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Abstrakt 
T á t o p ráca sa zaoberá vývojom a tes tovaním konfigurovatelného SPI slave zariadenia, 
k torého h l avným účelom je testovanie reálnych SPI master zar iadení . Zariadenie je im­
plementované pomocou S T M 3 2 mikrokontro léra na vývojovej doske N U C L E O . Medzi 
základné funkcionality zariadenia p a t r í meranie frekvencie SPI prenosu, stream mód. 
k torý umožn í umožní presne sledovat, čo pr ipojené master zariadenie posiela po SPI zber­
nici a L U T mód , k to rý umožňuje nakonfigurovat zariadenie tak, aby odpovedalo p řednas ­
t avenými odpovedami na ak tuá lnu pr íchodziu správu. Rozšírená funkcionalita sa skladá 
z E E P R O M emulá tor módu . V tomto móde sa zariadenia správa ako v i r tuá lna n á h r a d a 
reálneho E E P R O M zariadenia. Zariadenie je pr ipojené k poč í taču pomocou sériového 
portu a je možné toto zariadenie konfigurovat pomocou python p rogramáte r ského rozhra­
nia. Zariadenie tak t iež hlási každú akt ivi tu na SPI zbernici tomuto python p rog ramá to r skému 
rozhraniu. 

Summary 
This thesis deals wi th the development and testing of a configurable SPI slave device, 
the main purpose of which is to test real SPI master devices. The device is implemented 
using S T M 3 2 microcontroller on N U C L E O development board. The basic functionalities 
of the device include measuring frequency of the SPI transmission, stream mode, which 
allows the user to accurately monitor what the connected master device is transmitting 
over the SPI interface, and L U T mode, which allows the user to configure the device to 
respond wi th preset responses according to the current incoming message. More advanced 
functionality consists of an E E P R O M emulator mode. In this mode, the device behaves 
as a vir tual replacement of a real E E P R O M device. The device is connected to a personal 
computer using a serial port and it is possible to configure the device using a python 
programming interface. The device also reports every activity on the SPI interface to this 
python programming interface. 
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Rozšírený abstrakt 
Motivácia 
SPI sláve zariadenia sú vo väčšine pr ípadov rôzne typy senzorov. Preto počas vývinu 
lubovolného produktu, k to rý používa senzory, je dost p ravdepodobné , že vývojář bude 
musiet vyvinut SPI master zariadenie, k toré je spojené s t ý m i t o SPI sláve senzormi. 
Jed iný reálny spôsob ako otestovat tieto SPI master zariadenia je použi t logický analyzér, 
pre tože vývojář n e m á p r í s tup do SPI sláve zar iadení a nemôže sa "pozriet dovnú t ra" po­
mocou debugging softvéru alebo niečoho podobného . Testovanie logickým analyzérom m á 
svoje l imitácie. Pomocou logického analyzéra je možné presne sledovat, čo sa deje na SPI 
signálových zberniciach, ale hociaká logika zariadenia nemôže byt otes tovaná. A b y bolo 
možné otestovat logiku SPI master zariadenia, je po t r ebné použi t iné SPI sláve zariade­
nie. Cielom tejto práce je vyvinut toto SPI sláve zariadenie, s k t o r ý m je možné testovat 
SPI master zariadenia. Bolo by uži točné, aby toto zariadenie bolo možné jednoducho 
nakonfigurovat tak, aby zák ladná logika a funkcionalita SPI master zar iadení mohla byt 
otes tovaná. 

N a detai lné testovanie SPI master zariadenia, k toré slúži na ovládanie j edného konkré tneho 
SPI sláve zariadenia je po t r ebné simulovat chovanie reá lneho SPI sláve zariadenia podrob­
nejšie a ideálne je potreba vytvoř i t jeho model, k to rý ma p o d o b n é až identické chovanie 
ako reálne zariadenie. Tento model nie je možné vytvoř i t univerzá lnym spôsobom aby 
zahŕňa l vše tky SPI sláve zariadenia, preto bolo vybrané jedno reálne SPI sláve zariadenie 
a bol vy tvorený model tohto zariadenia. Účel tohto modelu je t aký , aby tento model 
mohol byt považovaný za v i r tuá lnu n á h r a d u reálneho SPI sláve zariadenia, k to rá m á rov­
naké správanie ako reálne zariadenie, môže byt konfigurovatelná a je možné sledovat, čo 
sa ak tuá lne deje vo vnú t r i tohto zariadenia. Tento model môže byt použ i tý na vývoj SPI 
master zariadenia, ked reálne SPI sláve zariadenie je tažko dos tupné . 

Ciele 
Cielom tejto práce je vytvoř i t zariadenie, k to ré sa bude chovat ako generické SPI sláve zari­
adenie. Je po t r ebné vyvinút metódy, s k to rými bude možné nasimulovat najzákladnejšie 
SPI sláve funkcionality s jednoduchou konfiguráciou. Ďalší ciel je vybrat jedno reálne 
SPI sláve zariadenie a rozšířit vy tvorené SPI sláve zariadenie o funkcionalitu, k to rá bude 
simulovat vybrané reálne SPI sláve zariadenie. Vytvorené SPI sláve zariadenie by malo 
byt konfigurovatelné pomocou programovacieho rozhrania v preferovanom programova­
com jazyku. 

Zhrnutie a popis riešenia 
Hlavný ciel tejto práce je vyvinút testovacie zariadenie pre SPI master zariadenia. Toto 
testovacie zariadenie by malo mat univerzálne testovacie schopnosti a tak t iež schopnosti 
emulovat jedno konkré tne reálne SPI sláve zariadenie. S T M 32F 303K 8 mikrokontrolér 
bol v y b r a n ý ako platforma zariadenia. Bola použ i t á N U C L E O vývojová doska s vy­
b r a n ý m mikrokontrolérom. Hlavná charakteristika tohto zariadenia je, že toto zariadenie 



musí byt konfigurovatelné pomocou počí tača . T ý m p á d o m je toto zariadenie pr ipojené k 
počí tačovému sériovému portu pomocou U A R T rozhrania. S T - L I N K , k to rý obsahuje N U -
C L E O vývojová doska je použ i tý ako U S B - U A R T adap té r . Bolo vytvorené python A P I 
a toto A P I vie komunikovat s embedded zar iadením. Hlavná ú loha A P I je aplikovat kon­
figuráciu na zariadenie a tak t iež pr í jmat informačné a potvrdzovacie správy z embedded 
zariadenia. Potvrdzovacie správy musia byt pr í jmuté za každým pr íkazom a musia obsa­
hovat informácie o danom príkaze, inak príkaz nie je validný. Prenosy medzi embedded 
zar iadením a poč í t ačom obsahujú C R C číslo, k toré je použi té na zistenie chýb prenosu. 
Y A M L súbor je podporovaný z dôvodu j ednoduchého formátu konfigurácie. Tento Y A M L 
súbor je vy tvorený uživatelom a presne špecifikuje zvolenú konfiguráciu. Konfigurácia z 
Y A M L súboru je aplikovaná na zariadenie v momente úspešného pripojenia zariadenia k 
python A P I . 

P r e d t ý m ako boli vyvinuté metódy, k toré tes tu jú logiku SPI master zariadenia, bola 
vyv inu tá funkcionalita, k to rá dokáže merat frekvenciu SPI hodinového signálu. Frekven­
cia sa meria pomocou časovača, k to rý zachytáva momenty s túpajúcich h r á n hodinového 
signálu. A k sú známe momenty s túpajúcich h r á n signálu, je možné spočí ta t per iódu tohto 
signálu a t ý m p á d o m aj frekvenciu. Frekvencia sa vypoč í t a viackrát a výsledná frekvencia 
je u rčená ako modus tých to meraní . Frekvenciu SPI hodinového signálu je možné merat 
s dos tačujúcim rozlíšením. 

P r v ý m módom, k to rý testuje logiku SPI master zariadenia je tzv. stream mód. V 
stream móde sa žiadne d á t a neposielajú zo sláve zariadenia, ale d á t a sú len pr í jmané. 
H lavným účelom stream m ó d u je preposielat každý pr i ja tý byte SPI rozhran ím priamo do 
python A P I . Nejaké problémy vznikl i z dôvodu rozdielu rýchlostí SPI a U A R T rozhraní , 
ale väčšina problémov bola vyriešená pomocou kruhového bufiru s "head" a " ta i l " point-
ermi. Použ i t ím tohto bufiru sa zaručilo, že preposielanie pr i ja tých bytov sa uskutočňuje 
asynchrónne od momentu prijatia daného bytu SPI rozhran ím a takt iež , že vše tky byty 
sú poslané a ž iadny byte nie je s t ra tený . 

Ďalšia m e t ó d a testovania základnej logiky SPI mastra je L U T (Look U p Table) mód. 
Tento m ó d dovoluje uživatelovi definovat L U T páry. Jeden L U T pár obsahuje žiadost , 
k to rá bude pr i ja tá SPI rozhran ím od SPI mastra a odpoveď, k to rá bude pos laná z SPI 
sláve zariadenia pod lá toho, aká žiadost bola pr i ja tá . Tento m ó d vie fungovat bud v 
obojsmernom alebo jednosmernom móde . 

N a detailnejšie testovanie špecifického SPI mastra bolo vybrané jedno reálne SPI sláve 
zariadenie a bol vyv inu tý jeho emulá tor . SPI E E P R O M p a m ä t bola v y b r a n á ako prefer­
ované reálne zariadenie. Emulá to r bol vyv inu tý a ten presne emuluje logické správanie 
daného reálneho SPI sláve zariadenia. Jedna v ý z n a m n á l imitácia tohto emulá tor zariade­
nia je, že m a x i m á l n a frekvencia SPI rozhrania emulá to ra je výrazne menšia ako max imá lna 
frekvencia SPI rozhrania reálneho zariadenia. T á t o l imitácia je spôsobená t ý m , že všetka 
v n ú t o r n á logika emulá to ra je r iešená vo vnú t r i interruptov. T á t o l imitácia nie je b r a n á 
ako závažný problém, pre tože vyvinuté zariadenie je považované za prototyp. V b u d ú c o m 
vývoji bude použ i tý ovela rýchlejší mikrokontrolér , čo výrazne zlepší problémovú si tuáciu. 
Takt iež pri me ran í tejto limitácie bol p redpok ladaný nepre t rž i tý "bit stream", čo znamená 
rovnaké časy medzi bytami ako medzi bi tmi . Nepre t rž i tý bit stream je v realite nepravde­
p o d o b n ý a preto sku točná m a x i m á l n a frekvencia SPI rozhrania je výrazne vyššia. 

Následne boli vyvinu té verifikačné testy a každá funkcionalita bola overená t ými to 
testami. Výsledky testov boli úspešné a vše tky funkcionality fungujú tak ako majú . 



Zhodnotenie výsledkov 
Všetky dané ciele bol i dos iahnuté a v n iektorých pr ípadoch prekročené. Výsledok tejto 
práce je zariadenie, k toré môže byt použi té na testovanie existujúcich SPI master zari­
adení. Je možné otestovat univerzálne SPI master zariadenia pomocou stream a L U T 
m ó d u a tak t iež je možné otestovat špecifické SPI E E P R O M master zariadenie E E P R O M 
emulá tor módom. Zariadenie je možné konfigurovat pomocou python A P I . 

V b u d ú c o m vývoji je možné uplatnit pá r vylepšení. Jedno výrazné vylepšenie pre 
stream m ó d by bolo modifikovat proces posielania informačných správ. Momentá lne jedna 
správa obsahuje len jeden pr i ja tý byte. Efektívnejšie riešenie by bolo, keby jedna správa 
obsahovala vše tky byty, k to ré neboli doposial poslané. P l á n pre E E P R O M emulá tor 
mód je p ř ida t podporu pre viac E E P R O M zariadení , ideálne vyvinút nejakú m e t ó d u ako 
jednoducho definovat univerzálne E E P R O M zariadenie. 
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1. I N T R O D U C T I O N 

1. Introduction 
1.1. Motivation 
SPI slave devices are in most cases various types of sensors. Whi le designing any product 
that uses sensors, which use SPI interface to communicate, designer wi l l most likely have 
to design SPI master device that interfaces wi th these SPI slave sensors. In order to test 
the SPI master devices that are being developed, the only real possibility is to use a logic 
analyzer as designer usually does not have access to the SPI slave sensors and cannot 
" look" inside them through debugging software or something similar. Testing wi th a logic 
analyzer does have its limitations. It is only possible to see what is happening on data 
buses, therefore the designer sees what exactly is being sent and received, but more in-
depth logic of the device cannot be tested. In order to test more in-depth logic, separate 
SPI slave device must be used. It would be useful if this separate SPI slave device could 
be easily configured in such ways, that basic logic and basic functionality of an SPI master 
device could be tested. 

For more detailed SPI master device testing, the SPI slave device would have to be 
simulated in a more detailed way and possibly a model of this device should be created 
wi th same or very similar behaviour. Second part of the thesis deals wi th this problem. 
This model cannot be created in a universal way to include all SPI slave devices, therefore 
one particular real SPI slave device is chosen and simulated. The motivation of this 
assignment is to have a vir tual replacement of a real SPI slave device that ideally has the 
same behaviour as a real SPI slave device and can be configured and "looked" into by 
A P I running on a P C . This vir tual replacement can be used for development of a specific 
SPI master, when it is not possible to acquire a real SPI slave device. 

1.2. Goals 
One of the goals of this thesis is to get acquainted wi th the characteristics of SPI protocol 
and microcontrollers in general. One goal is to create a device, that wi l l act as a general 
SPI slave. It is important to design methods that wi l l be able to simulate basic SPI slave 
functionalities with simple configuration. The second goal is to choose a real SPI slave 
device and expand the already created device with functionality to simulate chosen real 
SPI slave device. Created device should be configurable v ia A P I running on a P C in a 
preferred programming language. 

13 



2. R E S E A R C H 

2. Research 
In the main part of the thesis, a device wi l l be designed that has certain functionality 

and uses communication protocols such as SPI , U A R T and methods such as C R C error 
checking. This chapter contains descriptions of all the major building blocks that were 
needed for device development as well as a few already existing solutions. 

2.1. Existing solutions 
There are not many solutions for this problem on the market today. Two companies that 
stand out in creating devices wi th similar functionality are Total phase and Diolan. 

Total phase 

Total phase designed a product wi th similar functionality with the name of Aardvark 
I2C/SPI Host Adapter. The manufacturer claims according to [1] that this product does 
not only have SPI functionality, but also can be used as I2C device and can control G P I O 
(general purpose input-output) pins. Aardvark I2C/SPI Host Adapter also interfaces wi th 
P C v ia U S B port and can be programmed via A P I . The main specifications relating SPI 
interface are claimed as: 

• Master mode up to 8Mbi t / s signalling rate. 

• Slave mode up to 4 M b i t / s signalling rate. 

• Ful l duplex master transmit/receive. 

• Asynchronous slave transmit/receive. 

More information about this product and more detailed description of SPI slave mode 
functionality can be found at the manufacturers official website [1]. 

Figure 2.1: Aardvark I 2 C / S P I Host Adapter [1] 

14 



2. R E S E A R C H 2.2. M I C R O C O N T R O L L E R S 

Diolan 

Diolan does have an S P I - U S B adapter in its product range. One of these types of devices 
is a device called DLN-^S. This device can also be used wi th I2C interface and can 
control G P I O pins. The device interfaces wi th P C through U S B and can be controlled 
and programmed via A P I . The main specifications relating SPI interface are claimed 
according to [2] as: 

• Master mode up to 48Mbi t / s 

• Slave mode up to 48Mbi t / s 

• Configurable SPI modes. 

More information about this product and more detailed description of SPI slave mode 
functionality can be found at the manufacturers official website [2]. 

2.2. Microcontrollers 

2.2.1. Overview 
Microcontrollers are small computers that are present on a single integrated circuit chip. 
Figure 2.3 displays an example of a microcontroller component. The difference between 
commercial microprocessors used in personal computers and microcontrollers is that mi­
crocontrollers already contain other components that are needed for successful operation 
of processing unit on chip. Microcontrollers usually contain one or more C P U (central 
processing unit) cores, some sort of R A M memory and F L A S H memory. Also I / O pins are 
present and these pins can be used along with A D C / D A C converters, P W M generators 
etc. . Figure 2.4 illustrates a block diagram example of a microcontroller die wi th all the 
components. [3] 

Microcontrollers are mainly used in embedded systems. A n embedded system is a system 
with some processing unit (microcontroller) that is capable of controlling peripherals that 

Figure 2.2: Diolan D L N - 4 S device [2] 

2.2.2. Main usage 
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Figure 2.3: PIC16F887 microcontroller in 4 4 T Q F P package [6] 

Figure 2.4: Block diagram of microcontroller components [5] 

are also included in this system. The main uses of these peripherals are to monitor and 
control some larger mechanical or electrical system. This implies that embedded systems 
are part of some larger system. Embedded systems usually control a physical mechanism, 
therefore microcontrollers need to be optimized to work in real time. According to esti­
mation in 2009 [4], 98% of all microcontrollers were being used for embedded systems. 
[4] 

2.2.3. Common types 
The two types of microcontrollers that were taken into consideration while choosing a 
working platform are microcontrollers manufactured by Atmel Corporation and micro­
controllers manufactured by STMicroelectrics. 

Atmel produces ATmega family of microcontrollers that are used on Arduino devel­
opment boards. These boards are used in many learning applications for their very user 
friendly integrated development environment (IDE) and also many examples and tutorials 
exist for these development boards. Figure 2.5 contains a comparison table between the 
two most common ATmega microcontrollers in Arduino platform. 

Name Processor Operating/Input 
Voltage 

CPU 
Speed 

Analog 
In/Out 

Digital 6 EEPROM kB IO/PWM SRAM [kB] Flash [kB] 

Uno ATmega328P 5V/7-12V 16 MHz 6/0 14/6 1 2 32 

Mega 2560 ATmega2S60 5V/7 12V 16 MHz 16/0 54/15 4 8 256 

Figure 2.5: Comparison of the most used ATmega microcontrollers in Arduino platform 
[19] 

16 



2. R E S E A R C H 2.2. M I C R O C O N T R O L L E R S 

STMicroelectrics produces a lot of different products, but the main competitor of 
ATmega microcontrollers is STM32 family of microcontrollers. S T M 3 2 microcontrollers 
also use standalone I D E for programming which has got more advanced functions such as 
real time debugging. In general, S T M 3 2 microcontrollers are more capable than ATmega 
microcontrollers based on various reasons. Table 2.1 displays the main feature difference 
between these two types of microcontrollers. 

ATmega S T M 3 2 

Word length 16bit 32bit 

Clock frequency 
Lower clock frequency 
(16MHz) 

Higher clock fre­
quency (Up to 550 
M H z ) 

Memory 
Smaller R A M and 
F L A S H memory 

Larger R A M and 
F L A S H memory 

Debugging No debugging Real time debugging 

Table 2.1: Comparison of the main features of ATmega and S T M 3 2 microcontrollers 

2.2.4. Interrupts 
M C U devices have functionality called interrupts. Interrupts are event driven and happen 
upon some important event. M C U ' s main code happens inside a main while loop that 
is called periodically by the M C U . The main purpose of an interrupt is to "jump" away 
from this code at a certain time and to execute different code that is specified for every 
interrupt. Interrupts are usually triggered by peripherals. Once interrupt is triggered, 
M C U saves current place in the code along wi th all the necessities and enters an interrupt 
handler that contains code that needs to be executed. Interrupts can be nested, meaning 
interrupt can happen inside another interrupt. Pr ior i ty can be set for every interrupt 
separately in order for M C U to know which interrupt to execute first if multiple are 
triggered at the same time. If multiple interrupts of the same priority are triggered, 
interrupts wi l l execute in chronological order. 

2.2.5. Timer 
M C U devices usually contain timers. A timer can do a lot of different things like P W M 
generation, input capture on hardware pin or a timer can even be used as a literal timer 
for event t iming which wi l l be called normal mode. The main function of a timer depends 
on its counter. Counter counts or "ticks" periodically wi th the same time interval and 
the value of the counter is incremented on every counter tick. The time interval of ticks 
can be changed as well as the maximum value of the counter. When the counter reaches 
its maximum value, the timer can either stop or roll back and start from 0 again. In this 
project, timer was used in two modes. 
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Input capture mode 

In input capture mode, a timers responsibility is to detect rising or falling edge event of 
a signal on specified pin and capture the counter value (time) of this event. A timer can 
be set up to trigger an interrupt on this event. 

Normal mode 

In normal mode timer is used for t iming. The timer's counter frequency and maximum 
value are set in such ways, that the counter reaches its maximum value in a certain 
specified time. Once the counter reaches maximum value, an interrupt is usually triggered 
to precisely time events. 

2.2.6. D M A 
D M A (Direct Memory Access) controller is used for directly connecting peripherals to 
memory. The main purpose of this controller is to write data from and to peripherals 
instead of the processor. Processing time would otherwise have to be used to operate 
basic features of peripherals. Once the address of peripheral and the address of memory 
is specified along wi th the direction of write operation, it is possible to specify the number 
of writes to be executed by D M A controller. Once this number of writes is executed, an 
interrupt can be set to trigger. Peripherals usually provide a trigger to D M A controller 
telling it when to write data. It is possible to set D M A for memory to memory connection, 
but that setting is not used in this project. 

2.3. SPI 
Overview 

SPI (Serial Peripheral Interface) is a communication protocol, which is used by microcon­
trollers to communicate wi th peripheral devices or between each other. Communication 
is implemented using synchronous serial bus. The architecture of this protocol relies on 
the master-slave relation. For successful SPI transmission one master device must exist 
and this master device can be connected to multiple slave devices. It is a masters respon­
sibility to provide a clock signal for transmission and to enable/disable slave devices using 
slave select pins which are sometimes referred to as chip select pins. The SPI protocol 
uses four data lines. 

• S C K (Serial Clock) 
This data line is used as a transmission clock. When a master device wants an SPI 
transmission to happen, he must generate clock pulses on this line. O n rising or 
falling edges of this clock (based on mode), M I S O and M O S I lines are sampled. The 
clock signal is used to synchronize master and slave devices. 

• M O S I (Master out, Slave in) 
O n this line master sends data to a slave device. It is sampled by the slave device 
on clock rising or falling edge (based on mode). 
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• M I S O (Master in, Slave out) 
O n this line slave sends data to a master device. It is sampled by the master device 
on clock rising or falling edge (based on mode). 

