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Abstrakt

Táto práca sa zaoberá vývojom a testovańım konfigurovatělného SPI slave zariadenia,
ktorého hlavným účelom je testovanie reálnych SPI master zariadeńı. Zariadenie je im-
plementované pomocou STM32 mikrokontroléra na vývojovej doske NUCLEO. Medzi
základné funkcionality zariadenia patŕı meranie frekvencie SPI prenosu, stream mód,
ktorý umožńı umožńı presne sledovať, čo pripojené master zariadenie posiela po SPI zber-
nici a LUT mód, ktorý umožňuje nakonfigurovať zariadenie tak, aby odpovedalo prednas-
tavenými odpoveďami na aktuálnu pŕıchodziu správu. Rozš́ırená funkcionalita sa skladá
z EEPROM emulátor módu. V tomto móde sa zariadenia správa ako virtuálna náhrada
reálneho EEPROM zariadenia. Zariadenie je pripojené k poč́ıtaču pomocou sériového
portu a je možné toto zariadenie konfigurovať pomocou python programáterského rozhra-
nia. Zariadenie taktiež hlási každú aktivitu na SPI zbernici tomuto python programátorskému
rozhraniu.

Summary

This thesis deals with the development and testing of a configurable SPI slave device,
the main purpose of which is to test real SPI master devices. The device is implemented
using STM32 microcontroller on NUCLEO development board. The basic functionalities
of the device include measuring frequency of the SPI transmission, stream mode, which
allows the user to accurately monitor what the connected master device is transmitting
over the SPI interface, and LUT mode, which allows the user to configure the device to
respond with preset responses according to the current incoming message. More advanced
functionality consists of an EEPROM emulator mode. In this mode, the device behaves
as a virtual replacement of a real EEPROM device. The device is connected to a personal
computer using a serial port and it is possible to configure the device using a python
programming interface. The device also reports every activity on the SPI interface to this
python programming interface.
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Krejsa, PhD..



Rozš́ırený abstrakt

Motivácia

SPI slave zariadenia sú vo väčšine pŕıpadov rôzne typy senzorov. Preto počas vývinu
ľubovólného produktu, ktorý použ́ıva senzory, je dosť pravdepodobné, že vývojár bude
musieť vyvinúť SPI master zariadenie, ktoré je spojené s týmito SPI slave senzormi.
Jediný reálny spôsob ako otestovať tieto SPI master zariadenia je použǐt logický analyzér,
pretože vývojár nemá pŕıstup do SPI slave zariadeńı a nemôže sa ”pozrieť dovnútra” po-
mocou debugging softvéru alebo niečoho podobného. Testovanie logickým analyzérom má
svoje limitácie. Pomocou logického analyzéra je možné presne sledovať, čo sa deje na SPI
signálových zberniciach, ale hociaká logika zariadenia nemôže byť otestovaná. Aby bolo
možné otestovať logiku SPI master zariadenia, je potrebné použǐt iné SPI slave zariade-
nie. Ciělom tejto práce je vyvinúť toto SPI slave zariadenie, s ktorým je možné testovať
SPI master zariadenia. Bolo by užitočné, aby toto zariadenie bolo možné jednoducho
nakonfigurovať tak, aby základná logika a funkcionalita SPI master zariadeńı mohla byť
otestovaná.

Na detailné testovanie SPI master zariadenia, ktoré slúži na ovládanie jedného konkrétneho
SPI slave zariadenia je potrebné simulovať chovanie reálneho SPI slave zariadenia podrob-
neǰsie a ideálne je potreba vytvorǐt jeho model, ktorý ma podobné až identické chovanie
ako reálne zariadenie. Tento model nie je možné vytvorǐt univerzálnym spôsobom aby
zahŕňal všetky SPI slave zariadenia, preto bolo vybrané jedno reálne SPI slave zariadenie
a bol vytvorený model tohto zariadenia. Účel tohto modelu je taký, aby tento model
mohol byť považovaný za virtuálnu náhradu reálneho SPI slave zariadenia, ktorá má rov-
naké správanie ako reálne zariadenie, môže byť konfigurovatělná a je možné sledovať, čo
sa aktuálne deje vo vnútri tohto zariadenia. Tento model môže byť použitý na vývoj SPI
master zariadenia, keď reálne SPI slave zariadenie je ťažko dostupné.

Ciele

Ciělom tejto práce je vytvorǐt zariadenie, ktoré sa bude chovať ako generické SPI slave zari-
adenie. Je potrebné vyvinúť metódy, s ktorými bude možné nasimulovať najzákladneǰsie
SPI slave funkcionality s jednoduchou konfiguráciou. Ďaľśı ciěl je vybrať jedno reálne
SPI slave zariadenie a rozš́ırǐt vytvorené SPI slave zariadenie o funkcionalitu, ktorá bude
simulovať vybrané reálne SPI slave zariadenie. Vytvorené SPI slave zariadenie by malo
byť konfigurovatelné pomocou programovacieho rozhrania v preferovanom programova-
com jazyku.

Zhrnutie a popis riešenia

Hlavný ciěl tejto práce je vyvinúť testovacie zariadenie pre SPI master zariadenia. Toto
testovacie zariadenie by malo mať univerzálne testovacie schopnosti a taktiež schopnosti
emulovať jedno konkrétne reálne SPI slave zariadenie. STM32F303K8 mikrokontrolér
bol vybraný ako platforma zariadenia. Bola použitá NUCLEO vývojová doska s vy-
braným mikrokontrolérom. Hlavná charakteristika tohto zariadenia je, že toto zariadenie



muśı byť konfigurovatělné pomocou poč́ıtača. Tým pádom je toto zariadenie pripojené k
poč́ıtačovému sériovému portu pomocou UART rozhrania. ST-LINK, ktorý obsahuje NU-
CLEO vývojová doska je použitý ako USB-UART adaptér. Bolo vytvorené python API
a toto API vie komunikovať s embedded zariadeńım. Hlavná úloha API je aplikovať kon-
figuráciu na zariadenie a taktiež pŕıjmať informačné a potvrdzovacie správy z embedded
zariadenia. Potvrdzovacie správy musia byť pŕıjmuté za každým pŕıkazom a musia obsa-
hovať informácie o danom pŕıkaze, inak pŕıkaz nie je validný. Prenosy medzi embedded
zariadeńım a poč́ıtačom obsahujú CRC č́ıslo, ktoré je použité na zistenie chýb prenosu.
YAML súbor je podporovaný z dôvodu jednoduchého formátu konfigurácie. Tento YAML
súbor je vytvorený uživaťelom a presne špecifikuje zvolenú konfiguráciu. Konfigurácia z
YAML súboru je aplikovaná na zariadenie v momente úspešného pripojenia zariadenia k
python API.

Predtým ako boli vyvinuté metódy, ktoré testujú logiku SPI master zariadenia, bola
vyvinutá funkcionalita, ktorá dokáže merať frekvenciu SPI hodinového signálu. Frekven-
cia sa meria pomocou časovača, ktorý zachytáva momenty stúpajúcich hrán hodinového
signálu. Ak sú známe momenty stúpajúcich hrán signálu, je možné spoč́ıtať periódu tohto
signálu a tým pádom aj frekvenciu. Frekvencia sa vypoč́ıta viackrát a výsledná frekvencia
je určená ako módus týchto merańı. Frekvenciu SPI hodinového signálu je možné merať
s dostačujúcim rozĺı̌seńım.

Prvým módom, ktorý testuje logiku SPI master zariadenia je tzv. stream mód. V
stream móde sa žiadne dáta neposielajú zo slave zariadenia, ale dáta sú len pŕıjmané.
Hlavným účelom stream módu je preposielať každý prijatý byte SPI rozhrańım priamo do
python API. Nejaké problémy vznikli z dôvodu rozdielu rýchlost́ı SPI a UART rozhrańı,
ale väčšina problémov bola vyriešená pomocou kruhového buffru s ”head” a ”tail” point-
ermi. Použit́ım tohto buffru sa zaručilo, že preposielanie prijatých bytov sa uskutočnuje
asynchrónne od momentu prijatia daného bytu SPI rozhrańım a taktiež, že všetky byty
sú poslané a žiadny byte nie je stratený.

Ďaľsia metóda testovania základnej logiky SPI mastra je LUT (Look Up Table) mód.
Tento mód dovoluje uživatelovi definovat LUT páry. Jeden LUT pár obsahuje žiadosť,
ktorá bude prijatá SPI rozhrańım od SPI mastra a odpoveď, ktorá bude poslaná z SPI
slave zariadenia poďla toho, aká žiadosť bola prijatá. Tento mód vie fungovať buď v
obojsmernom alebo jednosmernom móde.

Na detailneǰsie testovanie špecifického SPI mastra bolo vybrané jedno reálne SPI slave
zariadenie a bol vyvinutý jeho emulátor. SPI EEPROM pamäť bola vybraná ako prefer-
ované reálne zariadenie. Emulátor bol vyvinutý a ten presne emuluje logické správanie
daného reálneho SPI slave zariadenia. Jedna významná limitácia tohto emulátor zariade-
nia je, že maximálna frekvencia SPI rozhrania emulátora je výrazne menšia ako maximálna
frekvencia SPI rozhrania reálneho zariadenia. Táto limitácia je spôsobená tým, že všetka
vnútorná logika emulátora je riešená vo vnútri interruptov. Táto limitácia nie je braná
ako závažný problém, pretože vyvinuté zariadenie je považované za prototyp. V budúcom
vývoji bude použitý ověla rýchleǰśı mikrokontrolér, čo výrazne zlepš́ı problémovú situáciu.
Taktiež pri merańı tejto limitácie bol predpokladaný nepretržitý ”bit stream”, čo znamená
rovnaké časy medzi bytami ako medzi bitmi. Nepretržitý bit stream je v realite nepravde-
podobný a preto skutočná maximálna frekvencia SPI rozhrania je výrazne vyššia.

Následne boli vyvinuté verifikačné testy a každá funkcionalita bola overená týmito
testami. Výsledky testov boli úspešné a všetky funkcionality fungujú tak ako majú.



Zhodnotenie výsledkov

Všetky dané ciele boli dosiahnuté a v niektorých pŕıpadoch prekročené. Výsledok tejto
práce je zariadenie, ktoré môže byť použité na testovanie existujúcich SPI master zari-
adeńı. Je možné otestovať univerzálne SPI master zariadenia pomocou stream a LUT
módu a taktiež je možné otestovať špecifické SPI EEPROM master zariadenie EEPROM
emulátor módom. Zariadenie je možné konfigurovať pomocou python API.

V budúcom vývoji je možné uplatnǐt pár vylepšeńı. Jedno výrazné vylepšenie pre
stream mód by bolo modifikovať proces posielania informačných správ. Momentálne jedna
správa obsahuje len jeden prijatý byte. Efekt́ıvneǰsie riešenie by bolo, keby jedna správa
obsahovala všetky byty, ktoré neboli doposiǎl poslané. Plán pre EEPROM emulátor
mód je pridať podporu pre viac EEPROM zariadeńı, ideálne vyvinúť nejakú metódu ako
jednoducho definovať univerzálne EEPROM zariadenie.
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great support, motivation and insightful comments. I also would like to thank Jakub
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1. INTRODUCTION

1. Introduction

1.1. Motivation

SPI slave devices are in most cases various types of sensors. While designing any product
that uses sensors, which use SPI interface to communicate, designer will most likely have
to design SPI master device that interfaces with these SPI slave sensors. In order to test
the SPI master devices that are being developed, the only real possibility is to use a logic
analyzer as designer usually does not have access to the SPI slave sensors and cannot
”look” inside them through debugging software or something similar. Testing with a logic
analyzer does have its limitations. It is only possible to see what is happening on data
buses, therefore the designer sees what exactly is being sent and received, but more in-
depth logic of the device cannot be tested. In order to test more in-depth logic, separate
SPI slave device must be used. It would be useful if this separate SPI slave device could
be easily configured in such ways, that basic logic and basic functionality of an SPI master
device could be tested.

For more detailed SPI master device testing, the SPI slave device would have to be
simulated in a more detailed way and possibly a model of this device should be created
with same or very similar behaviour. Second part of the thesis deals with this problem.
This model cannot be created in a universal way to include all SPI slave devices, therefore
one particular real SPI slave device is chosen and simulated. The motivation of this
assignment is to have a virtual replacement of a real SPI slave device that ideally has the
same behaviour as a real SPI slave device and can be configured and ”looked” into by
API running on a PC. This virtual replacement can be used for development of a specific
SPI master, when it is not possible to acquire a real SPI slave device.

1.2. Goals

One of the goals of this thesis is to get acquainted with the characteristics of SPI protocol
and microcontrollers in general. One goal is to create a device, that will act as a general
SPI slave. It is important to design methods that will be able to simulate basic SPI slave
functionalities with simple configuration. The second goal is to choose a real SPI slave
device and expand the already created device with functionality to simulate chosen real
SPI slave device. Created device should be configurable via API running on a PC in a
preferred programming language.
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2. RESEARCH

2. Research
In the main part of the thesis, a device will be designed that has certain functionality

and uses communication protocols such as SPI, UART and methods such as CRC error
checking. This chapter contains descriptions of all the major building blocks that were
needed for device development as well as a few already existing solutions.

2.1. Existing solutions

There are not many solutions for this problem on the market today. Two companies that
stand out in creating devices with similar functionality are Total phase and Diolan.

Total phase

Total phase designed a product with similar functionality with the name of Aardvark
I2C/SPI Host Adapter. The manufacturer claims according to [1] that this product does
not only have SPI functionality, but also can be used as I2C device and can control GPIO
(general purpose input-output) pins. Aardvark I2C/SPI Host Adapter also interfaces with
PC via USB port and can be programmed via API. The main specifications relating SPI
interface are claimed as:

� Master mode up to 8Mbit/s signalling rate.

� Slave mode up to 4Mbit/s signalling rate.

� Full duplex master transmit/receive.

� Asynchronous slave transmit/receive.

More information about this product and more detailed description of SPI slave mode
functionality can be found at the manufacturers official website [1].

Figure 2.1: Aardvark I2C/SPI Host Adapter [1]
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Diolan

Diolan does have an SPI-USB adapter in its product range. One of these types of devices
is a device called DLN-4S. This device can also be used with I2C interface and can
control GPIO pins. The device interfaces with PC through USB and can be controlled
and programmed via API. The main specifications relating SPI interface are claimed
according to [2] as:

� Master mode up to 48Mbit/s

� Slave mode up to 48Mbit/s

� Configurable SPI modes.

More information about this product and more detailed description of SPI slave mode
functionality can be found at the manufacturers official website [2].

Figure 2.2: Diolan DLN-4S device [2]

2.2. Microcontrollers

2.2.1. Overview

Microcontrollers are small computers that are present on a single integrated circuit chip.
Figure 2.3 displays an example of a microcontroller component. The difference between
commercial microprocessors used in personal computers and microcontrollers is that mi-
crocontrollers already contain other components that are needed for successful operation
of processing unit on chip. Microcontrollers usually contain one or more CPU (central
processing unit) cores, some sort of RAM memory and FLASH memory. Also I/O pins are
present and these pins can be used along with ADC/DAC converters, PWM generators
etc. . Figure 2.4 illustrates a block diagram example of a microcontroller die with all the
components. [3]

2.2.2. Main usage

Microcontrollers are mainly used in embedded systems. An embedded system is a system
with some processing unit (microcontroller) that is capable of controlling peripherals that
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Figure 2.3: PIC16F887 microcontroller in 44TQFP package [6]

Figure 2.4: Block diagram of microcontroller components [5]

are also included in this system. The main uses of these peripherals are to monitor and
control some larger mechanical or electrical system. This implies that embedded systems
are part of some larger system. Embedded systems usually control a physical mechanism,
therefore microcontrollers need to be optimized to work in real time. According to esti-
mation in 2009 [4], 98% of all microcontrollers were being used for embedded systems.
[4]

2.2.3. Common types

The two types of microcontrollers that were taken into consideration while choosing a
working platform are microcontrollers manufactured by Atmel Corporation and micro-
controllers manufactured by STMicroelectrics.

Atmel produces ATmega family of microcontrollers that are used on Arduino devel-
opment boards. These boards are used in many learning applications for their very user
friendly integrated development environment (IDE) and also many examples and tutorials
exist for these development boards. Figure 2.5 contains a comparison table between the
two most common ATmega microcontrollers in Arduino platform.

Figure 2.5: Comparison of the most used ATmega microcontrollers in Arduino platform
[19]
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STMicroelectrics produces a lot of different products, but the main competitor of
ATmega microcontrollers is STM32 family of microcontrollers. STM32 microcontrollers
also use standalone IDE for programming which has got more advanced functions such as
real time debugging. In general, STM32 microcontrollers are more capable than ATmega
microcontrollers based on various reasons. Table 2.1 displays the main feature difference
between these two types of microcontrollers.

ATmega STM32

Word length 16bit 32bit

Clock frequency
Lower clock frequency
(16MHz)

Higher clock fre-
quency (Up to 550
MHz)

Memory
Smaller RAM and
FLASH memory

Larger RAM and
FLASH memory

Debugging No debugging Real time debugging

Table 2.1: Comparison of the main features of ATmega and STM32 microcontrollers

2.2.4. Interrupts

MCU devices have functionality called interrupts. Interrupts are event driven and happen
upon some important event. MCU’s main code happens inside a main while loop that
is called periodically by the MCU. The main purpose of an interrupt is to ”jump” away
from this code at a certain time and to execute different code that is specified for every
interrupt. Interrupts are usually triggered by peripherals. Once interrupt is triggered,
MCU saves current place in the code along with all the necessities and enters an interrupt
handler that contains code that needs to be executed. Interrupts can be nested, meaning
interrupt can happen inside another interrupt. Priority can be set for every interrupt
separately in order for MCU to know which interrupt to execute first if multiple are
triggered at the same time. If multiple interrupts of the same priority are triggered,
interrupts will execute in chronological order.

2.2.5. Timer

MCU devices usually contain timers. A timer can do a lot of different things like PWM
generation, input capture on hardware pin or a timer can even be used as a literal timer
for event timing which will be called normal mode. The main function of a timer depends
on its counter. Counter counts or ”ticks” periodically with the same time interval and
the value of the counter is incremented on every counter tick. The time interval of ticks
can be changed as well as the maximum value of the counter. When the counter reaches
its maximum value, the timer can either stop or roll back and start from 0 again. In this
project, timer was used in two modes.
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Input capture mode

In input capture mode, a timers responsibility is to detect rising or falling edge event of
a signal on specified pin and capture the counter value (time) of this event. A timer can
be set up to trigger an interrupt on this event.

Normal mode

In normal mode timer is used for timing. The timer’s counter frequency and maximum
value are set in such ways, that the counter reaches its maximum value in a certain
specified time. Once the counter reaches maximum value, an interrupt is usually triggered
to precisely time events.

2.2.6. DMA

DMA (Direct Memory Access) controller is used for directly connecting peripherals to
memory. The main purpose of this controller is to write data from and to peripherals
instead of the processor. Processing time would otherwise have to be used to operate
basic features of peripherals. Once the address of peripheral and the address of memory
is specified along with the direction of write operation, it is possible to specify the number
of writes to be executed by DMA controller. Once this number of writes is executed, an
interrupt can be set to trigger. Peripherals usually provide a trigger to DMA controller
telling it when to write data. It is possible to set DMA for memory to memory connection,
but that setting is not used in this project.

