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ABSTRACT 
Th is Master 's thesis deals with exist ing visual S L A M and wheel odometry data fusion. 
The result of this data connection is the possibil ity of suppressing measurement error 
of each posit ion est imation method and creating more accurate 3 D model of examined 
environment. A t the beginning this thesis is aiming on theoretical principles that are nec­
essary to deal with 3 D S L A M . N e x t , the features of used open source S L A M project and 
its modif icat ions are described. Then the principles of visual and wheel odometry data 
fusion are explained, followed by specif icat ion of differential chassis used for odometry. 
In conclusion, the thesis summarises the results obtained by data fusion and compares 
them with the original accuracy of visual S L A M . 
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ABSTRAKT 
Tato diplomová práce se zabývá tvorbou fúze pozičních dat z existující realt imové im­
plementace vizuálního S L A M u a kolové odometr ie. Výsledkem spojení dat je potlačení 
nežádoucích chyb u každé ze zmíněných metod měření, díky čemuž je možné vytvoř i t 
přesnější 3D model zkoumaného prostředí. Práce nejprve uvádí teori í potřebnou pro 
zvládnutí problematiky 3 D S L A M u . Dále popisuje vlastnosti použitého open source 
S L A M projektu a jeho jednot l ivé softwarové úpravy. Následně popisuje principy spo­
jení pozičních informací získaných vizuálními a odometr ickými snímači, dále uvádí popis 
diferenciálního podvozku, který byl použit pro tvorbu kolové odometr ie. Na závěr práce 
shrnuje výsledky dosažené datovou fúzí a srovnává je s původní přesností vizuálního 
S L A M u . 
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1 INTRODUCTION 
In these days, there are many ways how to navigate robots in outdoor environment, 

for example satellite systems such as G P S , Galileo, Glonas or their assisted versions 

wi th utilisation of cellular phones network or W i - F i based localization. A l l these 

systems can determinate robot's position wi th accuracy up to few meters. W i t h 

access to commercial version of G P S wi th higher accuracy and special functions 

like application of differential methods, we are able to estimate global position wi th 

centimetre precision. 

For indoor navigation, with no access to satellite's signal, there have been many 

Visua l S L A M (Simultaneous Localization and Mapping) techniques were developed 

already. These implementations a im at creation of the type of artificial intelligence, 

which would be able to see and understand its surroundings wi th usage of inexpensive 

cameras, for example R G B D ones. The output of this algorithm is real-time created 

3D model of robot's environment and its estimated position inside this model. 

This technology has a huge potential for future usage in automation and robotics. 

We can already see first practical implementations in real live. A s example let's men­

tion Google Self Dr iv ing Car Project [1] and Tesla Autopilot [2]. Those technologies 

are strongly based on techniques which are continuously scanning its nearby sur­

roundings, t rying to understand it. 

Current state-of-art technology still have strongly limited range of application. 

Today's implementations are able to map areas on scale up to few hundred square 

meters. The most dramatic problem is that with increasing size of mapped area 

there is directly proportional amount of data that computer must manage. 

The aim of this thesis is the extension of existing solution for pure visual odome-

try by supplying data from more accurate sensors mounted on the mobile robot and 

trying to create mobile unit, which would be able to explore unknown environment 

wi th higher precision than then original solution. 
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2 PREVIOUS WORK 
M y term paper, which preceded this Master's thesis, researched available S L A M 

technologies by examining its selected, existing, open source implementations, wi th 

focus on potential future experimentation and improvements to rescue robotics sys­

tem Cassandra [3] developed by robotics team on Faculty of Electrical Engineering 

in Brno. 

The beginning described the basics of self-localisation and mapping techniques, 

which are used in current state-of-art solutions. The reader was introduced to graph-

based techniques of modelling robot's environment, 3D model storage methods and 

iterative algorithms for resolving current position. A l l those topics were later used 

for understanding, how do complex S L A M solutions work. 

Large part of term paper focused on research of currently available R G B - D cam­

eras, their types, its working principles, wi th special attention to accuracy, which 

is crucial for creating reliable models. A s example lets mention Kinect v l , Swiss 

Ranger SR4000 and Z E D Stereo Camera. A l l of them work by different princi­

ples. Every device has list of build-in technologies and all those technologies were 

analysed. 

Previous research than explored existing R G B - D S L A M implementations, and 

their underlying concepts. A t the beginning five open source projects (Kinect Fusion 

[4], Kintinuous [5], Elastic Fusion [6], Dense Visua l S L A M [7] and R G B D S L A M [8]) 

and their papers were studied for deeper understanding how they work and how 

accurate they can be. Based on this research two of these algorithms (Kintinuous 

and Elastic Fusion) have been chosen for next stage where their source codes have 

been reviewed and Elastic Fusion was selected as target for the future research and 

extension by this thesis. 

A t the end of previous work, I proposed few ways of how I would be able to 

improve Elastic Fusion algorithm while running it on P C , which would be mounted 

on wheeled robot Orpheus [9] wi th available odometry and inertial unit. Basic 

idea was to fuse Elastic Fusion's visual odometry, Orpheus's wheel odometry and 

inertial unit. A l l those methods have different source of noise and uncertainty. This 

fact could be used to crate filters which would be able to refine visual odometry 

position estimation and this way improve accuracy of the whole 3D environment 

model creation process. 
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3 SLAM METHODS 
In this chapter, there is described basic theoretical background of these days the most 

frequently used algorithms and mathematical tools which are applied for solving 

S L A M problems. 

3.1 Simultanious Localization and Mapping (SLAM) 

When we are talking about S L A M problem, there are two parallel problems we have 

to solve. First of them is to create 3D model of surrounding environment around our 

agent (robot) and the second is to localize our agent in this model. There we can 

notice contradictory of these two requests. We are not able to create oriented graph 

model of environment without knowledge about current position and localization 

can't be done without previously mentions map. 

m 

Fig . 3.1: Schematic representation of S L A M task 

Let 's assume that at the beginning robot is placed to unknown environment at 

position xq. After that robot wi l l act wi th control input uO on itself and conse­

quently its position wi l l change to new state xl. Then robot perform measurements 

zl of its surrounding which gives its new advanced information about current po­

sition state. The entire solution of S L A M problem is to iteratively search for the 
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most probabilistic solution, which would report the least differential error between 

measured and expected surrounding. 

Today we can find two most frequently used approaches to map model construc­

tion. First of them is so-called "Landmark mapping". We can imagine it as a map 

defined wi th few very high contrast marks, which are placed in mapped environ­

ment, for example Q R codes sticked on walls and corners. When robot notices one 

or more of these landmarks, it can calculate distance to each one and determinate 

its current position inside current model. 

The second method is so-called "Dense S L A M " . This k ind of map is formed by 

large number of points, when each one of them has its own 3D coordinates position. 

This way of space representation is called Point Cloud. Typically, this data format 

come out for example from L I D A R sensors. In this model representation technique 

robot performs its localization by correlating model m and current measurement zn. 

The position wi th the least disparity is most probably current in-map position. 

Idea of Graph Based S L A M is based on graph construction, in which there are 

custom robot positions xn during the time t represented as graph nodes, just as 

landmarks do. The connections (graph edges) between these nodes are representing 

their mutual relations [10]. 

Let 's place robot at the starting position and let's call this position the zero coor­

dinates. A t the same time this position wi l l become our first graph node. Then the 

robot wi l l perform movement to a new position and if this new state meets strictly 

defined conditions like minimal distance from nearest node or large uncertainty of 

current position, then this state is added to graph as a new node. 

This way constructed structure is very inaccurate. It is caused by control input 

uncertainty and cumulative error of position estimation based on numerical models 

which robot has implemented in his algorithms. But this error can be suppressed 

or at least minimized v ia tracking robot's environment and continuously correcting 

its position. This is done by introducing a new information to previously mentioned 

graph by adding nodes which represent high important marks from surrounding. A s 

mentioned before, these marks could be for example high contrast elements. When 

robot explores some new environment, it can combine information from known con­

trol input and surrounding observations and is able to create solid network based on 

p(x1:N,m\z1:N,u1:N,x0) 

3.1.1 Graph Based S L A M (Pose Graph) 
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b o d 
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d o o 

Fig . 3.2: Graph S L A M schematic. Robot 's position, landmarks and relations 

between them creates solid environment representation graph 

nodes and their mutual relations. Then, when robot takes some new measurements, 

it can quite easily determinate most probabilistic current position state. 

Equation expresses, that measurement output zt is the function of current posi­

t ion xt and current model mt. 

Next equation expresses, that agent's position x is given by measurement z and 

control input u 

So let's define vector x = [x0, x i , n n ] , which represents set of all reference 

robot's positions (nodes) in estimated graph. Next let's have % and Omega^, which 

are mean value and information matrix of measurements between two positions % and 

j. Further Xj) is a prediction of relations between two nodes. Then likelihood 

of measurement be estimated as 

p(zt\xt,mt) (3.2) 

(3.3) 

(3.4) 

In this equation we bring following substitution 

(3.5) 
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and reduce equation into 

(3.6) 

Now we can estimate most likelihood robot's position in graph as configuration 

of graph nodes and edges wi th minimised sum of all errors between individual nodes. 

