -26.056 0.972 -0.99759 
m normal 2.855 0.166 -0.99759 

Table 9.3: Statistics of the random variables of the crack propagation model 

(both the holes and the cracks) were introduced in the model through the 
Extended Finite Element Method techniques (see Section 3.4) implemented 
in the software ELFE_3D [46]. The size of the elements in the central zone 
where the cracks propagate (see Figure 9.1), was 0.4 mm. 

The improved H L - R F algorithm was used for the search of the design 
point [101]. 

The convergence of the design point search in F O R M is tested against 
two criteria. The first one is a criterion on the limit state function value: 

ßi 
G_ 

(9.1) 

where GQ is the limit state function value in the first iteration step. 
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Figure 9.5: Design point u* (FDM) 

The second criterion tests whether u is parallel to the normalised gradi­
ent of G, whose components are the sensitivities at the design point, denoted 
a. Involving a dot product of vectors, the expression 

e2 = | |u — a T u a | | (9-2) 

will tend to zero as u and a are becoming parallel. The value returned by 
Eq. (9.2) depends on the size of u . In fact, one computes a dot product of 
a unit vector with a vector of the size of ||u||. By normalising the resulting 
value of Eq. (9.2) by the size of ||u||, the criterion becomes independent of 
the probability of failure: 

llu — a T u a | | 
e 2 = ^ 1 1 . (9.3) 

Setting the convergence criteria to e\ = 0.05 and e 2 = 0.1, convergence 
was achieved after only 3 to 4 iterations. These rather relaxed convergence 
criteria lead to some inaccuracy in the design point coordinates u* in the 
standard normal space, as documented by the differences between u* found 
with F D M and D D M estimation of gradients, respectively - cf. Figures 9.4 
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Figure 9.6: Sensitivity of (3HL to the correlation of C and m 

and 9.5. But as it can be seen in Figure 9.3, the values of the reliability 
index (3HL obtained by the two methods are almost identical. 

Figure 9.9 shows the reliability weights of the individual random vari­
ables expressed in terms of the importance factors 7, applicable in the case 
of correlated random variables. The 7 factors have been defined in Sec­
tion 4.5.2. 

It can be seen in Figure 9.9 that with increasing required service life 
N$ and hence with increasing probability of failure, the weight of the initial 
crack sizes falls off while the Paris parameters C and m rise in importance. 

A further observation regarding Figures 9.4, 9.5 and 9.9 is that at low 
N$ and hence low probability of failure, the effect of the initial crack size is 
predominant. Note that in all configurations considered, 0 2 was the leading 
crack at the tip of which the failure actually occurred. 

A n important result is documented in Figure 9.6. It shows the sen­
sitivities of the reliability index (3HL to the correlation between the Paris 
parameters InC and m. Comparing the sensitivity values in Figure 9.6 with 
sensitivities to the means and standard deviations plotted in Figures 9.7 
and 9.8, one can see that the correlation coefficient has a significant effect 
on the reliability. This also explains why it was observed in Section 6.2 that 
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Figure 9.7: Sensitivity of (3HL to the means of the variables 

the scatter in the fatigue propagation life could not be reproduced with a 
statistical model considering only one of the parameters C and m random 
and the other functionally related. Note that in the study presented in Sec­
tion 6.2, the effect of p\ncm was even greater since C and m were the only 
random variables. 

The differences between the sensitivities calculated from the reliability 
analysis results obtained with F D M and D D M estimation of gradients, re­
spectively, are due to inaccuracies in the design point coordinates, which are 
in turn caused by the rather relaxed convergence criteria. 

Figures 9.7 and 9.8 show the normalised sensitivities with respect to the 
the means and standard deviations of each random variable. It can be seen 
that the effects of the individual variables, in particular of the length of the 
leading crack, evolve with the required service life N$- It appears that at 
low Ns, the reliability index is highly sensitive to the standard deviation of 
the length of the leading crack. On the other hand, at high Ns, it is the 
mean value of the Paris law parameters that are predominant. 
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9.3 Second Example 

The second example presents a full implementation of the proposed algo­
rithm integrating the load transformation by the P R E F F A S method into the 
overall crack propagation simulation algorithm. The purpose is to demon­
strate the use of the algorithm on an example that shows the complexity of 
a real crack propagation problems in the aerospace industry. 

Tffi Fiffi 
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ar2 

<h 
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a,4 

Figure 9.10: Geometry of the problem - example 2 

9.3.1 Problem Description 

In this example, we will consider a two-dimensional problem of propagation 
of cracks in a plate containing three holes, from which four cracks depart, 
facing each other, see Figure 9.10. 

The plate is constrained for both rotational and translational degrees of 
freedom along its bottom edge and a uniformly distributed traction loading 
is applied along the top edge. The load history is input as a sequence of 
peaks and troughs. This may be a standard loading sequence applicable to 
the structure in question. For example the aerospace industry standards 
prescribe specific load histories for particular components and structures of 
the aircraft. 
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9.3.2 Input Parameters and Variables 

As regards the geometrical parameters, only the initial crack sizes an to 
a,4 are considered to be random variables. In line with common practice, a 
lognormal probability law is used, an to an are identically distributed, but 
independent. In a real application, their statistics would be derived from 
experiments, using Bayesian updating where information is limited. Here, 
no such data collection and evaluation was carried out and the statistics are 
just some reasonable values, not grounded by actual data. 

In other calculations not documented in this thesis, the cracks were mod­
elled as starting from a point on the circular hole given by a line running 
from the hole centre at an angle from the horizontal line. The cracks were 
initially oriented in the same angle. These angles were considered as in­
dependent random variables for each crack, with zero mean. However, the 
crack propagation life appeared to be rather insensitive to this angle. In 
fact, the cracks immediately regained the direction of propagation governed 
by the surrounding stress field. 

Other geometrical parameters, including the horizontal and vertical spac­
ing of the holes d\ and d®, respectively, the dimensions b and h of the plate, 
its thickness, as well as the radius of the holes r were treated as deterministic 
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parameters. 
None of the material properties has as much effect on the crack propaga­

tion life and at the same time as much dispersion as the parameters of the 
Paris law. On the basis of the investigations carried out in Section 6.2, a 
statistical model of joint normally distributed m and In C (for the two Paris 
parameters C and m) was employed. 

The amplitude characteristic of the applied stress oy and the toughness 
Kcr, whose derivatives can be obtained without recourse to finite differences, 
were also considered as random variables. ay is actually the multiplier 
applied onto a standard peak-valley sequence as may be applicable by a 
standard for the given component and environment. ay was represented by 
normal distribution and Kcr was modelled as log-normally distributed. 

The last random variable considered in the statistical modelling for this 
example problem was the material parameter by, which enters together 
with the Paris exponent m the load sequence transformation algorithm of 
the P R E F F A S method. Its statistic distribution parameters have been de-
termnined in the example above (Section 9.2) and will be reused here. 

In summary, the variables considered random are the initial crack lengths 
aj, logarithm of the Paris law factor In C , the Paris exponent m, the applied 
stress ay, the toughness Kcr, and the material parameter by of the P R E F ­
FAS method. Their statistics are listed in Table 9.4. 

For discusion on the high and precisely given negative correlation coef­
ficient between InC and m, see the discussion in Section 6.2. 

variable distribution type mean std. dev. cor r el. 
Cli lognormal 1.5 0.3 -

InC normal -26.056 0.97165 -0.99759 
m normal 2.8553 0.16584 -0.99759 
K lognormal 1100 110 
OL normal 50 7 -

by normal 0.56 0.02 

Table 9.4: Statistics of the random variables of the crack propagation model 

9.3.3 Solution Methods 

This example demonstrates the computational procedure for probabilistic 
analysis of crack propagation problems put forward in the preceding chap­
ters. 
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iteration 

Figure 9.12: Convergence criteria. 

The reliability problem with the limit state function defined by equation 
(6.6) is solved by the First Order Reliability Method (FORM). Whenever 
F O R M requires a calculation of the response, the loading sequence is trans­
formed by the P R E F F A S method (Sec. 2.6.3) to the equivalent constant 
amplitude loading using the variable values passed by F O R M . 

The crack propagation simulation procedure is then executed as de­
scribed in Chapter 7, with distribution of computational jobs outlined in 
Chapter 8 and with the mechanical response computed by the Extended 
Finite Element Method (Sec. 3.4), using the software ELFE_3D [46]. The 
crack propagation area is meshed with a rectangular mesh with an element 
size of 0.3 mm. Figure 9.3 shows a detail of the finite element mesh. Sen­
sitivities of the life under fatigue crack propagation are computed by direct 
differentiation (see Section 4.4.1) where possible, and otherwise by the for­
ward finite difference method. The convergence criteria used are the same 
as those introduced above in Eq. (9.1) and Eq. (9.3). 

9.3.4 Results 

The analysis was run first with a mesh size of 0.5 mm in the crack propa­
gation zone. Because of slow convergence on the criterion e2, the mesh was 
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Figure 9.13: Variable values in standard normal space through the iterations. 

refined with a hope that convergence will be faster. However, the difference 
was not very important and the little increase in the speed of convergence 
was paid for quite expensively by extra computational time. The history of 
the convergence criteria through the iterations of the F O R M design point 
search is shown in Fig. 9.12 for the mesh size of 0.3 mm. 

