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Abstract

The focus of this research is in the area of modeling and evaluating of the wireless
systems with two dimensional signal spreading, it’s key parameters and dependencies
on other features in modern wireless communication chain.

The research method adopted in this dissertation includes a development of Mat-
lab based simulators which exploits a statistical approach to show a contribution of
proposed algorithms. Furthermore, a model of physical layer of the 3rd Generation
Partnership Project Long Term Evolution (3GPP LTE), developed by the Vienna
University of Technology, was utilized as a simulation environment suitable for im-
plementation of a two dimensional (2D) signal spreading method and its evaluation
as well as comparison of achieved results with the state-of-the-art systems.

The findings from this research provide evidence that the Variable Spreading
Factor - Orthogonal Code Frequency Division Multiplex (hereafter VSF-OFCDM)
employing a 2D spreading is a promising wireless access scheme superior to Or-
thogonal Division Frequency Multiplex (OFDM) or Code Division Multiple Access
(CDMA) and is capable to significantly increase the data rates in wireless trans-
mission due to the capability of such system to effectively cope with fast time and
frequency fluctuations in the wireless transmission channel.

Keywords

VSF-OFCDMA, LTE, 2D spreading, PAPR, Power amplifier, USRP
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Abstrakt

Cíl disertační práce leží v oblasti modelování a vyhodnocení bezdrátových komu-
nikačních systémů s dvojrozměrným rozprostíráním signálu a jejich klíčových parametrů
v závislosti na vybraných vlastnostech moderního bezdrátového komunikačního řetězce.

Výzkumné metody použité v této práci spočívají především ve vývoji softwarového
simulátoru pro prostředí Matlab, s jehož pomocí, a s využitím statistického přís-
tupu, jsou navržené algoritmy ověřeny. Dále je použit simulátor fyzické vrstvy dle
3rd Generation Partnership Project Long Term Evolution (3GPP LTE), vyvinutý
na Technické univerzitě ve Vídni. Tento představuje ideální platformu pro imple-
mentaci metody dvojrozměrného (2D) rozprostírání a její vyhodnocení s přihléd-
nutím k současným bezdrátovým komunikačním systémům.

Zjištění prezentovaná v této práci představují především ověření účinnosti sys-
tému nazvaného jako Variable Spreading Factor - Orthogonal Code Frequency Di-
vision Multiplex (VSF-OFCDM), který využívá principu 2D rozprostírání signálu a
zjištění, že VSF-OFCDM systém překonává systémy využívající Orthogonal Division
Frequency Multiplex (OFDM), nebo Code Division Multiple Access (CDMA). Dále
byla navržena metoda 2D rozprostírání signálu v systému LTE, kde se též potvrdila
její účinnost. Díky účinnějšímu potlačení vlivu rychlé variace přenosového kanálu v
závislosti na frekvenci a čase, dosahuje systém VSF-OFCDM znatelně vyšší datové
prostupnosti.

Klíčová slova

VSF-OFCDMA, LTE, 2D rozprostírání, PAPR, Výkonový zesilovač, USRP
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Chapter 1

Introduction

At present, the demand for higher data rates in the mobile communications
business is still rapidly increasing. Therefore, a huge effort is given into re-

search of new wireless access schemes. To go along with this endeavor, the NTT
DoCoMo presented a new wireless access scheme named VSF-OFCDM employing
two dimensional (2D) spreading of a transmitted signal [13].

In fact, such a system can be seen as a combination of Orthogonal Frequency Di-
vision Multiplexing (OFDM) and CDMA with additional complexity consisting from
the application of the 2D signal spreading and deciding how the variable spreading
factor will be divided between the time and frequency domain.

To comprehensively describe principles and features of VSF-OFCDM, the reader
should be familiar with foregoing technologies:

• CDMA was developed by the military as a communication system resistant to
jamming and monitoring, however CDMA can also be used as a channel access
method similarly to the frequency or the time domain multiple accesses. This
feature of the channel access is nowadays the main highlight of CDMA used
in the Universal Mobile Telecommunications System (UMTS) and e. q. in
Global Positioning System (GPS).

• OFDM with its orthogonal subcarriers is a popular modulation scheme and has
been known since the 70’s. Nevertheless, due to high computational require-
ments of the Fourier transform, it is only used in relatively new standards
(e. g. Asymmetric Digital Subscriber Line (ADSL), LTE or Digital Video
Broadcasting – Terrestrial (DVB-T)).

From the early nineties, an idea to combine both techniques, the CDMA and
OFDM, has been progressively increasing its significance. As a result, several
variants of the combination have arisen, for example: Multi Carrier (MC) CDMA
or Direct Sequence (DS) CDMA. However, the most promising and advanced ap-
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proach seems to be the VSF-OFCDM system proposed by NTT DoCoMo in 2001
[13, 14, 15, 16].

The following text deals not only with the theory of VSF-OFCDM but also with
two proposals and comparison of channel estimation methods which are suitable for
the VSF-OFCDM system as well as the Peak to Power Ratio (PAPR) reduction
method which is needed for successful implementation in real world hardware.

The idea of incorporating of the VSF-OFCDM system as a wireless access scheme
for the downlink part of LTE [17] will also be given. The LTE simulator [18] devel-
oped at TU Wien was chosen as an appropriate platform for testing and evaluating
of the 2D spreading based technology, the comparison with current approaches is
thanks to the simulator [19], possible. The simulator contains for example Cyclic
Redundancy Check (CRC), turbo coder and rate matcher with Modulation and
Coding Scheme (MCS) corresponding to the LTE standard as well as, interlaever
and every feature of LTE or another modern wireless communication scheme.

14



Part I

State-of-the-art
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Chapter 2

Issues of modern communication
systems

This chapter serves as a brief provider of information about a couple of main
wireless channel features which significantly affects modern wireless communi-

cation systems which will be frequently discussed in the following text. This chap-
ter also touches issues of designing current wireless communication systems such as
the PAPR or Inter Symbolic Interference (ISI) and Inter Carrier Interference (ICI).

2.1 Multipath propagation

Multipath propagation occurs when a transmitted electromagnetic wave reaches the
receiving antenna by at least two paths [15]. This is caused by obstacles in the
path of the wave, for example by buildings, mountains or even the ionosphere at
certain frequencies. Reflected replicas of the transmitted wave then arrive to the
transmitter in a different period of time. As a result, when such reflected waves are
summed together in a constructive or destructive manner, deep fades often appear.
These fades are bounded with the frequency of the electromagnetic wave, velocity
of the moving receiver, transmitter or the reflectors as well as the incident angle.
Such a situation is depicted in Figure 2.1 where the incident angle is marked as the
φ, the line-of-sight wave is marked with 1 and the reflected waves are 2 and 3 and
v is the velocity of the moving receiver.

16



2.2 Doppler shift

When the receiver and the transmitter relatively moves to each other, Doppler shift
arises as described by Equation 2.1 [14]

fD = vfc

c
cosφ, (2.1)

where v is the relative velocity, c is the speed of light and φ is the incident angle as
also shown in Figure 2.1.
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Fig. 2.1: Multipath propagation scene with moving receiver of velocity v, two static
reflectors (buildings) and incident angle φ.

As a result of the Doppler shift combined with the multipath propagation, the
frequency of the transmitted signal spreads. This is referred to as the Doppler spread
and its bandwidth is described in Equation 2.2

fDmax = vfc

c
= v

λ
. (2.2)

2.3 Frequency and time selective channel

The attenuation of a wireless channel changes with time and frequency. This phe-
nomenon represents the time-frequency coherence. The coherence bandwidth is
defined as:

(Δf)c ≈ 1
τmax

, (2.3)

17



where τmax corresponds to the maximal delay of a signal in the multipath environ-
ment. In brief, the time coherence is a time interval where the transfer function of
the channel is approximately constant. The coherence time is defined likewise:

(Δt)c ≈ 1
2fDmax

, (2.4)

where fDmax describes the maximal Doppler frequency.
An overall bandwidth of a considered wireless system needs to be taken into

account. When exploiting a low-speed narrow-bandwidth system with large symbol
durations, the time-frequency coherence can by much larger, thus with no effect on
the transmitted data at all.

If we consider a wireless system and a multipath propagation, the system suffers
from receiving delayed replicas of the transmitted signal. This is referred to as a
delay spread. To cope with the delay spread, the CP concept has bees developed
and it is described in the next section.

2.4 Inter symbolic and inter carrier interferences

If considering an up to date multicarrier system, ICI and ISI represents a serious
issue. Mainly due to an effort to save valuable spectral space, the subcarriers are
placed as close to each other as possible. However, the wireless channel is often
rather adverse environment. The subcarriers are affected by the Doppler shift and
multipath propagation in an unequal manner. Consequently, the subcarriers may
more or less overlap. This effect is referred to as ICI [20, 15].

ISI arises when a large delay spread occurs. A symbol being carried by the line-
of-sight path is interfered by a foregoing symbol which is being carried by reflected
paths.

2.5 Peak to power ratio

This section will describe a challenging issue of many multicarrier wireless systems
- we will give an insight on Peak to Power Ratio (PAPR) and its influence on two
major drawbacks which high PAPR causes: an Out-of-Band (OOB) radiation and
worse bit error ratio.

To precisely control OOB and BER is of crucial importance on overall usability
and reliability of all communication systems. Since OFDM uses many orthogonal
subcarriers and as is shown in the chapter devoted to OFDM, the complete OFDM
signal is formed from a sum of individual subcarriers which are produced by the
IFFT operation of a rectangle pulse. This leads to a signal which has a shape

18



of a sinc function with one enormous peak in the time domain. If we sum these
signals representing individual subcarriers, we will inevitably obtain a signal with
huge PAPR.

