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1 Introduction 
Computer-based systems and technologies keep penetrating still deeper into 
human lives. The importance of their uninterrupted and correct operation thus 
keeps growing. Today, computer systems are widely used in the automotive 
industry, aerospace industry, telecommunication, bank sector, military, etc. 
A n incorrect behaviour of a computer system in some of these environments 
may cause substantial loses of money, resources, or, in the worst case, even 
human lives. Even in cases of programs that are not safety-critical, errors are 
often the cause of a negative user experience, which can lead to frustration, 
and, in an extreme case, even to damage to hardware. 

Verification is a process that checks whether a system is correct with re
spect to a provided specification. There are two main approaches to verifica
tion: bug hunting and formal verification. Bug hunting methods focus on find
ing as many errors as possible in the verified system. This approach includes 
testing of programs using random inputs while observing their behaviour, dy
namic analysis (extrapolation of program's dynamic behaviour), some forms 
of static analysis (such as detection of errors that match some patterns in the 
source code), bounded model checking (systematic search of the state space 
of the program to a limited depth), etc. Bug hunting methods usually cannot 
guarantee a program's correctness and often find only easily reachable errors. 

1.1 Formal Verification 
Formal verification is, as opposed to bug-hunting, a technique that attempts 
to formally prove that the verified system is error-free, i.e. formal verification 
can guarantee that if it does not find an error, there are indeed no errors 
present in the system. Although the formal verification problem is in general 
undecidable, there are currently various formal verification methods that work 
well for a large range of classes of programs. 

Several properties are often required from formal verification methods. Per
haps the most important of these properties is soundness. A method is said 
to be sound in case it never pronounces a system error-free when the sys
tem contains a behaviour that violates the specification. On the other hand, 
a method is said to be complete if it does not produce spurious counterexam
ples, i.e. counterexamples that in fact can never occur in the real system. 

1.2 Shape Analysis of Programs Manipulating Heap 
One particular class of errors are the ones relating to memory safety in pro
grams that use dynamic memory allocation, such as programs manipulating 
different flavours of lists (e.g. singly/doubly linked, circular, with skip pointers) 
and trees (e.g. binary trees, trees with root/parent pointers). The area that 
investigates techniques for dealing with them is called shape analysis. Exam-
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pies of the considered errors are invalid pointer dereference (which may cause 
a corruption of data values or an abnormal termination of the program) or 
occurrence of garbage (which may cause the program to deplete the memory 
available and even affect other programs running on the computer). Dynamic 
memory is utilised (either directly or indirectly via library calls) in a vast por
tion of currently produced software. Among the most critical applications that 
extensively use dynamic memory are kernels of operating system (e.g. Linux) 
and various standard libraries (e.g. the G N U C library glibc). 

Because programs manipulating heap are usually infinite-state, a sound 
analysis technique needs to represent the heap symbolically, i.e. represent sets 
of heaps by different means than enumerating all of their elements. Cur
rently, there are several competing approaches for symbolic heap representa
tion. The first approach is based on the use of formulae of various logics to de
scribe sets of heap configurations. The logics used are separation logic [Rey02, 
MTLT10, BCC+07, YLB+08, DPV13, CDNQ12, LGQC14], monadic second-
order logic [MS01, JJSK97, MPQ11, MQ11], or other [SRW02, ZKR08]. An
other approach is based on the use of automata. In this approach, elements 
of languages of the automata describe configurations of the heap [BHRV06, 
BBH + 11] . The last approach that we will mention is based on graph gram
mars describing heap graphs [HNR10]. The presented approaches differ in 
their degree of specialisation for a particular class of data structures, their 
efficiency, and their level of dependence on user assistance (such as definition 
of loop invariants or inductive predicates for the considered data structures). 

The works that build on separation logic, such as [BCC + 07, YLB+08, 
LGQC14], are among the more efficient ones, due to the support for local rea
soning provided by the separating conjunction (which effectively decomposes 
the heap into disjoint components so that each can be handled independently 
of the others, without the need to consider all possible aliasings of their ele
ments). However, most of the techniques based on separation logic are either 
specialised for some particular data structure—such as singly/doubly linked 
lists—and even a slight change in the data structure can make the technique 
unusable (as e.g. in [BCC + 07, Y L B + 0 8 , DPV13]), or they need the user to pro
vide inductive definitions of the used data structures. Moreover, when testing 
for a fixpoint (which is done to detect whether a newly obtained symbolic 
representation is subsumed by some already existing one), the analysis needs 
to check entailment of a pair of separation logic formulae. Entailment proce
dures have so far been either for considerably limited classes of data structures 
(e.g. singly linked lists), or quite ad-hoc, based on folding/unfolding inductive 
predicates in the formulae and trying to obtain a syntactic proof of the entail
ment. Obviously, this often came with no completeness guarantee. Only re
cently have there appeared more systematic approaches [IRS13, IRV14]. 
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The shape analysis techniques based on automata can address this issue 
by exploiting the generality of the automata-based representation. Finite tree 
automata, for instance, have been shown to provide a good balance between 
efficiency and expressiveness. In particular, the so-called abstract regular tree 
model checking (ARTMC) of heap-manipulating programs [BHRV12] uses a fi
nite tree automaton to describe a set of heaps positioned on a tree backbone 
(non-tree edges of the heap are represented using regular "routing" expressions 
describing how the target can be reached from the source using tree edges). 
Manipulation with the heap is represented using a finite tree transducer and 
the set of reachable configurations is computed by iteratively applying the 
transducer on the initial configuration, until a fixpoint is reached. At each 
step, the obtained symbolic configuration is safely over-approximated using 
abstraction—which collapses certain states of the automaton—and a fixpoint 
is detected by standard automata language inclusion testing. The abstraction 
used is derived automatically during the run of the analysis, using the so-called 
counterexample-guided abstraction refinement ( C E G A R ) technique. This for
malism is able to fully automatically verify even as complex data structures as 
binary trees with linked leaves, however, it suffers from the inefficiency of the 
monolithic encoding of the sets of heaps and the transition relation. 

Recently, a technique borrowing the best from the worlds of separation 
logic and A R T M C emerged. This technique, introduced in [HHR +12], is based 
on the so-called forest automata, which are essentially tuples of tree automata 
where leaves of the trees accepted by one tree automaton can reference roots 
of the trees accepted by the other tree automata (or by itself). This "non-
monolithic" encoding gives a support for local reasoning—heap manipulating 
operations are executed as simple operations locally on a particular tree au
tomaton, not affecting the other tree automata. Each root of a tree corresponds 
to a cut-point (a node with multiple incoming edges) in the heap graph. Some 
data structures have an unbounded number of cut-points, e.g. doubly linked 
lists wherein every internal node is a cut-point. Data structures of this kind 
cannot be represented in a finite way using this basic formalism; the number 
of tree components of the forest automata in the analysis would keep grow
ing. The approach therefore uses hierarchical encoding, which uses special 
symbols—called boxes, represented using forest automata—to encode sets of 
subgraphs that contain a cut-point. The technique uses automata abstraction 
from A R T M C to obtain a sound over-approximation of reachable configura
tions and accelerate obtaining a fixpoint of the analysis. 

1.3 Selected Problems in Shape Analysis 
One issue of the techniques described in the previous text is that they often 
ignore the data component of the represented data structure. This is not 
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always feasible because some data structures, such as binary search trees or skip 
lists, depend on the data stored inside—in a binary search tree, for example, 
if a new value is inserted, the ordering relation determines whether the new 
value is inserted into the left or the right subtree. Examples of works also 
considering data stored in data structures are [MPQ11, MQ11]. 

Another interesting problem emerging in the frameworks for shape analysis 
is the problem of detecting whether the analysis of symbolic executions of 
a loop has reached a fixpoint. A symbolic execution is an abstract execution of 
the program that uses the symbolic representation of the program's memory 
In this case, the fixpoint is a closed representation of the set of reachable 
configurations of the heap, with closed meaning that any new iteration over 
the body of the loop cannot add anything new to the set. A fixpoint is detected 
by testing inclusion of the symbolically represented sets of states before and 
after one more execution of the loop. The analyses based on separation logic 
perform such a test by checking entailment of a pair of formulae describing the 
heap configurations. On the other hand, in the analyses based on automata, 
this test corresponds to checking inclusion of languages of a pair of automata. 
Also note that both of these problems are general and used in other settings, 
such as in deductive verification when deducing whether a precondition of 
a statement and its semantics imply its postcondition (for entailment), or 
testing containment of a pair of X M L schemas (for tree automata language 
inclusion), among many others. These problems are theoretically very hard 
with a discouraging worst case complexity, yet good heuristics can often solve 
an average case in reasonable time. 