2.3. SPI

Overview

SPI (Serial Peripheral Interface) is a communication protocol, which is used by microcon-
trollers to communicate with peripheral devices or between each other. Communication
is implemented using synchronous serial bus. The architecture of this protocol relies on
the master-slave relation. For successful SPI transmission one master device must exist
and this master device can be connected to multiple slave devices. It is a masters respon-
sibility to provide a clock signal for transmission and to enable/disable slave devices using
slave select pins which are sometimes referred to as chip select pins. The SPI protocol
uses four data lines.

� SCK (Serial Clock)
This data line is used as a transmission clock. When a master device wants an SPI
transmission to happen, he must generate clock pulses on this line. On rising or
falling edges of this clock (based on mode), MISO and MOSI lines are sampled. The
clock signal is used to synchronize master and slave devices.

� MOSI (Master out, Slave in)
On this line master sends data to a slave device. It is sampled by the slave device
on clock rising or falling edge (based on mode).
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� MISO (Master in, Slave out)
On this line slave sends data to a master device. It is sampled by the master device
on clock rising or falling edge (based on mode).

� SS (Slave select)
This line describes which slave is currently active. Only one slave can be active at
a certain time. This line is active low.

SPI modes

SPI can be setup in four modes (Mode 0, 1, 2, 3). These modes describe how and when a
clock signal is sampled, meaning moment when data are actually being read from MISO
and MOSI lines. These modes are described with two boolean values:

� CPOL (Clock polarity)
This value describes the polarity of a clock signal while in idle. If this value equals
to zero, the idle value of a clock signal is logic LOW. If this value equals to one, the
idle value of a clock signal is logic HIGH.

� CPHA (Clock phase)
This value describes the phase of a clock signal, meaning when is data sampled. If
this value equals to zero, a clock pulse is sampled on the first edge of a clock pulse.
If this value equals to one, a clock pulse is sampled on the second edge of a clock
pulse.

Table 2.2 describes which SPI mode belongs to which CPOL and CPHA values. Figure
2.6 illustrates data sampling in each SPI mode and also displays a complete time diagram
of an SPI one byte transmission.

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

Table 2.2: SPI modes
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Figure 2.6: SPI timing diagram [8]

Multiple slave connection

In case when multiple slave devices need to be used, a connection must be made as is
illustrated in figure 2.7. All devices share same CLK, MISO and MOSI line, but every
slave device must have a separate slave select line. By controlling these slave select lines,
a master can choose which slave is currently active. Only one slave can be active at one
time, otherwise slave devices would interfere on MISO line.

Figure 2.7: SPI multiple slaves connection [7]

2.4. UART

Overview

UART (universal asynchronous receiver-transmitter) is a hardware device for asynchronous
serial communication. This device is mostly used in computer serial ports. Contrary to
an SPI transmission protocol, UART uses asynchronous transmission, meaning there is no
clock signal to synchronize transmitting and receiving devices. This means that data lines
cannot be simply sampled on a clock pulse and need some other form of synchronization.
Due to this reason, for successful transmission a certain driver needs to be used on both
sides to synchronize and decode data.
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Data format

Figure 2.8 displays a typical UART one byte packet. Packet consists of a start bit to
synchronize the transmitting and receiving devices, five to nine bits of the actual data,
an optional parity bit and one or two stop bits. A parity bit is used for error checking
and can be set for odd or even parity, meaning that this parity bit is generated so that
the total number of logical HIGH bits have to be odd or even in a packet. Stop bits are
used to mark the end of transmission.

Figure 2.8: UART packet [9]

Data timing

Every UART device has 2 data lines:

� TX used for transmitting data.

� RX used for receiving data.

Both these lines are in logical high state at idle. UART devices can be set to different
data rates. For successful transmission, both the transmitting and the receiving devices
must be set to the same data rate. This guarantees that data will be sampled at the
correct time. UART device contains an internal clock source which runs at a multiple of
data rate. UART usually also contains two FIFO shift registers. One for the TX line and
one for the RX line.

Transmitting

Transmitting is fairly simple. There is no need for any synchronization based on the line
state, so device loads data to TX shift register, generates start bit, outputs all data from
the TX shift register, generates an optional parity bit and lastly generates stop bits. All
this is outputted on the TX line at correct times based on set data rate. After a valid
start bit is generated, an internal clock is used to time next data change so it corresponds
to set data rate.

Receiving

Receiving is a little bit more complicated. To receive data, the device must know when to
sample data, therefore it needs to synchronize with the RX line. For this synchronization,
a start bit is used. In order for a start bit to be declared valid, it must last at least half
of the bit time. Once a valid start bit are detected, an internal clock is used to time data
sampling. Data is sampled in the middle of each bit time and shifted into the RX shift
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register. For this reason it is important that both transmitting and receiving devices run
at the same data rate so that the internal clocks get correctly synchronized and data is
sampled at the right times. After set number of bits and a valid stop bit is detected,
data from the RX shift register is made available to the receiving system. Usually a flag
is generated indicating successful data receive. Figure 2.9 illustrates a timing diagram of
data transfer and how data is sampled by the receiving device. [10]

Figure 2.9: UART timing diagram [10]

2.5. CRC

Overview

In many data transfers, errors can occur. There can be a lot of different types of errors,
for example errors due to environment noise, bad connections or faulty devices. It is
common that data transmissions include redundant data, which can be used to error
check the whole data frame. One of the simplest error check is a parity bit. A parity
bit simply completes data packet, so that the total logical HIGH bits in this packet are
either odd or even based on the configuration. This method is the simplest kind of error
check and cannot reliably detect errors. For more advanced error checking CRC (Cyclic
Redundancy Check) can be used. This method is used in a lot of transmission protocols
(Bluetooth, Ethernet etc.). CRC can differ vastly in its configuration (even parity bit
error check can be interpreted as CRC) and can be used for many different use cases. The
principle is that a transmitting device calculates CRC value from data that will be sent
and then appends it to the end of this data. A receiving device calculates the CRC value
of received data and then compares it with the CRC value that was appended to the data
by a transmitting device.

Main parameters

The main difference between CRCs is a bit length. CRC can have a bit length of any
value, but a length of 8, 16, 32, 64 bits is most common. Bit length and the actual
total characteristic of CRC is defined by a polynomial (divider). The highest power of
this polynomial equals to the CRC bit length, while the total length of the polynomial
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is exactly one larger than the CRC bit length. For example, if CRC-8 (CRC with 8 bit
length) is used, the polynomial has length equal to 9 as polynomial equals to x8 + x7 +
x6 +x5 +x4 +x3 +x2 +x1 +x0. To fully define a polynomial, all members of a polynomial
can also equate to 0. To specify and define polynomial for n− bit CRC, a binary number
with n + 1 number of bits is used, where every bit represents value of the corresponding
polynomial member. For example:

� CRC-3 with polynomial 0b1010 :
1 · x3 + 0 · x2 + 1 · x1 + 0 · x0

� CRC-8 with polynomial 0b111000111 :
1 · x8 + 1 · x7 + 1 · x6 + 0 · x5 + 0 · x4 + 0 · x3 + 1 · x2 + 1 · x1 + 1 · x0

Calculation

To calculate the actual CRC value of data, polynomial division is used. First a single
binary number is created from all bits of every byte in data in the correct order, then this
number is divided by a CRC polynomial also defined by a binary number. The remainder
of this division represents the CRC value of data. CRC value has the same bit length
as the CRC bit length. Specific algorithm that describes how exactly this calculation
executes can be found at [12].

2.6. EEPROM memory

Overview

EEPROM (electrically erasable programmable read-only memory) is a type of a non-
volatile (data retention after reboot) memory used for storing data. EEPROM devices
are usually used with computers and microcontrollers. EEPROMs are constructed using
floating gate transistor arrays. The main characteristics of EEPROMs are small data erase
and write blocks and long lifetime. Usually EEPROMs can erase and write to blocks as
small as one byte, this means that EEPROMs are ideal for storing small chunks of data.
Lifetime of EEPROMs can be 1000000 cycles or even more. EEPROMs can be divided
into two groups. One group is using a parallel interface for programming and the other
group is using a serial interface. [13]

Programming interface - parallel

Parallel interface needs a lot more connections as every bit of data and address needs
to have its own data line as well as data lines for a chip select and operation code need
to be present on this device. For example, if a word length was 8 bits and address was
also 8 bits, minimum of 16 lines would need to be connected, which means a minimum
of 16 hardware pins would need to be used on a microcontroller. The advantages of
this interface compared to a serial interface are that it’s faster as all data is transferred
at once. The disadvantages are that the devices need to be a lot bigger because a lot
more hardware pins need to be used. In current times the popularity of parallel devices
decreases rapidly.
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Programming interface - serial

On the other hand, serial devices use a very small number of data lines. The necessary
data lines for synchronous serial communication are clock signal, chip select signal, one
two-directional or 2 one-directional data lines. Data is not transferred all at once as
in parallel devices, but it is transferred one bit at a time, a clock signal is used for
synchronization. For this type of operation, many communication interfaces can be used.
The most common ones are SPI, I2C, Microwire. A general command consists of an op-
code (operation code describing the type of command) followed by an address (if command
uses address) and lastly followed by the actual data either to be written or read.

Instruction set

Six instructions need to be defined for basic EEPROM functionality.

� READ
(Usually 0x3) Read instruction to read data from a specific address. Usually this
command can also read multiple subsequent bytes.

� WRITE
(Usually 0x2) Write that writes data to a specific address. Usually this command
can also write multiple subsequent bytes that are in the same block of memory. For
this command first a write enable command needs to be executed to set a write
enable latch in a status register. In most cases an EEPROM device upon receiving
this command first erases data on the specified address and then after that data is
written.

� Write status register [WRSR]
(Usually 0x1) This command writes data to a status register. The status register is
used for functionality such as block protect, write protect etc. The status register
consists of read only bits and readable/writable bits. This command alters only bits
that are writable.

� Read status register [RDSR]
(Usually 0x5) This command reads data from a status register. This command can
be used to check the current configuration or state of an EEPROM. It is used very
frequently after any WRITE or WRSR command to check the value of write in
progress bit.

� Write enable [WREN]
(Usually 0x6) Write enable command sets the write enable bit in a status register
to logical HIGH value. This action enables WRITE and WRSR commands.

� Write disable [WRDI]
(Usually 0x4) Write disable command sets the write enable bit in a status register
to logical LOW value. This action disables WRITE and WRSR commands.
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3. Detailed goals description
In the Introduction chapter, general goals and motivation were mentioned. In this

chapter specific goals and the way of implementation will be described. This chapter
should mention every main feature that the created device will have. Detailed description
of goals could be interpreted as follows.

Device hardware selection

The first goal is to choose the appropriate hardware, so it does have all the desired
functionality that will be used later in development. The main features of this hardware
should be the ability to connect to a PC via some kind of interface and also to be able
to communicate through SPI interface between other hardware devices. SPI interface
on this hardware should be configurable and should be able to function in all possible
SPI configurations. The maximum baud rate of SPI interface should also be taken into
consideration.

PC connection and programming API

The main feature of this device is that it should interface with a PC. The device should
be configurable via some kind of API running on PC, meaning API should be able to
send commands and receive messages from an embedded device. In order to create this
API, first a connection of embedded device and PC must be made using a communication
interface. After a successful connection is made, the API should be used for loading con-
figuration onto embedded device as well as know the current state of the embedded device
and receive report messages about SPI transmissions that happened. It is important that
every transmission from PC to embedded device or from embedded device to PC is error
checked so that only the correct configuration is loaded into the device and it is known
exactly what is happening on SPI data buses.

Stream mode

Now that the device is connected to a PC that is running API that can program this
device, the actual methods for emulating an SPI slave device and to debug SPI master
device need to be created. The first of these methods is stream mode. In this mode device
will act as receive only SPI slave, meaning no data will be transmitted from this device
through SPI interface. All received data will be directly transmitted (streamed) to an
API running on a PC. The API should decode these messages and display them to the
user. This mode is useful for checking exactly what an SPI master is sending on MOSI
bus and this can resolve a lot of issues in SPI master development. The main problem in
this mode is that SPI interface is faster than chosen interface for PC to embedded device
communication, therefore some method must be developed to stream every byte received
via SPI, otherwise some data would be lost due to interface speed difference.

LUT mode

Stream mode is great for the lowest level debugging of an SPI master, but cannot test
the actual logic of said SPI master. For this LUT mode is designed. Contrary to stream
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mode, this mode can also transmit data through the SPI interface. The main idea of
this mode is that the designed SPI slave device responds to masters requests according
to LUT (look up table). In LUT request-response pairs are stored, meaning user can set
what response embedded device will return for what request that was received from an
SPI master. This mode is useful to test basic SPI master logic. Every SPI transmission
should be reported to API running on a PC. The same problem with an interface speed
difference as in stream mode exists.

Real device emulation mode

LUT mode can test the basic logic of an SPI master device, but cannot emulate existing
SPI slave device completely as usually SPI slave devices are more complex and contain
some sort of state machine and more advanced functionalities. No universal SPI slave
device that could be easily configured to cover every real SPI slave device can be created.
Because of this reason, one specific existing SPI slave device will be chosen and its emulator
created on our embedded device. The main idea behind this mode is that when SPI master
is connected, our device should behave exactly the same as real SPI slave device, so there
is no difference from the masters point of view. Some limitations will naturally occur,
so it is important that these limitations are known and possibly optimized for better
result. This mode will be used when a real SPI slave device cannot be easily acquired
and developer cannot use real device for developing, instead developer can develop an
SPI master device by connecting to the embedded device in emulator mode. Every SPI
transmission or SPI command needs to be reported to an API running on a PC. Same
problem with an interface speed difference as in stream mode exists.

Frequency measurment

All modes described in last sections test logic of an SPI master device. There may be
situations where the hardware characteristics of SPI master need to be tested. One of the
main SPI hardware characteristics is clock frequency. The clock is provided by master so
it could be useful to measure this clock frequency with created SPI slave device. Ideally
frequency should be measured for every SPI transmission and reported to API running
on a PC.

26



4. HARDWARE SELECTION AND . . .

4. Hardware selection and setup
Figure 4.1 illustrates a simple block diagram of the main device connections. The

device will need to be connected to a personal computer via UART interface. The device
will also be connected to another SPI device. This chapter contains a description on how
the hardware was chosen and how it was made operational.

Figure 4.1: Block diagram of the main device connections

4.1. Microcontroller selection

Microcontroller was selected as a preferred type of hardware for various reasons. The
main reasons why microcontroller was selected are:

� All needed functionalities are available

� Relatively easy to program

� Availability of development boards

� Affordable for prototyping

Platform selection

Microcontrollers are available in a lot of different platforms with different architecture,
IDEs and abilities. Few of them are described in the Research chapter. For this project,
the STM32 platform was chosen. The STM32 family of MCUs is made by STMicroelectrics
company. This 32 bit family of microcontrollers uses ARM CORTEX-M core (processor)
and can be used for a very wide variety of applications. The IDE for MCU programming is
called STM32CubeIde along with STM32CubeMx. These programs include features such
as real time debugging, where user can ”go through” the code step by step and more. For
programming and debugging, MCU has to be connected to a PC through ST-LINK which
is a programmer/probe made by STMicroelectrics. More about this family of MCUs can
be found at [14].

Model selection

As was mentioned before, STM32 family of MCUs has got a wide range of MCUs that
are each optimized for a different use case. It is important to choose a specific MCU
model that will suit the desired application. For this specific application, the STM32F3
family of microcontrollers was chosen, more specifically STM32F303 MCU. Figure 4.2
displays different models of MCUs in STM32F3 family and more information about this
MCU family can be found at [15]. The STM32F303 MCU was chosen. This MCU comes
in different variants and packages. In the process of choosing a specific MCU, multiple
attributes were taken into consideration such as clock frequency, memory capacity, SPI
interface configurability and ability, development board availability. Figure 4.3 displays
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all different variants of STM32F303 MCU and more information about this MCU can be
found at [16].

Figure 4.2: STM32F3 family of microcontrollers [15]

Figure 4.3: STM32F303 variants of microcontrollers [16]

In the end STM32F303K8 variant was chosen. This variant comes in a 32 pin package,
which is enough for this application and is on the lower side regarding memory size,
which proved to be just enough for this project. For future development and adding more
features, the STM32F303RE MCU variant will be used.

Development board

Microcontrollers are constructed as a single chip and cannot be used by themselves, there-
fore some kind of PCB (Printed Circuit Board) needs to be used that contains desired
microcontroller. For complex projects, a custom PCB has to be designed, but for ed-
ucational purposes and prototyping, STMicroelectrics makes development boards called
NUCLEO. These boards contain all the necessary components for proper MCU operation
as well as an integrated ST-LINK programmer/probe and this board is also a breakout
board for all the functional pins. More information about NUCLEO boards and infor-
mation about which specific MCUs do have their own NUCLEO board can be found at
[17].

NUCLEO-F303K8 board was used as a development board for this project. This
board contains the STM32F303K8 MCU and is very affordable with all the functionalities
needed. Figure 4.4 displays the development board and more info can be found at [18].
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Figure 4.4: STM32F303K8 nucleo development board [18]

4.2. PC connection

First step is to establish connection to a PC. One of the main features of this device is
that every functionality must be controlled from a PC, therefore connecting device to a
PC is one of the main tasks. The device should be configurable from a PC and certain
messages should be sent from the MCU to a PC.

For MCU to PC connection, UART is used. The device will be connected to a USB
serial port located on a PC. UART data lines cannot be simply connected to a USB
serial interface, therefore some kind of UART-USB convertor must be used. One of the
advantages of the NUCLEO development board is that it contains ST-LINK program-
mer/probe. One of the features that ST-LINK has, is that it can create a virtual serial
port on a PC, therefore ST-LINK also acts as a UART-USB converter.

4.3. MCU setup

The first step to initialize MCU is to create a STM32CubeMx file with .io extension and
configure it for the desired purpose in STM32CubeMx software. The configuration is done
in these steps.

Initailizing hardware pins

Figure 4.5 illustrates the pin setup. The debug interface is connected via PA14 and
PA13 pins. UART is connected to pins PA2 and PA15. SPI interface is connected on
pins PB4, PB3, PA4, PA7. Timer input capture pins are PB5, PB0. Pin PB5 is
externally connected to pin PB3. Pin PB0 is externally connected to the pin PA4. For
general purpose debugging, pin PA1 is used as GPIO pin.
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Figure 4.5: Pin initialization

Clock configuration

This NUCLEO board does not have an external oscillator, therefore the internal oscillators
must be used. The MCU has high speed and low speed oscillators. High speed is 8MHz and
low speed is 40kHz. The internal high speed oscillator will be used along with prescalers
and clock multipliers to create the main CPU clock (HCLK). HCLK is set to the maximum
value possible without an external oscillator and this value is fHCLK = 64MHz. Figure
4.6 displays the complete clock configuration. In this figure also other clocks such as an
advanced peripheral bus clocks can be seen.
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Figure 4.6: MCU clock diagram

Code generation and drivers

Next step is to generate code. STM32CubeMx generates code with all the needed registers
initializations based on the .ioc file. In this generated project, the user code can be written.
For most of the functionalities, the HAL (Hardware Abstraction Layer) drivers [20] will
be used apart from SPI, where after optimization, the LL (Low Layer) drivers [20] will be
used. The user can either modify the registers in own code or use these drivers to control
peripherals and MCU in general.
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5. Basic device functionality
The device will have multiple operational modes. All of these modes need to use

certain features such as communicating through SPI interface, using timer input capture
on hardware pin and more. In this chapter, first the important features are explained
and in the end of this chapter, two specific operational modes are described. The overall
internal structure of the device along with what operational modes exist and how the
device can be configured to enter these modes will be described in chapter 7.1.1.