A high PAPR value means that we will need to use an expensive Power Amplifier
(PA) with a width linear transfer function, otherwise our system will suffer from
nonlinear distortion. This would produce OOB radiation which will interfere other
users, or it could increase the error rate since the distorted data could not be properly
decoded. Another disadvantage is seen in battery powered applications such as
cell phones, or Personal Digital Assistants (PDAs). Due to the fact that the PA
operates most of the time in a power de-rated mode, the efficiency is considerably
lower [15, 20, 21].

Peak to Power Ratio (PAPR) can be computed as is written here [15]:

PAPR(xτ , τ) = maxτ ∈τ |xτ |2
E
{
|xτ |2

} . (2.5)

In equation 2.5, the τ is the time index used to represent the successive time
variable t and also the discreet time index n. The maxτ ∈τ |xτ |2 indicates the maximal
value of power of the signal x and finally E

{
|xτ |2

}
denotes the mean value of the

signal.
Equation 2.5 is the general expression of PAPR, but [22] shows an alternative

equation (2.6) used for computing PAPR in the frequency domain.

PAPR{xm(t)} ≤ N
max |Xk|2
E {|Xk|2} , (2.6)

where N is the number of subcarriers. The marking of signals follows the way of
marking in Figure 6.10.
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Chapter 3

Multicarrier and spread spectrum
systems

When compared with conventional singlecarrier systems, multicarrier systems
may reach significantly higher data rates in the challenging fading and elec-

tromagnetic wave reflecting environment.
In this introduction, we compare two systems: a singlecarrier system and a

multicarrier system, both with the same bit rate. When the bit rate increases above
a certain limit, the time duration of one symbol in the single carrier system becomes
comparable with a delay spread of a propagation environment. This causes ISI which
in fact limits the bit rate of the singlecarrier system. While the time duration of
one symbol in the multicarrier system is usually larger, the inter symbol interference
affects the data rate significantly less.

As we are comparing systems with the same bit rate as stated above, we have N

subcarriers to transmit the same amount of data. Thus, the time duration of one
symbol is approximately N -times larger. Using a cyclic prefix (will be explained
later) then such a multicarrier system effectively copes with intersymbolic interfer-
ences which no longer limits the bit rate [14, 15, 20].

3.1 Orthogonal Frequency Division Multiple Ac-
cess

OFDM is a specific type of multicarrier modulation technique with orthogonal sub-
carriers. Thanks to its orthogonality, the conventional frequency guard band is
omitted in order to save the frequency spectrum. This is shown in Figure 3.1

20
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Fig. 3.1: The depiction of orthogonal subcarriers and the time duration of one
OFDM symbol.

OFDM modulator

The signal processing in the OFDM modulator is described by equation 3.1.

s(t) =
∞∑

n=−∞

M−1∑
m=0

am
n RectT (t − nT )ej2πm t

T , (3.1)

where m is the subcarrier number, n is the symbol order, am
n denotes the n-th

symbol transmitted in the m-th subcarrier and finally RectT is the rectangular
window function with duration of T , which is also defining for the OFDM symbol
durability.
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Fig. 3.2: The scheme of the OFDM modem using a QAM inner modulation and
cyclic prefix.
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Cyclic OFDM symbol extension

As has been stated in the previous paragraph, a delay spread caused by the mul-
tipath propagation is a serious issue. By adopting a guard time, when no signal
is transmitted at all, we effectively cope with the delay spread and thus the ISI is
suppressed.

However, to deal with the ICI as well, an end part of the transmitted signal
has to be cyclically copied at the beginning of the signal, as is shown in Figure 3.3
[15]. Thus, the orthogonality of transmitter subcarriers is maintained and the ICI
is inhibited as well as the ISI.

�����
�

���
�

Fig. 3.3: Stylized plot of the way how the CP principle operates.

3.2 CDMA

The main idea behind the military developed Code Division Multiple Access (CDMA)
is in spreading the transmitted signal in the frequency domain and so hiding the
transmitted signal under the noise floor and as a result to preventing unwanted
detection. This is done by multiplying each transmitted symbol by a spreading se-
quence and thus by increasing transmission rate. This also expands the bandwidth
as seen in Figure 3.4.

Nowadays, the CDMA has another advantageous feature. Alongside the Time
Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA),
the CDMA approach enables a completely new kind of multiple access. Namely, the
CDMA exploits orthogonal codes in order to accommodate more users in a given
time-slot and frequency band.

Spreading process in the CDMA

The rows or columns of a Hadamard matrix can be utilized as the orthogonal spread-
ing sequences. Due to the orthogonality, it is possible to distinguish individual users.
The spreading process is depicted in Figure 3.5. The original data of time-duration
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Fig. 3.4: As the symbol time-duration decreases by the effect of multiplying by the
spreading sequence, the bandwidth expands.

Tb are multiplied by the spreading sequence c with lower time-duration Tc and as
a result the chip stream of spread data is obtained. The data-rate of the resulting
chip-stream has to be significantly larger and therefore the bandwidth spreads. By
exploiting several codes, several users can be summed in the frequency domain and
thus the code multiple access is enabled.

Due to the broad-bandwidth character of CDMA, a very common interference
represented by spectrally narrow pulses, affects the CDMA signal rather weakly -
especially in comparison with conventional single carrier wireless systems.

Naturally, this method brings difficulties in terms of synchronizing all the users
in a time domain or in the power control of each user. However, discussing these
topics is beyond the focus of this brief introduction of the CDMA principle.
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Fig. 3.5: The principal scheme of CDMA spreading. The original data of time-
duration Tb are multiplied by the spreading sequence c with lower time-duration Tc

and as a result the chip stream of spread data is obtained.
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Chapter 4

LTE

In this chapter, we give an insight on the Long Term Evolution (LTE) system,
especially in terms of the OFDM based downlink as well as the uplink which

utilizes the PAPR minimizing Single-carrier FDMA (SC-FDMA).
We briefly familiarize readers with the LTE standardized features related to the

LTE physical layer and the LTE simulator [23]. In the last part of this chapter,
a novel two dimensional (2D) signal spreading method, incorporated in the above
mentioned LTE link level simulator will be introduced and evaluated.

Link level simulations are needed in order to assess physical layer procedures [19].
In the case of LTE, the new iteration in wireless standards from the 3rd Generation
Partnership Project (3GPP), the physical layer is based on Orthogonal Frequency
Division Multiple Access (OFDMA), as opposed to UMTS, which was based on
Wideband CDMA (WCDMA). The new physical layer offers many advantages, such
as high flexibility in bandwidth allocation and not needing complex time-domain
equalization such as the one present in WCDMA system. However, it presents new
challenges, such as in channel estimation [24], frequency offset correction [25], HARQ
modeling [26], or feedback calculation [27].

The following section presents the LTE uplink and downlink link level simulators.
While using a similar structure, both the uplink and downlink, the LTE uplink
employs SC-FDMA, in contrast with the OFDMA-based downlink. Thus performing
differently. Building on top of the base from [28], given the structural similarities
between uplink and downlink, which share common blocks such as channel coding,
we implemented an uplink counterpart to the simulator presented in [28] based on
the 3GPP Release’8 LTE standard [10, 11, 12]. As a second part, we implemented
the novel 2D signal spreading method as well as we reveal its performance when
compared with standard LTE downlink.
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4.1 LTE description

This section provides an insight on the transmitter and the receiver structure of the
LTE uplink, as well as the 3GPP LTE standard on which they are based.

4.2 Transmitter

The description of the signal processing of a Transport Block (TB) is given in the
following subsection.
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Fig. 4.1: Signal Processing chain used in the LTE uplink link level simulator. Shown
blocks are according with [10, 11, 12]

The TB is passed from the Uplink Shared Channel (UL-SCH) transport chan-
nel. The physical layer procedures include, as described in [11], a 24-bit TB CRC,
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followed by a segmentation in Code Blocks (CBs) due to the finite size of the turbo
coder interleaver and CB CRC addition. The output of the segmentation is coded
by the 1/3 turbo code subsequently rate-adjusted in the rate matcher. The CBs
are finally concatenated and the coded TB is then output. The whole process is
depicted in 4.1.

In the next part of this section, we describe our transmitter model, as specified in
the 3GPP LTE standard. Firstly, the specific uplink modulation will be presented,
then the subcarrier mapping, the LTE time-frequency grid and at the end a short
view on the Channel Quality Indicator (CQI).

4.2.1 SC-FDMA modulation

SC-FDMA gets a priority for the LTE uplink before the well known and proved
OFDMA due to the effort of minimizing the PAPR in the uplink part of the LTE
physical layer. The PAPR was determined critical because of the battery constrain
on User Equipment (UE) side as well as a demanding construction of sufficiently
linear power amplifiers. [21]

SC-FDMA modulation is based on the OFDM approach. However, a Discrete
Fourier Transform (DFT) precoding of the signal is employed. This operation
spreads individual subcarriers which are known from the OFDM system over the
assigned bandwidth and convert it to a single-carrier transmission, thus effectively
reducing the PAPR.

slot
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)

slot

Time (OFDM symbols)
Reference symbols
Data symbols

Fig. 4.2: Uplink Time-Frequency grid with reference symbols used in the LTE uplink
link level simulator
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4.2.2 Subcarrier mapping

A need exists for adding zero subcarriers into the frequency grid in order to achieve
appropriate size of the Fast Fourier Transform (FFT) and IFFT operations in the
receiver and the transmitter parts respectively. This add operation is driven by a
subcarrier-mapping algorithm. In our simulator, the localized mapping is employed.
However, besides the localized mapping, there also exists the distributed subcarrier
mapping.