• SS (Slave select) 
This line describes which slave is currently active. Only one slave can be active at 
a certain time. This line is active low. 

SPI modes 

SPI can be setup in four modes (Mode 0, 1, 2, 3). These modes describe how and when a 
clock signal is sampled, meaning moment when data are actually being read from M I S O 
and M O S I lines. These modes are described wi th two boolean values: 

• C P O L (Clock polarity) 
This value describes the polarity of a clock signal while in idle. If this value equals 
to zero, the idle value of a clock signal is logic L O W . If this value equals to one, the 
idle value of a clock signal is logic H I G H . 

• C P H A (Clock phase) 
This value describes the phase of a clock signal, meaning when is data sampled. If 
this value equals to zero, a clock pulse is sampled on the first edge of a clock pulse. 
If this value equals to one, a clock pulse is sampled on the second edge of a clock 
pulse. 

Table 2.2 describes which SPI mode belongs to which C P O L and C P H A values. Figure 
2.6 illustrates data sampling in each SPI mode and also displays a complete time diagram 
of an SPI one byte transmission. 

Mode C P O L C P H A 

0 0 0 

1 0 1 

2 1 0 

3 1 1 

Table 2.2: SPI modes 
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r 
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Figure 2.6: SPI t iming diagram [8] 

Multiple slave connection 

In case when multiple slave devices need to be used, a connection must be made as is 
illustrated in figure 2.7. A l l devices share same C L K , M I S O and M O S I line, but every 
slave device must have a separate slave select line. B y controlling these slave select lines, 
a master can choose which slave is currently active. Only one slave can be active at one 
time, otherwise slave devices would interfere on M I S O line. 

SCLK 
MOSI 

SPI MISO 
M a s t e r S S I 

SS2 
SS3 

SCLK 
MOSI SPI 
MISO S lave 
SS 

SCLK 
MOSI SPI 
MISO S lave 
SS 

SCLK 
MOSI SPI 
MISO S lave 
SS 

Figure 2.7: SPI multiple slaves connection [7] 

2.4. UART 
Overview 

U A R T (universal asynchronous receiver-transmitter) is a hardware device for asynchronous 
serial communication. This device is mostly used in computer serial ports. Contrary to 
an SPI transmission protocol, U A R T uses asynchronous transmission, meaning there is no 
clock signal to synchronize transmitting and receiving devices. This means that data lines 
cannot be simply sampled on a clock pulse and need some other form of synchronization. 
Due to this reason, for successful transmission a certain driver needs to be used on both 
sides to synchronize and decode data. 
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Data format 

Figure 2.8 displays a typical U A R T one byte packet. Packet consists of a start bit to 
synchronize the transmitting and receiving devices, five to nine bits of the actual data, 
an optional parity bit and one or two stop bits. A parity bit is used for error checking 
and can be set for odd or even parity, meaning that this parity bit is generated so that 
the total number of logical H I G H bits have to be odd or even in a packet. Stop bits are 
used to mark the end of transmission. 

P a c k e t 

"> 
1 start 

bit 5 to 9 data bits 
0 to 1 
parity 
bits 

1 to 2 
stop bits 

Data Frame 

Figure 2.8: U A R T packet [9] 

Data timing 

Every U A R T device has 2 data lines: 

• T X used for transmitting data. 

• R X used for receiving data. 

Both these lines are in logical high state at idle. U A R T devices can be set to different 
data rates. For successful transmission, both the transmitting and the receiving devices 
must be set to the same data rate. This guarantees that data wi l l be sampled at the 
correct time. U A R T device contains an internal clock source which runs at a multiple of 
data rate. U A R T usually also contains two F I F O shift registers. One for the T X line and 
one for the R X line. 

Transmitting 

Transmitting is fairly simple. There is no need for any synchronization based on the line 
state, so device loads data to T X shift register, generates start bit, outputs all data from 
the T X shift register, generates an optional parity bit and lastly generates stop bits. A l l 
this is outputted on the T X line at correct times based on set data rate. After a valid 
start bit is generated, an internal clock is used to time next data change so it corresponds 
to set data rate. 

Receiving 

Receiving is a little bit more complicated. To receive data, the device must know when to 
sample data, therefore it needs to synchronize with the R X line. For this synchronization, 
a start bit is used. In order for a start bit to be declared valid, it must last at least half 
of the bit time. Once a valid start bit are detected, an internal clock is used to time data 
sampling. Data is sampled in the middle of each bit time and shifted into the R X shift 
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register. For this reason it is important that both transmitting and receiving devices run 
at the same data rate so that the internal clocks get correctly synchronized and data is 
sampled at the right times. After set number of bits and a valid stop bit is detected, 
data from the R X shift register is made available to the receiving system. Usually a flag 
is generated indicating successful data receive. Figure 2.9 illustrates a t iming diagram of 
data transfer and how data is sampled by the receiving device. [10] 

Start b i t 

l og ic 0 
W o r d data Par i ty S top bit 

bi t log ic 1 
(op t iona l ) I 

DO D1 D2 D3 • 4 D5 D6 D7 PB 

Start by 
de tec t i ng 
t rans i t i on 

f r o m log ic 1 
to log ic 0 

I n c o m i n g data s a m p l e d at t he b i t -pu lse cen te r Samp le 

s t o p bit 

Figure 2.9: U A R T t iming diagram [10] 

2.5. CRC 
Overview 

In many data transfers, errors can occur. There can be a lot of different types of errors, 
for example errors due to environment noise, bad connections or faulty devices. It is 
common that data transmissions include redundant data, which can be used to error 
check the whole data frame. One of the simplest error check is a parity bit. A parity 
bit simply completes data packet, so that the total logical H I G H bits in this packet are 
either odd or even based on the configuration. This method is the simplest k ind of error 
check and cannot reliably detect errors. For more advanced error checking C R C (Cyclic 
Redundancy Check) can be used. This method is used in a lot of transmission protocols 
(Bluetooth, Ethernet etc.). C R C can differ vastly in its configuration (even parity bit 
error check can be interpreted as C R C ) and can be used for many different use cases. The 
principle is that a transmitting device calculates C R C value from data that wi l l be sent 
and then appends it to the end of this data. A receiving device calculates the C R C value 
of received data and then compares it wi th the C R C value that was appended to the data 
by a transmitting device. 

M a i n parameters 

The main difference between C R C s is a bit length. C R C can have a bit length of any 
value, but a length of 8, 16, 32, 64 bits is most common. B i t length and the actual 
total characteristic of C R C is defined by a polynomial (divider). The highest power of 
this polynomial equals to the C R C bit length, while the total length of the polynomial 
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is exactly one larger than the C R C bit length. For example, if C R C - 8 ( C R C with 8 bit 
length) is used, the polynomial has length equal to 9 as polynomial equals to x 8 + x7 + 
x6 + x 5 + x4 + x3 + x2 + x1 + x ° . To fully define a polynomial, all members of a polynomial 
can also equate to 0. To specify and define polynomial for n — bit C R C , a binary number 
wi th n + 1 number of bits is used, where every bit represents value of the corresponding 
polynomial member. For example: 

• C R C - 3 wi th polynomial 061010 : 
1 • x 3 + 0 • x2 + 1 • x1 + 0 • x° 

• C R C - 8 wi th polynomial 06111000111 : 
1 • x 8 + 1 • x7 + 1 • x6 + 0 • x 5 + 0 • x4 + 0 • x 3 + 1 • x2 + 1 • x1 + 1 • x° 

Calculation 

To calculate the actual C R C value of data, polynomial division is used. First a single 
binary number is created from all bits of every byte in data in the correct order, then this 
number is divided by a C R C polynomial also defined by a binary number. The remainder 
of this division represents the C R C value of data. C R C value has the same bit length 
as the C R C bit length. Specific algorithm that describes how exactly this calculation 
executes can be found at [12]. 

2.6. E E P R O M memory 
Overview 

E E P R O M (electrically erasable programmable read-only memory) is a type of a non­
volatile (data retention after reboot) memory used for storing data. E E P R O M devices 
are usually used wi th computers and microcontrollers. E E P R O M s are constructed using 
floating gate transistor arrays. The main characteristics of E E P R O M s are small data erase 
and write blocks and long lifetime. Usually E E P R O M s can erase and write to blocks as 
small as one byte, this means that E E P R O M s are ideal for storing small chunks of data. 
Lifetime of E E P R O M s can be 1000000 cycles or even more. E E P R O M s can be divided 
into two groups. One group is using a parallel interface for programming and the other 
group is using a serial interface. [13] 

Programming interface - parallel 

Parallel interface needs a lot more connections as every bit of data and address needs 
to have its own data line as well as data lines for a chip select and operation code need 
to be present on this device. For example, if a word length was 8 bits and address was 
also 8 bits, minimum of 16 lines would need to be connected, which means a minimum 
of 16 hardware pins would need to be used on a microcontroller. The advantages of 
this interface compared to a serial interface are that it's faster as all data is transferred 
at once. The disadvantages are that the devices need to be a lot bigger because a lot 
more hardware pins need to be used. In current times the popularity of parallel devices 
decreases rapidly. 

23 



2. R E S E A R C H 2.6. E E P R O M M E M O R Y 

Programming interface - serial 

O n the other hand, serial devices use a very small number of data lines. The necessary 
data lines for synchronous serial communication are clock signal, chip select signal, one 
two-directional or 2 one-directional data lines. Data is not transferred all at once as 
in parallel devices, but it is transferred one bit at a time, a clock signal is used for 
synchronization. For this type of operation, many communication interfaces can be used. 
The most common ones are SPI, I2C, Microwire. A general command consists of an op­
code (operation code describing the type of command) followed by an address (if command 
uses address) and lastly followed by the actual data either to be written or read. 

Instruction set 

Six instructions need to be defined for basic E E P R O M functionality. 

• R E A D 
(Usually 0x3) Read instruction to read data from a specific address. Usually this 
command can also read multiple subsequent bytes. 

• W R I T E 
(Usually 0x2) Write that writes data to a specific address. Usually this command 
can also write multiple subsequent bytes that are in the same block of memory. For 
this command first a write enable command needs to be executed to set a write 
enable latch in a status register. In most cases an E E P R O M device upon receiving 
this command first erases data on the specified address and then after that data is 
written. 

• Write status register [WRSR] 
(Usually 0x1) This command writes data to a status register. The status register is 
used for functionality such as block protect, write protect etc. The status register 
consists of read only bits and readable/writable bits. This command alters only bits 
that are writable. 

• Read status register [RDSR] 
(Usually 0x5) This command reads data from a status register. This command can 
be used to check the current configuration or state of an E E P R O M . It is used very 
frequently after any W R I T E or W R S R command to check the value of write in 
progress bit. 

• Write enable [WREN] 
(Usually 0x6) Write enable command sets the write enable bit in a status register 
to logical H I G H value. This action enables W R I T E and W R S R commands. 

• Write disable [WRDI] 
(Usually 0x4) Write disable command sets the write enable bit in a status register 
to logical L O W value. This action disables W R I T E and W R S R commands. 
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3. Detailed goals description 
In the Introduction chapter, general goals and motivation were mentioned. In this 

chapter specific goals and the way of implementation wi l l be described. This chapter 
should mention every main feature that the created device wi l l have. Detailed description 
of goals could be interpreted as follows. 

Device hardware selection 

The first goal is to choose the appropriate hardware, so it does have all the desired 
functionality that wi l l be used later in development. The main features of this hardware 
should be the ability to connect to a P C v ia some kind of interface and also to be able 
to communicate through SPI interface between other hardware devices. SPI interface 
on this hardware should be configurable and should be able to function in al l possible 
SPI configurations. The maximum baud rate of SPI interface should also be taken into 
consideration. 

P C connection and programming A P I 

The main feature of this device is that it should interface wi th a P C . The device should 
be configurable via some kind of A P I running on P C , meaning A P I should be able to 
send commands and receive messages from an embedded device. In order to create this 
A P I , first a connection of embedded device and P C must be made using a communication 
interface. After a successful connection is made, the A P I should be used for loading con­
figuration onto embedded device as well as know the current state of the embedded device 
and receive report messages about SPI transmissions that happened. It is important that 
every transmission from P C to embedded device or from embedded device to P C is error 
checked so that only the correct configuration is loaded into the device and it is known 
exactly what is happening on SPI data buses. 

Stream mode 

Now that the device is connected to a P C that is running A P I that can program this 
device, the actual methods for emulating an SPI slave device and to debug SPI master 
device need to be created. The first of these methods is stream mode. In this mode device 
wi l l act as receive only SPI slave, meaning no data wi l l be transmitted from this device 
through SPI interface. A l l received data wi l l be directly transmitted (streamed) to an 
A P I running on a P C . The A P I should decode these messages and display them to the 
user. This mode is useful for checking exactly what an SPI master is sending on M O S I 
bus and this can resolve a lot of issues in SPI master development. The main problem in 
this mode is that SPI interface is faster than chosen interface for P C to embedded device 
communication, therefore some method must be developed to stream every byte received 
via SPI , otherwise some data would be lost due to interface speed difference. 

L U T mode 

Stream mode is great for the lowest level debugging of an SPI master, but cannot test 
the actual logic of said SPI master. For this L U T mode is designed. Contrary to stream 
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mode, this mode can also transmit data through the SPI interface. The main idea of 
this mode is that the designed SPI slave device responds to masters requests according 
to L U T (look up table). In L U T request-response pairs are stored, meaning user can set 
what response embedded device wi l l return for what request that was received from an 
SPI master. This mode is useful to test basic SPI master logic. Every SPI transmission 
should be reported to A P I running on a P C . The same problem with an interface speed 
difference as in stream mode exists. 

Real device emulation mode 

L U T mode can test the basic logic of an SPI master device, but cannot emulate existing 
SPI slave device completely as usually SPI slave devices are more complex and contain 
some sort of state machine and more advanced functionalities. No universal SPI slave 
device that could be easily configured to cover every real SPI slave device can be created. 
Because of this reason, one specific existing SPI slave device wi l l be chosen and its emulator 
created on our embedded device. The main idea behind this mode is that when SPI master 
is connected, our device should behave exactly the same as real SPI slave device, so there 
is no difference from the masters point of view. Some limitations wi l l naturally occur, 
so it is important that these limitations are known and possibly optimized for better 
result. This mode wi l l be used when a real SPI slave device cannot be easily acquired 
and developer cannot use real device for developing, instead developer can develop an 
SPI master device by connecting to the embedded device in emulator mode. Every SPI 
transmission or SPI command needs to be reported to an A P I running on a P C . Same 
problem with an interface speed difference as in stream mode exists. 

Frequency measurment 

A l l modes described in last sections test logic of an SPI master device. There may be 
situations where the hardware characteristics of SPI master need to be tested. One of the 
main SPI hardware characteristics is clock frequency. The clock is provided by master so 
it could be useful to measure this clock frequency wi th created SPI slave device. Ideally 
frequency should be measured for every SPI transmission and reported to A P I running 
on a P C . 
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4. Hardware selection and setup 
Figure 4.1 illustrates a simple block diagram of the main device connections. The 

device wi l l need to be connected to a personal computer v ia U A R T interface. The device 
wi l l also be connected to another SPI device. This chapter contains a description on how 
the hardware was chosen and how it was made operational. 

r 
Personal 

Computer 
(USB port) 

Figure 4.1: Block diagram of the main device connections 

4.1. Microcontroller selection 
Microcontroller was selected as a preferred type of hardware for various reasons. The 
main reasons why microcontroller was selected are: 

• A l l needed functionalities are available 

• Relatively easy to program 

• Avai labi l i ty of development boards 

• Affordable for prototyping 

Platform selection 

Microcontrollers are available in a lot of different platforms with different architecture. 
IDEs and abilities. Few of them are described in the Research chapter. For this project, 
the S T M 3 2 platform was chosen. The S T M 3 2 family of M C U s is made by STMicroelectrics 
company. This 32 bit family of microcontrollers uses A R M C O R T E X - M core (processor) 
and can be used for a very wide variety of applications. The I D E for M C U programming is 
called STM32CubeIde along with STM32CubeMx. These programs include features such 
as real time debugging, where user can "go through" the code step by step and more. For 
programming and debugging, M C U has to be connected to a P C through S T - L I N K which 
is a programmer/probe made by STMicroelectrics. More about this family of M C U s can 
be found at [14]. 

Mode l selection 

A s was mentioned before, S T M 3 2 family of M C U s has got a wide range of M C U s that 
are each optimized for a different use case. It is important to choose a specific M C U 
model that wi l l suit the desired application. For this specific application, the S T M 3 2 F 3 
family of microcontrollers was chosen, more specifically STM32F303 M C U . Figure 4.2 
displays different models of M C U s in S T M 3 2 F 3 family and more information about this 
M C U family can be found at [15]. The STM32F303 M C U was chosen. This M C U comes 
in different variants and packages. In the process of choosing a specific M C U , multiple 
attributes were taken into consideration such as clock frequency, memory capacity, SPI 
interface configurability and ability, development board availability. Figure 4.3 displays 

< [ UART ] - > MCU (SPI slave device) < - [ SPI ] - > SPI master device 

27 



4. H A R D W A R E S E L E C T I O N A N D . 4.1. M I C R O C O N T R O L L E R S E L E C T I O N 

all different variants of STM32F303 M C U and more information about this M C U can be 
found at [16]. 
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Figure 4.2: S T M 3 2 F 3 family of microcontrollers [15] 
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Figure 4.3: STM32F303 variants of microcontrollers [16] 

In the end ST M 32F303K 8 variant was chosen. This variant comes in a 32 pin package, 
which is enough for this application and is on the lower side regarding memory size, 
which proved to be just enough for this project. For future development and adding more 
features, the S T M 3 2 F 3 0 3 R E M C U variant wi l l be used. 

Development board 

Microcontrollers are constructed as a single chip and cannot be used by themselves, there­
fore some kind of P C B (Printed Circuit Board) needs to be used that contains desired 
microcontroller. For complex projects, a custom P C B has to be designed, but for ed­
ucational purposes and prototyping, STMicroelectrics makes development boards called 
N U C L E O . These boards contain all the necessary components for proper M C U operation 
as well as an integrated S T - L I N K programmer/probe and this board is also a breakout 
board for all the functional pins. More information about N U C L E O boards and infor­
mation about which specific M C U s do have their own N U C L E O board can be found at 
[17]. 

N U C L E O - F 3 0 3 K 8 board was used as a development board for this project. This 
board contains the STM32F303K8 M C U and is very affordable wi th all the functionalities 
needed. Figure 4.4 displays the development board and more info can be found at [18]. 
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Figure 4.4: STM32 F3 0 3 K8 nucleo development board [18] 

4.2. PC connection 
First step is to establish connection to a P C . One of the main features of this device is 
that every functionality must be controlled from a P C , therefore connecting device to a 
P C is one of the main tasks. The device should be configurable from a P C and certain 
messages should be sent from the M C U to a P C . 

For M C U to P C connection, U A R T is used. The device wi l l be connected to a U S B 
serial port located on a P C . U A R T data lines cannot be simply connected to a U S B 
serial interface, therefore some kind of U A R T - U S B convertor must be used. One of the 
advantages of the N U C L E O development board is that it contains S T - L I N K program­
mer/probe. One of the features that S T - L I N K has, is that it can create a vir tual serial 
port on a P C , therefore S T - L I N K also acts as a U A R T - U S B converter. 

4.3. M C U setup 
The first step to initialize M C U is to create a S T M 3 2 C u b e M x file wi th .io extension and 
configure it for the desired purpose in S T M 3 2 C u b e M x software. The configuration is done 
in these steps. 

Initailizing hardware pins 

Figure 4.5 illustrates the pin setup. The debug interface is connected v ia PA14 and 
PA13 pins. U A R T is connected to pins P A 2 and PA15. SPI interface is connected on 
pins P B 4 , P B 3 , PA4 , PA7 . Timer input capture pins are P B 5 , PBO. P i n P B 5 is 
externally connected to pin P B 3 . P i n PBO is externally connected to the pin PA4. For 
general purpose debugging, pin P A 1 is used as G P I O pin. 
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Figure 4.5: P i n initialization 

Clock configuration 

This N U C L E O board does not have an external oscillator, therefore the internal oscillators 
must be used. The M C U has high speed and low speed oscillators. High speed is 8 M H z and 
low speed is 40kHz. The internal high speed oscillator wi l l be used along wi th prescalers 
and clock multipliers to create the main C P U clock ( H C L K ) . H C L K is set to the maximum 
value possible without an external oscillator and this value is JUCLK = 64MHz. Figure 
4.6 displays the complete clock configuration. In this figure also other clocks such as an 
advanced peripheral bus clocks can be seen. 
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Figure 4.6: M C U clock diagram 

Code generation and drivers 

Next step is to generate code. S T M 3 2 C u b e M x generates code wi th all the needed registers 
initializations based on the .ioc file. In this generated project, the user code can be written. 
For most of the functionalities, the H A L (Hardware Abstraction Layer) drivers [20] wi l l 
be used apart from SPI , where after optimization, the L L (Low Layer) drivers [20] wi l l be 
used. The user can either modify the registers in own code or use these drivers to control 
peripherals and M C U in general. 
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5. Basic device functionality 
The device wi l l have multiple operational modes. A l l of these modes need to use 

certain features such as communicating through SPI interface, using timer input capture 
on hardware pin and more. In this chapter, first the important features are explained 
and in the end of this chapter, two specific operational modes are described. The overall 
internal structure of the device along with what operational modes exist and how the 
device can be configured to enter these modes wi l l be described in chapter 7.1.1. 

5.1. Frequency measurement 
One of the tasks of this device is to measure the frequency of an SPI clock pin, on which 
clock is generated by SPI master. For this task, a timer integrated on the M C U is used 
in Input Capture mode. 

Theory 

The clock signal that is being measured is a square wave signal, which means that it is a 
periodic waveform with a fixed frequency. F ixed frequency means that the times between 
each pulses are the same. The easiest way to measure frequency of this type of a signal is 
to know the exact time between two pulses. A pulse start is detected by the rising edge 
of the signal. Assuming the time of the first pulse is known as tfp and the time of the 
second pulse is known as tsp, the frequency / can be calculated as / = -T ZJZ- F i g u r e 5.1 
illustrates the shape of square signal and moments of tfp and ts 

t sp 

t[s] 

Figure 5.1: Square signal wi th pulse times 

Timer setup 

To enable a timer and to set it up for input capture mode, S T M 3 2 C u b e M x settings need 
to be changed. Figure 5.2 displays these settings. Only important settings to note are: 

• Prescaler 
This is a general timer setting. This setting dictates frequency of the timer's counter. 
To determine frequency of timer ftim, first frequency of the advanced peripheral bus 
,to which this specific timer is connected, must be known. This value can be read 
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from figure 4.6 as A P B 2 Timer Clocks and its value JAPE is equal to QAM Hz. 

case, the Prescaler value is equal to 0, therefore ftim = " = QAMHz. This 
means that the time between subsequent counter ticks is tcnt = 6 4 q q q q q 0 = 15.625ns. 