5.1. Frequency measurement

One of the tasks of this device is to measure the frequency of an SPI clock pin, on which
clock is generated by SPI master. For this task, a timer integrated on the MCU is used
in Input Capture mode.

Theory

The clock signal that is being measured is a square wave signal, which means that it is a
periodic waveform with a fixed frequency. Fixed frequency means that the times between
each pulses are the same. The easiest way to measure frequency of this type of a signal is
to know the exact time between two pulses. A pulse start is detected by the rising edge
of the signal. Assuming the time of the first pulse is known as tfp and the time of the
second pulse is known as tsp, the frequency f can be calculated as f = 1

tsp−tfp
. Figure 5.1

illustrates the shape of square signal and moments of tfp and tsp.

Figure 5.1: Square signal with pulse times

Timer setup

To enable a timer and to set it up for input capture mode, STM32CubeMx settings need
to be changed. Figure 5.2 displays these settings. Only important settings to note are:

� Prescaler
This is a general timer setting. This setting dictates frequency of the timer’s counter.
To determine frequency of timer ftim, first frequency of the advanced peripheral bus
,to which this specific timer is connected, must be known. This value can be read
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from figure 4.6 as APB2 Timer Clocks and its value fAPB is equal to 64MHz.
Lastly the timer frequency can be calculated as ftim = fAPB

Prescaler+1
. In this specific

case, the Prescaler value is equal to 0, therefore ftim = 64000000
1

= 64MHz. This
means that the time between subsequent counter ticks is tcnt = 1

64000000
= 15.625ns.

� Counter Period
This is also a general timer setting. This setting dictates the maximum value of
the counter. Type of this timer’s counter is uint16 t, which means that this setting
needs to be set in the appropriate range : < 0, 65535 >. In this mode, the timer
behaves in such way, that if the counter reaches this value, the counter naturally
rolls back to 0.

� Polarity selection
This is a specific input capture setting. This setting dictates which edge of the
signal does timer capture. There are 3 options for this setting:

– Rising edge
Capture happens on the rising edge event.

– Falling edge
Capture happens on the falling edge event.

– Both edges
Capture happens on the rising and on the falling edge events.

In this specific case, the capture will happen on the rising edge of the signal.

� Prescaler Divisio Ratio
This is a specific input capture setting. This setting dictates how many events need
to happen for a capture to trigger. There are 4 options for this setting:

– No division
Capture happens on every signal event.

– Division by 2
Capture happens once every 2 signal events.

– Division by 4
Capture happens once every 4 signal events.

– Division by 8
Capture happens once every 8 signal events.

In this specific case, a capture will happen once every 2 signal events, meaning that
the time between 2 subsequent clock pulses will not be known, instead the time
between every third pulse will be known and this time corresponds to the time of 2
pulses.
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Figure 5.2: STM32CubeMx input capture timer settings for frequency measurement

After these settings are applied and the code is generated, only things left to do are to
enable the timer’s capture compare channel and enable the timer’s counter. This is done
by modifying the timer register by commands:

TIM17->CCER |= ( 0x01 << 0 ); // capture compare 1 enable

TIM17->CR1 |= ( 0x01 << 0 ); // counter enable

More information about MCU registers can be found in reference manual [reference man-
ual source].

Frequency measurement

Now that the timer is setup in input capture mode, the time between clock pulses will be
measured and the frequency can be calculated. In order to calculate the frequency, the
first two or ideally more of the input capture times need to be stored in the MCU memory.
Timer does not store the capture event times into the memory by itself, but instead on
every capture event, current counter value is stored in the timer register. Upon the next
capture event, previous event counter value is erased.

One of the solution for measuring the frequency would be to use interrupts. The
timer could be set up to trigger an interrupt on every input capture event. For successful
frequency measurement, two interrupts would need to happen. On both interrupts, the
counter value from the timer register would be stored in the MCU memory and on the
second interrupt, frequency would be calculated from the counter values of each interrupt.
This solution was implemented but was quickly proved very inefficient and uneffective. To
enter interrupt, MCU must use valuable processing time and this process is slow compared
to possible SPI clock frequency as the SPI clock frequency on this type of MCU can reach
up to 18 MHz. This solution is good for signals with very low frequency.

The second type of solution, which is used in final design, is to use DMA to store the
input capture data to memory. DMA (Direct Memory Access) controller has direct access
to memory as well as to peripheral registers. DMA and Timer can be setup such that
upon every input capture event, the timer triggers DMA to write the value of the timer
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counter register to memory. Upon every trigger, DMA can increment memory address to
which it is writing. This means that DMA can store multiple input capture events into
subsequent memory locations (array). To implement this solution, first DMA requests on
correct input capture channel need to be enabled in timer registers. This is done by code:

TIM17->DIER |= ( 0x01 << 9 ); // enable capture compare 1 DMA requests

Next to initialize DMA, 3 parameters must be set.

� Memory address
The initial memory address to which DMA will write data. In this mode, this
address will be incremented with every DMA event.

� Peripheral address
The peripheral address from which data will be read and written to memory ad-
dress. In this mode this peripheral address will not increment. For different kind of
application, DMA could be set to increment this peripheral address.

� Number of DMA events
This dictates how many DMA events need to be triggered in order to indicate the
end of DMA action. Upon the end of DMA action, DMA could be set to trigger
interrupt. DMA can be set to circular mode, which means that when this number
of DMA events happen, DMA will not stop, but DMA will continue to work while
the memory address is set to the initial address again. DMA could also be set to
normal mode, which means that after this number of DMA events happen, DMA
will stop and in order to work again, it must be initialized again. In this specific
case, DMA is set to normal mode and interrupt is not set to trigger.

These parameters are set by modifying DMA register as following code illustrates:

hdma->Instance->CCR &= ~(0x01 << 0); // disable DMA

hdma->Instance->CMAR = &hfreq->raw_ccr_data[0]; // set memory address

hdma->Instance->CPAR = &TIM17->CCR1; // set peripheral register adress

hdma->Instance->CNDTR = SPI_FREQ_BUFFER_LEN; // set number of DMA events

hdma->Instance->CCR |= (0x01 << 0); // enable DMA

This solution is very efficient and effective as DMA does not use any MCU processing
time and multiple input capture events can be stored between every frequency calculation,
meaning results can be statistically evaluated.

The frequency measurement needs to be manually restarted and calculated. The
optimal times to restart measurement and calculate need to be determined individually
based on the device mode and should be chosen in such ways, that the frequency is
measured and calculated maximum number of times, ideally for every SPI transmission
report individually.
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Frequency calculation

Once the input capture data is stored in the memory array, clock frequency needs to be
calculated from this data. Data in the array represents current counter tick at which
input capture event happened, therefore the unit of measurement is timer ticks and not
seconds. In order to convert units to seconds, values could be multiplied by the timer’s
time between two ticks, but this would mean more complex calculation. The values
are kept as uint16 t timer counter values and the timer’s frequency will be used in the
frequency calculation to compensate. Calculation can be split into 3 parts:

� Finding time differences
Data represents the time of each input capture event. In order to calculate the
frequency, the time between pulses must be known. In this specific case, the time
of exactly two pulses will be known when calculating the differences between each
subsequent values. Assuming the input capture data are labeled as raw ccr, the
differences (diff) for the whole array are calculated using this equation: diff(n) =
raw ccr(n + 1) − raw ccr(n) for n ∈ {0, 1, ..., array length − 2}. This will give an
array with length one less than the input capture data array. In this array, the
differences of each two subsequent input capture events will be stored.

For example, assuming the input capture data array equals to:
[1000, 2716, 5382, 10714, 13380],
the difference array would be :
[1716, 2666, 5332, 2666]

� Calculating frequencies

While calculating the frequency, two facts need to be taken into consideration. The
first is that the difference array represents the time of two clock pulses and not the
time of one clock pulse. The second fact is that the difference array units are not
seconds, but timer ticks. If these facts are taken into consideration, the equation
for calculating the frequency for each value of the difference array is as follows:
f(n) = ftim

diff(n)
∗ 2 for n ∈ {0, 1, ..., array length − 1}, where f are the values of

frequency in Hz, ftim is the frequency of timer in Hz, diff are the difference values
of input capture events in timer ticks.

In previous example, the difference array is equal to:
[1716, 2666, 5332, 2666] ,
if this equation is applied on this array, the result will be :
[74592, 48012, 24006, 48012]
This array contains calculated frequencies for each input capture event pair in Hz.

� Calculating final frequency
In order to calculate the final one number that represents the value of measured
frequency, frequency array needs to be statistically evaluated. For this a simple
solution was chosen. The final frequency value will be chosen as a mode of the
frequency array. If multiple modes exist, one which frequency appears first in the
array will be chosen.

In previous example, the frequency array is equal to:
[74592, 48012, 24006, 48012]
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By applying this method, the mode and the final calculated frequency value is equal
to 48012Hz.

This method was chosen because the input capture data does not have to be from the
same byte or even the same data frame and the times between bytes and the times
between data frames will most likely be vastly different than the time between bits
(time between clock pulses). The timer’s counter can also overflow in the process of
acquiring input capture data. By using a large enough sample set, these unwanted
measurements will be filtered.

Testing

Table 5.1 displays the measured frequencies for different values of real SPI clock frequen-
cies. Measurment was done in stream mode and the SPI clock frequency was verified using
an osciloscope. In current implementation, input capture array with length 20 is used,
meaning 20 input capture events are triggered between each calculation and 19 different
frequencies are calculated and evaluated.

Real Measured Real Measured

15.6 kHz 15 kHz 3750 kHz 3764 kHz

31.2 kHz 31 kHz 4000 kHz 4000 kHz

62.5 kHz 62 kHz 4500 kHz 4571 kHz

125 kHz 124 kHz 5000 kHz 4923 kHz

250 kHz 249 kHz 5500 kHz 5565 kHz

312.5 kHz 312 kHz 6000 kHz 6095 kHz

500 kHz 500 kHz 6500 kHz 6400 kHz

750 kHz 749 kHz 7000 kHz 7111 kHz

1000 kHz 1000 kHz 7500 kHz 7529 kHz

1250 kHz 1242 kHz 8000 kHz 8000 kHz

1500 kHz 1505 kHz 9000 kHz 9142 kHz

1750 kHz 1753 kHz 10000 kHz 9846 kHz

2000 kHz 2000 kHz 11000 kHz 10666 kHz

2250 kHz 2245 kHz 12000 kHz 11636 kHz

2500 kHz 2509 kHz 13000 kHz 12800 kHz

2750 kHz 2723 kHz 14000 kHz 14222 kHz

3000 kHz 2976 kHz 15000 kHz 14222 kHz

3250 kHz 3282 kHz 16000 kHz 16000 kHz

3500 kHz 3459 kHz 18000 kHz 18285 k Hz

Table 5.1: Frequency measurement test
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*Note: At higher frequencies, if the real value and the measured value are equal, it
does not mean that the frequency measurement is accurate within one Hz or kHz, but
it means that the real frequency happens to be exactly matching to one value that can
be calculated. For example, when measuring the real frequency of 16000 kHz, measured
frequency equals to 16000 kHz as well. This would suggest that the measurement is
absolutely accurate, but in reality, the closest smaller value that could be measured is
14222 kHz and the closest larger value that could be measured is 18285 kHz. This means
that measurement 16000 kHz would be returned for a wider range (approx. 15111 kHz to
17126 kHz).

Discussion and limitations

As can be seen from table 5.1, the frequency measurement works very well for lower
frequencies, but is a little limited for higher frequencies. This is due to poor measurement
resolution at higher frequencies, which is caused by the timer’s frequency. For better
resolution at higher frequencies, the timer’s frequency would need to be much higher.
Overall, the frequency measurement can be classified as successful and its function is
more than adequate for this purpose.

One characteristic of this calculation needs to be taken into consideration while calcu-
lating the frequency. The calculation itself takes relatively long time. For current imple-
mentation with input capture array of size 20, calculation takes approximately 450µs to
execute. This means that calculation needs to happen outside time-critical events such
as interrupts.

One other important characteristic is the measurement range. The absolute minimum
frequency that can be measured in this configuration is fmin = 1953Hz, but in reality
measuring frequencies near this value are not recommended as the difference between
input capture events would need to be same or close to the whole counter range and
the counter would most probably overflow and the measurement would be flawed. The
theoretical absolute maximum frequency that could be measured is fmax = 128MHz, but
this limit is highly unrealistic as the closest lower frequency that could be measured is
f = 64MHz. SPI interface on this MCU can operate with maximum clock frequency
fclock = 18MHz, so this means that no larger frequency shall realistically be measured.
Measuring frequency is still not ideal on the higher side of the measurement range, but it
is considered adequate for this task.

5.2. Methods of SPI transmission using MCU

In order to successfully receive or transmit data via SPI interface, the slave must wait
until clock pulses appear on the clock pin, read data from the MOSI line or transmit data
on the MISO line on these clock pulses and write every byte received into some place in
the MCU memory. The SPI peripheral works one byte at a time, meaning data is read
and stored one byte at a time. After successful byte is received, this byte appears in the
SPI data register (SPI->DR). This register must therefore be read and stored in-between
each byte. There are 3 methods how to accomplish this.
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Receive using blocking mode

SPI can function in blocking mode. In this mode, after the receive (transmit or transmitre-
ceive) function is called, the CPU remains in this function and polls the SPI peripheral
registers until a byte is received. When a byte is received, this byte from the SPI->DR is
stored into the MCU memory and SPI registers are polled again for another byte. This
function terminates after a number of bytes specified by the user were received. Functions
for this method are:

HAL_SPI_Receive(hspi, pData, Size, Timeout); // Only receive

HAL_SPI_Transmit(hspi, pData, Size, Timeout); // Only transmit

HAL_SPI_TransmitReceive(hspi, pTxData, pRxData, Size, Timeout); // Transmit AND Receive

Where hspi is a SPI handle structure, pData is a pointer to the data buffer, pTxData
is a pointer to the transmit buffer from which data will be transmitted, pRxData is a
pointer to the receive buffer where receive data will be stored, Size is the number of bytes
to transmit/receive, Timeout is the time in ms after which this function will terminate
even if specified number of bytes were not transmitted/received.

This method could be used on an SPI master device as it is known exactly when
data will be transferred on the SPI bus, but using it on an SPI slave device is extremely
ineffective and inappropriate for almost any application. The reason being that a slave
device does not control when data is transmitted over SPI bus, therefore times of data
transmissions are not known and by using these functions, CPU would ”freeze” in this
function until SPI master decides to send or receive SPI data. This action would be an
extreme waste of processing time.

Receive using interrupts

If SPI is controlled using the interrupt method, the main principles are the same as in
blocking mode, but the CPU does not wait inside a function and poll the SPI registers,
instead interrupts are used to trigger an action after a byte transmit/receive. This means
that the function just sets up SPI peripheral for transmission and enables interrupt,
therefore CPU is not ”stuck” inside this function. If a successful byte is clocked on
the clock pin, an interrupt is triggered and inside this interrupt, SPI data register is
read and written into the memory receive buffer and also SPI is prepared for next byte
receive/transmit and interrupt flag is cleared. SPI can be set to trigger a different interrupt
after a specified number of bytes were received. Functions for this method are:

HAL_SPI_Receive_IT(hspi, pData, Size); // Receive only

HAL_SPI_Transmit_IT(hspi, pData, Size); // Transmit only

HAL_SPI_TransmitReceive_IT(hspi, pTxData, pRxData, Size); // Transmit AND receive

Where attributes of functions are same as in blocking mode, but Timeout is not needed.
This mode is superior to blocking mode as the CPU is not bound to oversee and wait

for the whole process, instead the process is event driven and in the meantime, when
master is not providing a clock signal, the CPU can do other things. But this method is
not flawless. One thing that can cause problems is the interrupt time. It takes time for
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the CPU to enter and exit interrupts as well as to manage the SPI data register inside
interrupt. This means that the minimum time between bytes can be limited. Another
possible problem could be that in the time of SPI interrupt, the CPU can be doing some
time-critical action and interrupting this action would cause problems.

Receive using DMA

Using a DMA (Direct Memory Access) controller means that the CPU does not have to
manage the SPI data register and therefore the actual CPU time is not wasted on SPI
transmissions. All needed action is done by the peripheral and the DMA controller. Upon
successful byte clocked on the SPI clock pin, the SPI peripheral triggers a DMA request.
On this request, the SPI data register is accessed by DMA controller and data is read
from the SPI data register and written to the memory receive buffer. DMA controller can
be set to trigger an interrupt when the specified number of bytes are received to indicate
end of the SPI data transfer of known size. Functions for this method are:

HAL_SPI_Receive_DMA(hspi, pData, Size); // Receive only

HAL_SPI_Transmit_DMA(hspi, pData, Size);// Transmit only

HAL_SPI_TransmitReceive_DMA(hspi, pTxData, pRxData, Size); // Transmit AND receive

Where attributes of functions are the same as when using interrupts.
This mode is the most sophisticated as no actual CPU time is used to operate the SPI

peripheral other than to setup DMA for next packet transmisson/receival.

Transmitting

If data has to be transmitted instead of received, the same 3 methods as described in the
previous sections are used, but instead of reading from the SPI data register in-between
bytes, data is written into the SPI data register and SPI internally stores this data into
the Tx fifo buffer. SPI can work in full duplex mode, meaning data can be received and
transmitted at the same time.

5.3. SPI peripheral drivers

At first, the unmodified HAL drivers were used for controlling the SPI peripheral. While
optimizing the EEPROM emulator mode, SPI drivers were modified completely. The LL
(Low Layer) drivers were used and all functions that control the SPI peripheral were writ-
ten from scratch using the LL drivers. The created SPI peripheral driver functions were
written to accommodate only the absolute minimum functionality needed for a better per-
formance. Only the DMA method of SPI transmission is supported. SPI peripheral driver
functions were developed in multiple iterations and the final iteration will be described.

5.3.1. Main idea

The developed SPI peripheral drivers are not universal as the user code needs to be added
inside the driver functions if they were to be used for a different application. Every SPI
transmission will trigger a receive interrupt and no transmit interrupts will be triggered
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by the DMA, but the transmit interrupt handler will be called from within the receive
interrupt handler. This means that the slave can be set for receive only transmission, but
every transmit will actually be transmit-receive transmission. If only transmit is desired,
data will be received to dummy address and will be ignored.