The distributed mapping has been examined in literature [20, 29], and simu-
lations showed only a small improvement in terms of BER performance over the
localized mapping. However, it is expected that in a real system the performance
will be better for the localized mapping due to simpler scanning of the channel
transfer function. Moreover, the distributed mapping brings additional complexity
to the system, thus the localized mapping is the choice for LTE uplink.

4.2.3 The LTE time-frequency grid

The time-frequency grid of the LTE uplink as well as the downlink consists of so-
called Resource Elements (REs). In the time and frequency domain, the grid is di-
vided into 1 ms-long subframes and 180 kHz Resource Blocks (RBs) respectively (see
4.2). The REs are in fact the elementary time-frequency spaces used for transmis-
sion of one data symbol from the used constellation diagram (4-, 16-, or 64-QAM).
When using 15 kHz subcarrier spacing and normal CP length [10], a RB consists or
twelve subcarriers and one subframe of 14 OFDM symbols. For transmission of the
reference signals, three OFDM symbols are needed in a subframe. This reference
signals are exploited for channel estimation and demodulation purposes.

4.2.4 Channel Quality Indicator

Channel state information is reported by the UE by means of CQI reporting. The
four-bit CQI value reports the highest possible MCS from a predefined set that is
supported with the current sensed channel conditions while ensuring a Block Error
Ratio (BLER) lower or equal to 10%, as in the downlink [12]. The modulation and
coding scheme information for uplink is transmitted via the physical control channel
in the downlink. Due to this fact, CQI values are utilized for the selection of the
modulation order and coding scheme. By the standard definition, the CQI value is
calculated on UE side and reported back to the eNodeB.

The CQI value contains in fact two pieces of information: Modulation Order
(4-QAM, 16-QAM, or 64-QAM), and the Effective Code Rate (ECR). After the
1/3 turbo coder employed in the LTE uplink, the rate matcher module adjusts the
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output ECR to the desired value. The ECR thus describes the level of redundancy
after the rate matching operation, as expressed in [30].

The ECR, which is in [10] described as ECR = 1024 cR

eR
, where cR is the number

of useful data plus CRC and eR is the number of output coded bits. The target
ECR value is then used for TB size determination. The allowed TB sizes are given
in [11], and take into account the modulation order and number of RBs assigned by
the system to the UE. Combined with the resource grid size, the maximum number
of bits transmitted over the physical layer can be determined.

4.3 Receiver

Signal processing at the receiver is inverse to the transmitter. Firstly, the CP is
removed, then the IFFT is calculated and the reference signals are removed. The
data is split according to the number of UEs and the assigned number of RBs. At
this point, the DFT precoding is removed. Afterwards, the receiver algorithms is
called, which currently is implemented via hard demapping. Figure 4.1 depicts the
receiver chain, including the complete channel decoding, code block concatenation,
and CRC calculation. After decoding the data, BER, BLER and throughput are
evaluated.
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Part II

Own work
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Chapter 5

Aims of the thesis

The dissertation describes the VSF-OFCDM systems, its critical parameters like
the two dimensional spreading factor and its dependency on BER considering

more transmission channel models, PAPR and its minimization as well as giving
proposals of channel estimation techniques especially appropriate for VSF-OFCDM.
This could be, in short, summarized as:

• To examine whether the 2D signal spreading could be beneficial in terms of
the throughput maximization in modern communication systems.

• Incorporation of the 2D spreading into the LTE physical layer model [19]
• To examine the influence of PAPR and propose a method for its minimization.

To be more specific, the main aim of this work is then to exploit the 2D signal
spreading based mainly on the VSF-OFCDM approach [13, 31, 32] as a wireless
access scheme in a downlink part of the LTE physical layer simulator [17, 18, 19].
This algorithm brings additional time-frequency diversity. This is beneficial in terms
of ability to decode transmitted data in the receiver site, when a multipath fading is
considered. The algorithm do not require additional signaling nor extra bandwidth
so it brings no extra overhead.

The secondary topics are to examine possibilities of PAPR reduction methods
applied directly on VSF-OFCDM. Minimizing PAPR is a popular theme at present
and there are a lot of articles about it but not so many about minimizing PAPR
related to VSF-OFCDM systems.

Another topic we dealt with is to find out whether the up to date channel es-
timation principles could also serve in a system exploiting the 2D signal spreading
or whether there could be found more appropriate algorithm for the channel state
estimation. As a result, one new channel estimation method has been proposed and
compared with the-state-of-the-art pilot estimation method.
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Chapter 6

VSF-OFCDMA

6.1 Introduction

Data spreading in the VSF-OFCDM system can be done in two dimensions -
in the frequency domain and in the time domain. This is the main differ-

ence when comparing the OFDM or the CDMA approaches. The two dimensional
Spreading factor (SF) is expressed as:

SF = SFt × SFf , (6.1)

where SFt is the spreading factor in the time domain, and SFf is the spreading
factor in the frequency domain.

Variable spreading means that we can change the spreading factor according to
current transmission channel conditions to get a lower BER [13].

It was shown in [1] that a proper setting of the spreading factor can reduce
the BER and, moreover, to reduce BER, a proper setting of separate SFt and SFf

parameters is of greater importance than the whole spreading factor SF . This
feature monitors the channel coherence bandwidth and channel coherence time.

Figure 6.1 shows the scheme of 2D spreading in the VSF-OFCDM system. At
first, a certain number of data symbols are spread by 1D spreading code of length
SF . Tor these the Hadamard sequences are used. Consequently, the S/P block is
used to divide the data stream from 1D spreader into SF secondary 2D spread data
streams according to the desired SF pattern. These streams are the input of the
IFFT block which creates the orthogonality between subcarriers. The block named
optional interleaver is exploited for minimizing PAPR - this principle is shown for
example in [2] [33].
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Fig. 6.1: A Scheme of 2D spreading in VSF-OFCDM.

6.2 Transmitter signal processing

The following text will describe the signal processing in the model of two dimen-
sional spreading system, namely VSF-OFCDM. If ax,u is considered as the x-th
VSF-OFCDM symbol of the u-th user, then relation 6.2 can be written as:

ax,u =
(

ax,u
1 , ax,u

2 , . . . , ax,u
k , . . . , ax,u

N
SFf

)
(6.2)

∀k ∈
[
1,

N

SFf

]
: ax,u

k ∈ {−1, 1} ,

where x can also be regarded as the VSF-OFCDM frame number graphically ex-
pressed in Figure 6.2. An element ax,u

k of VSF-OFCDM symbol ax,u is a Phase
Shift Keying (PSK) symbol. It should be noted that the sign marks a vector
quantity. The N is the number of subcarriers. The spreading of the symbol ax,u is
done according to:

ax,u
s = ax,u ⊗ ξu, (6.3)

wherein ξu is the Hadamard spreading sequence of the u-th user, u ∈ [0, U ] or, it
can also be regarded as the number of a row or column of the Hadamard matrix,
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which has dimensions SF × SF and each element is from {−1, 1}. U is the number
of code channels. The sign ⊗ denotes the Kronecker tensor product.

ξu = (ξu
1 , ξu

2 , . . . , ξu
SF ) . (6.4)

After the spreading of the signal, there is a serial into parallel transformation
SP {.}

∣∣∣∣
N,SFt×SFf

. The resulting matrix has the numbers of rows and columns equal

to N, SFt respectively, so the exact form of the SP transformation is given by the
N and SF parameters and can be expressed as:

SP {ax,u
s }

∣∣∣∣
N,SFt×SFf

:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ax,u
s1 ξu

1 . . . ax,u
s1 ξu

SFt... . . . ...
ax,u

s1 ξu
SF −SFt+1 . . . ax,u

s1 ξu
SF

ax,u
s2 ξu

1 . . . ax,u
s2 ξu

SFt... . . . ...
ax,u

s N
SFf

ξu
SF −SFt+1 . . . ax,u

s N
SFf

ξu
SF

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.5)

The transformed signal is the input of the IFFT operation, the result su,x
m is consid-

ered as a VSF-OFCDM frame.

s u,x
m = IFFT

⎧⎨
⎩
{

SP {ax,u
s }m

∣∣∣∣
N, SFt×SFf

}T
⎫⎬
⎭ , ∀m ∈ [1, N ]. (6.6)

It can be written that:

su,x = [s u,x
1 , s u,x

2 , . . . , s u,x
m , . . . , s u,x

N ] , (6.7)

where su,x is a matrix with N columns. These columns are the vectors s u,x
m . {.}T

indicates the matrix transposition and where:

SP {ax,u
s }m

∣∣∣∣
N,SFt×SFf

is the m-th row of the matrix:

SP {ax,u
s }

∣∣∣∣
N,SFt×SFf

The duration of one VSF-OFCDM frame is denoted T , i.e. T = ts
SFt

= 1
ΔF

, where
ΔF is the spacing of the subcarriers.

The transmitted signal is, however, a vector quantity and therefore there is a
need to transpose the signal su,x into s u,x

PST signal according to:

s u,x
PST := PST {su,x} =

(
su,x

1,1 , su,x
2,1 , . . . , su,x

SFt,1, su,x
1,2 , . . . , su,x

SFt,N

)
. (6.8)

The PST abbreviation indicates Parallel Serial transform in the Transmitter.
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Fig. 6.2: The graphical expression of the data code-channels and the channel-sensing
code channel - on the y axis are expressed all the code-sheets, distinguished by u0...U

6.3 Receiver signal processing

The signal processing at the receiver side is closely related with currently exploited
channel estimation techniques. We propose two channel estimation techniques,
therefore the following text is divided into two sections.

