
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF CONTROL AND INSTRUMENTATION
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

METHODS FOR SIMULTANEOUS SELF-LOCALIZATION
AND MAPPING FOR DEPHT CAMERAS
METODY SOUČASNÉ SEBELOKALIZACE A MAPOVÁNÍ PRO HLOUBKOVÉ KAMERY

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Adam Ligocki

SUPERVISOR
VEDOUCÍ PRÁCE

prof. Ing. Luděk Žalud, Ph.D.

BRNO 2017

Master's Thesis

Department of Control and Instrumentation

2016/17

154791Bc. Adam LigockiStudent:

Year of study: 2

ID:

Academic year:

TITLE OF THESIS:

Methods for Simultaneous Self-localization and Mapping for Depht Cameras

INSTRUCTION:

1. Get familiar with state-of-art methods of simultaneous self localization and mapping (SLAM) using RGBD

cameras.

2. Choose one of previously described open-source projects from semestral thesis and modify it for using with

available RGBD camera.

3. Extend the chosen project with the possibility of adding the external data with the position and the rotation of

the RGDB camera, all in run-time.

4. Evaluate the program in pre-defined conditions with and withouth added position and rotation information.

REFERENCE:

R. A. Newcombe et al., "KinectFusion: Real-time dense surface mapping and tracking," 2011 10th IEEE

International Symposium on Mixed and Augmented Reality, Basel, 2011, pp. 127-136.

doi: 10.1109/ISMAR.2011.6092378

6. 2. 2017 15.5.2017Assigment deadline: Submission deadline:

Head of thesis: prof. Ing. Luděk Žalud, Ph.D.

Consultant:

Subject Council chairman

doc. Ing. Václav Jirsík, CSc.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

The author of this Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or

property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an infringement of

provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on amendments to some other

laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as resulting from provisions of Part 2,

Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

WARNING:

ABSTRACT
This Master’s thesis deals with existing visual SLAM and wheel odometry data fusion.
The result of this data connection is the possibility of suppressing measurement error
of each position estimation method and creating more accurate 3D model of examined
environment. At the beginning this thesis is aiming on theoretical principles that are nec-
essary to deal with 3D SLAM.Next, the features of used open source SLAM project and
its modifications are described. Then the principles of visual and wheel odometry data
fusion are explained, followed by specification of differential chassis used for odometry.
In conclusion, the thesis summarises the results obtained by data fusion and compares
them with the original accuracy of visual SLAM.

KEYWORDS
RGBD camera, SLAM, Kinect, Odometry, Data fusion

ABSTRAKT
Tato diplomová práce se zabývá tvorbou fúze pozičních dat z existující realtimové im-
plementace vizuálního SLAMu a kolové odometrie. Výsledkem spojení dat je potlačení
nežádoucích chyb u každé ze zmíněných metod měření, díky čemuž je možné vytvořit
přesnější 3D model zkoumaného prostředí. Práce nejprve uvádí teorií potřebnou pro
zvládnutí problematiky 3D SLAMu. Dále popisuje vlastnosti použitého open source
SLAM projektu a jeho jednotlivé softwarové úpravy. Následně popisuje principy spo-
jení pozičních informací získaných vizuálními a odometrickými snímači, dále uvádí popis
diferenciálního podvozku, který byl použit pro tvorbu kolové odometrie. Na závěr práce
shrnuje výsledky dosažené datovou fúzí a srovnává je s původní přesností vizuálního
SLAMu.

KLÍČOVÁ SLOVA
RGBD kamera, SLAM, Kinect, Odometrie, Fůze dat

LIGOCKI, Adam. Methods for Simultaneous Self-localization and Mapping for Depht
Cameras. Brno, 2017, 81 p. Master’s Thesis. Brno University of Technology, Fakulta
elektrotechniky a komunikačních technologií, Ústav automatizace a měřicí techniky. Ad-
vised by prof. Ing. Luděk Žalud, Ph.D.

Vysázeno pomocí balíčku thesis verze 2.63; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

DECLARATION

I declare that I have written the Master’s Thesis titled “Methods for Simultaneous Self-
localization and Mapping for Depht Cameras” independently, under the guidance of the
advisor and using exclusively the technical references and other sources of information
cited in the thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Master’s
Thesis, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

ACKNOWLEDGEMENT

I would also like to acknowledge prof. Žalud of the Faculty of Electrical Engineering and
Communication at Brno University of Technology as the second reader of this thesis,
and I am gratefully indebted to him for his very valuable comments on this thesis.
Finally, I must express my very profound gratitude to my parents for providing me with
unfailing support and continuous encouragement throughout my years of study and
through the process of researching and writing this thesis. This accomplishment would
not have been possible without them.
Thank you.

Brno .
author’s signature

CONTENTS

1 Introducion 11

2 Previous work 12

3 SLAM Methods 13
3.1 Simultanious Localization and Mapping (SLAM) 13

3.1.1 Graph Based SLAM (Pose Graph) 14
3.1.2 Dense SLAM . 16
3.1.3 Bundle Adjustment . 16

3.2 Space Representation . 18
3.2.1 Point Cloud . 18
3.2.2 Octree . 19

3.3 Other SLAM Terms and Techniques 19
3.3.1 Keyframe . 19
3.3.2 Iterative Closest Point (ICP) 20
3.3.3 Loop Close . 21
3.3.4 RANSAC . 22
3.3.5 Signed Distance Function (SDF) 23

4 RGBD Cameras 25
4.1 Active Triangulation . 25
4.2 Passive Triangulation . 26
4.3 Time of Flight Principle . 28
4.4 Distance-Varying Illumination and Imaging Techniques for Depth

Mapping . 32
4.5 Structured Light . 32
4.6 RGBD Cameras Overview . 33

4.6.1 Kinect v1 (Xbox 360) . 34
4.6.2 Kinecv v2 (Xbox One) . 34
4.6.3 Swiss Ranger SR4000 . 35
4.6.4 Asus Xtion Pro Live . 35
4.6.5 SoftKinetic DS525 . 35
4.6.6 Orbbec Astra Pro . 36
4.6.7 Orbbec Persee . 36
4.6.8 ZED Stereo Camera . 36

4.7 RGBD Camera Choice . 37
4.8 Kinect v2 Geometrical Calibration 37

4.8.1 Pinhole Camera Model . 37
4.8.2 Simple Geometrical Projection 𝑅3→ 𝑅2 38
4.8.3 Sensor Distortion . 40
4.8.4 Calibration Process . 41
4.8.5 Depth Camera Parameters . 42

5 SLAM projects 46
5.1 Kinect Fusion . 46
5.2 Kintinuous . 47
5.3 Elastic Fusion . 49

6 Data Fusion 52
6.1 Input Data Characteristics . 52
6.2 Kalman Filter . 53
6.3 Extended Kalman Filter . 55
6.4 Wheel Odometry (Dead Reckoning) 56
6.5 Measurement vehicle . 57
6.6 Data Merge . 58

6.6.1 Data Fusion Pipeline . 60

7 Results and Accuracy 61
7.1 Software Modifications . 61
7.2 Measurement Set . 62
7.3 Validation Experiments . 63
7.4 Results . 66

8 Conclusion 70

Bibliography 72

List of symbols, physical constants and abbreviations 75

List of appendices 76

A STM32F4 Extension Shield 77

B 3D-printed Instalation Parts 80

C Enclosed media device content 81

LIST OF FIGURES
3.1 Schematic representation of SLAM task 13
3.2 Graph SLAM schematic. Robot’s position, landmarks and relations

between them creates solid environment representation graph 15
3.3 Error of measured and estimated position 16
3.4 Graphic representation of real 3D point reflection to image plane error 17
3.5 Example of Point Cloud corridor representation 18
3.6 Hierarchical representation of Octree structure [13] 19
3.7 Keyframe is commonly represented as camera flustrum (blue) on its

path through unknown space during time 𝑡 [7] 20
3.8 Example of Loop Close and Graph Relaxation [17] 21
3.9 This image shows model finding between large outlier noise in input

data. The output model (blue) is inert for outliers (red) [19] 22
3.10 Example of inliers (green) and outliers (red) during parity finding in

between two images of same scene by RUNSUC method [20] 23
3.11 Result of two spheres merging. Left-side minimum (union), right-side

maximum (intersection) . 24
4.1 Geometry of active triangulation . 26
4.2 Geometry of passive triangulation . 27
4.3 Epipolar geometry between two planes 28
4.4 Distance measurement with pulse . 29
4.5 Distance calculation from pulse phase shift 30
4.6 Continuous signal distance measurement 30
4.7 Principle of measurement distance with two modulated frequences . . 32
4.8 Double focused light method. The shape of element is function of

distance . 33
4.9 Double focused light projected on two planes at different distance . . 33
4.10 Scene illuminated by Kinect in IR spectrum 34
4.11 Schematic of Camera Obscura . 38
4.12 Geometry of light ray projection on sensor plane 38
4.13 Example of radial distortion a) negative radial distortion (Barrel), b)

non-distorted grid, c) positive radial distortion (Pincushion) 40
4.14 The cause of tangential distortion 41
4.15 Radial distortion of RGB cemara . 43
4.16 Tangential distortion of RGB cemara 43
4.17 Total RGB camera distortion . 44
4.18 Example of RGB image before and after distortion correction 44

4.19 Average value of depth of static scene represented by one hundred
frames in row. One illumination unit represents one millimetre of
scene depth . 45

4.20 Standard deviation of depth scene measurement in millimetrers, over
one hundred frames . 45

5.1 Kinect Fusion’s workflow [4] . 47
5.2 Data-flow schematic in Kintinuous. Different colors runs of different

threads [5] . 48
5.3 Example of "Dense model" created by Elastic Fusion. It is composed

of 4,5mil surfels . 49
5.4 [6] (i) initial view, (ii) leaving initial view, surfels become inactive,

(iii) returning to inactive surfels, become active again, (iv) camera
continues local loops closing, (v) exploring new areas, (vi) loop close
detection, (vii) loop close detail, (viii) global loop closing activates
surrounding inactive surfels, (ix) local loop closing continuous, (x)
entire overview . 50

6.1 Principle of different position data merging 53
6.2 Kalman filter iteration . 54
6.3 Graphic interpretation of Kalman filtration (prediction, measurement,

correction) . 55
6.4 Differential chassis model [32] . 56
6.5 Measurement vehicle construction . 57
6.6 Vehicle STM32F4 Discovery board with extension shield 58
6.7 Communication pipeline schematic 59
6.8 Odometries fusion pipeline . 60
7.1 UML Class diagram of modified Elastic Fusion project 61
7.2 Measurement vehicle equipped with Kinect v2, STM32F4 board, TCP

bridge and battery pack . 63
7.3 Measurement vehicle with all hardware mounted 64
7.4 Example of laboratory scan . 65
7.5 Corridor between two laboratories scan 66
7.6 The orange line shows measured distance 67
7.7 3D models build by Elastic Fusion (top - visual odometry only, bot-

tom - fused odometry) . 68
7.8 3D model’s geometrical distortion, left top - wheel odometry only,

right top - fused odometry, bottom - visual odometry only 69
8.1 Orpheus robot . 71
A.1 STM32F4 Extension Shield - Schematic 77
A.2 STM32F4 Extension Shield - PCB . 78

A.3 STM32F4 pin assignment . 79
B.1 Kinect v2 holder visualization . 80
B.2 Measurement vehicle electronics visualization 80

1 INTRODUCION
In these days, there are many ways how to navigate robots in outdoor environment,
for example satellite systems such as GPS, Galileo, Glonas or their assisted versions
with utilisation of cellular phones network or Wi-Fi based localization. All these
systems can determinate robot’s position with accuracy up to few meters. With
access to commercial version of GPS with higher accuracy and special functions
like application of differential methods, we are able to estimate global position with
centimetre precision.

For indoor navigation, with no access to satellite’s signal, there have been many
Visual SLAM (Simultaneous Localization and Mapping) techniques were developed
already. These implementations aim at creation of the type of artificial intelligence,
which would be able to see and understand its surroundings with usage of inexpensive
cameras, for example RGBD ones. The output of this algorithm is real-time created
3D model of robot’s environment and its estimated position inside this model.

This technology has a huge potential for future usage in automation and robotics.
We can already see first practical implementations in real live. As example let’s men-
tion Google Self Driving Car Project [1] and Tesla Autopilot[2]. Those technologies
are strongly based on techniques which are continuously scanning its nearby sur-
roundings, trying to understand it.