It is the most frequently used S L A M technique in these days, when the environment 

model is represented as Point Cloud, therefore set of space placed points which 

approximates explored space. Commonly agent localized itself in this map by corre­

lating its current observation and map, both in point cloud, and iteratively searching 

for most probabilistic translation and rotation containing solution. If position is esti­

mated, current map can be expanded wi th new information about previously unseen 

places. 

3.1.3 Bundle Adjustment 

Bundle adjustment is method for purposes of 3D objects reconstruction from mul­

tiple images, which was taken from different places. The most frequently it is used 

for static object 3D model creation. 

z . 
IJ 

F ig . 3.3: Error of measured and estimated position 

3.1.2 Dense S L A M 
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Fig . 3.4: Graphic representation of real 3D point reflection to image plane error 

Let 's imagine situation, when we have multiple images of some object, but the 

camera calibration parameters (intrinsic matrix) and its position and orientation 

(extrinsic matrix) are both unknown. This method is estimating this previously 

mentioned internal and external image capture parameters and in the next step 

attempts to perform 3D position calculation of all possible captured positions wi th 

minimisation of declared loss function. 

n m 
£ V r ( v , a , b , x ) = ^ ^ vijd(Q(aj, x^f (3.7) 

i=ij=i 

min (Err(y, a, b, x)) (3-8) 
a,b 

where Q(a,j,bi) expresses position of z-th point reflection to j - t h plane therefore 

expected z-th pixel position on j-th image, a,j represents camera calibration matrix 

and bi is point spatial position in reconstructed model. Function d(Q,x) calculates 

Euclidean distance between estimated Q and ground true position x^-. Vij express 

Boolean value, whether i - th point is present on j - t h image. 

Instead of real-time S L A M algorithms implementations, bundle adjustment is 

post-processing method. This means that it is performed after all input data has 

been collected. Nevertheless, some S L A M implementations use bundle adjustment 

for in runtime accuracy improvement. 

Generally, bundle adjustment has higher computational cost, but gives better 

results. 

Example of bundle adjustment on R G B - D data is described in [11] 
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3.2 Space Representation 
This chapter describes few ways of how to represent and keep saved collected data 

about environment, that robot has just explored. 

3.2.1 Point Cloud 

Generally, Point Cloud (PC) is a term that in field of IT and computer graphics 

expresses a very large set of points which are placed to some coordinate system. 

When talking about S L A M , Point C loud is used to represent created 3D (X, Y and 

Z axis) approximation based on non-volume points, that represents environment 

that agent just discovered. 

This way of space representation is very typical for example for L I D A R output. 

It performs its measurement in way that distance of nearest obstacle is measured in 

predefined grid. The output is the set of N spatial placed points that approximate 

surrounding. 

F ig . 3.5: Example of Point Cloud corridor representation 

In our case Point Cloud is created by reflecting depth pixels from R G B D camera. 

The set of these points represents currently present obstacles in robot's proximity. 

To deal wi th this data format there is available open source library called Point 

Cloud Library [12], which provides large scale of available operations over this data 

format. 

18 



3.2.2 Octree 

It is hierarchical representation of space occupancy. The space is at the beginning 

represented as three-dimensional cube, which says about itself if it is empty, partly 

or fully occupied. If it is occupied only partly we can divide it into eight sub-cubes 

which are described as the parent one does. This algorithm can recurrently go on to 

very small structures and in this way, create approximation of 3D space occupancy. 

F ig . 3.6: Hierarchical representation of Octree structure [13] 

In practice [14] this data format can be represented as linear array which is 

divided into two bit strips. Every two bits say about occupancy of appropriate 

cube. If these two bits keep the information, that cube is empty, or if information 

says that cube if totally occupied algorithm can declare that this part of space as 

fully defined and can continue to the next cube. But if cube is only partly occupied 

algorithm wi l l divide it to eight sub-cubes and wi l l resolve its states recursively. 

3.3 Other SLAM Terms and Techniques 

3.3.1 Keyframe 

In S L A M terminology keyframe is called the camera video frame which fulfilled the 

criterial conditions and become new node in constructed oriented graph. In this 

way. this frame and its positions are going to be the reference for future position 

estimation. The mentioned criterial condition to call frame a "keyframe" could be 

for example defined distance from nearest other keyframe, or for example each N- th 

frame in scan series can be proclaimed as keyframe or for example when algorithm 
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does not have enough referential points in current surrounding, the new one reference 

in form of current frame can be introduced to graph structure. 

F ig . 3.7: Keyframe is commonly represented as camera ffustrum (blue) on its path 

through unknown space during time t [7] 

3.3.2 Iterative Closest Point (ICP) 

This method [15] is used to find the best fit transformation matrix with six degrees 

of freedom (three for rotation and three for translation) between two Point Clouds. 

First point cloud set (map) is static and the second one (current scan output) is 

iteratively transformed in way to get the lowest possible disparity between this two 

sets. 

In each iteration the algorithm performs searching for the nearest neighbour 

in set B for each point from set A . Then the total cumulative distance between 

this two sets is estimated and based on derivation of this cumulative distance sum, 

transformation for the next iterations is predicated. This cycle is performed unti l 

final condition is met or number of iterations reach defined value. 

The main disadvantage of this algorithm is, that it can get stuck in local mini­

mum of loss function. Because of this, it is not suitable for global model positioning 

estimation, rather it is used for local position estimation correction. 
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3.3.3 Loop Close 

During S L A graph construction, there is continuous accumulation of position esti­

mation error caused by inaccuracy visual odometry techniques. This results into 

effect that when robot crosses position which was already visited by it in the past, 

these two identical positions in real space are in oriented graph represented as two 

different nodes. Then position estimation according to this inconsistent graph is not 

precise because one real space position is represented in graph twice. 

But if we define criterion that two graph nodes are identical and can be merged 

if some similarity condition is met, position graph can be deformed and previously 

mentioned disparity can be removed This way graph consistency could be improved, 

cumulative position estimation error can be removed and robot can explore unknown 

area on larger range. 

Of course, during graph deformation, we merge two graph nodes into one (the 

newer one to older one, because we can expect that older one has smaller cumulative 

position estimation error) but also relations between all other connected nodes must 

be adjusted. This process is called "Graph Relaxation" or "Graph Optimization" 

There are many approaches to graph relaxation. Let 's mention for example 

methods [16], [17] where nodes are connected between each other and their current 

positions are represented by Gaussian distribution probability. If one node position 

is changed, its shift is distributed via entire graph by modifying neighbor's position 

probability function. 

F ig . 3.8: Example of Loop Close and Graph Relaxation [17] 
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3.3.4 R A N S A C 

R A N S A C [18] is iterative method for unknown model estimation over some data 

set, which contains large number of so-called "outliers". These are elements which 

do not fit to expected model. O n the other site elements which suite well are called 

"inlayers". 

Input into this method is set of M points, which had some mathematically 

defined relation. 

A t the beginning algorithm choose N elements, where N is minimal number of 

input data to resolve all model's degrees of freedom. The model is estimated. 

In next step model is tested on entire set on input data. Each input data element 

is examinate if it fits model or not (is inlayer or outliers) wi th threshold \x. If 

percentage of inlayers is larger, then K where 0 < K < 1, model can be called 

credible and can be accepted. If model do not fit for enough number of elements, 

new iteration wi l l be performed. 

F ig . 3.9: This image shows model finding between large outlier noise in input data. 

The output model (blue) is inert for outliers (red) [19] 

Disadvantage of this method is that it does not guarantee model estimation wi th 

one hundred percentage certainty. There is always probability that model has been 

estimated for at least one outliers and so it is not trustworthy. 

During algorithm initialization, we can setup value L, which says how many 

times R A N S A C wi l l iterate previously described process so the probability of right 

model finding can be at least 0.99. 

l-p=(l-um)1 (3.9) 
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Fig . 3.10: Example of inliers (green) and outliers (red) during parity finding in 

between two images of same scene by R U N S U C method [20] 

after formula modification 

L 
log{l -p) 

(3.10) 
log{l - (1 - v)m) 

where L is number of iterations, p is probability of right model finding, u is 

probability that randomly picked element from dataset is inlayer, v is probability 

that randomly selected element is outlier. 

In computer graphics field, it is common that more complex objects are represented 

as a set of many space oriented triangles. But this technique does not fit very well 

for example for spherical objects approximation. In first case, we need to create 

large number of polygons, which increate rendering cost and in second case even 

this large number of triangles do not fit true shape very well. 

In this case, we can represent these objects for example wi th three-dimensional 

function, which wi l l return negative values for point inside it, zero values for points 

on the surface of object and positive values for entire space beyond object surface. 

Let 's imagine function for sphere 

u—l — v 

3.3.5 Signed Distance Function (SDF) 

(3.12) 
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where p is examined spatial point, c is sphere center, r is sphere radius and d is 

Eucl idian distance between points p and c. Next 

d 
N 

\ i=i 
(3.13) 

where s is number of dimensions for which function is defined. 