6.3.1 Channel Estimation Technique Based on Code Divi-
sion in VSF-OFCDM

This estimation process uses one ax,u symbol (see equation 6.2) with one exactly
specified user superscript u for all frame superscripts x as a training sequence. At
the receiver end, the value of ax,u is known exactly. It is meant to be stored in a
memory - the value of ax,u is time invariant. The symbol ζ is a CSI vector and
has to be calculated at the receiver for every VSF-OFCDM symbol - every frame
number x.

The FFT of the received signal r is firstly calculated at the receiver according
to:

ar = FFT {r} . (6.9)

The signal ar is transformed:

ax,u
r PSR = 1

SF

SF∑
n=1

⎧⎨
⎩PSR {ar}

∣∣∣∣
N

SFf
,SF

�Ξu

⎫⎬
⎭

k,n

, ∀k ∈
[
1,

N

SFf

]
, (6.10)

34



so it can be written:

ax,u
r PSR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ax,u
r PSR 1

ax,u
r PSR 2

...
ax,u

r PSR k
...

ax,u

r PSR N
SFf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.11)

where � is the Hadamard product, and {.}k,n denotes the row and column order in
the matrix resulting from the Hadamard product. Each row contains all chips of
one PSK symbol. The matrix from equation 6.12 has N

SFf
rows. The matrix also

has SF columns. The element of the vector ax,u
r PSR is one PSK symbol. Finally:

PSR {ar}
∣∣∣∣

N
SFf

,SF
:= (6.12)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ar 1 ar 2 . . . ar SF

ar SF +1 ar SF +2 . . . ar 2SF

... ... . . . ...

... ... . . . ar N
SFf

SF −SF

ar N
SFf

SF −SF +1 ar N
SFf

SF −SF +2 . . . ar N
SFf

SF

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the Hadamard despreading matrix:

Ξu =
[
{ξu

1}T , {ξu
2}T , . . . ,

{
ξu

N
SFf

}T
]T

,

It should to be noticed that ξu
1 = ξu

2 = · · · = ξu
N

SFf

. Then the ζx value, which will
contain the channel state information, can be calculated:

ζx
k = ax,u

k

ax,u
r PSR k

, ∀k ∈
[
1,

N

SFf

]
. (6.13)

Applying CSI:

ax,u
C = diag

{
{ax,u

r PSR}T · ζx
}

, ∀u ∈ [0, U ], (6.14)

where ax,u
C denotes a VSF-OFCDM symbol which is corrected by vector ζx contain-

ing the CSI. The CSI for the spreading system is not a time-frequency matrix as for
pilot-based, but a vector for correcting of despreaded (received) symbols. Because
part of the receiver for the spreading system is an integration of chips, the channel
information is also integrated and applied after that. The integration also improves
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the performance in the Additive White Gaussian Noise (AWGN) channel, and the
CSI is relevant even for really low SNR.
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Fig. 6.3: The comparison of spreading sequence usability for estimation purposes
and for data transmission.

As one could expect, each Walsh-Hadamard code performs differently in a fading
channel environment. Since the estimation channel is of higher priority and is used
by all the current users in a serving cell, the Walsh-Hadamard code used for the
estimation process is supposed to be the most resistant against the fading effect in
a real multipath channel. To follow this reasoning, the comparison of usability of
all Walsh-Hadamard codes has been done and the result is depicted in Figure 6.3.

At the x axis we see the order of a spreading code used for data transmission and
at the y-axis the order of a spreading code used for the estimation process is placed.
The color represents BER. As we see at the diagonal, when the same sequence is
used for the estimation as well as for the data transmission, the BER is ≥ 0.5 and as
we expected earlier, we see that some sequences are better than others - this should
represent a color different from blue.

6.3.2 Pilot Aided Channel Estimation Technique in 2D Spread-
ing Based Systems

The principle of the pilot aided estimation is illustrated in Figure 6.4. Some of the
transmitted chips in SP matrix 6.15 are set equal to ζ 6.16. This information (ζ) is
known at the receiver side and therefore the transmission channel influence at the
positions of the pilot symbols can be evaluated.
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Fig. 6.4: Pilot insertion

If we go back to the transmitter, the pilots are inserted as is expressed in the
following, however, firstly we need to decide about the estimation grid in both
domains (EGf , EGt). It means that the mutual distance of the pilot symbols should
be established. The parameter of this decision should be for example the CQI.

SP {ax,u
s }

∣∣∣∣
N,SFt×SFf

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ax,u
s1 ξu

1 . . . ax,u
s1 ξu

SFt... . . . ...
ax,u

s1 ξu
SF −SFt+1 . . . ax,u

s1 ξu
SF

ax,u
s2 ξu

1 . . . ax,u
s2 ξu

SFt... . . . ...
ax,u

s N
SFf

ξu
SF −SFt+1 . . . ax,u

s N
SFf

ξu
SF

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.15)

Now we need to insert pilot symbols into the SP matrix. We can write:

ψi,j = ζ

∀i ∈ {1, EGf + 1, 2(EGf + 1), . . . , N}
∀j ∈ {1, EGt + 1, 2(EGt + 1), . . . , SFt} . (6.16)

For applying the CSI, there is a need to interpolate the CSI matrix to the size
of the Serial to Parallel (SP) matrix. There methods are used: Linear, Nearest and
Spline (see fig. 6.4). Applying of the interpolated CSI matrix is done by performing
a multiplication operation - the interpolated CSI matrix is multiplied element-by-
element with the matrix of the received signal. The difference between perfect
knowledge of channel state information (real state of the channel) and channel state
information estimated from pilot subcarriers can be seen in Figure 6.5a and Figure
6.5b.

The performance for different interpolation methods for CSI estimation is shown
in Figure 6.6. Simulations are also made for three types of non-linear channel models.
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(a) Real CSI matrix (perfect knowledge of the
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(b) Interpolated CSI matrix, method: Nearest.

Fig. 6.5: The CSI matrices

The nearest method for pilot subcarriers interpolations is not recommended. The
linear and spline methods almost have the same performance for a selected system,
but linear is easier to implement. The VSF-OFCDM system with CSI estimation has
better performance in channels with a smaller delay spread (Extended pedestrian
channel model (EPA), EVA) as suspected.

Results and conclusions

First of all Table 6.1 with parameters of the proposed system is given. The 2D
spreading factor is static in this case; however, this is considered to be variable.
For example according to channel conditions, but this feature is disrupting in this
attempt so its influence is not examined.

Spreading Factor SF 64
Spreading Factor - freq. domain SFf 8
Spreading Factor - time. domain SFt 8
Sample time ts 5 μs
Number of subcarriers N 128
Modulation method QPSK
Upsampling in IFFT 8

Tab. 6.1: Parameters of the VSF-OFCDM system model.
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Fig. 6.6: The comparison of BER performance for different interpolations methods
for CSI estimation, different channel models and BPSK and QPSK inner modulation
of the VSF-OFCDM.

In this section, we have proposed a novel application of the pilot-based channel
estimation and CSI interpolation in VSF-OFCDM systems as well as an estimation
technique based on code division. The unaffected throughput is the main advantage
of our pilot-based channel estimation method. Comparing the overhead information
added due to the estimation, the code based method exploits the 1/SF part of the
transmitted data (one spreading sequence is used). For the simulated system, this
corresponds to 1/64, so from 64 transmitted symbols, one is used for estimation. In
the case of the pilot based estimation, this is dependent on the pilot sub-carriers grid.
For the presented results, the grid was set to 4 × 4 and this overhead corresponds
to 4/64. Therefore, the simulation with the code based estimation method suffers
from lower information overhead compared with the pilot based method.

The comparison of a pilot based estimation technique and the proposed method
exploiting code division is depicted in Figure 6.7.

We see better performance for the code based estimation system. For our settings
SF = 8 × 8, to achieve the same BER level BER = 10−3, we need up to 10 dB
higher SNR for the pilot based system.

The Doppler effect has been stimulated too and as we can see from Figure 6.7,
the code-base estimation system hits an error floor when using maximal Doppler
frequency 2 Hz. This is not the case of the pilot based system where we do not
observe any error floors.

Figure 6.8a shows the CSI matrix of a pilot-based estimation system for SNR =
1000 dB [3]. We can see a rounding error due to the type of interpolation method
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’nearest neighbor’. A more advanced method could be used, but it will not provide
much better results.

In this particular case, the SNR = 1000 dB. Pilots are not affected by noise and
as a result, the shape of the surface could represent a channel matrix well. Another
case is, when the SNR drops to a lower level. In Figure 6.8b we see a degradation
of the CSI matrix. The pilot symbols are damaged by a noise and as a result we
suffer from poor CSI quality.

If we use the code-based estimation, the CSI matrix for SNR = 1000 dB is very
similar to the CSI matrix for SNR = 0 dB. Here the averaging effect comes into
account. The CSI matrix is created after de-spreading and summing. If the AWGN
is exploited in our system, its mean value equals zero, so if the SF is high enough,
CSI will not be degraded.