A n example of such a heuristic is the technique of the so-called antichains 
for checking language inclusion of a pair of nondeterministic finite automata 
(over finite words or trees). The technique [WDHR06, BHH+08, ACH+10] 
avoids explicit determinisation of the automata by performing an on-the-fly ex
ploration of the state space. During the exploration, it prunes parts of the state 
space using a subsumption relation on sets of states of the original automaton 
(the simplest form of the relation, introduced in [WDHR06], is simple set in
clusion). Although language inclusion of a pair of nondeterministic automata 
has a forbidding worst case complexity—it is a PSPACE-complete problem 
for finite word automata and, even worse, EXPTIME-complete problem for 
finite tree automata—the technique works well for many practical examples. 

1.4 Goals of the Thesis 
The main goal of this thesis is an improvement of current state of the art in 
shape analysis. This goal consists of the following three subgoals. The first 
subgoal is the development of extensions to the shape analysis technique pro
posed in [HHR+12] that would extend its degree of automation and class of 
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programs it can handle, with a particular focus on data-dependent programs. 
The second subgoal is an extension and development of new efficient algo
rithms for testing entailment and validity of selected logics that are used in 
shape analysis, in particular separation logic and monadic second-order logic. 
For both of the logics, there exist fragments for which there have been devel
oped efficient translations of decision problems in the logics into finite (tree) 
automata; such fragments are the particular focus of our attention. For sepa
ration logic, we consider the fragment where higher-order inductive predicates 
correspond to linked lists of many different kinds (singly and doubly linked, 
circular, nested, . . . ) , and for monadic second-order logic, we consider its weak 
fragment of one successor (the so-called weak monadic second-order logic of 
1 successor—WS1S). The third subgoal of this thesis is development of tech
niques for efficient manipulation with finite tree automata, which underlie the 
previous two subgoals. In particular, the emphasis is placed on the develop
ment of algorithms for efficient testing of inclusion over nondeterministic tree 
automata, and on techniques for manipulating automata with large alphabets. 

The rest of this text gives an overview of the contributions achived within 
the areas marked out by the goals of the thesis. 

2 Preliminaries 
A ranked alphabet S is a finite set of symbols together with a ranking function 
# : S —> N . For a G S, the value #a is called the rank of a. A tree t 
over a ranked alphabet E is a partial mapping t : N* —> £ that satisfies the 
following conditions: (1) dom{t) is a finite prefix-closed subset of N* and (2) 
for each v G dom{t), if #t{y) = n > 0, then {i | vi G dom(t)} = { 1 , . . . , n}. 
Each sequence v G dom(t) is called a node of t. A leaf of t is a node v which 
does not have any children, i.e. there is no i G N with vi G dom(t). 

A (finite, nondeterministic) tree automaton (TA) is a quadruple A defined 
as A = (Q, S, A , R) where Q is a finite set of states, E is a ranked alphabet, 
R C Q is a set of root states, and A is a set of transitions of the form q —> 
a(qij • • • j Q\a\) f ° r QjQij • • • J Q\a\ £ Q a n d a G S. In the special case when n = 
0, we speak about the so-called leaf transitions. For q G Q, a G S, and 
P C Q, we use downa(q) and downa(P) to denote the set of tuples accessible 
over a from q and P respectively; formally, downa(q) = {(qi, • • • ,qn) \ Q —> 
a(qh ...,qn)eA} and downa(P) = \JpeP downa(p). 

A run of A over a tree t over E is a mapping p : dom(t) —> Q s.t. for each 
node v G dom(t) where q = p(v), if qi = p(vi) for 1 < i < #t{y), then A 
has a transition q —> t(v)(qi,..., q#t(v))- We write t =>p q to denote that p is 
a run of A over t s.t. p(root{t)) = q. We use t =>• q to denote that t =>p q 
for some run p. The language of a state q is defined by L(q) = {t \ t =>• q], 
and the language of A is defined by L(A) = | J eRL(q). 
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Figure 1: A graph and its forest representation 

3 Forest Automat a-Based Shape Analysis 
In this section, we focus on our contributions in extending the forest automata-
based framework presented in [HHR +12]. The main concept of the symbolic 
representation used in the framework is the so-called forest decomposition of 
a heap graph, which is performed as follows: First, the cut-points of the graph 
are identified; a cut-point is a node that is either referenced by a program 
variable or is a target of multiple edges. Every cut-point is then taken as 
the root of a (cut-point-free) tree component whose leaves are either nodes 
with no outgoing edges, or other cut-points. The heap graph is split into the 
tree components, which are then canonically ordered according to the order in 
which their roots were visited in a depth-first search (DFS) through the graph, 
when starting from program variables. In the tree components, any leaf that 
corresponds to a cut-point numbered with c during the DFS is changed into 
an explicit reference to the cut-point number c, written as c. See Figure 1 for 
an illustration of the forest decomposition of a heap graph. 

To represent a (potentially infinite) set of heaps H = {hi, h^, • • • } with the 
same number n of cut-points, we decompose all heaps of H into forests and 
for every position 1 < i < n, we then collect the i-th components of all forests 
into the set H[i] = {hi[i],h2[i},...}. The set H[i] can be represented using 
a T A A[i] and the whole set of heaps H can be represented by a tuple of TAs 
A[l],..., A[n], called a forest automaton (FA). 

A n FA of the simple structure presented above cannot be used as a represen
tation of data structures that have an unbounded number of cut-points—such 
as doubly linked lists (DLLs) or trees with parent pointers, where every in
ternal node is a cut-point—and the analysis would need an infinite number of 
FAs to represent a set of all instances of these data structures. In order to be 
able to represent them using finitary means, the forest automata framework 
allows the use of the so-called boxes. Boxes are FAs that are used as symbols 
of another, higher level FA. In this FA, they represent a (complex) subgraph 
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(a) A DLL (b) Its hierarchical encoding 

Figure 2: A D L L and its hierarchical encoding 

using a single symbol. Intuitively, the task of boxes is to decrease the in-degree 
of cut-points in a graph—when the in-degree of a node drops to one (and the 
node is not referenced by a program variable), the node is no longer a cut-
point and can be represented by an ordinary state in a TA. In this way, it is 
possible to represent an over-approximation of all reachable configurations of 
a program using forest automata with a bounded number of tree components. 
See Figure 2 for an example of a use of a box in an encoding of a D L L . 

Alongside the notion of FAs, [HHR +12] also proposed a shape analysis that 
uses FAs and is based on the framework of abstract interpretation [CC77]. 
For each program line, a set of forest automata is used to represent the set of 
memory configurations reachable at a given line. The program is symbolically 
executed on this representation in such a way that each program statement is 
mapped to an abstract transformer that simulates execution of the statement 
on the symbolic representation (and also checks whether an error has been 
encountered). The symbolic execution examines all branches of the program 
until no new symbolic states can be found on the branches and a fixpoint 
is obtained. Because, as mentioned earlier, programs manipulating heap are 
usually infinite-state, the widening operator is used to provide a sound over-
approximation of the set of reachable configurations. This operator is based on 
automata abstraction borrowed from A R T M C . For a given forest automaton, 
abstraction collapses some states of the TAs of the FA (for each T A sepa
rately), trying to introduce loops into the TAs to obtain TAs accepting an 
infinite (regular) tree language that over-approximates the original one and, 
in turn, a forest automaton representing an infinite set of heaps, again over-
approximating the original one. 

3.1 Learning of Boxes 
The shape analysis described in the previous section relied on the user to 
provide a suitable set of boxes (the subgraphs to be folded into automata 
symbols). This means that the user needed to provide the analysis with a for
est automata-based description of those data structures used in the program 
that have an unbounded number of cut-points. As we strive for a push-button 
analysis, such an approach is naturally not feasible. To address this issue, we 
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Table 1: Results of experiments with Forester and box learning 
Example Forester boxes Predator Example Forester boxes Predator 
S L L (delete) 0.04 0.04 D L L (reverse) 0.06 1 / 1 0.04 
S L L (bubblesort) 0.04 0.03 D L L (insert) 0.07 1 / 1 0.05 
S L L (mergesort) 0.15 0.10 D L L (insertsort 1) 0.40 1 / 1 0.11 
S L L (insertsort) 0.05 0.04 D L L (insertsort2) 0.12 1 / 1 0.05 
S L L (reverse) 0.03 0.03 D L L of C D L L s 1.25 8 / 7 0.22 
SLL+head 0.05 0.03 DLL+subdata 0.09 - / 2 T 
S L L of 0/1 SLLs 0.03 0.11 C D L L 0.04 1 / 1 0.04 
SLLLin 0.03 0.03 tree 0.14 Err 
S L L of CSLLs 0.74 4 / 4 0.12 tree+parents 0.21 2 / 2 T 
S L L of 2 C D L L s L i n 0.17 1 4 / 5 0.25 tree+stack 0.08 Err 
skip list2 0.42 - / 4 T tree (DSW) 0.40 Err 
skip list3 9.14 - / 7 T tree of CSLLs 0.42 - / 4 Err 

propose an extension of the approach where the boxes are inferred automati
cally during a run of the analysis using a technique that we call box learning. 