Current state-of-art technology still have strongly limited range of application.
Today’s implementations are able to map areas on scale up to few hundred square
meters. The most dramatic problem is that with increasing size of mapped area
there is directly proportional amount of data that computer must manage.

The aim of this thesis is the extension of existing solution for pure visual odome-
try by supplying data from more accurate sensors mounted on the mobile robot and
trying to create mobile unit, which would be able to explore unknown environment
with higher precision than then original solution.

11

2 PREVIOUS WORK
My term paper, which preceded this Master’s thesis, researched available SLAM
technologies by examining its selected, existing, open source implementations, with
focus on potential future experimentation and improvements to rescue robotics sys-
tem Cassandra [3] developed by robotics team on Faculty of Electrical Engineering
in Brno.

The beginning described the basics of self-localisation and mapping techniques,
which are used in current state-of-art solutions. The reader was introduced to graph-
based techniques of modelling robot’s environment, 3D model storage methods and
iterative algorithms for resolving current position. All those topics were later used
for understanding, how do complex SLAM solutions work.

Large part of term paper focused on research of currently available RGB-D cam-
eras, their types, its working principles, with special attention to accuracy, which
is crucial for creating reliable models. As example lets mention Kinect v1, Swiss
Ranger SR4000 and ZED Stereo Camera. All of them work by different princi-
ples. Every device has list of build-in technologies and all those technologies were
analysed.

Previous research than explored existing RGB-D SLAM implementations, and
their underlying concepts. At the beginning five open source projects (Kinect Fusion
[4], Kintinuous [5], Elastic Fusion [6], Dense Visual SLAM [7] and RGBDSLAM [8])
and their papers were studied for deeper understanding how they work and how
accurate they can be. Based on this research two of these algorithms (Kintinuous
and Elastic Fusion) have been chosen for next stage where their source codes have
been reviewed and Elastic Fusion was selected as target for the future research and
extension by this thesis.

At the end of previous work, I proposed few ways of how I would be able to
improve Elastic Fusion algorithm while running it on PC, which would be mounted
on wheeled robot Orpheus [9] with available odometry and inertial unit. Basic
idea was to fuse Elastic Fusion’s visual odometry, Orpheus’s wheel odometry and
inertial unit. All those methods have different source of noise and uncertainty. This
fact could be used to crate filters which would be able to refine visual odometry
position estimation and this way improve accuracy of the whole 3D environment
model creation process.

12

3 SLAM METHODS
In this chapter, there is described basic theoretical background of these days the most
frequently used algorithms and mathematical tools which are applied for solving
SLAM problems.

3.1 Simultanious Localization and Mapping (SLAM)
When we are talking about SLAM problem, there are two parallel problems we have
to solve. First of them is to create 3D model of surrounding environment around our
agent (robot) and the second is to localize our agent in this model. There we can
notice contradictory of these two requests. We are not able to create oriented graph
model of environment without knowledge about current position and localization
can’t be done without previously mentions map.

Fig. 3.1: Schematic representation of SLAM task

Let’s assume that at the beginning robot is placed to unknown environment at
position 𝑥0. After that robot will act with control input 𝑢0 on itself and conse-
quently its position will change to new state 𝑥1. Then robot perform measurements
𝑧1 of its surrounding which gives its new advanced information about current po-
sition state. The entire solution of SLAM problem is to iteratively search for the

13

most probabilistic solution, which would report the least differential error between
measured and expected surrounding.

𝑝(𝑥1:𝑁 , 𝑚|𝑧1:𝑁 , 𝑢1:𝑁 , 𝑥0) (3.1)

Today we can find two most frequently used approaches to map model construc-
tion. First of them is so-called “Landmark mapping”. We can imagine it as a map
defined with few very high contrast marks, which are placed in mapped environ-
ment, for example QR codes sticked on walls and corners. When robot notices one
or more of these landmarks, it can calculate distance to each one and determinate
its current position inside current model.

The second method is so-called “Dense SLAM”. This kind of map is formed by
large number of points, when each one of them has its own 3D coordinates position.
This way of space representation is called Point Cloud. Typically, this data format
come out for example from LIDAR sensors. In this model representation technique
robot performs its localization by correlating model 𝑚 and current measurement 𝑧𝑛.
The position with the least disparity is most probably current in-map position.

3.1.1 Graph Based SLAM (Pose Graph)
Idea of Graph Based SLAM is based on graph construction, in which there are
custom robot positions 𝑥𝑛 during the time 𝑡 represented as graph nodes, just as
landmarks do. The connections (graph edges) between these nodes are representing
their mutual relations [10].

Let’s place robot at the starting position and let’s call this position the zero coor-
dinates. At the same time this position will become our first graph node. Then the
robot will perform movement to a new position and if this new state meets strictly
defined conditions like minimal distance from nearest node or large uncertainty of
current position, then this state is added to graph as a new node.

This way constructed structure is very inaccurate. It is caused by control input
uncertainty and cumulative error of position estimation based on numerical models
which robot has implemented in his algorithms. But this error can be suppressed
or at least minimized via tracking robot’s environment and continuously correcting
its position. This is done by introducing a new information to previously mentioned
graph by adding nodes which represent high important marks from surrounding. As
mentioned before, these marks could be for example high contrast elements. When
robot explores some new environment, it can combine information from known con-
trol input and surrounding observations and is able to create solid network based on

14

Fig. 3.2: Graph SLAM schematic. Robot’s position, landmarks and relations
between them creates solid environment representation graph

nodes and their mutual relations. Then, when robot takes some new measurements,
it can quite easily determinate most probabilistic current position state.

𝑝(𝑧𝑡|𝑥𝑡, 𝑚𝑡) (3.2)

Equation expresses, that measurement output 𝑧𝑡 is the function of current posi-
tion 𝑥𝑡 and current model 𝑚𝑡.

𝑝(𝑥1:𝑇 |𝑧1:𝑇 , 𝑢1:𝑇) (3.3)

Next equation expresses, that agent’s position 𝑥 is given by measurement 𝑧 and
control input 𝑢

So let’s define vector 𝑥 = [𝑥0, 𝑥1, ..., 𝑛𝑛], which represents set of all reference
robot’s positions (nodes) in estimated graph. Next let’s have 𝑧𝑖𝑗 and 𝑂𝑚𝑒𝑔𝑎𝑖𝑗, which
are mean value and information matrix of measurements between two positions 𝑖 and
𝑗. Further 𝑧𝑖𝑗(𝑥𝑖, 𝑥𝑗) is a prediction of relations between two nodes. Then likelihood
of measurement 𝑧𝑖𝑗 can be estimated as

𝑙𝑖𝑗 = [𝑧𝑖𝑗 − 𝑧𝑖𝑗(𝑥𝑖, 𝑥𝑗)]𝑇 Ω𝑖𝑗[𝑧𝑖𝑗 − 𝑧𝑖𝑗(𝑥𝑖, 𝑥𝑗)] (3.4)

In this equation we bring following substitution

𝑒𝑖𝑗(𝑥𝑖, 𝑥𝑗) = 𝑧𝑖𝑗 − 𝑧𝑖𝑗(𝑥𝑖, 𝑥𝑗) (3.5)

15

and reduce equation into

𝑙𝑖𝑗 = 𝑒𝑇
𝑖𝑗Ω𝑖𝑗𝑒𝑖𝑗 (3.6)

Now we can estimate most likelihood robot’s position in graph as configuration
of graph nodes and edges with minimised sum of all errors between individual nodes.

Fig. 3.3: Error of measured and estimated position

3.1.2 Dense SLAM
It is the most frequently used SLAM technique in these days, when the environment
model is represented as Point Cloud, therefore set of space placed points which
approximates explored space. Commonly agent localized itself in this map by corre-
lating its current observation and map, both in point cloud, and iteratively searching
for most probabilistic translation and rotation containing solution. If position is esti-
mated, current map can be expanded with new information about previously unseen
places.

3.1.3 Bundle Adjustment
Bundle adjustment is method for purposes of 3D objects reconstruction from mul-
tiple images, which was taken from different places. The most frequently it is used
for static object 3D model creation.

16

Fig. 3.4: Graphic representation of real 3D point reflection to image plane error

Let’s imagine situation, when we have multiple images of some object, but the
camera calibration parameters (intrinsic matrix) and its position and orientation
(extrinsic matrix) are both unknown. This method is estimating this previously
mentioned internal and external image capture parameters and in the next step
attempts to perform 3D position calculation of all possible captured positions with
minimisation of declared loss function.

𝐸𝑟𝑟(v, a, b, x) =
𝑛∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝑣𝑖𝑗𝑑(Q(𝑎𝑗, 𝑏𝑖), 𝑥𝑖𝑗)2 (3.7)

min
𝑎,𝑏

(𝐸𝑟𝑟(v, a, b, x)) (3.8)

where Q(𝑎𝑗, 𝑏𝑖) expresses position of 𝑖-th point reflection to 𝑗-th plane therefore
expected 𝑖-th pixel position on 𝑗-th image. 𝑎𝑗 represents camera calibration matrix
and 𝑏𝑖 is point spatial position in reconstructed model. Function 𝑑(Q, 𝑥) calculates
Euclidean distance between estimated Q and ground true position 𝑥𝑖𝑗. 𝑣𝑖𝑗 express
Boolean value, whether 𝑖-th point is present on 𝑗-th image.

Instead of real-time SLAM algorithms implementations, bundle adjustment is
post-processing method. This means that it is performed after all input data has
been collected. Nevertheless, some SLAM implementations use bundle adjustment
for in runtime accuracy improvement.

Generally, bundle adjustment has higher computational cost, but gives better
results.

Example of bundle adjustment on RGB-D data is described in [11]

17

3.2 Space Representation
This chapter describes few ways of how to represent and keep saved collected data
about environment, that robot has just explored.

3.2.1 Point Cloud
Generally, Point Cloud (PC) is a term that in field of IT and computer graphics
expresses a very large set of points which are placed to some coordinate system.
When talking about SLAM, Point Cloud is used to represent created 3D (X, Y and
Z axis) approximation based on non-volume points, that represents environment
that agent just discovered.

This way of space representation is very typical for example for LIDAR output.
It performs its measurement in way that distance of nearest obstacle is measured in
predefined grid. The output is the set of N spatial placed points that approximate
surrounding.

Fig. 3.5: Example of Point Cloud corridor representation

In our case Point Cloud is created by reflecting depth pixels from RGBD camera.
The set of these points represents currently present obstacles in robot’s proximity.

To deal with this data format there is available open source library called Point
Cloud Library [12], which provides large scale of available operations over this data
format.

18

3.2.2 Octree
It is hierarchical representation of space occupancy. The space is at the beginning
represented as three-dimensional cube, which says about itself if it is empty, partly
or fully occupied. If it is occupied only partly we can divide it into eight sub-cubes
which are described as the parent one does. This algorithm can recurrently go on to
very small structures and in this way, create approximation of 3D space occupancy.

Fig. 3.6: Hierarchical representation of Octree structure [13]

In practice [14] this data format can be represented as linear array which is
divided into two bit strips. Every two bits say about occupancy of appropriate
cube. If these two bits keep the information, that cube is empty, or if information
says that cube if totally occupied algorithm can declare that this part of space as
fully defined and can continue to the next cube. But if cube is only partly occupied
algorithm will divide it to eight sub-cubes and will resolve its states recursively.

3.3 Other SLAM Terms and Techniques

3.3.1 Keyframe
In SLAM terminology keyframe is called the camera video frame which fulfilled the
criterial conditions and become new node in constructed oriented graph. In this
way. this frame and its positions are going to be the reference for future position
estimation. The mentioned criterial condition to call frame a "keyframe" could be
for example defined distance from nearest other keyframe, or for example each N-th
frame in scan series can be proclaimed as keyframe or for example when algorithm

19

does not have enough referential points in current surrounding, the new one reference
in form of current frame can be introduced to graph structure.

Fig. 3.7: Keyframe is commonly represented as camera flustrum (blue) on its path
through unknown space during time 𝑡 [7]

3.3.2 Iterative Closest Point (ICP)
This method [15] is used to find the best fit transformation matrix with six degrees
of freedom (three for rotation and three for translation) between two Point Clouds.
First point cloud set (map) is static and the second one (current scan output) is
iteratively transformed in way to get the lowest possible disparity between this two
sets.

In each iteration the algorithm performs searching for the nearest neighbour
in set B for each point from set A. Then the total cumulative distance between
this two sets is estimated and based on derivation of this cumulative distance sum,
transformation for the next iterations is predicated. This cycle is performed until
final condition is met or number of iterations reach defined value.