• Counter Period 
This is also a general timer setting. This setting dictates the maximum value of 
the counter. Type of this timer's counter is uintl6-t, which means that this setting 
needs to be set in the appropriate range : < 0,65535 >. In this mode, the timer 
behaves in such way, that if the counter reaches this value, the counter naturally 
rolls back to 0. 

• Polarity selection 
This is a specific input capture setting. This setting dictates which edge of the 
signal does timer capture. There are 3 options for this setting: 

— Rising edge 
Capture happens on the rising edge event. 

— Falling edge 
Capture happens on the falling edge event. 

— Both edges 

Capture happens on the rising and on the falling edge events. 

In this specific case, the capture wi l l happen on the rising edge of the signal. 

• Prescaler Divisio Ratio 
This is a specific input capture setting. This setting dictates how many events need 
to happen for a capture to trigger. There are 4 options for this setting: 

— No division 
Capture happens on every signal event. 

— Division by 2 
Capture happens once every 2 signal events. 

— Division by 4 
Capture happens once every 4 signal events. 

— Division by 8 
Capture happens once every 8 signal events. 

In this specific case, a capture wi l l happen once every 2 signal events, meaning that 
the time between 2 subsequent clock pulses wi l l not be known, instead the time 
between every third pulse wi l l be known and this time corresponds to the time of 2 
pulses. 

Last ly the timer frequency can be calculated as fum 
Iapb . In this specific Prescaler+l 

_ 64000000 . 
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Figure 5.2: S T M 3 2 C u b e M x input capture timer settings for frequency measurement 

After these settings are applied and the code is generated, only things left to do are to 
enable the timer's capture compare channel and enable the timer's counter. This is done 
by modifying the timer register by commands: 

TIM17->CCER |= ( 0x01 « 0 ); // capture compare 1 enable 
TIM17->CR1 1= ( 0x01 « 0 ); // counter enable 

More information about M C U registers can be found in reference manual [reference man­
ual source]. 

Frequency measurement 

Now that the timer is setup in input capture mode, the time between clock pulses wi l l be 
measured and the frequency can be calculated. In order to calculate the frequency, the 
first two or ideally more of the input capture times need to be stored in the M C U memory. 
Timer does not store the capture event times into the memory by itself, but instead on 
every capture event, current counter value is stored in the timer register. Upon the next 
capture event, previous event counter value is erased. 

One of the solution for measuring the frequency would be to use interrupts. The 
timer could be set up to trigger an interrupt on every input capture event. For successful 
frequency measurement, two interrupts would need to happen. O n both interrupts, the 
counter value from the timer register would be stored in the M C U memory and on the 
second interrupt, frequency would be calculated from the counter values of each interrupt. 
This solution was implemented but was quickly proved very inefficient and uneffective. To 
enter interrupt, M C U must use valuable processing time and this process is slow compared 
to possible SPI clock frequency as the SPI clock frequency on this type of M C U can reach 
up to 18 M H z . This solution is good for signals wi th very low frequency. 

The second type of solution, which is used in final design, is to use D M A to store the 
input capture data to memory. D M A (Direct Memory Access) controller has direct access 
to memory as well as to peripheral registers. D M A and Timer can be setup such that 
upon every input capture event, the timer triggers D M A to write the value of the timer 
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counter register to memory. Upon every trigger, D M A can increment memory address to 
which it is writing. This means that D M A can store multiple input capture events into 
subsequent memory locations (array). To implement this solution, first D M A requests on 
correct input capture channel need to be enabled in timer registers. This is done by code: 

TIM17->DIER |= ( 0x01 « 9 ); // enable capture compare 1 DMA requests 

Next to initialize D M A , 3 parameters must be set. 

• Memory address 
The init ial memory address to which D M A wi l l write data. In this mode, this 
address wi l l be incremented wi th every D M A event. 

• Peripheral address 
The peripheral address from which data wi l l be read and written to memory ad­
dress. In this mode this peripheral address wi l l not increment. For different k ind of 
application, D M A could be set to increment this peripheral address. 

• Number of D M A events 
This dictates how many D M A events need to be triggered in order to indicate the 
end of D M A action. Upon the end of D M A action, D M A could be set to trigger 
interrupt. D M A can be set to circular mode, which means that when this number 
of D M A events happen, D M A wi l l not stop, but D M A wi l l continue to work while 
the memory address is set to the init ial address again. D M A could also be set to 
normal mode, which means that after this number of D M A events happen, D M A 
wil l stop and in order to work again, it must be initialized again. In this specific 
case, D M A is set to normal mode and interrupt is not set to trigger. 

These parameters are set by modifying D M A register as following code illustrates: 

hdma->Instance->CCR &= ~(0x01 « 0); // disable DMA 

hdma->Instance->CMAR = &hfreq->raw_ccr_data[0]; // set memory address 
hdma->Instance->CPAR = &TIM17->CCR1; // set peripheral r e g i s t e r adress 
hdma->Instance->CNDTR = SPI_FREQ_BUFFER_LEN; // set number of DMA events 

hdma->Instance->CCR 1= (0x01 « 0); // enable DMA 

This solution is very efficient and effective as D M A does not use any M C U processing 
time and multiple input capture events can be stored between every frequency calculation, 
meaning results can be statistically evaluated. 

The frequency measurement needs to be manually restarted and calculated. The 
optimal times to restart measurement and calculate need to be determined individually 
based on the device mode and should be chosen in such ways, that the frequency is 
measured and calculated maximum number of times, ideally for every SPI transmission 
report individually. 
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Frequency calculation 

Once the input capture data is stored in the memory array, clock frequency needs to be 
calculated from this data. Data in the array represents current counter tick at which 
input capture event happened, therefore the unit of measurement is timer ticks and not 
seconds. In order to convert units to seconds, values could be multiplied by the timer's 
time between two ticks, but this would mean more complex calculation. The values 
are kept as uintl6-t timer counter values and the timer's frequency wi l l be used in the 
frequency calculation to compensate. Calculation can be split into 3 parts: 

• Finding time differences 
Data represents the time of each input capture event. In order to calculate the 
frequency, the time between pulses must be known. In this specific case, the time 
of exactly two pulses wi l l be known when calculating the differences between each 
subsequent values. Assuming the input capture data are labeled as raw-ccr, the 
differences (diff) for the whole array are calculated using this equation: diff(n) = 
raw-ccr(n + 1) — rawjccr{n) for n G { 0 , 1 , a r r a y length — 2}. This wi l l give an 
array wi th length one less than the input capture data array. In this array, the 
differences of each two subsequent input capture events wi l l be stored. 

For example, assuming the input capture data array equals to: 
[1000, 2716, 5382,10714,13380], 
the difference array would be : 
[1716,2666,5332,2666] 

• Calculating frequencies 

While calculating the frequency, two facts need to be taken into consideration. The 
first is that the difference array represents the time of two clock pulses and not the 
time of one clock pulse. The second fact is that the difference array units are not 
seconds, but timer ticks. If these facts are taken into consideration, the equation 
for calculating the frequency for each value of the difference array is as follows: 
fin) 

~ difj{n) * 2 for n G { 0 , 1 , a r r a y -length - 1}, where / are the values of 
frequency in Hz, ftim is the frequency of timer in Hz, diff are the difference values 
of input capture events in timer ticks. 
In previous example, the difference array is equal to: 
[1716,2666,5332,2666] , 
if this equation is applied on this array, the result wi l l be : 
[74592,48012, 24006,48012] 
This array contains calculated frequencies for each input capture event pair in Hz . 

• Calculating final frequency 
In order to calculate the final one number that represents the value of measured 
frequency, frequency array needs to be statistically evaluated. For this a simple 
solution was chosen. The final frequency value wi l l be chosen as a mode of the 
frequency array. If multiple modes exist, one which frequency appears first in the 
array wi l l be chosen. 

In previous example, the frequency array is equal to: 
[74592,48012, 24006,48012] 
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B y applying this method, the mode and the final calculated frequency value is equal 
to 48012JJz . 

This method was chosen because the input capture data does not have to be from the 
same byte or even the same data frame and the times between bytes and the times 
between data frames wi l l most likely be vastly different than the time between bits 
(time between clock pulses). The timer's counter can also overflow in the process of 
acquiring input capture data. B y using a large enough sample set, these unwanted 
measurements wi l l be filtered. 

Testing 

Table 5.1 displays the measured frequencies for different values of real SPI clock frequen­
cies. Measurment was done in stream mode and the SPI clock frequency was verified using 
an osciloscope. In current implementation, input capture array wi th length 20 is used, 
meaning 20 input capture events are triggered between each calculation and 19 different 
frequencies are calculated and evaluated. 

Real Measured 

15.6 kHz 15 k H z 

31.2 kHz 31 k H z 

62.5 kHz 62 k H z 

125 k H z 124 kHz 

250 k H z 249 kHz 

312.5 k H z 312 kHz 

500 k H z 500 kHz 

750 k H z 749 kHz 

1000 kHz 1000 kHz 

1250 kHz 1242 kHz 

1500 kHz 1505 kHz 

1750 kHz 1753 kHz 

2000 kHz 2000 kHz 

2250 kHz 2245 kHz 

2500 kHz 2509 kHz 

2750 kHz 2723 kHz 

3000 kHz 2976 kHz 

3250 kHz 3282 kHz 

3500 kHz 3459 kHz 

Real Measured 

3750 k H z 3764 kHz 

4000 k H z 4000 kHz 

4500 k H z 4571 kHz 

5000 k H z 4923 kHz 

5500 k H z 5565 kHz 

6000 k H z 6095 kHz 

6500 k H z 6400 kHz 

7000 k H z 7111 kHz 

7500 k H z 7529 kHz 

8000 k H z 8000 kHz 

9000 k H z 9142 kHz 

10000 kHz 9846 kHz 

11000 kHz 10666 kHz 

12000 kHz 11636 kHz 

13000 kHz 12800 kHz 

14000 kHz 14222 kHz 

15000 kHz 14222 kHz 

16000 kHz 16000 kHz 

18000 kHz 18285 k Hz 

Table 5.1: Frequency measurement test 
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*Note: A t higher frequencies, if the real value and the measured value are equal, it 
does not mean that the frequency measurement is accurate within one Hz or kHz , but 
it means that the real frequency happens to be exactly matching to one value that can 
be calculated. For example, when measuring the real frequency of 16000 kHz , measured 
frequency equals to 16000 k H z as well. This would suggest that the measurement is 
absolutely accurate, but in reality, the closest smaller value that could be measured is 
14222 kHz and the closest larger value that could be measured is 18285 kHz . This means 
that measurement 16000 kHz would be returned for a wider range (approx. 15111 kHz to 
17126 kHz) . 

Discussion and limitations 

A s can be seen from table 5.1, the frequency measurement works very well for lower 
frequencies, but is a little limited for higher frequencies. This is due to poor measurement 
resolution at higher frequencies, which is caused by the timer's frequency. For better 
resolution at higher frequencies, the timer's frequency would need to be much higher. 
Overall , the frequency measurement can be classified as successful and its function is 
more than adequate for this purpose. 

One characteristic of this calculation needs to be taken into consideration while calcu­
lating the frequency. The calculation itself takes relatively long time. For current imple­
mentation wi th input capture array of size 20, calculation takes approximately 450us to 
execute. This means that calculation needs to happen outside time-critical events such 
as interrupts. 

One other important characteristic is the measurement range. The absolute minimum 
frequency that can be measured in this configuration is fmin = 1953Hz, but in reality 
measuring frequencies near this value are not recommended as the difference between 
input capture events would need to be same or close to the whole counter range and 
the counter would most probably overflow and the measurement would be flawed. The 
theoretical absolute maximum frequency that could be measured is fmax = 128MHz, but 
this limit is highly unrealistic as the closest lower frequency that could be measured is 
/ = 64MHz. SPI interface on this M C U can operate with maximum clock frequency 
fdock = 18MHz, so this means that no larger frequency shall realistically be measured. 
Measuring frequency is st i l l not ideal on the higher side of the measurement range, but it 
is considered adequate for this task. 

5.2. Methods of SPI transmission using M C U 
In order to successfully receive or transmit data via SPI interface, the slave must wait 
until clock pulses appear on the clock pin, read data from the M O S I line or transmit data 
on the M I S O line on these clock pulses and write every byte received into some place in 
the M C U memory. The SPI peripheral works one byte at a time, meaning data is read 
and stored one byte at a time. After successful byte is received, this byte appears in the 
SPI data register (SPI ->DR) . This register must therefore be read and stored in-between 
each byte. There are 3 methods how to accomplish this. 
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Receive using blocking mode 

SPI can function in blocking mode. In this mode, after the receive (transmit or transmitre-
ceive) function is called, the C P U remains in this function and polls the SPI peripheral 
registers unti l a byte is received. When a byte is received, this byte from the S P I - > D R is 
stored into the M C U memory and SPI registers are polled again for another byte. This 
function terminates after a number of bytes specified by the user were received. Functions 
for this method are: 

HAL_SPI_Receive(hspi, pData, Size, Timeout); // Only receive 
HAL_SPI_Transmit(hspi, pData, Size, Timeout); // Only transmit 
HAL_SPI_TransmitReceive(hspi, pTxData, pRxData, Size, Timeout); // Transmit AND Rec 

Where hspi is a SPI handle structure, pData is a pointer to the data buffer, p T x D a t a 
is a pointer to the transmit buffer from which data wi l l be transmitted, p R x D a t a is a 
pointer to the receive buffer where receive data wi l l be stored, Size is the number of bytes 
to transmit/receive, Timeout is the time in ms after which this function wi l l terminate 
even if specified number of bytes were not transmitted/received. 

This method could be used on an SPI master device as it is known exactly when 
data wi l l be transferred on the SPI bus, but using it on an SPI slave device is extremely 
ineffective and inappropriate for almost any application. The reason being that a slave 
device does not control when data is transmitted over SPI bus, therefore times of data 
transmissions are not known and by using these functions, C P U would "freeze" in this 
function unti l SPI master decides to send or receive SPI data. This action would be an 
extreme waste of processing time. 

Receive using interrupts 

If SPI is controlled using the interrupt method, the main principles are the same as in 
blocking mode, but the C P U does not wait inside a function and poll the SPI registers, 
instead interrupts are used to trigger an action after a byte transmit/receive. This means 
that the function just sets up SPI peripheral for transmission and enables interrupt, 
therefore C P U is not "stuck" inside this function. If a successful byte is clocked on 
the clock pin, an interrupt is triggered and inside this interrupt, SPI data register is 
read and written into the memory receive buffer and also SPI is prepared for next byte 
receive/transmit and interrupt flag is cleared. SPI can be set to trigger a different interrupt 
after a specified number of bytes were received. Functions for this method are: 

HAL_SPI_Receive_IT(hspi, pData, Size) ; // Receive only 
HAL_SPI_Transmit_IT(hspi, pData, Size) ; // Transmit only 
HAL_SPI_TransmitReceive_IT(hspi, pTxData, pRxData, Size); // Transmit AND receive 

Where attributes of functions are same as in blocking mode, but Timeout is not needed. 
This mode is superior to blocking mode as the C P U is not bound to oversee and wait 

for the whole process, instead the process is event driven and in the meantime, when 
master is not providing a clock signal, the C P U can do other things. Bu t this method is 
not flawless. One thing that can cause problems is the interrupt time. It takes time for 
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the C P U to enter and exit interrupts as well as to manage the SPI data register inside 
interrupt. This means that the minimum time between bytes can be limited. Another 
possible problem could be that in the time of SPI interrupt, the C P U can be doing some 
time-critical action and interrupting this action would cause problems. 

Receive using D M A 

Using a D M A (Direct Memory Access) controller means that the C P U does not have to 
manage the SPI data register and therefore the actual C P U time is not wasted on SPI 
transmissions. A l l needed action is done by the peripheral and the D M A controller. Upon 
successful byte clocked on the SPI clock pin, the SPI peripheral triggers a D M A request. 
O n this request, the SPI data register is accessed by D M A controller and data is read 
from the SPI data register and written to the memory receive buffer. D M A controller can 
be set to trigger an interrupt when the specified number of bytes are received to indicate 
end of the SPI data transfer of known size. Functions for this method are: 

HAL_SPI_Receive_DMA(hspi, pData, Size); // Receive only 
HAL_SPI_Transmit_DMA(hspi, pData, S i z e ) ; / / Transmit only 
HAL_SPI_TransmitReceive_DMA(hspi, pTxData, pRxData, S i z e ) ; // Transmit AND 

Where attributes of functions are the same as when using interrupts. 
This mode is the most sophisticated as no actual C P U time is used to operate the SPI 

peripheral other than to setup D M A for next packet transmisson/receival. 

Transmitting 

If data has to be transmitted instead of received, the same 3 methods as described in the 
previous sections are used, but instead of reading from the SPI data register in-between 
bytes, data is written into the SPI data register and SPI internally stores this data into 
the T x fifo buffer. SPI can work in full duplex mode, meaning data can be received and 
transmitted at the same time. 

5.3. SPI peripheral drivers 
A t first, the unmodified H A L drivers were used for controlling the SPI peripheral. Whi le 
optimizing the E E P R O M emulator mode, SPI drivers were modified completely. The L L 
(Low Layer) drivers were used and all functions that control the SPI peripheral were writ­
ten from scratch using the L L drivers. The created SPI peripheral driver functions were 
written to accommodate only the absolute minimum functionality needed for a better per­
formance. Only the D M A method of SPI transmission is supported. SPI peripheral driver 
functions were developed in multiple iterations and the final iteration wi l l be described. 

5.3.1. Main idea 
The developed SPI peripheral drivers are not universal as the user code needs to be added 
inside the driver functions if they were to be used for a different application. Every SPI 
transmission wi l l trigger a receive interrupt and no transmit interrupts wi l l be triggered 
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by the D M A , but the transmit interrupt handler wi l l be called from within the receive 
interrupt handler. This means that the slave can be set for receive only transmission, but 
every transmit wi l l actually be transmit-receive transmission. If only transmit is desired, 
data wi l l be received to dummy address and wi l l be ignored. 

5.3.2. Receive function 
Receive function is defined as follows. 

void SPI_receive_DMA(uint8_t *pData, u i n t l 6 _ t Size) 
{ 

/* Disable a l l SPI DMA channels and SPI peripheral */ 
LL_DMA_DisableChannel(DMAl, LL_DMA_CHANNEL_2); // DMA Rx channel 
LL_DMA_DisableChannel(DMAl, LL_DMA_CHANNEL_3); // DMA Tx channel 
LL_SPI_Disable(SPIl); 

/* Set the transaction information */ 
LL_DMA_SetPeriphAddress(DMA1, LL_DMA_CHANNEL_2, &SPI1->DR); 
LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_2, (uint8_t *)pData); 
LL_DMA_SetDataLength(DMAl, LL_DMA_CHANNEL_2, Size); 

/* Enable the Rx DMA Stream/Channel */ 
LL_DMA_EnableChannel(DMAl, LL_DMA_CHANNEL_2); 

/* Set Rx FIFO buffer treshold f o r correct RXNE event generation */ 
LL_SPI_SetRxFIFOThreshold(SPIl, SPI_CR2_FRXTH); 

/* Enable transfer complete interrupt f o r DMA Rx channel */ 
LL_DMA_EnableIT_TC(DMAl, LL_DMA_CHANNEL_2); 

/* Enable Rx DMA Request */ 
LL_SPI_EnableDMAReq_RX(SPIl); 

/* Enable SPI peripheral */ 
LL_SPI_Enable(SPIl); 

} 

First , all the SPI D M A channels are disabled as well as SPI is disabled. This is to correctly 
reset any ongoing transmissions. The next transaction information is set for the SPI D M A 
receive (Rx) channel. The pointer pData indicates memory location, where received data 
wi l l be stored. The D M A R x channel is enabled. RxFIFOTresho ld is set for the correct 
R X N E event generation which indicates that the SPI internal receive buffer is not empty. 
The transfer complete interrupt is enabled for the R x D M A channel, which allows an 
interrupt to be triggered after the specified number of bytes were received. D M A request 
for the R x channel is enabled inside SPI peripheral, which enables SPI to interface wi th 
the D M A R x channel. Lastly, the SPI peripheral is enabled. 

41 



5. B A S I C D E V I C E F U N C T I O N A L I T Y 5.3. SPI P E R I P H E R A L D R I V E R S 

5.3.3. Transmit function 
The transmit function does in reality always function as a transmit-receive function. This 
function is defined as follows. 

void SPI_Transmit_DMA(uint8_t *pData, u i n t l 6 _ t Size) 
{ 

/* Start SPI r e c e i v a l based on current device mode */ 
i f ( spi.slave.curr.mode == SPI.EEPROM ) { 

SPI_receive_DMA(&dummy, 1); 
} 
else i f ( spi.slave.curr.mode == SPI_receivE_RESPOND_RX ) { 

SPI_receive_DMA(&dummy, spi_slave.cnfg.data_size); 
} 
else i f ( spi.slave.curr.mode == SPI_receivE_RESPOND_RXTX ) { 

SPI_receive_DMA(&spi_slave.rx_buff, spi_slave.cnfg.frame_size); 
} 

/* Set the transaction information */ 
LL_DMA_SetPeriphAddress(DMA1, LL_DMA_CHANNEL_3, &SPI1->DR); 
LL_DMA_SetMemoryAddress(DMA1, LL_DMA_CHANNEL_3, (uint8_t *)pData); 
LL_DMA_SetDataLength(DMAl, LL_DMA_CHANNEL_3, Size); 

/* Enable the Rx DMA Stream/Channel */ 
LL_DMA_EnableChannel(DMAl, LL_DMA_CHANNEL_3); 

/* Enable Tx DMA Request */ 
LL_SPI_EnableDMAReq_TX(SPIl); 

} 

The transmit function first calls a receive function, so that a proper interrupt is triggered 
after the specified number of bytes were transmitted. Based on the current device mode, 
a receival address is chosen either as a dummy address or as an address specified by the 
user in the code. Next, the D M A transmit (Tx) channel data are specified. pData is a 
pointer to a data array from where SPI wi l l transmit bytes. D M A T x channel is enabled. 
T x D M A requests are enabled inside the SPI peripheral, which enables SPI to interface 
wi th the D M A T x channel. 