The basic principle of our box learning is to identify suitable subgraphs of 
the FA-represented graphs that contain at least one join, and when they are 
enclosed—or, as we say, folded—into a box, the in-degree of the join decreases. 
There are, of course, many ways to select the above mentioned subgraphs to 
be used as boxes. To choose among them, we propose several criteria that we 
found useful in a number of experiments. Most importantly, the boxes must be 
reusable in order to allow eliminating as many joins as possible. The general 
strategy here is to choose boxes that are simple and small since these are more 
likely to correspond to graph patterns that appear repeatedly in typical data 
structures. For instance, in the already mentioned case of DLLs in Figure 2, 
it is enough to use a box enclosing a single pair of next/prev links. On the 
other hand, too simple boxes are sometimes not useful either, because they 
fail to hide a join in the graphs. 

Further, we propose a way how box learning can be efficiently integrated 
into the main analysis loop. We always try to identify which subgraphs of 
the graphs represented by a given FA could be folded into a box, followed 
by looking into the so-far built database of boxes whether such a box has 
already been introduced or not. This approach has the advantage that it 
allows one to use simple language inclusion checks for approximate box folding 
that substitutes a subgraph with a box from the database having a larger 
language, thus over-approximating the set of graphs represented by a given FA. 
This approach sometimes greatly accelerates the computation. Finally, to 
further improve the efficiency, we interleave the process of box learning with the 
automata abstraction into a single iterative process. In addition, we propose 
an FA-specific improvement of the basic automata abstraction that accelerates 
the abstraction of an FA using components of other FAs. Intuitively, it lets the 
abstraction synthesise an invariant faster by allowing it to combine information 
coming from different branches of the symbolic computation. 
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Figure 3: A n example of a 2-level skip list 

3.1.1 Experimental Results 
We compared an implemenation of our techniques (in a tool named Forester) 
with Predator [DPV13], which uses a graph-based memory representation in
spired by separation logic with list predicates. In the experiments, we con
sidered programs with various types of lists (singly and doubly linked, cyclic, 
nested, with skip pointers), trees, and their combinations. We used a data-
oblivious modification of a skip list that remembers the window it is inserting 
into by an explicit pointer. The programs were checked for memory safety. 

Table 1 gives running times in seconds (the average of 10 executions) of 
the tools on our case studies. The table further contains the column "boxes" 
where the value " X / Y " means that X manually created boxes were provided to 
the analysis that did not use learning while Y boxes were learnt when the box 
learning procedure was enabled. The value "-" of X means that we did not run 
the example with manually constructed boxes since their construction was too 
tedious. If user-defined boxes are given to Forester in advance, the speedup is 
usually negligible, with the exception of " D L L of C D L L s " and "SLL of CSLLs" , 
where it is up to 7 times. In a majority of cases, the learnt boxes were the same 
as the ones created manually. In some cases, though, the learning algorithm 
managed to find a smaller set of more elaborate boxes. 

Note that the performance of Forester in the considered experiments is 
indeed comparable with that of Predator even though Forester can handle 
much more general data structures, such as a data-oblivious modification of 
two and three level skip lists (a modification where the shape invariant of 
a skip list does not rely on the fact that the list is ordered—our extension to 
the standard data-dependent skip lists is described in Section 3.2). 

3.2 An Extension to Programs with Ordered Data 
We also extended the forest automata-based shape analysis to programs that 
rely on ordered data, such as programs with binary search trees (BSTs) or 
skip lists (see Figure 3). Technically, our extension express relationships be
tween data elements associated with nodes of the heap graph by two classes of 
constraints. Local data constraints are associated with transitions of TAs and 
capture relationships between data of neighbouring nodes in a heap graph; 
they can be used e.g. to represent ordering internal to some structure such 
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Table 2: Results of the experiments with the data extension of Forester 
Example time Example time Example time Example time 
S L L insert 0.06 D L L insert 0.14 SL2 insert 9.65 B S T insert 6.87 
S L L delete 0.08 D L L delete 0.38 SL2 delete 10.14 B S T delete 15.00 
S L L reverse 0.07 D L L reverse 0.16 SL3 insert 56.99 B S T left rotate 7.35 
S L L bubblesort 0.13 D L L bubblesort 0.39 SL3 delete 57.35 B S T right rotate 6.25 
S L L insertsort 0.10 D L L insertsort 0.43 

as a binary search tree. Global data constraints are associated with states of 
TAs (even states of different TAs) and capture relationships between data in 
distant parts of the heap. In order to obtain a powerful analysis based on such 
extended FAs, the entire analysis machinery must be redesigned, including 
a need to develop mechanisms for propagating data constraints through FAs, 
to adapt the abstraction mechanisms of A R T M C , to develop a new inclusion 
check between extended FAs, and to define extended abstract transformers. 

3.2.1 Experimental Results 

The presented approach has been implemented as a further extension of the 
Forester tool. We have applied the tool to verification of data properties, 
notably sortedness, of sequential programs with data structures, like various 
forms of singly and doubly linked lists (SLLs and DLLs) , binary search trees 
(BSTs), and even two and three level skip lists ( S L 2 and SL3). Results of the 
experiments are summarised in Table 2, which gives running times in seconds of 
Forester on the case studies. The experiments confirm that our approach is not 
only fully automated and rather general, but also quite efficient, outperforming 
many previously known approaches even though they are not of the same level 
of automation or generality. In the case of skip lists, our analysis is the first 
fully-automated shape analysis which is able to handle fully-fledged skip lists. 

4 Deciding Logics with Automata 
In this section, we describe our automata-based decision procedures for the 
following two logics: (a) separation logic with list predicates and (b) weak 
monadic second order logic of one successor (WS1S). 

4.1 Separation Logic with List Predicates 
Separation logic (SL) [Rey02] is a formalism for shape analysis complementary 
to the formalism of forest automata presented in the previous section. It offers 
both high expressiveness and scalability, the latter being due to its support of 
compositional reasoning based on the separating conjunction * and the frame 
rule, which states that if a Hoare triple {0}P{^} holds and P does not alter 
free variables in a, then {0*cr}P{^*cr} holds too. So, when reasoning about P, 
one has to manipulate only specifications for the heap region altered by P. 
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In the work presented in this chapter, we focus on a fragment of SL with 
inductive definitions that allows one to specify program configurations (heaps) 
containing finite nestings of various kinds of linked lists (acyclic or cyclic, singly 
or doubly linked, skip lists, etc.), which are common in practice. This fragment 
contains formulae of the form 3X : II A E where X is a set of variables, II is 
a conjunction of (dis-)equalities, and E is a set of spatial atoms connected 
by the separating conjunction. Spatial atoms can be points-to atoms, which 
describe values of pointer fields of a given heap location, or inductively defined 
predicates, which describe data structures of an unbounded size. We propose 
a novel (semi-)decision procedure for checking the validity of entailments of the 
form ip =>• ip where ip may contain existential quantifiers and ip is a quantifier-
free formula. Such a decision procedure can be used in Hoare-style reasoning to 
check inductive invariants, but also in program analysis frameworks to decide 
termination of fixpoint computations. As usual, checking entailments of the 
form y • ipi =>• \ / • ifjj can be soundly reduced to checking that for each i there 
exists j such that ipi =>• ifjj. 

The key insight of our decision procedure is an idea to use the semantics 
of the separating conjunction to decompose the problem of checking ip =>• ip to 
the problem of checking a set of simpler entailments of the form ipi =>• P^(.. .)— 
where the right-hand side is an inductively-defined predicate—and discharging 
these simpler queries one by one using reduction to the tree automata mem
bership problem. The algorithm proceeds in the three steps described further. 