The main disadvantage of this algorithm is, that it can get stuck in local mini-
mum of loss function. Because of this, it is not suitable for global model positioning
estimation, rather it is used for local position estimation correction.

20

3.3.3 Loop Close
During SLA graph construction, there is continuous accumulation of position esti-
mation error caused by inaccuracy visual odometry techniques. This results into
effect that when robot crosses position which was already visited by it in the past,
these two identical positions in real space are in oriented graph represented as two
different nodes. Then position estimation according to this inconsistent graph is not
precise because one real space position is represented in graph twice.

But if we define criterion that two graph nodes are identical and can be merged
if some similarity condition is met, position graph can be deformed and previously
mentioned disparity can be removed This way graph consistency could be improved,
cumulative position estimation error can be removed and robot can explore unknown
area on larger range.

Of course, during graph deformation, we merge two graph nodes into one (the
newer one to older one, because we can expect that older one has smaller cumulative
position estimation error) but also relations between all other connected nodes must
be adjusted. This process is called "Graph Relaxation" or "Graph Optimization"

There are many approaches to graph relaxation. Let’s mention for example
methods [16], [17] where nodes are connected between each other and their current
positions are represented by Gaussian distribution probability. If one node position
is changed, its shift is distributed via entire graph by modifying neighbor’s position
probability function.

Fig. 3.8: Example of Loop Close and Graph Relaxation [17]

21

3.3.4 RANSAC
RANSAC [18] is iterative method for unknown model estimation over some data
set, which contains large number of so-called "outliers". These are elements which
do not fit to expected model. On the other site elements which suite well are called
"inlayers".

Input into this method is set of 𝑀 points, which had some mathematically
defined relation.

At the beginning algorithm choose 𝑁 elements, where 𝑁 is minimal number of
input data to resolve all model’s degrees of freedom. The model is estimated.

In next step model is tested on entire set on input data. Each input data element
is examinate if it fits model or not (is inlayer or outliers) with threshold 𝜇. If
percentage of inlayers is larger, then 𝐾 where 0 < 𝐾 ≤ 1, model can be called
credible and can be accepted. If model do not fit for enough number of elements,
new iteration will be performed.

Fig. 3.9: This image shows model finding between large outlier noise in input data.
The output model (blue) is inert for outliers (red) [19]

Disadvantage of this method is that it does not guarantee model estimation with
one hundred percentage certainty. There is always probability that model has been
estimated for at least one outliers and so it is not trustworthy.

During algorithm initialization, we can setup value 𝐿, which says how many
times RANSAC will iterate previously described process so the probability of right
model finding can be at least 0.99.

1 − 𝑝 = (1 − 𝑢𝑚)𝑙 (3.9)

22

Fig. 3.10: Example of inliers (green) and outliers (red) during parity finding in
between two images of same scene by RUNSUC method [20]

after formula modification

𝐿 = 𝑙𝑜𝑔(1 − 𝑝)
𝑙𝑜𝑔(1 − (1 − 𝑣)𝑚) (3.10)

where 𝐿 is number of iterations, 𝑝 is probability of right model finding, 𝑢 is
probability that randomly picked element from dataset is inlayer, 𝑣 is probability
that randomly selected element is outlier.

𝑢 = 1 − 𝑣 (3.11)

3.3.5 Signed Distance Function (SDF)
In computer graphics field, it is common that more complex objects are represented
as a set of many space oriented triangles. But this technique does not fit very well
for example for spherical objects approximation. In first case, we need to create
large number of polygons, which increate rendering cost and in second case even
this large number of triangles do not fit true shape very well.

In this case, we can represent these objects for example with three-dimensional
function, which will return negative values for point inside it, zero values for points
on the surface of object and positive values for entire space beyond object surface.

Let’s imagine function for sphere

𝐴 = 𝑓𝑏𝑎𝑙𝑙(p, c, 𝑟) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐴 = −1, 𝑝𝑟𝑜𝑑(p, c) < 𝑟

𝐴 = 0, 𝑝𝑟𝑜𝑑(p, c) = 𝑟

𝐴 = 1, 𝑝𝑟𝑜𝑑(p, c) > 𝑟

(3.12)

23

where p is examined spatial point, c is sphere center, 𝑟 is sphere radius and 𝑑 is
Euclidian distance between points p and c. Next

𝑑 = 𝑠

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

(𝑝𝑖 − 𝑐𝑖)𝑠 (3.13)

where 𝑠 is number of dimensions for which function is defined.
More complex shapes can be represented by merging multiple simple shapes

together. For example intersection of two shapes can be expressed by 𝑚𝑎𝑥 function

𝑚𝑎𝑥(𝑓𝑏𝑎𝑙𝑙1(p, c1, 𝑟1), 𝑓𝑏𝑎𝑙𝑙2(p, c2, 𝑟2)) (3.14)

and union of two shapes can be expressed by 𝑚𝑖𝑛 function.

𝑚𝑖𝑛(𝑓𝑏𝑎𝑙𝑙1(p, c1, 𝑟1), 𝑓𝑏𝑎𝑙𝑙2(p, c2, 𝑟2)) (3.15)

Fig. 3.11: Result of two spheres merging. Left-side minimum (union), right-side
maximum (intersection)

If we apply this technique for in SLAM problem solution, we can achieve lower
memory requirements for model storage, because thousands of points in point cloud
can be expressed by few equations, but most interesting is noise reduction, because
we can generalise rugged areas via approximating it by some soft shape.

24

4 RGBD CAMERAS
This thesis is very strongly focusing on one of the most frequently used solution
for visual SLAMs which is RGBD camera usage. These devices are scanning their
surrounding in two domains. First one sensor is common CCD/CMOS which scan-
ning surrounding environment in color space (typically RGB). The second one is
measuring distance from device to near obstacles. The output signal is 2D matrix
with values of distances in defined field of view.

The best-known representative in this field is well known Kinect device developed
by Microsoft and PrimeSense.

This device has been primarily focusing on game industry, but because of its low
price and relatively good quality of data output has been quickly adapted in other
lines like research and industry. In these days, Kinect with its skeleton detection
algorithms is often used for medical purposes during patient’s therapies.

Microsoft corporation parallel with Kinect v1 has also released software develop-
ment toolbox (SDK) with many build in functions which set foundations for future
very fast expansion of many other interesting implementations and problem solu-
tions with this new device. Let’s mention for example the Kinect Fusion, which was
the first implementation of SLAM algorithm on this platform. Furthermore, we can
mention PrimeSense’s OpenNI project, which was open source toolbox for RGBD
devices data processing. Next one for example NiTE project which was focusing on
hand gestures and human skeleton movement processing.

Further the basic principles of distance measurements are described later in this
chapter. Then reader is introduced to brief summaries of these days available RGBD
devices and at the end of the chapter there is described the mathematical theory
about camera physics and algorithms user for image correction purposes.

4.1 Active Triangulation
This is the simplest way of visual distance measurement. The principle is based on
active illumination of measured object at a given angle by for example point laser.

This resulting reflection is then captured by the CCD chip. Distance of mea-
surement object is then expressed by function of the position of reflected point on
the sensor chip.

For thus formed structure, if we know the parameters describing the position
of the laser source and receiver sensor, the triangulation triangle is established,
then within the basic knowledge of the geometry laws, we are able to calculate the

25

Fig. 4.1: Geometry of active triangulation

distance between the gauge’s plane and measured object.

𝑙 = 𝑠𝑖𝑧𝑒𝐶𝐶𝐷 * 𝑛

𝑁
(4.1)

where 𝑙 is measured object distance from gauges plane, 𝑠𝑖𝑧𝑒𝐶𝐶𝐷 is size of CCD
sensor row, 𝑛 is row index of illuminated pixel and 𝑁 is total number of pixels in
one sensor’s row.

4.2 Passive Triangulation
During three-dimensional scene to CCD chip plane projection the depth information
is lost. But this information can be restored by scanning scene multiple times from
several different positions. If we know the relationships between these positions in
which the pictures had been taken, for each point which was captured multiple times
we can use epipolar geometry to calculate the spatial coordinates.

We can distinguish three scenarios:
• More static cameras with known position and orientation
• More static cameras with auto calibration
• One dynamic camera with auto calibration
In case of SLAM problem solutions, the most frequently used solution in the one

with two cameras mounted on solid bar in way, that both camera’s optical axis are
parallel.

26

Fig. 4.2: Geometry of passive triangulation

In this configuration, each camera is watching the object from different angle.
The angle between two beams of the point projection in the plane of the chip is called
the parallax angle. To maintain the accuracy of measurement of the angular parallax
should not drop below a certain limit. In practice, it is stated that stereovision can
be used within thirty times the distance between the optical centers of both cameras.

The calculation of spatial coordinates of the point projected on both sensors is
expressed as

𝑝 = 𝑥′ − 𝑥′′ (4.2)

where 𝑝 is parallax angle and 𝑥′ and 𝑥′′ are indexes of pixels which captured
measured point.

The calculation of 𝑥, 𝑦 and 𝑧 coordinates are performed according to following
equations

𝑋 = 𝑥′ 𝑏

𝑝
(4.3)

𝑌 = 𝑦′ 𝑏

𝑝
(4.4)

𝑍 = 𝑓
𝑏

𝑝
(4.5)

27

where 𝑏 is the triangulation triangle base, which mean distance between cameras
optical centers, 𝑓 if focal length of the optical systems and 𝑝 is previously calculated
parallax

These simple relations are valid only under the condition that optical axes of
both sensors are parallel, while the cameras are spatially oriented identically. If this
condition is not meet, it is necessary to perform correction calculations and perform
image rectification. This problem is further discussed in chapter focused on camera
calibration.

Fig. 4.3: Epipolar geometry between two planes

The searching for corresponding points can be simplified by epipolar line esti-
mation. It says, that point projected on one sensor may be reflected on the other
sensor anywhere within the defined line.

4.3 Time of Flight Principle
Time of Flight method (ToF) is generally based on the principle of measuring time
during which particle or acoustic or electromagnetic wave travels an unknown dis-
tance between the transmitter and receiver. Based on knowledge of particle or wave
velocity we are able to calculate unknown distance.

In practice, we meet with several types of ToF instruments, working on different
physical principles. Let’s mention for example ultrasonic sensors, which generates
sequence of pulses by piezoelectric crystal, with frequency approximately 40 kHz.
And it measures time it takes the wave to travel from ransmitter, reflect on the

28

obstacle and return to the receiver module, which works on the same principle as
transmitter do but in reverse direction. With knowledge of measured time, we can
estimate distance with equation.

2𝑠 = 𝑣𝑚𝑒𝑐ℎ * Δ𝑡 (4.6)

where 𝑠 is distance between module and obstacle, 𝑣𝑚𝑒𝑐ℎ is the propagation speed
of mechanical waves in the environment and Δ is the time between signal transmis-
sion and return.

Another variation of ToF are the optical sensors. They are divided into two
fundamental groups.

The first one is a simple pulse transmitter. As ultrasound transmits signal against
obstacle, short laser pulses with wavelength of 850nm, that are invisible for human
eye, are sent against environment and time to echo is measured. In fact, to simplify
measurement there is measured phase shifting between transmitted and received
pulses. Considering that in this case we work with the electromagnetic waves, which
propagates through atmosphere with speed close to speed of light in vacuum, this
technique is extremely demanding on very precise time measurements and very fast
semiconductor devices that generate and receive the laser beams.

Fig. 4.4: Distance measurement with pulse

Each pixel of depth camera based on this principle contains two timers. The
scene is at the beginning of measurement illuminated by short pulse and when the
reflection returns, the first timer is activated (S1). When the transmitted pulse is
terminated, the first timer is also stopped and the second one is activated until the

29

Fig. 4.5: Distance calculation from pulse phase shift

end of reflection. With usage of these two measured time intervals we can estimate
distance as follows

𝑠 = 1
2𝑐 * Δ𝑡

(︂
𝑆2

𝑆1 + 𝑆2

)︂
(4.7)

where 𝑑 is measured distance, 𝑐 is speed of light in environment, Δ𝑡 is light
emission interval and 𝑆1 and 𝑆2 are two time intervals measured with pixel’s timers.

The second possible method is to perform measurements with usage of modulated
continuous infrared signal.

Fig. 4.6: Continuous signal distance measurement

The sensor continuously illuminates scene with sinusoid intensity signal with
period about 10MHz. Each pixel in the sensor performs periodical sampling of

30

reflected signal and using cross-correlation, it is able to estimate time delay by
using information about phase shift and speed of signal in environment.