5.3.4. Receive interrupt handler 
Handler for an interrupt triggered by a D M A flag is defined as follows. 

void SPI_DMA_RX_IrqHandler(void) 
{ 

/* Clear the transfer complete f l a g */ 
LL_DMA_ClearFlag_TC2(DMA1); 

/* Tickstart f o r BSY b i t timeout */ 
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uint32_t t i c k s t a r t = uwTick; 

/* DMA Normal Mode */ 
i f ( LL_DMA_GetMode(DMA1, LL_DMA_CHANNEL_2) == LL_DMA_MODE_NORMAL ) { 

/* Disable DMA Rx channel aswell as DMA Rx requests */ 
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_2); 
LL_SPI_DisableDMAReq_RX(SPIl) ; 

/* Check the end of the transaction */ 
i f ( SPI1->SR & SPI_SR_BSY ) { 

while ( SPI1->SR & SPI_SR_BSY ) { 
i f ( (uwTick - t i c k s t a r t ) > SPI_DEFAULT_TIMEOUT ) { 

/* something f o r breakpoint debugging, should go to error handl 
t i c k s t a r t = uwTick; 

} 
} 

} 
} 

/* C a l l Tx handler */ 
SPI_DMA_TX_IrqHandler(); 

/* C a l l user callbacks */ 
SPISLAVE_SPI_IrqCallback(); 

} 

First , the transfer complete flag is cleared. Next, a variable is initialized wi th the current 
system tick to note the current time. If D M A is set to normal mode (contrary to circular), 
D M A R x channel is disabled as well as the D M A R x requests inside the SPI peripheral. 
Also the device waits for the B S Y (busy) bit in the SPI registers to have value zero. If 
D M A mode is set to circular, D M A channel is not disabled and the device does not wait 
for the B S Y bit. Next, the SPI T x interrupt handler is called. This interrupt handler 
does not have to be called every time, but calling it while it is not needed does not cause 
any errors and no real time loss. Lastly, a function is called which decides which user 
defined interrupt handler must be called based on the current device state and mode. A l l 
user interrupt code happens inside this function. 

5.3.5. Transmit interrupt handler 
This handler is not called inside an interrupt that was triggered by the D M A T x channel 
flag, but instead it is called inside a receive interrupt. Handler is defined as follows. 

void SPI_DMA_TX_IrqHandler(void) 
{ 

/* Clear the transfer complete f l a g */ 
LL_DMA_ClearFlag_TC3(DMA1); 
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/* Disable Tx DMA channel f o r SPI */ 
LL_DMA_DisableChannel(DMA1, LL_DMA_CHANNEL_3); 

/* Normal case */ 
LL_SPI_DisableDMAReq_TX(SPIl); 

} 

First , the transfer complete flag is cleared. D M A T x requests are disabled inside the SPI 
peripheral. D M A SPI T x channel is disabled. In all the modes of this device, transmit 
happens only in normal mode, therefore circular mode is not considered. 

5.4. Reseting SPI 
Resetting the SPI peripheral is needed mainly after a new configuration is loaded into the 
device. Not only does resetting the SPI calls all functions that are needed for initializing 
the device and the SPI peripheral, which in turn applies new configuration, but the 
internal SPI transmit buffer is cleared. This buffer cannot be cleared any other way 
instead of transmitting data on the SPI lines, but that is controlled by the SPI master. 
Clearing this buffer is needed after a transmit is initiated after another transmit was 
already initiated before but never completely executed. SPI reset procedure is as follows: 

• Set the A P B 2 (advanced peripheral bus 2) reset register inside the R C C registry to 
1. This wi l l start resetting A P B 2 . 

• Wait the minimum necessary time 

• Set the A P B 2 (advanced peripheral bus 2) reset register inside R C C registry to 0. 

• Ca l l a function that initiates SPI peripheral based on S T M 3 2 C u b e M x settings. 

• Ca l l a user function that initiates device in all modes. 

5.5. Stream mode 
Stream mode is the first operational mode of the device. This mode wi l l be automatically 
chosen on device startup. Stream mode can be used to directly display incoming SPI data 
through the python A P I . 

5.5.1. Main features 
The main idea of the stream mode is to capture all incoming data on the SPI interface 
and transmit (stream) it directly to a P C where it can be read. In this mode, the device 
is acting receive-only, therefore no data wi l l be sent out on the SPI data bus. SPI is 
master controlled, meaning the master controls when data transmission (master transmit 
or master receive) wi l l happen by controlling the SPI clock pin. This means that the slave 
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needs to wait wi th data ready unti l a clock signal appears. After the data was transmitted 
by the slave, the slave needs to prepare the next data before the next clock signal appears 
on the SPI clock pin. 

5.5.2. Early implementation 
The first implementation was done by SPI receival using interrupts. Figure 5.3 displays 
a block diagram of the implemented algorithm. 

Jpon device initialization Device Function 

ŕ A ŕ "N 
Start receiving first 

byte Receive 1 byte 
v. J l J 

i 
ŕ "N 

Enter interrupt 
v / 

i 
f \ 

Send report 
message about byte 

received 
v J 

i 
ŕ ~\ 

Start receiving next 
byte 

L J 

f \ 

Exit interrupt 
^ J 

Figure 5.3: Block diagram of an algorithm for the first implementation of stream mode 

This method is the easiest way to implement this mode. Upon mode initialization, a 
single byte is set to be received. After this single byte is received, an interrupt is triggered. 
In this interrupt, a report message about this byte is formed and sent to the python A P I 
via U A R T . Lastly, the SPI is set to receive next byte and the C P U exits the interrupt. 

Discussion 

This is the easiest way to implement stream mode, but it has some major limitations. One 
l imitat ion that renders this solution almost unusable is the interrupt time. The device 
receives bytes one by one and in-between each one is an interrupt. This means that the 
C P U needs to exit the interrupt before the next byte arrives or received data wi l l not be 
processed correctly. Also the report message needs to be successfully sent before the next 
byte arrives, while U A R T interface is generally much slower than SPI interface. Data is 
usually sent in packets, which contain more than one byte, therefore a master would need 
to artificially add delay between bytes in order for this mode to work correctly. Worst case 
for SPI slave to receive data is a continuous data stream, meaning the time in-between 
bytes is the same as the time in-between bits (clock pulses). This means that in order for 
this mode to work, the clock frequency would have to be low enough for an interrupt to 
execute in-between clock pulses. If worst case is considered, clock frequency fciock would 
be severely limited to less than 50 kHz , while the maximum possible SPI clock frequency 
for this M C U is 18MHz. 
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One way to improve this method would be to implement a F I F O buffer. In the 
interrupt, rather than sending a report message immediately, received bytes would be 
stored in this F I F O buffer and sent later asynchronically in the main while cycle. This 
would improve the maximal clock frequency, but still it would not reach even 500 kHz . 
Also, this means that the F I F O buffer would have to be large enough to accommodate a 
data packet or multiple data packets and there would have to be enough time where the 
SPI is in idle to send the report messages from this buffer. 

5.5.3. Final implementation 
Head-Tail F I F O buffer 

For the final implementation, a different solution was found. The main component of this 
solution is a relatively large F I F O buffer, where the received bytes wi l l be stored. A s the 
SPI receival method, D M A is used in a circular mode. Circular mode means, that after 
the whole buffer is filled, received bytes wi l l be stored in the beginning of the buffer again. 
A n interrupt wi l l be triggered when the buffer is filled, but only to increment a variable 
that describes the number of overflows. Therefore, in this SPI setup, after an SPI receival 
is initialized, no C P U time is used to actually receive any bytes as it is the responsibility 
of the D M A controller. 

There are two pointers that point to the specific index of this buffer. One pointer 
points to the current last index, where data was written by the D M A controller. This 
pointer wi l l be called "head". The second pointer points to the last index, which was 
sent to a P C in a report message. This pointer wi l l be called " t a i l " . The tai l pointer 
always chases the head pointer. If the head and the tai l pointer point to the same index, 
no action happens. If the head pointer is incremented, action is needed so that the tai l 
pointer is being incremented also unti l the head and the tai l pointers are equal again. 

A s no data is being deleted from the buffer, it is important to note how many overflows 
each of the pointers have. Overflow means reaching the end of the buffer and looping back 
to the beginning. 

Tail pointer Head pointer 
Last report sent Last byte wr i t ten 

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 

Receive buffer 

Figure 5.4: Stream buffer wi th head-tail pointers 

Figure 5.4 represents a seven byte stream buffer wi th the head pointer pointing at the 
byte number 4 and the ta i l pointer pointing at the byte number 1. This would mean that 
action is required. In order to equalize the head and the tai l pointers, the byte number 
2, the byte number 3 and the byte number 4 would need to be reported to a P C A P I . In 
the final implementation, a stream receive buffer wi th the length of 1000 bytes was used. 
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Valid conditions for sending a report 

The indices of the bytes that need to be reported are indicated by the state of the head 
and the tai l pointers and by the number of overflows of each pointer. The conditions that 
indicate that a report messages needs to be sent are as follows: 

• The head pointer is larger than the tail pointer with the same number 
of overflows 
This means that the bytes on indices starting from the tai l pointer (not included) 
to the head pointer (included) need to be reported. 

• The head pointer is smaller than the tail pointer A N D head the pointer 
number of overflows is exactly one greater than the tail pointer number 
of overflows 
This means that the bytes need to reported starting from the tai l pointer index (not 
included) to the end of the buffer and also the bytes starting from the index 0 to 
the head pointer index (included) need to be reported. 

Head and tail pointer errors 

There can be a few errors wi th the head and the tai l pointers. These errors can either 
indicate that the SPI bytes are being received too fast and there is not enough time for 
sending the report messages or that the head and the tai l pointers are in a state, which 
should not be possible and therefore an unknown internal error occured. The error states 
are as follows: 

• The head or the tail pointers are larger than the buffer size 

• The tail pointer number of overflows is greater than the head pointer 
number of overflows 
This indicates that the tai l pointer overtook the head pointer. 

• The head pointer is greater than the tail pointer W I T H the same number 
of overflows 
This indicates that the tai l pointer overtook the head pointer. 

• If the head pointer number of overflows is larger than the tail pointer 
number of overflows by a margin larger than 1 
This means that SPI data are being received too fast and there is not enough time 
to send report messages. 

M a i n algorithm 

The C P U is not involved in receiving SPI data, therefore no trigger wi l l signalize the 
receival of a new byte, therefore, if report needs to be sent is checked in the main while 
loop. The block diagram of the whole algorithm can be seen in figure 5.5. 
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Figure 5.5: Block diagram of the final implementation of stream mode algorithm 

Upon device initialization or when the device switches into this mode, two things need 
to be performed. The first is to initialize/clear all parameters associated wi th the stream 
mode. These parameters are the buffer itself, the overflow variables for the head and the 
tai l pointers. The second thing is to initialize D M A to receive SPI data to a specified 
buffer in circular mode and wi th the length of SPI receival same as the length of the 
buffer. 

When enough bytes are received to fill the whole buffer, an interrupt is triggered. In 
this interrupt, only one action is performed. The overflow variable that indicates how 
many times the head pointer reached the buffer end is incremented. 

A l l the other main actions are performed in the main while loop of this M C U and can 
be described as follows. 

• Check for the pointer errors 
First any head and tai l pointer errors are checked. If any error occurs, all stream 
mode parameters are cleared and SPI D M A receival is reset and restarted. 
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• Update the value of the head pointer 
Next, the head pointer is updated. The information about what index wi l l the D M A 
write next can be found in the D M A register. Let 's assume that this register is called 
dataJength. This register indicates how many more bytes need to be received unti l 
the end of the buffer. From this value,the current head index can be calculated as: 

head.pointer = SPI_STREAM_BUFFER_SIZE - dma_register_data_length; 

• Check if any condition for sending a report is valid 
Once the head pointer value is updated, the conditions required for any report to 
be sent are checked. 

• Check if the minimum time elapsed from the last frequency measurement 
calculation 
If any of the conditions are valid, first the time elapsed from the last frequency 
measurement calculation is checked. If the minimum time elapsed, the frequency 
is calculated and the frequency measurement is restarted. Having minimal time 
in-between the frequency calculation ensures that the lengthy calculation is not 
performed too frequently. 

• Send a report of a single byte 
After the frequency minimum time in-between calculations is checked and possibly 
the frequency is calculated, a report message is initiated and sent to P C via U A R T . 
This message contains only a single byte and the index of this byte is one larger 
than the tai l pointer. A l l the possible report messages wi l l be listed in chapter 7.3.6. 

• Increment the tail pointer 
Lastly, the ta i l pointer is incremented by the value of 1. Overflow of this tai l pointer 
is checked. If the tai l pointer after incrementation reaches the end of the buffer, the 
overflow variable for the tai l pointer is incremented and the tai l pointer is set to 0. 

It is important that there is no other activity in the main while loop, that would slow 
down its iteration. This algorithm needs to be executed frequently enough, so that the 
report sending can keep up wi th the SPI data receival. In other words, the algorithm 
needs to be executed frequently enough so that the head pointer does not overtake the 
tai l pointer by the size of the whole buffer. 

5.5.4. Discussion and limitations 
Stream mode is implemented by using a F I F O buffer with a head and a tai l pointer and 
the D M A method of receiving SPI data works effectively, however one l imitation exists. 
Received SPI data are being written to a buffer. Later, this buffer is asynchronically 
checked if any new data exist and if the new data exist, this data is sent in reports to a 
P C . It is possible that there is not enough time to send this new data in the buffer and the 
data that needs to be sent wi l l be overwritten by new data that wi l l be received by the SPI 
interface. This is caused by either too small of a buffer or a continuous stream of SPI data 
that contains more bytes than the buffer size. This means that if a continuous SPI data 
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stream of infinite size is assumed, this method wi l l not work correctly. In reality, such 
transmissions are very uncommon and usually there is enough time in-between packets to 
report all the received bytes. Also, this mode is aimed at testing and debugging masters, 
so transmitting a continuous data stream would not be beneficial for the user as the main 
purpose of this mode is to manually check what is being sent. In the final implementation, 
buffer wi th size of 1000 bytes is used, which should be plenty for any frame or packet as 
they wi l l rarely be larger than 1000 bytes. 

5.5.5. Possible improvements 
For the future development, one obvious improvement could be made. Instead of including 
only one byte in each report message, all bytes that need to be sent could be included in 
the report message. This would vastly improve the total time that would be needed to 
equalize the head and the tai l pointers as all needed bytes would be reported in one pass 
of the main while loop. But this would mean, that this one main while loop iteration 
would be longer as more bytes need to be processed. 

5.6. LUT mode 
L U T mode is the second operational mode of the device. This mode can be used to 
automatically respond to the received requests from an SPI master wi th preset responses 
according to the current received request. 

5.6.1. Main features 
In contrary to the stream mode, L U T (Look up table) mode wi l l not only receive data, 
but also transmit data. The data that wi l l be transmitted is dependent on the last data 
that was received. From every transmission, a report wi l l be formed and sent to a P C via 
U A R T . This mode can work in full-duplex mode as well as in half-duplex mode. Half-
duplex mode means that one single transmission is either a transmit or a receive, not both 
at the same time. This means that in half-duplex mode, one data bus (MISO or MOSI ) 
wi l l be inactive. In full-duplex mode, data is being transmitted and received at the same 
time, therefore both data lines are active. 

5.6.2. Implementation 
In this mode, SPI transmission wi l l be performed in packets. The packets wi l l contain a 
set number of bytes. The number of bytes in a packet can be configured and can only 
be changed by changing the configuration. This means, that for one configuration, only 
one length of a packet can be received and transmitted. Packets wi l l not be separated 
into smaller sections, meaning, the whole packet wi l l be considered as data (no heading 
or footer). For receiving and transmitting, the D M A method of SPI transmission wi l l 
be used and after any successful packet transmission, an interrupt is set to trigger. The 
frequency wi l l be measured and calculated for every packet separately. 
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Lookup table structure 

The main feature of this mode is the lookup table itself. The lookup table contains 
multiple request-response pairs. If a packet equal to a request in L U T is received, in 
the next transmission, a packet wi th the value of the response belonging to the received 
request packet wi l l be transmitted. 

L U T 
row 

Request packet Response packet 

0 [1, 2, 3, 4] [200, 100, 5, 10] 

1 [10, 20, 30, 40, 50, 60] [11, 21, 31, 41, 51, 61] 

2 [255, 255] [1, 1] 

3 [100, 100, 100] [100, 100, 100] 

Table 5.2: Lookup table structure 

Example of a look up table instance can be seen in table 5.2. In this table, there are 
4 rows wi th reuqest-response pairs. If any of the requests is received by SPI , in the next 
transmission, the response packet from the same L U T row wi l l be transmitted. 

L U T parameters in current implementation are as follows. The L U T number of rows 
equals to 10. The maximum request and response size equals to 10. These parameters 
are relatively low, but in order to increase them significantly, M C U wi th more memory 
would need to be used. 

Lookup table conditions 

A few conditions must be set in order for L U T to be valid: 

• Packet lengths 
The request and the response in the same pair need to have the same length of 
bytes, but different pairs can have different lengths. 

• No duplicate requests 
Every request inside the L U T must be unique. If duplicate requests are found in 
the L U T , the L U T is not valid. This is because if multiple identical requests were 
present in the L U T , only the one wi th the smallest index would be used and the 
other ones would be redundant. Duplicate responses are allowed. 

Important L U T mode variables and parameters 

There are important variables and parameters associated wi th this mode, that are needed 
to describe the current configuration and state. These variables are: 

• L U T 
The first variable is the L U T itself. Structure of the L U T was described in pre­
vious section. In C implementation, requests and responses are split into separate 
variables. Each of this variable is a two dimensional array that describes all of the 
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requests or responses for the whole L U T . Every row of these variables is a differ­
ent request/response and pairs are defined by the same row index. Bo th of these 
variables are part of the L U T handle struct. 

• sizes 
This variable is an array wi th the same length as the number of L U T rows and wi th 
type 8 bit unsigned integer. Values of this array describe byte length of the current 
request-response pair. Value on the specific index of this array belongs to the same 
row index of L U T . This variable is a part of L U T handle struct. 

• is.used 
This variable is an array wi th the same length as the number of L U T rows and wi th 
boolean type (0 or 1). Values of this array describe if the current L U T row on the 
same index is currently being used or if it is empty. This variable is important for 
L U T configuration as L U T rows can be configured only if they have been cleared 
before. This variable is a part of the L U T handle struct. 

• default response 
A n array of type 8 bit unsigned integer. A default response needs to be defined for 
situations when the received packet is not present in the L U T request array. If this 
happens, no L U T row is chosen and the default response is returned. 

• full-duplex mode enable 
A single boolean value that describes if the device is in full-duplex or half-fuplex 
mode. 

• data length 
A single 8 bit unsigned integer value describing the current packet length to be 
received or sent. 

Choosing a response 

Once a request was received, the according response needs to be chosen. First , the index 
of L U T row, where the L U T request and the received request are identical, is determined. 
L U T request must have the same byte length as is the current received packet length, 
which is the same as the current packet length set in the configuration. If the L U T does 
not contain the same request, the default response is chosen as next response. If L U T 
index is found wi th the same request, the response from this L U T index is chosen as next 
response. The response in L U T should have the same size as the request in the same L U T 
row, but this condition is not checked while configuring L U T in current implementation. 
This should not be a problem, if the action for different sizes is known. If the response 
is larger than the request, only first request size number of bytes are chosen as the next 
response. If the response is smaller than the request, the response is appended wi th zeros. 

M a i n algorithm - common 

L U T mode can function in 2 modes. Half-duplex and full-duplex. The main idea of 
these modes is the same, but in order for them to function properly, some differences 
in implementation need to exist. Despite these differences, some parts of the algorithm 
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are the same. The parts of the algorithm that are the same are what happens on device 
or L U T mode initialization and what happens in the main while loop of the M C U . The 
common parts of the algorithm can be seen in the block diagram 5.6. 

Upon device initialization Main while loop 

/ 

Set response to 
default response 

J 

t 
\ 

Start receiving 
request packet 

c f 
Check for timeout IF ERROR 

Set error flag error Set error flag 

V ) ) 
' 

> 

c *\ f 
Check for any error IF FLAG 

Reset SPI flags r Reset SPI 

J ) 

Figure 5.6: Block diagram of the common algorithm for half-duplex and full-duplex mode 

First , the algorithm for device or mode initialization is described: 

• Set response to default respone 
The device does have a default response defined. This response wi l l be transmitted 
either when the received request is not present inside the L U T or when the first 
transmission after initialization happens in full-duplex mode. 

• Start receiving/transmitreceiving request packet 
Set SPI to receive or transmit-receive using D M A . 

Next, the algorithm for the main while loop is described: 

• Check for timeout error 
A timeout error occurs when no action on the SPI bus appears after SPI receive/transmit-
receive initialization for a predefined time. The main reason for the existence of this 
error is to catch any unknown errors that would cause the SPI peripheral to not 
work correctly. If this error happens, error flag is set. 

• Check for error flag 
Checks if any error flag is active. If any error flag is active, the SPI is reset. SPI 
reset procedure can be found in chapter 5.4. Possible error flags: 

— Timeout error 

This function exists because in earlier implementation, more errors existed and it is 
probable that in future development, more error flags wi l l exist. 

The core algorithms for half-duplex and full-duplex mode are different and wi l l be de­
scribed separately in the next sections. 
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M a i n algorithm - half-duplex 

In half-fuplex operation, the SPI interface is only used one direction at a time. Meaning 
that for one transmission, only the M I S O or the M O S I line is active while the other 
line is inactive. The core algorithm of this mode happens inside interrupts. There are 
two interrupts associated with this mode of operation. The receive and the transmit 
interrupt. The receive interrupt wi l l trigger after a packet of a known size was received 
and the transmit interrupt wi l l trigger after a packet of a known size was transmitted. 
Block diagram of the code for these algorithms can be seen in figure 5.7. 

Rece ive i n t e r r up t 

Choose response 
based on received 

request 

Start DMA SPI 
transmit of chosen 

response 

Initialize report for 
received packet 

Restart frequency 
measurment 

T r a n s m i t i n t e r r up t 

Initialize report for 
transmitted packet 

Restart frequency 
measurment 

Start DMA SPI 
receive for next 

request 

Figure 5.7: Block diagram of the half duplex mode algorithm for receive and transmit 
interrupts 

First , the receive interrupt is described: 

• Choose the response based on the received request 
This interrupt triggers after a packet was received. Based on this packet, an ap­
propriate response needs to be chosen. The process of choosing this response was 
described in chapter 5.6.2. 