Channel model

The transmission channel model in this case is expressed by its impulse response
which is given by the International Telecommunication Union (ITU). This is repre-
sented by the sampling of Wide-Sense Stationary Uncorrelated Scattering (WSS-US)
and by a Doppler shift: [34]

h(p, m) = lim
R→∞

1√
R

R∑
r=1

e(φr+2πfDr Tsp+2πτrΔF m), (6.17)

where p and m are two characteristics of the process (e.g. time/frequency). There
are R echos superposed incoherently. Each path is desribed by a random Doppler
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(b) The CSI matrix from pilot-based estimator,
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Fig. 6.8: Noise influence on the pilot-based generated CSI matrices

shift fDr, random phase φr, and random delay τr, where 1 ≤ r ≤ R. [34]

These are the channel models used:
• EPA, Extended Pedestrian, r.m.s. delay spread = 43 ns
• EVA, Extended Vehicular, r.m.s. delay spread = 357 ns
• ETU, Extended Urban, r.m.s. delay spread = 991 ns

They simulate the environment with low, medium and high (respectively) delay
spread and a low (7Hz for EPA and EVA) and medium (70Hz for Extended typical
urban channel model (ETU) Doppler shift. The channels have been proposed for in
the LTE performance evaluation and therefore the frequencies are around 2.5GHz.
[17]

If we compare this code based method with the state-of-the-art pilot based
method, also using the VSF-OFCDM simulator, we see that the new method bene-
fits from notably lower BER. This is true for very low Doppler shifts, as the Doppler
shift goes up, the code based method reaches an error floor faster than the pilot
based method.

Bibliography of author’s publications related to stated chapter:

[1] J. Blumenstein and Z. Fedra, “The characteristics of the 2d spreading based
communication systems,” in Radioelektronika, 2009. RADIOELEKTRONIKA ’09.
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[3] J. Blumenstein, Z. Fedra, and V. Šebesta, “Performance of pilot aided channel
estimation technique in 2d spreading based systems,” Radioengineering, vol. 19, pp.
507–510, 2010.

6.4 PAPR minimizing technique in the 2D spread-
ing based system

This section will describe a challenging issue of many multicarrier wireless systems
- we will give an insight on Peak to Power Ratio (PAPR) and its influence on two
major drawbacks which high PAPR causes: an OOB radiation and worse bit error
ratio.

To precisely control OOB and BER is of crucial importance on overall usability
and reliability of all communication systems. Since OFDM uses many orthogonal
subcarriers and as is shown in the chapter devoted to OFDM, the complete OFDM
signal is formed from a sum of individual subcarriers which are produced by the
IFFT operation of a rectangle pulse. This leads to a signal which has a shape
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of a sinc function with one enormous peak in the time domain. If we sum these
signals representing individual subcarriers, we will inevitably obtain a signal with
huge PAPR.

A high PAPR value means that we will need to use an expensive PA with a
width linear transfer function, otherwise our system will suffer from nonlinear dis-
tortion. This would produce OOB radiation which will interfere other users, or it
could increase the error rate since the distorted data could not be properly decoded.
Another disadvantage is seen in battery powered applications such as cell phones,
or PDAs. Due to the fact that the PA operates most of the time in a power de-rated
mode, the efficiency is considerably lower.

There are numerous methods for minimizing PAPR. A wide overview could be
found in [22], or [17]. The problem of minimizing PAPR in a proposed VSF-OFCDM
system is that by exploiting the 2D spreading, the system suffers from a much higher
PAPR than a proper OFDM [2]. This issue is, however, solved using a simple PAPR
minimizing technique, which is based on random interleaving of the IFFT input. A
more detailed description with intention to the VSF-OFCDM is to be found in the
next sections or application of the interleaving PAPR minimization technique to the
Multi-Carrier Code Division Multiple Access (MC-CDMA) as described in [33].

6.4.1 Interleaving method for PAPR minimizing

The principle of the interleaving method for minimizing PAPR is as follows. The
data stream of OFDM systems in the time domain can be considered as the sum of
sinusoids and when the peak values of these sinusoids are optimally and mutually
shifted, the sum of these peaks in one timeslot (and also PAPR parameter) is re-
duced. It has been shown in [33] that the optimal interleaving pattern gives almost
the same results as the random pattern which is used here and can be generated as
a random permutation of a number of interleaved chips.
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Fig. 6.10: An OFDM transmitter, signal marking

To illustrate this effect, we can observe, in Figure 6.11, a matrix of 2D spread
and an interleaved signal just after IFFT operation. The simulated system was
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8 × 4, N = 32. The frequency domain is placed on the x axis, the time domain on
y axis and finally power of the 2D signal on the z axis. It is clear from Figure 6.11
that one 16-QAM symbol is spread according to the desired spreading pattern, on
4 subcarriers and on 8 timeslots.

The values within the frame of one 16-QAM symbol in the direction of the x

and y axes are not the same due to random interleaving and in the direction of the
x axis due to the IFFT operation.

The optional random chip interleaving block is used for reducing PAPR as was
proposed in [33].
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Fig. 6.11: A 2D spread signal after the IFFT operation

PAPR in VSF-OFCDM systems can be observed in two dimensions; in the time
and frequency domain. Considering that the main drawback of high PAPR is the
increase of BER and OOB radiation caused by nonlinearity of the power amplifier,
then the time domain PAPR has more real usage than the PAPR parameter in the
frequency domain.

The reason for this is obvious from Fig. 6.10 - we consider the time domain just
behind the IFFT block and behind this block the power amplifier is inserted as well.
The PAPR is critical for this block.

A numerical example of PAPR values in the frequency domain for 16-QAM
modulation is demonstrated in Table 6.2.

Results and conclusions

Results of the simulations are shown in Figures 6.12, 6.13 and 6.14. PAPR was
tested in the time domain and the influence of changing SFtime, SFfreq and N ,
which represents the number of subcarriers, was observed.
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PAPRf [dB] SF patterns
N=80 16,81 10 × 8
N=160 19,82 20 × 4, 10 × 8
N=320 22,83 80 × 4, 40 × 8, 20 × 16
N=640 25,84 640× 1, 80 × 8, 40 × 16
N=1280 28,85 640 × 2

Tab. 6.2: PAPRf [dB] values for 16-QAM modulation and various SF patterns.

The left part of Figure 6.12 shows the Complementary Cumulative Distribution
Function (CCDF) of PAPR for 16-QAM. SFfreq stays const., SFtime = [8, 16, 32, 64]
and N = 120. Interleaver was not used. PAPR is not significantly rising with
increasing of SFtime. The reference curve for a pure OFDM system is illustrated in
every figure for comparison. The OFDM in this figure has significantly lower PAPR
than 2D spreading based systems.

The right part of figure 6.12 shows the situation when SFtime = 10, SFfreq =
[10, 20, 40, 80] and N = 160. Interleaver was also not used. PAPR is rising with
rising SFfreq and is rising with N as well. It is shown in the left part of figure 6.13.

The right part of Figure 6.13 illustrates the influence of random chip interleaver.
A 16-QAM, SF = 8 × 16, N = 1600 system is considered. We can observe huge
reduction of PAPR up to 9dB. The system with an interleaver achieved nearly the
same PAPR as the OFDM system with the same number of subcarriers N .

In Figure 6.14, the amplitude histograms of the transmitted signal are plotted for
SF = 16×10 settings and the interleaver is on and off respectively. The distribution
of the amplitudes of systems with an interleaver is close to the Rayleigh distribution
as well as the OFDM system. If no interleaver is used, the distribution is exponential.

This section gave an insight onto the VSF-OFCDM system with time-frequency
spreading and its performance of PAPR with different 2D spreading patterns.

An important conclusion is that PAPR is not growing with growing SFtime,
but with SFfreq and with N PAPR is growing significantly. This feature can be
profitably used in designing various SF patterns in VSF-OFCDM systems. Last
but not least we have shown that PAPR can be simply and effectively reduced
nearly to the OFDM PAPR level [2, 4].

6.4.2 High PAPR and PA nonlinearities

As has been stated in the previous sections, considering the PA nonlinearities, high
PAPR value affects the BER and OOB radiation. To examine this effect, we de-
veloped the VSF-OFCDM simulator [5]. This simulator is done in Matlab and
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Simulink, it is free of charge for academic usage and is downloadable from [5].

Bit error ratio experiment

To simulate real PA, we choose the Saleh nonlinearity [35] for its simplicity, widespread
and common usage. It is fully described by two parameters:

The AM/AM parameters, alpha and beta, are used to compute the amplitude
gain for an input signal using the following function:

FAM/AM(u) = αu

1 + βu2 , (6.18)

where u is the magnitude of the scaled signal. The AM/PM parameters, alpha and
beta, are used to compute the phase change for an input signal using the following
function:

FAM/P M(u) = αu2

1 + βu2 , (6.19)

where u is the magnitude of the input signal. Note that the AM/AM and AM/PM
parameters, although similarly named alpha and beta, are distinct [36].

For our attempt, the parameters have been chosen: AM/AM = [2.1582 1.1547],
AM/PM = [4.0033 9.1040]. The input/output characteristic is in Figure 6.15c.

Another way to show the nonlinearity influence is to use the histogram from
Figure 6.15 where on the x axis is the amplitude value and on the y axis will be
placed the number of occurrences in the signal vector. If comparing the histogram
before the Saleh nonlinearity 6.15a and the histogram after the Saleh model of a
PA 6.15b, we could easily see the paramount influence of such a nonlinearity. It is
worth mentioning that all the amplitudes greater than 1 from Figure 6.15a are after
the Saleh nonlinearity rounded to 1. It has to simulate that the PA is saturated
when amplitudes are equal to 1 and has no more power to amplify amplitudes of
higher power. A huge reshuffle of energy occurs in the frequency domain as well as
a distortion of the signal in such a way that proper demodulation of a quadrature
amplitude modulated signal of some higher state (16-QAM or 64-QAM) is rather
challenging.