5.3.2. Receive function

Receive function is defined as follows.

void SPI_receive_DMA(uint8_t *pData, uint16_t Size)

{

/* Disable all SPI DMA channels and SPI peripheral */

LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2); // DMA Rx channel

LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_3); // DMA Tx channel

LL_SPI_Disable(SPI1);

/* Set the transaction information */

LL_DMA_SetPeriphAddress(DMA1, LL_DMA_CHANNEL_2, &SPI1->DR);

LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_2, (uint8_t *)pData);

LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_2, Size);

/* Enable the Rx DMA Stream/Channel */

LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_2);

/* Set Rx FIFO buffer treshold for correct RXNE event generation */

LL_SPI_SetRxFIFOThreshold(SPI1, SPI_CR2_FRXTH);

/* Enable transfer complete interrupt for DMA Rx channel */

LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_2);

/* Enable Rx DMA Request */

LL_SPI_EnableDMAReq_RX(SPI1);

/* Enable SPI peripheral */

LL_SPI_Enable(SPI1);

}

First, all the SPI DMA channels are disabled as well as SPI is disabled. This is to correctly
reset any ongoing transmissions. The next transaction information is set for the SPI DMA
receive (Rx) channel. The pointer pData indicates memory location, where received data
will be stored. The DMA Rx channel is enabled. RxFIFOTreshold is set for the correct
RXNE event generation which indicates that the SPI internal receive buffer is not empty.
The transfer complete interrupt is enabled for the Rx DMA channel, which allows an
interrupt to be triggered after the specified number of bytes were received. DMA request
for the Rx channel is enabled inside SPI peripheral, which enables SPI to interface with
the DMA Rx channel. Lastly, the SPI peripheral is enabled.
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5.3.3. Transmit function

The transmit function does in reality always function as a transmit-receive function. This
function is defined as follows.

void SPI_Transmit_DMA(uint8_t *pData, uint16_t Size)

{

/* Start SPI receival based on current device mode */

if ( spi_slave.curr_mode == SPI_EEPROM ) {

SPI_receive_DMA(&dummy, 1);

}

else if ( spi_slave.curr_mode == SPI_receivE_RESPOND_RX ) {

SPI_receive_DMA(&dummy, spi_slave.cnfg.data_size);

}

else if ( spi_slave.curr_mode == SPI_receivE_RESPOND_RXTX ) {

SPI_receive_DMA(&spi_slave.rx_buff, spi_slave.cnfg.frame_size);

}

/* Set the transaction information */

LL_DMA_SetPeriphAddress(DMA1, LL_DMA_CHANNEL_3, &SPI1->DR);

LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_3, (uint8_t *)pData);

LL_DMA_SetDataLength(DMA1, LL_DMA_CHANNEL_3, Size);

/* Enable the Rx DMA Stream/Channel */

LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_3);

/* Enable Tx DMA Request */

LL_SPI_EnableDMAReq_TX(SPI1);

}

The transmit function first calls a receive function, so that a proper interrupt is triggered
after the specified number of bytes were transmitted. Based on the current device mode,
a receival address is chosen either as a dummy address or as an address specified by the
user in the code. Next, the DMA transmit (Tx) channel data are specified. pData is a
pointer to a data array from where SPI will transmit bytes. DMA Tx channel is enabled.
Tx DMA requests are enabled inside the SPI peripheral, which enables SPI to interface
with the DMA Tx channel.

5.3.4. Receive interrupt handler

Handler for an interrupt triggered by a DMA flag is defined as follows.

void SPI_DMA_RX_IrqHandler(void)

{

/* Clear the transfer complete flag */

LL_DMA_ClearFlag_TC2(DMA1);

/* Tickstart for BSY bit timeout */
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uint32_t tickstart = uwTick;

/* DMA Normal Mode */

if ( LL_DMA_GetMode(DMA1, LL_DMA_CHANNEL_2) == LL_DMA_MODE_NORMAL ) {

/* Disable DMA Rx channel aswell as DMA Rx requests */

LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2);

LL_SPI_DisableDMAReq_RX(SPI1);

/* Check the end of the transaction */

if ( SPI1->SR & SPI_SR_BSY ) {

while ( SPI1->SR & SPI_SR_BSY ) {

if ( (uwTick - tickstart) > SPI_DEFAULT_TIMEOUT ) {

/* something for breakpoint debugging, should go to error handler in the future */

tickstart = uwTick;

}

}

}

}

/* Call Tx handler */

SPI_DMA_TX_IrqHandler();

/* Call user callbacks */

SPISLAVE_SPI_IrqCallback();

}

First, the transfer complete flag is cleared. Next, a variable is initialized with the current
system tick to note the current time. If DMA is set to normal mode (contrary to circular),
DMA Rx channel is disabled as well as the DMA Rx requests inside the SPI peripheral.
Also the device waits for the BSY (busy) bit in the SPI registers to have value zero. If
DMA mode is set to circular, DMA channel is not disabled and the device does not wait
for the BSY bit. Next, the SPI Tx interrupt handler is called. This interrupt handler
does not have to be called every time, but calling it while it is not needed does not cause
any errors and no real time loss. Lastly, a function is called which decides which user
defined interrupt handler must be called based on the current device state and mode. All
user interrupt code happens inside this function.

5.3.5. Transmit interrupt handler

This handler is not called inside an interrupt that was triggered by the DMA Tx channel
flag, but instead it is called inside a receive interrupt. Handler is defined as follows.

void SPI_DMA_TX_IrqHandler(void)

{

/* Clear the transfer complete flag */

LL_DMA_ClearFlag_TC3(DMA1);
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/* Disable Tx DMA channel for SPI */

LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_3);

/* Normal case */

LL_SPI_DisableDMAReq_TX(SPI1);

}

First, the transfer complete flag is cleared. DMA Tx requests are disabled inside the SPI
peripheral. DMA SPI Tx channel is disabled. In all the modes of this device, transmit
happens only in normal mode, therefore circular mode is not considered.

5.4. Reseting SPI

Resetting the SPI peripheral is needed mainly after a new configuration is loaded into the
device. Not only does resetting the SPI calls all functions that are needed for initializing
the device and the SPI peripheral, which in turn applies new configuration, but the
internal SPI transmit buffer is cleared. This buffer cannot be cleared any other way
instead of transmitting data on the SPI lines, but that is controlled by the SPI master.
Clearing this buffer is needed after a transmit is initiated after another transmit was
already initiated before but never completely executed. SPI reset procedure is as follows:

� Set the APB2 (advanced peripheral bus 2) reset register inside the RCC registry to
1. This will start resetting APB2.

� Wait the minimum necessary time

� Set the APB2 (advanced peripheral bus 2) reset register inside RCC registry to 0.

� Call a function that initiates SPI peripheral based on STM32CubeMx settings.

� Call a user function that initiates device in all modes.

5.5. Stream mode

Stream mode is the first operational mode of the device. This mode will be automatically
chosen on device startup. Stream mode can be used to directly display incoming SPI data
through the python API.

5.5.1. Main features

The main idea of the stream mode is to capture all incoming data on the SPI interface
and transmit (stream) it directly to a PC where it can be read. In this mode, the device
is acting receive-only, therefore no data will be sent out on the SPI data bus. SPI is
master controlled, meaning the master controls when data transmission (master transmit
or master receive) will happen by controlling the SPI clock pin. This means that the slave
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needs to wait with data ready until a clock signal appears. After the data was transmitted
by the slave, the slave needs to prepare the next data before the next clock signal appears
on the SPI clock pin.

5.5.2. Early implementation

The first implementation was done by SPI receival using interrupts. Figure 5.3 displays
a block diagram of the implemented algorithm.

Figure 5.3: Block diagram of an algorithm for the first implementation of stream mode

This method is the easiest way to implement this mode. Upon mode initialization, a
single byte is set to be received. After this single byte is received, an interrupt is triggered.
In this interrupt, a report message about this byte is formed and sent to the python API
via UART. Lastly, the SPI is set to receive next byte and the CPU exits the interrupt.

Discussion

This is the easiest way to implement stream mode, but it has some major limitations. One
limitation that renders this solution almost unusable is the interrupt time. The device
receives bytes one by one and in-between each one is an interrupt. This means that the
CPU needs to exit the interrupt before the next byte arrives or received data will not be
processed correctly. Also the report message needs to be successfully sent before the next
byte arrives, while UART interface is generally much slower than SPI interface. Data is
usually sent in packets, which contain more than one byte, therefore a master would need
to artificially add delay between bytes in order for this mode to work correctly. Worst case
for SPI slave to receive data is a continuous data stream, meaning the time in-between
bytes is the same as the time in-between bits (clock pulses). This means that in order for
this mode to work, the clock frequency would have to be low enough for an interrupt to
execute in-between clock pulses. If worst case is considered, clock frequency fclock would
be severely limited to less than 50 kHz, while the maximum possible SPI clock frequency
for this MCU is 18MHz.
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One way to improve this method would be to implement a FIFO buffer. In the
interrupt, rather than sending a report message immediately, received bytes would be
stored in this FIFO buffer and sent later asynchronically in the main while cycle. This
would improve the maximal clock frequency, but still it would not reach even 500 kHz.
Also, this means that the FIFO buffer would have to be large enough to accommodate a
data packet or multiple data packets and there would have to be enough time where the
SPI is in idle to send the report messages from this buffer.

5.5.3. Final implementation

Head-Tail FIFO buffer

For the final implementation, a different solution was found. The main component of this
solution is a relatively large FIFO buffer, where the received bytes will be stored. As the
SPI receival method, DMA is used in a circular mode. Circular mode means, that after
the whole buffer is filled, received bytes will be stored in the beginning of the buffer again.
An interrupt will be triggered when the buffer is filled, but only to increment a variable
that describes the number of overflows. Therefore, in this SPI setup, after an SPI receival
is initialized, no CPU time is used to actually receive any bytes as it is the responsibility
of the DMA controller.

There are two pointers that point to the specific index of this buffer. One pointer
points to the current last index, where data was written by the DMA controller. This
pointer will be called ”head”. The second pointer points to the last index, which was
sent to a PC in a report message. This pointer will be called ”tail”. The tail pointer
always chases the head pointer. If the head and the tail pointer point to the same index,
no action happens. If the head pointer is incremented, action is needed so that the tail
pointer is being incremented also until the head and the tail pointers are equal again.

As no data is being deleted from the buffer, it is important to note how many overflows
each of the pointers have. Overflow means reaching the end of the buffer and looping back
to the beginning.

Figure 5.4: Stream buffer with head-tail pointers

Figure 5.4 represents a seven byte stream buffer with the head pointer pointing at the
byte number 4 and the tail pointer pointing at the byte number 1. This would mean that
action is required. In order to equalize the head and the tail pointers, the byte number
2, the byte number 3 and the byte number 4 would need to be reported to a PC API. In
the final implementation, a stream receive buffer with the length of 1000 bytes was used.
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Valid conditions for sending a report

The indices of the bytes that need to be reported are indicated by the state of the head
and the tail pointers and by the number of overflows of each pointer. The conditions that
indicate that a report messages needs to be sent are as follows:

� The head pointer is larger than the tail pointer with the same number
of overflows
This means that the bytes on indices starting from the tail pointer (not included)
to the head pointer (included) need to be reported.

� The head pointer is smaller than the tail pointer AND head the pointer
number of overflows is exactly one greater than the tail pointer number
of overflows
This means that the bytes need to reported starting from the tail pointer index (not
included) to the end of the buffer and also the bytes starting from the index 0 to
the head pointer index (included) need to be reported.

Head and tail pointer errors

There can be a few errors with the head and the tail pointers. These errors can either
indicate that the SPI bytes are being received too fast and there is not enough time for
sending the report messages or that the head and the tail pointers are in a state, which
should not be possible and therefore an unknown internal error occured. The error states
are as follows:

� The head or the tail pointers are larger than the buffer size

� The tail pointer number of overflows is greater than the head pointer
number of overflows
This indicates that the tail pointer overtook the head pointer.

� The head pointer is greater than the tail pointer WITH the same number
of overflows
This indicates that the tail pointer overtook the head pointer.

� If the head pointer number of overflows is larger than the tail pointer
number of overflows by a margin larger than 1
This means that SPI data are being received too fast and there is not enough time
to send report messages.

Main algorithm

The CPU is not involved in receiving SPI data, therefore no trigger will signalize the
receival of a new byte, therefore, if report needs to be sent is checked in the main while
loop. The block diagram of the whole algorithm can be seen in figure 5.5.
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Figure 5.5: Block diagram of the final implementation of stream mode algorithm

Upon device initialization or when the device switches into this mode, two things need
to be performed. The first is to initialize/clear all parameters associated with the stream
mode. These parameters are the buffer itself, the overflow variables for the head and the
tail pointers. The second thing is to initialize DMA to receive SPI data to a specified
buffer in circular mode and with the length of SPI receival same as the length of the
buffer.

When enough bytes are received to fill the whole buffer, an interrupt is triggered. In
this interrupt, only one action is performed. The overflow variable that indicates how
many times the head pointer reached the buffer end is incremented.

All the other main actions are performed in the main while loop of this MCU and can
be described as follows.

� Check for the pointer errors
First any head and tail pointer errors are checked. If any error occurs, all stream
mode parameters are cleared and SPI DMA receival is reset and restarted.
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� Update the value of the head pointer
Next, the head pointer is updated. The information about what index will the DMA
write next can be found in the DMA register. Let’s assume that this register is called
data length. This register indicates how many more bytes need to be received until
the end of the buffer. From this value,the current head index can be calculated as:

head_pointer = SPI_STREAM_BUFFER_SIZE - dma_register_data_length;

� Check if any condition for sending a report is valid
Once the head pointer value is updated, the conditions required for any report to
be sent are checked.

� Check if the minimum time elapsed from the last frequency measurement
calculation
If any of the conditions are valid, first the time elapsed from the last frequency
measurement calculation is checked. If the minimum time elapsed, the frequency
is calculated and the frequency measurement is restarted. Having minimal time
in-between the frequency calculation ensures that the lengthy calculation is not
performed too frequently.

� Send a report of a single byte
After the frequency minimum time in-between calculations is checked and possibly
the frequency is calculated, a report message is initiated and sent to PC via UART.
This message contains only a single byte and the index of this byte is one larger
than the tail pointer. All the possible report messages will be listed in chapter 7.3.6.

� Increment the tail pointer
Lastly, the tail pointer is incremented by the value of 1. Overflow of this tail pointer
is checked. If the tail pointer after incrementation reaches the end of the buffer, the
overflow variable for the tail pointer is incremented and the tail pointer is set to 0.

It is important that there is no other activity in the main while loop, that would slow
down its iteration. This algorithm needs to be executed frequently enough, so that the
report sending can keep up with the SPI data receival. In other words, the algorithm
needs to be executed frequently enough so that the head pointer does not overtake the
tail pointer by the size of the whole buffer.

5.5.4. Discussion and limitations

Stream mode is implemented by using a FIFO buffer with a head and a tail pointer and
the DMA method of receiving SPI data works effectively, however one limitation exists.
Received SPI data are being written to a buffer. Later, this buffer is asynchronically
checked if any new data exist and if the new data exist, this data is sent in reports to a
PC. It is possible that there is not enough time to send this new data in the buffer and the
data that needs to be sent will be overwritten by new data that will be received by the SPI
interface. This is caused by either too small of a buffer or a continuous stream of SPI data
that contains more bytes than the buffer size. This means that if a continuous SPI data
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stream of infinite size is assumed, this method will not work correctly. In reality, such
transmissions are very uncommon and usually there is enough time in-between packets to
report all the received bytes. Also, this mode is aimed at testing and debugging masters,
so transmitting a continuous data stream would not be beneficial for the user as the main
purpose of this mode is to manually check what is being sent. In the final implementation,
buffer with size of 1000 bytes is used, which should be plenty for any frame or packet as
they will rarely be larger than 1000 bytes.

5.5.5. Possible improvements

For the future development, one obvious improvement could be made. Instead of including
only one byte in each report message, all bytes that need to be sent could be included in
the report message. This would vastly improve the total time that would be needed to
equalize the head and the tail pointers as all needed bytes would be reported in one pass
of the main while loop. But this would mean, that this one main while loop iteration
would be longer as more bytes need to be processed.

5.6. LUT mode

LUT mode is the second operational mode of the device. This mode can be used to
automatically respond to the received requests from an SPI master with preset responses
according to the current received request.

5.6.1. Main features

In contrary to the stream mode, LUT (Look up table) mode will not only receive data,
but also transmit data. The data that will be transmitted is dependent on the last data
that was received. From every transmission, a report will be formed and sent to a PC via
UART. This mode can work in full-duplex mode as well as in half-duplex mode. Half-
duplex mode means that one single transmission is either a transmit or a receive, not both
at the same time. This means that in half-duplex mode, one data bus (MISO or MOSI)
will be inactive. In full-duplex mode, data is being transmitted and received at the same
time, therefore both data lines are active.

5.6.2. Implementation

In this mode, SPI transmission will be performed in packets. The packets will contain a
set number of bytes. The number of bytes in a packet can be configured and can only
be changed by changing the configuration. This means, that for one configuration, only
one length of a packet can be received and transmitted. Packets will not be separated
into smaller sections, meaning, the whole packet will be considered as data (no heading
or footer). For receiving and transmitting, the DMA method of SPI transmission will
be used and after any successful packet transmission, an interrupt is set to trigger. The
frequency will be measured and calculated for every packet separately.
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Lookup table structure

The main feature of this mode is the lookup table itself. The lookup table contains
multiple request-response pairs. If a packet equal to a request in LUT is received, in
the next transmission, a packet with the value of the response belonging to the received
request packet will be transmitted.

LUT
row

Request packet Response packet

0 [1, 2, 3, 4] [200, 100, 5, 10]

1 [10, 20, 30, 40, 50, 60] [11, 21, 31, 41, 51, 61]

2 [255, 255] [1, 1]

3 [100, 100, 100] [100, 100, 100]

Table 5.2: Lookup table structure

Example of a look up table instance can be seen in table 5.2. In this table, there are
4 rows with reuqest-response pairs. If any of the requests is received by SPI, in the next
transmission, the response packet from the same LUT row will be transmitted.

LUT parameters in current implementation are as follows. The LUT number of rows
equals to 10. The maximum request and response size equals to 10. These parameters
are relatively low, but in order to increase them significantly, MCU with more memory
would need to be used.

Lookup table conditions

A few conditions must be set in order for LUT to be valid:

� Packet lengths
The request and the response in the same pair need to have the same length of
bytes, but different pairs can have different lengths.

� No duplicate requests
Every request inside the LUT must be unique. If duplicate requests are found in
the LUT, the LUT is not valid. This is because if multiple identical requests were
present in the LUT, only the one with the smallest index would be used and the
other ones would be redundant. Duplicate responses are allowed.

Important LUT mode variables and parameters

There are important variables and parameters associated with this mode, that are needed
to describe the current configuration and state. These variables are:

� LUT
The first variable is the LUT itself. Structure of the LUT was described in pre-
vious section. In C implementation, requests and responses are split into separate
variables. Each of this variable is a two dimensional array that describes all of the
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requests or responses for the whole LUT. Every row of these variables is a differ-
ent request/response and pairs are defined by the same row index. Both of these
variables are part of the LUT handle struct.

� sizes
This variable is an array with the same length as the number of LUT rows and with
type 8 bit unsigned integer. Values of this array describe byte length of the current
request-response pair. Value on the specific index of this array belongs to the same
row index of LUT. This variable is a part of LUT handle struct.

� is used
This variable is an array with the same length as the number of LUT rows and with
boolean type (0 or 1). Values of this array describe if the current LUT row on the
same index is currently being used or if it is empty. This variable is important for
LUT configuration as LUT rows can be configured only if they have been cleared
before. This variable is a part of the LUT handle struct.

� default response
An array of type 8 bit unsigned integer. A default response needs to be defined for
situations when the received packet is not present in the LUT request array. If this
happens, no LUT row is chosen and the default response is returned.

� full-duplex mode enable
A single boolean value that describes if the device is in full-duplex or half-fuplex
mode.

� data length
A single 8 bit unsigned integer value describing the current packet length to be
received or sent.

Choosing a response

Once a request was received, the according response needs to be chosen. First, the index
of LUT row, where the LUT request and the received request are identical, is determined.
LUT request must have the same byte length as is the current received packet length,
which is the same as the current packet length set in the configuration. If the LUT does
not contain the same request, the default response is chosen as next response. If LUT
index is found with the same request, the response from this LUT index is chosen as next
response. The response in LUT should have the same size as the request in the same LUT
row, but this condition is not checked while configuring LUT in current implementation.
This should not be a problem, if the action for different sizes is known. If the response
is larger than the request, only first request size number of bytes are chosen as the next
response. If the response is smaller than the request, the response is appended with zeros.

Main algorithm - common

LUT mode can function in 2 modes. Half-duplex and full-duplex. The main idea of
these modes is the same, but in order for them to function properly, some differences
in implementation need to exist. Despite these differences, some parts of the algorithm
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are the same. The parts of the algorithm that are the same are what happens on device
or LUT mode initialization and what happens in the main while loop of the MCU. The
common parts of the algorithm can be seen in the block diagram 5.6.