First, ip and ip are normalised by adding (dis-)equalities implied by their 
pure parts together with the axioms for equality and the semantics of the 
separating conjunction. Moreover, empty list predicates are removed at this 
point and the left-hand side of the entailment is split into a set of disjoint 
subformulae, one for each atom of the right-hand side. Second, every points-to 
atom of the right-hand side is matched with a corresponding points-to atom in 
the left-hand side. Finally, for every remaining inductive predicate P^(...) in 
the right-hand side and the corresponding subformula ipi in the left-hand side, 
the entailment ipi =>• P«(...) is discharged in the following way: The formula 
ipi is translated into a tree T[ipi] that represents the spanning tree of the 
graph described by the formula, extended with routing expressions describing 
relations between nodes that had an edge between them in the graph but miss 
an edge in the spanning tree. For the other side, the predicate Pi is translated 
into a tree automaton A[Pi(...)} encoding trees of all possible unfoldings of 
the predicate P;(. . .) . The entailment p{ P^(...) holds iff T[(pt] € A[Pi(.. .)]• 

Our procedure is complete for formulae speaking about non-nested singly 
as well as doubly linked lists. Moreover, it runs in polynomial time modulo 
an oracle for deciding validity of a Boolean formula. The procedure is in
complete for nested list structures due to not considering all possible ways in 
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Table 3: Running S P E N on entailments between formulae and atoms. 

<P2 n i l n l c l s k l 3 d l l 
<Pl t c l tc2 tc3 t c l tc2 tc3 t c l t c2 t c3 t c l t c2 t c3 

Time [ms] 344 335 319 318 316 317 334 349 326 358 324 322 
Status vld vld inv vld vld inv vld vld inv vld vld inv 
Size of A[ip2[ 6/17 6/15 80/193 9/16 
Size of T[ip{\ 7/7 7/7 6/7 10/9 7/7 6/6 7/7 8/8 6/6 7/7 7/7 5/5 

which targets of inner pointer fields of nested list predicates can be aliased. 
The construction can be easily extended to become complete even in such 
cases, but then it becomes exponential in the size of the inductive predicate 
(which still remains acceptable in practice). 

4.1.1 Experimental Results 

We implemented our decision procedure in a solver called S P E N (SeParation 
logic ENtailment) and applied it to entailment problems ipi =>• ip2 that use 
various recursive predicates. First, we considered the benchmark provided 
in [PR11], which uses only the Is predicate. This benchmark has been used 
in the Is division of the first competition of Separation Logic solvers, SL-
COMP'14. It consists of 292 problems and S P E N solved the full benchmark 
in less than 8 seconds ( C P U time), which is the second time of the division; 
the winner of the division was a specialized solver for the Is predicate, As-
terix [PR13], which spent less than 4 seconds on the benchmark. 

The T A for Is is quite small, and so the above experiments did not eval
uate thoroughly the performance of our procedure for checking entailments 
between formulae and atoms. For that, we further considered the experiments 
listed in Table 3. The full benchmark includes the 43 problems of the division 
"fixed definitions" of SL-COMP'14. The entailment problems are extracted 
from verification conditions of operations like adding or deleting an element 
at the start, in the middle, or at the end of various kinds of list segments. 
Table 3 gives for each example the running time, the valid/invalid status, and 
the size of the tree encoding (in the form "nodes/edges") and T A (in the form 
"states/transitions") for ipi and ip2, respectively. S P E N was the winner in this 
division of SL-COMP'14 (in front of [BGP12, CDNQ12]) and it was the only 
tool that solved all problems of this division. 

4.2 WS1S 
Weak monadic second-order logic of one successor (WS1S) is a powerful, con
cise, and decidable logic for describing regular properties of finite words. De
spite its N O N E L E M E N T A R Y worst case complexity, it has been shown 

16 



useful in numerous applications. Most of the successful applications were due 
to the tool M O N A [EKM98], which implements a finite automata-based de
cision procedure for WS1S and WS2S (a generalisation of WS1S to finite bi
nary trees). Despite many optimisations implemented in M O N A , the worst 
case complexity of the problem sometimes strikes back. Authors of meth
ods using the translation of their problem to WS1S/WS2S are then forced 
to either find workarounds to circumvent the complexity blowup, such as 
in [MQ11], or, often restricting the input of their approach, give up trans
lating to WS1S/WS2S altogether [WMK11]. 

The decision procedure of M O N A works with deterministic automata; it 
uses determinisation extensively and relies on minimisation of deterministic 
automata to suppress the complexity blow-up. The worst case exponential 
complexity of determinisation, however, often significantly harms the perfor
mance of the tool. Recent works on efficient methods for handling nonde-
terministic automata suggest a way of alleviating this problem, in particular 
works on efficient testing of language inclusion and universality of finite au
tomata [WDHR06, ACH+10] and size reduction [ABH+08] based on a simula
tion relation. Handling nondeterministic automata using these methods, while 
avoiding determinisation, has been shown to provide great efficiency improve
ments in [BHH+08] (ARTMC) and also [HHR+12] (shape analysis). In this 
chapter, we present a work that makes a major step towards building the entire 
decision procedure of WS1S on nondeterministic automata using similar tech
niques. We propose a generalisation of the antichain algorithms of [WDHR06] 
that addresses the main bottleneck of the automata-based decision procedure 
for WS1S, which is also the source of its N O N E L E M E N T A R Y complexity: 
elimination of alternating quantifiers on the automata level. 

More concretely, the automata-based decision procedure translates the in
put WS1S formula into a finite word automaton such that its language repre
sents exactly all models of the formula. The automaton is built in a bottom-
up manner according to the structure of the formula, starting with predefined 
atomic automata for literals and applying a corresponding automata opera
tion for every logical connective and quantifier (A, V,->,3). The cause of the 
N O N E L E M E N T A R Y complexity of the procedure can be explained on an 
example formula of the form ip' = V X m 3 X m _ i . . . V A ^ X i : PQ. The universal 
quantifiers are first replaced by negation and existential quantification, which 
results in ip = - i 3 X m - i 3 X m _ i . . . - G A ^ - G X i : ipQ. The algorithm then builds 
a sequence of automata for the sub-formulae tpo, </?o, • • •, Pm-i, ^ L - i ' = P 
of tp, where for 0 < i < m, we have ip\ = 3JQ + i : pi and pi+\ = ~^p\. Every 
automaton in the sequence is created from the previous one by applying the au
tomata operations corresponding to negation or elimination of the existential 
quantifier, the latter of which may introduce nondeterminism. Negation ap-
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plied on a nondeterministic automaton may then yield an exponential blowup: 
given an automaton for if;, the automaton for is constructed by the classi
cal automata-theoretic construction consisting of determinisation by the subset 
construction followed by swapping of the sets of final and non-final states. The 
subset construction is exponential in the worst case. The worst case complex
ity of the procedure run on ip is then a tower of exponentials with one level for 
every quantifier alternation in cp; note that we cannot do much better—this 
N O N E L E M E N T A R Y complexity is an inherent property of the problem. 

Our algorithm works on a ground formula ip in the prenex form and is an 
optimisation of the construction presented in the previous paragraph. We use 
the following property of the construction: ip is valid iff Am, the automaton 
representing the formula ipm = ip, contains an initial state that is also final, 
i.e. Im fl Fm ^ 0 for the set of initial states Im and the set of final states Fm. 
The automaton for the matrix ipo is constructed in the standard manner. For 
processing the prefix - G X m - i 3 X m _ i . . . - G J ^ - d X i , we perform the sequence 
of projections and complementations (corresponding to existential quantifiers 
and negations) symbolically and compute only the sets Im and Fm of Am. 

Computing the set Im is easy: it is simply an m-level hierarchy of singleton 
sets {{• • • {Io} • • • }} (this follows from subset construction and the fact that 
neither projection nor complementation change initial states of automata). 
On the other hand, computing the set Fm is more difficult due to two rea
sons: (i) projection can make some predecessors of final states also final, and 
(ii) after determinisation and complementation, the final states of the resulting 
automaton are "swapped." Despite these difficulties, we developed an efficient 
symbolic representation of sets of final states using a hierarchy of upward and 
downward closed sets, and also algorithms for computation of predecessors of 
the sets using the symbolic representation and testing intersection of the sets 
with the set of initial states. In addition to this, we further proposed an ap
proach for testing subsumption between symbolically represented sets, which 
is a generalisation of the antichain approach from the domain of testing uni
versality and inclusion of finite automata. This subsumption relation is used 
for pruning the symbolic representations of states on all levels of the hierarchy. 