𝑑 = 𝑐

4𝜋𝜔
𝜑 (4.8)

where 𝑑 id measured distance, 𝑐 is speed of light, 𝜔 is modulation frequency and
𝜑 is phase shift.

Specifically, the calculation process of phase shift with mathematical expression
takes place as follows.

The sensor generates a signal

𝑔(𝑡) = 𝑐𝑜𝑠(𝜔𝑡) (4.9)

after the reflection signal returns

𝑠(𝑡) = 𝑏 + 𝑎 * 𝑐𝑜𝑠(𝜔𝑡 + 𝜑) (4.10)

where 𝑏 is background illumination, 𝑎 is reduced amplitude of returned signal
and 𝜑 is phase shift between transmitted and received signal.

Following the cross correlation

𝑐(𝜏) = 𝑠 * 𝑔 =
∫︁ ∞

−∞
𝑠(𝑡) * 𝑔(𝑡 + 𝜏)𝑑𝑡 (4.11)

where 𝜏 is correlation offset
We are able to reduce this correlation expression to four sampled elements 𝑖 = 4.

𝑐(𝜏) = 𝑓𝑟𝑎𝑐𝑎2𝑐𝑜𝑠(𝜔𝜏 + 𝜑) + 𝑏 (4.12)

𝐴𝑖 = 𝑐(𝑖 * 𝜋

2), 𝑖 = 0, . . . , 3 (4.13)

where final phase shift could be estimated as

𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝐴3 − 𝐴1, 𝐴0 − 𝐴2) (4.14)

and amplitude of incoming signal is

𝑎 = 1
2

√︁
(𝐴3 − 𝐴1)2 + (𝐴0 − 𝐴2)2 (4.15)

Whether the second method seems to be more complex, but it has a significant
advantage, as we can assume from equations above, the modulated signal can be
separated form background offset.

The attentive reader would notice that this method is limited by modulated
signal wavelength. If Δ𝑡 is longer than one wave period, the measured distance

31

will overflow back to zero. This effect can be removed by using second modulation
frequency parallel with first one.

Fig. 4.7: Principle of measurement distance with two modulated frequences

4.4 Distance-Varying Illumination and Imaging Tech-
niques for Depth Mapping

This method is described in PrimeSense’s patent [21] and it is one of the possible
solutions for Kinect depth cameras. The principle of method is in illuminating scene
with grid of points, whereby each beam of light pass through two perpendiculars
to each other cylindrical lenses with different optical power. This way manipulated
pattern is changing its shape as function of distance.

4.5 Structured Light
Structured light is most often referring to a grid with periodically repeating lines or
grids.

If we can accurately define projected pattern, then its deformation is directly
proportioned to its to distance of projection plane. This can be simplified to simple
point grid. Then we can notice the similarity to active triangulation method.

32

Fig. 4.8: Double focused light method. The shape of element is function of distance

Fig. 4.9: Double focused light projected on two planes at different distance

With known triangulation base length, the distance between projector and cam-
era and, the distance of measured point is function of projected point shift.

4.6 RGBD Cameras Overview
This chapter provides a brief overview over currently available depth cameras and
summaries their operating principles and parameters. At the end of the chapter one
device is chosen for future SLAM extension.

33

Fig. 4.10: Scene illuminated by Kinect in IR spectrum

4.6.1 Kinect v1 (Xbox 360)
The first version of Kinect device is a pioneer in the field of RGBD cameras. Mi-
crosoft and PrimeSense had developed it in 2010 as an accessory to the Xbox 360
game console, with price 150 USD, which was never seen before for this kind of
device.

Principle of Kinect v1 is not officially known. But from the observations we
are able to deduce that it is based on the principle of light focused through two
cylindrical lenses as was described in PrimeSense’s patent or on principle of active
triangulation with grid of points projection.

Because of complexity of the first solution, the professional public rather incline
to the second solution. The disadvantage of the first version of Kinect are shadows
that are due to the large base of triangulation between the source of the pattern
projection and infrared camera.

Price: 150 USD
Color resolution: 640x480px 30fps
Depth resolution: 320x240px 30fps
FoV: 43 x 57 deg
Principle: IR
Range: 0.4 – 4.5m

4.6.2 Kinecv v2 (Xbox One)
The second version of Kinect device changes measurement technique. According
to observations, its measurement method uses modulated ToF. Accuracy of depth
measurement is very similar to first version. However, the new Kinect device brings
better depth image resolution and better geometrical precision of scanned scene
(better contrast and less called flying pixels between two different distanced planes.

34

Price: 100 USD
Color resolution: 1920x1080px 30fps
Depth resolution: 512x424px 30fps
FoV: 70 x 60 deg
Principle: ToF
Range: 0.5 – 4.5m

4.6.3 Swiss Ranger SR4000
It is an industrial ToF camera created by Heptagon company. The device operates
on an 850nm wavelength. However, it has relatively small resolution, only QCIF
(176x144px) and works only in depth domain. Color output is not available. At the
same time, according to [22] sensor has much less accurate than Kinect v1 output.

Price: 10 000 USD
Color resolution: N/A
Depth resolution: 176x144px 30fps
FoV: 43.6x 34.6 deg
Principle: ToF
Range: 0.5 – 5/10m

4.6.4 Asus Xtion Pro Live
It is a derivation of previous PrimeSense’s Carmine 1.09, which was designed prac-
tically in the same way as Kinect v1 did. Also, the parameters of this device are
very close to Kinect v1. It works on the principle of active triangulation and as pre-
viously mentioned. It projects grid pattern of the obstacles and measure distance as
function of grid deformation. Color resolution is available in 1280x1024 resolution
and 640x480px of depth images.

Price: 200 USD
Color resolution: 1280x1024px 30fps
Depth resolution: 640x480px 30fps
FoV: 58x 36 deg
Principle: IR
Range: 0.8 – 3.5m

4.6.5 SoftKinetic DS525
Device operating on a similar principle as Kinect v2 does. It is designed for shorter
distances. The manufacturer declares that the optimum use case for default settings
is from 0.15 up to 1m.

35

Price: 130 USD
Color resolution: 1280x720px 30fps
Depth resolution: 320x240 30fps
FoV: 63x43 deg
Principle: IR
Range: 0.15 – 1m (short range)

0.7 - 4m (long range)

4.6.6 Orbbec Astra Pro
Model designed for sensing the depth map over longer distances (up to 8 meters).
The operation principle is based on the same technology as the Kinect v1. Active
triangulation over projected infrared point grid is used.

Price: 150 USD
Color resolution: 1280x720px 30fps
Depth resolution: 640x480 30fps
FoV: 60x49.5 deg
Principle: IR
Range: 0.4 – 8m

4.6.7 Orbbec Persee
This device has the same color and depth cameras configuration as Orbbec ASTRA
does. But very important technological shift is hidden in embedded computer inside
of this device. It is equipped with processor, graphic chip, 2GB of RAM memory and
Ubuntu OS support. Furthermore, the device also provides peripherals as Ethernet,
WiFi, USB 2.0, HDMI and SD card slot. It is perfect option for embedded system
projects with computer vision. However, this device still was not available during
this thesis creation.

Price: 240 USD
Color resolution: 1280x720px 30fps
Depth resolution: 640x480px 30fps
FoV: 60x49.5 deg
Principle: IR
Range: 0.4 – 8m

4.6.8 ZED Stereo Camera
This device is based on principle of passive triangulation. Using two cameras, each
with 2k2 resolution, it locates key points in the images and based on positional
differences of these points it estimates the distance, as passive triangulation does.

36

Price: 450 USD
Color resolution: 2208x1242px 15fps

1920x1080px 30fps
1280x720px 60fps
672x376px 100fps

Depth resolution: 640x480px 30fps
FoV: 60x49.5 deg
Principle: IR
Range: 0.4 – 8m

4.7 RGBD Camera Choice
Based on the mentioned facts above, I have chosen as the best suitable device for
future work the Kinect v2. In these days, it has very wide support on the Linux OS
platform and drivers [23] compilation and installation is quite fast and easy. Also,
precision and depth range of device is good compared to the other devices and the
shadow areas between color and depth cameras are much smaller, than for Kinect
v1 device.

4.8 Kinect v2 Geometrical Calibration
Geometrical camera calibration, generally is a process of establishing the relationship
how does the three-dimensional point is projected onto the sensor plane, in other
words how the sensing point can be displayed on the CCD chip. Expression of these
parameters priors to any visual measurement, because it allows to determinate and
correct the errors, which would otherwise have been entered the measurement.

To determinate this relation between scanned space and sensor plane we can
divide problem into three separate domains. The first problem concerns the mea-
surement bias of optical system of the sensors, we are talking about intrinsic param-
eters. The second problem is to determine the translation and rotation of the sensor
in global coordinates. These parameters are called extrinsic. The third problem is
determining the distortion of sensor plane.

4.8.1 Pinhole Camera Model
Pinhole Camera (lat. Camera Obscura) is the simplest model of an optical camera.
The device is designed as a closed chamber which one hole on site with negligible
diameter. Incoming rays pass through the hole and projected to the wall on the

37

other side of the chamber. In this case the length of the chamber equal to the focal
distance 𝑓 of the whole system.

Fig. 4.11: Schematic of Camera Obscura

4.8.2 Simple Geometrical Projection 𝑅3→ 𝑅2

Each point projected on the image can be connected with the optical center 𝐶 of
sensor. The optical center is an imaginary point in space at which all the scanned
beams that have passed through the plane of the scanned image converge. At the
point where the previously mentioned beam intersects the plane of the sensor the
originally three-dimensional point is projected and creates two dimensional image.

Fig. 4.12: Geometry of light ray projection on sensor plane

38

With knowledge of triangle similarity rule, the 3D spatial point (𝑥, 𝑦, 𝑧)𝑇 will be
projected to sensor as a point with coordinates (𝑓𝑥

𝑧
, 𝑓𝑦

𝑧
, 𝑓)𝑇 . Now this homogeneous

transformation between the two coordinate systems can be expressed by a matrix
equation.

⎡⎢⎢⎣
𝑓𝑥

𝑓𝑦

𝑧

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑓 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
𝑥

𝑦

𝑧

1

⎤⎥⎥⎥⎥⎥⎦ (4.16)

which can be generalized as follows

𝑤

⎡⎢⎢⎣
𝑥

𝑦

1

⎤⎥⎥⎦ = 𝑃

⎡⎢⎢⎢⎢⎢⎣
𝑋

𝑌

𝑍

1

⎤⎥⎥⎥⎥⎥⎦ (4.17)

where 𝑋,𝑌 ,𝑍 are coordinates of 3D point in global coordinate system, P is
camera matrix, 𝑥,𝑦 are coordinates on projection plane and𝑤 is scale.

Now we can expand problematic from model of Camera Obscura to real camera
model.

𝑃 = 𝐾[𝑅|𝑡] (4.18)

P is camera matrix, which is product of intrinsic camera parameters (intrinsic
matrix) K and external camera parameters of rotation R and translation t.

If we look closer at the intrinsic matrix K, called calibration sensor matrix, we
can find following intrinsic parameters

𝐾 =

⎡⎢⎢⎣
𝑓/𝑠𝑥 𝑘 𝑜𝑥

0 𝑓/𝑠𝑦 𝑜𝑦

0 0 1

⎤⎥⎥⎦ (4.19)

which express focal length 𝑓 , coordinates of image center 𝑜𝑥, 𝑜𝑦 and pixel’s
dimensions 𝑠𝑥, 𝑠𝑦 expressed in millimeters. Parameter 𝑘 express the angle between
𝑥 and 𝑦 axis of projection plane. It is non-zero, when axes are non-perpendicular to
each other.

𝑘 = 𝑓

𝑠𝑦

* 𝑡𝑎𝑛(𝛼) (4.20)

where 𝛼 is complement to the 𝜋
2 of angle between 𝑥 and 𝑦 axis.

39

After the sensor matrix P is established, we are able to calculate optical center
C of sensor with equation

𝐶 = −𝑃 −1
3𝑥3𝑃:,4 (4.21)

where 𝑃 −1
3𝑥3 represents matrix constructed of first three rows and columns of

matrix P and P(:,4) is the forth column of matrix P.
According to projection geometry the relation between C and P is expressed by

following equation

𝑃 =
⎡⎣𝐶

1

⎤⎦ = 0 (4.22)

4.8.3 Sensor Distortion
In this case, we distinguish two kinds of distortions. The first one is called radial. It
is caused by beam bend during the pass through the lens or set of lenses in sensor’s
optical system. The smaller the lens is the larger is the distortion. The radial
distortion caused that image grid is deformed from the center distortion radially to
the edges and conversely.