In the next figure, 6.16, we see the scheme produced by the VSF-OFCDM sim-
ulator [5]. The signal processing strictly follows the description given in section 6.1
and the current setting is: SF = 8 × 8 and SF = 16 × 16 - we tried to examine
whether the spreading factor affects the overall PAPR of the VSF-OFCDM system
and as a result also the BER and OOB radiation. It needs to be stated that also the
order of Walsh-Hadamard sequence used for the signal spreading has its influence
as is shown in Figure 6.3.
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Results and conclusions

For this attempt, the order of the Walsh-Hadamard sequence=5 and the number of
subcarriers N = 128. The BER performance and comparison of the VSF-OFCDM
system with PA modeled by the Saleh nonlinearity and ideal PA is shown in Figure
6.15d. It can be observed that from a BER=10−3 there is a difference between
the distorted signal (marked with the ’Saleh’ note in the legend) and the original
non distorted signal of about 10dB to keep the same BER level. It should also be
noted, that the BER performance can be improved by increasing the SF parameter.
Increasing from SF=64 to SF=256 brings an improvement in SNR of about 5dB to
preserve the BER performance.

This section describes the VSF-OFCDM system model and presents the results
of analysis of the influence of the Saleh nonlinearity on signals generated by the
above mentioned system and especially on BER performance of that system. It
can be seen how the BER performances worsen when considering the Saleh non-
linearity; however, they can be improved by increasing the SF parameter. This is
unfortunately redeemed with higher occupied frequency bandwidth. [6]

6.4.3 Out-of-band radiation and 2D spreading implementa-
tion using USRP

A small test site has been created in order to observe the real spectrum of the
VSF-OFCDM system and the influence of the spreading factor, number of subcar-
riers and the PAPR minimizing algorithm introduced above. This test site is shown
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in Figure 6.18.
The current subsection also shows a 2D spreading based system implementation

using a Universal Radio Peripheral (USRP) [6, 7], [37] and results gained by mea-
surement on this device. First of all, a short introduction of the USRP hardware is
given as well as a description of its usage in the Simulink software.

The USRP hardware and The Simulink Blockset

The USRP contains a Field-Programmable Gate Array (FPGA) which can be repro-
grammed, 4 high-speed Analog to Digital Converters (ADCs), 4 high-speed Digital
to Analog Converters (DACs), and several auxiliary analog and digital IO and it
can using a connected to a host computer by Universal Serial Bus (USB) 2.0 (480
Mb/s).

A blockset for Simulink was created at Karlsruhe Institute of Technology [38]
to enable the possibility of effectively exploiting USRP. The blockset consists of
three blocks. The usrp_sink_block is used to send data from Simulink to USRP
and is solely studied in this subsection. The USRP is extended using the RFX2400
daughterboard with a frequency range 2.3 to 2.9 GHz and transmit power 50mW
(17dBm).

The ROHDE&SCHWARZ SFQ3 signal analyzer is used for measuring of the
spectra of received signals. A distance between the USRP transmitter and the RO-
HDE&SCHWARZ FSQ3 receiver d was set in the range from one to four decimeters
but the influence of changing distance d was not observed.

An example of a 2D spreading based system implementation in Simulink is de-
picted in Figure 6.17.

The 2D spread signal used in this attempt can be represented with a matrix of
data, shaped using the IFFT operation. The matrix construction using the Simulink
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Fig. 6.18: The USRP work site, from left: The ROHDE&SCHWARZ SFQ3 signal
analyzer, the USRP connected with PC (not depicted) using USB 2.0 and power
supply (6V, DC)

blockset is apparent from figure 6.17. The IFFT block creates the orthogonality of
the subcarriers according to the following equation:

s(t) =
∞∑

n=−∞

M−1∑
m=0

am
n RectT (t − nT )ej2πm t

T , (6.20)

where m is the subcarrier number, n is the symbol order, am
n denotes the n-th symbol

transmitted in the m-th subcarrier and finally RectT is the rectangular window
function with durability of T , which is defining for the OFDM symbol durability.

If the optional random interleaver is used, the values within the frame (the
matrix) of one 16-QAM symbol in the direction of the axes x and y are not the
same due to the random interleaving and in the direction of axis x due to the IFFT
operation. The optional random chip interleaving block can be used for reducing
of PAPR as was proposed in [33]. The principle of this method is as follows: the
data stream of OFDM systems in the time domain can be considered as a sum of
sinusoids and when the peak values of these sinusoids are optimally and mutually
shifted, a sum of the peaks in one timeslot (and also PAPR) can be reduced.

It has been shown in [33] that the optimal interleaving pattern gives almost the
same results as the random pattern which is used here and can be generated as a
random permutation of the number of interleaved chips.
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Results and conclusions

The results are shown in Figure 6.19. The marking of signals is as follows: xs(t) is
the 2D spread time domain signal from Simulink, this is provided to USRP and its
RFX2400 daughter-board for generation of the 2.4GHz xr(t) signal.

The interleaved releases of previously mentioned signals are supplemented with
index i thus the marking of remaining signals is: xs,i(t) and xr,i(t).

In Figure 6.19, the spectral expressions of foregone signals xs(t), xr(t), xs,i(t)
and xr,i(t) can be observed. It can be seen that the spectra of interleaved and
non-interleaved signals xs(t) and xs,i(t) as well has the same bandwidth 250Hz, the
received signals xr(t) and xr,i(t) were transmitted with carrier frequency 2.4GHz.
The difference between signals |Xs(f)| and |Xs,i(f)| where X(f) = FFT {x(t)} is
expressed by the side lobs suppression feature.

The side lobs suppression is the main disadvantage of systems with interleaved
chips. The non-interleaved system spectra reached suppression (in the band depicted
in Figure 6.19) ca 150dB; however, the interleaved system reached only ca 40dB.

Nevertheless, the practical example consisting of the measured spectra shows
that in the presence of noise, the side lobs suppression level 40dB is sufficient.

This chapter describes the results of implementation of the 2D spreading based
system to the USRP. There is no fundamental divergence between the spectral
expressions of interleaved and the non-interleaved systems except the side lobs sup-
pression level; however, from a practical point of view this feature is negligible.
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Chapter 7

LTE link level simulations

This chapter gives a brief introduction of the LTE uplink link level simulator
implementation and its structure. First of all, it needs to be stated that the

downlink part of the LTE link level simulator has been introduced in [28], and the
uplink implementation follows the same basic simulator structure and implementa-
tion concept as in the downlink. The simulator implementation structure is shown
in Figure 7.1.

The simulation is performed in the main loop as shown in Figure 4.1: for given a
CQI value/s and corresponding SNR vector, appropriate simulation parameters are
loaded, which run the simulation for a configurable number of subframes (typically in
the order of thousands to ensure appropriate BLER accuracy). The control channels
are not implemented, their positions being filled with random data. The simulator
currently implements an AWGN uplink channel, while the ACK/NACKs, which are
calculated after decoding and transmitted back to the eNodeB, use an error-free
genie feedback channel. Perfect channel knowledge is exploited so far; the reference
symbols are filled with zeros. After processing all subframes of a given vector SNRs,
the CQI value is shifted and the entire process with given SNRs runs again.

The simulator parameters can be configured in the LTE_UL_sim_batch.m, which
batch-calls the simulator and contains the CQI and LTE_UL_load_parameters.m,
which specifies simulator configuration parameters. There, the number of simulated
subframes and SNR values can be configured, as well as parameters like the number
of UEs and bandwidth. BER and throughput plots are shown after the simulation
as figures of merit, enriched by confidence intervals.

Experiment and results

Current results of the proposed simulator are shown on 7.2a and 7.2b. The 99 %
confidence intervals are plotted in order to provide a statistical perspective on the
accuracy of the presented data.
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Fig. 7.1: Structure of the LTE uplink link level simulator.

7.2a and 7.2b show BER and throughput performance results of LTE uplink sim-
ulations for the 15 MCSs specified in 7.1. Compared to downlink results presented in
[28], and after applying a correction factor for the fact that in uplink, three symbols
are reserved for pilots, while downlink only uses two.

Compared to throughput results, 7.2b depicts the achievable system capacity as
a theoretical upper bound. The achievable system capacity is given by Shannon’s
formula [39], adjusted to the particular system overheads in LTE uplink:

C = FB log2(1 + SNR), (7.1)

where B denotes the bandwidth of the simulated system, as in 7.3, SNR denotes
the Signal to Noise Ratio, and F is a correction factor reflecting a reference losses
due to Cyclic Prefix:

F = 11
14

Tframe − TCP

Tframe
. (7.2)

The fraction 11
14 gives the reference symbol losses. Out of the total of 14 OFDM

symbols in the subframe, 11 are used for data, while 3 carry the Demodulation
Reference Signals and Sounding Reference Signals.

The used system bandwidth B can thus be expressed as:

B = NscNsNrb

Tsub
, (7.3)

where Nsc is the number of subcarriers in one RB, Ns is the number of OFDM
symbols in one subframe, and Nrb is the number of RBs.
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Tab. 7.1: LTE system parameters of the presented uplink simulations

System Bandwidth 1.4 MHz

Subcarrier spacing 15 kHz

Subframe duration 1 ms

Number of UEs 1

Number of eNodeBs 1

Antenna Scheme SISO

CP length ’normal’ [10]

Channel AWGN

Modulation QPSK, ECR =
{

78
1024 , 120

1024 , 193
1024 , 308

1024 , 449
1024 , 602

1024

}
and 16QAM, ECR ∈ {378, 490, 616}

Coding Schemes 64QAM, ECR ∈ {446, 567, 666, 772, 873, 938}

Conclusion

We presented LTE system and its major parameters and features in terms of physical
layer. We also mentioned several differences between uplink and downlink parts. In
addition, we show an open LTE link level simulator [8], implemented in MATLAB
and available under a free academic non-commercial use license.