Figure 5.6: Block diagram of the common algorithm for half-duplex and full-duplex mode

First, the algorithm for device or mode initialization is described:

� Set response to default respone
The device does have a default response defined. This response will be transmitted
either when the received request is not present inside the LUT or when the first
transmission after initialization happens in full-duplex mode.

� Start receiving/transmitreceiving request packet
Set SPI to receive or transmit-receive using DMA.

Next, the algorithm for the main while loop is described:

� Check for timeout error
A timeout error occurs when no action on the SPI bus appears after SPI receive/transmit-
receive initialization for a predefined time. The main reason for the existence of this
error is to catch any unknown errors that would cause the SPI peripheral to not
work correctly. If this error happens, error flag is set.

� Check for error flag
Checks if any error flag is active. If any error flag is active, the SPI is reset. SPI
reset procedure can be found in chapter 5.4. Possible error flags:

– Timeout error

This function exists because in earlier implementation, more errors existed and it is
probable that in future development, more error flags will exist.

The core algorithms for half-duplex and full-duplex mode are different and will be de-
scribed separately in the next sections.
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Main algorithm - half-duplex

In half-fuplex operation, the SPI interface is only used one direction at a time. Meaning
that for one transmission, only the MISO or the MOSI line is active while the other
line is inactive. The core algorithm of this mode happens inside interrupts. There are
two interrupts associated with this mode of operation. The receive and the transmit
interrupt. The receive interrupt will trigger after a packet of a known size was received
and the transmit interrupt will trigger after a packet of a known size was transmitted.
Block diagram of the code for these algorithms can be seen in figure 5.7.

Figure 5.7: Block diagram of the half duplex mode algorithm for receive and transmit
interrupts

First, the receive interrupt is described:

� Choose the response based on the received request
This interrupt triggers after a packet was received. Based on this packet, an ap-
propriate response needs to be chosen. The process of choosing this response was
described in chapter 5.6.2.

� Start the DMA SPI transmit of a chosen response
Once a response was chosen, SPI DMA transmit is initiated. This transmit will
happen only after the master provides a clock signal and after the response packet
is sent, a transmit interrupt will trigger.

� Initialize a report for the received packet
A report message describing the received packet is formed. This report also contains
the input capture data of frequency measurement. Complete report message forming
and sending will be described later in chapter 5.7.
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� Restart the frequency measurement
The frequency measurement is restarted. The frequency measurement was described
in section 5.1.

Next, the transmit interrupt is described:

� Initialize a report for transmitted packet
A report message describing the transmitted packet is formed. This report also
contains the input capture data of the frequency measurement. Complete report
message forming and sending will be described later in chapter 5.7.

� Restart the frequency measurement
The frequency measurement is restarted. The frequency measurement was described
in section 5.1.

� Start the DMA SPI receive for next request
After a response was sent, SPI needs to be set to receive the next request using
DMA. After the next request will be received, a receive interrupt will trigger again.

In this operation mode, every request is received by itself followed by transmitting of a
response. This action is performed repeatedly.

Main algorithm - full-duplex

In full-duplex operation, the SPI interface receives and transmits data at the same time.
This means that both the MISO and the MOSI lines are being used for every clock
pulse. The core algorithm of this mode happens inside an interrupt. In contrary to half-
duplex mode, interrupts are not separated for receive and transmit and therefore only
one interrupt is defined. This interrupt is labeled as a transmit-receive interrupt. Block
diagram of the code for this interrupt can be seen in figure 5.8.

Figure 5.8: Block diagram of half duplex algorithm for receive and transmit interrupts

55



5. BASIC DEVICE FUNCTIONALITY 5.6. LUT MODE

Transmit-receive interrupt is described:

� Initialize a report for transmitted and received packet
A report message describing transmitted and received packet is formed. This report
also contains the input capture data of the frequency measurement. Complete report
message forming and sending will be described later in chapter 5.7.

� Choose a response based on the received request
In this transmit-receive transmission, a request packet is received. Based on this
packet, an appropriate response needs to be chosen. The process of choosing this
response was described in section 5.6.2. This response will be sent in the next
transmit-receive transmission sequence.

� Restart the frequency measurement
The frequency measurement is restarted. The frequency measurement was described
in section 5.1.

� Start DMA SPI transmit-receive for next transmission
After a transmit-receive transmission was executed, SPI needs to be set for another
transmit-receive transmission using DMA.

In this mode, the response packet from the previous request is being transmitted while
the current request packet is being received . This action is performed repeatedly.

5.6.3. LUT configuration

In order for this mode to be effective, LUT needs to be easily configured. In order for a
LUT row to be configured, the row must either be not in use (is used variable set to 0)
or it must be cleared prior to writing. The specific commands for LUT configuration will
be described in section 7.3.4

Clearing a LUT row

LUT can be cleared one row at a time and therefore a specific index needs to be provided.
If a Clear LUT command is received, first, the errors are checked. If any error occurs with
the command, the command is declared invalid and no action is performed. If no error
occurs, request and response data and its sizes on LUT row, which index was specified
in the command are cleared (set to 0). Also, is used variable is set to 0 as well on the
according index.

Possible clear LUT errors:

� Index out of range
LUT index received in command is larger than LUT number of rows.

Writing a LUT row

LUT can be written one row at a time and therefore specific index needs to be provided.
If a Write LUT command is received, first, the errors are checked. If any error occurs
with the command, the command is declared invalid and no action is performed. If no
error occurs, request and response data in LUT are changed according to the request and
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the response data received in command. The ”sizes” variable is changed accordingly and
the ”is used” variable is set to 1 on according index also.

Possible write LUT errors:

� Index out of range
LUT index received in the command is larger than the LUT number of rows.

� Row is used
LUT row on the index that was received in the command is already in use. To
successfully write this row, this row needs to be cleared first.

� Duplicate request found
The same request as the command provided was found present on another LUT
row. No duplicate requests can exist in LUT.

� Request size
The request size provided by the command is larger than the maximum request size.

� Response size
The response size provided by the command is larger than the maximum response
size.

5.6.4. Discussion and limitations

LUT mode is aimed for testing the most basic logic in real SPI masters. The responses
for specific requests can be set and these responses will be transmitted by the slave device
after a request is received.

One limitation is that this mode does not work with dynamic length packets. By
dynamic length packets, packets that define theirs length in the beginning of the actual
packet are meant. This kind of functionality was implemented in early design, but in
order to accommodate this functionality, bytes in the packet needed to be received and
processed individually one by one. This meant extreme SPI frequency limitation. If a
continuous data stream was considered (time in-between bytes same as time in-between
bits), the absolute maximum SPI clock frequency was in the range of 50 kHz, which is
unacceptable as the maximum SPI frequency for this MCU is 18MHz.

SPI clock frequency therefore is not limited, but not all timings are without a limit.
Packets need to be processed in interrupts in-between packets. In order for these packets
to be processed successfully, there needs to be a minimal time in-between packets. This
means that the frequency of the actual packets is limited. This maximum packet frequency
was not specifically tested, but based on other tested interrupt times, this frequency is
estimated to be in the range of 150-250 kHz, which would mean the time in-between
packets would need to be atleast 4-6µs. For the future development, this interrupt time
will need to be accurately measured.

5.6.5. Possible improvements

One useful improvement for the future development would be to add a configurable CRC
to the packet, which would be checked and reported to the user. Most of the packets used
nowadays use CRC for error checking and it would be useful to implement this feature.
CRC polynomial would be configurable.
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5.7. Command and report messages handling

Algorithm contains structs, that can completely describe received commands via UART
interface or report and acknowledgement messages for every type of SPI transmission and
command. The specific types of commands and report, acknowledgement messages will
be described later in chapter 7.3.

5.7.1. Command handling

Commands are received via the UART interface during interrupts. Once a valid command
is received, the command is not executed right away. Instead a struct instance is initiated
with all the information regarding received command. This is because if the command was
executed right away, some other action with higher priority could interrupt the execution
of this command and in the meantime, another command would be received, which would
cause an error as the first command did not finish executing yet. All commands will be
executed asynchronically from the main while loop.

5.7.2. Report message handling

Same as the commands, the report messages are not sent at the time when the SPI trans-
mission ended, but rather a struct instance is initiated allowing the report messages to
be sent later asynchronically in the main while loop. This way is chosen because if a re-
port messages would be sent right away, the MCU could receive another SPI transmission
in the time, when previous report message is being sent. A report message array also
contains acknowledgement messages.

5.7.3. Main while loop commands and report messages handler

The commands and the report messages are stored in two arrays where each element of
the array represents either a command instance of struct or a report message instance of
a struct based on which array is being referenced. Both command and report messages
arrays have two pointers. One pointer points to the index, where the next instance will be
written (write pointer) and the second pointer points to the next instance, which should
be executed/reported (execute pointer). Both command and report message handlers are
executed in every iteration of the main while loop.

Command handler

Algorithm of the command handler can be described as:

� Check if the current command instance of a struct has not been executed
yet
The current command instance is defined by the execute pointer.

� Execute command
If the current command instance has not been executed yet, execute it. Check errors
before execution if any errors could exist based on specific command.
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� Increment execute pointer
The execute pointer is incremented.

Report message handler

The report message algorithm of the report message handler can be described as:

� Check if the current report message instance of a struct has not been
sent yet
The current report message instance is defined by the execute pointer.

� Send message
If the current message instance has not been sent yet, send it. Calculate the mea-
sured frequency before every report message that includes frequency measurement
data.

� Increment execute pointer
The execute pointer is incremented.

5.7.4. Discussion and limitations

Report messages are stored inside a buffer. Each element of this buffer is a struct repre-
senting one SPI transmission. The buffer does not have infinite size and therefore there is
a maximum number of report messages that can be stored at the same time. This means
that if report messages are being created faster than they are being sent, this buffer could
overflow and some report messages could be lost. If this situation occurs, internal error
flag is thrown and report messages will no longer be created. In order for this situation to
happen, a large number of SPI transmissions would need to be performed continuously.
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6. Advanced functionality -
EEPROM emulator mode

This whole chapter describes the EEPROM emulator operational mode. This mode
is the last of the operational modes of this device and is considered advanced as its main
purpose is not to test a general SPI master device, but to test a specific SPI master
device that is made for controlling one specific slave device. The main idea of this mode
is that the device behaves identically to the real SPI EEPROM device, which means that
it does not matter if the master is connected to an emulator device or a real EEPROM
device from the master’s point of view. The process of enabling this mode can be found
in chapter 7.1.1.

6.1. EEPROM Selection

Before developing an EEPROM emulator mode, first a real EEPROM needs to be chosen
that will be emulated. 25AA160D EEPROM was chosen manufactured by the Microchip
company. This EEPROM was chosen for various reasons. One of the criteria for choosing
a real EEPROM model was that it must be possible to simulate the whole EEPROM
memory in MCU’s RAM memory. The second criterion was that the EEPROM must
have standardized instruction set, that is common amongst other EEPROM and FLASH
devices.

6.1.1. EEPROM attributes

25AA160D has these attributes:

� Size
Total memory capacity is 2kB or 2048 bytes. This capacity should be easily simu-
lated in STM32F303K8 MCU RAM memory.

� Word length
This device contins 8bit words, therefore on one address of memory, one byte is
stored.

� Operating voltage
The operating voltage of this device is 1.8-5.5V. This means that for interfacing
with an SPI slave device, no logic level shifters will be required.

� SPI clock frequency
The maximum SPI clock frequency for this device is 10MHz. This device is a SPI
slave.

More details about this specific EEPROM device can be found in [21].

6.1.2. Hardware pins

There are 6 data pins in total on this EEPROM device. These data hardware pins are:
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� CS
Chip select pin. Used for SPI

� MISO
MISO pin used for SPI.

� MOSI
MOSI pin used for SPI.

� SCK
Clock pin used for SPI.

� WP
Write protect pin. This pin is ignored in this emulator design.

� HOLD
Hold pin. This pin is ignored in this emulator design.

6.2. EEPROM features

While creating a model of this EEPROM, it is important to note features that need to
be replicated.

6.2.1. Memory organization

Memory is organized in a 2048 byte array. Every byte has its own address. The address
is a 11 bit value, but in instructions, 16 bit value will be provided and 5 MSB bits will
be ignored. The memory array is separated into pages. In this specific EEPROM type,
page size is 32 bytes. This means that the memory array has 64 pages in total.

6.2.2. Status register

The status register has 8 bits and is used to store the current configuration of the
EEPROM. The status register can be read by the RDSR command and R/W (Read-
able/Writable) bits can be configured by the WRSR command.

Bit number bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Access R/W - - - R/W R/W R R

Bit name WPEN - - - BP1 BP0 WEL WIP

Table 6.1: Status register

*Note - R/W (readable/writable) — R (read only)

WPEN

This bit is writable and enables the WP (write protect) hardware pin. WP pin is not
used in the designed emulator, therefore this bit is not needed.
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BP0 and BP1 and block protect

BP0 and BP1 bits are used for the block protect functionality. These bits are R/W.
By defining these bits, it is possible to protect a block of memory data. If a block is
protected, it is impossible to write to these memory locations. Three possible block
protect configurations:

� BP1 = 0 & BP0 = 0
Block protect inactive.
Protected addresses : None

� BP1 = 0 & BP0 = 1
Upper quarter of memory array protected
Protected addresses : 0x0600 - 0x07FF

� BP1 = 1 & BP0 = 0
Upper half of memory array protected.
Protected addresses : 0x0400 - 0x07FF

� BP1 = 1 & BP0 = 1
Entire memory array protected.
Protected addresses : 0x0000 - 0x07FF

WEL

Read only bit indicating current status of the write enable latch. The write enable latch
can be set using the WREN command. The write enable latch is reset when these 3
conditions are met:

� Succesfull WRDI instruction is executed

� Automatically after succesfull WRITE operation

� Automatically after succesfull WRSR operation

WIP

Read only bit that indicates if the EEPROM device is currently writing data. If the
EEPROM is in WIP (write in progress) state, value of this bit will be 1 and the only
possible instruction that can be executed in this state is RDSR.
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6.2.3. Instruction set

Operation
name

Operation code Description

READ 0x03 Read data from memory

WRITE 0x02 Write data to memory

WRDI 0x04 Reset write enable latch

WREN 0x06 Set the write enable latch

RDSR 0x05 Read status register

WRSR 0x01 Write status register

Table 6.2: Instruction set for 25AA160C/D EEPROM [21]

Timing diagrams for each operation can be found at [21].

Chip select pin assertion

There are 6 instructions available for this EEPROM device. Every instruction must have
the same chip select pin procedure. Instruction starts by putting the chip select pin
to logical LOW. After this, the command data are transmitted. To sucesfully terminate
current instruction, the chip select pin must be turned HIGH. This means that in-between
every instruction, the chip select pin must be logical HIGH for a certain amount of time.
Description of these 6 instructions are as follows.

READ

After the chip select is turned logical LOW, SPI master must transmit an operation code
with the value of 0x03. After the operation code, 16 bit address needs to be transmitted
by the SPI master. 5 MSB bits of this address are ”don’t care” bits as the memory
capacity is 2048 bytes. After the operation code and the address are successfully received
by the EEPROM slave, SPI master must provide clock pulses and the memory data stored
at the specified address will be shifted onto the MISO line. If master proceeds to provide
clock pulses for more than 1 byte, subsequent bytes in the EEPROM memory will be
shifted onto the MISO line, while internal address pointer increments automatically. If the
internal address pointer reaches the highest address, it will roll over and start at address
zero again. This means that data can be read indefinitely. Operation is terminated by
putting the chip select pin to logical HIGH level.

WRITE

Prior to any WRITE attempt, write enable latch must set. This is done by WREN
command and therefore successful WREN command must be clocked onto the SPI bus
before the WRITE command. After the chip select is turned logical LOW, SPI master
must transmit an operation code with the value of 0x02. After the operation code, 16
bit address needs to be transmitted by the SPI master. 5 MSB bits of this address are
”don’t care” bits as memory capacity is 2048 bytes. After the operation code and the
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address are successfully received by an EEPROM slave, SPI master must transmit data
that will actually be stored in the memory array at the specified memory address. Master
can transmit more than one byte and subsequent bytes will be written to the subsequent
memory locations, while address will increment with every byte. This WRITE command
functions as a page write, therefore the write boundaries for one WRITE operation are
limited. Only page, to which the specified address belongs, can be modified with one
WRITE instruction. If the write address automatically increments to the current page
end, the address rolls over to the beginning of that same page. Same address cannot be
written twice in the same command, therefore the number of bytes that can be written in
a single WRITE command are limited to the page size, which is in this specific instance
32. If more bytes are shifted onto the MOSI line, every byte after 32nd will be ignored.
In order to terminate the instruction, the chip select pin must be brought logical HIGH.
It is important to note that data will be actually written into the memory array only
after the chip select is brought logical HIGH. Writing takes some time and therefore after
WRITE command, a certain time is reserved for write in progress (WIP). If EEPROM is
in WIP state, bit 0 of the status register will have value 1. In this state, status register
can be polled for WIP bit, but all the other instructions will be ignored. After EEPROM
exits WIP state, the write enable latch is automatically reset, therefore there is no need
to execute WRDI instruction.

WRDI

Resets the write enable latch and therefore disables any following write operations. For
any write operation, the write enable latch must be set using WREN command. The write
enable latch can be read from the status register as bit number 1 with RDSR command.
For WRDI instruction to execute, first the chip select pin must be brought to logical
LOW, followed by master transmitting the operation code with the value 0x04. Lastly,
the instruction is terminated by bringing the chip select to logical HIGH again.

WRDI

Sets the write enable latch and therefore enables any following write operations. The write
enable latch can be read from the status register as bit number 1 with RDSR command.
For WRDI instruction to execute, first the chip select pin must be brought to logical
LOW, followed by master transmitting the operation code with the value 0x06. Lastly,
the instruction is terminated by bringing the chip select to logical HIGH again.

RDSR

RDSR command reads the actual status register inside an EEPROM device. First, the
chip select pin must be brought to logical LOW, the operation code of value 0x03 must
be transmitted by master. After the operation code is transmitted by master, EEPROM
device shifts the byte value of the status register on the MISO line. The operation is
terminated by bringing the chip select pin HIGH.
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WRSR

Prior to any WRSR command, the write enable latch must be set, otherwise the command
will be ignored. WRSR command writes data to the status register bits with R/W
accessibility inside the EEPROM device. First, the chip select pin must be brought to
logical LOW, the operation code of value 0x01 must be transmitted by the master followed
by transmitting the status register byte. Only the R/W bits are written into the status
register, all other bits are ”don’t care”. The operation is terminated by bringing the chip
select pin HIGH. The actual data write happens after the chip select is brought HIGH
and therefore time is needed for WIP state described in WRITE instruction. The status
register can be polled in this state. After EEPROM exits WIP state, the write enable
latch is automatically reset, therefore there is no need to execute WRDI instruction.

6.3. Implementation

In the EEPROM emulator mode, bytes will be received and transmitted one by one
using the DMA method with a rare exception when two byte address is being received.
Receiving one by one impacts the maximum SPI clock frequency, but this approach is
necessary as instruction type varies and therefore the number of bytes in an instruction
varies. Also, some instructions demand the slave to transmit data and some demand to
receive data. An interrupt will be triggered after every SPI transmission. An interrupt
will also trigger after the chip select goes HIGH signalling the end of instruction. The
chip select interrupt is accomplished using the timer in the input capture mode, where
the rising edge will be detected on the chip select pin.