Fig. 4.13: Example of radial distortion a) negative radial distortion (Barrel), b)
non-distorted grid, c) positive radial distortion (Pincushion)

The distortion is expressed as follows

𝑥′ = 𝑥(1 + 𝑘1 * 𝑟2 + 𝑘2 * 𝑟4 + 𝑘3 * 𝑟6)
𝑦′ = 𝑦(1 + 𝑘1 * 𝑟2 + 𝑘2 * 𝑟4 + 𝑘3 * 𝑟6)

(4.23)

where 𝑥′,𝑦′ are pixel’s coordinates of distorted image, 𝑘1, 𝑘2 a 𝑘3 are radial
distortion coefficients and 𝑟 is Euclidean distance of original pixel from the center
of distortion.

40

The second kind of distortion is called tangential distortion or often also the
perspective. It is caused by non-parallelly mounted the optical system and sensor
chip.

Fig. 4.14: The cause of tangential distortion

And can be mathematically expressed as follows

𝑥′ = 𝑥 + [2 * 𝑝1 * 𝑥 * 𝑦 + 𝑝2 * (𝑟2 + 2 * 𝑥2)]
𝑦′ = 𝑦 + [𝑝1 * (𝑟2 + 2 * 𝑦2) + 2 * 𝑝2 * 𝑥 * 𝑦]

(4.24)

where 𝑥′,𝑦′ are coordinates of distorted pixels with origin coordinates of 𝑥,𝑦. 𝑝1,
𝑝2 are tangential distortion coefficients and 𝑟 is Euclidean distance of original pixel
from the center of distortion.

4.8.4 Calibration Process
The calibration of intrinsic parameters [24] of Kinect v2 was calculated on images of
large-scale calibration checkerboard pattern of size approximately A3. It was taken
about 20 frames by RGB and the infrared cameras, so that the calibration sample
is always located in the different position and orientation relatively to the Kinectu
while both channels took pictures at the same time.

To determine the intrinsic parameters and distortion coefficients the MATLAB
tool "Single Camera Calibration App" was used [25]. It leads user through the whole
process and allows him to configure and optimize the calibration procedure.

In the first step of calibration images are loaded into MATLAB environment
and the calibration pattern is detected. Images where patter was not successfully
detected are excluded. Following the calculation of the intrinsic parameters and co-
efficients of distortion. Then the software calculates the error of established model

41

against each one individual calibration images and the resulting images compen-
sated.

If any of the images has significantly larger error compared to the rest of the
samples, it is recommended to remove this image from calibration set and perform
new camera model calculation.

This process is iterated until the result is accurate enough. We can then export
parameters and apply it to correcting output data from the Kinect v2.

Final calibration of Kinect v2 for RGB camera looks as follows.

𝐾 =

⎡⎢⎢⎣
𝑓/𝑠𝑥 𝑘 𝑜𝑥

0 𝑓/𝑠𝑦 𝑜𝑦

0 0 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1065.1 0.6527 996.8

0 1066.9 536.1
0 0 1

⎤⎥⎥⎦

𝑓 = 3.3𝑚𝑚

𝑠𝑥 = 𝑠𝑦 = 3.1𝜇𝑚

[𝑘1, 𝑘2] = [−0.0011, 0.115]

[𝑝1, 𝑝2] = [−0.0024, 0, 0086]]

As is apparent from plots above, that tangential distortion is considerably smaller
than the radial and has almost no effect on the total distortion. Therefore, it can
be neglected.

4.8.5 Depth Camera Parameters
In case to resolve the parameters of depth camera of Kinect v2 few second-long static
scene recording was taken. Later there was taken out one hundred frames from this
record, on which there was calculated the average distance at which Kinect v2 has
measured the average depth of the scene. The result is evident in the figure 4.19.
Average pixel is always calculated as the mean value of the pixel at position x, y
assuming that during the timeline 𝑡 there were no pixel with a zero value, which
means measurement fail. All such that pixels of the time series, that contain zero

42

Fig. 4.15: Radial distortion of RGB cemara

Fig. 4.16: Tangential distortion of RGB cemara

value has been excluded from the standard deviation calculation. Thus, the black
areas represent measurement failure.

However, more important parameter is a reliability of measured data. For this

43

Fig. 4.17: Total RGB camera distortion

Fig. 4.18: Example of RGB image before and after distortion correction

purpose, for each pixel the standard deviation has been calculated. The result is
shown in the figure 4.20. The standard deviation of the principal field of view is
oscillating about two, up to five millimeters. It coincides with the results of [22]

44

Fig. 4.19: Average value of depth of static scene represented by one hundred frames
in row. One illumination unit represents one millimetre of scene depth

Fig. 4.20: Standard deviation of depth scene measurement in millimetrers, over one
hundred frames

45

5 SLAM PROJECTS
This chapter introduces brief overview over existing projects in field of RGBD camera
SLAM algorithms. At the very beginning the Kinect Fusion [4] is mentioned as a
very first implementation of this problem with low cost RGBD camera and later the
Kintinuous [5] and Elastic Fusion [6] projects are described. Both of them has been
created by the same authors and both has been deeply studied for purposes of this
thesis.

5.1 Kinect Fusion
Method described in [4] is the very first SLAM implementation with low cost RGBD
camera usage. It was firstly introduced in 2011 as an example and developer demon-
stration of possibilities of new Microsoft’s device. The source codes are not public,
so we are not able to exactly determinate the way, how algorithm works, but accord-
ing the released papers and according the open source clone of mentioned algorithm
under the hat of PCL [26], we are able to get a brief idea how it works inside.

The Kinect Fusion code functionality is divided into four processes. All of them
are implemented using quite new technology in 2011, the NVidia’s CUDA. Because
of this, the project’s performance is scalable with improvement of this day’s graphic
cards.

In first step the raw depth data from Kinect depth camera are transformed into
3D space. The idea of this step is to take the depth image, which defines distances of
all visible obstacles and using the Kinect’s calibration matrix it performs projection
of all pixels into 3D space. The result is a single vertex map. Also, the orientation
of each vertex is calculated by comparing the self-vertex position with its nearest
neighbors.

In the second step the camera position is estimated. For this purpose, the well-
known ICP algorithm with 6DOF is used. In each iteration of ICP calculate the
sum of all square distances between currently scanned scene and in-memory mod-
elled environment and try to find the transformation 𝐻 which minimize mentioned
distance.

𝐻 =
⎡⎣R t

0 1

⎤⎦ (5.1)

In the third step the currently scanned scene is integrated into global environment
model. For this purposes the SDFs functions are used. The idea is to interpolate
existing voxels with spatial functions, that take negative values inside the defined 3D
shape, zero-value for shape border and positive values for space outside the shape.

46

Fig. 5.1: Kinect Fusion’s workflow [4]

This method has two advantages. First, the unexplored areas and noisy surfaces
are interpolated with smooth surface and second, this space representation is well
applied for graphics rendering techniques.

In the last step, called "Raycasting for Rendering and Tracking" the GPU calcu-
lates the beam for pixel in view frustum paced in current viewpoint. Every beam
the GPU calculates if it crosses zero-value in its travel direction and if so, the zero-
cross distance is estimated and relevant pixel in rendered image takes the equivalent
intensity. This is how the SDFs defined environment is transformed into 2D image.

5.2 Kintinuous
Kintinuous project [27] is strongly based on techniques and ideas of previously men-
tioned Kinect Fusion. Also, it mentions three major disadvantages of Kinect Fusion.
It is not able to scale the size of scanned environment, so the only limited space vol-
ume can be captured, the position estimation of Kinect Fusion is based only on
depth camera information and there is no loop closing mechanism in this project.

Kintinuous is trying to introduce innovative approach in three mentioned fields
and expand the idea, how RGBD SALM could work.

As first improvement, the shifting TSDF window is introduced. As so in Kinect
Fusion the basic four steps had been performed over the entire volume, in Kintinuous
these four operations are performed over the window, that is cutted out from global
model. This window is static for infinite period of time, until the RGBD sensor moves
behind the defined threshold and then new TSDF window in created around current
position and the old one is released. This allows the algorithm to continuously work

47

Fig. 5.2: Data-flow schematic in Kintinuous. Different colors runs of different
threads [5]

with limited amount of data stored in GPU memory and also, algorithm is capable
to move TSDF window behind the borders of initial location, so the environment
model can be scaled to any size.

The second interesting improvement is the introducing the position estimation by
using the RGB camera information. The process is very similar to ICP algorithm.
The basic idea is to take two RGB images in time 𝑡 and time 𝑡 − 1, calculate
grayscale image and try to estimate the rotation 𝑅 and translation 𝑇 that minimize
difference between image in time 𝑡 and homogeneously transformed image in time
𝑡−1. The transformation with least difference between these two images is accepted
as a representation of RGBD camera movement in last time period.

After both, the RGB and the depth positions are estimated, the linear combi-
nation of results of both method is done and the final transformation is propagated
into next steps of algorithm.

The Kintinuous has very common in these days architecture. It is divided into
two main block called frontend and backend. In frontend part, there are performed
all up to now mentioned algorithms. The backend takes care about next introduced
innovation, the Loop Closing mechanism.

As RGBD camera passes the space. In the backend memory, there is constructed
graph that represents RGBD past positions and surrounding key-points (the land-
marks). For purpose of key-points searching in RGB image, the SURF [28] method
has been used. For every frame the SURF points are compared against the most
probable candidates in global model and if correspondence is large enough, the
RANSAC transformation estimation is done to validate loop closing. If this step
pass, the ICP is used to calculate final deformation estimation. Because of the back-
end graph is non-rigid, the deformation of one point is distributed through entire
graph and the global model is reorganized. .

48

5.3 Elastic Fusion
„Real-time dense visual SLAM system capable of capturing comprehensive dense
globally consistent surfel-based maps of room scale environments explored using an
RGB-D camera.“ [29]

This project has been created by the same authors as Kintinuous does, but the
way, how the SLAM problematic is solved is different in many ways. The most
interesting change is, that Elastic Fusion leaves the concept of Graph Based SLAM,
which has been the state-of-art approach for nearly two decades.

Fig. 5.3: Example of "Dense model" created by Elastic Fusion. It is composed of
4,5mil surfels

This project has been chosen as base of this thesis, because it introduces a new
and interesting ways of solving SLAM problems and it is in active development
process, so the future improvements can be expected. Another purpose is, that this
program gives very precise output models in internet demonstration videos so good
quality models could be expected during my work. Last, but not least important
is fact, that in this project many modern programming techniques are used such as
CUDA or OpenGL shader language, so I can learn many new technologies.

The Elastic Fusion’s model is defined by unordered set of surfels, where each
surfel has defined its position p ∈ 𝑅3, normal n ∈ 𝑅3, color c ∈ 𝑅3, weight 𝑤 ∈ 𝑅

and radius 𝑟 ∈ 𝑅. Additionally, each surfel has its internal state (active//inactive).
The surfel is active in the moment of creation and keeps active until the RGBD
sensor is able to see it. If surfel has not been seen for defined period of time it
comes inactive. Over such a define environment model the following operations are

49

performed during SLAM runtime. Position estimation is done in a very same way
as Kintinuous project does it. There are separated processes to estimate position
from RGB and depth domains and then they are linearly combined together. In
depth domain, the well-known ICP is used and in color domain there is iteratively
minimized square difference of two in row coming RGB frames.

Interesting improvement is in the fact that local position estimation is performed
only against active surfels, these are the ones that had been tracked during short
period of time. In this way, the local operation window is created, so the frame-to-
model process of local position estimation do not have to handle large amount of
data.

Fig. 5.4: [6] (i) initial view, (ii) leaving initial view, surfels become inactive, (iii)
returning to inactive surfels, become active again, (iv) camera continues local loops
closing, (v) exploring new areas, (vi) loop close detection, (vii) loop close detail,
(viii) global loop closing activates surrounding inactive surfels, (ix) local loop closing
continuous, (x) entire overview

In field of global graph deformation, the main innovation comes. There is no
such a backend position graph that is processed during entire runtime. However, for
each incoming frame the entire new graph is constructed. It is created out of several
picked surfels from global model and each of these key-surfels is connected to its four
neighbors. The key-surfels are picked randomly from whole set of existing ones, but
the chosen is distributed uniformly through timeline of surfels creation timestamps,
so the whole model is covered. This graph is used in next step to perform local and
global loop closing.