The values of the individual random variables in the standard normal 
space, i.e. the coordinates of the design point in the iterations of the design 
point search, are plotted in Fig. 9.13. In both Fig. 9.12 and Fig. 9.13, it 
can be seen that from the fourth iteration on, the values are quite stabilised 
and only a slow improvement in the e2 criterion is achieved at the expense 
of deterioration in the e\ criterion. 

The Hasofer-Lind reliability index, see Section 4.3, was J3HL = 7.55, 
which corresponds to a F O R M probability of failure of 2.25 • 1 0 - 1 4 . This is 
a very low probability and the fact that the design point search converged 
demonstrates the robustness and stability of the developed procedure. 

However, we have relied on F O R M only and it would be judicious to 
use the importance sampling simulation procedure in order to confirm the 
probability of failure and the inexistence of another design point. 

Fig. 9.3.4 plots the importance factors 7. It can be seen that the material 
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trailing crack 

Figure 9.14: Importance factors 7 - example 2 

parameters C and m of the Paris crack propagation law have by far the 
highest potential to contribute to failure or survival of the structure. About 
four times lower is the effect of the third most important variable - the 
amplitude characteristic of the loading O~L - followed by another material 
parameter - the bjj parameter of Elber's model used to convert the variable 
amplitude loading to an equivalent constant amplitude load. 

The dominating importance of the material parameters governing the 
crack propagation rate suggests that only minor improvements in reliability 
can be achieved if one does not play on the material. But this may not be a 
feasible option, especially not in the case of a study of crack propagation in 
an existing structure. The third most important variable is the amplitude of 
the applied stress. It could therefore make sense to implement measures such 
as diverting the stresses from the cracked site by adding stiffness elsewhere. 

It must be noted that the importance weights of the variables as shown 
in Fig. 9.3.4 are calculated for the current problem with given statistical 
model. The importance weights of each variable could look different if also 
other parameters were a part of the model. A n example are the hole dis­
tances. Also, if real statistics of the initial crack lengths were used, their 
importance could also change. The same could be true also for the Elber's 
material parameter bjj if more statistical information on this parameter were 
available. On the same token, the importances of the variables would be also 
different if the minimum required service fatigue life N$ was different. 
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9.3.5 Discussion 

Because of the novelty of the stochastic crack propagation analysis approach 
proposed in this thesis, the successful implementation and good functioning 
of the analysis procedure is probably more important to discuss than the 
specific values of the results. 

Once the building blocks of the stochastic analysis procedures had been 
set out, the implementation of the entire procedure was a process in which 
various algorithmic challenges, interfacing problems and numerical difficul­
ties had to be overcome. The results listed above were produced without 
encountering any errors that would interrupt the execution of the procedure 
or have an effect on the correctness of the results. And they were obtained 
in a quite reasonable time. The procedure was run also on a single processor 
P C and the computation was completed in about 10 days. 

The above reliability analysis example has demonstrated the accuracy, 
efficiency and robustness of the proposed approach to stochastic analysis 
of complex two-dimensional crack propagation problems. After a relatively 
minor adaptation to other definitions of cracks than those departing from a 
hole, the procedure is ready for analysis of wide range of practical 2D crack 
propagation problems. 

Figure 9.15: Mesh with integration sub-elements and displacement results. 
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9.4 Concluding Remarks on the Examples 

Unlike in the first example, loading was studied in the second example as an 
integral part of the analysis procedure, which allowed us to model the load 
amplitude parameter OL and the material parameter by of P R E F F A S load 
transformation algorithm as random variables. 

Comparing the importance factors in Fig. 9.9 and Fig. 9.3.4 makes it 
apparent that by including the loading in the analysis, a different picture 
about the significance of the variables for reliability is drawn. As a mat­
ter of fact, the loading amplitude comes out as the third most important 
variable for the probability of failure. This illustrates how reliability results 
depend on appropriate modelling of the problem. In practical analysis, the 
uncertainty about any variable should not be disregarded until a sensitivity 
analysis has been carried out. 

The Paris law exponent m enters also into the load transformation by 
P R E F F A S . One could therefore attribute a part of the sensitivity to the Paris 
law parameters to the fact that they influence the reliability also through 
the loading. However, such intermediated influence is probably not high. 
Remember that in the first example, we have found only a small coefficient 
of variation for the transformed loading when only m and the the crack 
grow retardation rate T R were considered as the random variables in the 
load transformation algorithm. 

Note also that InC and m are highly correlated, so any one of them 
cannot have a high significance for reliability without the other one being 
about the same important as well. 

The first example focussed on specific aspects: (1) studying the random­
ness in the load tansformation through the P R E F F A S method, (2) assessing 
the performance of and comparing the results obtained when using the fi­
nite difference method (FDM) and direct differentiation method (DDM) in 
the calculation of the gradients of the limit state function, (3) studying the 
evolution of the importance of the variables with the required fatigue service 
life and the probability of failure. 

The purpose of the second example, on the other hand, was to demon­
strate a full implementation of the proposed algorithm on an example of an 
industrial-level complexity. 

The first example was calculated on the computational cluster described 
in Section 8.2 using distributed computing. The stochastic crack propaga­
tion analysis was complete in about 40 hours. The second example was 
calculated on a single P C with a 1.4 MHz processor and 1GB of R A M . 15 
interations of the design point search algorithm were complete in about 10 
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days. This shows the versatility of the procedure that is capable of using the 
distributed computing technology, but can be run on a single P C as well. 

The examples show that the proposed procedure to analyse stochastic 
fatigue crack propagation is solid and effcient and that it can be useful for 
industrial applications. 



Chapter 10 

Conclusions 

This thesis had a double objective, corresponding to a differing research 
focus of the two research groups within which the author conducted his 
doctoral research under joint direction of his two tutors. In this closing 
chapter, we will not only discuss the results and contributions of the thesis, 
but it will also become apparent that lessons learnt in one part of the research 
came useful in the other, and vice-versa. 

The Czech part of the research focused on investigation of through cracks 
in very thin foils with the objective to verify the hypothesis that the observed 
anomalous behaviour of such cracks can be explained by the stress conditions 
around the crack front determined based on continuum mechanics. The 
author reviewed the theoretical bases of the concepts commonly used in 
fracture mechanics to understand their applicability to problems with special 
geometries, such as the one of thin foils. A detailed numerical investigation 
of the stress conditions along and around the crack front was then carried 
out. This carefully elaborated 3D finite element models of through cracks 
in thin foils revealed some trends in the evolution of the stress field as 
the sheet metal becomes thinner. But none of the kind that would offer 
any explanation for the anomalous behaviour observed in fatigue tests on 
cracked thin foils. 

Despite the fact that the above hypothesis appeared ungrounded, this 
research was also useful per se in that it help the author to fully appreciate 
the assumptions behind two-dimensional fracture mechanics models as well 
as behind two-dimensional crack propagation models. 

The larger part of the thesis, which also brings an original contribution, 
deals with numerical modelling and stochastic analysis of complex-geometry 
crack propagation problems. This computational task requires a huge com-
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putational effort together with a good accuracy in the numerical mechanical 
model. 

At the same time, the life under fatigue crack propagation is known to 
show an extraordinary amount of scatter. The computational requirements 
arising when a numerical mechanical model needs to be used have long 
prevented engineers from taking the advantage of reliability analysis to gain 
a better understanding of problems such as inspection scheduling and crack 
repair design evaluation. 

By employing several computational and analysis techniques, a stochas­
tic crack propagation analysis procedure was developed in this thesis which 
makes it possible to conduct a reliability analysis of the problem with rea­
sonable computational resources, while retaining the necessary robustness 
of the procedure. 

Let us summarise the reasons that lead to the choice of the specific anal­
ysis methods that make up the important building blocks of the reliability 
analysis procedure and highlight the contribution of each. 

The First Order Reliability Method (FORM) was chosen as the reliabil­
ity analysis tool. It appeared that the problem analysed showed no impor­
tant non-linearity. A first-order approximation of the limit state function 
was thus sufficient. F O R M directly provides information on sensitivities. In 
comparison to Monte Carlo simulation, F O R M is more demanding as regards 
the accuracy of the structural response computed. But is does not require 
the mechanical model to compute responses with very low-probability reali­
sations of the random variables. These may lead to a different type of failure 
than the one actually analysed. F O R M thus helps to contain the problem 
within the actual problem of interest. 

For the class of problems of interest in this thesis, i.e. two-dimensional 
crack propagation problems involving crack-crack and crack-structure in­
teractions, a solution of the underlying fracture mechanics problem by a 
numerical method becomes necessary. A classical finite element formula­
tion requires updating the finite element mesh as the crack is growing. 
This requires highly performing meshing algorithms. But more importantly, 
remeshing introduces numerical noise which can easily hamper the conver­
gence of the F O R M reliability algorithm. The accuracy achievable with the 
finite elements that is quite satisfactory for deterministic purposes may at 
the same time be simply insufficient for the reliability approximation meth­
ods, such as F O R M . 

It was then natural to look for a numerical method that would be bet­
ter performing for the purposes of reliability analysis of crack propagation 
problems. The Extended Finite Element Method ( X F E M ) avoids remeshing 



155 

and offers a good numerical stability. As compared to meshless methods, 
which were also explored, X F E M is faster. Also, it builds on the finite ele­
ment method, so the computational technology developed for finite elements 
remains available also for X F E M . 