6.3.1. State machine

EEPROM emulator mode can be interpreted as a state machine. There are 4 states in
total.

� OP CODE RECEIVE
In this state, the device is currently receiving operation code. Once the op code
is received, the state is changed according to the received op code. Possible next
states according to the op code:

– READ or WRITE op code : ADDRESS RECEIVE

– WRDI or WREN op code : No other possible state, the device is waiting
for the chip select going HIGH.

– WRSR op code : DATA RECEIVE

– RDSR op code : DATA TRANSMIT

� ADRESS RECEIVE
In this state, the memory address is being received. After the address is received,
state is changed according to the op code. Possible next states according to the
op code:

– READ op code : DATA TRANSMIT
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– WRITE op code : DATA RECEIVE

� DATA RECEIVE
In this state, the actual data is being received. This state can be active in WRITE
or WRSR command. No possible next state, the device is waiting for the chip select
going HIGH.

� DATA TRANSMIT
In this state, the actual data is being transmitted. This state can be active in READ
or RDSR command. No possible next state, the device is waiting for the chip select
going HIGH.

Figure 6.1: Block diagram of eeprom emulator state machine

State machine block diagram can be seen in figure 6.1. Upon device or EEPROM
emulator mode initialization, the device is set to OP CODE RECEIVE state. States are
changed appropriately based on the current instruction and SPI transmissions. After the
instruction is terminated by the chip select pin going logical HIGH, the state is returned
to OP CODE RECEIVE.

6.3.2. Main algorithm

Block diagram of the main algorithm can be seen in figure 6.2. No action will be performed
in the main while loop. This mode is SPI receival/transmitting event driven and therefore
all functionality will be performed inside interrupts.
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Figure 6.2: Block diagrams of the main algorithm of EEPROM emulator mode

Device initialization

Firstly, upon device or EEPROM emulator mode initialization, multiple actions need to
be performed.

� Parameters initialization
Parameters have to be initialized based on the specified EEPROM type. In current
implementation, only one EEPROM is supported and therefore only one can be
defined. In future development, it is expected to support more EEPROM devices
that can be easily defined. The parameters are things such as the total memory
size, page size, block size, status register etc. .

� Clear memory and status register
Reset value of the memory is 0xff. The whole memory array is set to this value.
Status register value is set to the value of 0.

� Set WIP length
After any succesfull WRITE or WRSR command, a delay must occur while the
WIP bit in the status register is set to 1. In this delay, only RDSR command can
be executed. WIP delay time on this device is configurable and can be defined in
microseconds. WIP delay is implemented using a timer in normal mode. After the
timer is enabled, specified time elapses and interrupt is triggered.

� Turn off the chip select pin interrupt
Interrupt on the rising edge of the chip select pin is used to terminate instructions.
The interrupt is disabled in this state in case of unwanted noise on the signal line.
The interrupt will be enabled later in the last state of the instruction.
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� Start DMA SPI receival of one byte
Current state upon the initialization is OP CODE RECEIVE, therefore one byte
receive must be started using DMA method.

Receive interrupt

Receive interrupt will trigger after:

� op code is received

� two byte address is received

� memory byte or status register byte is received

This interrupt therefore can exist in three device states. Action based on the state is as
follows.

� OP CODE RECEIVE state
In this state, the OP CODE handler is called. All logic will be resolved in this
handler.

� ADDRESS RECEIVE state
In this state, firstly, the received address is decoded. Decoding includes applying a
mask to the received address, so that 5 MSB are ignored and also the data counter
is zeroed. Data counter represents how many data bytes were transferred in a single
instruction, op code and address are not classified as data bytes. OP CODE handler
is called after address decoding. All logic will be resolved in this handler.

� DATA RECEIVE state
In this state, the OP CODE handler is called. All logic will be resolved in this
handler.

Transmit interrupt

This interrupt can exist only in one state, which is DATA TRANSMIT. In this state, only
one action is required and that action is calling the OP CODE handler. All logic will be
resolved in this handler.

OP CODE handler

OP CODE handler’s main purpose is to call specific handlers. The handler that is called
is dependant on the received op code in the current instruction. Which handlers are
allowed to be called depends on if a write is currently in progress (WIP bit in the status
register).

� NO write in progress (no WIP)
If a write is not in progress, the possible handlers based on op code are:

– WRITE handler

– READ handler
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– WRSR handler

– RDSR handler

– WREN handler

– WRDI handler

� write in progress (WIP)
If a write is in progress, only RDSR command is allowed and therefore the possible
handlers are limited to:

– RDSR handler

6.3.3. Write handler

Write handler can be called by the OP CODE handler if the op code belongs to the
WRITE instruction. The main purpose of this handler is to receive address and to receive
and write data to the memory array. This handler must oversee if the byte that is being
currently written into memory is not out of boundaries of the starting page (starting
address page) and also to check if the total number of bytes that were written does not
exceed the page size, which would mean that the same address was written twice, which
is forbidden. Block diagram of this handler can be found in figure 6.3. This handler can
exist in three device states.

Figure 6.3: Block diagram of a write handler in EEPROM emulator mode
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OP CODE RECEIVE state

In this state, the op code receival interrupt is triggered. Next action is to start SPI DMA
receival of two address bytes. State is changed to ADDRESS RECEIVE. Also, a report
message is initalized, where struct is initialized and prepared for the next data in the
WRITE instruction.

ADDRESS RECEIVE state

In this state, the two byte address receival interrupt is triggered. Address was decoded
prior to this handler. Next action is to start SPI DMA receival of one data byte that will
be written to the write address. The report message is updated with the starting address
and state is changed to DATA RECEIVE.

DATA RECEIVE state

In this state, the data byte receival interrupt is triggered. Multiple actions need to be
performed in this state. These actions can be seen in figure 6.3 and can be described as:

� Check if the data counter is larger than the page size
WRITE command can write multiple bytes, but no more than the page size. To over-
see this, first the data counter indicating how many bytes were written is checked. If
this data counter is larger than the page size, write is no longer allowed and device
is waiting for the chip select going HIGH indicating the end of the instruction. If
the data counter is smaller than the page size, write process follows.

� Check if the current write address is in correct page
If data counter is smaller than the page size, write process begins with this action.
WRITE instruction has a page boundary, meaning that all written bytes in the
same instruction must belong to the same page as did the starting address. This
fact is checked. If the current write address is outside the valid page, page size is
substracted from the write address. This returns the write address to the start of
the correct page.

� Write byte to memory array
Once the write address is in correct page, the actual byte received is written to
the memory array on actual write address. While writing data byte to the memory
array, the write enable latch in the status register is checked. If the write enable
latch is not set, no data will be written into the memory.

� Increment the data counter and write address
Data counter indicating how many bytes were transmitted in the current instruction
is incremented by the value of one. Write address indicating on which address to
write the current byte is incremented by the value of one.

� Initialize part of SPI report message
Data byte is added to the report message.

� Enable chip select interrupt if not already enabled
Chip select interrupt will indicate the termination of the instruction. This interrupt
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was not enabled before in case of any unwanted noise. In order to detect the end of
the transmission, this interrupt needs to be enabled.

� Start SPI DMA receival of the next data byte
SPI is set to receive the next data byte. State is not changed as multiple bytes can
be written in this instruction and only way to change state at this point is by the
chip select interrupt.

6.3.4. Read handler

Read handler can be called by the OP CODE handler if the op code belongs to READ
instruction. The main purpose of this handler is to receive address and to transmit correct
data. The handler must oversee if the read address is not larger than the memory size.
Block diagram of this handler can be found in figure 6.4. This handler can exist in three
device states.

Figure 6.4: Block diagram of read handler in EEPROM emulator mode

OP CODE RECEIVE state

In this state, the op code receival interrupt is triggered. Next action is to start SPI DMA
receival of two address bytes. State is changed to ADDRESS RECEIVE. Also, a report
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message is initalized, where struct is initialized and prepared for the next data in READ
instruction.

ADDRESS RECEIVE state

In this state, the two byte address receival interrupt is triggered. The address was decoded
prior to this handler. Next action is to start SPI DMA transmission of one data byte which
was specified by the received starting read address. The report message is updated with
the starting address and state is changed to DATA TRANSMIT. Another important action
is to the enable chip select interrupt if not already enabled. This will allow detection of
the instruction termination.

DATA TRANSMIT state

In this state, the interrupt indicating sucesfull transmission of one byte is triggered. There
are multiple actions that need to be performed in this interrupt:

� Initialize a part of the SPI transmission report
The report message is updated with the transmitted byte.

� Increment the read address and data counter
Read address from which the data will be transmitted is incremented by the value of
one. Data counter indicating how many bytes were transmitted is also incremented
by the value of one.

� Check if read address is larger than memory size
Previously incremented address is checked if it is inside a valid range of addresses.
If the read address is larger than the memory size, read address is set to 0.

� Start transmission of next byte
Once the read address is valid, SPI DMA transmission of the next byte located on
the read address is started.

6.3.5. WRSR, RDSR, WREN and WRDI handlers

All the other handlers apart from the chip select interrupt handler can be seen in figure
6.5.
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Figure 6.5: Block diagram of RDSR,WRSR,WREN and WRDI handlers in EEPROM
emulator mode

RDSR handler

RDSR handler can exist in two states:

� OP CODE RECEIVE state
This interrupt happens upon op code receival. Following needed action is to start
SPI DMA transmission of the status register byte. The chip select interrupt is
enabled if not already enabled. State is changed to DATA TRANSMIT.

� DATA TRANSMIT state
This interrupt happens upon the transmission of the status register byte. No action
is required and device is waiting for the chip select rising edge interrupt indicating
the end of the instruction.

WRSR handler

WRSR handler can exist in two states:

� OP CODE RECEIVE state
This interrupt happens upon op code receival. Following needed action is to start
SPI DMA receival of the status register byte. The chip select interrupt is enabled
if not already enabled. State is changed to DATA RECEIVE.

� DATA TRANSMIT state
This interrupt happens upon the receival of the status register byte. This byte is
written as the new status register. While writing this byte, the write enable latch
is checked and also a mask is applied to this byte in order to write only bits that
are writable. Non writable bits stay unmodified.
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WREN, WRDI handler

In both WREN and WRDI handlers, the only possible device state is OP CODE RE-
CEIVE. Following needed action is to modify the WEN bit in the status register accord-
ing to what command was received. The chip select interrupt is enabled if not already
enabled.

6.3.6. Chip select interrupt handler

The chip select interrupt triggers on the rising edge of the chip select signal and indicates
termination of the instruction. Block diagram of the algorithm can be seen in figure 6.6.

Figure 6.6: Block diagram of chip select interrupt handler in EEPROM emulator mode

Blocks of this algorithm can be described as:

� IF WRITE or WRSR command
If current instruction is WRITE or WRSR, the write in progress delay needs to be
started. Timer that handles the WIP delay is started and WIP bit in the status
register is set to 1. To end the WIP delay, timer will trigger an interrupt after set
time. WIP delay was first measured on a real EEPROM device and WIP delay
on the EEPROM emulator device was set to the same value, even though write
operation could take less time on the EEPROM emulator. Final value of the WIP
delay was set to 2.75 ms.

� OP CODE SPI receival is started
SPI DMA receival of the op code is started and state is changed to OP CODE
RECEIVE.
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� Chip select interrupt is disabled
Chip select interrupt is disabled in case of unwanted noise.

� SPI report is initialized
SPI report is initialized with the current instruction. In case of WRITE or READ
instruction, the main parts of the report were already initialized by parts in every
interrupt of this instruction. In case of WRSR and RDSR instruction, the whole
report is created here. Reports about WRDI, WREN instructions do not exist in
this implementation. For all reports created, the input capture data of the frequency
measurement are appended to the report message.

� Restart the frequency measurement
The measurement of frequency is restarted. Every instruction will be measured
separately.

6.4. Optimization - SPI clock speed

The described EEPROM emulator implementation was not developed in one iteration, so
naturally there are some important changes/optimizations that could be noted. This and
following sections will contain what are considered to be the most important optimiza-
tions.

6.4.1. Problem description

In the EEPROM emulator mode, SPI data is being received and transmitted one byte at
a time with the rare exception of address receive when 2 bytes are received. This method
is required due to the instructions having different byte lengths as well as that the next
data byte transmission is dependant on the previous byte received and therefore all logic
needs to be implemented in-between the bytes in interrupts. The disadvantage of this
approach is that the SPI clock frequency is severely limited if a continuous data stream
is expected. A continuous data stream provides the worst case of the time in-between
bytes as the time in-between bytes is equal to the time in-between bits and therefore to
the time of a one clock pulse. This means that the SPI clock frequency is limited in order
to provide enough time in-between bytes for the logic.

6.4.2. Base measurement

The first iteration of the implementation used the HAL drivers for SPI peripheral as well
as the basic setting of a GCC compiler. Simple way to describe the function of a GCC
compiler is that it is responsible for ”translating” programming language into machine
code, meaning it converts the source code to executable instruction file for the MCU. For
this measurement, a WRITE command was performed, where bytes [1, 2, 3, 4, 5] were
written at the address with value 0x00. The SPI clock freuqency of the master was set
to 54 kHz. A benchmark GPIO pin was set to output HIGH value at the start of the
interrupt and output LOW value after the next SPI DMA transmission is setup. The
time was measured from the rising edge of the last clock pulse in a byte to benchmark
pin going LOW. Result of this measurement can be seen in figure 6.7.
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Figure 6.7: Base measurement for SPI clock speed optimization

Red markers indicate the last clock pulse of a byte and the benchmark pin going low.
Time of this period is 22.1 µs, which translates to the maximum clock frequency of 45.2
kHz.

6.4.3. GCC setting

The first iteration of optimization included modifying a GCC compiler setting. Setting
was set to -Ofast. Settings of the GCC compiler as well as its overall function are described
in [22]. By applying this setting, the measured time went down to 12.45 µs, which meant
increase in the maximal SPI clock frequency to 80 kHz.

6.4.4. SPI drivers optimization

The next iterations of optimization involved modifying the SPI drivers. Originally used
HAL drivers need to take into consideration every possibility of the SPI peripheral, which
is not needed in this case. By modifying the SPI drivers and leaving the absolute minimum
necessary for the correct action, measured time decreases vastly. Drivers were modified in
multiple steps, but only the final result will be shown. The final result is measured while
using the SPI drivers described in section 5.3. While the base measurement was done only
for WRITE command, the final measurement will be done for WRITE command as well
as for READ command, which will ensure that both receive and transmit functionality
will be tested.
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Figure 6.8: Final measurement for SPI clock speed optimization for WRITE instruction

The final measurement for the same WRITE command as in the base measurement
can be seen in figure 6.8. The measured time is marked by the red markers and the final
measured time is 4.95 µs, which translates to a maximum clock frequency of 202kHz.

Figure 6.9: Final measurement for SPI clock speed optimization for READ instruction

Final measurement for READ command can be seen in figure 6.9. The measured time
is marked by the red markers and the final measured time is 5.45 µs, which translates
to a maximum clock frequency of 183 kHz. Base measurement for READ command was
not performed, but it is expected to be slightly worse than base measurement for WRITE
command.

6.4.5. Optimization conclusion

The SPI clock frequency is by nature majorly limited for this device mode. In order to
improve the situation, optimization was done by changing the GCC compiler settings and
by rewriting SPI peripheral drivers using the Low Layer (LL) drivers. From the base value
of 45 kHz, the maximum frequency was improved to 202kHz for WRITE instruction and
183kHz for READ instruction. The base measurement can be seen in figure 6.7 and can
be compared with the final measurements in figure 6.8 and figure 6.9.
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6.5. Optimization - Chip select interrupt time

6.5.1. Problem description

In previous optimization, the SPI clock frequency was optimized, but the time in-between
instructions was not taken into consideration. The minimum time in-between instructions
exactly correlates to the time of the chip select interrupt. This time is the time from the
rising edge of the chip select to the next rising edge of the clock signal. It was chosen
that this time would ideally be no longer than the time of one clock pulse.

6.5.2. Base measurement

An early implementation of this mode had slightly different code inside the chip select
interrupt handler. Report messages for every instruction were completely initialized only
in this interrupt and also, the frequency was calculated in this interrupt if the last time
of calculation was larger than 20 ms. This meant that the chip select interrupt time was
strongly dependant on the type of instruction. In all the measurements, the worst case
was measured and the worst case for this measurement was determined to be for WRITE
command, when the maximum number of bytes possible were written. Benchmark pin
was set to go HIGH at the beginning of the chip select interrupt and go LOW in the end
of the chip select interrupt. Measurement was done from the rising edge of the chip select
signal to the falling edge of the benchmark pin. The base measurement can be seen in
figure 6.10.

Figure 6.10: Base measurement for chip select interrupt time optimization

The base measurement is indicated by red markers and the time of measurement was
19 µs. Target time is around 5 µs. It is important to note, that when the actual frequency
calculation is done in this interrupt, the interrupt time increases by around 450 µs. This
happens once every 20 ms.

6.5.3. Final optimization

The first step of optimization was to remove frequency calculation from this interrupt. In
the final implementation, the frequency is calculated for every report message just before
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the report message is sent. This means that in the interrupt, only the input capture
frequency measurement data are being written to every report message. This also means
that every report message will have separately measured SPI clock frequency, while before
frequency was only measured once every 20 ms.

The next step of optimization was to divide the report message initialization into parts
and initialize these parts not at once in the chip select interrupt, but rather initialize a
part after every byte of the instruction. This would massively improve the chip select
interrupt time and also make it a constant for WRITE instruction.

The final measurement can be seen in figure 6.11.

Figure 6.11: Final measurement for chip select interrupt time optimization

As can be seen from the figure, measurement indicated by the red markers is equal
to 7.45 µs. This is the absolute worst case and every other type of command has better
result.

6.6. Discussion and limitations

The EEPROM emulator mode is used to create a model of an existing EEPROM device.
The goal was to create a device, which behaviour would be the same as the real EEPROM
device if both of these devices were connected to an SPI master capable of transmitting
valid EEPROM instructions from the instruction set. Such device was created and a
detailed verification tests as well as a comparison tests with the real EEPROM device
will be provided later in chapter 8.

Emulator cannot be 100% same as the real device, some limitations occur. In case
of the actual logic, the behaviour is completely the same. One difference is that the real
EEPROM memory array and the status register are non-volatile, meaning data will retain
after the device is disconnected from the power supply. All data of EEPROM emulator
are volatile, because they are stored in the MCU’s RAM memory. This means that after
device reboot, no data will remain. This is not considered to be a problem as the device
is not designed as a ”part for part” replacement of a real EEPROM device, but rather as
a test device, that can test the logic of EEPROM SPI masters.

The next difference is when the instruction data is actually being written into the
memory. On the real EEPROM device, data is written into the memory only after the chip

79



6. ADVANCED FUNCTIONALITY - . . . 6.7. POSSIBLE IMPROVEMENTS

select pin is brought HIGH. On the EEPROM emulator, data is written into the memory
at the same moment as it is received by the instruction. This is also not considered to be
a problem as it should not pose any noticeable difference from the ”outside”, meaning no
difference to the SPI master or state of the memory. The only situation when there could
be a difference in functionality is if the device was powered off during an instruction. In
this case real EEPROM would not keep the data from that instruction in memory, but
the EEPROM emulator would. But in reality, the memory of the EEPROM emulator is
volatile. The fact that the EEPROM emulator memory is volatile negates this problem
because the behaviour is already vastly different on reboot.