During loop closing at first the global loop closing (mentioned in next paragraph)
is performed. If no global loop closing has been detected, the local loop closing
performed. It is done only above the set of currently active surfels and it helps to
keep currently visible part of model consistent. It is done in way that transformation
between active surfels and visible surfels is done. If transformation overcome defined
threshold, model is deformed.

50

Global loop close matching is performed as follows. There are randomly selected
views over entire model and current view is compared to selected ones. To im-
prove performance, the views are down sampled to 80x60. If loop is detected, the
deformation is done and it distribute through whole non-rigid model.

51

6 DATA FUSION
In this chapter reader is introduced into problematics of data fusion and the way,
how this thesis handle data merging and what tools are used for this purpose.

6.1 Input Data Characteristics
At the beginning of this thesis there is a project which takes data from RGBD
camera and performance complex SLAM algorithms to estimates camera’s position
and expands 3D environment model construction. Visual odometry is on its own
not very accurate because of pixel resolution, cameras output picture deformation,
ICP algorithm uncertainty and so on.

This thesis is aiming on feeding existing solution with more precise data to make
results of running real-time SLAM more precise.

The amount of position information hidden in single image is called information
gain.

Every camera’s image keeps some information about current position. When
we are comparing two different images of the same scene the different information
makes possible to estimate position change. But for example, if first image is taken
to calculate position, it gives us limited amount of information gain, but if second
image is taken in the same position with the same orientation, it gives us no new
usable knowledge, so the information gain of second image is equal to zero.

There are two ways how to improve SLAM runtime position information gain.
The first one is to use more precise sensor that gives us better information with higher
information gain. Also, more sensors can be used and the position measurement can
be oversampled and the result can come out of averaging all sensors measurements
together to reduce noise. But this is not the way that has been chosen in this thesis.

The second possibility is to estimate position by different measurement method,
that has different characteristic of measurement noise and measurement method
uncertainty. This gives us two independent streams of position information where
each one has different measurement error and by combining this information gains
together the characteristic error for each method can be suppressed.

As an example of different measurement principles, we could mention visual
odometry, dead reckoning (described bellows), GPS position estimation, LIDAR
scanning and so on. Every mentioned method uses different physical principle and
gives different error characteristic.

In this thesis, visual odometry is combined with vehicle odometry.
Visual odometry is quite inaccurate in short time scale. Because of image noise

the estimated position is oscillating around ground true position. But in long time

52

scale it is able to suppress position estimation drift because of visual feedback to
environment.

On the other hand, the dead reckoning method is very precise in short time
scale (method shows very low noise amplitude), but even very low noise integrated
during long period of time with missing correction feedback causes dramatic position
estimation drift.

Fig. 6.1: Principle of different position data merging

6.2 Kalman Filter
Kalman filter [30], [31], sometimes called quadratic estimator, is a method of optimal
dynamic data filtration, where noise has Gaussian distribution.

The entire filtration process is based on modelling the tracked system and es-
timating all its hidden states so the method is able to predict future changes and
correct the predictions by available measurement.

Let’s have a following system

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1 (6.1)

𝑧𝑘 = 𝐻𝑥𝑘−1 + 𝑣𝑘 (6.2)

where 𝐴 is state matrix or system’s Jacobian, 𝐵 is input matrix, 𝐻 is model
of internal system’s states measurement (the measurement matrix). 𝑥𝑘 is vector

53

expressing system internal states 𝑧𝑘 is measurement output. Constants 𝑤 and 𝑣

express the noise of system and measurement.
The system defined by equations above can be filtered by Kalman filter.

Fig. 6.2: Kalman filter iteration

As it is shown on image, each iteration of data filtrations is composed of two
steps. In first one the future system state is estimated based on previous system
states knowledge.

𝑥−
𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 (6.3)

𝑃 −
𝑘 = 𝐴𝑃𝑘𝐴𝑇 + 𝑄 (6.4)

The first equation expresses the mentioned prediction of system’s internal states
in step 𝑘 based on knowledge of internal steps in previous step 𝑘 − 1. 𝑄 is system
noise with Gaussian distribution.

The second equation expresses the prediction of system’s covariant matrix, which
express measurement uncertainty.

In the second step the prediction is corrected by measurement.

𝐾𝑘 = 𝑃 −
𝑘 𝐻𝑇 (𝐻𝑃 −

𝑘 𝐻𝑇 + 𝑅)−1 (6.5)

𝑥𝑘 = 𝑥−
𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥−

𝑘) (6.6)

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃 −
𝑘 (6.7)

𝐾𝑘 is called Kalman gain. It expresses how much should we trust to newly
measured data and how much should we use them to estimate final position.

From equations above we can assume

lim
𝑅𝑘→0

𝐾𝑘 = 𝐻−1 (6.8)

54

which says that with decreasing measurement covariance 𝑅𝑘 (decreasing mea-
surement error) is rising the measurement trustfulness. And with decreasing model’s
covariant error 𝑃 −

𝑘 decreasing also the Kalman gain 𝐾𝑘.

lim
𝑃 −

𝑘
→0

𝐾𝑘 = 0 (6.9)

Fig. 6.3: Graphic interpretation of Kalman filtration (prediction, measurement, cor-
rection)

The largest problem of creation the properly working Kalman filter is to esti-
mate initial coefficients. The measurement noise matrix 𝑅 could be deduced from
sensors parameters. But system noise 𝑄 estimation if very difficult and very often is
estimated experimentally or some auto-covariant method, which estimates the level
of noise based on model’s statistics.

6.3 Extended Kalman Filter
The method described in previous chapter gives great results but only in case of
modelling linear stochastic systems, which could be described by Gaussian statistic
model. But if tracked system exhibits nonlinear behavior, the model has to be
linearized for every step for every current state 𝑥𝑘 in 𝑅𝑛 dimensional space. This
method is called Extended Kalman Filter.

In other words, for every iteration method has to calculate new model that
exhibits linear behavior for near neighbor of its current internal states..

The system description is quite different in contrast with simple Kalman filter.

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1) (6.10)

55

𝑧𝑘 = ℎ(𝑥𝑘−1, 𝑣𝑘) (6.11)

6.4 Wheel Odometry (Dead Reckoning)
Dead reckoning is a method that measure the traveled distance by continuously
integrating vehicle speed or wheels angular position change.

𝑥𝑘 =
𝑘∑︁

𝑖=1
Δ𝑥𝑖 =

𝑘∑︁
𝑖=1

Δ�̇�𝑖 * Δ𝑡 (6.12)

Let us imagine a robot, that lives in one dimensional space and it moves in one
direction with specified speed. If we assume, that at the beginning of measurement
robot was in the space coordinate 0, than the position in time 𝑡 can by expressed as
the time velocity integral, where robot’s speed can be estimated out of it’s wheels
rotation. The method is very precise, but during time there is negative effect of
cumulating and integrating small error, which causes large drift during long period
of time. The main sources of error are wheel rotation measurement error and wheel
skid.

Fig. 6.4: Differential chassis model [32]

This method has been used for example in marine to estimate ships position
on the see, where passed distance has been estimated out of number of propeller’s
rotations or continuous ship speed integration.

Now we are able to adapt this method on simple differential chassis model. Let’s
imagine a tank, which could be described by following model. The disadvantage of

56

this model is that it is not able to model wheel’s skid, which is always present with
even very low amplitude.

By discretization all models equations we are able to create discrete model of
Dead Reckoning method.

𝑉𝐹 = 𝑣1 + 𝑣2

2 (6.13)

𝑉𝑆 = 0 (6.14)

�̇� = 𝑣1 + 𝑣2

𝑏
(6.15)

�̇� = 𝑉𝐹 𝑐𝑜𝑠𝜑 − 𝑉𝑆𝑠𝑖𝑛𝜑 (6.16)

�̇� = 𝑉𝐹 𝑠𝑖𝑛𝜑 + 𝑉𝑆𝑐𝑜𝑠𝜑 (6.17)

6.5 Measurement vehicle
As part of my thesis the high precise measuring vehicle has been constructed. It
has two wheels on the main axle, both with RI58-O / 5000AS.41RB quadrature
encoders mounted. Furthermore, the vehicle is equipped with STM32F4 Discovery
module, which is fitted into the extending shield. This computing unit functions as
a collector of data from the encoders, which are then passed to the PC through the
"serial line to TCP socket" network bridge connected to the same local network as
SLAM PC does.

Fig. 6.5: Measurement vehicle construction

57

The PC is running the background process, which performs a model calculation
of the vehicle odometry and through a buffer’s queue it provides output of Dead
Reckoning telemetry to the Visual SLAM thread, which is able to reduce cumulative
position estimation error.

𝑑′ = 𝑓(𝑥, 𝑦, Φ, Δ𝑑𝑟, Δ𝑑𝑙) =

⎡⎢⎢⎣
𝑥

𝑦

Φ

⎤⎥⎥⎦ +

⎡⎢⎢⎣
Δ𝑠𝑟+Δ𝑠𝑙

2 𝑐𝑜𝑠(Φ + Δ𝑠𝑟−Δ𝑠𝑙

2𝑏
)

Δ𝑠𝑟+Δ𝑠𝑙

2 𝑠𝑖𝑛(Φ + Δ𝑠𝑟−Δ𝑠𝑙

2𝑏
)

Δ𝑠𝑟−Δ𝑠𝑙

𝑏

⎤⎥⎥⎦ (6.18)

where 𝑥 and 𝑦 are robot’s space coordinations, Φ is robot’s orientation. Δ𝑑𝑟 and
Δ𝑑𝑙 are right and left wheel distance changes and 𝑏 is robot’s chassis base.

Fig. 6.6: Vehicle STM32F4 Discovery board with extension shield

The vehicle electronics, as previously mentioned, is based on STM32F4 Discovery
board that is extended with expansion shield that provides power supply to entire
vehicle electronics, the interface to interconnect microcontroller with quadrature
encoders, three UARTs, one with level-shift to RS232 to communicate with another
computer, one to interconnect with GPS module and one to communicate with
Bluetooth module. Also, external interrupt pins are prepared to make possible
external time synchronization.

The schematics and board of extension shield is placed in appendix.

6.6 Data Merge
The main idea of this thesis is to provide a differential chassis odometry into Visual
SLAM process to improve accuracy of this method. On image 6.7 there is shown

58

the way, how does the information about wheel’s rotation and vehicle movement are
transferred into SLAM process.

The wheel’s rotation is sensed by two quadrature encoders. These two sensors are
providing measured information into microprocessor and it integrates the number
of incoming pulses and passes it via UART line into TCP/IP WiFi bridge with
serial line input. The mentioned bride is connected into local Wi-Fi network and is
accessible as a TCP server.

Fig. 6.7: Communication pipeline schematic

The SLAM hosting computer is connected to the same local network as vehicle’s
bridge does. The SLAM process contains TCP socket that connects to the bridge at
the startup of the program and TCP socket begins to continuously receiving string
messages, that contains information about number of encoder pulses captured by
microprocessor.

This incoming information is parsed line-by-line and then it is passed into process
that simulates runtime vehicle movement model. Based on differential equations that
describe differential chassis (mentioned in previous chapter) the actual position in
planar, two-dimensional world is estimated and this position information is provided
into Kalman Filter module, where it is fused with output position from Visual
SLAM.

The final result position information is forced into Elastic Fusion runtime.

59

6.6.1 Data Fusion Pipeline
To provide vehicle odometry data into Elastic Fusion’s visual position estimation
process, the one feature original Elastic Fusion API’s feature has been used. For
every frame the actual 6DoF position can be read out and also for each frame the
same 6DoF position can be forced.

The vehicle odometry feeding pipeline works in the way showed on image 6.8.
The Kinect v2 provides RGBD images with 60 fps framerate. The first frame is left
without any modifications, to let Elastic Fusion performs initial position estimation.
Before the second frame will be processed, the Visual odometry’s position is taken
as well as parallel vehicle position does. Both data packages are passed into Kalman
filter, where the fusion is performed and after that the new estimated position is
forced into Elastic Fusion’s and vehicle’s odometry pipelines.

Fig. 6.8: Odometries fusion pipeline

This process is looping during entire SLAM runtime
Also, many parameters can be tuned. For example, the frequency of forcing

position into Elastic Fusion’s odometry can be done not only every second frame,
but this number can be chosen arbitrarily. Even larger the period of position forcing
will be chosen, the less the vehicle odometry will affect the position estimation.