The F O R M algorithm requires the computation of the derivatives of the 
response. Obtaining them by numerical differentiation is time consuming 
and introduces numerical errors. This thesis therefore explored possibilities 
to calculate the response sensitivities by directly differentiating the response 
equation. Several useful formulae were thus derived and used in the analysis 
algorithm. However, the response derivatives with respect to some variables 
can only be obtained by employing numerical differentiation by the finite 
difference method. 

The author also had the opportunity to use a cluster of personal com­
puters. This network of relatively inexpensive machines running Linux op­
erating system with the OpenPBS distributed computing utility appeared 
to be perfectly suited and easy-to-use for reliability analysis purposes. The 
distribution of the computations of the structural response brought a further 
acceleration of the whole reliability analysis procedure. 

The implemented procedure appeared capable to analyse a stochastic 
crack propagation problem, with a complexity at the level of an industrial 
application, with robustness, accuracy and reasonable requirements on com­
putational hardware and time. After minor modifications to accommodate 
other definition of crack departure than from a hole, the procedure is ready 
to be applied on a wide range of complex-geometry two-dimensional crack 
propagation problems. 

The extensibility of the method is limited mainly by the use of the stress 
intensity factor (SIF) as both the crack growth driver (trough the Paris law) 
and the failure criterion. As the fracture mechanics theory review in the first 
part of the thesis exposed, SIF is defined for two-dimensional problems. This 
fact would require a substantial re-formulation of the procedure, should it 
be extended to three-dimensional problems. On the other hand, X F E M has 
been successfully employed also in 3D crack propagation applications. 

The part of the thesis dealing with stochastic crack propagation mod­
elling also shed a different light on the problem of crack propagation in thin 
foils, investigated earlier in the thesis. It appeared that this phenomenon 
has much to do with the microstructure of the material. Correlating the 
average crack advance to the general level of stress around the crack, as in 
the Paris law, and stochastic modelling can perhaps be more successful in 
capturing the random effects of the material structure. 



CHAPTER 10. CON CL USIONS 



Appendix A 

Fracture Mechanics 
Complements 

A . l Relation between the Energy Release Rate 
and the Stress Intensity Factor 

Consider a crack with a length a in state 1, which grows to length a + A a 
in state 2 along the straight line of a. The states will be denoted by left 
superscripts. The two crack lips of the crack extension A a will be denoted 
TAa and will have their outward normals n + and n~ coinciding with the 
unit vectors ei and e 2 , respectively. Considering that the tractions in state 1 
effectively close the crack over A a , the geometries of state 1 and state 2 are 
the same and Betti's theorem can be invoked, subject to assuming linear 
elasticity [48]: 

Note that 2 Tj is zero on T^a. The integrals over <9f2 and T^a, respectively, 
are separated: 

(A. l ) 

(A.2) 
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Under constant loading, 2 Tj - 1Ti = f ^ A a , and 2Ui - 1ui = ff-Aa. Substi­
tuting this into (A.2), we have: 

'T^uids = [ f ^ U i - T ^ ) Aads, (A.3) 
r A a Jan \ da da J 

where we recognise the form of equation (2.5) in the right hand side. There­
fore: 

GAa = - \ t Vmds. (A.4) 2 

Let us now write the traction Tj and displacements Ui on the upper (+) and 
lower (-) crack face over T&a with the polar coordinate system used for the 
in-plane stresses. For the upper face: 

lTf = 1aijn+ = ( - V 0 r e i - V ^ e 2 - V 2 3 e 3 ) (r = x, 9 = 0) 

2Ui = ( 2 t t i e i + 2u2e2 + 2u3e3) (r = A a - x, 9 = ir). (A.5) 

For the lower face: 

1T~ = 1aijn~ = ( V ^ e i + 1aeee2 + V 2 3 e 3 ) (r = x, 9 = 0) 
2 t t i e i + 2 u 2 e 2 + 2u3e3) (r = A a - x, 9 = ir). (A.6) 2„ Ui 

When the expressions for stresses and displacements given in Subsec­
tion A.2.2 are inserted in (A.4) using (A.5) and (A.6) - see [48] for details 
- we obtain the Irwin's formula: 

G = ^ 1 T , ̂  ds = -^-{Kj + Kfj) + -^-Kfn . (A.7) 

A.2 Crack T ip Stress Field Expansion 

A.2.1 Airy's Stress Function 

Equilibrium and Compatibility Equations 

Consider an element subjected to stresses as in Figure A . l . Assuming zero 
body forces, the following equations must hold for the stresses to be in 
equilibrium: 

do~Xx do~Xy Q 

dx dy 

dy dx 
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t avv + ^avv 

Or 

'XX ~ utJXX 

Or 

Or 

<Jyy t 

5ax 

Sy 

Sx 

Figure A . l : Stress equilibrium 

Equations (A.8) are fulfilled identically, if the components of the stress tensor 
are expressed using Airy's stress function $: 

a •ni 

_ d2$ 

dy2 ' 

dxdy ' 

d 2 $ 
w gX2 

The identities are easy to see, e.g.: 

dx + 
do •ni <93$ <93$ 
dy dy2dx dy2dx 

0. 

(A.9) 

(A.10) 

Continuity of deformations is ensured by requiring the compatibility equa­
tions to be fulfilled. Again, assuming zero body forces, and writing the 
compatibility equations in stresses, they read: 

( d2 d2\, 

If the function $ is bi-harmonic, i.e. if: 

0. 

V 2 V 2 $ = 0, 

then both equation (A.8) and equation (A.11) are satisfied. 

( A . l l ) 

(A.12) 
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The Laplacian V 2 

(A.13) 

After transformation to polar coordinates by substituting x = r cos 9 and 
y = rsin6>, it reads: 

A.2.2 Williams's Expansion 

Williams [97] presented a solution to equation (A.12) using an asymptotic ex­
pansion of the stress field with separation of the variables r and 9. Williams' 
solution is presented in the following. 

Solution to Differential Equation of the Problem 

A solution is to be found that satisfies equation (A.12) and the boundary 
conditions (see below). The solution is sought in a factorised form (with r 
and 9 separated). Considering the form of equation A . 14, a solution of the 
form 

will yield a convenient form of the results after the differentiation. K$ in 
equation A.15 is a proportionality factor applied to the stress distribution. 

Let us now insert equation A.15 into equation A.12. First, let us apply 
the Laplacian V 2 on $ the first time: 

Applying the Laplacian V 2 a second time on equation A.16, we arrive at: 

(A.14) 

d? = K*r2-Sf(9) (A.15) 

-r2-sf" + -(2 - ^ r 1 " * / + (1 - a)(2 - s)r~sf = 0 

[r-sf + ((2 - s) + (1 - s)(2 - s)) r~sf] = 0 

[r~sf" + (4 - 4s + s2) r~sf] = 0 . (A.16) 

r - 2 - Y ' " + r~2~s {4-4s + s2) /" 

+{-s)r-2-sf" + (4 - 4s + s2) f{-s)r-2~s 

+{s + s2)f" + (4 - 4s + s2) (s + s2)fr~2-s = 0 . (A.17) 

After arranging, we obtain: 

/ " " + 2 {s2 - 2s + 2) / " + s2(2 - s)2f = 0 . (A.18) 
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Unlike equation (A. 12), which was a partial differential equation, equa­
tion (A. 18) is a homogeneous ordinary differential equation, depending only 
on 6 . Moreover, it is linear and has constant coefficients. Such equations 
can be solved by an exponential function, looking for a solution in the form 
eke. 

However, when we consider the symmetry of the problem, solutions in the 
form of trigonometric functions can be used advantageously. In particular, 
symmetry of Mode I allows to use only cosines, looking for solutions in the 
form cos(k6). Antisymmetry of Mode II is represented by sines, with the 
solution sought in the form sin(kd). 

Let us now limit our attention to the symmetric problem of Mode I. 
Inserting cos(k9) into equation (A. 18), we obtain the characteristic equation: 

k4 cos(k9) - 2k2 (s2 -2s+ 2) cos(k9) + s2 (2 - s)2 cos(k9) = 0, 

kA - 2k2 (s2 - 2s + 2) + s2 (2 - s)2 = 0 . (A.19) 

Let us now explore separately two cases: where s / 2 and where s = 2. 