• Start the D M A SPI transmit of a chosen response 
Once a response was chosen, SPI D M A transmit is initiated. This transmit wi l l 
happen only after the master provides a clock signal and after the response packet 
is sent, a transmit interrupt wi l l trigger. 

• Initialize a report for the received packet 
A report message describing the received packet is formed. This report also contains 
the input capture data of frequency measurement. Complete report message forming 
and sending wi l l be described later in chapter 5.7. 
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• Restart the frequency measurement 
The frequency measurement is restarted. The frequency measurement was described 
in section 5.1. 

Next, the transmit interrupt is described: 

• Initialize a report for transmitted packet 
A report message describing the transmitted packet is formed. This report also 
contains the input capture data of the frequency measurement. Complete report 
message forming and sending wi l l be described later in chapter 5.7. 

• Restart the frequency measurement 
The frequency measurement is restarted. The frequency measurement was described 
in section 5.1. 

• Start the D M A SPI receive for next request 
After a response was sent, SPI needs to be set to receive the next request using 
D M A . After the next request wi l l be received, a receive interrupt wi l l trigger again. 

In this operation mode, every request is received by itself followed by transmitting of a 
response. This action is performed repeatedly. 

M a i n algorithm - full-duplex 

In full-duplex operation, the SPI interface receives and transmits data at the same time. 
This means that both the M I S O and the M O S I lines are being used for every clock 
pulse. The core algorithm of this mode happens inside an interrupt. In contrary to half-
duplex mode, interrupts are not separated for receive and transmit and therefore only 
one interrupt is defined. This interrupt is labeled as a transmit-receive interrupt. Block 
diagram of the code for this interrupt can be seen in figure 5.8. 

Transmit-Receive in terrupt 

{ \ 
Init ialize report for 

t ransmi t ted and 
received packet 

f \ 

Choose response 
based on received 

request packet 

Restart f requency 
measurment 

Start DMA SPI 
t ransmit - receive for 
next t ransmiss ion 

Figure 5.8: Block diagram of half duplex algorithm for receive and transmit interrupts 
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Transmit-receive interrupt is described: 

• Initialize a report for transmitted and received packet 
A report message describing transmitted and received packet is formed. This report 
also contains the input capture data of the frequency measurement. Complete report 
message forming and sending wi l l be described later in chapter 5.7. 

• Choose a response based on the received request 
In this transmit-receive transmission, a request packet is received. Based on this 
packet, an appropriate response needs to be chosen. The process of choosing this 
response was described in section 5.6.2. This response wi l l be sent in the next 
transmit-receive transmission sequence. 

• Restart the frequency measurement 
The frequency measurement is restarted. The frequency measurement was described 
in section 5.1. 

• Start D M A SPI transmit-receive for next transmission 
After a transmit-receive transmission was executed, SPI needs to be set for another 
transmit-receive transmission using D M A . 

In this mode, the response packet from the previous request is being transmitted while 
the current request packet is being received . This action is performed repeatedly. 

5.6.3. L U T configuration 
In order for this mode to be effective, L U T needs to be easily configured. In order for a 
L U T row to be configured, the row must either be not in use (is_used variable set to 0) 
or it must be cleared prior to writing. The specific commands for L U T configuration wi l l 
be described in section 7.3.4 

Clearing a L U T row 

L U T can be cleared one row at a time and therefore a specific index needs to be provided. 
If a Clear L U T command is received, first, the errors are checked. If any error occurs wi th 
the command, the command is declared invalid and no action is performed. If no error 
occurs, request and response data and its sizes on L U T row, which index was specified 
in the command are cleared (set to 0). Also, is.used variable is set to 0 as well on the 
according index. 

Possible clear L U T errors: 

• Index out of range 
L U T index received in command is larger than L U T number of rows. 

Writing a L U T row 

L U T can be written one row at a time and therefore specific index needs to be provided. 
If a Write L U T command is received, first, the errors are checked. If any error occurs 
wi th the command, the command is declared invalid and no action is performed. If no 
error occurs, request and response data in L U T are changed according to the request and 
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the response data received in command. The "sizes" variable is changed accordingly and 
the "is_used" variable is set to 1 on according index also. 

Possible write L U T errors: 

• Index out of range 
L U T index received in the command is larger than the L U T number of rows. 

• Row is used 
L U T row on the index that was received in the command is already in use. To 
successfully write this row, this row needs to be cleared first. 

• Duplicate request found 
The same request as the command provided was found present on another L U T 
row. No duplicate requests can exist in L U T . 

• Request size 
The request size provided by the command is larger than the maximum request size. 

• Response size 
The response size provided by the command is larger than the maximum response 
size. 

5.6.4. Discussion and limitations 
L U T mode is aimed for testing the most basic logic in real SPI masters. The responses 
for specific requests can be set and these responses wi l l be transmitted by the slave device 
after a request is received. 

One l imitation is that this mode does not work with dynamic length packets. B y 
dynamic length packets, packets that define theirs length in the beginning of the actual 
packet are meant. This k ind of functionality was implemented in early design, but in 
order to accommodate this functionality, bytes in the packet needed to be received and 
processed individually one by one. This meant extreme SPI frequency limitation. If a 
continuous data stream was considered (time in-between bytes same as time in-between 
bits), the absolute maximum SPI clock frequency was in the range of 50 kHz , which is 
unacceptable as the maximum SPI frequency for this M C U is 18MHz. 

SPI clock frequency therefore is not limited, but not all timings are without a l imit . 
Packets need to be processed in interrupts in-between packets. In order for these packets 
to be processed successfully, there needs to be a minimal time in-between packets. This 
means that the frequency of the actual packets is limited. This maximum packet frequency 
was not specifically tested, but based on other tested interrupt times, this frequency is 
estimated to be in the range of 150-250 kHz , which would mean the time in-between 
packets would need to be atleast 4-6us. For the future development, this interrupt time 
wi l l need to be accurately measured. 

5.6.5. Possible improvements 
One useful improvement for the future development would be to add a configurable C R C 
to the packet, which would be checked and reported to the user. Most of the packets used 
nowadays use C R C for error checking and it would be useful to implement this feature. 
C R C polynomial would be configurable. 
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5.7. Command and report messages handling 
Algor i thm contains structs, that can completely describe received commands via U A R T 
interface or report and acknowledgement messages for every type of SPI transmission and 
command. The specific types of commands and report, acknowledgement messages wi l l 
be described later in chapter 7.3. 

5.7.1. Command handling 
Commands are received v ia the U A R T interface during interrupts. Once a valid command 
is received, the command is not executed right away. Instead a struct instance is initiated 
wi th all the information regarding received command. This is because if the command was 
executed right away, some other action with higher priority could interrupt the execution 
of this command and in the meantime, another command would be received, which would 
cause an error as the first command did not finish executing yet. A l l commands wi l l be 
executed asynchronically from the main while loop. 

5.7.2. Report message handling 
Same as the commands, the report messages are not sent at the time when the SPI trans­
mission ended, but rather a struct instance is initiated allowing the report messages to 
be sent later asynchronically in the main while loop. This way is chosen because if a re­
port messages would be sent right away, the M C U could receive another SPI transmission 
in the time, when previous report message is being sent. A report message array also 
contains acknowledgement messages. 

5.7.3. Main while loop commands and report messages handler 
The commands and the report messages are stored in two arrays where each element of 
the array represents either a command instance of struct or a report message instance of 
a struct based on which array is being referenced. Bo th command and report messages 
arrays have two pointers. One pointer points to the index, where the next instance wi l l be 
written (write pointer) and the second pointer points to the next instance, which should 
be executed/reported (execute pointer). Bo th command and report message handlers are 
executed in every iteration of the main while loop. 

Command handler 

Algor i thm of the command handler can be described as: 

• Check if the current command instance of a struct has not been executed 
yet 
The current command instance is defined by the execute pointer. 

• Execute command 
If the current command instance has not been executed yet, execute it. Check errors 
before execution if any errors could exist based on specific command. 
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• Increment execute pointer 
The execute pointer is incremented. 

Report message handler 

The report message algorithm of the report message handler can be described as: 

• Check if the current report message instance of a struct has not been 
sent yet 
The current report message instance is defined by the execute pointer. 

• Send message 
If the current message instance has not been sent yet, send it. Calculate the mea­
sured frequency before every report message that includes frequency measurement 
data. 

• Increment execute pointer 
The execute pointer is incremented. 

5.7.4. Discussion and limitations 
Report messages are stored inside a buffer. Each element of this buffer is a struct repre­
senting one SPI transmission. The buffer does not have infinite size and therefore there is 
a maximum number of report messages that can be stored at the same time. This means 
that if report messages are being created faster than they are being sent, this buffer could 
overflow and some report messages could be lost. If this situation occurs, internal error 
flag is thrown and report messages wi l l no longer be created. In order for this situation to 
happen, a large number of SPI transmissions would need to be performed continuously. 
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6. Advanced functionality -
E E P R O M emulator mode 

This whole chapter describes the E E P R O M emulator operational mode. This mode 
is the last of the operational modes of this device and is considered advanced as its main 
purpose is not to test a general SPI master device, but to test a specific SPI master 
device that is made for controlling one specific slave device. The main idea of this mode 
is that the device behaves identically to the real SPI E E P R O M device, which means that 
it does not matter if the master is connected to an emulator device or a real E E P R O M 
device from the master's point of view. The process of enabling this mode can be found 
in chapter 7.1.1. 

6.1. E E P R O M Selection 
Before developing an E E P R O M emulator mode, first a real E E P R O M needs to be chosen 
that wi l l be emulated. 25AA160D E E P R O M was chosen manufactured by the Microchip 
company. This E E P R O M was chosen for various reasons. One of the criteria for choosing 
a real E E P R O M model was that it must be possible to simulate the whole E E P R O M 
memory in M C U ' s R A M memory. The second criterion was that the E E P R O M must 
have standardized instruction set, that is common amongst other E E P R O M and F L A S H 
devices. 

6.1.1. E E P R O M attributes 
25AA160D has these attributes: 

• Size 
Total memory capacity is 2kB or 2048 bytes. This capacity should be easily simu­
lated in STM32F303K8 M C U R A M memory. 

• Word length 
This device contins 8bit words, therefore on one address of memory, one byte is 
stored. 

• Operating voltage 
The operating voltage of this device is 1.8-5.5V. This means that for interfacing 
wi th an SPI slave device, no logic level shifters wi l l be required. 

• SPI clock frequency 
The maximum SPI clock frequency for this device is 10MHz. This device is a SPI 
slave. 

More details about this specific E E P R O M device can be found in [21]. 

6.1.2. Hardware pins 
There are 6 data pins in total on this E E P R O M device. These data hardware pins are: 
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• C S 
Chip select pin. Used for SPI 

• M I S O 
M I S O pin used for SPI . 

• M O S I 
M O S I pin used for SPI . 

• S C K 
Clock pin used for SPI. 

• W P 
Write protect pin. This pin is ignored in this emulator design. 

• H O L D 
Hold pin. This pin is ignored in this emulator design. 

6.2. E E P R O M features 
While creating a model of this E E P R O M , it is important to note features that need to 
be replicated. 

6.2.1. Memory organization 
Memory is organized in a 2048 byte array. Every byte has its own address. The address 
is a 11 bit value, but in instructions, 16 bit value wi l l be provided and 5 M S B bits wi l l 
be ignored. The memory array is separated into pages. In this specific E E P R O M type, 
page size is 32 bytes. This means that the memory array has 64 pages in total. 

6.2.2. Status register 
The status register has 8 bits and is used to store the current configuration of the 
E E P R O M . The status register can be read by the R D S R command and R / W (Read­
able/Writable) bits can be configured by the W R S R command. 

Bit number bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 

Access R / W - - - R / W R / W R R 

Bit name W P E N - - - B P 1 BPO W E L W I P 

Table 6.1: Status register 

*Note - R / W (readable/writable) — R (read only) 

W P E N 

This bit is writable and enables the W P (write protect) hardware pin. W P pin is not 
used in the designed emulator, therefore this bit is not needed. 
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BPO and B P 1 and block protect 

BPO and B P 1 bits are used for the block protect functionality. These bits are R / W . 
B y defining these bits, it is possible to protect a block of memory data. If a block is 
protected, it is impossible to write to these memory locations. Three possible block 
protect configurations: 

• B P 1 = 0 & B P O = 0 
Block protect inactive. 
Protected addresses : None 

• B P 1 = 0 & B P O = 1 
Upper quarter of memory array protected 
Protected addresses : 0x0600 - 0x07FF 

• B P 1 = 1 & B P O = 0 
Upper half of memory array protected. 
Protected addresses : 0x0400 - 0x07FF 

• B P 1 = 1 & B P O = 1 
Entire memory array protected. 
Protected addresses : 0x0000 - 0x07FF 

W E L 

Read only bit indicating current status of the write enable latch. The write enable latch 
can be set using the W R E N command. The write enable latch is reset when these 3 
conditions are met: 

• Succesfull W R D I instruction is executed 

• Automatically after succesfull W R I T E operation 

• Automatically after succesfull W R S R operation 

W I P 

Read only bit that indicates if the E E P R O M device is currently writ ing data. If the 
E E P R O M is in W I P (write in progress) state, value of this bit wi l l be 1 and the only 
possible instruction that can be executed in this state is R D S R . 
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6.2.3. Instruction set 

6.2. E E P R O M F E A T U R E S 

Operation 
name 

Operation code Description 

R E A D 0x03 Read data from memory 

W R I T E 0x02 Write data to memory 

W R D I 0x04 Reset write enable latch 

W R E N 0x06 Set the write enable latch 

R D S R 0x05 Read status register 

W R S R 0x01 Write status register 

Table 6.2: Instruction set for 2 5 A A 1 6 0 C / D E E P R O M [21] 

T iming diagrams for each operation can be found at [21]. 

Chip select pin assertion 

There are 6 instructions available for this E E P R O M device. Every instruction must have 
the same chip select p in procedure. Instruction starts by putt ing the chip select p in 
to logical L O W . After this, the command data are transmitted. To sucesfully terminate 
current instruction, the chip select p in must be turned H I G H . This means that in-between 
every instruction, the chip select pin must be logical H I G H for a certain amount of time. 
Description of these 6 instructions are as follows. 

R E A D 

After the chip select is turned logical L O W , SPI master must transmit an operation code 
wi th the value of 0x03. After the operation code, 16 bit address needs to be transmitted 
by the SPI master. 5 M S B bits of this address are "don't care" bits as the memory 
capacity is 2048 bytes. After the operation code and the address are successfully received 
by the E E P R O M slave, SPI master must provide clock pulses and the memory data stored 
at the specified address wi l l be shifted onto the M I S O line. If master proceeds to provide 
clock pulses for more than 1 byte, subsequent bytes in the E E P R O M memory wi l l be 
shifted onto the M I S O line, while internal address pointer increments automatically. If the 
internal address pointer reaches the highest address, it wi l l roll over and start at address 
zero again. This means that data can be read indefinitely. Operation is terminated by 
putting the chip select pin to logical H I G H level. 

W R I T E 

Prior to any W R I T E attempt, write enable latch must set. This is done by W R E N 
command and therefore successful W R E N command must be clocked onto the SPI bus 
before the W R I T E command. After the chip select is turned logical L O W , SPI master 
must transmit an operation code wi th the value of 0x02. After the operation code, 16 
bit address needs to be transmitted by the SPI master. 5 M S B bits of this address are 
"don't care" bits as memory capacity is 2048 bytes. After the operation code and the 
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address are successfully received by an E E P R O M slave, SPI master must transmit data 
that w i l l actually be stored in the memory array at the specified memory address. Master 
can transmit more than one byte and subsequent bytes wi l l be written to the subsequent 
memory locations, while address wi l l increment with every byte. This W R I T E command 
functions as a page write, therefore the write boundaries for one W R I T E operation are 
limited. Only page, to which the specified address belongs, can be modified wi th one 
W R I T E instruction. If the write address automatically increments to the current page 
end, the address rolls over to the beginning of that same page. Same address cannot be 
written twice in the same command, therefore the number of bytes that can be written in 
a single W R I T E command are limited to the page size, which is in this specific instance 
32. If more bytes are shifted onto the M O S I line, every byte after 32nd wi l l be ignored. 
In order to terminate the instruction, the chip select p in must be brought logical H I G H . 
It is important to note that data wi l l be actually written into the memory array only 
after the chip select is brought logical H I G H . Wri t ing takes some time and therefore after 
W R I T E command, a certain time is reserved for write in progress (WIP) . If E E P R O M is 
in W I P state, bit 0 of the status register wi l l have value 1. In this state, status register 
can be polled for W I P bit, but all the other instructions wi l l be ignored. After E E P R O M 
exits W I P state, the write enable latch is automatically reset, therefore there is no need 
to execute W R D I instruction. 

W R D I 

Resets the write enable latch and therefore disables any following write operations. For 
any write operation, the write enable latch must be set using W R E N command. The write 
enable latch can be read from the status register as bit number 1 wi th R D S R command. 
For W R D I instruction to execute, first the chip select p in must be brought to logical 
L O W , followed by master transmitting the operation code with the value 0x04. Lastly, 
the instruction is terminated by bringing the chip select to logical H I G H again. 

W R D I 

Sets the write enable latch and therefore enables any following write operations. The write 
enable latch can be read from the status register as bit number 1 wi th R D S R command. 
For W R D I instruction to execute, first the chip select p in must be brought to logical 
L O W , followed by master transmitting the operation code with the value 0x06. Lastly, 
the instruction is terminated by bringing the chip select to logical H I G H again. 

R D S R 

R D S R command reads the actual status register inside an E E P R O M device. First , the 
chip select pin must be brought to logical L O W , the operation code of value 0x03 must 
be transmitted by master. After the operation code is transmitted by master, E E P R O M 
device shifts the byte value of the status register on the M I S O line. The operation is 
terminated by bringing the chip select p in H I G H . 
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W R S R 

Prior to any W R S R command, the write enable latch must be set, otherwise the command 
wi l l be ignored. W R S R command writes data to the status register bits with R / W 
accessibility inside the E E P R O M device. First , the chip select p in must be brought to 
logical L O W , the operation code of value 0x01 must be transmitted by the master followed 
by transmitting the status register byte. Only the R / W bits are written into the status 
register, all other bits are "don't care". The operation is terminated by bringing the chip 
select p in H I G H . The actual data write happens after the chip select is brought H I G H 
and therefore time is needed for W I P state described in W R I T E instruction. The status 
register can be polled in this state. After E E P R O M exits W I P state, the write enable 
latch is automatically reset, therefore there is no need to execute W R D I instruction. 

6.3. Implementation 
In the E E P R O M emulator mode, bytes wi l l be received and transmitted one by one 
using the D M A method wi th a rare exception when two byte address is being received. 
Receiving one by one impacts the maximum SPI clock frequency, but this approach is 
necessary as instruction type varies and therefore the number of bytes in an instruction 
varies. Also, some instructions demand the slave to transmit data and some demand to 
receive data. A n interrupt wi l l be triggered after every SPI transmission. A n interrupt 
wi l l also trigger after the chip select goes H I G H signalling the end of instruction. The 
chip select interrupt is accomplished using the timer in the input capture mode, where 
the rising edge wi l l be detected on the chip select pin. 

6.3.1. State machine 
E E P R O M emulator mode can be interpreted as a state machine. There are 4 states in 
total. 

• O P _ C O D E R E C E I V E 
In this state, the device is currently receiving operation code. Once the op_code 
is received, the state is changed according to the received op_code. Possible next 
states according to the op_code: 

- R E A D or W R I T E op.code : A D D R E S S R E C E I V E 

- W R D I or W R E N op.code : No other possible state, the device is waiting 
for the chip select going H I G H . 

- W R S R op.code : D A T A R E C E I V E 

- R D S R op.code : D A T A T R A N S M I T 

• A D R E S S R E C E I V E 
In this state, the memory address is being received. After the address is received, 
state is changed according to the op.code. Possible next states according to the 
op.code: 

- R E A D op.code : D A T A T R A N S M I T 
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- W R I T E op_code : D A T A R E C E I V E 

D A T A R E C E I V E 
In this state, the actual data is being received. This state can be active in W R I T E 
or W R S R command. No possible next state, the device is waiting for the chip select 
going H I G H . 

D A T A T R A N S M I T 
In this state, the actual data is being transmitted. This state can be active in R E A D 
or R D S R command. No possible next state, the device is waiting for the chip select 
going H I G H . 

READ WRITE 

ADDRESS 
RECEIVE 

^ J 

ADDRESS 
RECEIVE 

r i 
DATA 

TRANSMIT 

( \ 
DATA 

RECEIVE 

WRDI or 
WREN 

WRSR RDSR 

DATA 
RECEIVE 

DATA 
TRANSMIT 

Chip select 
goes HIGH 

Figure 6.1: Block diagram of eeprom emulator state machine 

State machine block diagram can be seen in figure 6.1. Upon device or E E P R O M 
emulator mode initialization, the device is set to O P . C O D E R E C E I V E state. States are 
changed appropriately based on the current instruction and SPI transmissions. After the 
instruction is terminated by the chip select p in going logical H I G H , the state is returned 
to O P _ C O D E R E C E I V E . 

6.3.2. Main algorithm 
Block diagram of the main algorithm can be seen in figure 6.2. No action wi l l be performed 
in the main while loop. This mode is SPI receival/transmitting event driven and therefore 
all functionality wi l l be performed inside interrupts. 
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Upon device init ialization 

Start DMA SPI 
receival of one byte 

Initialize parameters 
based on EEPROM 

model 

Clear status register 

Clear whole memory 
array 

Set WIP length 

Turn off CS pin 
Input Capture 

Receive interrupt 

Transmit interrupt 

I 1 
DATA 

TRANSMIT OP_CODE handler 

OP CODE hand le r -NO WIP 

OP CODE handler 

OP_CODE hand le r -WIP 

OP_CODE handler RDSR 
handler 

Figure 6.2: Block diagrams of the main algorithm of E E P R O M emulator mode 

Device initialization 

Firstly, upon device or E E P R O M emulator mode initialization, multiple actions need to 
be performed. 

• Parameters initialization 
Parameters have to be initialized based on the specified E E P R O M type. In current 
implementation, only one E E P R O M is supported and therefore only one can be 
defined. In future development, it is expected to support more E E P R O M devices 
that can be easily defined. The parameters are things such as the total memory 
size, page size, block size, status register etc. . 