The uplink simulator is based on the structure of the open downlink simulator
presented in [28]. The shown AWGN performance results confirm the ability of
the simulator to work according to the 36’ series 3GPP standards and enables easy
reproducible research in the field of LTE uplink.

Bibliography of author’s publications related to stated chapter:
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7.1 Applicability of the 2D signal spreading in the
UMTS LTE

7.1.1 Introduction

It is without any doubt that one of the main concerns of any communication sys-
tem is to have the highest possible data throughput independent of the channel
conditions. To maximize the throughput, we exploited time and frequency diver-
sity. Apart from utilization of expensive techniques such as using extra bandwidth,
adding more antennas or simply increasing the transmitting power, our method can
be interpreted as a coding technique with code rate one. This method only increases
the demand on computational power.

The idea behind this chapter is to reveal the efficiency of a 2D spreading method
when it is incorporated in the most relevant wireless standard which is currently
available. Therefore we chose an open source LTE simulator [19, 23, 28] to find out
whether LTE can be enhanced by our proposed 2D signal spreading and show that
it indeed outperforms a standard LTE downlink in terms of throughput.

An example of implementation of 2D signal spreading and thus a time-frequency
diversity utilization can be found in VSF-OFCDM systems [3, 13, 31, 32]. The
authors claim that the 2D spreading based VSF-OFCDM system exhibits a better
performance than OFDM wireless transmission methods.

A three-cell frequency reuse OFDM system and one-cell reuse VSF-OFCDM
system was compared. Due to the fact that VSF-OFCDM systems could benefit
from the utilization of the code domain and the cells have been distinguished by a
spreading code the VSF-OFCDM system reached significantly better throughput in
a multi cell environment [40]. The reason for this is that the possibility to use the
entire system bandwidth in the VSF-OFCDM system was enabled when compared
to a third of the bandwidth in the case of pure OFDM.

LTE however uses a one-cell frequency reuse [20] and could benefit only from
exploitation of the time-frequency diversity. To keep the comparison of 2D LTE and
LTE fair, the bandwidth has to be the same as in the case of LTE.

When presenting our novel method, the need for comparing with a-state-the-art
system is very important. Hence, the system model is based on the Vienna LTE
simulator [19, 28] as a reference model. This simulator is released under a free
non-commercial, academic use license. Such a release model enables algorithms to
be tested and being compared using a common, known, and verifiable environment.
We are certain that this transparency not only improves the quality of the published
results but also their credibility.

Concerning results, we present throughput comparisons based on Power-Delay
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Profile (PDP) channel models of the following types: Pedestrian channel model
of type A (PedA), Pedestrian channel model of type B (PedB), Vehicular channel
model of type A (VehA), Additive White Gaussian Noise (AWGN), Typical urban
channel model (TU), ETU, Rural area channel model (RA) and Hilly terrain channel
model (HT) [41, 42].

The remainder of this chapter is organized as follows: In the section System
Model, the implementation of the 2D signal spreading into the LTE signal processing
chain is described. In the section Spreading Factor we explain its selection and in the
section Experiment and Results the comparison of the standard LTE downlink and
the 2D spreading based LTE transmission is provided. At the end of the chapter,
the section Conclusion rounds up the chapter.

The 2D spreading, as it is presented in [14], is rather repeating symbols which
are multiplied by some spreading sequence. The resulting chips are repeated in
time, frequency or code domain. The presented algorithm exploits one dimensional
Walsh-Hadamard sequences. Nevertheless, due to interleaving of spread data among
multiple carrier frequencies and multiple OFDM symbols, two dimensions are uti-
lized. Therefore, we refer to this scheme as two-dimensional spreading.

Figure 7.3 represents the LTE signal processing chain. The dark gray blocks
indicate additional blocks for 2D spreading and despreading. Other parts remain
the same in both versions; 2D spreading based LTE and standard LTE downlink.
The white blocks are according to 3GPP standards [10, 11, 12].

Vector ac from Equation (7.4) denotes the CRC secured, segmented, scrambled,
turbo-coded, rate matched, QAM and layer mapped data vector a.

ac = (ac1, ac2, . . . , ace) , (7.4)

where the index e is the number of elements in the vector ac. We consider the
output of the layer mapping block, vector ac, as the input of a 2D spreading block.
In the 2D spreading block, vector ac is chopped to SF parts, where SF stands for
Spreading Factor - as explained below. This operation is illustrated by (7.5), where
SP{ac}|SF denotes a Serial-to-parallel (SP) transformation of vector ac.

SP{ac}|SF :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ac 1 ac 2 . . . ac e
SF

ac( e
SF

+1) ac( e
SF

+2)
. . . ...

... . . . ac (e−SF −2) ac (e−SF −1)

ac (e−SF ) . . . . . . ace

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

︸ ︷︷ ︸
Ac

(7.5)

Each row of matrix Ac is then multiplied by one Walsh-Hadamard sequence, i.e.,
one column of matrix Ξ specified by (7.7). This is described in Equation (7.6) and
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Fig. 7.3: The LTE signal processing chain. The dark gray blocks represents the
additional blocks for 2D spreading and despreading. Other parts remain the same
in both versions, 2D spreading based LTE and standard LTE. The white blocks are
according to [10, 11, 12].
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depicted in Figure 7.4.

As = Ac(i,∗) ⊗ Ξ(∗,i) =

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ac 1ξ1,1 ac( e
SF

+1)ξ1,2 . . . ac (e−SF )ξ1,SF

ac 1ξ2,1 ac( e
SF

+1)ξ2,2
... ...

... ...
ac 1ξSF,1 ac 2ξ1,1

... ...
ac 2ξ1,1 ac( e

SF
+2)ξ1,2

... ... ac (e−SF −2)ξSF −1,SF −1
...

ac e
SF

ξSF,1
... ac (e−SF −1)ξSF,SF −1 aceξSF,SF

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

,

∀i ∈ {1, . . . , SF} (7.6)

where

Ξ =

⎛
⎜⎜⎜⎝

ξ1,1 . . . ξ1,SF

... ...
ξSF,1 . . . ξSF,SF

⎞
⎟⎟⎟⎠ . (7.7)

Matrix Ξ then represents the Walsh-Hadamard matrix utilized as a bank of spread-
ing sequences, Ac(i,∗) denotes the i-th row of matrix Ac and Ξ(∗,i) selects the i-th
column of matrix Ξ. The symbol ⊗ denotes the Kronecker product and (.)T denotes
a matrix transposition.

Consequently, all the rows of the resulting matrix As are summed together ac-
cording to Equation (7.8), thus we obtain a vector of spread data as of length SF.
Each row of matrix Ac forms the code sheet, as shown in Figure 7.4.

as =
SF∑
j=1

As(j,∗) =

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ac 1ξ1,1 + ac 1ξ2,1+ . . . +ac e
SF

ξSF,1

ac( e
SF

+1)ξ1,2 + ac( e
SF

+1)ξ2,2+ . . . +ac( e
SF

+1)ξSF,2 + ac( e
SF

+2)ξ1,2

...
... . . . +ac (e−SF −1)ξSF,SF −1

ac (e−SF )ξ1,SF + . . . +aceξSF,SF .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(7.8)

In order to spread the chips (the elements of vector as) over the entire bandwidth
and over all time slots (OFDM symbols), all positions of the chips are randomly
interleaved.
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Fig. 7.4: The two-dimensional signal spreading process. We are spreading the signal
right after the layer mapping block. The signal from the layer mapper is multiplied
with all Walsh-Hadamard sequences of order SF. As a result we receive SF vectors,
which represents the code-sheets. These are then summed together and we obtain
a vector which serves as a frame builder input.

Vector as, containing all the spread data is of the same length as the output of
the layer mapping block, i.e., ‖as‖ = ‖ac‖.

Due to the fact that Walsh-Hadamard sequences are orthogonal, we are able to
separate them at the receiver site. This principle is well-known from the CDMA
systems [14].

When spreading a signal, we have SF-times more of data to transmit due to the
spreading process, however, we also obtain SF times more space in the code domain
which we can utilize. The increase in terms of data is in this case the same as the
increase of the space dedicated to the transmission. As a result, after the summation
of all the code sheets as presented in Figure 7.4, the amount of data is kept the same
as in the case of standard LTE and thus no extra bandwidth is required.

However, the transmitted data occupies SF-times more time-frequency space,
thus we gain on time-frequency diversity. At the receiver site, we have SF realizations
of one bit. Due to the interleaving of these chips all over the transmission channel,
the influence of deep fades of a transfer function [15] will be reduced.

The data share their space with other SF − 1 data element. It will be shown in
the next section that their performance on AWGN channels will not be improved.
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Fig. 7.5: For a lucidity of our experiment, we assume a perfect timing synchroniza-
tion. If we consider that the whole available bandwidth is scheduled for a single
user, here UE1, and omitting additional users (UE2 and UE3), we have simplified
the transmission scheme. Thus we obtain a cell-specific throughput curve as seen in
Figure 7.6.

7.1.2 Spreading Factor

For a better understanding of our proposed algorithm, a brief description of the LTE
time-frequency signal grid according to [11] is stated in the following section. Using
a ’normal’ cyclic prefix, seven symbols with 12 subcarriers each form one resource
block. One element of such a grid is called resource element (RE).