Characteristic Equation with s / 2 

First, let us consider the case where s ^ 2 when and the characteristic 
equation remains as in equation (A.19). It can be shown that k = s and 
k = 2 — s are solutions of equation (A.19). First, substituting s for k: 

s 4 - 2s2 (s2 - 2s + 2) + s2 (2 - s)2 = 0 , 
s 4 - 2s4 + 4s 3 - 4s2 + 4s2 - 4s3 + s4 = 0 , 

0 = 0. (A.20) 

For the other solution k = 2 — s: 

(2 - sf -2(2- s)2 (s2 - 2s + 2) + s2 (2 - s)2 = 0 , 

(2 - s)2 - 2 (s2 - 2s + 2) + s2 = 0 , 

4 - 4s + s2 - 2s2 + 4s - 4 + s2 = 0 , 

0 = 0. (A.21) 

Thus, the function f(9) in the factorised Airy's stress function $ in 
equation (A.15) has the form: 

f{6) = ci cos(s#) + c 2 cos [(2 - 8)6] . (A.22) 

To find the constants c\ and c 2 and the exponent in equation (A.15), we 
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Figure A.2: Crack tip field solution geometry. 

use the boundary conditions on the faces of the notch. The stresses perpen­
dicular to the notch face and the shear stresses on the notch face must be 
equal to zero: 

ore 

0, 
= 0. (A.23) 

Transforming the equations (A.9) into polar coordinates, we can express the 
stresses in terms of the equation (A.15): 

o~oe 

ore 

d2$ 
dr2 

i d2$ 

K*-(2-s)(l-s)f(0) 

r drdO 
-K*-(l-s)f'(0). (A.24) 

If the boundary conditions (A.23) are to be fulfilled, it is apparent that at 
the notch face, i.e. at the angle 9 = ir — a, the value of f{9) and its derivative 
f'(9) must be equal to zero (for a non-trivial solution). That is: 

c\ cos [S(TT — a)] + C2 cos [(2 — S)(TT — a)] = 0 , 

-c\s sin [S(TT — a)] — 02(2 — s) sin [(2 — S)(TT — a)] = 0 . (A.25) 

In matrix notation, the same equation (A.25) reads: 

[T] {c} = {0} , 
cos [S(TT — a)] 

-s sin [S(TT — a)] 
cos [(2 — s)(ir — a)] 

- ( 2 - s ) s i n [ ( 2 - s ) ( 7 r - a ) j 
Cl " 0 " 

. C 2 . 0 _ 
(A.26) 
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For non-trivial solution of equation (A.25), it must hold that the determinant 
of the matrix [T] is equal to zero. Putting |T| =0 , we obtain: 

— cos [S(TT — a)] (2 — s) sin [(2 — S)(TT — a)] 
+ssm[s(ir - a)] cos [(2 - s)(ir - a)} = 0 . (A.27) 

The roots of equation (A.27) are now the eigenvalues of the problem, which 
will yield the exponent in equation (A.15). They can be found by numerical 
methods, such as the interval bisection method. Based on physical consid­
erations, we look for values within the interval (0; 1) only. The eigenvalues 

0.5° 2° 5° 

Figure A.3: Plot of characteristic function for eigenvalues s and various 
notch angles a 

are listed in Table A . l for selected angles a. 

a 30° 45° 60° 
s 0.488 0.456 0.384 

Table A . l : Eigenvalues of equation (A.27). 

Plotting the function on the left side of equation (A.27) for several chosen 
notch angles a, one can see the locations of the roots of (A.27) in the interval 
(0; 1) - see Fig. A.3. 
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For a crack, which is here the special case of a notch when a = 0, s = 0 
is also a root. The constant stress term of Williams eigen-series expansion 
corresponding to s = 0 is known as the T-stress. 

It can be seen in Fig. A.3 that for notch angles a ^ 0, s = 0 is not a 
root of equation (A.27) and hence also not an eigenvalue of the matrix [T] in 
equation (A.26). Therefore, it appears that in case of a notch, the T-stress 
term does not exist. 

Characteristic Equation with s = 2 

In this case, the characteristic equation (cf. A . 19) will be: 

kA - 4k2 = 0 . (A.28) 

The four roots of this equation (A.28) are k\p = 0, £^4 = ±2i . Thus, the 
function f{9) has the form: 

f{9) = ci + c29 + c 3 sin(20) + c 4 cos(2(9). (A.29) 

Considering Mode I, the function f{9) must be even, which leads to a re­
duction of equation (A.29) to 

f{6) = ci + c2cos(2#). (A.30) 

From boundary conditions (A.23), f(9) and its derivative f'(9) must be 
equal to zero, i.e.: 

C l + C2 cos[2(-7r — a)] = 0 , 

c2sin[2(7r - a)} = 0. (A.31) 

Rearranging the equations (A.31) and replacing c 2 with the T-stress value 
T: 

T j^- + cos[2(vr - a)] J = 0 , 

T {sin[2(7r - a)]} = 0 (A.32) 

If these equations (A.32) are to be fulfilled for any notch angle a, then the 
T-stress T must be equal to zero. 

Thus, from a rigorous mathematical analysis of the problem as posed, it 
appears that the T-stress exists but in the case of a crack with zero initial 
opening angle. 
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A.3 Stress Behaviour along the Crack Front 

This section of the appendix presents the results of numerical investigations 
of the behaviour of the stress field along the crack front, i.e. from one face 
of the cracked body through its thickness to the other face. This study was 
motivated by observations made on cracks in thin metallic foils, which have 
an application e.g. in micro-devices, operating as switches at frequencies 
ranging from 1 Hz to as much as 1 MHz. The research was induced by the 
hypothesis that it is possible to explain some of the crack growth behaviour 
of cracks in thin metallic foils by classical linear elastic fracture mechanics 
(LEFM) methods. The relevant effects in terms of L E F M include in partic­
ular the variation of the fracture parameter along the crack front as a result 
of the influence of stress singularity at the crack front corner. For obvious 
simplicity reasons, these initial analytical investigations are limited to the 
case including an edge singularity and one corner singularity. To keep the 
discussion even simpler, only Mode I fracture is considered; mixed mode 
considerations, the problem is becoming much more complex. 

Before discussing the L E F M solutions, a note is made on the relevance 
of the present results for thin metallic sheets. Evidently, for L E F M to be 
applicable, it must be possible to reasonably assume that the body under 
investigation behaves as a continuum. In the literature (see e.g. Hadrbo-
letz et al. [37]), a marked effect of microstructure on the crack propagation 
path and behaviour has been reported in thin sheets. Hadrboletz et al. [37] 
characterise the nature of the behaviour by the dependence on the ratio of 
material grain size to the foil thickness. The grain size in rolled material is 
in the order of a few dozens /jm, while electro-deposited materials are very 
fine grained with grain sizes of just several /jm. Grain boundaries give rise 
to strain gradients. The results herein are thus relevant only for thin sheets 
where a continuum behaviour can be reasonably assumed with regard to the 
grain size to sheet thickness ratio. 

A.3.1 State of Stress in the Inner and Sheet Surface Regions 

It is tempting to discuss the state of stress in the sheet subjected to Mode I 
loading in terms of plane stress or plane strain domination. This may be 
correct in regions sufficiently distant from the crack corner point. However, 
due to the presence of the corner-type singularity, the stress and displace­
ment fields in the vicinity of the corner point are truly three-dimensional. 
This must be kept in mind when interpreting any numerical results. 
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A.3.2 Finite Element Modell ing 

In the finite element computations, the ANSYS [86] finite element code was 
used. A thin centre-cracked tension (CCT) specimen was considered with 
breadth 2W = 10 mm, width 2H = 65 mm, crack half length a = 2.5 mm. 
The model was loaded with a uniform tension of 10 M P a along the edge 
y = W/2. Three thicknesses 50 //m, 150 //m and 250 /im were considered. 
Due to symmetry, only 1/8 of the specimen needed to be modelled. 

20-noded iso-parametric brick elements were used. In the planes per­
pendicular to the crack front, the finite element model had a typical fan 
arrangement of quarter-point elements around the crack tip, and the same 
geometry persisted throughout the thickness. The size of the first element 
at the crack front in the direction of the crack face was 3 /im. The individ­
ual layers of elements along the crack front had varying thicknesses, with 
the first five element layers being 3 / im thick and the next two layers 5 /im 
thick. The number of elements was 7462 in case of the 250 /im thick model. 
In addition, a smaller portion of the 50 / im model was discretised with a 
finer mesh to allow for better capturing of the stress distribution in the di­
rection of the thickness. Here, the thickness of the first three element layers 
was only 1 /im. This reduced-size model (with a total of 13320 elements) 
was loaded with displacements obtained from the coarser-mesh model and 
applied at the respective nodes. 

Fig. A.4 shows the results of a study of solution convergence with mesh 
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Figure A.5: SIF fitted from stresses 

refinement on the 50 /jm thick specimen. The size of the first element at the 
crack front in the direction normal to the crack front was 3 /jm in case of the 
mesh denoted "coarse" in Fig. A.4 and 1 /jm in the other two cases, which 
differ from each other by the element size in the crack front direction. This 
was 3 /jm in case of the mesh denoted as " 1 s t refinement" and 3 /iin in case 
of the " 2 n d refinement". The plot still shows some convergence problems at 
the crack face even with the " 2 n d refinement", so even a finer mesh may still 
be needed to achieve trustable results. 

Using quarter-point elements at the crack tip, a l /y^- type stress singu­
larity is imposed [5]. In terms of the corner - edge singularity concept, no 
incorrect singularity is imposed as the order of singularity along the edge 
remains 1/2. The corner singularity is not explicitly modelled. 

A.3.3 Computational Results 

The global energy method (see paragraph 3.7.2) is used to obtain an asymp­
totic value of the SIF as a reference for other results. The SIF values com­
puted are given in Table A.2. As expected, the values of SIF in Table A.2 
are nearly the same for all thicknesses considered. 

Figures A.5, A.6 and A.7 show the distributions of SIF obtained by fitting 
from stresses perpendicular to the crack face using least squares and fitting 
from crack opening displacements (see paragraph 3.7.1). In Fig. A.8, the 
SIF values obtained by the various methods are compared on the example 
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Figure A.6: SIF fitted from displacements under assumption of plane strain 

Thickness 50 /an 150 /im 250 /im 
SIF [PaVmmj 3.34 • 107 3.23 • 107 3.33 • 107 

Table A.2: Global SIF values 

of the 50 /jm thick specimen. 
Table A.3 lists the averages (weigthed by element length) along the crack 

front of the values of SIF computed using the various methods considered 
and plotted in Figs. A.5, A.6 and A.7. 