More complex shapes can be represented by merging multiple simple shapes 

together. For example intersection of two shapes can be expressed by max function 

max(fbaU1(p, c i , n), fbamip, c 2 , r 2 ) ) 

and union of two shapes can be expressed by min function. 

min(fballl(jp, c i , n), fbamip, c 2 , r 2 ) ) 

\ I > 

(3.14) 

(3.15) 

F ig . 3.11: Result of two spheres merging. Left-side minimum (union), right-side 

maximum (intersection) 

If we apply this technique for in S L A M problem solution, we can achieve lower 

memory requirements for model storage, because thousands of points in point cloud 

can be expressed by few equations, but most interesting is noise reduction, because 

we can generalise rugged areas v ia approximating it by some soft shape. 
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4 RGBD CAMERAS 
This thesis is very strongly focusing on one of the most frequently used solution 

for visual S L A M s which is R G B D camera usage. These devices are scanning their 

surrounding in two domains. First one sensor is common C C D / C M O S which scan­

ning surrounding environment in color space (typically R G B ) . The second one is 

measuring distance from device to near obstacles. The output signal is 2D matrix 

wi th values of distances in defined field of view. 

The best-known representative in this field is well known Kinect device developed 

by Microsoft and PrimeSense. 

This device has been primarily focusing on game industry, but because of its low 

price and relatively good quality of data output has been quickly adapted in other 

lines like research and industry. In these days, Kinect wi th its skeleton detection 

algorithms is often used for medical purposes during patient's therapies. 

Microsoft corporation parallel wi th Kinect v l has also released software develop­

ment toolbox (SDK) wi th many build in functions which set foundations for future 

very fast expansion of many other interesting implementations and problem solu­

tions wi th this new device. Let's mention for example the Kinect Fusion, which was 

the first implementation of S L A M algorithm on this platform. Furthermore, we can 

mention PrimeSense's OpenNI project, which was open source toolbox for R G B D 

devices data processing. Next one for example N i T E project which was focusing on 

hand gestures and human skeleton movement processing. 

Further the basic principles of distance measurements are described later in this 

chapter. Then reader is introduced to brief summaries of these days available R G B D 

devices and at the end of the chapter there is described the mathematical theory 

about camera physics and algorithms user for image correction purposes. 

4.1 Active Triangulation 

This is the simplest way of visual distance measurement. The principle is based on 

active i l lumination of measured object at a given angle by for example point laser. 

This resulting reflection is then captured by the C C D chip. Distance of mea­

surement object is then expressed by function of the position of reflected point on 

the sensor chip. 

For thus formed structure, if we know the parameters describing the position 

of the laser source and receiver sensor, the triangulation triangle is established, 

then within the basic knowledge of the geometry laws, we are able to calculate the 
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Fig . 4.1: Geometry of active triangulation 

distance between the gauge's plane and measured object. 

l=s1zeccn*n ^ 

where / is measured object distance from gauges plane, sizeccD is size of C C D 

sensor row, n is row index of illuminated pixel and TV is total number of pixels in 

one sensor's row. 

4.2 Passive Triangulation 
During three-dimensional scene to C C D chip plane projection the depth information 

is lost. But this information can be restored by scanning scene multiple times from 

several different positions. If we know the relationships between these positions in 

which the pictures had been taken, for each point which was captured multiple times 

we can use epipolar geometry to calculate the spatial coordinates. 

We can distinguish three scenarios: 

• More static cameras wi th known position and orientation 

• More static cameras wi th auto calibration 

• One dynamic camera wi th auto calibration 

In case of S L A M problem solutions, the most frequently used solution in the one 

wi th two cameras mounted on solid bar in way, that both camera's optical axis are 

parallel. 
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c,=(0,0,0) c r 
Fig . 4.2: Geometry of passive triangulation 

In this configuration, each camera is watching the object from different angle. 

The angle between two beams of the point projection in the plane of the chip is called 

the parallax angle. To maintain the accuracy of measurement of the angular parallax 

should not drop below a certain l imit . In practice, it is stated that stereovision can 

be used within thirty times the distance between the optical centers of both cameras. 

The calculation of spatial coordinates of the point projected on both sensors is 

expressed as 

where p is parallax angle and x' and x" are indexes of pixels which captured 

measured point. 

The calculation of x, y and z coordinates are performed according to following 

equations 

p = x' — x1 (4.2) 

(4.3) 

Y = y'b-
P 

(4.4) 

(4.5) 
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where b is the triangulation triangle base, which mean distance between cameras 

optical centers, / if focal length of the optical systems and p is previously calculated 

parallax 

These simple relations are valid only under the condition that optical axes of 

both sensors are parallel, while the cameras are spatially oriented identically. If this 

condition is not meet, it is necessary to perform correction calculations and perform 

image rectification. This problem is further discussed in chapter focused on camera 

calibration. 

The searching for corresponding points can be simplified by epipolar line esti­

mation. It says, that point projected on one sensor may be reflected on the other 

sensor anywhere within the defined line. 

Time of Flight method (ToF) is generally based on the principle of measuring time 

during which particle or acoustic or electromagnetic wave travels an unknown dis­

tance between the transmitter and receiver. Based on knowledge of particle or wave 

velocity we are able to calculate unknown distance. 

In practice, we meet wi th several types of T o F instruments, working on different 

physical principles. Let 's mention for example ultrasonic sensors, which generates 

sequence of pulses by piezoelectric crystal, wi th frequency approximately 40 kHz . 

A n d it measures time it takes the wave to travel from ransmitter, reflect on the 

e p i p o l a r l i n e 

c 
r 

F ig . 4.3: Epipolar geometry between two planes 

4.3 Time of Flight Principle 
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obstacle and return to the receiver module, which works on the same principle as 

transmitter do but in reverse direction. W i t h knowledge of measured time, we can 

estimate distance wi th equation. 

2s = vmech * At (4.6) 

where s is distance between module and obstacle, vmech is the propagation speed 

of mechanical waves in the environment and A is the time between signal transmis­

sion and return. 

Another variation of T o F are the optical sensors. They are divided into two 

fundamental groups. 

The first one is a simple pulse transmitter. A s ultrasound transmits signal against 

obstacle, short laser pulses wi th wavelength of 850nm, that are invisible for human 

eye, are sent against environment and time to echo is measured. In fact, to simplify 

measurement there is measured phase shifting between transmitted and received 

pulses. Considering that in this case we work wi th the electromagnetic waves, which 

propagates through atmosphere with speed close to speed of light in vacuum, this 

technique is extremely demanding on very precise time measurements and very fast 

semiconductor devices that generate and receive the laser beams. 

F ig . 4.4: Distance measurement with pulse 

Each pixel of depth camera based on this principle contains two timers. The 

scene is at the beginning of measurement illuminated by short pulse and when the 

reflection returns, the first timer is activated (SI). When the transmitted pulse is 

terminated, the first timer is also stopped and the second one is activated unti l the 
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Fig . 4.5: Distance calculation from pulse phase shift 

end of reflection. W i t h usage of these two measured time intervals we can estimate 

distance as follows 

1 a ( S2 -c*At[ 
2 \S1+ S2 

(4.7) 

where d is measured distance, c is speed of light in environment, A t is light 

emission interval and SI and S2 are two time intervals measured wi th pixel's timers. 

The second possible method is to perform measurements wi th usage of modulated 

continuous infrared signal. 

T r a n s m i t e r 

Atp 

R e c e i v e r 

Fig . 4.6: Continuous signal distance measurement 

The sensor continuously illuminates scene wi th sinusoid intensity signal wi th 

period about 10MHz. Each pixel in the sensor performs periodical sampling of 
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reflected signal and using cross-correlation, it is able to estimate time delay by 

using information about phase shift and speed of signal in environment. 

d = s ^ <4-8> 

where d id measured distance, c is speed of light, u is modulation frequency and 

0 is phase shift. 

Specifically, the calculation process of phase shift wi th mathematical expression 

takes place as follows. 

The sensor generates a signal 

g{t) = cos(ut) (4.9) 

after the reflection signal returns 

s(t) = b + a * cos(cot + 4>) (4.10) 

where b is background illumination, a is reduced amplitude of returned signal 

and 0 is phase shift between transmitted and received signal. 

Following the cross correlation 

/

oo 
s(t) * g(t + r)dt (4.11) 

-oo 

where r is correlation offset 

We are able to reduce this correlation expression to four sampled elements % — 4. 

c(r) = fraca2cos(coT + <f>) + b (4.12) 

Ai = c{i*^), i = 0 , . . . , 3 (4.13) 

where final phase shift could be estimated as 

0 = arctan2(A3 - A 1 , A 0 - A2) (4.14) 

and amplitude of incoming signal is 

a = y(A3 - A^ + (Aq - A2f (4.15) 

Whether the second method seems to be more complex, but it has a significant 

advantage, as we can assume from equations above, the modulated signal can be 

separated form background offset. 

The attentive reader would notice that this method is l imited by modulated 

signal wavelength. If A t is longer than one wave period, the measured distance 
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wil l overflow back to zero. This effect can be removed by using second modulation 

frequency parallel wi th first one. 