One major limitation is the SPI clock frequency. The worst case of an SPI transmission
is considered, which is a continuous data stream. A continuous data stream means that
time in-between bytes is the same as the time in-between bits (clock pulses). All logic
is executed in the time between bytes and therefore the minimum time has to elapse in
order for the device to function properly. The maximum SPI clock frequency was only
45 kHz in earlier implementation and was brought up to 200kHz for WRITE command
and 183kHz for READ command with optimization. These values are vastly different
than the maximum clock frequency of a real EEPROM device, which is 10 MHz. This
massive difference is not ideal, but priority of this emulator device is not to test the
electrical characteristics of an SPI master, but to test logic. In reality, SPI master’s
SPI clock frequency can be easily turned down. Another important fact to note is that
this emulator device can be classified as a prototype or ”proof of concept” and in future
development, a much faster MCU (up to 10x faster system clock) can be used and therefore
the maximum SPI clock frequency would increase significantly also. Maybe it would be
more fitting to emulate EEPROM devices which use I2C communication interface instead
of the SPI interface as generally speed of I2C interface does not exceed 400kHz, which
is much closer to the current emulator maximum clock frequency. One other important
realization is that in reality continuous data stream is almost never the case, which means
that the maximum SPI clock frequency can be much higher depending on the format of
data transmission.

In order to match the behaviour of a real EEPROM device, some parameters were also
slowed down. There is a write in progress delay on this EEPROM type and according to
datasheet [21], its maximum value is 5ms. This time was measured on a real EEPROM
device and the rough measured value was determined to be 2.75 ms . EEPROM emulator
does not naturally have this delay and therefore it was artificially added to match the
behaviour of a real EEPROM device.

6.7. Possible improvements

One major improvement in the future development would be to use a much faster MCU
which would impact the maximum SPI clock frequency as the clock frequency is majorly
limited in this state of development.

Other plans for the future development are to support more EEPROM device. The
goal is to be able to generally define any possible EEPROM device with a simple param-
eters definition inside a device struct in C language. The parameters would describe the
total memory size, page, sector, block size as well as instruction set and WIP delay.
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7. Python API and configuration

7.1. Device configuration

7.1.1. Configuration tree

There are three parameters that define which mode the device is currently in. These
parameters are:

� stream mode enable

� eeprom mode enable

� full duplex enable

The configuration tree can be seen in figure 7.1. If the stream mode parameter
is set, the device will be in stream mode and the other two parameters are ignored.
If the stream mode is not set, the next parameter which is being evaluated is eep-
rom mode enable. If this parameter is set, the device will enter EEPROM emulator
mode and the last parameter is ignored. If the eeorom mode enable is not set, the device
is automatically in LUT mode. The parameter full duplex enable determines if the LUT
mode will be in full-duplex or half-duplex configuration.

Figure 7.1: Configuration tree of the device

In stream mode, no internal parameters can be configured.

EEPROM emulator mode configuration

In EEPROM mode, the memory array and the status register can be modified from the
python API.
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LUT mode configuration

In LUT mode, LUT pairs and data size can be modified from the python API.

7.1.2. Discussion

The device can be configured according to the configuration tree. In current version of
implementation, the core settings of the actual SPI peripheral such as SPI mode cannot
be configured. It is necessary to add SPI peripheral configuration in future development.

7.2. YAML file

YAML (YAML Ain’t Markup Language) is a data serialization language which is used
mostly for configuration files. In this specific case, YAML is used to create a configuration
python dictionary that is later decoded by python API and this configuration is applied
to the embedded device. More information about YAML can be found at [23].

Figure 7.2: Example of a YAML file
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Example of a YAML file can be seen in figure 7.2. This is a fully defined configuration
and no other expressions can be used. It is possible to add more LUT pairs and to add
more EEPROM data definition. YAML file can also be defined partially and in that case,
only the defined config parameters will be applied to the embedded device. It is possible
to set YAML decoder so that the undefined parameters will be cleared. While decoding
a YAMl file, all possible errors such as YAML syntax and parameter types are checked.

7.3. Python API

7.3.1. Main API tasks and characteristics

API (application programming interface) can be generally described as a code library that
allows the user to control a device/application, for which the API was created.

API programming language selection

There are multiple viable programming languages for creating APIs. Amongst the most
well known ones are C++, Python, VBS or even graphical languages like LabView. For
this projec, python was chosen as the preferred programming language. The main reasons
for choosing this language were previous experience with this language, readily available
modules for very wide variety of applications and functionalities.

Main tasks

Main tasks of API can be distinguished as:

� Sending configuration commands through the serial port interface.
For configuration, different commands must be sent to the device. API should pro-
vide documented methods that are able to send valid commands to the embedded
device. These commands must be error checked by CRC and by receiving acknowl-
edgement message back from the embedded device. This acknowledgement message
must contain the same information as the command, otherwise the command will
not be classified as successfully executed.

� Receiving report and acknowledgement messages through the serial port
interface.
The embedded device will send two kinds of messages to a PC. One is a report type
of message, the second is an acknowledgement type of message. Report message
is received by the API everytime a transmission happens on the SPI bus of the
embedded device. These report messages will contain specific information regarding
what happened on SPI data lines. Acknowledgement messages will be received
everytime a valid command is sent from the PC API to the embedded device.

� Loading and applying config specified by the user upon device connection.
User can specify wanted complete device configuration in YAML file. Upon device
serial port connection, this configuration will be loaded into the embedded device.
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� Storing the current state of the embedded device.
While the embedded device is connected, API must know its current state of con-
figuration. This is done by reading the configuration at device connection and also
updating the configuration upon receival of every valid acknowledgement message.

API characteristics

API will be created as set of python methods and classes available for the user. These
methods will be documented so that their function is completely understandable and
should be able to completely control embedded device and all its functionalities. Docu-
mentation can be found at [24]

7.3.2. Implementation

In this section, the algorithms for each main API tasks will be described.

Connecting to a device

For the serial connection, pyserial module is used. This module allows the user to control
and configure the serial port. Figure 7.3 represents a block diagram of the algorithm that
is used for connecting to an embedded device. First, a connection is attempted on the
serial port specified by the user. If this connection is unsuccessful, error is returned and
the device status is changed appropriately. If the connection is successful, first a YAML
configuration is loaded and decoded from the YAML file. Next, the loaded and decoded
YAML configuration is sent to the embedded device using commands. Lastly, the current
configuration is read from the embedded device and stored.

Figure 7.3: Block diagram of device connection algorithm
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Receiving and decoding messages

The main handler of the module needs to be called frequently in the main while loop of
a script that uses this module. In this handler, bytes are received from the USB receive
buffer and messages are decoded. Every valid message is initiated to Message() object.
Upon message initiation, the CRC value of that same message is checked. If the CRC
value is not correct, the message is ignored. If the message is of acknowledgement type,
message is used for validation of the current command that is in the process of validation.
If the message is of report type, data from the report message are printed into the console.
Every report and acknowledgement message is stored in a buffer after processing. This
way any message received can be accessed later from this buffer.

Transmitting commands

Commands can be transmitted in blocking mode or non-blocking mode. In blocking mode,
commands are sent inside the called method. In non-blocking mode, commands are ap-
pended to a command buffer and executed later asynchronically in the main handler in
the main while loop of a parent script. Every command needs to receive an acknowl-
edgement message. In order for acknowledgement message to be valid, the message must
contain the actual data of the related command and the CRC value must be correct. If
the acknowledgement message is not received within the specified time, two more tries
are attempted. After the third try of the same command is sent and no acknowledgement
message is received within the specified timeout time, the command is labeled as timed
out.

7.3.3. General packet description

UART packet can be generally described as can be seen in table 7.1. Packet consists of:

� Start - Stop byte
Byte value to indicate start of a packet. Value is 0xBB.

� Total length of packet
Total length of a packet. This it not present in a packet sent from PC to STM32.
In the future development, the packets will be modified so that every packet is
completely same.

� Op code
Byte that describes type of message/command.

� Command/message data
Actual data of a command or message. The length of this part of the packet can
vary based on the specific message/command.

� Two bytes of CRC
Sixteen bit CRC is used for error checking with polynomial value 0x8810. CRC is
calculated from the whole packet up to this point, but without the start-stop byte.

� Start - Stop byte
Byte value to indicate the end of a packet. Value is 0xBB.
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First byte Start - Stop Word byte

... Total packet length

... Op code

... Command/message data

... Two bytes of CRC

Last byte Start - Stop byte

Table 7.1: General packet for python API transmissions

*Note - Total packet length is not included in PC to STM32 packet.

7.3.4. Specific commands description

Every command has a blocking mode attribute that determines if it will execute in block-
ing or non-blocking mode as well as some timeout values. Every command needs to be
accompanied by a successful receival of a valid acknowledgement message. Requested
data from every read command are in the acknowledgement message. Commands can be
described as:

Command name Description

Config write
Writes the config parameters described in the config-
uration tree as well as the data size for LUT mode.

Config read
Reads the config parameters described in the config-
uration tree as well as the data size for LUT mode.

LUT write Writes a single LUT pair.

LUT clear Cleares a single LUT pair.

LUT read Reads a single LUT pair.

Set response Sets the default response for LUT mode.

Write EEPROM
Writes bytes to the EEPROM emulator memory array
at the specified address.

Read EEPROM
Reads bytes from the EEPROM emulator memory ar-
ray at the specified address.

Wrsr EEPROM
Writes the status register byte to the EEPROM em-
ulator.

Rdsr EEPROM
Reads the status register byte from the EEPROM em-
ulator.

Clear chip EEPROM
Resets the whole memory array of the EEPROM em-
ulator to 0xFF.

Table 7.2: Python API commands
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7.3.5. Specific acknowledgement messages description

Acknowledgement messages are received after successful command transmission by the
python API. Every python API command has got its own specific acknowledgement mes-
sage.

7.3.6. Specific report messages description

Report messages are received after a successful SPI transmission. The list of all the
possible report messages follows.

Message name Description

Stream report
Report containing information about one received
byte in stream mode.

Rx report
Report containing information about received bytes
in half-duplex LUT mode.

Tx report
Report containing information about transmitted
bytes in half-duplex LUT mode.

TxRx report
Report containing information about transmitted and
received bytes in full-duplex LUT mode.

EepWrite report
Report containing information about EEPROM
WRITE command received via SPI interface.

EepRead report
Report containing information about EEPROM
READ command received via SPI interface.

EepWrsr report
Report containing information about EEPROM
WRSR command received via SPI interface.

EepRdsr report
Report containing information about EEPROM
RDSR command received via SPI interface.

Table 7.3: Report messages

7.4. Discussion

Configuration of the device and the main python API features were described. In reality,
function of python API is more complex. More information about how the python API
functions and more information about commands and messages can be found at [24].
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8. Verification
Once the stream, LUT and EEPROM modes are developed and functioning along

with the python API, it is important to perform appropriate verification tests for these
modes. In order to test the SPI slave device, an SPI master is needed.

8.1. Test master design

Configurable SPI master is needed to sucesfully test the SPI slave device that is being
developed. For this purpose, a separate SPI master was developed. For hardware, same
NUCLEO board with the same MCU was used. For software, same python API with C
framework was used as was described in Python API section 7.3. Important features that
can be accessed by the master’s python API are:

� spi_master.transmit( transmit_list )

� spi_master.receive( receive_length )

� spi_master.transmitreceive( transmitreceive_list )

� spi_master.write_eep( address, data )

� spi_master.read_eep( address, number_of_bytes )

� spi_master.rdsr_eep( )

� spi_master.wrsr_eep( status_register_byte )

� spi_master.clear_chip_eep( )

Transmit method

Transmit function can be called by expression:

spi_master.transmit( transmit_list )

, where spi master is an SPI master object and transmit list is an integer list representing
bytes to be transmitted, therefore values of this list have to be of type 8 bit unsigned
integer. The length of this list is limited to the value 50. Once this method is called, the
SPI master transmits these bytes on the MOSI SPI line.
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Receive method

Receive function can be called by expression:

spi_master.receive( receive_length )

, where spi master is an SPI master object and receive length is an integer value repre-
senting the number of bytes to be received. This value is limited to value 50. Once this
method is called, the SPI master provides clock signal and receives the specified number
of bytes from the MISO SPI line.

Transmit receive method

Transmit-Receive function can be called by expression:

spi_master.transmitreceive( transmitreceive_list )

, where spi master is an SPI master object and transmitreceive list is an integer list rep-
resenting bytes to be transmitted, therefore values of this list have to be of type 8 bit
unsigned integer. In this method, also data is received. The length of the transmitre-
ceive list indicates the number of bytes to be received and the length of this list is limited
to the value 50. Once this method is called, the SPI master provides clock signal and
receives the specified number of bytes from the MISO SPI line and transmits the provided
list on the MOSI SPI line.

write eep method

write eep method can be called by expression:

spi_master.write_eep( address, data )

, where spi master is an SPI master object, address is the EEPROM memory starting
address where data will be written and data is a list of bytes. Size of this list determines
how many bytes will be written. Once this method is called, the SPI master transmits
WREN command, followed by WRITE command. After WRITE command, the status
register is polled with RDSR command until the WIP bit is equal to 0.

read eep method

read eep method can be called by expression:

spi_master.read_eep( address, number_of_bytes )

, where spi master is an SPI master object, address is the EEPROM memory starting
address from where data will be read and number of bytes is the size of the READ com-
mand. Once this method is called, the SPI master transmits READ command and receives
specified number of bytes.
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rdsr eep method

rdsr eep method can be called by expression:

spi_master.rdsr_eep( )

, where spi master is an SPI master object. Once this method is called, the SPI master
transmits RDSR command and receives the status register byte.

wrsr eep method

wrsr eep method can be called by expression:

spi_master.wrsr_eep( status_register_byte )

, where spi master is an SPI master object, status register byte is a byte that will be
written into the status register. Once this method is called, the SPI master transmits
WREN command, followed by WRSR command. After WRSR command, the status
register is polled with RDSR command until the WIP bit is equal to 0.

clear chip eep method

clear chip eep method can be called by expression:

spi_master.clear_chip_eep( )

, where spi master is an SPI master object. Once this method is called, the SPI master
transmits WRITE commands with all the needed accessories such as WEN command,
polling of the status register with RDSR command. These write commands will write
the value 0xFF to every byte in the EEPROM memory. Single WRITE command will
write one complete page, therefore the number of WRITE commands will be equal to the
number of pages in EEPROM device.

8.2. Logic analyzer tests - Stream and LUT mode

In order to test the logic functionality in depth, first we must ensure that what is being
reported about the SPI interface by the MCU is actually correct and present on the actual
data lines. For the slave and master, the same type of MCU is used and therefore there
could be some type of unknown internal error that would cause the MCUs to report correct
values, but the actual SPI transmission would be flawed and both of these MCUs would
have the same decoding error causing them to report data correctly. In order to test this,
a DSLogic logic analyzer was used manufactured by the DreamSourceLab company [25].
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8.2.1. Stream mode verification

First, the stream mode is verified using the logic analyzer. The slave is set to stream mode.
The master is set to transmit 10 bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. Clock frequency of
the master is 54kHz. Logic analyzer output was analyzed by DSView software and can
be seen in figure 8.1. As can be seen from the figure, 10 bytes clocked on the SPI clock
pin and the MOSI line data are correct. The MISO line is empty because the device does
not transmit data in stream mode.

Figure 8.1: Logic analyzer test result for stream mode verification

In figure 8.2, output of the python API can be seen. As can be seen from the figure,
API receives reports about 10 bytes received by the slave device and their values as well
as the SPI clock frequency are valid.

Figure 8.2: Python API output for logic analyzer stream mode verification

8.2.2. LUT mode half duplex verification

Next, the LUT mode in half-duplex configuration is verified using the logic analyzer. The
slave is set to LUT half-duplex mode. One row of LUT is configured to include:

� request = [1, 2, 3, 4, 5]

� response = [5, 4, 3, 2, 1]

Master is set to transmit 5 bytes equal to the existing request in LUT = [1, 2, 3, 4, 5].
After these 5 bytes are transmitted by the master, the master is set to receive 5 bytes.
The clock frequency of master is 54kHz. Logic analyzer output was analyzed by DSView
software and can be seen in figure 8.3. As can be seen by the figure, 5 bytes from the
first packet are transmitted by the master and are present on the MOSI line, MISO line
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is empty. Second packet resembles the response sent by the SPI slave device. Correct 5
bytes are present on the MISO line.

Figure 8.3: Logic analyzer test result for LUT half-duplex mode verification

In figure 8.4, output of the python API can be seen. As can be seen from the figure,
first a receival of 5 bytes is reported. Byte values are correct and matching to the request
in LUT and the SPI clock frequency is correct also. Next, the transmission of 5 bytes is
reported. The byte values are correct and matching to the response in LUT and also the
SPI clock frequency is correct.

Figure 8.4: Python API output for logic analyzer LUT half-duplex mode verification

8.2.3. LUT mode full duplex verification

Next, the LUT mode in full-duplex configuration is verified using logic analyzer. The
slave is set to LUT full-duplex mode. Default response is set to : [0, 0, 0, 0, 0] and
one row of LUT is configured to include:

� request = [1, 2, 3, 4, 5]

� response = [5, 4, 3, 2, 1]

The master is set to transmitreceive 5 bytes equal to the existing request in LUT =
[1, 2, 3, 4, 5]. In this transmitreceive, default response is expected to be received. After
these 5 bytes are transmitreceived by the master, the master is set to transmitreceive 5
bytes, which values does not matter for this test. Response from LUT is expected to be
received in this transmission. The clock frequency of the master is 54kHz. Logic analyzer
output was analyzed by DSView software and can be seen in figure 8.5. As can be seen
by the figure, 5 bytes from the first packet are transmitted by master and are present
on the MOSI line while at the same time, the default response is received on the MISO
line. The second packet resembles the response sent by the SPI slave device on the MISO
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line and the MOSI line contains 5 bytes sent by the SPI master that represent the next
request in LUT and their values are not important for this test.

Figure 8.5: Logic analyzer test result for LUT full-duplex mode verification

In figure 8.6, output of the python API can be seen. As can be seen from the figure,
transmitreceival of 5 bytes is reported. Request inside LUT was received and default
response was transmitted. The byte values are correct and the SPI clock frequency is
correct also. Next, transmitreceive of 5 bytes is reported. Response from LUT is trans-
mitted, while 5 bytes are received, which values are not important for this test. Byte
values are correct and also the SPI clock frequency is correct.

Figure 8.6: Python API output for logic analyzer LUT full-duplex mode verification

8.3. More detailed tests - Stream and LUT mode

For more detailed testing of the stream and LUT mode, a python test structures were
implemented. There are 5 tests in total that are needed to test functionality of the modes
from this chapter. All tests have the same test structure, and these tests are differentiated
with the slave configuration, what the SPI master is transmitting and what is the valid
output of the test. In all described tests, the master’s SPI clock frequency was set to
54kHz.
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8.3.1. Common test structure

Figure 8.7: Common test structure for modes in this chapter

Common test structure can be seen in figure 8.7 and consists of:

� Define YAML file
In other words, create a slave configuration for the specific test. This configuration
is defined by creating a YAML file that will be later used to configure the SPI slave
device upon connection. This part of algorithm is test specific.

� Connect to SPI slave device
Connect to the SPI slave device and specify the created YAML file as the input
configuration. Set print info parameter to False.

� Connect to SPI master device
Connect to the SPI master device. Set print info parameter to False.

� Create SPI master transmissions
Every test will require different transmissions to be initiatet by the master device.
Commands will be sent to the master about these transmissions and these SPI
transmissions will execute in blocking mode. This part of algorithm is test specific.

� Load all SPI slave report messages and create a list
After every transmission, SPI slave device will send a report message to the python
API. These messages are loaded and a list is created from these messages. List
contains all data from the messages appended together in chronological order.