Thickness 50 /im 150 /an 250 /an 
Ingraffea & Manu [41], pi. strain, Fig. A.6 3.54 • 107 3.56 • 107 3.57 • 107 

Ingraffea & Manu [41], pi. stress, Fig. A.7 3.11 • 107 3.13 • 107 3.14 • 107 

Stress fitting, Fig. A.5 3.44 • 10 7 3.44 • 10 7 3.46 • 10 7 

Table A.3: Averaged SIF values in [Pa^/mm] for results plotted in Figs. A.5, 
A.6 and A.7 

In Fig. A.9, the stresses perpendicular to the crack face in the vicinity of 
the crack front are plotted using the F E M results obtained with the finest 
mesh considered. 
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A.3.4 Discussion of the Results 

It can be seen in Fig. A.8 that throughout the specimen thickness, SIF values 
fitted from stresses lie between the values of the displacement fit obtained 
under the assumption of plane strain and plane stress, respectively. This 
could suggest that the actual behaviour is somewhere between plane strain 
and plane stress. 

In Figs. A.5, A.6 and A.7, the SIF values converge to about the the same 
value as the specimen mid-thickness is approached (these asymptotic values 
somewhat differ optically in Fig. A.5, but the actual difference is within a 
2 % tolerance). A l l of these asymptotic values are within about a 10 % 
deviation range from the "global" SIF values in Table A.2, obtained by the 
method described in paragraph 3.7.2. 

The results in Figs. A.5, A.6 and A.7 seem to suggest that the surface 
corner point does not effect some region of a more or less constant absolute 
size for a given geometrical configuration with only the specimen thickness 
being different. Rather, there seems to be some relation between the thick­
ness and the size of the corner influenced domain. However, it appears that 
these parameters are not linearly proportional - in the thinner specimen, a 
relatively larger portion of the specimen thickness appears to be significantly 
effected by the corner than in the thicker specimens. At the same time, the 
surface to mid-thickness SIF variation span increases with the thickness. 

As can be seen in Table A.3, the crack front length average of the SIF 
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Figure A.8: Comparison of SIF values obtained by various methods, 50 /im 
thick specimen 

values for a given method is the same for all thicknesses. The stress intensity 
is thus only differently distributed. The averages of the SIF values obtained 
by fitting to the stresses differ from the "global" SIF values in Table A.2 by 
no more than 3 to 5 %. 

The stresses in the crack front vicinity (see the 3D plot in Fig. A.9) 
appear to be influenced by the surface corner effect in a significant way only 
within a small distance from the corner, about 3 to 5 /im, which is less than 
10 % of the thickness (50 /im). However, as noted above, the effect observed 
on the SIF appears to reach deeper into the thickness. 

From Fig. A.4 it appears that even with the very finely meshed model 
used, there are still numerical errors on the first one or two elements at the 
crack front. This suggests that a further refinement may be necessary. 
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Figure A.9: Variation of stresses the vicinity of the crack front 

A.4 The P R E F F A S Method 

In Section 2.6, the principles of the P R E F F A S method were outlined. Ac­
cording to Eq. (2.27), the crack length increment can be calclated as 

N 
Aa = CFm(a) £ ( a m a x , , - o^)m , (A.33) 

i=i 

where C and m are the coefficients of the Pris crack growth law, F(a) is 
the geometry factor, the index i runs through the iV cycles in the load 
sequence considered, cr m a X j j is the peak of the given stress cycle and OQ^ is 
the applicable crack opening stress. 

This appendix provides details of the calculation of the load sequence 
— 2-,i=l l^max,* — <^Q,i) • 
In the calculation, we process the sequence of stress peaks and troughs 

cycle by cycle, while constructing and storing stress cycles that will be signif­
icant for determining the opening stress level in the following cycles. Each 
of these significant history stress cycles consists of its maximum Hmaxj, 
opening stress H0j and minimum i ^ m i n , j . 

Throughout the load sequence, a minimal crack opening stress HQti ap­
plies, determined by the overall load maximum i ^ m a x , i and minimum i ? m i n , i 
of the stress sequence using Eq. (2.23). These are the values stored as the 
initial history values and the P R E F F A S algorithm is started. 
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A peak larger than Hmaxj 

If the currently processed stress cycle i features a peak cr m a X j j that is higher 
than any of the maxima stored in the history, the following procedure is 
carried out. 

First, we find j such that amaXti > Hmaxj and amaXti < i ? m a x j - i - In a 
RainFlow-like manner, we update the sequence effect given by the history 
values: 

n 
Es = Es + (cr m a X j j — i ? 0 j _ i ) m + ^ (-Hmax,fc — H0^)m 

k=j 
n 

- Y, (H™*,* - tfo,fc-i)m) • (A.34) 
k=j 

U N D E R L O A D . Next, we check whether the current stress cycle presents 
also an underload w.r.t. i ^ m i n j - i : which is the minimum corresponding 
to - f f m a x , j - If so, we again find I such that c r m m i i < Hmini and cr m i n ^ > 
i?min,z-i> and take the corresponding maximum Hmaxj to recalculate the 
crack opening stress for the history cycle I: 

Ri = m m ' t , Ui = auRi + bu , Hoi = Hmaxj - Ui (Hmaxj - c r m m j j ) . 
-"max,/ 

(A.35) 
Due to the underload, we effectively scrap the history values from I onwards 
and reduce the applicable opening stress to HQ[. If HQi < H0j_i, we erase 
the history cycle I as well and keep only the cycles up to I — 1. The number 
of history values that are discarded here is determined by the underload 
w.r.t. I. 

N o U N D E R L O A D . If, on the other hand, the minimum of the current stress 
cycle is above all of the stored history minima, we check whether this stress 
cycle should be stored in the history, or whether we shall keep the history 
stress cycle having the maximum Hmaxj. For this purpose, we compare 
H0j_\ with cr0ji, determined from Eq. (2.23). 

If cr0ji > H0tj_i, we assign to the position j in the history the maximum, 
minimum and opening stress values of the cycle i , and discard all values 
from j onwards. Otherwise, we erase the position j — 1 as well and retain 
just the history up to j — 1. 
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A peak lower than the last history maximum 

If the currently processed stress cycle i features a peak <7 m a x , i that is less 
than any of the history maxima, we just add a contribution to the sequence 
effect Es: 

where H0jTn is the last opening stress stored in the history. 

U N D E R L O A D . In case that the cycle i presents an underload w.r.t. any of 
the history minima -^min,m; we will again reduce the level of the crack open­
ing stress and discard some of the history values. We proceed analogically 
to the case of a stress cycle with a new maximum and with an underload 
described above. 

N o U N D E R L O A D . This is the only case when we may add stress cycles to 
the recorded history. We will only do so if its opening stress level oQ^ is 
higher than the last of the history values i ? 0 , m -

History values 

Most of the time, a contribution to the sequence effect Es will be calculated 
using Eq. (A.36) and the last crack opening stress i ? 0 , m stored in the his­
tory. The history will consist of stress cycles where each cycle will have a 
lower maximum, higher minimum and higher crack opening stress than the 
previous one. The history will usually not be very long, since we will occa­
sionally add a cycle to it, but also remove cycles every time we encounter 
an underload. 

Equivalent stress 

One we have processed the entire load sequence, we obtain the cumulated 
stress effect Es. This can be used to calculate an equivalent stress level aeq 

for any chosen number of load cycles Neq and stress ratio Req: 

ES = ES + (a, in (A.36) max,« 

(A.37) eq — (1 - i ? e q ) (auReq + M ' 
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Appendix B 

Solution Methods 
Complements 

B . l M i n i m u m Energy Principle and the Galerkin 
Method 

In this appendix, the variational methods and in particular the Galerkin 
Method presented in Section 3.2 are illustrated in a greater detail by means 
of a simple one-dimensional example that will expose the general approach 
in a concise form. 

A N I L L U S T R A T I O N E X A M P L E . Consider a linear-elastic bar in traction and 
compression with section A(x), Young's modulus E(x), of length I, statically 
loaded by a continuous loading f(x). As regards the boundary conditions, 
consider both ends of the bar to be fixed for now, i.e. u(0) = u(l) = 0. 

The governing equation of the problem is: 

where the short hand notation u' = 4^ was introduced and E, A and / 
continue to be considered as known functions of x, although the function 
notation was dropped for brevity. 

The problem to solve reads: 

(AEu')' = f (B.l) 

find u G VQ such that Lu = f (B.2) 

where 
Lu= -(AEu'Y. 