Others possible location T m e | o c a t i o n 

wavelength 

Fig . 4.7: Principle of measurement distance with two modulated frequences 

4.4 Distance-Varying Illumination and Imaging Tech­
niques for Depth Mapping 

This method is described in PrimeSense's patent [21] and it is one of the possible 

solutions for Kinect depth cameras. The principle of method is in i l luminating scene 

wi th grid of points, whereby each beam of light pass through two perpendiculars 

to each other cylindrical lenses with different optical power. This way manipulated 

pattern is changing its shape as function of distance. 

4.5 Structured Light 

Structured light is most often referring to a grid with periodically repeating lines or 

grids. 

If we can accurately define projected pattern, then its deformation is directly 

proportioned to its to distance of projection plane. This can be simplified to simple 

point grid. Then we can notice the similarity to active triangulation method. 
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Fig . 4.9: Double focused light projected on two planes at different distance 

W i t h known triangulation base length, the distance between projector and cam­

era and, the distance of measured point is function of projected point shift. 

4.6 RGBD Cameras Overview 

This chapter provides a brief overview over currently available depth cameras and 

summaries their operating principles and parameters. A t the end of the chapter one 

device is chosen for future S L A M extension. 
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Fig . 4.10: Scene illuminated by Kinect in IR spectrum 

4.6.1 Kinect v l (Xbox 360) 

The first version of Kinect device is a pioneer in the field of R G B D cameras. M i ­

crosoft and PrimeSense had developed it in 2010 as an accessory to the X b o x 360 

game console, wi th price 150 U S D , which was never seen before for this k ind of 

device. 

Principle of Kinect v l is not officially known. But from the observations we 

are able to deduce that it is based on the principle of light focused through two 

cylindrical lenses as was described in PrimeSense's patent or on principle of active 

triangulation with grid of points projection. 

Because of complexity of the first solution, the professional public rather incline 

to the second solution. The disadvantage of the first version of Kinect are shadows 

that are due to the large base of triangulation between the source of the pattern 

projection and infrared camera. 

Price: 150 U S D 

Color resolution: 640x480px 30fps 

Depth resolution: 320x240px 30fps 

FoV: 43 x 57 deg 

Principle: IR 

Range: 0.4 - 4.5m 

4.6.2 Kinecv v2 (Xbox One) 

The second version of Kinect device changes measurement technique. According 

to observations, its measurement method uses modulated ToF. Accuracy of depth 

measurement is very similar to first version. However, the new Kinect device brings 

better depth image resolution and better geometrical precision of scanned scene 

(better contrast and less called flying pixels between two different distanced planes. 
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Price: 100 U S D 

Color resolution: 1920xl080px 30fps 

Depth resolution: 512x424px 30fps 

FoV: 70 x 60 deg 

Principle: ToF 

Range: 0.5 - 4.5m 

4.6.3 Swiss Ranger SR4000 

It is an industrial ToF camera created by Heptagon company. The device operates 

on an 850nm wavelength. However, it has relatively small resolution, only Q C I F 

(176xl44px) and works only in depth domain. Color output is not available. A t the 

same time, according to [22] sensor has much less accurate than Kinect v l output. 

Price: 10 000 U S D 

Color resolution: N / A 

Depth resolution: 176xl44px 30fps 

FoV: 43.6x 34.6 deg 

Principle: ToF 

Range: 0.5 - 5/10m 

4.6.4 Asus X t i o n Pro Live 

It is a derivation of previous PrimeSense's Carmine 1.09, which was designed prac­

tically in the same way as Kinect v l did. Also, the parameters of this device are 

very close to Kinect v l . It works on the principle of active triangulation and as pre­

viously mentioned. It projects grid pattern of the obstacles and measure distance as 

function of grid deformation. Color resolution is available in 1280x1024 resolution 

and 640x480px of depth images. 

Price: 200 U S D 

Color resolution: 1280xl024px 30fps 

Depth resolution: 640x480px 30fps 

FoV: 58x 36 deg 

Principle: IR 

Range: 0.8 - 3.5m 

4.6.5 SoftKinetic DS525 

Device operating on a similar principle as Kinect v2 does. It is designed for shorter 

distances. The manufacturer declares that the optimum use case for default settings 

is from 0.15 up to l m . 
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Price: 130 U S D 

Color resolution: 1280x720px 30fps 

Depth resolution: 320x240 30fps 

FoV: 63x43 deg 

Principle: IR 

Range: 0.15 - l m (short range) 

0.7 - 4m (long range) 

4.6.6 Orbbec Ast ra Pro 

Model designed for sensing the depth map over longer distances (up to 8 meters). 

The operation principle is based on the same technology as the Kinect v l . Active 

triangulation over projected infrared point grid is used. 

Price: 150 U S D 

Color resolution: 1280x720px 30fps 

Depth resolution: 640x480 30fps 

FoV: 60x49.5 deg 

Principle: IR 

Range: 0.4 - 8m 

4.6.7 Orbbec Persee 

This device has the same color and depth cameras configuration as Orbbec A S T R A 

does. But very important technological shift is hidden in embedded computer inside 

of this device. It is equipped wi th processor, graphic chip, 2 G B of R A M memory and 

Ubuntu OS support. Furthermore, the device also provides peripherals as Ethernet, 

W i F i , U S B 2.0, H D M I and SD card slot. It is perfect option for embedded system 

projects wi th computer vision. However, this device still was not available during 

this thesis creation. 

Price: 240 U S D 

Color resolution: 1280x720px 30fps 

Depth resolution: 640x480px 30fps 

FoV: 60x49.5 deg 

Principle: IR 

Range: 0.4 - 8m 

4.6.8 Z E D Stereo Camera 

This device is based on principle of passive triangulation. Using two cameras, each 

wi th 2k2 resolution, it locates key points in the images and based on positional 

differences of these points it estimates the distance, as passive triangulation does. 

36 



Price: 450 U S D 

Color resolution: 2208xl242px 15fps 

1920xl080px 30fps 

1280x720px 60fps 

672x376px lOOfps 

Depth resolution: 640x480px 30fps 

FoV: 60x49.5 deg 

Principle: IR 

Range: 0.4 - 8m 

4.7 RGBD Camera Choice 
Based on the mentioned facts above, I have chosen as the best suitable device for 

future work the Kinect v2. In these days, it has very wide support on the Linux OS 

platform and drivers [23] compilation and installation is quite fast and easy. Also, 

precision and depth range of device is good compared to the other devices and the 

shadow areas between color and depth cameras are much smaller, than for Kinect 

v l device. 

4.8 Kinect v2 Geometrical Calibration 
Geometrical camera calibration, generally is a process of establishing the relationship 

how does the three-dimensional point is projected onto the sensor plane, in other 

words how the sensing point can be displayed on the C C D chip. Expression of these 

parameters priors to any visual measurement, because it allows to determinate and 

correct the errors, which would otherwise have been entered the measurement. 

To determinate this relation between scanned space and sensor plane we can 

divide problem into three separate domains. The first problem concerns the mea­

surement bias of optical system of the sensors, we are talking about intrinsic param­

eters. The second problem is to determine the translation and rotation of the sensor 

in global coordinates. These parameters are called extrinsic. The thi rd problem is 

determining the distortion of sensor plane. 

4.8.1 Pinhole Camera Model 

Pinhole Camera (lat. Camera Obscura) is the simplest model of an optical camera. 

The device is designed as a closed chamber which one hole on site wi th negligible 

diameter. Incoming rays pass through the hole and projected to the wall on the 

37 



other side of the chamber. In this case the length of the chamber equal to the focal 

distance / of the whole system. 

plane 

real world object 

Fig . 4.11: Schematic of Camera Obscura 

4.8.2 Simple Geometrical Projection it*3—>• R2 

Each point projected on the image can be connected wi th the optical center C of 

sensor. The optical center is an imaginary point in space at which all the scanned 

beams that have passed through the plane of the scanned image converge. A t the 

point where the previously mentioned beam intersects the plane of the sensor the 

originally three-dimensional point is projected and creates two dimensional image. 

F ig . 4.12: Geometry of light ray projection on sensor plane 
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W i t h knowledge of triangle similarity rule, the 3D spatial point (x, y, z)T w i l l be 

projected to sensor as a point wi th coordinates (—, —, f)T. Now this homogeneous 

transformation between the two coordinate systems can be expressed by a matrix 

equation. 

fx 7 0 0 0" 

fy = 0 1 0 0 

z 0 0 1 0_ 

which can be generalized as follows 

X 
X 

Y 
w y = p y Z 

_i_ 
1 

(4.17) 

where X,Y,Z are coordinates of 3D point in global coordinate system, P is 

camera matrix, x,y are coordinates on projection plane andu> is scale. 

Now we can expand problematic from model of Camera Obscura to real camera 

model. 

P = K[R\t] (4.18) 

P is camera matrix, which is product of intrinsic camera parameters (intrinsic 

matrix) K and external camera parameters of rotation R and translation t. 

If we look closer at the intrinsic matrix K , called calibration sensor matrix, we 

can find following intrinsic parameters 

K = 
f/sx k 

0 f/sy 

0 0 

Oy 

1 

(4.19) 

which express focal length / , coordinates of image center ox, oy and pixel's 

dimensions sx, sy expressed in millimeters. Parameter k express the angle between 

x and y axis of projection plane. It is non-zero, when axes are non-perpendicular to 

each other. 

tan(a) (4.20) 

where a is complement to the | of angle between x and y axis. 
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After the sensor matrix P is established, we are able to calculate optical center 

C of sensor wi th equation 

C = - (4.21) 

where P 3 ~ 3 represents matrix constructed of first three rows and columns of 

matrix P and P(:,4) is the forth column of matrix P. 