� Load all SPI master report messages and create a list
After every transmission, SPI master device will send a report message to the python
API. These messages are loaded and a list is created from these messages. List
contains all data from the messages appended together in chronological order. This
part will happen in all tests except for stream mode test.
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� Create a valid list out of tranmsmissions
Both the list created from the slave reports and the list created from the master
reports have only one possible correct value based on the specific test and what was
transmitted via the SPI interface. A new list is created that represents this only
correct possibility.

� Compare 3 created lists
All 3 lists are compared. For the test to pass, all 3 lists must be absolutely the same.
If any list differs from another, test is declared as failed. For the stream mode test,
only 2 lists are compared.

� Disconnect master and slave
Slave and master devices are disconnected.

8.3.2. Stream mode test

YAML configuration

Slave configuration for the stream mode is simple. Only thing that is needed is to enable
stream mode.

SPI transmissions

In the stream mode test, the SPI transmissions can be completely random, meaning
random data, random size and random type. There is no expected action from the SPI
slave. In the recorded test, transmissions were defined in this order:

master.transmit( [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] )

master.receive( 5 )

master.transmitreceieve( [4, 5, 6] )

Slave list creation

Slave list will consist out of the stream report messages. Data from each report will be
appended together in chronological order.

Master list creation

In this test, no master list will be created.

Valid list creation

Three possible master commands can be set to execute:

� Transmit
The actual bytes of the transmission are appended to the list.
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� Receive
Zeros are appended to the list. The number of zeros to append is the same as the
length of the receive command. In this command, the master will clock the set
number of zeros on MOSI line.

� TransmitReceive
The actual bytes of the transmission are appended to the list.

8.3.3. LUT half duplex test

YAML configuration

Slave configuration for this test is a little bit more complex. First, the slave device is set
to LUT mode and the full-duplex parameter is set to False. Next, the LUT pairs need
to be defined. These LUT pairs will be configured into the slave device and also used to
generate transmissions, that will be sent by the SPI master. The data size is not defined
yet, because every LUT pair could have different size, therefore the data size will be set
before every SPI master transmission. In the recorded test, LUT pairs displayed in table
8.1 were defined:

LUT
row

Request packet Response packet

0 [1, 2, 3, 4, 5] [5, 4, 3, 2, 1]

1 [11, 66] [55, 65]

2 [11, 66, 8, 8, 8] [55, 65, 1, 2, 3]

3 [8]*10 [4]*10

4 [3]*7 [200]*7

Table 8.1: Lookup table for LUT half-duplex test

*Note - [3]*7 means list with 7 bytes, where all values are equal to 3

SPI transmissions

The transmissions sent by the master device are dependant on LUT pairs. For every LUT
pair, two SPI transmissions will happen. First, the request will be transmitted by the
master and after that, a receive will be initiated by the master for the same number of
bytes as is the length of the response in the current LUT pair. Before every LUT pair
transmissions, the SPI slave device must be configured for the proper data size that is
equal to the request or response length in the current LUT pair.

Slave list creation

Slave list will consist out of receive and transmit reports. Data from each report will be
appended together in chronological order.
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Master list creation

Master list will consist out of transmit and receive reports. Data from each report will be
appended together in chronological order.

Valid list creation

Valid list will contain all the LUT data appended together in order. For every LUT row,
first the request will be appended followed by the response.

8.3.4. LUT full duplex test

YAML configuration

First, the slave device is set to LUT mode and full-duplex parameter is set to True. Next,
the LUT pairs need to be defined. These LUT pairs will be configured into the slave
device and also used to generate transmissions that will be sent by the SPI master. The
data size is configured also. The data size for every LUT pair has to be the same because
in full-duplex mode, the response for the previous request will be received at the same
time as next request is being sent. In the recorded test, default response is set to all zeros
and LUT pairs displayed in table 8.2 were defined:

LUT
row

Request packet Response packet

0 [1, 2, 3, 4, 5] [5, 4, 3, 2, 1]

1 [1, 4, 3, 1, 1] [88, 2, 1, 1, 1]

2 [4, 4, 4, 4, 4] [255, 200, 255, 1, 1]

3 [2, 2, 2, 2, 2] [82, 82, 82, 82, 82]

Table 8.2: Lookup table for LUT full-duplex test

SPI transmissions

Transmissions sent by the master device are dependant on LUT pairs. Every LUT pair
will be tested. Only the transmitreceive commands will be executed by the SPI master.
The absolute first transmitreceive command will transmit first LUT request and receive
default response of the slave device. Every transmitreceive command after the first one
will receive the response for the last request sent and also at the same time transmit the
next LUT request. This is the reason that the data size must be a constant for all the
LUT pairs in this test.

Slave list creation

Slave list will consist out of transmitreceive reports. Both the request and the response
data from each command will be appended together into one list in chronological order.
From every command, the first data that was sent on the MOSI line will be appended
and after that, the data from the MISO line will be appended.
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Master list creation

Master list will be created the same way as the slave list, but from the master device
reports and not the slave device reports.

Valid list creation

Valid list will contain all LUT data appended together in order. For every LUT row, first
the request will be appended followed by the response.

8.3.5. Default response test - LUT half duplex mode

YAML configuration

In this test, only the default response is tested. The slave device is configured to LUT
mode with full-duplex parameter set to False. Data size is clearly defined and it is the
same as the length of the default response that is also defined. In the recorded test,
default response was set to: [1, 2, 3, 9, 200, 255].

SPI transmissions

Only 2 SPI transmissions are performed by the master device in this test. First command
is a transmit command. Value of bytes does not matter as the slave LUT is cleared, but
the length of this transmit command must be the same as the default response length. The
next command is a receive command of the same number of bytes as is the default response
length. In this receive command, the default response is expected to appear on the MISO
line.

Slave list creation

Slave list will consist of transmit and receive reports. Data from these reports will be
appended together in chronological order.

Master list creation

Slave list will consist of transmit and receive reports. Data from these reports will be
appended together in chronological order.

Valid list creation

Valid list will firstly contain zeros. The number of these zeros is equal to the default
response length. After these zeros, the default response is appended.

8.3.6. Default response test - LUT full duplex mode

YAML configuration

In this test, only the default response is tested. Slave device is configured to LUT mode
with full-duplex parameter set to True. Data size is clearly defined and it is the same
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as the length of the default response that is also defined. In the recorded test, default
response was set to: [1, 3, 9, 200, 255].

SPI transmissions

Only 1 SPI transmission is performed by the master in this test. One transmitreceive
command is executed by the SPI master with the length same as is the length of the
default response. In this command, default response is expected to appear on the MISO
line. Transmitted data are zeros as this data is not important.

Slave list creation

Slave list will consist of one transmitreceive report. First, the data on the MOSI line will
be appended, then, the data on the MISO line will be appended.

Master list creation

Master list will consist of one transmitreceive report. First, the data on the MOSI line
will be appended, then, the data on the MISO line will be appended.

Valid list creation

Valid list will firstly contain zeros. The number of these zeros is equal to the default
response length. After these zeros, default response is appended.

8.3.7. Tests conclusion

The tests were performed in such way to test every functionality of stream and LUT mode.
All tests passed. For changing the test data, it is possible to just edit the transmission
definitions for each test. More complex as well as simpler transmissions were also tried
for each test with the same result. In described tests, the SPI clock frequency is relatively
low, therefore different SPI clock frequencies were tried and result was the same.
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8.4. Logic analyzer verification - EEPROM emulator

mode

First, the basic command functionality of the EEPROM emulator must be checked. Real
25AA160D EEPROM device was acquired and connections to the SPI master were made
in such way, that the emulator and the real device could be easily swapped. The SPI clock
frequency was set to 54kHz. All six instructions were performed on the emulator device
and on the real device and compared using the same logic analyzer as in previous tests.
Volatility of the memory was taken into consideration and instructions were executed in
such way that both the real device and the EEPROM emulator should have the same
memory and status register state for every instruction. Both the emulator and the real
device results for each instruction are displayed below. Logic analyzer signals of the
emulator are completely the same as signals of the real EEPROM device. All signal items
in following figures from top to bottom are:

� MISO bytes

� MOSI bytes

� Decoded command data

� Command description

� Clock signal

� MOSI signal

� MISO signal

� Chip select signal
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8.4.1. WRITE

Figure 8.8: Write command executed on emulator device

Figure 8.9: Write command executed on real device

101



8. VERIFICATION 8.4. LOGIC ANALYZER . . .

8.4.2. READ

Figure 8.10: Read command executed on emulator device

Figure 8.11: Read command executed on real device
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8.4.3. WRSR

Figure 8.12: Wrsr command executed on emulator device

Figure 8.13: Wrsr command executed on real device

*Note : MISO values are different because in the time of measurement, emulator had
problem with clearing the internal SPI Tx buffer. This problem was resolved in later
development. All wrong MISO values are when a byte is not being sampled as no transmit
from the slave device is expected.
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8.4.4. RDSR

Figure 8.14: Rdsr command executed on emulator device

Figure 8.15: Rdsr command executed on real device

*Note : MISO values are different because in the time of measurement, emulator had
problem with clearing the internal SPI Tx buffer. This problem was resolved in later
development. All wrong MISO values are when a byte is not being sampled as no transmit
from the slave device is expected.
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8.4.5. WREN

Figure 8.16: Wren command executed on emulator device

Figure 8.17: Wren command executed on real device
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8.4.6. WRDI

Figure 8.18: Wrdi command executed on emulator device

Figure 8.19: Wrdi command executed on real device
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8.5. More detailed Tests - EEPROM emulator mode

For more thorough testing of the EEPROM emulator device, multiple tests were invented.
These tests should test most of the possible ways an EEPROM may be used. All the tests
will firstly execute on the EEPROM emulator device. Next, all the tests will execute on
the real EEPROM device. If all tests pass, it means that the behaviour of the emulator
and the real device is completely the same.

8.5.1. Common structure

All tests have a common structure and the core functions of this structure are changed
according to the specific test. The common structure can be seen in figure 8.20.

Figure 8.20: Common structure for EEPROM emulator more advanced tests

� Upon module initialization
Upon the python module initialization, the SPI master and the SPI slave devices
need to be connected to the python APIs. For the SPI slave, a YAML file is defined
with the parameters: eeprom mode: True, clear eeprom: False, clear undefined config params:
True.

� Clear EEPROM memory using the SPI master
This part of the algorithm clears the whole EEPROM memory using the SPI master
and therefore using the instructions transferred via the SPI interface. This part is
a test itself, meaning that for every test, actually two tests are executed. First, the
clear chip test is executed followed by the actual test. This is not the case for pure
clear chip test as the clear chip test would execute two times subsequently.

� Write all the needed data to the EEPROM memory using the SPI master
In this part, the actual test data are written to the EEPROM using the SPI interface.
This part is test specific.
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� Read whole memory array using the SPI master
The whole EEPROM memory is read through READ instructions over the SPI
interface. Data are read one page at a time. The whole memory array is saved into
a list.

� Read whole memory array using the SPI slave’s python API
The whole EEPROM memory is read through the UART using the slave’s python
API. Data are read one page at a time. Whole memory array is saved into a list.
This part does not execute when the real EEPROM device is connected as there is
no connection through UART.

� Create artificial memory array
Every test has a valid state of the whole memory array after all the instructions
were transmitted. This state is test specific. A list representing the valid state of
the whole memory array is artificially created.

� Compare all memory arrays
In case when the emulator is connected, all three memory array lists are compared.
Test passes if they are completely same. In case when the real device is connected,
only two memory array lists are compared.

8.5.2. Clear chip test

Clear chip test clears the whole memory array to value 0xFF.

SPI master commands

Only needed master command is

spi_master.clear_chip( )

This command clears the whole memory array one page at a time.

Valid memory array

Valid memory array for this test is an array with value of every byte equal to 0xFF.

8.5.3. Full page write test

Writes every byte in every page.

SPI master commands

Pages will be written one page at a time. The starting address of WRITE instruction will
always be the first byte of a page, therefore no page overflow can happen. Every byte in
every page will be written. Every byte in the same page will be equal to the current page
index.

Valid memory array

Memory array is recreated where every page contains only the index of that same page.
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8.5.4. Full page write with offset test

Writes every byte in every page.

SPI master commands

Pages will be written one page at a time. The starting address of WRITE instruction is
not the first byte of a page, therefore page overflow will happen. The starting index of a
page can be specified. Every byte in every page will be written. Every byte in the same
page will be equal to the current page index.

Valid memory array

Memory array is recreated where every page contains only index of that same page.

8.5.5. Partial page write test

Every page will be written, but not all bytes in the page will be written.

SPI master commands

Pages will be written one page at a time. The starting address of WRITE instruction can
be specified as well as the number of bytes to write can be specified. Every written byte
in one page will be equal to the current page index.

Valid memory array

Memory array is created where every written byte equals to the current page index and
all bytes that were not written equal to 0xFF.

8.5.6. Partial page read test

Full page write test is performed but not every byte in every page is read.

SPI master commands

Full page write test is executed, but instead of reading the whole memory array, only the
bytes specified by the starting index and the number of bytes to be read are read. Bytes
starting from the specified index are read from every page.

Valid memory array

Every page contains the index of that same page. For every page, only the specified
number of bytes are appended to list.

8.5.7. Block protect test

Tests all the possible configurations of block protect.
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SPI master commands

Write full pages test is executed, but prior to that, block protect is set by WRSR com-
mand. This test executes 3 times for every possibility of the enabled block protect.

Valid memory array

Every byte that is not protected by the current setting of the block protect contains the
index of the page to which the byte belongs. Every byte that is protected by the current
setting of the block protect has value 0xFF.

8.5.8. Results

Logs of test results can be seen in figures 8.21 and 8.22.

Figure 8.21: Test results for EEPROM emulator device
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Figure 8.22: Test results for real EEPROM device

8.6. Reliability and WIP delay tests - EEPROM em-

ulator mode

Last test performed is about the overall reliablity of write and following read operations.
This test also tests the value of the write in progress delay.

8.6.1. Main idea of the test

Random writes with according reads

The main idea of the test is to perform a large number of random writes and verify written
data with read command. All commands are done by the SPI master, SPI slave python
API is not used. First, a random write data are generated. Data are written on a random
address, with random data size and every byte of the write instruction is random. Same
data is read from every memory location where the data was written. If written data has
gone out of the page boundary, two read instructions must be executed because the write
address rolled back to the starting address of the page. Read data is then compared with
written data and if they are not same, the current random write is considered to be not
sucesfull. The overall success rate is evaluated in percentage.

WIP delay

In this test, also a python script was developed that analyzes data from logic analyzer,
where all the random writes and reads are captured. Data is exported from the logic
converter file into a .csv file. Python script then analyzes .csv file and measures the
average write in progress delay for every write command of the same size. In the end,
the write in progress delay was not dependant on the write command byte length and

111



8. VERIFICATION 8.6. RELIABILITY AND WIP DELAY . . .

therefore one average value of the write in progress delay was measured. It is important to
note that resolution of the measurement was one RDSR command, which takes relatively
long time at this SPI clock frequency (390 µs), therefore in reality, the write in progress
delay can be dependant on the write command byte length, but it could not be detected
with this measurement resolution.

8.6.2. Results

For all devices tested, 7500 random writes with according reads were executed. First,
two different real EEPROM devices were tested. First device was minorly flawed as the
success rate for this device was 97%. The second real EEPROM device had success rate
of 100%. The average write in progress delay for both real devices was measured as 2.75
ms, which translates to 7 RDSR instructions until the WIP bit had value 0. This WIP
delay was configured into the EEPROM emulator device and the test was executed on
the emulator device. Success rate was 100% and the analyzed average delay was 2.75
ms.
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9. Conclusion
The main goals of this thesis were to create a testing device for SPI master devices.

This testing device should have general testing capability and also the capability to em-
ulate one specific real SPI slave device. STM32F303K8 microcontroller was chosen as a
platform for this device. NUCLEO development board was chosen containing this spe-
cific MCU. The main characteristic of this device is that it must be configurable from a
personal computer. The device is connected to PC’s serial USB port via UART inter-
face, while using NUCLEO’s ST-LINK as UART-USB adapter. Python API was created
that can communicate with the embedded device. The main tasks of the API are to
apply configuration onto the device as well as to receive report and acknowledgement
messages from the device. Acknowledgement messages are expected to be received after
every command. For easy device configuration, a YAML file is supported. The YAML
file is created by the user to specify wanted configuration. The configuration from the
YAML file is applied onto the device upon connection to the API. Before designing any
method that can test the logic of an SPI master device, a feature that measures the SPI
clock frequency was developed. The clock frequency of an SPI master can be measured
with adequate resolution. First mode that tests the general function of an SPI master is
stream mode. Stream mode is receive only mode and the main purpose of this mode is to
stream every byte received via SPI directly to the python API. Some problems occurred
due to difference in the SPI and UART interface speeds, but most of the problems were
resolved by using a circular buffer with head and tail pointers. Using this buffer ensures
that reporting of the SPI bytes, that were received, happens asynchronically from actually
receiving the SPI bytes. Next method for testing the basic logic of an SPI master is LUT
(Look Up Table) mode. This mode allows the user to define LUT pairs. One LUT pair
consists of a request that will be received via the SPI interface from the SPI master and
a response that will be sent to the SPI master if the according request is received. This
mode can function either in full-duplex or half-duplex mode. For more detailed testing
of a specific SPI master, one real SPI slave device was chosen and its emulator was de-
veloped. An SPI EEPROM was chosen as a real SPI slave device. Emulator was created
that accurately emulates logic behaviour of said real SPI slave device. One major limita-
tion of this emulator device is that the maximum clock frequency is much lower than the
maximum SPI clock frequency of a real EEPROM device. This is because all logic of the
emulator device must be resolved inside interrupts, which is causing this limitation. This
limitation should not be considered as major problem, because the developed device can
be labeled as ”proof of concept” or a prototype. For future development, MCU with much
higher frequency could be used, which would massively improve this problem. Also, this
limitation was measured while considering continuous bit stream, which is highly unlikely
in real situations. Verification tests were developed and executed for all existing features.
Results of the tests were successful and all features are functioning as they should.

There are a few possible improvements for future development. One of the major
improvements for stream mode would be to modify the process of sending reports. Cur-
rently, one report contains only one received byte. It would be more effective if one report
contained all the bytes that were not reported yet in that time moment. The plans for the
EEPROM emulator mode are to add support for more EEPROM devices. Ideally develop
some method how to easily define an universal EEPROM device with one instance in a
struct.
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All set goals were accomplished and some of them were surpassed. The result of this
thesis is a device that can be used to test existing SPI masters. It is possible to test
universal SPI master using stream and LUT mode and it is also possible to test specific
SPI EEPROM master using EEPROM emulator mode. Device can be configured from a
PC via python API.

114



Bibliography
[1] Aardvark I2C/SPI Host Adapter [online]. Total phase, 2021 [cit. 2021-5-18]. Dos-
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wikipedia.org/wiki/YAML?oldid=441923691

[24] Spi slave. Gitlab [online]. 2021 [cit. 2021-5-18]. Dostupné z: https://gitlab.com/
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Appendix
The thesis contains following appendixes:

� C source codes:

– spi main.c

– spi main.h

– uart main.c

– uart main.h

– uart cmd buff.c

– uart cmd buff.h

– eeprom devices.c

– eeprom devices.h

– eeprom emulator.c

– eeprom emulator.h

– LUT.c

– LUT.h

– main.c

– main.h

– stm32f3xx it.c

– stm32f3xx it.h

� python source codes:

– spi slave.py

– eeprom unit test.py

– eeprom delay test.py

– debugmode unit test.py

� STM32CubeMx project file:

– spi slave.ioc
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