Eq. (B.2) is called the strong form of the problem. 
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B . l . l Variational Methods 

Let us first show that the variationsl solution u minimizes the potential 
energy IT. The potential energy of the system is: 

n(u) = \ [ AE (u'f dx - [ fudx, u G VQ , (B.3) 
2 Jo Jo 

where Vo is a space of functions continuous on (0,1) up to their second 
derivatives such that u(0) = u(l) = 0. Consider a variation of u as w = u+ev 
such that v G VQ. Then 

U(u + ev) = e [ AEu'v' - fvdx + \e2 [ AE {v'f + v2 dx . (B.4) 
Jo 2 Jo 

We take the limit 

.. TL(u + ev) - U(u) C T T fl
 AT^ i i J- i m r t hm — — = 5U= AEuv - fvdx . (B.5) 

oLI is called the first variation of Eq. (B.2). The first term in the integral of 
5YL is manipulated as follows: 

u'v)\ [ AEu'v'dx = [ (AEu'v)'-(AEu')'vdx = [ -(AEu')'vdx + (AE 
Jo Jo Jo 

But v G Vo vanishes at both ends, so, from Eq. (B.5): 

m= f (AEu')'v- fvdx = [ (Lu- f)vdx = 0 (B.6) 
Jo Jo 

because u satisfies Lu = f and v G Vo- Therefore, II has is stationary with 
the displacement u. 

Introducing the notation 

a(u,v)= [ AEu'v'dx, (f,v)= [ fvdx, (B.7) 
Jo Jo 

5YL = 0 can be rewritten as a(u, v) = (f, v) and we formulate the problem 
in its weak form: 

find u G Vo such that a(u, v) = (f, v) for all v G VQ. (B.8) 

It follows from Eq. (B.5) and (B.6) that the u found in this way is the 
solution of Lu = f. 
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B .1 .2 Natural Boundary Conditions 

Let us now consider the present example with different boundary conditions. 
Instead of fixing both ends, we prescribe a displacement at the left end: 
u(0) = do and a force Fi acting on the right end x = I. The boundary 
condition on the basic variable u is called an essential or Dirichlet condition. 
The prescribed boundary force is termed a natural or Neumann boundary 
condition. Note that the latter boundary condition can be written as: 

to match the prescribed force with the internal force. 

B .1 .3 The Galerkin Method 

We define a space VQ as a space of functions continuous up to the first 
derivative on the interval (0,1) and vanishing at points where an essential 
boundary condition is prescribed, i.e. VQ = {v G C 1(0,^) : v(0) = 0}, and 
call a function v G VQ a test function. 

Multiply Eq. (B. l ) with a test function v, integrate over (0,1) by parts 
and use the boundary condition (B.9): 

We will seek the solution u from the space of trial functions W = {w G 
C2(0,l) : w(0) = do} satisfying the Dirichlet boundary condition. We now 
have the following weak form: 

findu G W such that a(u,v) = (f,v) + Flv(l)foT&llv G V0 . ( B . l l ) 

E(l)A(l)u'(l) = Ft (B.9) 

(B.10) 

Note that the natural boundary condition has become a part of the integral 
equation ( B . l l ) and is therefore automatically satisfied. 
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B.1.4 The Finite Element Method 

When the test function v is assumed to be a series of the form vn{x) = 
Y^l anfi(x), the variation of vn{x) is: 

5vn(x) = —5cii = (pi(x)6ai + (p2(x)da2 + . . . . (B-12) 
1=1 

Substituting such vn(x) into Eq. (B.10): 

n „[ n „[ n 
-Fi^aupjQ) + / AEv! 5anpi(x) dx = / f^ajip^x) dx (B.13) 

. , Jo • , Jo • , 
i=i t=i i=i 

This, in general terms, is the mathematical basis of the finite element 
method, where both the trial functions u and test functions v are constructed 
using the finite element shape functions, the test functions satisfying the 
essential boundary conditions. Eq. (B.13) leads directly to the set of finite 
element equations, see Appendix B.2. 

• 

B.2 F E M Equations for Plane Problems 

In this Appendix, it is shown how the finite element equations for a plane 
strain/plane stress problem can be derived based on the Galerkin weak form 
as outlined in Appendix B . l . 

In the plane strain/plane stress problem, the solution consists of two 
functions, namely the displacement functions vi(x,y) and V2(x,y) in the 
directions of the two coordinate axes. We will use a tensor notation and the 
new introduced matrices will also be exposed in full. 

B.2.1 Plane Strain/Plane Stress — Governing Equations 

The problem unknowns and the body forces are collected in vectors: 

displacements : u 

strains : e 

stresses : a 

body forces : / 

dv\ dv2 dv\ dv2 
dx ' dy ' dy dx 

\Pxx Gyy 0~xy\ i 

\flJ2f • 

file:///flJ2f
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We have the following governing equations: 

equilibrium : D er + / = 0 . 
kinematic : e = D u , 

constitutive : er = Ee . 

The gradient operator matrix D reads: 

(B.14) 

(B.15) 

(B.16) 

D 
dx 
0 

0 
JL 

JL i 
dy dx 

(B.17) 

For isotropic materials with Young's modulus E and Poisson's ratio v the 
stress-strain matrix is for plane stress: 

E 
E 

l - l / 2 

1 v 0 
v 1 0 
0 0 (l-u) 

and for plane strain: 

E 
E 

(1 + I / ) ( 1 - 2 I / ) 

1 — v v 
V 1 — V 
0 0 

0 
0 

( 1 - 2 ^ ) 

Alternatively, introducing the Lame constants 

E 

A T=P (plane stress), A - ( 1 + „ ) ( 1 _ 2 „ ) 

the stress-strain matrix can be written as: 

E 
A + 2/x A 0 

A A + 2/x 0 
0 O n 

B.2.2 Boundary Conditions 

On the Dirichlet boundary Fu, displacements are prescribed: 

u\ = di, u2 = d2 onFu . 

(B.18) 

(B.19) 

vE \ _ vE ( P L A N E G T R A I N ^ ; ( B 2 Q ^ 

(B.21) 

(B.22) 
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On the Neumann boundary I \ , the static boundary conditions are: 

o-xxnx + axyny = Ti, o-yyUy + axynx = T2 onFt, (B.23) 

in which n = (nx,ny)T is the unit vector of the outward normal to the 
boundary T. We note that for the total boundary T, the following holds: 
r = Fu U Tt, whereby Fu n Ft = 0. 

B.2.3 Weak Form 

Let us define a space X of function couples v(x,y) = (vi(x, y), v2(x, y)) 
as X = {v\vi(x,y) G H1^), V2(x,y) £ where f2 is the domain of 
the two-dimensional body in consideration and H1 is a normed space of 
square-integrable functions continuous up to the first derivative. 

Test functions will be chosen from the space V = {v £ X\v = OonT u } . 
Solution is sought in the trial functions space VF = { u G X | u = d o n r u } , i n 
which d = {d\, ab} T is the prescribed displacement. 

The static equilibrium equations (B.14) written out in full read: 

Ox + 
da •ni 
Oy + fi = o, 

Oa, yy 
Oy + 

Oa. •ni 
Ox 

+ / 2 = o. (B.24) 

In a manner analogous to the procedure used in the Galerkin method, mul­
tiply the first of the above equations (B.24) by v\ and the second one by 
V2, add up the two equations and integrate over Q. Then, using the Green's 
theorem, the Neumann boundary conditions (B.23), the kinematic equa­
tions (B.15) and the Hooke's law (B.16), we find: 

0arr Oa 
+ •ni + h )vi + 

0ayy Oa 
Ox Oy J \ Oy Ox 

[(vxxnx + CTxyUy) vi + (ayyny + axynx) v{\ dS 

dxdy 

Ovi dvi ÖV2 0v2 . . . 
&xx-R y<Jxy-Z. \-°~xy-^ h 0~yy-^~ dxdy + 

Q \ Ox Oy Ox Oy 

+ / (fivi + / 2 U 2 ) d x d y = 
Jn 

= / (T\V\ + T2V2) dS — / e ( v ) • cr d x d y + / v • f d x d y 
JVt Jn Jn 

= v T d S - / e ( v ) • E e ( u ) d x d y + / v - f d x d y . 
J rt Jn Jn 
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Therefore, we may write the weak form of the plane strain/stress problem 
as follows: 

find u G W such that a(u, v) = L(v) for all v € V , (B.25) 

where 

o (u ,v )= / e(v) • Ee(u) dxdy , (B.26) 
Jn 

L(v) = / v - f d x d y + / v - T d S . (B.27) 
Jn Jvt 

B.2.4 Discrete Weak Form 

We discretise the domain f2 into elements. We may for example use some 
triangulation to get triangular elements. The elements have a total of AW 
nodes, including BN nodes on the Dirichlet boundary (in which displace­
ments are prescribed) and IN = NN — BN interior nodes. 

We can then define a space of functions that are piecewise (or rather 
element-wise) continous up to the first derivative. The test functions space 
is defined as: 

Vh = {v|ui G Xh,v2 G Xh A v(Pj) = OVPj € Tu} , (B.28) 

where Pj G Tu are the nodes on the essential (Dirichlet) boundary. The trial 
functions belong to the space: 

Wh = { L b > i G Xh,v2 G Xh A UfrCP,-) = d V P j G T u } , (B.29) 

in which d stands for the prescribed displacements. The test and trial 
functions can then be represented as follows: 

IN 

v(x,y) = ^2/[vi{xj,yj)Nj{x,y)+v2{xj,yj)Nj{x,y)} (B.30) 
J = I 
IN 

Uh(x,y) = Y [Mxj,yj)Nj(x,y) + v2(xj,yj)Nj(x,y)} + 

NN 

+ 51 [di(xjiyj)Nj(xiy) + D2(xj,yj)Nj(x,y)}, (B.31) 
j=IN+l 

where Nj are base functions chosen from the space X^ such that Nj = 1 at 
the node Pj and Nj = 0 at all other nodes. Note that this corresponds to 
the partition of unity concept discussed in Section 3.3. 
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We then write the discrete weak form of the plane strain/stress problem 

as: 

where 

find U/, G Wh such that a(Uh,v) = L(v) Vv G Vh 

ah(Uh, v) = [ e ( v ) • E £(U^) d^e , 
e e ü Jne 

Lh{^)=Y.J v f d ^ e + J v - T d r e . 