According to projection geometry the relation between C and P is expressed by 

following equation 

4.8.3 Sensor Distortion 

In this case, we distinguish two kinds of distortions. The first one is called radial. It 

is caused by beam bend during the pass through the lens or set of lenses in sensor's 

optical system. The smaller the lens is the larger is the distortion. The radial 

distortion caused that image grid is deformed from the center distortion radially to 

the edges and conversely. 

F ig . 4.13: Example of radial distortion a) negative radial distortion (Barrel), b) 

non-distorted grid, c) positive radial distortion (Pincushion) 

The distortion is expressed as follows 

where x',y' are pixel's coordinates of distorted image, ki, k2 a k3 are radial 

distortion coefficients and r is Euclidean distance of original pixel from the center 

of distortion. 

P = 
C 

(4.22) = 0 
1 

x' = x(l + k\ * r2 + k2 * r 4 + /c3 * r 6 ) 

y' = y(l + k\ * r2 + k2 * r 4 + /c3 * r 6 ) 
(4.23) 
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The second kind of distortion is called tangential distortion or often also the 

perspective. It is caused by non-parallelly mounted the optical system and sensor 

chip. 

No Tangential Distortion Tangential Distortion 

A sensor A 

lens 

Fig . 4.14: The cause of tangential distortion 

A n d can be mathematically expressed as follows 

x' = x + [2 * p1 * x * y + p2 * ( r 2 + 2 * x2)] 

y' = y + [pi * ( r 2 + 2 * y2) + 2 * p2 * x * y] 
(4.24) 

where x',y' are coordinates of distorted pixels wi th origin coordinates of x,y. pi, 

P2 are tangential distortion coefficients and r is Euclidean distance of original pixel 

from the center of distortion. 

4.8.4 Calibration Process 

The calibration of intrinsic parameters [24] of Kinect v2 was calculated on images of 

large-scale calibration checkerboard pattern of size approximately A 3 . It was taken 

about 20 frames by R G B and the infrared cameras, so that the calibration sample 

is always located in the different position and orientation relatively to the Kinec tu 

while both channels took pictures at the same time. 

To determine the intrinsic parameters and distortion coefficients the M A T L A B 

tool "Single Camera Calibrat ion App" was used [25]. It leads user through the whole 

process and allows h im to configure and optimize the calibration procedure. 

In the first step of calibration images are loaded into M A T L A B environment 

and the calibration pattern is detected. Images where patter was not successfully 

detected are excluded. Following the calculation of the intrinsic parameters and co­

efficients of distortion. Then the software calculates the error of established model 
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against each one individual calibration images and the resulting images compen­

sated. 

If any of the images has significantly larger error compared to the rest of the 

samples, it is recommended to remove this image from calibration set and perform 

new camera model calculation. 

This process is iterated unti l the result is accurate enough. We can then export 

parameters and apply it to correcting output data from the Kinect v2. 

F ina l calibration of Kinect v2 for R G B camera looks as follows. 

f/sx 
k ox "1065.1 0.6527 996.8" 

0 f/*i i °y = 0 1066.9 536.1 

0 0 1 0 0 1 

/ = 3.3mm 

Sy — 3.1/xm 

[fa, k2] = [-0.0011,0.115] 

[pi,P2] = [-0.0024,0,0086]] 

A s is apparent from plots above, that tangential distortion is considerably smaller 

than the radial and has almost no effect on the total distortion. Therefore, it can 

be neglected. 

4.8.5 Depth Camera Parameters 

In case to resolve the parameters of depth camera of Kinect v2 few second-long static 

scene recording was taken. Later there was taken out one hundred frames from this 

record, on which there was calculated the average distance at which Kinect v2 has 

measured the average depth of the scene. The result is evident in the figure 4.19. 

Average pixel is always calculated as the mean value of the pixel at position x, y 

assuming that during the timeline t there were no pixel wi th a zero value, which 

means measurement fail. A l l such that pixels of the time series, that contain zero 
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Fig . 4.15: Radial distortion of R G B cemara 

value has been excluded from the standard deviation calculation. Thus, the black 

represent measurement failure. 

However, more important parameter is a reliability of measured data. For this 
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Fig . 4.17: Total R G B camera distortion 

F ig . 4.18: Example of R G B image before and after distortion correction 

purpose, for each pixel the standard deviation has been calculated. The result is 

shown in the figure 4.20. The standard deviation of the principal field of view is 

oscillating about two, up to five millimeters. It coincides wi th the results of [22] 
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Fig . 4.19: Average value of depth of static scene represented by one hundred frames 

in row. One i l lumination unit represents one millimetre of scene depth 

F ig . 4.20: Standard deviation of depth scene measurement in millimetrers, over one 

hundred frames 
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5 SLAM PROJECTS 
This chapter introduces brief overview over existing projects in field of R G B D camera 

S L A M algorithms. A t the very beginning the Kinect Fusion [4] is mentioned as a 

very first implementation of this problem wi th low cost R G B D camera and later the 

Kintinuous [5] and Elastic Fusion [6] projects are described. Bo th of them has been 

created by the same authors and both has been deeply studied for purposes of this 

thesis. 

5.1 Kinect Fusion 
Method described in [4] is the very first S L A M implementation with low cost R G B D 

camera usage. It was firstly introduced in 2011 as an example and developer demon­

stration of possibilities of new Microsoft's device. The source codes are not public, 

so we are not able to exactly determinate the way, how algorithm works, but accord­

ing the released papers and according the open source clone of mentioned algorithm 

under the hat of P C L [26], we are able to get a brief idea how it works inside. 

The Kinect Fusion code functionality is divided into four processes. A l l of them 

are implemented using quite new technology in 2011, the NVid ia ' s C U D A . Because 

of this, the project's performance is scalable with improvement of this day's graphic 

cards. 

In first step the raw depth data from Kinect depth camera are transformed into 

3D space. The idea of this step is to take the depth image, which defines distances of 

all visible obstacles and using the Kinect 's calibration matrix it performs projection 

of al l pixels into 3D space. The result is a single vertex map. Also, the orientation 

of each vertex is calculated by comparing the self-vertex position wi th its nearest 

neighbors. 

In the second step the camera position is estimated. For this purpose, the well-

known I C P algorithm wi th 6 D O F is used. In each iteration of I C P calculate the 

sum of all square distances between currently scanned scene and in-memory mod­

elled environment and try to find the transformation H which minimize mentioned 

distance. 

H 
R t 

0 1 
(5.1) 

In the third step the currently scanned scene is integrated into global environment 

model. For this purposes the SDFs functions are used. The idea is to interpolate 

existing voxels with spatial functions, that take negative values inside the defined 3D 

shape, zero-value for shape border and positive values for space outside the shape. 
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Fig . 5.1: Kinect Fusion's workflow [4] 

This method has two advantages. First , the unexplored areas and noisy surfaces 

are interpolated wi th smooth surface and second, this space representation is well 

applied for graphics rendering techniques. 

In the last step, called "Raycasting for Rendering and Tracking" the G P U calcu­

lates the beam for pixel in view frustum paced in current viewpoint. Every beam 

the G P U calculates if it crosses zero-value in its travel direction and if so, the zero-

cross distance is estimated and relevant pixel in rendered image takes the equivalent 

intensity. This is how the SDFs defined environment is transformed into 2D image. 

5.2 Kintinuous 

Kintinuous project [27] is strongly based on techniques and ideas of previously men­

tioned Kinect Fusion. Also, it mentions three major disadvantages of Kinect Fusion. 

It is not able to scale the size of scanned environment, so the only l imited space vol­

ume can be captured, the position estimation of Kinect Fusion is based only on 

depth camera information and there is no loop closing mechanism in this project. 

Kintinuous is t rying to introduce innovative approach in three mentioned fields 

and expand the idea, how R G B D S A L M could work. 

A s first improvement, the shifting T S D F window is introduced. A s so in Kinect 

Fusion the basic four steps had been performed over the entire volume, in Kintinuous 

these four operations are performed over the window, that is cutted out from global 

model. This window is static for infinite period of time, unti l the R G B D sensor moves 

behind the defined threshold and then new T S D F window in created around current 

position and the old one is released. This allows the algorithm to continuously work 
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Fig . 5.2: Data-flow schematic in Kintinuous. Different colors runs of different 

threads [5] 

wi th l imited amount of data stored in G P U memory and also, algorithm is capable 

to move T S D F window behind the borders of ini t ial location, so the environment 

model can be scaled to any size. 

The second interesting improvement is the introducing the position estimation by 

using the R G B camera information. The process is very similar to I C P algorithm. 

The basic idea is to take two R G B images in time t and time t — 1, calculate 

grayscale image and try to estimate the rotation R and translation T that minimize 

difference between image in time t and homogeneously transformed image in time 

t — 1. The transformation wi th least difference between these two images is accepted 

as a representation of R G B D camera movement in last time period. 