4.2.1 Experimental Results 

We implemented a prototype of the above presented approach in the tool 
dWiNA and evaluated it in a benchmark of both practical and generated ex
amples. The practical formulae for our experiments were obtained from the 
shape analysis of [MQ11]; the results are shown in Table 4a. We measure 
the time of runs of the tools for processing only the prefix of the formulae. 
We can observe that w.r.t. the speed, we get comparable results; in some cases 
dWiNA is slower than M O N A , which we attribute to the fact that our prototype 
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Table 4: Results of experiments for our WS1S decision procedure 

a) Results for practical formulae b) Results for generated formulae 
Benchmark 

Time [s] Space [states] 
Benchmark 

MONA dWiNA MONA dWiNA 
reverse-before- loop 0.01 0.01 179 47 
i n s e r t - i n - l o o p 0.01 0.01 463 110 
bubblesor t -e l se 0.01 0.01 1285 271 
r eve r se - i n - l oop 0.02 0.02 1311 274 
b u b b l e s o r t - i f - e l s e 0.02 0.23 4 260 1040 
b u b b l e s o r t - i f - i f 0.12 1.14 8 390 2 065 

k 
Time [s] Space [states] 

k MONA dWiNA MONA dWiNA 
1 0.11 0.01 10 718 39 
2 0.20 0.01 25 517 44 
3 0.57 0.01 60 924 50 
4 1.79 0.02 145 765 58 
5 4.98 0.02 349 314 70 
6 00 0.47 00 90 

implementation is, when compared with M O N A , quite immature. Regarding 
space, we compare the sum of the number of states of all automata generated 
by M O N A when processing the prefix of ip with the number of symbolic terms 
generated by dWiNA for processing the same. We can observe a significant 
reduction in the generated state space. 

To better evaluate the scalability of our approach, we created several pa-
rameterised families of WS1S formulae. In Table 4b, we give the results for 
one of the families where the basic formula expresses existence of an ascending 
chain of n sets ordered w.r.t. C. The parameter k stands for the number of 
alternations in the prefix of the formulae. 

5 Efficient Techniques for Manipulat ing Non-
deterministic Tree Automata 

Recently, there has been notable progress in the development of algorithms for 
efficient manipulation of nondeterministic TAs, more specifically, in solving the 
crucial problems of automata reduction [ABH +08] and of checking language 
inclusion [TH03, BHH+08, ACH+10]. As shown e.g. in [BHH+08], replacing 
deterministic automata by nondeterministic ones can—in combination with 
the new methods for handling TAs—lead to great efficiency gains. 

5.1 Downward Inclusion Checking 
In this section, we propose a new algorithm for language inclusion checking 
of TAs that turns out to significantly outperform the existing algorithms in 
most of our experiments. The classic textbook algorithm for checking inclusion 
L(As) Q L(AB) between two TAs As (Small) and AB (Big) first bottom-up 
determinises AB, computes the complement automaton AB of AB (the states, 
called macro states, of which are sets of states of AB), and then checks language 
emptiness of the product automaton accepting L(As) fl L(AB)- This approach 
has been optimised in [TH03, B H H + 0 8 , ACH + 10] by avoiding the construction 

19 



of the whole product automaton (which can be exponentially larger than AB 
and which is indeed extremely large in many practical cases) by constructing its 
states and checking language emptiness on the fly. The optimised algorithm 
is based on starting from the leaf states of both automata and maintaining 
a set of reachable pairs (qs, PB) where qs is a state of As and PB is a set of 
states of AB- New pairs (qs,PB) are generated by taking a tuple of states 
(qi,... ,qn) such that every qi appears in some reachable pair (qi,Pi) and qs 
is a bottom-up post of the tuple in As over some symbol a. The set PB is 
then obtained as the bottom-up a-post in AB of all tuples in Pi x • • • x Pn. 
In case qs is a root state and PB, on the other hand, contains no root state, 
the algorithm terminates with the answer L(As) % L(AB) (this corresponds 
to finding a witness of non-emptiness of the set L(As) H L(AB))- If no new 
pair can be generated, the algorithm concludes that L(As) ^ L(AB)-

The particular optimisation used in [TH03, BHH+08, ACH+10], called the 
antichain principle, is based on removing from the set of reachable pairs those 
pairs (qs, PB) for which there is already a reachable pair (qs, P'B) in the set, 
with P'B C PB. The argument why this pruning is correct is that P'B has 
a higher chance to generate a set of states that contains no root state. On the 
other hand, for every set of states reachable from P'B, there will be a corre
sponding larger (w.r.t. inclusion) set of states reachable from PB, so if the set 
reachable from P'B contains a root state r, the set reachable from PB will also 
contain r. This can be even more optimized by the approach of [ACH +10], 
which uses the upward simulation relation to weaken the conditions for re
moving a pair from the set of reachable states. The mentioned optimisations 
in practice often prove or refute inclusion by constructing a small part of the 
product automaton only. We denote these algorithms as upward algorithms 
to reflect the direction in which they traverse automata As and AB-

The upward algorithms are sufficiently efficient in many practical cases. 
However, they have two drawbacks: (i) When generating the bottom-up post-
image of a set S of macrostates (which are sets of states of AB), all possible n-
tuples of states from all possible products S\X .. .x Sn where Si G S need to be 
enumerated (an optimisation of this was presented in [LSV12]). (ii) Moreover, 
these algorithms are known to be compatible with only upward simulations as 
a means of their possible optimisation, which is a disadvantage since downward 
simulations are often much richer and also cheaper to compute. 

The alternative downward approach to checking T A language inclusion was 
first proposed in [HVP05] in the context of subtyping of X M L types. The in
clusion algorithm is not derivable from the textbook approach and has a more 
complex structure with its own weak points; nevertheless, it does not suffer 
from the two issues of the upward algorithm mentioned above. We generalise 
the algorithm of [HVP05] for automata over alphabets with an arbitrary rank 
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([HVP05] considers rank at most two), and, most importantly, we improve it 
significantly by using the antichain principle, empowered by a use of the cheap 
and usually large downward simulation. In this way, we obtain an algorithm 
that is complementary to and highly competitive with the upward algorithm 
as shown by our experimental results (in which the newly proposed algorithm 
significantly dominates in most of the considered cases). 

Our algorithm uses the following theorem. In the theorem, we conveniently 
exploit the notion of choice functions. Given Pg C QB and a e S, such that 
#a = n > 1, we denote by cf(PB, a) the set of all choice functions / that assign 
an index i, for 1 < i < n, to all n-tuples (q\,..., qn) e QB for which there 
exists a state in Pg that can make a top-down transition over a to (q\,..., qn); 
formally, c/(Pg, a) = {/ | / : downa{PB) { 1 , . . . , 

Theorem 1. Let AS = (Qs,^,As,Rs) and AB = (QB, S, AB, Rb) be TAs. 
For sets Ps C Qs and PB C QB it holds that L(Ps) C L(PB) if and only if 
VPs € Ps, Va e S : if ps -» a ( r b . . . , r # a ) ; 

' downa{PB) = {()} ?/#a = 0, 

V / e c/(Pg, a), 31 < i < #a : L(n) C ( J L ( ^ ) z/ #a > 0. 

u$zdowna{PB) 
f(u)=i 

The main idea of our algorithm is to start from a pair (TS,RB), where 
rs G Ps1, and use a DFS to traverse the pairs in the And-Or tree induced 
by recursive application of Theorem 1, where And nodes correspond to the 
universal quantification V / G cf(PB,a) and Or nodes correspond to the exis
tential quantification 31 < i < #a. When traversing the tree, a branch is cut 
in the case a pair already appearing on the branch is encountered. 

We developed several optimisations of the basic algorithm: (1) We cut 
a branch already in the case when we encounter a pair (qs, Pg) such that 
there is a pair (qs, P'B) for P'B C Pg on the branch (if L(qs) C L(P'B), then it 
will also hold that L(qs) C L(PB)). (2) The algorithm keeps a cache NN for 
pairs (qs,P'B) where it has been proved that L(qs) % L(P'B). If the algorithm 
encounters an element (qs, PB) from NN, it can also cut the current branch 
by using the cached result. Moreover, this can be done even if it encounters 
an element (qs, Pg) where Pg C P'Bl following the reasoning that if L(qs) % 
L(P'B), then also L(qs) % L(PB). The cache NN can be maintained as an 
antichain, i.e. to contain for every state qs of As only those sets P'B that are 
maximal w.r.t. set inclusion. (3) Similar to the previous optimisation, the 
algorithm also keeps a cache IN (again as an antichain, but keeping minimal 
elements in this case) for pairs (qs, P'B) where it has been proved that L(qs) Q 
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Table 5: Results of the experiments with downward inclusion checking 

Algorithm A l l pairs L(A) £ L(B) L(A) C L(B) Algorithm Winner Timeouts Winner Timeouts Winner Timeouts 
down 36.35 % 32.51% 39.85% 26.01% 0.00% 90.80% 
down+s 4.15% 18.27% 0.00% 20.31 % 47.28% 0.00% 
down-opt 32.20% 32.51% 35.30% 26.01% 0.00% 90.80% 
down-opt+s 3.15% 18.27% 0.00% 20.31 % 35.87% 0.00% 
up 24.14% 0.00% 24.84% 0.00% 16.85% 0.00% 
up+s 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