( B . 3 2 ) 

( B . 3 3 ) 

( B . 3 4 ) 

The integral over an element f2e or over a boundary element edge T e is 
evaluated using Gauss quadrature. Denoting the value of the components U\ 
and Ui of the discretised solution at node Pj as Uji and C/j2, respectively, 
and denoting the components v\ and v2 of the test function v at node Pi as 
0 J I and OJ2, respectively, we may rewrite Eq. ( B . 3 0 ) and ( B . 3 1 ) as: 

IN 
v(x,y) = S2[eilNi(x,y) + ei2Ni(x,y)} 

i=i 
IN 

Uh(x,y) = S^[UjlNj{x,y) + Uj2Nj{x,y)] + 

( B . 3 5 ) 

i = i 
NN 

+ 51 idi(xj,yj)Nj(x, V) + d2(xj,yj)Nj(x, y)} . ( B . 3 6 ) 
j=IN+l 

B.2.5 Element Matrices and Vectors 

To formulate the finite element equations based on the weak form ( B . 3 2 ) , 

we further proceed as follows. The base functions defined on an element 
with n nodes are arranged in the matrix 

N e 
Nf 0 iVf 0 
0 Nf 0 iVf • 0 N* 

the values of the element nodal displacements in the vector 

u e = [ Uf, Uf2 ui2 . . . Eft Eft } , 

and the element nodal values of the test function in the vector 

0 e = [ e? ! e f 2 6 | 2 . . . ee

nl e* 2 ] . 

( B . 3 7 ) 

( B . 3 8 ) 

( B . 3 9 ) 
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We further define the strain-displacement matrix B of the size 3 x 2n (n is 
the number of element nodes) 

B' D N £ 

- dNf 0 9N£ 
dx 0 dx 

0 dNf 
dy 

dNf 
0 

dNf 

dNf 
dy 

dNf Ml 
- dy dx dy 

0 

dy 
Mi 
dx 

9N1 
dx 

0 
0 

dm 
dy 

dNe dNe 

dy dx 

(B.40) 

allowing us to write the kinematic relation (B.15) in the discretised form 
e=Bu, and assume that the elasticity matrix E is constant over the element. 
We are then able to write the integrals in Eq. (B.33) and (B.34) as follows: 

f ee(v) -E e e e (U^ )dO e = [®ef [ [Be]T E e B e dÜe U e 

[ 0 e ] T K e U e , (B.41) 

v T d T e : 

Substituting into Eq. (B.32), we find 

[@ef[ [N e ] T fd f t e = [ 0 e ] T F e , (B.42) 

[ 0 f f [N e ] T T d r e = [ 0 S ] T F S . (B.43) 

0 = ah(XJh, v) - Lh(v) = ] T [ 0 s ] T ( K e U e - F e ) - ] T [ 0 S ] T F S (B.44) 
een 5er t 

and invoking the arbitrariness of the variations and thus the arbitrariness of 
the vectors 0 e and 0 s , we finally obtain the familiar finite element equation 
at the element level: 

K e U e = F e + F s . (B.45) 

K e is called the element stiffness matrix and F e + F s is called the element 
load vector. 

Isoparametric Elements 

On isoparametric elements, the shape functions are defined in terms of local 
geometrical coordinates on the element. E.g. for quadrilaterals, these coor­
dinates vary between -1 and 1. The global geometric position of a point on 
the element is established by interpolating the nodal global coordinate to 
that point using the shape functions in the same way as the displacements 
are interpolated (therefore the term isoparametric): 

n n 

x = Y/*iNf, y = 5 > i V f . (B.46) 
i=l i=l 
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When strains are calculated using Eq. (B.40), the partial derivatives of the 
shape functions with respect to the local coordinates £, 77 are easily found. 
These derivatives need to be transformed to partial derivatives with respect 
to the global coordinates x, y using the Jacobian matrix: 

(B.47) 

Let us now calculate the elements § | , • • • of the Jacobian matrix. Substi­
tuting for the global coordinates from Eq. (B.46) and differentiating with 
respect to the local coordinates, we have: 

- m i - drj r m i 1 
- T" 1 

r m? 1 
dx 

m i 
dx dx - T" 1 dx 

m i K &n m i — J dNf 
. dy _ dy dy drj drj 

dx 

a n 
OX \ -

dr] t—s' 

dy dNf 
d£ 

dNf 
dv ' drj 

a n 
dy = 

fin ^—^ % 

dNf 
d£ 

dNf 
drj 

Because the nodal coordinates Xj, yi do not depend on ^, rj, the Jacobian can 
be written as: 

P X 
dNf 

d%l 
drj 

dpq 

drj 

m i 
a? 

m i 
drj 

xi yi 

X2 V2 

%n. II n. 

(B.48) 

The inverse Jacobian J 1 is obtained by numerical inversion. 

B.2.6 Numerical Integration and Assembly 

The stiffness matrix and the load vector appearing in equation Eq. (B.45) 
are calculated using a Gauss quadrature. In the computer implementation, 
the contributions from the individual quadrature points are usually directly 
added to the respective positions in the global stiffness matrix. To this end, 
a mapping between the local and global numbers of the element degrees of 
freedom (DOF) is necessary. If r = k ... I is the sequence of the global D O F 
of the element nodes, Wj is the weight of the quadrature point qj of the m 
quadrature points on the element e, then the elements at the positions (r, r) 
of global stiffness matrix K are computed as follows: 

m 
K(r, r) = K(r, r) + ^ b T e b wi I J l • ( R 4 9 ) 

E 3 
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The global load vector F is computed likewise by numerical integration. 
It is a sum of the surface forces and the body forces. For example, the 
contribution of the body forces acting on the element to the positions (r) of 
the global load vector F are, c.f. Eq. (B.42): 

m 
F(r) = F(r) + ] T ] T N(<&) f{q3) W j |J | , (B.50) 

E 3 

where N(c/j) is the value of the shape function at the quadrature point qj 
and f(qj) is the value of the body force at the quadrature point. 

B.3 Moving Least Squares Approximation 

In the moving least squares (MLS) approximation, the displacement field 
approximation is constructed separately for each integration point. The 
function basis of the approximation is usually polynomial, but an enriched 
basis can be used to account e.g. for cracks in the domain of interest [28]. 
The idea is to minimise for the given point of interest the sum of squares of 
the differences between the approximation and the nodal value at the nodes 
of influence. Each node is thereby given a certain weight in the minimisation 
depending on its distance from the point of interest. 

In the case of a polynomial base, the value of the approximating func­
tion uh(x.) at any point x in the domain f2 is given for an approximating 
polynomial constructed for the point of interest £ by: 

m 
u h (x) = PiWai(Z) = P T W a ( l ) (B.51) 

i=i 
where m is the number of terms in the polynomial, a(£) are the coefficients 
of the approximation polynomial, and p T ( x ) is a base of monomes, which 
may consist in a 2D case of 

p T ( x ) = IPI(x)> • • • ,Pm( x)} = {i,x,y,xy,x2,y2, • • •} • (B.52) 

Note that the number n of nodes whose support domains contain the point 
£ must satisfy n > m so that a(£) can be determined. 

At the location x / of a node / , Uh will amount to 

u h (x j ) = P

T ( x 7 ) a ( | ) (B.53) 

and we want to minimise the squares of the differences uh(x.]) — uj, with uj 
being the known values at nodes. Note that this is a least squares technique, 
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so after a(£) have been found, the approximation u (x) will not pass through 
the nodal values. 

The weight of each node in the minimisation is determined by a weighting 
function u>/(£-x/) such that w(0) = 1 (i.e. for £ = x/) and w = 0 for all £ 
outside the support domain of node I. In summary, we seek to minimise 

n 

= J > J « - x/) [pT(x)a(|) - m}2 . (B.54) 
i = i 

Upon expanding the squared term, the minimum condition §^ = 0 gives 
the following set of equations: 

A(£)a(£) - B ( £ ) U / = 0 (B.55) 

with 

A(£) = M £ - x /)p(x /)p T(x /)] , B(£) = M £ " x/)p(x/)] . (B.56) 

Remembering that tt̂ (x) = p T ( x ) a ( £ ) , the approximation can be finally 
expressed as: 

uh(x) = p T ( x ) A - 1 ( € ) B « ) u / or « f c (x) = x ) U / , (B.57) 

where 
*/(€,x)=p T(x)A- 1(€)B(€) (B.58) 

is the M L S shape function. 
For completeness, we note that the derivative of the M L S shape function 

can be computed as: 

= p j A ^ B + p T ( - A " 1 A . A " 1 ) B + pTA~1BjX , (B.59) 

where the functional notation has been dropped and indicial notation for 
derivatives used to reduce clutter. Note that the derivative of A - 1 is not 
necessary. 