After both, the R G B and the depth positions are estimated, the linear combi­

nation of results of both method is done and the final transformation is propagated 

into next steps of algorithm. 

The Kintinuous has very common in these days architecture. It is divided into 

two main block called frontend and backend. In frontend part, there are performed 

all up to now mentioned algorithms. The backend takes care about next introduced 

innovation, the Loop Closing mechanism. 

A s R G B D camera passes the space. In the backend memory, there is constructed 

graph that represents R G B D past positions and surrounding key-points (the land­

marks). For purpose of key-points searching in R G B image, the S U R F [28] method 

has been used. For every frame the S U R F points are compared against the most 

probable candidates in global model and if correspondence is large enough, the 

R A N S A C transformation estimation is done to validate loop closing. If this step 

pass, the I C P is used to calculate final deformation estimation. Because of the back-

end graph is non-rigid, the deformation of one point is distributed through entire 

graph and the global model is reorganized. . 
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5.3 Elastic Fusion 
„Real- t ime dense visual S L A M system capable of capturing comprehensive dense 

globally consistent surfel-based maps of room scale environments explored using an 

R G B - D camera." [29] 

This project has been created by the same authors as Kintinuous does, but the 

way, how the S L A M problematic is solved is different in many ways. The most 

interesting change is, that Elastic Fusion leaves the concept of Graph Based S L A M , 

which has been the state-of-art approach for nearly two decades. 

F ig . 5.3: Example of "Dense model" created by Elastic Fusion. It is composed of 

4,5mil surfels 

This project has been chosen as base of this thesis, because it introduces a new 

and interesting ways of solving S L A M problems and it is in active development 

process, so the future improvements can be expected. Another purpose is, that this 

program gives very precise output models in internet demonstration videos so good 

quality models could be expected during my work. Last, but not least important 

is fact, that in this project many modern programming techniques are used such as 

C U D A or O p e n G L shader language, so I can learn many new technologies. 

The Elastic Fusion's model is defined by unordered set of surfels, where each 

surfel has defined its position p G R3, normal n G R3, color c G R3, weight w G R 

and radius r G R. Additionally, each surfel has its internal state (active//inactive). 

The surfel is active in the moment of creation and keeps active unti l the R G B D 

sensor is able to see it. If surfel has not been seen for defined period of time it 

comes inactive. Over such a define environment model the following operations are 
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performed during S L A M runtime. Position estimation is done in a very same way 

as Kintinuous project does it. There are separated processes to estimate position 

from R G B and depth domains and then they are linearly combined together. In 

depth domain, the well-known I C P is used and in color domain there is iteratively 

minimized square difference of two in row coming R G B frames. 

Interesting improvement is in the fact that local position estimation is performed 

only against active surfels, these are the ones that had been tracked during short 

period of time. In this way, the local operation window is created, so the frame-to-

model process of local position estimation do not have to handle large amount of 

data. 

F ig . 5.4: [6] (i) ini t ial view, (ii) leaving init ial view, surfels become inactive, (iii) 

returning to inactive surfels, become active again, (iv) camera continues local loops 

closing, (v) exploring new areas, (vi) loop close detection, (vii) loop close detail, 

(viii) global loop closing activates surrounding inactive surfels, (ix) local loop closing 

continuous, (x) entire overview 

In field of global graph deformation, the main innovation comes. There is no 

such a backend position graph that is processed during entire runtime. However, for 

each incoming frame the entire new graph is constructed. It is created out of several 

picked surfels from global model and each of these key-surfels is connected to its four 

neighbors. The key-surfels are picked randomly from whole set of existing ones, but 

the chosen is distributed uniformly through timeline of surfels creation timestamps, 

so the whole model is covered. This graph is used in next step to perform local and 

global loop closing. 

During loop closing at first the global loop closing (mentioned in next paragraph) 

is performed. If no global loop closing has been detected, the local loop closing 

performed. It is done only above the set of currently active surfels and it helps to 

keep currently visible part of model consistent. It is done in way that transformation 

between active surfels and visible surfels is done. If transformation overcome defined 

threshold, model is deformed. 

50 



Global loop close matching is performed as follows. There are randomly selected 

views over entire model and current view is compared to selected ones. To im­

prove performance, the views are down sampled to 80x60. If loop is detected, the 

deformation is done and it distribute through whole non-rigid model. 
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6 DATA FUSION 
In this chapter reader is introduced into problematics of data fusion and the way. 

how this thesis handle data merging and what tools are used for this purpose. 

6.1 Input Data Characteristics 

A t the beginning of this thesis there is a project which takes data from R G B D 

camera and performance complex S L A M algorithms to estimates camera's position 

and expands 3D environment model construction. Visua l odometry is on its own 

not very accurate because of pixel resolution, cameras output picture deformation, 

I C P algorithm uncertainty and so on. 

This thesis is aiming on feeding existing solution with more precise data to make 

results of running real-time S L A M more precise. 

The amount of position information hidden in single image is called information 

gain. 

Every camera's image keeps some information about current position. When 

we are comparing two different images of the same scene the different information 

makes possible to estimate position change. But for example, if first image is taken 

to calculate position, it gives us l imited amount of information gain, but if second 

image is taken in the same position wi th the same orientation, it gives us no new 

usable knowledge, so the information gain of second image is equal to zero. 

There are two ways how to improve S L A M runtime position information gain. 

The first one is to use more precise sensor that gives us better information with higher 

information gain. Also, more sensors can be used and the position measurement can 

be oversampled and the result can come out of averaging all sensors measurements 

together to reduce noise. But this is not the way that has been chosen in this thesis. 

The second possibility is to estimate position by different measurement method, 

that has different characteristic of measurement noise and measurement method 

uncertainty. This gives us two independent streams of position information where 

each one has different measurement error and by combining this information gains 

together the characteristic error for each method can be suppressed. 

A s an example of different measurement principles, we could mention visual 

odometry, dead reckoning (described bellows), G P S position estimation, L I D A R 

scanning and so on. Every mentioned method uses different physical principle and 

gives different error characteristic. 

In this thesis, visual odometry is combined wi th vehicle odometry. 

Visua l odometry is quite inaccurate in short time scale. Because of image noise 

the estimated position is oscillating around ground true position. But in long time 
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scale it is able to suppress position estimation drift because of visual feedback to 

environment. 

O n the other hand, the dead reckoning method is very precise in short time 

scale (method shows very low noise amplitude), but even very low noise integrated 

during long period of time wi th missing correction feedback causes dramatic position 

estimation drift. 
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Fig . 6.1: Principle of different position data merging 

6.2 Kalman Filter 

Kalman filter [30], [31], sometimes called quadratic estimator, is a method of optimal 

dynamic data filtration, where noise has Gaussian distribution. 

The entire filtration process is based on modelling the tracked system and es­

t imating all its hidden states so the method is able to predict future changes and 

correct the predictions by available measurement. 

Let 's have a following system 

xk = Axk_x + Biik-x + w f c - i (6.1) 

zk = Hxk-i + vk (6.2) 

where A is state matrix or system's Jacobian, B is input matrix, H is model 

of internal system's states measurement (the measurement matrix). Xk is vector 
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expressing system internal states zk is measurement output. Constants w and v 

express the noise of system and measurement. 

The system defined by equations above can be filtered by Ka lman filter. 

1 
Time Update 
"Prediction" 

Measurement Update 
"Correct" 

Fig . 6.2: Ka lman filter iteration 

A s it is shown on image, each iteration of data nitrations is composed of two 

steps. In first one the future system state is estimated based on previous system 

states knowledge. 

xk = Axk-i + Buk-i (6.3) 

P f c" = APkAT + Q (6.4) 

The first equation expresses the mentioned prediction of system's internal states 

in step k based on knowledge of internal steps in previous step k — 1. Q is system 

noise wi th Gaussian distribution. 

The second equation expresses the prediction of system's covariant matrix, which 

express measurement uncertainty. 

In the second step the prediction is corrected by measurement. 

Kk = PkHT{HPkHT + R)-1 (6.5) 

xk = xk + Kk(zk - Hxk) (6.6) 

Pk = (I- KkH)Pk- (6.7) 

Kk is called Ka lman gain. It expresses how much should we trust to newly 

measured data and how much should we use them to estimate final position. 

From equations above we can assume 

l im Kk = H'1 (6.8) 
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which says that wi th decreasing measurement covariance Rk (decreasing mea­

surement error) is rising the measurement trustfulness. A n d wi th decreasing model's 

covariant error Pj7 decreasing also the Ka iman gain Kk. 

l im Kk = 0 (6.9) 

Estimated position 

La ndmark 

X 
Prediction 

irement 

Fig . 6.3: Graphic interpretation of Ka lman filtration (prediction, measurement, cor­

rection) 

The largest problem of creation the properly working Ka lman filter is to esti­

mate init ial coefficients. The measurement noise matrix R could be deduced from 

sensors parameters. Bu t system noise Q estimation if very difficult and very often is 

estimated experimentally or some auto-covariant method, which estimates the level 

of noise based on model's statistics. 

The method described in previous chapter gives great results but only in case of 

modelling linear stochastic systems, which could be described by Gaussian statistic 

model. But if tracked system exhibits nonlinear behavior, the model has to be 

linearized for every step for every current state xk in Rn dimensional space. This 

method is called Extended Ka lman Filter. 