• Clear memory and status register 
Reset value of the memory is Oxff. The whole memory array is set to this value. 
Status register value is set to the value of 0. 

• Set W I P length 
After any succesfull W R I T E or W R S R command, a delay must occur while the 
W I P bit in the status register is set to 1. In this delay, only R D S R command can 
be executed. W I P delay time on this device is configurable and can be defined in 
microseconds. W I P delay is implemented using a timer in normal mode. After the 
timer is enabled, specified time elapses and interrupt is triggered. 

• T u r n off the chip select pin interrupt 
Interrupt on the rising edge of the chip select pin is used to terminate instructions. 
The interrupt is disabled in this state in case of unwanted noise on the signal line. 
The interrupt wi l l be enabled later in the last state of the instruction. 
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• Start D M A SPI receival of one byte 
Current state upon the initialization is O P . C O D E R E C E I V E , therefore one byte 
receive must be started using D M A method. 

Receive interrupt 

Receive interrupt wi l l trigger after: 

• op.code is received 

• two byte address is received 

• memory byte or status register byte is received 

This interrupt therefore can exist in three device states. Ac t ion based on the state is as 
follows. 

• O P _ C O D E R E C E I V E state 
In this state, the O P . C O D E handler is called. A l l logic wi l l be resolved in this 
handler. 

• A D D R E S S R E C E I V E state 
In this state, firstly, the received address is decoded. Decoding includes applying a 
mask to the received address, so that 5 M S B are ignored and also the data counter 
is zeroed. Data counter represents how many data bytes were transferred in a single 
instruction, op_code and address are not classified as data bytes. O P . C O D E handler 
is called after address decoding. A l l logic wi l l be resolved in this handler. 

• D A T A R E C E I V E state 
In this state, the O P . C O D E handler is called. A l l logic wi l l be resolved in this 
handler. 

Transmit interrupt 

This interrupt can exist only in one state, which is D A T A T R A N S M I T . In this state, only 
one action is required and that action is calling the O P _ C O D E handler. A l l logic wi l l be 
resolved in this handler. 

O P _ C O D E handler 

O P . C O D E handler's main purpose is to call specific handlers. The handler that is called 
is dependant on the received op_code in the current instruction. Which handlers are 
allowed to be called depends on if a write is currently in progress (WIP bit in the status 
register). 

• N O write in progress (no W I P ) 
If a write is not in progress, the possible handlers based on op.code are: 

- W R I T E handler 

- R E A D handler 
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- W R S R handler 

- R D S R handler 

- W R E N handler 

- W R D I handler 

• write in progress (WIP) 
If a write is in progress, only R D S R command is allowed and therefore the possible 
handlers are limited to: 

- R D S R handler 

6.3.3. Write handler 
Write handler can be called by the O P _ C O D E handler if the op_code belongs to the 
W R I T E instruction. The main purpose of this handler is to receive address and to receive 
and write data to the memory array. This handler must oversee if the byte that is being 
currently written into memory is not out of boundaries of the starting page (starting 
address page) and also to check if the total number of bytes that were written does not 
exceed the page size, which would mean that the same address was written twice, which 
is forbidden. Block diagram of this handler can be found in figure 6.3. This handler can 
exist in three device states. 

Write command handler 

Is current wri te 
address in same 
page as or iginal 

address received in 
command ? 

Substract page size 
f rom write address 

Figure 6.3: Block diagram of a write handler in E E P R O M emulator mode 
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O P _ C O D E R E C E I V E state 

In this state, the op_code receival interrupt is triggered. Next action is to start SPI D M A 
receival of two address bytes. State is changed to A D D R E S S R E C E I V E . Also, a report 
message is initalized, where struct is initialized and prepared for the next data in the 
W R I T E instruction. 

A D D R E S S R E C E I V E state 

In this state, the two byte address receival interrupt is triggered. Address was decoded 
prior to this handler. Next action is to start SPI D M A receival of one data byte that wi l l 
be written to the write address. The report message is updated with the starting address 
and state is changed to D A T A R E C E I V E . 

D A T A R E C E I V E state 

In this state, the data byte receival interrupt is triggered. Mult ip le actions need to be 
performed in this state. These actions can be seen in figure 6.3 and can be described as: 

• Check if the data counter is larger than the page size 
W R I T E command can write multiple bytes, but no more than the page size. To over­
see this, first the data counter indicating how many bytes were written is checked. If 
this data counter is larger than the page size, write is no longer allowed and device 
is waiting for the chip select going H I G H indicating the end of the instruction. If 
the data counter is smaller than the page size, write process follows. 

• Check if the current write address is in correct page 
If data counter is smaller than the page size, write process begins with this action. 
W R I T E instruction has a page boundary, meaning that all written bytes in the 
same instruction must belong to the same page as did the starting address. This 
fact is checked. If the current write address is outside the valid page, page size is 
substracted from the write address. This returns the write address to the start of 
the correct page. 

• Write byte to memory array 
Once the write address is in correct page, the actual byte received is written to 
the memory array on actual write address. Whi le writ ing data byte to the memory 
array, the write enable latch in the status register is checked. If the write enable 
latch is not set, no data wi l l be written into the memory. 

• Increment the data counter and write address 
Data counter indicating how many bytes were transmitted in the current instruction 
is incremented by the value of one. Write address indicating on which address to 
write the current byte is incremented by the value of one. 

• Initialize part of SPI report message 
Data byte is added to the report message. 

• Enable chip select interrupt if not already enabled 
Chip select interrupt wi l l indicate the termination of the instruction. This interrupt 
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was not enabled before in case of any unwanted noise. In order to detect the end of 
the transmission, this interrupt needs to be enabled. 

• Start SPI D M A receival of the next data byte 
SPI is set to receive the next data byte. State is not changed as multiple bytes can 
be written in this instruction and only way to change state at this point is by the 
chip select interrupt. 

6.3.4. Read handler 
Read handler can be called by the O P _ C O D E handler if the op_code belongs to R E A D 
instruction. The main purpose of this handler is to receive address and to transmit correct 
data. The handler must oversee if the read address is not larger than the memory size. 
Block diagram of this handler can be found in figure 6.4. This handler can exist in three 
device states. 

Read command handler 

OP CODE ADDRESS DATA 
RECEIVE RECEIVE TRANSMIT 

Start receiving 
address data 

Start transmitting 
one byte of data on 
specified address 

Initialize part of SPI 
transmission report 

Initialize part of SPI 
transmission report 

Change state to 
ADDRESS RECEIVE 

Initialize part of SPI 
transmission report 

v J 

f \ 

Increment read 
address 

^ j 

1 \ 

Enable chip select 
interrupt IF not 
already enabled 

v J 

ŕ > 

Increment data 
counter 

^ j 

Change state to 
DATA TRANSMIT 

Is current read 
address inside 

bounds of EEPROM 
array memory ? 

Start transmitting 
next byte of data on 

current read 
address 

Set read address to 
0 

Figure 6.4: Block diagram of read handler in E E P R O M emulator mode 

O P _ C O D E R E C E I V E state 

In this state, the op_code receival interrupt is triggered. Next action is to start SPI D M A 
receival of two address bytes. State is changed to A D D R E S S R E C E I V E . Also, a report 
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message is initalized, where struct is initialized and prepared for the next data in R E A D 
instruction. 

A D D R E S S R E C E I V E state 

In this state, the two byte address receival interrupt is triggered. The address was decoded 
prior to this handler. Next action is to start SPI D M A transmission of one data byte which 
was specified by the received starting read address. The report message is updated wi th 
the starting address and state is changed to D A T A T R A N S M I T . Another important action 
is to the enable chip select interrupt if not already enabled. This wi l l allow detection of 
the instruction termination. 

D A T A T R A N S M I T state 

In this state, the interrupt indicating sucesfull transmission of one byte is triggered. There 
are multiple actions that need to be performed in this interrupt: 

• Initialize a part of the SPI transmission report 
The report message is updated wi th the transmitted byte. 

• Increment the read address and data counter 
Read address from which the data wi l l be transmitted is incremented by the value of 
one. Data counter indicating how many bytes were transmitted is also incremented 
by the value of one. 

• Check if read address is larger than memory size 
Previously incremented address is checked if it is inside a valid range of addresses. 
If the read address is larger than the memory size, read address is set to 0. 

• Start transmission of next byte 
Once the read address is valid, SPI D M A transmission of the next byte located on 
the read address is started. 

6.3.5. WRSR, RDSR, W R E N and WRDI handlers 
A l l the other handlers apart from the chip select interrupt handler can be seen in figure 
6.5. 
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WREN and WRDI handler 

Modify status 
register according 

to instruction 

RDSR handler 

OP_CODE 
RECEIVE 

Start transmitt ing 
status register byte 

Enable chip select 
interrupt IF not 

already enabled 

Change state to 
DATA TRANSMIT 

DATA 
TRANSMIT 

WRSR handler 

OP_CODE 
RECEIVE 

Start receiving 
status register byte 

Enable chip select 
interrupt IF not 

already enabled 

Change state to 
DATA RECEIVE 

DATA 
RECEIVE 

Update status 
register from 

received byte value 

Figure 6.5: Block diagram of R D S R , W R S R , W R E N and W R D I handlers in E E P R O M 
emulator mode 

R D S R handler 

R D S R handler can exist in two states: 

• O P _ C O D E R E C E I V E state 
This interrupt happens upon op_code receival. Following needed action is to start 
SPI D M A transmission of the status register byte. The chip select interrupt is 
enabled if not already enabled. State is changed to D A T A T R A N S M I T . 

• D A T A T R A N S M I T state 
This interrupt happens upon the transmission of the status register byte. No action 
is required and device is waiting for the chip select rising edge interrupt indicating 
the end of the instruction. 

W R S R handler 

W R S R handler can exist in two states: 

• O P _ C O D E R E C E I V E state 
This interrupt happens upon op_code receival. Following needed action is to start 
SPI D M A receival of the status register byte. The chip select interrupt is enabled 
if not already enabled. State is changed to D A T A R E C E I V E . 

• D A T A T R A N S M I T state 
This interrupt happens upon the receival of the status register byte. This byte is 
written as the new status register. Whi le writ ing this byte, the write enable latch 
is checked and also a mask is applied to this byte in order to write only bits that 
are writable. Non writable bits stay unmodified. 

73 



6. A D V A N C E D F U N C T I O N A L I T Y - 6.3. I M P L E M E N T A T I O N 

W R E N , W R D I handler 

In both W R E N and W R D I handlers, the only possible device state is O P . C O D E R E ­
C E I V E . Following needed action is to modify the W E N bit in the status register accord­
ing to what command was received. The chip select interrupt is enabled if not already 
enabled. 

6.3.6. Chip select interrupt handler 
The chip select interrupt triggers on the rising edge of the chip select signal and indicates 
termination of the instruction. Block diagram of the algorithm can be seen in figure 6.6. 

Chip select interrupt handler 

<T OP_CODE > 

WRITE or 
WRSR 

1 

Start SPI DMA 
receive of 
OP CODE 

Disable chip select 
interrupt 

Finish initializing 
SPI transmission 

report 

Restart frequency 
measurment 

Change state to 
OP_CODE RECEIVE 

V ) 

Figure 6.6: Block diagram of chip select interrupt handler in E E P R O M emulator mode 

Blocks of this algorithm can be described as: 

• IF W R I T E or W R S R command 
If current instruction is W R I T E or W R S R , the write in progress delay needs to be 
started. Timer that handles the W I P delay is started and W I P bit in the status 
register is set to 1. To end the W I P delay, timer wi l l trigger an interrupt after set 
time. W I P delay was first measured on a real E E P R O M device and W I P delay 
on the E E P R O M emulator device was set to the same value, even though write 
operation could take less time on the E E P R O M emulator. F ina l value of the W I P 
delay was set to 2.75 ms. 

• O P _ C O D E SPI receival is started 
SPI D M A receival of the op_code is started and state is changed to O P _ C O D E 
R E C E I V E . 
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• Chip select interrupt is disabled 
Chip select interrupt is disabled in case of unwanted noise. 

• SPI report is initialized 
SPI report is initialized with the current instruction. In case of W R I T E or R E A D 
instruction, the main parts of the report were already initialized by parts in every 
interrupt of this instruction. In case of W R S R and R D S R instruction, the whole 
report is created here. Reports about W R D I , W R E N instructions do not exist in 
this implementation. For all reports created, the input capture data of the frequency 
measurement are appended to the report message. 

• Restart the frequency measurement 
The measurement of frequency is restarted. Every instruction wi l l be measured 
separately. 

6.4. Optimization - SPI clock speed 
The described E E P R O M emulator implementation was not developed in one iteration, so 
naturally there are some important changes/optimizations that could be noted. This and 
following sections wi l l contain what are considered to be the most important optimiza­
tions. 

6.4.1. Problem description 
In the E E P R O M emulator mode, SPI data is being received and transmitted one byte at 
a time wi th the rare exception of address receive when 2 bytes are received. This method 
is required due to the instructions having different byte lengths as well as that the next 
data byte transmission is dependant on the previous byte received and therefore all logic 
needs to be implemented in-between the bytes in interrupts. The disadvantage of this 
approach is that the SPI clock frequency is severely limited if a continuous data stream 
is expected. A continuous data stream provides the worst case of the time in-between 
bytes as the time in-between bytes is equal to the time in-between bits and therefore to 
the time of a one clock pulse. This means that the SPI clock frequency is l imited in order 
to provide enough time in-between bytes for the logic. 

6.4.2. Base measurement 
The first iteration of the implementation used the H A L drivers for SPI peripheral as well 
as the basic setting of a G C C compiler. Simple way to describe the function of a G C C 
compiler is that it is responsible for "translating" programming language into machine 
code, meaning it converts the source code to executable instruction file for the M C U . For 
this measurement, a W R I T E command was performed, where bytes [1, 2, 3, 4, 5] were 
written at the address wi th value 0x00. The SPI clock freuqency of the master was set 
to 54 kHz . A benchmark G P I O pin was set to output H I G H value at the start of the 
interrupt and output L O W value after the next SPI D M A transmission is setup. The 
time was measured from the rising edge of the last clock pulse in a byte to benchmark 
pin going L O W . Result of this measurement can be seen in figure 6.7. 
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Figure 6.7: Base measurement for SPI clock speed optimization 

Red markers indicate the last clock pulse of a byte and the benchmark pin going low. 
Time of this period is 22.1 us, which translates to the maximum clock frequency of 45.2 
kHz. 

6.4.3. G C C setting 
The first iteration of optimization included modifying a G C C compiler setting. Setting 
was set to -Ofast. Settings of the G C C compiler as well as its overall function are described 
in [22]. B y applying this setting, the measured time went down to 12.45 us, which meant 
increase in the maximal SPI clock frequency to 80 kHz . 

6.4.4. SPI drivers optimization 
The next iterations of optimization involved modifying the SPI drivers. Originally used 
H A L drivers need to take into consideration every possibility of the SPI peripheral, which 
is not needed in this case. B y modifying the SPI drivers and leaving the absolute minimum 
necessary for the correct action, measured time decreases vastly. Drivers were modified in 
multiple steps, but only the final result wi l l be shown. The final result is measured while 
using the SPI drivers described in section 5.3. Whi le the base measurement was done only 
for W R I T E command, the final measurement wi l l be done for W R I T E command as well 
as for R E A D command, which wi l l ensure that both receive and transmit functionality 
wi l l be tested. 
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Figure 6.8: F ina l measurement for SPI clock speed optimization for W R I T E instruction 

The final measurement for the same W R I T E command as in the base measurement 
can be seen in figure 6.8. The measured time is marked by the red markers and the final 
measured time is 4.95 us, which translates to a maximum clock frequency of 202kHz. 

Figure 6.9: F ina l measurement for SPI clock speed optimization for R E A D instruction 

F ina l measurement for R E A D command can be seen in figure 6.9. The measured time 
is marked by the red markers and the final measured time is 5.45 us, which translates 
to a maximum clock frequency of 183 kHz . Base measurement for R E A D command was 
not performed, but it is expected to be slightly worse than base measurement for W R I T E 
command. 

6.4.5. Optimization conclusion 
The SPI clock frequency is by nature majorly l imited for this device mode. In order to 
improve the situation, optimization was done by changing the G C C compiler settings and 
by rewriting SPI peripheral drivers using the Low Layer (LL) drivers. From the base value 
of 45 kHz , the maximum frequency was improved to 202kHz for W R I T E instruction and 
183kHz for R E A D instruction. The base measurement can be seen in figure 6.7 and can 
be compared with the final measurements in figure 6.8 and figure 6.9. 
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6.5. Optimization - Chip select interrupt time 
6.5.1. Problem description 
In previous optimization, the SPI clock frequency was optimized, but the time in-between 
instructions was not taken into consideration. The minimum time in-between instructions 
exactly correlates to the time of the chip select interrupt. This time is the time from the 
rising edge of the chip select to the next rising edge of the clock signal. It was chosen 
that this time would ideally be no longer than the time of one clock pulse. 

6.5.2. Base measurement 
A n early implementation of this mode had slightly different code inside the chip select 
interrupt handler. Report messages for every instruction were completely initialized only 
in this interrupt and also, the frequency was calculated in this interrupt if the last time 
of calculation was larger than 20 ms. This meant that the chip select interrupt time was 
strongly dependant on the type of instruction. In all the measurements, the worst case 
was measured and the worst case for this measurement was determined to be for W R I T E 
command, when the maximum number of bytes possible were written. Benchmark pin 
was set to go H I G H at the beginning of the chip select interrupt and go L O W in the end 
of the chip select interrupt. Measurement was done from the rising edge of the chip select 
signal to the falling edge of the benchmark pin. The base measurement can be seen in 
figure 6.10. 

Figure 6.10: Base measurement for chip select interrupt time optimization 

The base measurement is indicated by red markers and the time of measurement was 
19 us. Target time is around 5 us. It is important to note, that when the actual frequency 
calculation is done in this interrupt, the interrupt time increases by around 450 us. This 
happens once every 20 ms. 

6.5.3. Final optimization 
The first step of optimization was to remove frequency calculation from this interrupt. In 
the final implementation, the frequency is calculated for every report message just before 

78 



6. A D V A N C E D F U N C T I O N A L I T Y - 6.6. D I S C U S S I O N A N D L I M I T A T I O N S 

the report message is sent. This means that in the interrupt, only the input capture 
frequency measurement data are being written to every report message. This also means 
that every report message wi l l have separately measured SPI clock frequency, while before 
frequency was only measured once every 20 ms. 

The next step of optimization was to divide the report message initialization into parts 
and initialize these parts not at once in the chip select interrupt, but rather initialize a 
part after every byte of the instruction. This would massively improve the chip select 
interrupt time and also make it a constant for W R I T E instruction. 

The final measurement can be seen in figure 6.11. 

Figure 6.11: F ina l measurement for chip select interrupt time optimization 

A s can be seen from the figure, measurement indicated by the red markers is equal 
to 7.45 us. This is the absolute worst case and every other type of command has better 
result. 

6.6. Discussion and limitations 
The E E P R O M emulator mode is used to create a model of an existing E E P R O M device. 
The goal was to create a device, which behaviour would be the same as the real E E P R O M 
device if both of these devices were connected to an SPI master capable of transmitting 
valid E E P R O M instructions from the instruction set. Such device was created and a 
detailed verification tests as well as a comparison tests wi th the real E E P R O M device 
wi l l be provided later in chapter 8. 

Emulator cannot be 100% same as the real device, some limitations occur. In case 
of the actual logic, the behaviour is completely the same. One difference is that the real 
E E P R O M memory array and the status register are non-volatile, meaning data wi l l retain 
after the device is disconnected from the power supply. A l l data of E E P R O M emulator 
are volatile, because they are stored in the M C U ' s R A M memory. This means that after 
device reboot, no data wi l l remain. This is not considered to be a problem as the device 
is not designed as a "part for part" replacement of a real E E P R O M device, but rather as 
a test device, that can test the logic of E E P R O M SPI masters. 

The next difference is when the instruction data is actually being written into the 
memory. O n the real E E P R O M device, data is written into the memory only after the chip 

79 



6. A D V A N C E D F U N C T I O N A L I T Y - 6.7. P O S S I B L E I M P R O V E M E N T S 

select pin is brought H I G H . O n the E E P R O M emulator, data is written into the memory 
at the same moment as it is received by the instruction. This is also not considered to be 
a problem as it should not pose any noticeable difference from the "outside", meaning no 
difference to the SPI master or state of the memory. The only situation when there could 
be a difference in functionality is if the device was powered off during an instruction. In 
this case real E E P R O M would not keep the data from that instruction in memory, but 
the E E P R O M emulator would. But in reality, the memory of the E E P R O M emulator is 
volatile. The fact that the E E P R O M emulator memory is volatile negates this problem 
because the behaviour is already vastly different on reboot. 

One major l imitation is the SPI clock frequency. The worst case of an SPI transmission 
is considered, which is a continuous data stream. A continuous data stream means that 
time in-between bytes is the same as the time in-between bits (clock pulses). A l l logic 
is executed in the time between bytes and therefore the minimum time has to elapse in 
order for the device to function properly. The maximum SPI clock frequency was only 
45 k H z in earlier implementation and was brought up to 200kHz for W R I T E command 
and 183kHz for R E A D command wi th optimization. These values are vastly different 
than the maximum clock frequency of a real E E P R O M device, which is 10 M H z . This 
massive difference is not ideal, but priority of this emulator device is not to test the 
electrical characteristics of an SPI master, but to test logic. In reality, SPI master's 
SPI clock frequency can be easily turned down. Another important fact to note is that 
this emulator device can be classified as a prototype or "proof of concept" and in future 
development, a much faster M C U (up to lOx faster system clock) can be used and therefore 
the maximum SPI clock frequency would increase significantly also. Maybe it would be 
more fitting to emulate E E P R O M devices which use I2C communication interface instead 
of the SPI interface as generally speed of I2C interface does not exceed 400kHz, which 
is much closer to the current emulator maximum clock frequency. One other important 
realization is that in reality continuous data stream is almost never the case, which means 
that the maximum SPI clock frequency can be much higher depending on the format of 
data transmission. 

In order to match the behaviour of a real E E P R O M device, some parameters were also 
slowed down. There is a write in progress delay on this E E P R O M type and according to 
datasheet [21], its maximum value is 5ms. This time was measured on a real E E P R O M 
device and the rough measured value was determined to be 2.75 ms . E E P R O M emulator 
does not naturally have this delay and therefore it was artificially added to match the 
behaviour of a real E E P R O M device. 