Finally, a note should be made about the enforcement of essential bound­
ary conditions in an element free Galerkin method (EFGM) using M L S ap­
proximation. This is not as straightforward as in the finite element method, 
where it suffices to prescribe the respective nodal displacements. As it has 
been said above, the M L S approximation does not pass through the nodal 
values it approximates. Various approaches have been proposed to remedy 
this problem. From among the common ones, let us mention Lagrange mul­
tipliers and a coupling with a finite element domain, where a transition by 
weighting is effectuated between the approximations in the F E M and the 
E F G M domains. 



Appendix C 

The Direct Differentiation 
Method 

The presentation in this Section consists merely in a simplification of the 
developments in [39] to the static, linear elastic case. 

When the finite element equation (B.45) is written at the global level 
and with the definitons introduced in equations (B.41) to (B.43), we have: 

f B T E B d f t U = f N T f d f t + f N T T d I \ (C. l ) 
Jn Jn Jr 

Note that E B U is the internal stress er. This notation will be introduced 
now for brevity. We can thus write: 

/ aBdfl = I f N d f i + / T N d r , (C.2) 
Jn Jn Jr 
" v ' V v ' 

Pint Pext 

which expresses the balance of the internal forces Pj n t and the external forces 
P e x t - Differentiating Eq. (C.2) with respect to a parmeter h, the sensitivity 
in respect of which is of interest, we get: 

ďPjnt du ďPjnt 

<9u dh dh 

We introduce the tangent stiffness matrix 

K = ^ E t = / - ^ B d n = / ^ | i B d n = / B ^ B d n . (c.4) 
du Jn du Jn de du Jn de 

dP cxl 
11 fixfiri dh 

(C.3) 
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In the linear elastic case, the tangent stiffness matrix is equivalent to the 
stiffness matrix itself since the Hooke's law remains valid: §f = E . De-

du 
dh 

as: 
-^r <9Pext <9Pint 
K a 

noting the displacement sensitivity as ^ as a, we may rewrite Eq. (C.3) 

(C.5) 
9 h 9 h u fixed 

This is the key equation, from which the displacement sensitivities a can 
be directly obtained in our static, linear elastic analysis. Then, one may 
calculate from a the sensitivities of the derived response quantities, such as 
the stresses. This is done in the same way as the derived response quantities 
themselves are calculated using the displacement vector u. 

In line with the presentation in [39], the equations to calculate and 
w [ \ \ kg given next. 

C . l Sensitivity with Respect to a Material Param­
eter 

When the parameter h of interest is a material parameter, the derivative 
of the external force vector ^Q^ x t vanishes, since it does not depend on the 
material parameters. 

From Eq. (C.2), where the internal force vector is 

/ 
•hi 

aBdtt , (C.6) 

and differentiate Eq. (C.6) with respect to h, which is now a material pa­
rameter: 

č>PintC>U , g P i : 

du dh Oh u fixed oh 
(C.7) 

We introduce the notation K = l 9^ i

i

i

n t defined above and expand the deriva­
tives by the chain rule: 

— du ďPjnt 
dh dh u fixed 

da de da 
de dh dh € fixed 

B d f i . (C.8) 

Also the strain derivative is expaned by the chain rule: 
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Introducing the material tangent stiffness k 
Eq. (C.8) can be rewritten as: 

and the relation = B , 

Kdu+d_P1 

Oh Oh 
int 

u fixed 
B r k B ^ + k B ? Í 

Oh Oh u fixed dh e fixed 
d a 

From Eq. (C.4), we see that the terms and J n B T k B | ^ d f 2 mutually 
cancel out. In addition, the material paramaters do not enter the kinematic 
equations, so for a parameter h being a material one, it holds: 

8e 
Oh 

0. 
u fixed 

Eq. (C.10) thus further simplifies to the following relation for the conditional 
derivative of the internal force vector in the static case: 

CP; int 
Oh u fixed 

T OCT 
B Oh 

( C . l l ) 
e fixed 

In the case of linear elasticity, where er = E B U , one can write Eq. ( C . l l ) 
more explicitely as: 

OP int 
Oh u fixed 

T0E 
B T — B d f t U . 

Oh 
(C.12) 

C.2 Sensitivity with Respect to Nodal Coordi­
nates 

The terms that need to be evaluated in the top-level sensitivity equation 
(C.5) are both the derivative of the internal force vector and of the 
external force vector g g ^ x t . In the latter case, the surface and body forces 
are integrated over the elements, cf. Eq. (B.42) and (B.43) and the change 
of a nodal coordinate affects the element integral. 

Consistently with Section B.2.6, the elemment integrals are assumed 
to be evaluated using a Gauss quadrature - for a general integrand, the 
quadrature with m quadrature points resumes to (in 2D): 

„ m 
/ / ( x , y ) d í í e « y W ( É , » 7 ) | J | , (C13) 

Jne j = 1 

where J is the Jacobian of transformation from the global to the isopara­
metric coordinates, see Eq. (B.48). It is implicitely understood that (£,?/•) 
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are the isoparametric coordinates of the integration point with the weight 
u)j. The derivative of the integral is then: 

0_ 
dh 

[ f(x,y)dne)nY/L a / « ' " ) | J | + / « . , ) a | J | 

dh 1 1 v (/ dh 
(C.14) 

The Jacobian derivative provides for the mapping between the element 
with the actual geometry in the space of physical cocordinates Xi = {x, y} 
and the parent element with an invariable geometry in the space of the 
isoparametric coordinates £j = {£, rf\. Thus, a sensitivity to a change in the 
physical geometry translates to the sensitivity of the Jacobian derivative 

To find what this derivative equals, we expand it by the chain rule 

and use the equality = | J | J~T, with the superscript —T signifying the 
inverse transpose. We get: 

ah ~ dj d h ~ ] J ] J dh- ( C - 1 5 ) 

Eq. (B.48) tells us that J = P X , where P is the matrix of shape function 
derivatives. Thus, if h is the i-th coordinate of the p-th node, the derivative 
| ^ reads: 

d ^ _ d j % dj ax. 
dh ~ atj o r dh~pdh' ( C - 1 6 ) 

Having found the derivative of the Jacobian determinant, we are ready 
to look at the derivatives of the internal and external force vector. 

C.2.1 Derivative of the Internal Force vector 

As a point of departure for finding the derivative, the internal force vector 
evaluated by numerical integration 

Pint ~ ^ UjO-B IJI (C.17) 

is differentiated with respect to the nodal coordinate parameter h: 

(dh 
<9P int du 9 P i n t 

du dh dh u fixed 
l—B\J\ + a— \J\+*B 

3=1 
dh 

(C.18) 
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whereby the derivative is evaluated from Eq. (C.15) and (C.16). The 
terms ^ and ^ are expanded by the chain rule and Eq. (C.9) is further 
used. We thus obtain: 

— du ďPjnt 
Oh Oh u fixed 

+ 
T Oa 

dh 

_ T _ „Ou „ T de 
B T k B — + B T k — 

dh Oh u fixed 

£ fixed 

OB „ , TdJ 

(C.19) 

where use has been made of Eq. (C.16) and of the notation k = From 
Eq. (C.4), we see that the terms K g ^ and YIjLi^j l J l B k B M mutually 
cancel out. The above Eq. (C.19) thus simplifies to: 

dP; 
Oh u fixed 

m 

u fixed 

+ BTda 

Oh € fixed 

OB „ T _ T 3 J 
+ a h o-BJ — 

dh dh 
(C.20) 

In linear elasticity, <x=Ee and e = B U . We can thus express 

de 

Oh. 

da 

Oh 

u fixed 

<9B, 
~0h 

U , 

OB 

£ fixed 

Using these results and noting that for linear elastic materials, k 
Eq. (C.20) may be rewritten to its final form in linear elasticity: 

E , 

OP int 
Oh u fixed 

+ er— + e r B J 
Oh 

rp OB rp OB 
B T E — U + B T E — U Oh 

.TdJ\ 
dh 

dh 

, , / T dB V w , - J 2B E — - U + 
j=l \ 

+ B T E B U J " T | ^ 
oh J 

Oh 
OB 

~0h 
E B U 

(C.21) 

It remains to find the derivative of strain-displacement matrix §P. The 
elements of B are calculated by multiplying the shape function derivatives 
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with respect to the isoparametric coordinates by the inverse Jacobian, see 
Eq. (B.47). Thus, their derivative with respect to the A;-th component of 
the nodal coordinate h = Xrk of node r is: 

<9B 
dXrk dXrk dxj 

d dNip dNip d d£ .63~ 
d£i dXrk dxj Oh 

(C.22) 

While -gjj^- is easlily obtained, the term 9 £ k

 1 S the derivative of the 
inverse jacobian. It is shown in [39] that it can be obtained as follows: 

d 'dxj - i dxi T d dxi dxi 
dh \_6ik\ dh~c\i dX. rk 

(C.23) 

The derivative of the Jacobian is given in Eq. (C.16) and the inverses of the 
Jasobian itself are obtained numerically. 

C.2.2 Derivative of the External Force vector 

When the loads are prescribed in terms of nodal forces and the problem is 
geometrically linear, then the derivative vanishes. However, in the case 
of distributed loads, the nodal coordinate enters the calculation of the Jaco­
bian in the numerical integration of the global load vector (c.f. Eq. (B.50)). 
The integration formula is differentiated using Eq. (C.15) and Eq. (C.16) to 
obtain e.g. for the integral of the body forces: 

Oh E 
J'=I 

UjK(qj) f(qj)\3\ 3 
,d3_ 
Oh. 

(C.24) 
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