L{P'B). If the algorithm encounters an element (qs,Ps) such that there is 
(QS,PB) £ IN f ° r P'B — PB, it can also cut the current branch by using 
the cached result (if L(qs) C L(P'B), then it will also hold that L(qs) Q 
L(PB)). (4) Finally, we use the following three optimisations that employ a pre-
computed downward simulation relation •< on the states of As and AB and 
rely on the fact that -< is an under-approximation of language inclusion. First, 
we weaken the set inclusion tests X C Y for sets of states X, Y used above to 
the tests X ^ V 3 Y, where X ^ V 3 Y holds iff Vx e X By e Y : x r< y. Second, 
every pair (q$, PB) encountered is minimised in such a way that PB contains 
no two distinct states r, s such that r -< s by removing all simulated states. 
Third, we cut a branch also if we find a pair (q$, PB) such that {qs} PB-

5.1.1 Experimental Results 

Table 5 shows our experimental results. The row down denotes the implemen
tation of our algorithm that uses optimisations 1 and 2 from the previous sec
tion. The row down+s is the extension of down with optimisation 4 (using the 
maximum downward simulation, down-opt is the extension of down with op
timisation 3, and down-opt+s contains all optimisations. The row up denotes 
the implementation of the upward inclusion checking algorithm of [BHH +08], 
and its modification that uses the maximum upward simulation parameterised 
by identity (proposed in [ACH+10]) is marked as up+s. 

We ran our experiments on almost 2 000 T A pairs of different sizes (rang
ing from 50 to 1000 states) with the timeout set to 30 seconds. The ta
ble compares the methods according to the percentage of the cases in which 
they were the fastest when checking inclusion on the same automata pair, 
and also according to the percentage of timeouts. The set of results in the 
column labelled with " A l l pairs" contains data for all pairs, the results be
low "L(A) % L{By are for the pairs A, B where the inclusion does not hold, 
and the column under "L(A) C L(B)" reports on the cases where the inclusion 
holds. The results show that the downward approaches are clearly dominating 
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in significantly more of our test cases. On the other hand, it can be observed 
that for some particular cases, the more complex structure of the downward 
algorithms (which resembles an And-Or tree) causes an unmanageable state 
explosion and the algorithms timeout (in contrast to the upward algorithms, 
which always, though often slowly, terminate). 

5.2 Semi-Symbolic Encoding 
Certain important applications of TAs, such as formal verification of programs 
with complex dynamic data structures [BHRV12] or decision procedures of 
logics such as WS/cS (see Section 4.2), require TAs with very large alpha
bets. Here, the common choice is to use the T A library of M O N A [KMS02] to 
represent transitions of TAs symbolically using multi-terminal binary decision 
diagrams. The encoding of M O N A is, however, restricted to deterministic au
tomata only. This implies a necessity of immediate determinisation after each 
operation over TAs that introduces nondeterminism and may, in turn, easily 
lead to a state space explosion. As a way to overcome this issue, we developed 
a semi-symbolic representation of nondeterministic TAs that generalises the 
one used by M O N A , and we develop algorithms implementing the basic oper
ations on TA: such as union, intersection, removal of top-down and bottom-up 
unreachable states, as well as more involved algorithms for computing simula
tions and for checking language inclusion (using simulations and antichains to 
optimise it) over the proposed representation. 

5.3 A Tree Automata Library 
The techniques presented in the previous text, as well as many other for
mal verification techniques, rely on an efficient underlying implementation of 
TAs, and their success can be hindered by a poor performance of a naive T A 
implementation. Currently, there exist several available T A libraries; they 
are, however, mostly written in OCaml (e.g. Timbuk/Taml [Gen03]) or Java 
(e.g. L E T H A L [CJH+09]) and they do not always use the most advanced algo
rithms known to date. Therefore, they are not suitable for tasks that require 
the available processing power be utilised as efficiently as possible. A n excep
tion from these libraries is M O N A but, alas, it supports binary deterministic 
TAs only. At the same time, it turns out that determinisation is often a very 
significant bottleneck of using TAs, and a lot of effort has therefore been in
vested into developing efficient algorithms for handling nondeterministic TAs 
without a need to ever determinise them. 

In order to allow researchers focus on developing verification techniques 
rather than reimplementing and optimising a T A package, we developed V A T A , 
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an easy-to-use open source library for efficient manipulation of nondeterminis-
tic TAs. V A T A supports many of the operations commonly used in automata-
based formal verification techniques over two complementary encodings: ex
plicit and semi-symbolic. The explicit encoding is suitable for most applica
tions that do not need to use alphabets with a large number of symbols. On the 
other hand, the semi-symbolic encoding is suitable for applications that make 
use of such alphabets. 

At the present time, the main application of the structures and algorithms 
implemented in V A T A for handling explicitly encoded TAs are the Forester tool 
described previously and the tools implementing TA-based decision procedures 
for separation logic: S P E N (see Section 4.1) and S L I D E [IRV14]. The semi-
symbolic encoding of TAs has been used in our decision procedure for WS1S 
in Section 4.2 (where we use unary TAs in the place of finite automata). 

5.3.1 Experimental Results 

In order to illustrate the level of optimisation that has been achieved in V A T A 

and that can be exploited in its applications, we compared its performance 
against Timbuk for union and intersection of more than 3 000 pairs of TAs. 
On average, V A T A was over 20 000 times faster on union and over 100 000 times 
faster on intersection. The comparison of the implemented inclusion checking 
algorithms can be found in Section 5.1. 

6 Conclusions and Future Directions 
In this section, we summarise the main contributions of the thesis and discuss 
possible further research directions. 

6.1 A Summary of the Contributions 
The main focus of this thesis was on improving the state of the art in shape 
analysis. This high-level goal was addressed by contributions in the following 
three areas. In the first area of forest automata-based shape analysis, we de
veloped an extension of the analysis proposed in [HHR+12] that allows it to 
run fully automatically, without user intervention. The extension is based on 
learning boxes, i.e. lower-level forest automata describing repeated substruc
tures of the considered complex dynamic data structure, which needed to be 
provided by the user in the original analysis. The boxes are inferred automat
ically from the structure of the sets of heap graph that occur during the run of 
the analysis. Moreover, we extended the analysis even further by considering 
the relations between the data stored in the heap cells. We trace ordering 
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relations between the data stored, which allows us to verify programs such 
as various sorting algorithms (bubblesort and insertsort over lists), programs 
with binary search trees, or programs with skip lists of two and three levels. 

In the second area, which focused on the development of decision proce
dures for various logics, we proposed the following two procedures: First, we 
proposed a decision procedure for testing entailment in a fragment of sep
aration logic that contains various flavours of lists that appear in practice. 
The decision procedure is based on decomposing the whole entailment query 
into several lower-level queries and deciding those by translating them into 
the T A membership problem. Second, we proposed a decision procedure for 
testing validity of WS1S formulae. The decision procedure is based on trans
forming the formula to be decided into the prenex normal form, constructing 
a finite automaton for the matrix of the formula, and, finally, processing the 
prefix of the formula using a technique that is a generalisation of the antichain 
principle from testing universality and language inclusion of finite automata. 

In the third area focusing on finding new and improving existing tech
niques for manipulating nondeterministic TAs, we contributed by the following 
results. We developed a new technique for testing language inclusion that is 
based on a downward traversal through the automaton. We further augmented 
the basic technique with the use of antichains and simulations, and also pro
posed more advanced optimisations. According to our experiments, the tech
nique performs often better than the so far used upward inclusion checking, 
which is based on upward determinisation of the automaton. Moreover, we 
also proposed a semi-symbolic encoding of nondeterministic TAs and devel
oped algorithms for automata operations (including some more advanced like 
computing the maximum downward simulation relation on the states of the 
automaton, or checking language inclusion of a pair of automata) over this 
encoding. Our work in exploring efficient techniques for handling nondeter
ministic TAs culminated in the development of the V A T A library, where these 
techniques are implemented, and which is, as far as we know, currently the 
most efficient library for manipulating nondeterministic TAs available. 

6.2 Further Directions 
There are many interesting directions of further work. In the area of automata-
based shape analysis, an interesting direction is to consider a more general no
tion than the currently used formalism of forest automata. One option would 
be to remove the restriction that the boxes cannot be recursive. Such a change 
would increase the expressive power of forest automata, allowing them to ex
press such data structures as trees with linked leaves or skip lists of an ar
bitrary height. On the other hand, the box folding and learning algorithms 
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would need to be significantly re-designed. Another option would be to adopt 
a different model, based e.g. on the encoding of inductive higher-order predi
cates used in the decision procedure for separation logic of Iosif et at [IRV14]. 
In any case, we wish to extend the forest automata-based shape analysis with 
a counterexample-guided abstraction refinement ( C E G A R ) loop and use pred
icate language abstraction on the forest automata instead of the coarse finite 
height abstraction used now. We believe that the use of the more refined 
abstraction should allow us to verify some data structures that we currently 
cannot handle due to the abstraction used, such as red-black trees. 