60

7 RESULTS AND ACCURACY
In this chapter, there is described a way, how the results of this thesis has been
tested. Firstly, there are mentioned all the software modifications, that has been
finally used, next there is described whole measurement set, then reader is introduced
into measurement experiences itself and in the last section the results are mentioned
and they are compared to original Elastic Fusion performance.

7.1 Software Modifications
The entire project is composed out of two main parts. The first one is Elastic Fusion
Core, which takes care about visual odometry estimation, map building, memory
management and so on.

The second part is called GUI. There is running the main loop, which creates
all instances, that handle graphic interface, Kinect’s input data stream and use’s
interaction. This GUI parts include previously mentioned Core as a compiled static
library.

Because of this software architecture all my modifications have been done only
on GUI part. The Core part has not been changed.

The brief overview of all modification can be seen on 7.1

Fig. 7.1: UML Class diagram of modified Elastic Fusion project

61

This image represents only these parts of the project, that had been modified.
Some includes of original project are not shown.

All the green classes had been created from the beginning for purpose of this
thesis. The blue ones had been already present in original project and their func-
tionality was modified. White ones weren’t changed.

Main - contains main loop. Its only task is to call Main Controller and pass on
runtime scope.

Main Controller - works as a bridge between all submodules. It performs data
exchange between Kinect input, visual odometry core, odometry motion model, GUI
rendering, etc.

OpenNi 2 Interface - handles input stream from Kinect v2 and transforms it
into frame format (for both color domain and depth space). These frames are then
passed into Elastic Fusion Core. Also, Kinect calibration is done in this block.

GUI - This class contains all graphic interface staffs and map rendering. For my
purpose, some graphic elements has been added to be able to modify Elastic Fusion
parameters during runtime.

Odometry Model - Instance of this class takes incoming encoders data from
measurement vehicle and transform them into vehicle’s position.

Kalman Filter - It is a wrapper, that encapsulates all filtrations into one in-
stance. Every single degree of freedom (axis x and y and yaw) are calculated sepa-
rately.

Kalman Kernel - Implementation of Kalman Filter. Every instance of this
class is used for filtration of one degree of freedom

TCP Socker - This class represents TCP client implementation. During startup,
it connects to the TCP server, that provides encoder’s data. Incoming string stream
is stripped into lines and every single line is passed into Odometry Model.

Position Logger - This class is used to logging robot’s position. Vehicle odom-
etry, visual odometry and fused position are logged separately. Every log also has
time stamp.

Elastic Fusion Core - Takes RGB and depth frames and returns Kinect’s
translation and rotation.

The entire project is linked by using CMake and compiled by GCC compiler.

7.2 Measurement Set
During the measurement experiment the entire hardware set has been placed on
measurement vehicle.

The vehicle itself has been equipped with STM32F4 board, battery pack, TCP
bridge and Kinect v2. STM board and battery pack are placed in 3D printed black

62

boxes, that are screwed to aluminum construction. The Kinect v2 is mounted also
by 3D printed holders. The visualization of this parts is available in appendix.

Fig. 7.2: Measurement vehicle equipped with Kinect v2, STM32F4 board, TCP
bridge and battery pack

Because of Elastic Fusion runtime requires high compute performance (according
authors 3,5 TFLOPS on GPU) and Kinect v2 has large data stream that is hard to
pass through radio channel, so the entire PC had to be mounted on measurement
vehicle. For this purpose, I have used Mini ITX PC with dimensions of 25x21x37
cm. This computer contains i5-6400 Intel CPU and 960 GTX NVidia graphics card.
With this hardware, the whole experiment runs fluently with no freezing and no
lags. The GPU memory usage was about 20 percent when model was build out of
one million surfels.

7.3 Validation Experiments
The validation experiments have been performed in three different environments.
Every environment have different character, so even different odometry methods
gets different accuracy in 3D model costruction process.

The first experimental environment was the laboratory room. As the laboratory
contains large number of different furniture, devices and other stuff, it creates a
highly contrast environment in which even visual odometry gives very good results.
Also loop closing works well, anyway it is better to minimalize active scene window
timeout. In this case wheel odometry does not improve SLAM results in any useful
way.

63

Fig. 7.3: Measurement vehicle with all hardware mounted

The purpose is, that visual odometry very well handle position estimation in
highly rugged environment. Also, the accuracy of wheel odometry is strongly de-
pendent on precision of calibration. During my thesis, there was no possibility to
calibrate wheel odometry with higher precision, than 0.2% relative error in linear
direction movement and more than 1% relative error in rotation movement.

Because of this uncertainty of wheel odometry the measurement error which was
occurred in this experiment by fused odometry was larger than uncertainty of pure
visual odometry.

64

Fig. 7.4: Example of laboratory scan

The second experiment has been conceived as a pass between two laborato-
ries through short section of corridor, when direction was changed two times. Ex-
periment starts The hardest part for SLAM was to orientate during corridor pass
through, because there are no contrast shapes. The pure visual SLAM usually gets
lost during rotation. With fusion of both data sources inputs I was able to always
pass this route without losing orientation.

The main benefit in this experiment shows, that operator, that controls robot
with installed SLAM does not need to take care about ruggedness of environment,
and if visual odometry gets lost, the position estimation by wheel odometry still
works, until visual odometry starts to orientate.

65

Fig. 7.5: Corridor between two laboratories scan

The third experiment was to straight pass through approximately forty meters
long corridor. Also, it this experiment the most interesting results were achieved.
The detail description is mentioned in following section.

7.4 Results
One of possible criterions to determinate accuracy of the SLAM method could be
expression of relative error of straight corridor measurement.

Ground true value of the corridor length was measured from the middle of the
doors on the one side of corridor to the middle of the doors on the second side
parallely to the ground. This ground thrue value has been established by Lecia
DISTO D8 laser scanner, that has measurement accuracy ± 1mm.

Lecia DISTO D8 laser scanner was used as reference measurement, because dur-
ing my thesis there was no possibility to apply method or device with higher preci-
sion.

66

Fig. 7.6: The orange line shows measured distance

As it has been already mentioned, that each odometry method shows different
type of measurement uncertainty. The wheel odometry is very accurate during
small scale measurement, but has disadvantage of continuous integrated drift from
ground true. On the other hand, the visual odometry has large uncertainty of current
position estimation, but because of feedback it is able to compensate the mentioned
wheel odometry drift.

In detail, the experiment of corridor length measurement has been performed
in following way. SLAM was started looking on the first doors and slightly moved
backward, to established 3D model of near surrounding. After this, it returned
to original position and turn around by 180𝑑𝑒𝑔. Usually in this moment the pure
visual odometry get lost looking on non-contrast white wall, when combined and
pure wheel odometry done well and was able to keep tracking surrounding. In last
part of experiment the vehicle with SLAM was moving straight forward to the end
of corridor with velocity about 0.5𝑚𝑠−1. At the end of corridor measurement has
been terminated and results has been saved.

The following image 7.7 shows the different between visual odometry based 3D
model construction and 3D model based on fused data. It is easy to see, that the pure
visual odometry model shows large amount of geometrical distortion, meanwhile
model constructed by fused data SLAM has much better geometrical expression of
entire straight corridor.

67

Fig. 7.7: 3D models build by Elastic Fusion (top - visual odometry only, bottom -
fused odometry)

The relative error is expressed as follows

𝛿 = 𝑀 − 𝑆

𝑆
* 100[%] (7.1)

where 𝑀 is measured value and 𝑆 is ground true value.

Method Measured Length [m] Relative Error [%]
Visual odometry 42.30 2.70
Wheel odometry 43.02 1.04

Fused data 43.29 0.41
Ground true 43.47 -

Tab. 7.1: Measurement methods error comparation

From this table we can assume, that results of Elastic Fusion with additional
data source achieves few times better results (6 times lower relative error) than the
original solution does. The wheel odometry helps to keep high accuracy on short
time scale and visual SLAM kept the wheel’s odometry drift at a low value, even on
a quite long trace.

In state-of-art papers as a SALM benchmark, there is often used comparison of
SLAM estimated trajectory against for example laser measured ground true, but
during my thesis there was no possibility to perform this measurement.

68

Of course, there are much more criterions, than only relative error of measured
distances. Let’s mention for example the capability of keeping straight line. In other
words, make SLAM to minimize geometrical distortion of straight planes (see 7.8).

Fig. 7.8: 3D model’s geometrical distortion, left top - wheel odometry only, right
top - fused odometry, bottom - visual odometry only

69

8 CONCLUSION
This thesis dealt with visual SLAM and the methods to improve its accuracy. The
entire work is based on the open source project “Elastic Fusion”, which was then
modified and the results were verified in several validation experiments.

During my work, I have forked the before mentioned open source SLAM project
called Elastic Fusion and run it on Ubuntu 14.04. Next I had ported it from original
Asus RGBD camera to newer Kinect v2 one. Then the electronics and firmware
for measurement differential vehicle were created and entire wheel odometry was
calibrated. In last step, I have modified the Elastic Fusion project to accept wheel
odometry output data and fuse them with its own visual SLAM position estimation
to achieve higher estimation accuracy.

To understand the motivation behind the fusion of visual and wheel odometry,
it is necessary to understand that both methods have different measurement un-
certainty. The visual odometry does not estimate current position very well, but
because of the feedback can correct cumulative position estimation errors, on the
other hand the wheel odometry has high accuracy for short distance measurements,
but on large distances it integrates cumulative error. By combining these two meth-
ods, the disadvantages of both approaches could be eliminated.

The final results show the achieved improvements. The accuracy improvement
has been tested in three different scenarios. The most interesting result was the
one, when SLAM had to scan forty meters long corridor. The pure visual SLAM
shows 2.7% relative error in corridor reconstruction measurement. The pure wheel
odometry show 1% relative error and fused method creates 3D model with 0.4%
error. It means over six times smaller measurement error compared to the original
pure visual SLAM.

All the results mentioned above had been realized as a part of my master degree
thesis. Also in future, there is possibility to expand this work during my Ph.D.
studies.

At first there is necessary to encapsulate entire solution into for example Docker
container, so that the project would be able to be deployed to any hardware that
fulfil GPU performance requirements.

Then of course there is also task to deploy solution on Orpheus platform, that is
developed by robotics team of FEEC of BUT. The robot is able to carry small-sized
computer and Kinect v2 can be mounted for example on camera arm, so it would
be able to rotate in all three axes.

By mounting Kinect to moving camera arm there would be possibility to also
integrate inertial unit sensor, so the SLAM algorithm could lock all three rotation
degrees of freedom and so position estimation could be much easier to solve and

70

Fig. 8.1: Orpheus robot

estimated position could be more precise.
The next possible extension could be done in field of virtual reality. The entire

3D constructed model could be rendered into two framebuffers, so the illusion of 3D
space could be created. With VR headset the operator, that controls the robot on its
mission could get much better experience during exploration of unknown areas and
would be able to comprehend much better, how is robot situated in its environment.

71

BIBLIOGRAPHY
[1] Waymo [online]. [cit. 2017-01-05]. Available from URL: <https://waymo.

com/>.

[2] Tesla [online]. [cit. 2017-01-05]. Available from URL: <https://www.tesla.
com/>.

[3] Průzkumný robotický systém Cassandra [online]. [cit. 2017-
01-05]. Available from URL: <https://www.ceitec.cz/
02-2014-pruzkumny-roboticky-system-cassandra-automa/f1398>.

[4] Richard A. Newcombe, Shahram Izadi KinectFusion: Real-Time Dense Surface
Mapping and Tracking Imperial College London, Microsoft Research. Available
from URL: <https://www.microsoft.com/en-us/research/wp-content/
uploads/2016/02/ismar2011.pdf>.

[5] Thomas Whelan, Michael Kaess Real-time large scale dense RGB-D SLAM
with volumetric fusion. Available from URL: <http://thomaswhelan.ie/
Whelan14ijrr.pdf>.

[6] ElasticFusion: Dense SLAM Without A Pose Graph [online]. [cit. 2017-01-03].
Available from URL: <http://thomaswhelan.ie/Whelan15rss.pdf>.

[7] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, W. Burgard An
Evaluation of the RGB-D SLAM System. Available from URL: <http:
//www2.informatik.uni-freiburg.de/~endres/files/publications/
endres12icra.pdf>.

[8] ElasticFusion: Dense SLAM Without A Pose Graph [online]. [cit. 2017-01-03].
Available from URL: <http://thomaswhelan.ie/Whelan15rss.pdf>.

[9] Orpheus Robotic System [online]. [cit. 2017-01-05]. Available from URL:
<REFERENCEhttp://www.uamtold.feec.vutbr.cz/robotics>.