6.7. Possible improvements 
One major improvement in the future development would be to use a much faster M C U 
which would impact the maximum SPI clock frequency as the clock frequency is majorly 
limited in this state of development. 

Other plans for the future development are to support more E E P R O M device. The 
goal is to be able to generally define any possible E E P R O M device wi th a simple param­
eters definition inside a device struct in C language. The parameters would describe the 
total memory size, page, sector, block size as well as instruction set and W I P delay. 
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7. Python API and configuration 
7.1. Device configuration 

7.1.1. Configuration tree 
There are three parameters that define which mode the device is currently in. These 
parameters are: 

• stream_mode_enable 

• eeprom_mode_enable 

• full_duplex_enable 

The configuration tree can be seen in figure 7.1. If the stream_mode parameter 
is set, the device wi l l be in stream mode and the other two parameters are ignored. 
If the stream_mode is not set, the next parameter which is being evaluated is eep-
rom_mode_enable. If this parameter is set, the device wi l l enter E E P R O M emulator 
mode and the last parameter is ignored. If the eeorom_mode_enable is not set, the device 
is automatically in L U T mode. The parameter full_duplex_enable determines if the L U T 
mode wi l l be in full-duplex or half-duplex configuration. 

Configuration tree 

stream_mode 
enable ? 

Legend 

Device modes 

configuration 
parameters 

Configurable 
parameters 

YES f NO 

Stream 
mode 

eeprom_mode 
enable ? 

memory 
array 

eeprom 
mode 

memory 
array 

eeprom 
mode 

status 
register 

LUT mode LUT mode 
full duplex half duplex 

LUT pairs data size 

Figure 7.1: Configuration tree of the device 

In stream mode, no internal parameters can be configured. 

E E P R O M emulator mode configuration 

In E E P R O M mode, the memory array and the status register can be modified from the 
python A P I . 
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L U T mode configuration 

In L U T mode, L U T pairs and data size can be modified from the python A P I . 

7.1.2. Discussion 
The device can be configured according to the configuration tree. In current version of 
implementation, the core settings of the actual SPI peripheral such as SPI mode cannot 
be configured. It is necessary to add SPI peripheral configuration in future development. 

7.2. Y A M L file 
Y A M L ( Y A M L A i n ' t Markup Language) is a data serialization language which is used 
mostly for configuration files. In this specific case, Y A M L is used to create a configuration 
python dictionary that is later decoded by python A P I and this configuration is applied 
to the embedded device. More information about Y A M L can be found at [23]. 

1 c o n f i g : 1 
1 s t r e a r a _ r a o d e : T r u e 
2 e e p r o m _ m o d e : T r u e 
3 r e s p o n d : T r u e 
4 f u l l _ d u p l e x : T r u e 
5 
fT 

d a t a _ s i z e : 10 
O 

7 l u t : 
S r e q u e s t : [10,10] 
9 r e s p o n s e : 2,2] 

10 i n d e x : 5 
11 r e q u e s t [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
12 r e s p o n s e : [12, 12, 13, 14, 15, 16, 17, 18, 19, 110] 
13 i n d e x : ! ! n u l 1 
14 - r e q u e s t : [1,1,1,1] 
15 r e s p o n s e : 2,2,2,2,2] 
16 i n d e x : n u l l 
17 r e q u e s t [1,1,1] 
18 r e s p o n s e : [2,2,2,2,2] 
19 i n d e x : ! ! n u l 1 
20 r e q u e s t [2,2,2,2,2,2,2,2,2,2] 
21 r e s p o n s e : 2,2,2,2,2] 
22 i n d e x : n u l l 
23 r e q u e s t [1] 
24 r e s p o n s e : [2,2,2,2,2,2] 
25 i n d e x : ! ! nu l 1 
26 
27 e e p r o m : 
28 a d d r e s s 2040 
29 v a l u e : 255 
30 a d d r e s s : 5 
31 v a l u e : 21 
32 a d d r e s s 2000 
33 v a l u e : 111 
34 
35 e e p r o m _ s r : 
36 B P _ l o : 0 
37 B P _ h i : 0 
38 WPEN: 0 
39 
40 
41 d e f . . r e s p o n s e : [25,2,3,4,5,6,7,8,9,25] 
42 
43 s e t t i n g s : 
44 c l e a r _ l u t : T r u e 
45 c l e a r _ e e p r o r a : T r u e 
46 c l e a r _ u n d e f i n e d _ c o n f i g _ p a r a r a s : T r u e 
47 c l e a r _ u n d e f i n e d _ e e p r o r a _ s r _ p a r a r a s : T r u e 
48 

Figure 7.2: Example of a Y A M L file 
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Example of a Y A M L file can be seen in figure 7.2. This is a fully defined configuration 
and no other expressions can be used. It is possible to add more L U T pairs and to add 
more E E P R O M data definition. Y A M L file can also be defined partially and in that case, 
only the defined config parameters wi l l be applied to the embedded device. It is possible 
to set Y A M L decoder so that the undefined parameters wi l l be cleared. Whi le decoding 
a Y A M 1 file, all possible errors such as Y A M L syntax and parameter types are checked. 

7.3. Python API 

7.3.1. Main API tasks and characteristics 
A P I (application programming interface) can be generally described as a code library that 
allows the user to control a device/application, for which the A P I was created. 

A P I programming language selection 

There are multiple viable programming languages for creating A P I s . Amongst the most 
well known ones are C + + , Python, V B S or even graphical languages like Lab View. For 
this projec, python was chosen as the preferred programming language. The main reasons 
for choosing this language were previous experience with this language, readily available 
modules for very wide variety of applications and functionalities. 

M a i n tasks 

M a i n tasks of A P I can be distinguished as: 

• Sending configuration commands through the serial port interface. 
For configuration, different commands must be sent to the device. A P I should pro­
vide documented methods that are able to send valid commands to the embedded 
device. These commands must be error checked by C R C and by receiving acknowl­
edgement message back from the embedded device. This acknowledgement message 
must contain the same information as the command, otherwise the command wi l l 
not be classified as successfully executed. 

• Receiving report and acknowledgement messages through the serial port 
interface. 
The embedded device wi l l send two kinds of messages to a P C . One is a report type 
of message, the second is an acknowledgement type of message. Report message 
is received by the A P I everytime a transmission happens on the SPI bus of the 
embedded device. These report messages wi l l contain specific information regarding 
what happened on SPI data lines. Acknowledgement messages wi l l be received 
everytime a valid command is sent from the P C A P I to the embedded device. 

• Loading and applying config specified by the user upon device connection. 
User can specify wanted complete device configuration in Y A M L file. Upon device 
serial port connection, this configuration wi l l be loaded into the embedded device. 
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• Storing the current state of the embedded device. 
While the embedded device is connected, A P I must know its current state of con­
figuration. This is done by reading the configuration at device connection and also 
updating the configuration upon receival of every valid acknowledgement message. 

A P I characteristics 

A P I wi l l be created as set of python methods and classes available for the user. These 
methods wi l l be documented so that their function is completely understandable and 
should be able to completely control embedded device and all its functionalities. Docu­
mentation can be found at [24] 

7.3.2. Implementation 

In this section, the algorithms for each main A P I tasks wi l l be described. 

Connecting to a device 

For the serial connection, pyserial module is used. This module allows the user to control 
and configure the serial port. Figure 7.3 represents a block diagram of the algorithm that 
is used for connecting to an embedded device. First , a connection is attempted on the 
serial port specified by the user. If this connection is unsuccessful, error is returned and 
the device status is changed appropriately. If the connection is successful, first a Y A M L 
configuration is loaded and decoded from the Y A M L file. Next, the loaded and decoded 
Y A M L configuration is sent to the embedded device using commands. Lastly, the current 
configuration is read from the embedded device and stored. 

r N 

connect to serial port 

apply YAML 
configuration to 

embedded device 
V. • 

> I 
/ \ 

read current 
configuration of 

embedded device 
V. ) 

Figure 7.3: Block diagram of device connection algorithm 
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Receiving and decoding messages 

The main handler of the module needs to be called frequently in the main while loop of 
a script that uses this module. In this handler, bytes are received from the U S B receive 
buffer and messages are decoded. Every valid message is initiated to MessageQ object. 
Upon message initiation, the C R C value of that same message is checked. If the C R C 
value is not correct, the message is ignored. If the message is of acknowledgement type, 
message is used for validation of the current command that is in the process of validation. 
If the message is of report type, data from the report message are printed into the console. 
Every report and acknowledgement message is stored in a buffer after processing. This 
way any message received can be accessed later from this buffer. 

Transmitting commands 

Commands can be transmitted in blocking mode or non-blocking mode. In blocking mode, 
commands are sent inside the called method. In non-blocking mode, commands are ap­
pended to a command buffer and executed later asynchronically in the main handler in 
the main while loop of a parent script. Every command needs to receive an acknowl­
edgement message. In order for acknowledgement message to be valid, the message must 
contain the actual data of the related command and the C R C value must be correct. If 
the acknowledgement message is not received within the specified time, two more tries 
are attempted. After the thi rd try of the same command is sent and no acknowledgement 
message is received within the specified timeout time, the command is labeled as timed 
out. 

7.3.3. General packet description 
U A R T packet can be generally described as can be seen in table 7.1. Packet consists of: 

• Start - Stop byte 
Byte value to indicate start of a packet. Value is OxBB. 

• Total length of packet 
Total length of a packet. This it not present in a packet sent from P C to S T M 3 2 . 
In the future development, the packets wi l l be modified so that every packet is 
completely same. 

• Op.code 
Byte that describes type of message/command. 

• Command/message data 
Actua l data of a command or message. The length of this part of the packet can 
vary based on the specific message/command. 

• Two bytes of C R C 
Sixteen bit C R C is used for error checking wi th polynomial value 0x8810. C R C is 
calculated from the whole packet up to this point, but without the start-stop byte. 

• Start - Stop byte 
Byte value to indicate the end of a packet. Value is OxBB. 
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First byte Start - Stop Word byte 

Total packet length 

Op.code 

Command/message data 

Two bytes of C R C 

Last byte Start - Stop byte 

Table 7.1: General packet for python A P I transmissions 

*Note - Total packet length is not included in P C to S T M 3 2 packet. 

7.3.4. Specific commands description 
Every command has a blocking mode attribute that determines if it wi l l execute in block­
ing or non-blocking mode as well as some timeout values. Every command needs to be 
accompanied by a successful receival of a valid acknowledgement message. Requested 
data from every read command are in the acknowledgement message. Commands can be 
described as: 

Command name Description 

Config write 
Writes the config parameters described in the config­
uration tree as well as the data size for L U T mode. 

Config read 
Reads the config parameters described in the config­
uration tree as well as the data size for L U T mode. 

L U T write Writes a single L U T pair. 

L U T clear Cleares a single L U T pair. 

L U T read Reads a single L U T pair. 

Set response Sets the default response for L U T mode. 

Write E E P R O M 
Writes bytes to the E E P R O M emulator memory array 
at the specified address. 

Read E E P R O M 
Reads bytes from the E E P R O M emulator memory ar­
ray at the specified address. 

Wrsr E E P R O M 
Writes the status register byte to the E E P R O M em­
ulator. 

Rdsr E E P R O M 
Reads the status register byte from the E E P R O M em­
ulator. 

Clear chip E E P R O M 
Resets the whole memory array of the E E P R O M em­
ulator to OxFF. 

Table 7.2: Python A P I commands 
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7.3.5. Specific acknowledgement messages description 
Acknowledgement messages are received after successful command transmission by the 
python A P I . Every python A P I command has got its own specific acknowledgement mes­
sage. 

7.3.6. Specific report messages description 
Report messages are received after a successful SPI transmission. The list of all the 
possible report messages follows. 

Message name Description 

Stream report 
Report containing information about one received 
byte in stream mode. 

R x report 
Report containing information about received bytes 
in half-duplex L U T mode. 

T x report 
Report containing information about transmitted 
bytes in half-duplex L U T mode. 

T x R x report 
Report containing information about transmitted and 
received bytes in full-duplex L U T mode. 

EepWrite report 
Report containing information about E E P R O M 
W R I T E command received via SPI interface. 

EepRead report 
Report containing information about E E P R O M 
R E A D command received via SPI interface. 

EepWrsr report 
Report containing information about E E P R O M 
W R S R command received via SPI interface. 

EepRdsr report 
Report containing information about E E P R O M 
R D S R command received via SPI interface. 

Table 7.3: Report messages 

7.4. Discussion 
Configuration of the device and the main python A P I features were described. In reality 
function of python A P I is more complex. More information about how the python A P I 
functions and more information about commands and messages can be found at [24]. 
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8. Verification 
Once the stream, L U T and E E P R O M modes are developed and functioning along 

wi th the python A P I , it is important to perform appropriate verification tests for these 
modes. In order to test the SPI slave device, an SPI master is needed. 

8.1. Test master design 
Configurable SPI master is needed to sucesfully test the SPI slave device that is being 
developed. For this purpose, a separate SPI master was developed. For hardware, same 
N U C L E O board wi th the same M C U was used. For software, same python A P I wi th C 
framework was used as was described in Python A P I section 7.3. Important features that 
can be accessed by the master's python A P I are: 

• spi_master.transmit( t r a n s m i t _ l i s t ) 

• spi_master.receive( receive_length ) 

• spi_master.transmitreceive( t r a n s m i t r e c e i v e _ l i s t ) 

• spi_master.write_eep( address, data ) 

• spi_master.read_eep( address, number_of_bytes ) 

• spi_master.rdsr_eep( ) 

• spi_master.wrsr_eep( status_register_byte ) 

• spi_master.clear_chip_eep( ) 

Transmit method 

Transmit function can be called by expression: 

spi_master.transmit( t r a n s m i t _ l i s t ) 

, where spLmaster is an SPI master object and transmitJist is an integer list representing 
bytes to be transmitted, therefore values of this list have to be of type 8 bit unsigned 
integer. The length of this list is l imited to the value 50. Once this method is called, the 
SPI master transmits these bytes on the M O S I SPI line. 
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Receive method 

Receive function can be called by expression: 

spi_master.receive( receive_length ) 

, where spLmaster is an SPI master object and receiveJength is an integer value repre­
senting the number of bytes to be received. This value is l imited to value 50. Once this 
method is called, the SPI master provides clock signal and receives the specified number 
of bytes from the M I S O SPI line. 

Transmit receive method 

Transmit-Receive function can be called by expression: 

spi_master.transmitreceive( t r a n s m i t r e c e i v e _ l i s t ) 

, where spLmaster is an SPI master object and transmitreceiveJist is an integer list rep­
resenting bytes to be transmitted, therefore values of this list have to be of type 8 bit 
unsigned integer. In this method, also data is received. The length of the transmitre­
ceiveJist indicates the number of bytes to be received and the length of this list is l imited 
to the value 50. Once this method is called, the SPI master provides clock signal and 
receives the specified number of bytes from the M I S O SPI line and transmits the provided 
list on the M O S I SPI line. 

write.eep method 

write_eep method can be called by expression: 

spi_master.write_eep( address, data ) 

, where spi_master is an SPI master object, address is the E E P R O M memory starting 
address where data wi l l be written and data is a list of bytes. Size of this list determines 
how many bytes wi l l be written. Once this method is called, the SPI master transmits 
W R E N command, followed by W R I T E command. After W R I T E command, the status 
register is polled with R D S R command unti l the W I P bit is equal to 0. 

read_eep method 

read.eep method can be called by expression: 

spi_master.read_eep( address, number_of_bytes ) 

, where spi_master is an SPI master object, address is the E E P R O M memory starting 
address from where data wi l l be read and number_of_bytes is the size of the R E A D com­
mand. Once this method is called, the SPI master transmits R E A D command and receives 
specified number of bytes. 
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rdsr_eep method 

rdsr.eep method can be called by expression: 

spi_master.rdsr_eep( ) 

, where spi_master is an SPI master object. Once this method is called, the SPI master 
transmits R D S R command and receives the status register byte. 

wrsr_eep method 

wrsr.eep method can be called by expression: 

spi_master.wrsr_eep( status_register_byte ) 

, where spLmaster is an SPI master object, status_register_byte is a byte that wi l l be 
written into the status register. Once this method is called, the SPI master transmits 
W R E N command, followed by W R S R command. After W R S R command, the status 
register is polled with R D S R command unti l the W I P bit is equal to 0. 

clear_chip_eep method 

clear_chip_eep method can be called by expression: 

sp i_master.clear_chip_eep( ) 

, where spi_master is an SPI master object. Once this method is called, the SPI master 
transmits W R I T E commands wi th all the needed accessories such as W E N command, 
polling of the status register wi th R D S R command. These write commands wi l l write 
the value OxFF to every byte in the E E P R O M memory. Single W R I T E command wi l l 
write one complete page, therefore the number of W R I T E commands wi l l be equal to the 
number of pages in E E P R O M device. 

8.2. Logic analyzer tests - Stream and LUT mode 
In order to test the logic functionality in depth, first we must ensure that what is being 
reported about the SPI interface by the M C U is actually correct and present on the actual 
data lines. For the slave and master, the same type of M C U is used and therefore there 
could be some type of unknown internal error that would cause the M C U s to report correct 
values, but the actual SPI transmission would be flawed and both of these M C U s would 
have the same decoding error causing them to report data correctly. In order to test this, 
a DSLogic logic analyzer was used manufactured by the DreamSourceLab company [25]. 
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8.2.1. Stream mode verification 
First , the stream mode is verified using the logic analyzer. The slave is set to stream mode. 
The master is set to transmit 10 bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. Clock frequency of 
the master is 54kHz. Logic analyzer output was analyzed by D S V i e w software and can 
be seen in figure 8.1. A s can be seen from the figure, 10 bytes clocked on the SPI clock 
pin and the M O S I line data are correct. The M I S O line is empty because the device does 
not transmit data in stream mode. 

Figure 8.1: Logic analyzer test result for stream mode verification 

In figure 8.2, output of the python A P I can be seen. A s can be seen from the figure, 
A P I receives reports about 10 bytes received by the slave device and their values as well 
as the SPI clock frequency are valid. 

Figure 8.2: Python A P I output for logic analyzer stream mode verification 

8.2.2. L U T mode half duplex verification 
Next, the L U T mode in half-duplex configuration is verified using the logic analyzer. The 
slave is set to L U T half-duplex mode. One row of L U T is configured to include: 

• request = [1, 2, 3, 4, 5] 

• response = [5, 4, 3, 2, 1] 

Master is set to transmit 5 bytes equal to the existing request in L U T = [1, 2, 3, 4, 5]. 
After these 5 bytes are transmitted by the master, the master is set to receive 5 bytes. 
The clock frequency of master is 54kHz. Logic analyzer output was analyzed by DSView 
software and can be seen in figure 8.3. A s can be seen by the figure, 5 bytes from the 
first packet are transmitted by the master and are present on the M O S I line, M I S O line 
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is empty. Second packet resembles the response sent by the SPI slave device. Correct 5 
bytes are present on the M I S O line. 

! I m i m 111 m i m 111 1 111 m i m 111 m i'l ™ M i l 

0 vi vi fl 
OOOOE 

_J1M1IJ11 

MISO bytas ^ 

MOSI bytes ^ 

SPI clock signal 

lOOOO 
IODDD 

SPI MOSI signal 
N 

SPI MISO signal 11 1 
SPI Chip Select signal 

Figure 8.3: Logic analyzer test result for L U T half-duplex mode verification 

In figure 8.4, output of the python A P I can be seen. A s can be seen from the figure, 
first a receival of 5 bytes is reported. Byte values are correct and matching to the request 
in L U T and the SPI clock frequency is correct also. Next, the transmission of 5 bytes is 
reported. The byte values are correct and matching to the response in L U T and also the 
SPI clock frequency is correct. 

1 * * * DATA RECIEVED • 
2 [Baud r a t e : 54000 b / s 1 1 Number o f b y t e s r e c i e v e d : 5 ] 
3 
A 

Message RECIEVED : [ 1 , 2, 3, 4 , 5] 

t 
5 

* * * DATA SENT * * * 
6 [Baud r a t e : 54000 b / s 1 1 Number o f b y t e s sen t : 5 ] 
7 Message SENT : [ 5 . 4 , 3 , 2, 1] 

Figure 8.4: Python A P I output for logic analyzer L U T half-duplex mode verification 

8.2.3. L U T mode full duplex verification 
Next, the L U T mode in full-duplex configuration is verified using logic analyzer. The 
slave is set to L U T full-duplex mode. Default response is set to : [0, 0, 0, 0, 0] and 
one row of L U T is configured to include: 

• request = [1, 2, 3, 4, 5] 

• response = [5, 4, 3, 2, 1] 

The master is set to transmitreceive 5 bytes equal to the existing request in L U T = 
[1, 2, 3, 4, 5]. In this transmitreceive, default response is expected to be received. After 
these 5 bytes are transmitreceived by the master, the master is set to transmitreceive 5 
bytes, which values does not matter for this test. Response from L U T is expected to be 
received in this transmission. The clock frequency of the master is 54kHz. Logic analyzer 
output was analyzed by DSView software and can be seen in figure 8.5. A s can be seen 
by the figure, 5 bytes from the first packet are transmitted by master and are present 
on the M O S I line while at the same time, the default response is received on the M I S O 
line. The second packet resembles the response sent by the SPI slave device on the M I S O 
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line and the M O S I line contains 5 bytes sent by the SPI master that represent the next 
request in L U T and their values are not important for this test. 

0 1 
' Tl IN 111 m I m 111 m in i 11 I IMTMI 11 I i T i T m 11, m i m 111i n 1 m 111 i n 11 M 11 I I Z I I I M il m 1 1 1 i n 1 i n 111 M ITI H I I I I MTI M I I I M ITI M I I I IM I IN I 11 m I m , 11 m l m 111 mTm 11 i m \ m i , i 

D000 miso byies 60060 
0000 mosi bytes 0 0 0 0 0 

SPI c lock s igna l 
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SPI MOSI s igna l 

SPI MISO s igna l 

SPI Ch ip Select s i gna l 

Figure 8.5: Logic analyzer test result for L U T full-duplex mode verification 

In figure 8.6, output of the python A P I can be seen. A s can be seen from the figure, 
transmitreceival of 5 bytes is reported. Request inside L U T was received and default 
response was transmitted. The byte values are correct and the SPI clock frequency is 
correct also. Next, transmitreceive of 5 bytes is reported. Response from L U T is trans­
mitted, while 5 bytes are received, which values are not important for this test. Byte 
values are correct and also the SPI clock frequency is correct. 