A further interesting future direction is the development of an approach 
that would allow verification of memory allocators (such as the ptmalloc() 
allocator used in the g l i b c library), which is a truly challenging task due 
to the complex overlaid shape of the used data structures. A more general 
representation would also be needed for the verification of some concurrent 
programs with dynamic memory, e.g. lock-free implementations of concurrent 
skip lists. In this setting, the invariant of the sequential skip list, which we are 
currently able to infer, is broken in this particular lock-free concurrent setting, 
and forest automata, as defined, cannot represent it. Nevertheless, we plan to 
apply the shape analysis to verification of concurrent programs, combining it 
e.g. with the ideas of Abdulla et al [AHH +13]. 

Regarding our decision procedure for separation logic, in future, we wish 
to continue with extending its generality. In particular, we would like to 
weaken the limitations on the Boolean structure of the formulae, and, more
over, we would also like to explore whether it is possible to combine it with 
the decision procedure from [IRV14], which considers more general inductive 
definitions. For the decision procedure for WS1S, there are several possibili
ties. We wish to extend the decision procedure to WS/cS for an arbitrary k 
by the use of TAs and, probably, an algorithm with a structure similar to the 
structure of the algorithms for downward language inclusion testing of nonde-
terministic TAs that were presented in the thesis. We also plan to generalise 
our notion of symbolic terms in the algorithm to reduce the number of states 
of the automaton for the matrix of a formula. We believe that our proposed 
decision procedure is only the start of a new research direction searching for 
techniques for efficiently deciding WS/cS formulae, combining heuristics from 
both automata theory and formal logic. 

Even though the methods for manipulating nondeterministic finite tree 
(and word) automata have seen a great advance in the recent years, as shown 
by a recent algorithm for testing equivalence and inclusion of nondeterministic 
finite word automata of Bonchi and Pous [BP13], there is still a space for 
improvement. We wish to generalise their algorithm to testing inclusion of 
nondeterministic TAs. We also wish to keep exploring yet other possibilities 
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for reducing the state space in checking language inclusion of nondeterministic 
finite and tree automata. Furthermore, one of our future goals is to develop 
an efficient technique for reducing nondeterministic finite automata, both for 
words and trees, going beyond the capabilities of the techniques based on 
the simulation equivalence. In the area of symbolic representation of finite 
word and tree automata, we wish to explore different encodings, suitable for 
particular needs, such as for the use in the decision procedures of various logics 
(e.g. WS/cS) or for the verification of hardware. 

6.3 Publications Related to this Thesis 
The results presented in this thesis were originally published in the following 
papers. The automated approach for learning boxes in the forest automata-
based shape analysis, together with the refined technique for abstraction ap
peared in [HLR +13]. The data extension of the technique was published 
as [AHJ +13] (and later extended in [AHJ +15]). The decision procedures for 
separation logic was published in [ELSV14], and the decision procedure for 
WS1S has been accepted to appear as [FHLV15]. Our algorithms for ma
nipulating nondeterministic TAs were published in [HLSV11] (the downward 
inclusion checking and the algorithms for the semi-symbolic representation), 
and the description of V A T A appeared in [LSV12]. 

Bibliography 
[ABH +08] Parosh Aziz Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati, 

and Tomáš Vojnar. Computing simulations over tree automata: 
Efficient techniques for reducing tree automata. In Proc. of 
TACAS'08, volume 4963 of LNCS, pages 93-108. Springer, 2008. 

[ACH +10] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr, 
and Tomáš Vojnar. When simulation meets antichains (on check
ing language inclusion of NFAs). In Proc. of TACAS'10, volume 
6015 of LNCS, pages 158-174. Springer, 2010. 

[AHH +13] Parosh Aziz Abdulla, Frederic Haziza, Lukáš Holík, Bengt Jons-
son, and Ahmed Rezine. A n integrated specification and verifica
tion technique for highly concurrent data structures. In Proc. of 
TACAS'13, volume 7795 of LNCS, pages 324-338. Springer, 2013. 

[AHJ +13] Parosh Aziz Abdulla, Lukáš Holík, Bengt Jonsson, Ondřej Lengál, 
Cong Quy Trinh, and Tomáš Vojnar. Verification of heap manipu
lating programs with ordered data by extended forest automata. In 

27 



Proc. ofATVA '13, volume 8172 of LNCS, pages 224-239. Springer, 
2013. 

[AHJ +15] Parosh Aziz Abdulla, Lukáš Holík, Bengt Jonsson, Ondřej Lengál, 
Cong Quy Trinh, and Tomáš Vojnar. Verification of heap manip
ulating programs with ordered data by extended forest automata. 
Acta Informatica, 2015. Accepted for publication. 

[BBH +11] Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, 
Pierre Moro, and Tomáš Vojnar. Programs with lists are counter 
automata. Formal Methods in System Design, 38(2): 158-192, 
2011. 

[BCC +07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, 
Peter W. O'Hearn, Thomas Wies, and Hongseok Yang. Shape 
analysis for composite data structures. In Proc. of CAV'07, volume 
4590 of LNCS, pages 178-192. Springer, 2007. 

[BGP12] James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl 
Petersen. A generic cyclic theorem prover. In Proc. of APLAS'12, 
volume 7705 of LNCS, pages 350-367. Springer, 2012. 

[BHH +08] Ahmed Bouajjani, Peter Habermehl, Lukáš Holík, Tayssir Touili, 
and Tomáš Vojnar. Antichain-based universality and inclusion 
testing over nondeterministic finite tree automata. In Proc. of 
CIAA '08, volume 5148 of LNCS, pages 57-67. Springer, 2008. 

[BHRV06] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and 
Tomáš Vojnar. Abstract regular tree model checking of complex 
dynamic data structures. In Proc. of SAS'06, volume 4134 of 
LNCS, pages 52-70. Springer, 2006. 

[BHRV12] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and 
Tomáš Vojnar. Abstract regular (tree) model checking. In
ternational Journal on Software Tools for Technology Transfer, 
14(2):167-191, 2012. 

[BP13] Filippo Bonchi and Damien Pous. Checking N F A equivalence with 
bisimulations up to congruence. In Proc. of POPL'13, pages 457-
468. A C M , 2013. 

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A 
unified lattice model for static analysis of programs by construc
tion or approximation of fixpoints. In Proc. of POPL '77, pages 
238-252. A C M , 1977. 

28 



[CDNQ12] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao 
Qin. Automated verification of shape, size and bag properties via 
user-defined predicates in separation logic. Science of Computer 
Programming, 77(9): 1006-1036, 2012. 

[CJH +09] Philipp Claves, Dorothea Jansen, Sezar Jarrous Holtrup, Mar
tin Mohr, Anton Reis, Maria Schatz, and Irene Thesing. The 
L E T H A L library, 2009. Available from http://lethal.source 
forge.net/. 

[DPV13] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. Byte-precise 
verification of low-level list manipulation. In Proc. of SAS'13, 
volume 7935 of LNCS, pages 215-237. Springer, 2013. 

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders M0ller. M O N A 1.x: 
new techniques for WS1S and WS2S. In Proc. of CAV'98, volume 
1427 of LNCS, pages 516-520. Springer, 1998. 

[ELSV14] Constantin Enea, Ondřej Lengál, Mihaela Sighireanu, and Tomáš 
Vojnar. Compositional entailment checking for a fragment of sep
aration logic. In Proc. of APLAS'l^, volume 8858 of LNCS, pages 
314-333. Springer, 2014. 

[FHLV15] Tomáš Fiedor, Lukáš Holík, Ondřej Lengál, and Tomáš Vojnar. 
Nested antichains for WS1S. In Proc. of TACAS'15, volume 9035 
of LNCS, pages 658-674. Springer, 2015. 

[Gen03] Thomas Genet. Timbuk/Taml: A tree automata library, 2003. 
Available from http://www.irisa.fr/lande/genet/timbuk. 

[HHR +12] Peter Habermehl, Lukáš Holík, Adam Rogalewicz, Jiří Simáček, 
and Tomáš Vojnar. Forest automata for verification of heap ma
nipulation. Formal Methods in System Design, 41(1):83-106, 2012. 

[HLR +13] Lukáš Holík, Ondřej Lengál, Adam Rogalewicz, Jiří Simáček, and 
Tomáš Vojnar. Fully automated shape analysis based on forest 
automata. In Proc. of CAV'13, volume 8044 of LNCS, pages 740-
755. Springer, 2013. 