[10] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, Wolfram Burgard
A Tutorial on Graph-Based SLAM . University of Freiburg. Available
from URL: <http://www2.informatik.uni-freiburg.de/~stachnis/pdf/
grisetti10titsmag.pdf>.

[11] MAIER, Robert, Jurgen STURM a Daniel CREMERS. Submap-based Bun-
dle Adjustment for 3D Reconstruction from RGB-D Data TU Munich, Ger-
many. Available from URL: <https://vision.in.tum.de/_media/spezial/
bib/maier2014gcpr.pdf>.

72

https://waymo.com/
https://waymo.com/
https://www.tesla.com/
https://www.tesla.com/
https://www.ceitec.cz/02-2014-pruzkumny-roboticky-system-cassandra-automa/f1398
https://www.ceitec.cz/02-2014-pruzkumny-roboticky-system-cassandra-automa/f1398
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ismar2011.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ismar2011.pdf
http://thomaswhelan.ie/Whelan14ijrr.pdf
http://thomaswhelan.ie/Whelan14ijrr.pdf
http://thomaswhelan.ie/Whelan15rss.pdf
http://www2.informatik.uni-freiburg.de/~endres/files/publications/endres12icra.pdf
http://www2.informatik.uni-freiburg.de/~endres/files/publications/endres12icra.pdf
http://www2.informatik.uni-freiburg.de/~endres/files/publications/endres12icra.pdf
http://thomaswhelan.ie/Whelan15rss.pdf
REFERENCE http://www.uamtold.feec.vutbr.cz/robotics
http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf
http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf
https://vision.in.tum.de/_media/spezial/bib/maier2014gcpr.pdf
https://vision.in.tum.de/_media/spezial/bib/maier2014gcpr.pdf

[12] Point Cloud Library [online]. [cit. 2017-01-05]. Available from URL: <http:
//pointclouds.org>.

[13] Wikipedia - Octree [online]. [cit. 2017-01-05]. Available from URL: <https:
//en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg>.

[14] BURIAN, F. TVORBA MULTISPEKTRÁLNÍCH MAP V MOBILNÍ ROBO-
TICE . Brno, 2014. VUT Brno. Vedoucí práce Doc. Ing. LUDĚK ŽALUD,
Ph.D. Available from URL: <https://www.vutbr.cz/www_base/zav_prace_
soubor_verejne.php?file_id=93104>

[15] P.J. Besl; H.D. McKay A method for registration of 3-D shapes. Available
from URL: <http://ieeexplore.ieee.org/document/121791/media>

[16] BAZEILLE, S a D FILLIAT. Combining Odometry and Visual Loop-Closure
Detection for Consistent Topo-Metrical Mapping ENSTA ParisTech. Avail-
able from URL: <http://perso.ensta-paristech.fr/~filliat/papers/
Bazeille_COGIS09.pdf>.

[17] Kin Leong Ho, Paul Newman Loop closure detection in SLAM by com-
bining visual and spatial appearance Oxford Robotics Research Group
. Available from URL: <http://www.robots.ox.ac.uk/~mobile/Papers/
VisualLoopClosureSLAM.pdf>.

[18] Martin A. Fischler, Robert C. Bolles Random Sample Consensus: A Paradigm
for Model Fitting with Apphcatlons to Image Analysis and Automated Cartog-
raphy SRI International. Available from URL: <http://www.cs.columbia.
edu/~belhumeur/courses/compPhoto/ransac.pdf>.

[19] Wikipedia - RANSAC [online]. [cit. 2017-01-03]. Available from URL: <https:
//en.wikipedia.org/wiki/Random_sample_consensusl>.

[20] Rémi Paucher, Matthew Turk Location-based augmented reality on cell phones
[online]. [cit. 2017-01-03]. Available from URL: <https://ilab.cs.ucsb.edu/
projects/remi/remi.html>.

[21] Distance-Varying Illumination and Imaging Techniques for Depth Mapping
[online]. [cit. 2017-01-03]. Available from URL: <https://www.google.com/
patents/US20100290698>.

[22] Jan Smisek, Michal Jancosek and Tomas Pajdla 3D with Kinect.
Available from URL: <http://cmp.felk.cvut.cz/ftp/articles/pajdla/
Smisek-CDC4CV-2011.pdf>.

73

http://pointclouds.org
http://pointclouds.org
https://en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg
https://en.wikipedia.org/wiki/Octree#/media/File:Octree2.svg
https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=93104
https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=93104
http://ieeexplore.ieee.org/document/121791/media
http://perso.ensta-paristech.fr/~filliat/papers/Bazeille_COGIS09.pdf
http://perso.ensta-paristech.fr/~filliat/papers/Bazeille_COGIS09.pdf
http://www.robots.ox.ac.uk/~mobile/Papers/VisualLoopClosureSLAM.pdf
http://www.robots.ox.ac.uk/~mobile/Papers/VisualLoopClosureSLAM.pdf
http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf
http://www.cs.columbia.edu/~belhumeur/courses/compPhoto/ransac.pdf
https://en.wikipedia.org/wiki/Random_sample_consensusl
https://en.wikipedia.org/wiki/Random_sample_consensusl
https://ilab.cs.ucsb.edu/projects/remi/remi.html
https://ilab.cs.ucsb.edu/projects/remi/remi.html
https://www.google.com/patents/US20100290698
https://www.google.com/patents/US20100290698
http://cmp.felk.cvut.cz/ftp/articles/pajdla/Smisek-CDC4CV-2011.pdf
http://cmp.felk.cvut.cz/ftp/articles/pajdla/Smisek-CDC4CV-2011.pdf

[23] libfreenect2 - GitHub [online]. [cit. 2017-01-03]. Available from URL: <https:
//github.com/OpenKinect/libfreenect2>.

[24] SCHREER, KAUFF a SIKORA 3D video communication. ISBN 13 978-0-470-
02271-9 (HB), 2005, s 365

[25] Single Camera Calibration App [online]. [cit. 2017-01-03]. Avail-
able from URL: <https://www.mathworks.com/help/vision/ug/
single-camera-calibrator-app.html>.

[26] An open source implementation of KinectFusion [online]. [cit. 2017-01-03].
Available from URL: <http://play.pointclouds.org/news/2011/12/08/
kinectfusion-open-source/>.

[27] Kintinuous - GitHub [online]. [cit. 2017-01-03]. Available from URL: <https:
//github.com/mp3guy/Kintinuous>.

[28] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool SURF: Speeded Up Robust
Features. Available from URL: <SURF:SpeededUpRobustFeatures>.

[29] Elastic Fusion - GitHub [online]. [cit. 2017-01-03]. Available from URL:
<https://github.com/mp3guy/ElasticFusion>.

[30] Ramsey Faragher Understanding the Basis of the Kalman Filter Via
a Simple and Intuitive Derivation . Available from URL: <https:
//www.cl.cam.ac.uk/~rmf25/papers/Understanding%20the%20Basis%
20of%20the%20Kalman%20Filter.pdf>

[31] Greg Welch, Gary Bishop An Introduction to the Kalman Filter . Depart-
ment of Computer Science University of North Carolina at Chapel Hill.
Available from URL: <http://www.cs.unc.edu/~welch/media/pdf/kalman_
intro.pdf>.

[32] Šolc František, Tomáš Neužil, Jakub Hrabec, Jaroslav Šemberar Kine-
matický model kolového, smykem řízeného robota. Available from URL:
<http://www.atpjournal.sk/buxus/docs/casopisy/atp_plus/plus_
2008_1/plus01_05.pdf>.

74

https://github.com/OpenKinect/libfreenect2
https://github.com/OpenKinect/libfreenect2
https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html
https://www.mathworks.com/help/vision/ug/single-camera-calibrator-app.html
http://play.pointclouds.org/news/2011/12/08/kinectfusion-open-source/
http://play.pointclouds.org/news/2011/12/08/kinectfusion-open-source/
https://github.com/mp3guy/Kintinuous
https://github.com/mp3guy/Kintinuous
SURF: Speeded Up Robust Features
https://github.com/mp3guy/ElasticFusion
https://www.cl.cam.ac.uk/~rmf25/papers/Understanding%20the%20Basis%20of%20the%20Kalman%20Filter.pdf
https://www.cl.cam.ac.uk/~rmf25/papers/Understanding%20the%20Basis%20of%20the%20Kalman%20Filter.pdf
https://www.cl.cam.ac.uk/~rmf25/papers/Understanding%20the%20Basis%20of%20the%20Kalman%20Filter.pdf
http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
http://www.atpjournal.sk/buxus/docs/casopisy/atp_plus/plus_2008_1/plus01_05.pdf
http://www.atpjournal.sk/buxus/docs/casopisy/atp_plus/plus_2008_1/plus01_05.pdf

LIST OF SYMBOLS, PHYSICAL CONSTANTS
AND ABBREVIATIONS
2D Two Dimensional Space
3D Three Dimensional Space
API Application Interface
deg degree
EKF Extended Kalman Filter
fps frames per second
FoV Filed of View
GPS Global Positioning System
ICP Iterative Closest Point
LIDAR Light Imaging, Detection And Ranging
ORB oFAST + rBRIEF
PCL Point Cloud Library
px Picture Element (pixel)
RGB Red, Green, Blue
RGB-D Red, Green, Blue, Depth
SDF Signed Distance Function
SDK Software Development Kit
SIFT Scale Invariant Feature Transform
SLAM Simultaneous Localisation And Mapping
SURF Speeded Up Robust Features
ToF Time of Flight
TSDF Truncated Signed Distance Function
vx Volume Element (voxel)

75

LIST OF APPENDICES

A STM32F4 Extension Shield 77

B 3D-printed Instalation Parts 80

C Enclosed media device content 81

76

A STM32F4 EXTENSION SHIELD

Fig. A.1: STM32F4 Extension Shield - Schematic

77

Fig. A.2: STM32F4 Extension Shield - PCB

78

Fig. A.3: STM32F4 pin assignment

79

B 3D-PRINTED INSTALATION PARTS

Fig. B.1: Kinect v2 holder visualization

Fig. B.2: Measurement vehicle electronics visualization

80

C ENCLOSED MEDIA DEVICE CONTENT
Entire content of this thesis that is stored on enclosed media device.

/..root
apendix .. all support files of thesis

batery_pack_model3D visualisation of differential chassis
Encoder...............................STM32F4 source codes, Kein v5 IDE
imagesimages used in thesis appendix
kalman_filterexperimental implementation of Kalman filter
kinect_v2_holder3D visualisation of differential chassis
matlab_scriptsdifferential chassis motion model and visualization tools
PCB_odometry_vehicleSTM32F4 extention shield design

latex...latex source codes
images ..images used in thesis text
loga ..support images
pdf ..support pdfs
text .. thesis chapters

papers...all papers studied during thesis
scans..........................3D models and and telemetry of SLAM runtime

81

	Introducion
	Previous work
	SLAM Methods
	Simultanious Localization and Mapping (SLAM)
	Graph Based SLAM (Pose Graph)
	Dense SLAM
	Bundle Adjustment

	Space Representation
	Point Cloud
	Octree

	Other SLAM Terms and Techniques
	Keyframe
	Iterative Closest Point (ICP)
	Loop Close
	RANSAC
	Signed Distance Function (SDF)

	RGBD Cameras
	Active Triangulation
	Passive Triangulation
	Time of Flight Principle
	Distance-Varying Illumination and Imaging Techniques for Depth Mapping
	Structured Light
	RGBD Cameras Overview
	Kinect v1 (Xbox 360)
	Kinecv v2 (Xbox One)
	Swiss Ranger SR4000
	Asus Xtion Pro Live
	SoftKinetic DS525
	Orbbec Astra Pro
	Orbbec Persee
	ZED Stereo Camera

	RGBD Camera Choice
	Kinect v2 Geometrical Calibration
	Pinhole Camera Model
	Simple Geometrical Projection R3→ R2
	Sensor Distortion
	Calibration Process
	Depth Camera Parameters

	SLAM projects
	Kinect Fusion
	Kintinuous
	Elastic Fusion

	Data Fusion
	Input Data Characteristics
	Kalman Filter
	Extended Kalman Filter
	Wheel Odometry (Dead Reckoning)
	Measurement vehicle
	Data Merge
	Data Fusion Pipeline

	Results and Accuracy
	Software Modifications
	Measurement Set
	Validation Experiments
	Results

	Conclusion
	Bibliography
	List of symbols, physical constants and abbreviations
	List of appendices
	STM32F4 Extension Shield
	3D-printed Instalation Parts
	Enclosed media device content