The maximal number of resource blocks transmitted in LTE is given by a total
system bandwidth BW, where BW∈ {1.4, 3, 5, 10, 15, 20}MHz. This corresponds to
the number of resource blocks Nrb ∈ {6, 15, 25, 50, 75, 100}, which can be exploited
for data transmission.

The spreading factor SF has to be chosen carefully, the length of the vector ac

representing the amount of transmitted data has to be divisible by SF. This is due
to the fact that the 2D spreading block cuts its input vector ac into SF parts in
order to allow spreading. For a more detailed explanation, the chopped data are
multiplied by the spreading sequence and then their length will be SF-times larger.
The length of the spread data will then be exactly the same as the length of the 2D
spreading block input vector ac. This is a necessary property. The frame builder can
remain intact as well as the generation of pilot signals used for channel estimation.
As a result, only minimal changes in the LTE standard are needed. Additionally,
the comparison of such a system is more relevant.

In the configuration presented below, where BW=1.4MHz, the number of user
equipments nUE=1, Nrb=6, a vector from the layer mapping block is of length 816
for the first subframe and 960 for the second subframe, respectively. Due to this, the
maximal spreading factor is SF=48. The reason is that 48 is the highest common
divider of 816 and 960 for which we also found a Walsh-Hadamard matrix.
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Tab. 7.2: LTE system parameters of the novel 2D spreading based simulation sce-
nario

System bandwidth 1.4 MHz

Subcarrier spacing 15 kHz

Subframe duration 1 ms

Number of UEs 1

Number of eNodeBs 1

Transmission Scheme SISO

Number of subframes 10 000

CQI 15

SNR 30dB

SF 48

CP length ’normal’ [10]

Channel estimation method MMSE

Channel model PedA, PedB, VehA, AWGN, TU,

ETU, RA, HT [41, 42]

7.1.3 Experiment and results

This section describes the simulation setup as well as the results of the 2D spreading
based LTE model.

Our method operates on the physical layer. Therefore, for a lucidity of our
experiment, we assume a perfect time synchronization of all UEs which is provided
by a higher layer. The resulting throughput curve, seen in Figure 7.6, is cell-specific
and the scheduling of resource blocks is done by a scheduler which is also part of the
higher layer of LTE functionality. If we consider that the whole available bandwidth
is scheduled to one UE, we can simplify the transmission scheme as the single user
environment as seen in Figure 7.5.

Regardless the Number of user equipments (nUE), but of course only when
nUE> 1, our simulation setting generates maximal cell-specific data throughput
given by the system bandwidth.

Figure 7.6 depicts the comparison of a standard compliant LTE downlink trans-

64



Fig. 7.6: The throughput curves for PedB channel model, 1.4MHz, single-user, 5000
sub-frames, CQIs from 1 to 15, SF=48 The 2D spreading based LTE is ploted in
red, the standart LTE is dashed and blue. The 99% confidence intervals are also
depicted, indicating a high confidence of the plotted results.

mission with a non standard compliant 2D LTE downlink. Adaptive CQI mapping’s,
for which the CQI is adapted in order to provide the highest possible data through-
put at given SNR, are utilized. The setup of the simulation presented in Figure
7.6 is as follows: PedB channel model, 1.4MHz, single-user, 5000 subframes, CQIs
from 1 to 15, SF=48. The 2D spreading based LTE transmission is plotted in red,
the standard LTE transmission is dashed and blue. The 99% confidence intervals
are also depicted in order to provide a statistical perspective on the accuracy of the
presented data.

As can be observed, the 2D spreading enhanced LTE copes better in the multi-
path environment when compared to the standard LTE downlink. A considerable
throughput improvement comes however only at rather high SNR around 25dB
and more, depending on the channel model. A significant improvement is achieved
at SNR=30dB according to Figure 7.6. In that case the 2D spreading enables
a possibility to exploit higher CQI at a given SNR level in comparison with the
standard form of LTE.

Table 7.2 gives an insight on important parameters of the next simulation, where
we examined the 2D spreading influence applying a cornucopia of channel models,
namely PedA, PedB, VehA, AWGN, TU, ETU, RA and HT [41, 42] which are
available in the LTE simulator [19, 23]. Results are presented in Figure 7.7 where
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Fig. 7.7: The throughput increase for various channel models and for SNR=30dB.
Simulation settings are listed in Table 7.2. The error bars represents 99% confidence
intervals.

we can observe the throughput increase in percent. The 2D LTE achieves higher
throughput and the increase is from 9% to more than 25% in five out of eight channel
models. In one channel model the increase is about 2-3 percent. Only in 2 channel
models, there is no increase at all.

Conclusion

This chapter describes a new 2D spreading mapping suitable for LTE transmissions.
We implemented this algorithm into the state-of-the art simulation system devel-
oped at Vienna University of Technology. For a comparison of the proposed 2D
spreading enhanced LTE and standard LTE downlink, several channel models have
been applied.

The proposed spreading requires only minor modifications of LTE standards
while brining considerable improvement in the throughput performance of such sys-
tems. We showed that in most channel models, the utilization of the 2D spreading
is beneficial in terms of throughput increase. This increase ranges from 5 percent to
more than 25 percent (99% confidence interval). It should also be noted, that the
exploitation of the 2D spreading does not require extra bandwidth.
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Chapter 8

Conclusion

This dissertation thesis is focused on the wireless communication systems based
on Orthogonal Frequency Division Multiplexing (OFDM), Code Division Mul-

tiple Access (CDMA) systems and its combinations, specifically Variable Spreading
Factor Orthogonal Frequency Code Division Multiplex (VSF-OFCDM).

A description of a wireless channel and its features as well as the description of
the major ideas behind OFDM and CDMA is given in the state-of-the-art part. To
provide a more specific insight on wireless communication systems, the Long Term
Evolution (LTE) system has been chosen as the most current and promising system
and, as such, a couple of the main ideas are also stated in the state-of-the-art part.

When summarized the main outcomes of this thesis are:
• We proposed a new channel estimation method based on code division. If we

compare this code based method with the state-of-the-art pilot based method
using the VSF-OFCDM simulator, we see that the new method benefits from
notably lower Bit Error Ratio (BER). This is true for very low Doppler shifts.
As the Doppler shift goes up, the code based method reaches the error floor
faster than the pilot based method.

• An important finding is how Peak to Power Ratio (PAPR) grows with growing
SFt, but not with SFf . This feature can be profitably used in designing
various SF patterns in VSF-OFCDM systems. Last but not least we have
shown that PAPR can be simply and effectively reduced nearly to the OFDM
PAPR.

• We made the analysis of the VSF-OFCDM system model exploiting the Saleh
nonlinearity. It can be seen how the BER performances worsen when con-
sidering Saleh nonlinearity and how they can be improved by increasing the
Spreading factor (SF) parameter. This is unfortunately redeemed with higher
occupied frequency bandwidth.
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• We revealed that the new method of 2D signal spreading brings considerable
improvement in the throughput performance of LTE downlink. We showed
that in most channel models, the utilization of 2D spreading is beneficial in
terms of throughput increase. This increase ranges from 5 percent to more
than 25 percent (99% confidence interval). It should also be noted, that the
exploitation of 2D spreading does not require extra bandwidth.
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PAPR Peak to Power Ratio
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PDA Personal Digital Assistant
PDP Power-Delay Profile
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PedB Pedestrian channel model of type B
PSK Phase Shift Keying
PS Parallel Serial
PST Parallel Serial Transmitter
RA Rural area channel model
RB Resource Block
RE Resource Element
SC-FDMA Single-carrier FDMA
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QPSK Quadrature Phase Shift Keying
TB Transport Block
TDMA Time Division Multiple Access
TB Transport Block
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UE User Equipment
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UMTS Universal Mobile Telecommunications System
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VSF-OFCDM Variable Spreading Factor Orthogonal Frequency Code Division Multiplex
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(.)T - matrix transposition

ax,u - x-th VSF-OFCDM symbol of the u-th user

ax,u
s - x-th spread VSF-OFCDM symbol of the u-th user

ac - an input vector of 2D spreading block in 2D LTE system

as - a vector of 2D LTE spread data

ax,u
k - k-th elemDent of the vector ax,u

ax,u
r PSR - signal ax,u

r transformed according formula 6.12

ar - FFT of the received signal

ax,u
C - VSF-OFCDM symbol which is corrected by vector ζx containing the CSI

Ac - SFLT E transformed vector ac

As - matrix of spread data in 2D LTE system

Ac(i,∗) - the i-th row of matrix Ac

e - number of elements in the vector ac

EGf - estimation grid in frequency domain

EGt - estimation grid in time domain

fDr - Doppler shift

ΔF - spacing of the subcarriers

fS - expresses the Saleh nonlinearity

k,n - row and column index in the matrix s u,x
PST

N - number of subcarriers

r - received signal

su,x
m - VSF-OFCDM frame

s u,x
m - column of the su,x

m matrix

s u,x
PST - from paralel to serial transformed signal su,x

m

SF - spreading factor
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SFt - spreading factor in the time domain

SFf - spreading factor the in frequency domain

T - time duration of one VSF-OFCDM frame

ts - sample time

u - user order

U - total number of code channels

x - time index

ξu - Hadamard spreading sequence of the u-th user

ξu
SF - SF -th element of the vector ξu

Ξ - Walsh-Hadamard matrix utilized as a bank of spreading sequences in the 2D LTE system

Ξ(∗,i) - the i-th column of matrix Ξ

ξu - matrix of spreading sequences ξu

η(t) - additive white Gaussian noise

ζ - a channel state information (CSI) vector
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