In other words, for every iteration method has to calculate new model that 

exhibits linear behavior for near neighbor of its current internal states.. 

The system description is quite different in contrast with simple Ka lman filter. 

6.3 Extended Kalman Filter 

(6.10) 
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Zk = h(xk-i,vk) (6.11) 

6.4 Wheel Odometry (Dead Reckoning) 

Dead reckoning is a method that measure the traveled distance by continuously 

integrating vehicle speed or wheels angular position change. 

k k 

xk = j 2 ^ i = J 2 A : i : i * A t (6-12) 
i=l i=l 

Let us imagine a robot, that lives in one dimensional space and it moves in one 

direction wi th specified speed. If we assume, that at the beginning of measurement 

robot was in the space coordinate 0, than the position in time t can by expressed as 

the time velocity integral, where robot's speed can be estimated out of it's wheels 

rotation. The method is very precise, but during time there is negative effect of 

cumulating and integrating small error, which causes large drift during long period 

of time. The main sources of error are wheel rotation measurement error and wheel 

skid. 

' H- • 
X 

F ig . 6.4: Differential chassis model [32] 

This method has been used for example in marine to estimate ships position 

on the see, where passed distance has been estimated out of number of propeller's 

rotations or continuous ship speed integration. 

Now we are able to adapt this method on simple differential chassis model. Let's 

imagine a tank, which could be described by following model. The disadvantage of 
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this model is that it is not able to model wheel's skid, which is always present wi th 

even very low amplitude. 

B y discretization all models equations we are able to create discrete model of 

Dead Reckoning method. 

VF 

Vi + v2 (6.13) 

Vs = 0 

Vi + v2 

x = VFCOS<P — Vssinc, 

(6.14) 

(6.15) 

(6.16) 

X = Vpsincj) + Vscos(f (6.17) 

6.5 Measurement vehicle 

A s part of my thesis the high precise measuring vehicle has been constructed. It 

has two wheels on the main axle, both wi th RI58-0 / 5000AS.41RB quadrature 

encoders mounted. Furthermore, the vehicle is equipped with S T M 3 2 F 4 Discovery 

module, which is fitted into the extending shield. This computing unit functions as 

a collector of data from the encoders, which are then passed to the P C through the 

"serial line to T C P socket" network bridge connected to the same local network as 

S L A M P C does. 

F ig . 6.5: Measurement vehicle construction 
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The P C is running the background process, which performs a model calculation 

of the vehicle odometry and through a buffer's queue it provides output of Dead 

Reckoning telemetry to the Visua l S L A M thread, which is able to reduce cumulative 

position estimation error. 

d! = f(x,y,$,Adr,Adi 
X 

y + 
Asr+As> cos($ + Asr~Asi] 
AsrtAsisin($ + A s r ~ A s r 

A s r —As; 
b 

(6.18) 

where x and y are robot's space coordinations, $ is robot's orientation. Adr and 

Adi are right and left wheel distance changes and b is robot's chassis base. 

F ig . 6.6: Vehicle S T M 3 2 F 4 Discovery board wi th extension shield 

The vehicle electronics, as previously mentioned, is based on S T M 3 2 F 4 Discovery 

board that is extended wi th expansion shield that provides power supply to entire 

vehicle electronics, the interface to interconnect microcontroller with quadrature 

encoders, three U A R T s , one wi th level-shift to RS232 to communicate with another 

computer, one to interconnect with G P S module and one to communicate wi th 

Bluetooth module. Also, external interrupt pins are prepared to make possible 

external time synchronization. 

The schematics and board of extension shield is placed in appendix. 

6.6 Data Merge 

The main idea of this thesis is to provide a differential chassis odometry into Visual 

S L A M process to improve accuracy of this method. O n image 6.7 there is shown 
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the way, how does the information about wheel's rotation and vehicle movement are 

transferred into S L A M process. 

The wheel's rotation is sensed by two quadrature encoders. These two sensors are 

providing measured information into microprocessor and it integrates the number 

of incoming pulses and passes it v ia U A R T line into T C P / I P W i F i bridge wi th 

serial line input. The mentioned bride is connected into local W i - F i network and is 

accessible T C P server. 

Wheels Position Visual S L A M 

j i 

Encoders Kaiman Filter 

j 

STM32F4 Vehicle Model 

1 -
J 

U A R T to T C P / I P 
bridge T C P Socket 

U A R T to T C P / I P 
bridge T C P Socket 

Fig . 6.7: Communication pipeline schematic 

The S L A M hosting computer is connected to the same local network as vehicle's 

bridge does. The S L A M process contains T C P socket that connects to the bridge at 

the startup of the program and T C P socket begins to continuously receiving string 

messages, that contains information about number of encoder pulses captured by 

microprocessor. 

This incoming information is parsed line-by-line and then it is passed into process 

that simulates runtime vehicle movement model. Based on differential equations that 

describe differential chassis (mentioned in previous chapter) the actual position in 

planar, two-dimensional world is estimated and this position information is provided 

into Ka lman Fil ter module, where it is fused wi th output position from Visual 

S L A M . 

The final result position information is forced into Elastic Fusion runtime. 
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6.6.1 Data Fusion Pipeline 
To provide vehicle odometry data into Elastic Fusion's visual position estimation 

process, the one feature original Elastic Fusion A P I ' s feature has been used. For 

every frame the actual 6D0F position can be read out and also for each frame the 

same 6D0F position can be forced. 

The vehicle odometry feeding pipeline works in the way showed on image 6.8. 

The Kinect v2 provides R G B D images wi th 60 fps framerate. The first frame is left 

without any modifications, to let Elastic Fusion performs init ial position estimation. 

Before the second frame wi l l be processed, the Visua l odometry's position is taken 

as well as parallel vehicle position does. Bo th data packages are passed into Ka lman 

filter, where the fusion is performed and after that the new estimated position is 

forced into Elastic Fusion's and vehicle's odometry pipelines. 

Visual Whee l Ka lman 
Odometry Odometry Filter 

ft J ! 
*• 

r-l—1̂  

I ) 

i-l ^ r - L , 

1 , r > ft 1 
60 Hz -130 Hz 30 Hz 

Fig . 6.8: Odometries fusion pipeline 

This process is looping during entire S L A M runtime 

Also, many parameters can be tuned. For example, the frequency of forcing 

position into Elastic Fusion's odometry can be done not only every second frame, 

but this number can be chosen arbitrarily. Even larger the period of position forcing 

wi l l be chosen, the less the vehicle odometry wi l l affect the position estimation. 
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7 RESULTS AND A C C U R A C Y 
In this chapter, there is described a way, how the results of this thesis has been 

tested. Firstly, there are mentioned all the software modifications, that has been 

finally used, next there is described whole measurement set, then reader is introduced 

into measurement experiences itself and in the last section the results are mentioned 

and they are compared to original Elastic Fusion performance. 

7.1 Software Modifications 
The entire project is composed out of two main parts. The first one is Elastic Fusion 

Core, which takes care about visual odometry estimation, map building, memory 

management and so on. 

The second part is called G U I . There is running the main loop, which creates 

all instances, that handle graphic interface, Kinect 's input data stream and use's 

interaction. This G U I parts include previously mentioned Core as a compiled static 

library. 

Because of this software architecture all my modifications have been done only 

on G U I part. The Core part has not been changed. 

The brief overview of all modification can be seen on 7.1 

OpenNI 2 Interface Kalmar Kernel 

Live Log Reader Elastic Fusion 
(Core) 

GUI 

Kalmar Filter 

Odometry Model 

Position Logger 

T C P Socket 

Main Controller 

Main 

Fig . 7.1: U M L Class diagram of modified Elastic Fusion project 
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This image represents only these parts of the project, that had been modified. 

Some includes of original project are not shown. 

A l l the green classes had been created from the beginning for purpose of this 

thesis. The blue ones had been already present in original project and their func­

tionality was modified. Whi te ones weren't changed. 

M a i n - contains main loop. Its only task is to call M a i n Controller and pass on 

runtime scope. 

M a i n Controller - works as a bridge between all submodules. It performs data 

exchange between Kinect input, visual odometry core, odometry motion model, G U I 

rendering, etc. 

O p e n N i 2 Interface - handles input stream from Kinect v2 and transforms it 

into frame format (for both color domain and depth space). These frames are then 

passed into Elastic Fusion Core. Also, Kinect calibration is done in this block. 

G U I - This class contains all graphic interface staffs and map rendering. For my 

purpose, some graphic elements has been added to be able to modify Elastic Fusion 

parameters during runtime. 

Odometry Mode l - Instance of this class takes incoming encoders data from 

measurement vehicle and transform them into vehicle's position. 

Kalman Filter - It is a wrapper, that encapsulates all nitrations into one in­

stance. Every single degree of freedom (axis x and y and yaw) are calculated sepa­

rately. 

Kalman Kernel - Implementation of Ka lman Fil ter . Every instance of this 

class is used for filtration of one degree of freedom 

T C P Socker - This class represents T C P client implementation. During startup, 

it connects to the T C P server, that provides encoder's data. Incoming string stream 

is stripped into lines and every single line is passed into Odometry Model . 