[HLSV11] Lukáš Holík, Ondřej Lengál, Jiří Simáček, and Tomáš Vojnar. 
Efficient inclusion checking on explicit and semi-symbolic tree au
tomata. In Proc. ofATVA'll, volume 6996 of LNCS, pages 243-
258. Springer, 2011. 

29 

http://lethal.source
http://www.irisa.fr/lande/genet/timbuk


[HNR10] Jonathan Heinen, Thomas Noll, and Stefan Rieger. Juggrnaut: 
Graph grammar abstraction for unbounded heap structures. In 
Proc. of TTSS'09, volume 266 of ENTCS, pages 93-107. Elsevier, 
2010. 

[HVP05] Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce. Regular 
expression types for X M L . A CM Trans. Program. Lang. Syst., 27, 
2005. 

[IRS 13] Radu Iosif, Adam Rogalewicz, and Jiří Simáček. The tree width of 
separation logic with recursive definitions. In Proc. of CADE'13, 
volume 7898 of LNCS, pages 21-38. Springer, 2013. 

[IRV14] Radu Iosif, Adam Rogalewicz, and Tomáš Vojnar. Deciding entail
ments in inductive separation logic with tree automata. In Proc. of 
ATVA'U, volume 8837 of LNCS, pages 201-218. Springer, 2014. 

[JJSK97] Jakob L. Jensen, Michael E . J0rgensen, Michael I. Schwartzbach, 
and Nils Klarlund. Automatic verification of pointer programs 
using monadic second-order logic. In Proc. of PLDF97, pages 
226-234. A C M , 1997. 

[KMS02] Nils Klarlund, Anders M0ller, and Michael I. Schwartzbach. 
M O N A implementation secrets. International Journal of Foun
dations of Computer Science, 13(4):571-586, 2002. 

[LGQC14] Quang Loc Le, Cristian Gherghina, Shengchao Qin, and Wei-Ngan 
Chin. Shape analysis via second-order bi-abduction. In Proc. of 
CAV'U, volume 8559 of LNCS, pages 52-68. Springer, 2014. 

[LSV12] Ondřej Lengál, Jiří Simáček, and Tomáš Vojnar. V A T A : A library 
for efficient manipulation of non-deterministic tree automata. In 
Proc. of TACAS'12, volume 7214 of LNCS, pages 79-94. Springer, 
2012. 

[MPQ11] Parthasarathy Madhusudan, Gennaro Parlato, and Xiaokang Qiu. 
Decidable logics combining heap structures and data. In Proc. of 
POPL'll, pages 611-622. A C M , 2011. 

[MQ11] Parthasarathy Madhusudan and Xiaokang Qiu. Efficient decision 
procedures for heaps using S T R A N D . In Proc. of SAS'll, volume 
6887 of LNCS, pages 43-59. Springer, 2011. 

[MS01] Anders M0ller and Michael I. Schwartzbach. The pointer assertion 
logic engine. In Proc. of PLDF01, pages 221-231. A C M , 2001. 

30 



[MTLT10] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. 
Automatic numeric abstractions for heap-manipulating programs. 
In Proc. ofPOPL'10, pages 211-222. A C M , 2010. 

[PR11] Juan Navarro Perez and Andrey Rybalchenko. Separation logic 
+ superposition calculus = heap theorem prover. In Proc. of 
PLDI'll, pages 556-566. A C M , 2011. 

[PR13] Juan Navarro Perez and Andrey Rybalchenko. Separation logic 
modulo theories. In Proc. of APLAS'13, volume 8301 of LNCS, 
pages 556-566. Springer, 2013. 

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable 
data structures. In Proc. of LICS'02, pages 55-74. IEEE, 2002. 

[SRW02] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric 
shape analysis via 3-valued logic. TOPLAS, 24(3):217-298, 2002. 

[TH03] Akihiko Tozawa and Masami Hagiya. X M L schema containment 
checking based on semi-implicit techniques. In Proc. of CIAA '03, 
volume 2759 of LNCS, pages 213-225. Springer, 2003. 

[WDHR06] Martin De Wulf, Laurent Doyen, Thomas A . Henzinger, and Jean-
Frangois Raskin. Antichains: A new algorithm for checking uni
versality of finite automata. In Proc. of CAV'06, volume 4144 of 
LNCS, pages 17-30. Springer, 2006. 

[WMK11] Thomas Wies, Marco Muhiz, and Viktor Kuncak. A n efficient 
decision procedure for imperative tree data structures. In Proc. of 
CADE'll, volume 6803 of LNCS, pages 476-491. Springer, 2011. 

[YLB+08] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, 
Byron Cook, Dino Distefano, and Peter W. O'Fleam. Scalable 
shape analysis for systems code. In Proc. of CAV'08, volume 5123 
of LNCS, pages 385-398. Springer, 2008. 

[ZKR08] Karen Zee, Viktor Kuncak, and Martin C. Rinard. Full functional 
verification of linked data structures. In Proc. of PLDI'08, pages 
349-361. A C M , 2008. 

31 



Curr iculum Vitae 
Personal Data 

Name: Ondfej Lengal 
Nationality: Czech Republic 
Date of birth: February 19, 1986 
E-mail: i l e n g a l @ f i t . v u t b r . c z 
Homepage: http://www.fit.vutbr.cz/~ilengal/ 

Education 

since 2010 Brno University of Technology, Faculty of Information Tech
nology, studying in Ph.D. study programme Computer Sci
ence and Engineering 

2008 2010 Brno University of Technology, Faculty of Information Tech
nology, master's degree in Information Technology, master's 
thesis An Efficient Finite Tree Automata Library 

2005 2008 Brno University of Technology, Faculty of Information Tech
nology, bachelor's degree in Information Technology, bache
lor thesis Automatic Generation of Processing Elements for 
FPGA 

2001 2005 Střední průmyslová škola Zlín, four year high school, spe
cialization in low voltage electronics 

Accomplishments 

9/2010 First place in Master's Thesis of the Year (Diplomová práce 
roku) competition, section Information Safety, System Develop
ment Control Standards, and Interdisciplinary Approaches (Infor
mační bezpečnost, standardy řízení vývoje systémů a mezioborové 
přístupy) 

6/2010 Dean's prize for master's thesis 
5/2010 E E I C T student competition, Brno, paper An Efficient Finite Tree 

Automata Library, first place in category Intelligent Systems, mas
ter section 

10/2009 Prize of Zdena Rábová 
11/2008 A C M Student Research Competition, Praha, paper Automatic 

Generation of Processing Elements for FPGA, final round 
5/2008 E E I C T student competition, Brno, paper Automatic Generation 

of Processing Elements for FPGA, first place in category Graphics 
and Computer Systems, bachelor section 

5/2007 G E Foundation Scholar-Leaders scholarship 

32 

mailto:ilengal@fit.vutbr.cz
http://www.fit.vutbr.cz/~ilengal/


Work Experience 

2008 2009 C E S N E T z.s.p.o., programmable hardware developer 
2/2006 11/2006 Tribim s.r.o., developer and maintainer of information 

systems 

Research Activities 

since 2010 Member of VeriFIT, a research group at Faculty of Infor
mation Technology Brno University of Technology that fo
cuses on formal verification. A particular focus on sym
bolic, automata-based methods of automatic verification of 
infinite-state systems, such as programs with complex dy
namic linked data structures, automata-based decision pro
cedures of logics, and techniques for efficient manipulation 
of nondeterministic finite state automata. 

2006 2010 Research and development of hardware-accelerated network 
applications. Participation in the development of state-of-
the-art network applications (such as filtering or monitor
ing) for multi-gigabit networks. 

Language skills 

Czech, English. 

33 



Abstract 
The work presented in this thesis focuses on finite state automata over finite 
words and finite trees, and the use of such automata in formal verification 
of infinite-state systems. First, we focus on extensions of a previously intro
duced framework for verification of heap-manipulating programs—in particu
lar programs with complex dynamic data structures—based on tree automata. 
We propose several extensions to the framework, such as making it fully auto
mated or extending it to consider ordering over data values. Further, we also 
propose novel decision procedures for two logics that are often used in formal 
verification: separation logic and weak monadic second order logic of one suc
cessor (WS1S). These decision procedures are based on a translation of the 
problem into the domain of automata and subsequent manipulation in the 
target domain. Finally, we have also developed new approaches for efficient 
manipulation with tree automata, mainly for testing language inclusion and 
for handling automata with large alphabets and implemented them in a library 
for general use. The developed algorithms are used as the key technology to 
make the above mentioned techniques feasible in practice. 
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