Position Logger - This class is used to logging robot's position. Vehicle odom­

etry, visual odometry and fused position are logged separately. Every log also has 

time stamp. 

Elastic Fusion Core - Takes R G B and depth frames and returns Kinect 's 

translation and rotation. 

The entire project is linked by using CMake and compiled by G C C compiler. 

7.2 Measurement Set 

During the measurement experiment the entire hardware set has been placed on 

measurement vehicle. 

The vehicle itself has been equipped wi th S T M 3 2 F 4 board, battery pack, T C P 

bridge and Kinect v2. S T M board and battery pack are placed in 3D printed black 
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boxes, that are screwed to aluminum construction. The Kinect v2 is mounted also 

by 3D printed holders. The visualization of this parts is available in appendix. 

F ig . 7.2: Measurement vehicle equipped wi th Kinect v2, S T M 3 2 F 4 board, T C P 

bridge and battery pack 

Because of Elastic Fusion runtime requires high compute performance (according 

authors 3,5 T F L O P S on G P U ) and Kinect v2 has large data stream that is hard to 

pass through radio channel, so the entire P C had to be mounted on measurement 

vehicle. For this purpose, I have used M i n i I T X P C with dimensions of 25x21x37 

cm. This computer contains i5-6400 Intel C P U and 960 G T X N V i d i a graphics card. 

W i t h this hardware, the whole experiment runs fluently with no freezing and no 

lags. The G P U memory usage was about 20 percent when model was bui ld out of 

one mil l ion surfels. 

7.3 Validation Experiments 

The validation experiments have been performed in three different environments. 

Every environment have different character, so even different odometry methods 

gets different accuracy in 3D model costruction process. 

The first experimental environment was the laboratory room. A s the laboratory 

contains large number of different furniture, devices and other stuff, it creates a 

highly contrast environment in which even visual odometry gives very good results. 

Also loop closing works well, anyway it is better to minimalize active scene window 

timeout. In this case wheel odometry does not improve S L A M results in any useful 

way. 
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Fig . 7.3: Measurement vehicle wi th all hardware mounted 

The purpose is, that visual odometry very well handle position estimation in 

highly rugged environment. Also, the accuracy of wheel odometry is strongly de­

pendent on precision of calibration. During my thesis, there was no possibility to 

calibrate wheel odometry wi th higher precision, than 0.2% relative error in linear 

direction movement and more than 1% relative error in rotation movement. 

Because of this uncertainty of wheel odometry the measurement error which was 

occurred in this experiment by fused odometry was larger than uncertainty of pure 

visual odometry. 
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Fig . 7.4: Example of laboratory scan 

The second experiment has been conceived between two laborato­

ries through short section of corridor, when direction was changed two times. Ex ­

periment starts The hardest part for S L A M was to orientate during corridor pass 

through, because there are no contrast shapes. The pure visual S L A M usually gets 

lost during rotation. W i t h fusion of both data sources inputs I was able to always 

pass this route without losing orientation. 

The main benefit in this experiment shows, that operator, that controls robot 

wi th installed S L A M does not need to take care about ruggedness of environment, 

and if visual odometry gets lost, the position estimation by wheel odometry still 

works, unti l visual odometry starts to orientate. 
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Fig . 7.5: Corridor between two laboratories scan 

The thi rd experiment was to straight pass through approximately forty meters 

long corridor. Also, it this experiment the most interesting results were achieved. 

The detail description is mentioned in following section. 

7.4 Results 

One of possible criterions to determinate accuracy of the S L A M method could be 

expression of relative error of straight corridor measurement. 

Ground true value of the corridor length was measured from the middle of the 

doors on the one side of corridor to the middle of the doors on the second side 

parallely to the ground. This ground thrue value has been established by Lecia 

D I S T O D8 laser scanner, that has measurement accuracy ± 1mm. 

Lecia D I S T O D8 laser scanner was used as reference measurement, because dur­

ing my thesis there was no possibility to apply method or device wi th higher preci­

sion. 
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Fig . 7.6: The orange line shows measured distance 

A s it has been already mentioned, that each odometry method shows different 

type of measurement uncertainty. The wheel odometry is very accurate during 

small scale measurement, but has disadvantage of continuous integrated drift from 

ground true. O n the other hand, the visual odometry has large uncertainty of current 

position estimation, but because of feedback it is able to compensate the mentioned 

wheel odometry drift. 

In detail, the experiment of corridor length measurement has been performed 

in following way. S L A M was started looking on the first doors and slightly moved 

backward, to established 3D model of near surrounding. After this, it returned 

to original position and turn around by 180deg. Usually in this moment the pure 

visual odometry get lost looking on non-contrast white wall, when combined and 

pure wheel odometry done well and was able to keep tracking surrounding. In last 

part of experiment the vehicle with S L A M was moving straight forward to the end 

of corridor wi th velocity about 0 . 5ms _ 1 . A t the end of corridor measurement has 

been terminated and results has been saved. 

The following image 7.7 shows the different between visual odometry based 3D 

model construction and 3D model based on fused data. It is easy to see, that the pure 

visual odometry model shows large amount of geometrical distortion, meanwhile 

model constructed by fused data S L A M has much better geometrical expression of 

entire straight corridor. 
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Fig . 7.7: 3D models bui ld by Elastic Fusion (top - visual odometry only, bottom -

fused odometry) 

The relative error is expressed as follows 

5 = ^ p U l 0 0 [ % ] (7.1) 

where M is measured value and S is ground true value. 

Method Measured Length m Relative Error %] 

Visua l odometry 42.30 2.70 

Wheel odometry 43.02 1.04 

Fused data 43.29 0.41 

Ground true 43.47 -

Tab. 7.1: Measurement methods error comparation 

From this table we can assume, that results of Elastic Fusion with additional 

data source achieves few times better results (6 times lower relative error) than the 

original solution does. The wheel odometry helps to keep high accuracy on short 

time scale and visual S L A M kept the wheel's odometry drift at a low value, even on 

a quite long trace. 

In state-of-art papers as a S A L M benchmark, there is often used comparison of 

S L A M estimated trajectory against for example laser measured ground true, but 

during my thesis there was no possibility to perform this measurement. 
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Of course, there are much more criterions, than only relative error of measured 

distances. Let 's mention for example the capability of keeping straight line. In other 

words, make S L A M to minimize geometrical distortion of straight planes (see 7.8). 

F ig . 7.8: 3D model's geometrical distortion, left top - wheel odometry only, right 

top - fused odometry, bottom - visual odometry only 
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8 CONCLUSION 
This thesis dealt with visual S L A M and the methods to improve its accuracy. The 

entire work is based on the open source project "Elastic Fusion", which was then 

modified and the results were verified in several validation experiments. 

During my work, I have forked the before mentioned open source S L A M project 

called Elastic Fusion and run it on Ubuntu 14.04. Next I had ported it from original 

Asus R G B D camera to newer Kinect v2 one. Then the electronics and firmware 

for measurement differential vehicle were created and entire wheel odometry was 

calibrated. In last step, I have modified the Elastic Fusion project to accept wheel 

odometry output data and fuse them with its own visual S L A M position estimation 

to achieve higher estimation accuracy. 

To understand the motivation behind the fusion of visual and wheel odometry, 

it is necessary to understand that both methods have different measurement un­

certainty. The visual odometry does not estimate current position very well, but 

because of the feedback can correct cumulative position estimation errors, on the 

other hand the wheel odometry has high accuracy for short distance measurements, 

but on large distances it integrates cumulative error. B y combining these two meth­

ods, the disadvantages of both approaches could be eliminated. 

The final results show the achieved improvements. The accuracy improvement 

has been tested in three different scenarios. The most interesting result was the 

one, when S L A M had to scan forty meters long corridor. The pure visual S L A M 

shows 2.7% relative error in corridor reconstruction measurement. The pure wheel 

odometry show 1% relative error and fused method creates 3D model wi th 0.4% 

error. It means over six times smaller measurement error compared to the original 

pure visual S L A M . 

A l l the results mentioned above had been realized as a part of my master degree 

thesis. Also in future, there is possibility to expand this work during my P h . D . 

studies. 

A t first there is necessary to encapsulate entire solution into for example Docker 

container, so that the project would be able to be deployed to any hardware that 

fulfil G P U performance requirements. 

Then of course there is also task to deploy solution on Orpheus platform, that is 

developed by robotics team of F E E C of B U T . The robot is able to carry small-sized 

computer and Kinect v2 can be mounted for example on camera arm, so it would 

be able to rotate in all three axes. 

B y mounting Kinect to moving camera arm there would be possibility to also 

integrate inertial unit sensor, so the S L A M algorithm could lock all three rotation 

degrees of freedom and so position estimation could be much easier to solve and 
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Fig . 8.1: Orpheus robot 

estimated position could be more precise. 

The next possible extension could be done in field of vir tual reality. The entire 

3D constructed model could be rendered into two framebuffers, so the illusion of 3D 

space could be created. W i t h V R headset the operator, that controls the robot on its 

mission could get much better experience during exploration of unknown areas and 

would be able to comprehend much better, how is robot situated in its environment. 
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