* * * DATA RECIEVED & SENT • 
[ B a u d r a t e : 5 4 0 0 0 b / s | 
M e s s a g e RECIEVED : [ 1 , 2 
M e s s a g e SENT : [ 0 , 0 , 0 , 

5 

N u m b e r o f b y t e s 
3 , 4 , 5 ] 

0 , 0 ] 

r e c i e v e d : 5 | | N u m b e r o f b y t e s s e n t : 5 ] 

* * * DATA RECIEVED & SENT ' 
[ B a u d r a t e : 5 4 0 0 0 b / s | 
M e s s a g e RECIEVED : [ 1 , 4 
M e s s a g e SENT : [ 5 , 4 , 3 , 

N u m b e r o f b y t e s 
3 , 1 , 1 ] 

2 , 1 ] 

r e c i e v e d : 5 | | N u m b e r o f b y t e s s e n t : 5 ] 

Figure 8.6: Python A P I output for logic analyzer L U T full-duplex mode verification 

8.3. More detailed tests - Stream and LUT mode 
For more detailed testing of the stream and L U T mode, a python test structures were 
implemented. There are 5 tests in total that are needed to test functionality of the modes 
from this chapter. A l l tests have the same test structure, and these tests are differentiated 
wi th the slave configuration, what the SPI master is transmitting and what is the valid 
output of the test. In all described tests, the master's SPI clock frequency was set to 
54kHz. 
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8.3.1. Common test structure 

Common test structure 

Define YAML config 
file for specific test 

Compare 3 created 
lists with each other 

IF SAME 

Connect to SPI 
slave device and 

specify previously 
defined YAML file 

Create valid list out 
of transmissions that 

were sent 

IF NOT SAME 

Connect to SPI 
master device 

fLoad all SPI master^ 
report messages and 

use them to create 
list (Not in stream 

y mode test) y 

Disconnect master 
Disconnect slave 

Make SPI master 
transmissions 

specific for current 
test 

Load all SPI slave 
report messages 
and use them to 

create list 

Figure 8.7: Common test structure for modes in this chapter 

Common test structure can be seen in figure 8.7 and consists of: 

• Define Y A M L file 
In other words, create a slave configuration for the specific test. This configuration 
is defined by creating a Y A M L file that wi l l be later used to configure the SPI slave 
device upon connection. This part of algorithm is test specific. 

• Connect to SPI slave device 
Connect to the SPI slave device and specify the created Y A M L file as the input 
configuration. Set print_info parameter to False. 

• Connect to SPI master device 
Connect to the SPI master device. Set print_info parameter to False. 

• Create SPI master transmissions 
Every test wi l l require different transmissions to be initiatet by the master device. 
Commands wi l l be sent to the master about these transmissions and these SPI 
transmissions wi l l execute in blocking mode. This part of algorithm is test specific. 

• Load all SPI slave report messages and create a list 
After every transmission, SPI slave device wi l l send a report message to the python 
A P I . These messages are loaded and a list is created from these messages. List 
contains all data from the messages appended together in chronological order. 

• Load all SPI master report messages and create a list 
After every transmission, SPI master device wi l l send a report message to the python 
A P I . These messages are loaded and a list is created from these messages. List 
contains all data from the messages appended together in chronological order. This 
part wi l l happen in all tests except for stream mode test. 
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• Create a valid list out of tranmsmissions 
Both the list created from the slave reports and the list created from the master 
reports have only one possible correct value based on the specific test and what was 
transmitted via the SPI interface. A new list is created that represents this only 
correct possibility. 

• Compare 3 created lists 
A l l 3 lists are compared. For the test to pass, all 3 lists must be absolutely the same. 
If any list differs from another, test is declared as failed. For the stream mode test, 
only 2 lists are compared. 

• Disconnect master and slave 
Slave and master devices are disconnected. 

8.3.2. Stream mode test 
Y A M L configuration 

Slave configuration for the stream mode is simple. Only thing that is needed is to enable 
stream mode. 

SPI transmissions 

In the stream mode test, the SPI transmissions can be completely random, meaning 
random data, random size and random type. There is no expected action from the SPI 
slave. In the recorded test, transmissions were defined in this order: 

master.transmit( [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ) 
master.receive( 5 ) 
master.transmitreceieve( [4, 5, 6] ) 

Slave list creation 

Slave list wi l l consist out of the stream report messages. Data from each report wi l l be 
appended together in chronological order. 

Master list creation 

In this test, no master list wi l l be created. 

Valid list creation 

Three possible master commands can be set to execute: 

• Transmit 
The actual bytes of the transmission are appended to the list. 
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• Receive 
Zeros are appended to the list. The number of zeros to append is the same as the 
length of the receive command. In this command, the master wi l l clock the set 
number of zeros on M O S I line. 

• TransmitReceive 
The actual bytes of the transmission are appended to the list. 

8.3.3. L U T half duplex test 
Y A M L configuration 

Slave configuration for this test is a little bit more complex. First , the slave device is set 
to L U T mode and the full-duplex parameter is set to False. Next, the L U T pairs need 
to be defined. These L U T pairs wi l l be configured into the slave device and also used to 
generate transmissions, that wi l l be sent by the SPI master. The data size is not defined 
yet, because every L U T pair could have different size, therefore the data size wi l l be set 
before every SPI master transmission. In the recorded test, L U T pairs displayed in table 
8.1 were defined: 

L U T 
row 

Request packet Response packet 

0 [1, 2, 3, 4, 5] [5, 4, 3, 2, 1] 

1 [11, 66] [55, 65] 

2 [11, 66, 8, 8, 8] [55, 65, 1, 2, 3] 

3 [8]*10 [4]* 10 

4 [3]* 7 [200] *7 

Table 8.1: Lookup table for L U T half-duplex test 

*Note - [3]*7 means list wi th 7 bytes, where all values are equal to 3 

SPI transmissions 

The transmissions sent by the master device are dependant on L U T pairs. For every L U T 
pair, two SPI transmissions wi l l happen. First , the request wi l l be transmitted by the 
master and after that, a receive wi l l be initiated by the master for the same number of 
bytes as is the length of the response in the current L U T pair. Before every L U T pair 
transmissions, the SPI slave device must be configured for the proper data size that is 
equal to the request or response length in the current L U T pair. 

Slave list creation 

Slave list wi l l consist out of receive and transmit reports. Data from each report wi l l be 
appended together in chronological order. 
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Master list creation 

Master list wi l l consist out of transmit and receive reports. Data from each report wi l l be 
appended together in chronological order. 

Valid list creation 

Val id list wi l l contain all the L U T data appended together in order. For every L U T row, 
first the request wi l l be appended followed by the response. 

8.3.4. L U T full duplex test 
Y A M L configuration 

First , the slave device is set to L U T mode and full-duplex parameter is set to True. Next, 
the L U T pairs need to be defined. These L U T pairs wi l l be configured into the slave 
device and also used to generate transmissions that wi l l be sent by the SPI master. The 
data size is configured also. The data size for every L U T pair has to be the same because 
in full-duplex mode, the response for the previous request wi l l be received at the same 
time as next request is being sent. In the recorded test, default response is set to all zeros 
and L U T pairs displayed in table 8.2 were defined: 

L U T 
row 

Request packet Response packet 

0 [1, 2, 3, 4, 5] [5, 4, 3, 2, 1] 

1 [1, 4, 3, 1, 1] [88, 2, 1, 1, 1] 

2 [4, 4, 4, 4, 4] [255, 200, 255, 1, 1] 

3 [2, 2, 2, 2, 2] [82, 82, 82, 82, 82] 

Table 8.2: Lookup table for L U T full-duplex test 

SPI transmissions 

Transmissions sent by the master device are dependant on L U T pairs. Every L U T pair 
wi l l be tested. Only the transmitreceive commands wi l l be executed by the SPI master. 
The absolute first transmitreceive command wi l l transmit first L U T request and receive 
default response of the slave device. Every transmitreceive command after the first one 
wi l l receive the response for the last request sent and also at the same time transmit the 
next L U T request. This is the reason that the data size must be a constant for all the 
L U T pairs in this test. 

Slave list creation 

Slave list wi l l consist out of transmitreceive reports. Bo th the request and the response 
data from each command wi l l be appended together into one list in chronological order. 
From every command, the first data that was sent on the M O S I line wi l l be appended 
and after that, the data from the M I S O line wi l l be appended. 

97 



8. V E R I F I C A T I O N 8.3. M O R E D E T A I L E D T E S T S -

Master list creation 

Master list wi l l be created the same way as the slave list, but from the master device 
reports and not the slave device reports. 

Valid list creation 

Val id list wi l l contain all L U T data appended together in order. For every L U T row, first 
the request wi l l be appended followed by the response. 

8.3.5. Default response test - L U T half duplex mode 
Y A M L configuration 

In this test, only the default response is tested. The slave device is configured to L U T 
mode wi th full-duplex parameter set to False. Data size is clearly defined and it is the 
same as the length of the default response that is also defined. In the recorded test, 
default response was set to: [1, 2, 3, 9, 200, 255]. 

SPI transmissions 

Only 2 SPI transmissions are performed by the master device in this test. First command 
is a transmit command. Value of bytes does not matter as the slave L U T is cleared, but 
the length of this transmit command must be the same as the default response length. The 
next command is a receive command of the same number of bytes as is the default_response 
length. In this receive command, the default response is expected to appear on the M I S O 
line. 

Slave list creation 

Slave list wi l l consist of transmit and receive reports. Data from these reports wi l l be 
appended together in chronological order. 

Master list creation 

Slave list wi l l consist of transmit and receive reports. Data from these reports wi l l be 
appended together in chronological order. 

Valid list creation 

Val id list wi l l firstly contain zeros. The number of these zeros is equal to the default 
response length. After these zeros, the default response is appended. 

8.3.6. Default response test - L U T full duplex mode 
Y A M L configuration 

In this test, only the default response is tested. Slave device is configured to L U T mode 
wi th full-duplex parameter set to True. Data size is clearly defined and it is the same 

98 



8. V E R I F I C A T I O N 8.3. M O R E D E T A I L E D T E S T S -

as the length of the default response that is also defined. In the recorded test, default 
response was set to: [1, 3, 9, 200, 255]. 

SPI transmissions 

Only 1 SPI transmission is performed by the master in this test. One transmitreceive 
command is executed by the SPI master wi th the length same as is the length of the 
default response. In this command, default response is expected to appear on the M I S O 
line. Transmitted data are zeros as this data is not important. 

Slave list creation 

Slave list wi l l consist of one transmitreceive report. First , the data on the M O S I line wi l l 
be appended, then, the data on the M I S O line wi l l be appended. 

Master list creation 

Master list wi l l consist of one transmitreceive report. First , the data on the M O S I line 
wi l l be appended, then, the data on the M I S O line wi l l be appended. 

Valid list creation 

Val id list wi l l firstly contain zeros. The number of these zeros is equal to the default 
response length. After these zeros, default response is appended. 

8.3.7. Tests conclusion 
The tests were performed in such way to test every functionality of stream and L U T mode. 
A l l tests passed. For changing the test data, it is possible to just edit the transmission 
definitions for each test. More complex as well as simpler transmissions were also tried 
for each test wi th the same result. In described tests, the SPI clock frequency is relatively 
low, therefore different SPI clock frequencies were tried and result was the same. 
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8.4. Logic analyzer verification - E E P R O M emulator 
mode 

First , the basic command functionality of the E E P R O M emulator must be checked. Real 
25AA160D E E P R O M device was acquired and connections to the SPI master were made 
in such way, that the emulator and the real device could be easily swapped. The SPI clock 
frequency was set to 54kHz. A l l six instructions were performed on the emulator device 
and on the real device and compared using the same logic analyzer as in previous tests. 
Volat i l i ty of the memory was taken into consideration and instructions were executed in 
such way that both the real device and the E E P R O M emulator should have the same 
memory and status register state for every instruction. Bo th the emulator and the real 
device results for each instruction are displayed below. Logic analyzer signals of the 
emulator are completely the same as signals of the real E E P R O M device. A l l signal items 
in following figures from top to bottom are: 

• M I S O bytes 

• M O S I bytes 

• Decoded command data 

• Command description 

• Clock signal 

• M O S I signal 

• M I S O signal 

• Chip select signal 
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8.4.1. WRITE 

8.4. L O G I C A N A L Y Z E R . 

Figure 8.8: Write command executed on emulator device 

|Addrbit5 7..D: Qxfe I 

Figure 8.9: Write command executed on real device 
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8.4.2. R E A D 

8.4. L O G I C A N A L Y Z E R . 



8. V E R I F I C A T I O N 

8.4.3. WRSR 

8.4. L O G I C A N A L Y Z E R . 

Figure 8.12: Wrsr command executed on emulator device 

Figure 8.13: Wrsr command executed on real device 

*Note : M I S O values are different because in the time of measurement, emulator had 
problem wi th clearing the internal SPI T x buffer. This problem was resolved in later 
development. A l l wrong M I S O values are when a byte is not being sampled as no transmit 
from the slave device is expected. 
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8.4.4. RDSR 

8.4. L O G I C A N A L Y Z E R . 

Figure 8.14: Rdsr command executed on emulator device 

Figure 8.15: Rdsr command executed on real device 

*Note : M I S O values are different because in the time of measurement, emulator had 
problem wi th clearing the internal SPI T x buffer. This problem was resolved in later 
development. A l l wrong M I S O values are when a byte is not being sampled as no transmit 
from the slave device is expected. 
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8.4.5. W R E N 

8.4. L O G I C A N A L Y Z E R . 



8. V E R I F I C A T I O N 

8.4.6. WRDI 

8.4. L O G I C A N A L Y Z E R . 
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8.5. More detailed Tests - E E P R O M emulator mode 
For more thorough testing of the E E P R O M emulator device, multiple tests were invented. 
These tests should test most of the possible ways an E E P R O M may be used. A l l the tests 
wi l l firstly execute on the E E P R O M emulator device. Next, all the tests wi l l execute on 
the real E E P R O M device. If all tests pass, it means that the behaviour of the emulator 
and the real device is completely the same. 

8.5.1. Common structure 
A l l tests have a common structure and the core functions of this structure are changed 
according to the specific test. The common structure can be seen in figure 8.20. 

Upon python 
module initialization 

Every following test 

Clear EEPROM 
memory using SPI 

master 

Write all needed 
data to EEPROM 

memory using SPI 
master 

Read whole memory 
array using SPI 

master 

Connect SPI master 
Connect SPI slave 

Compare 3 created 
memory arrays with 

each other 

IF SAME IF NOT SAME 

Create artificial 
memory array that 
represents correct 

values for this 
specific test 

I 
Read whole memory 

array using SPI 
slaves python API 

Figure 8.20: Common structure for E E P R O M emulator more advanced tests 

• U p o n module initialization 
Upon the python module initialization, the SPI master and the SPI slave devices 
need to be connected to the python A P I s . For the SPI slave, a Y A M L file is defined 
wi th the parameters: eeprom_mode: True, clear_eeprom: False, clear_undefined_config 
True. 

• Clear E E P R O M memory using the SPI master 
This part of the algorithm clears the whole E E P R O M memory using the SPI master 
and therefore using the instructions transferred v ia the SPI interface. This part is 
a test itself, meaning that for every test, actually two tests are executed. First , the 
clear chip test is executed followed by the actual test. This is not the case for pure 
clear chip test as the clear chip test would execute two times subsequently. 

• Write all the needed data to the E E P R O M memory using the SPI master 
In this part, the actual test data are written to the E E P R O M using the SPI interface. 
This part is test specific. 
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• Read whole memory array using the SPI master 
The whole E E P R O M memory is read through R E A D instructions over the SPI 
interface. Data are read one page at a time. The whole memory array is saved into 
a list. 

• Read whole memory array using the SPI slave's python A P I 
The whole E E P R O M memory is read through the U A R T using the slave's python 
A P I . Data are read one page at a time. Whole memory array is saved into a list. 
This part does not execute when the real E E P R O M device is connected as there is 
no connection through U A R T . 

• Create artificial memory array 
Every test has a valid state of the whole memory array after all the instructions 
were transmitted. This state is test specific. A list representing the valid state of 
the whole memory array is artificially created. 

• Compare all memory arrays 
In case when the emulator is connected, all three memory array lists are compared. 
Test passes if they are completely same. In case when the real device is connected, 
only two memory array lists are compared. 

8.5.2. Clear chip test 
Clear chip test clears the whole memory array to value OxFF. 

SPI master commands 

Only needed master command is 

spi_master.clear_chip( ) 

This command clears the whole memory array one page at a time. 

Valid memory array 
Val id memory array for this test is an array with value of every byte equal to OxFF. 

8.5.3. Full page write test 
Writes every byte in every page. 

SPI master commands 

Pages wi l l be written one page at a time. The starting address of W R I T E instruction wi l l 
always be the first byte of a page, therefore no page overflow can happen. Every byte in 
every page wi l l be written. Every byte in the same page wi l l be equal to the current page 
index. 

Valid memory array 

Memory array is recreated where every page contains only the index of that same page. 
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8.5.4. Full page write with offset test 
Writes every byte in every page. 

SPI master commands 

Pages wi l l be written one page at a time. The starting address of W R I T E instruction is 
not the first byte of a page, therefore page overflow wi l l happen. The starting index of a 
page can be specified. Every byte in every page wi l l be written. Every byte in the same 
page wi l l be equal to the current page index. 

Valid memory array 

Memory array is recreated where every page contains only index of that same page. 

8.5.5. Partial page write test 

Every page wi l l be written, but not all bytes in the page wi l l be written. 

SPI master commands 

Pages wi l l be written one page at a time. The starting address of W R I T E instruction can 
be specified as well as the number of bytes to write can be specified. Every written byte 
in one page wi l l be equal to the current page index. 

Valid memory array 

Memory array is created where every written byte equals to the current page index and 
all bytes that were not written equal to OxFF. 

8.5.6. Partial page read test 

Ful l page write test is performed but not every byte in every page is read. 

SPI master commands 

Ful l page write test is executed, but instead of reading the whole memory array, only the 
bytes specified by the starting index and the number of bytes to be read are read. Bytes 
starting from the specified index are read from every page. 

Valid memory array 

Every page contains the index of that same page. For every page, only the specified 
number of bytes are appended to list. 

8.5.7. Block protect test 
Tests all the possible configurations of block protect. 
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SPI master commands 

Write full pages test is executed, but prior to that, block protect is set by W R S R com­
mand. This test executes 3 times for every possibility of the enabled block protect. 

Valid memory array 

Every byte that is not protected by the current setting of the block protect contains the 
index of the page to which the byte belongs. Every byte that is protected by the current 
setting of the block protect has value OxFF. 

8.5.8. Results 
Logs of test results can be seen in figures 8.21 and 8.22. 

1 INFO: Connect EEPROM emu la to r SPI s l a v e d e v i c e , p ress e n t e r when connec ted . 
2 
3 INFO: S t a r t i n g t e s t : C lea r c h i p . 
4 INFO: Tes t PASSED 
5 INFO: S t a r t i n g t e s t : F u l l page w r i t e . 
6 INFO: Tes t PASSED 
7 INFO: S t a r t i n g t e s t : C lea r c h i p . 
8 INFO: Tes t PASSED 
9 INFO: S t a r t i n g t e s t : F u l l page w r i t e w i t h o f f s e t . 

10 INFO: Tes t PASSED 
11 INFO: S t a r t i n g t e s t : C lea r c h i p . 
12 INFO: Tes t PASSED 
13 INFO: S t a r t i n g t e s t : P a r t i a l page w r i t e . 
14 INFO: Tes t PASSED 
15 INFO: S t a r t i n g t e s t : C lea r c h i p . 
16 INFO: Tes t PASSED 
17 INFO: S t a r t i n g t e s t : P a r t i a l page r e a d . 
18 INFO: Tes t PASSED 
19 INFO: S t a r t i n g t e s t : C lea r c h i p . 
20 INFO: Tes t PASSED 
21 INFO: S t a r t i n g t e s t : B lock p r o t e c t - upper 1/4 ( BP_1=0, BP_0=1). 
22 INFO: Tes t PASSED 
23 INFO: S t a r t i n g t e s t : C lea r c h i p . 
24 INFO: Tes t PASSED 
25 INFO: S t a r t i n g t e s t : B lock p r o t e c t - upper 1/2 ( BP_1=1, BP_0=0). 
26 INFO: Tes t PASSED 
27 INFO: S t a r t i n g t e s t : C lea r c h i p . 
28 INFO: Tes t PASSED 
29 INFO: S t a r t i n g t e s t : B lock p r o t e c t - f u l l ( BP_1=1, BP_0=1). 
30 INFO: Tes t PASSED 

Figure 8.21: Test results for E E P R O M emulator device 
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33 INFO: DISCONNECT SPI slave eeprom emulator device and CONNECT EEPROM REAL device, press enter when connected 
32 
31 INFO: St a r t i n g t e s t : Clear chip. 
30 INFO: Test PASSED 
29 INFO: St a r t i n g t e s t : F u l l page write. 
28 INFO: Test PASSED 1 27 INFO: St a r t i n g t e s t : Clear chip. 
26 INFO: Test PASSED 
25 INFO: St a r t i n g t e s t : F u l l page write with o f f s e t . 
24 INFO: Test PASSED 
23 INFO: St a r t i n g t e s t : Clear chip. 
22 INFO: Test PASSED 
21 INFO: St a r t i n g t e s t : P a r t i a l page write. 
20 INFO: Test PASSED 
19 INFO: St a r t i n g t e s t : Clear chip. 
IS INFO: Test PASSED 
17 INFO: St a r t i n g t e s t : P a r t i a l page read. 
16 INFO: Test PASSED 
15 INFO: St a r t i n g t e s t : Clear chip. 
14 INFO: Test PASSED 
13 INFO: St a r t i n g t e s t Block protect - upper 1/4 ( BP_ .1=0, BP_ .0=1) 
12 INFO: Test PASSED 
11 INFO: St a r t i n g t e s t : Clear chip. 
10 INFO: Test PASSED 
9 INFO: St a r t i n g t e s t Block protect - upper 1/2 ( BP_ .1=1, BP_ .0=0) 
8 INFO: Test PASSED 
7 INFO: St a r t i n g t e s t : Clear chip. 
6 INFO: Test PASSED 
5 INFO: St a r t i n g t e s t Block protect - f u l l C BP_1= .1, BP_0=1) 

INFO: Test PASSED 

Figure 8.22: Test results for real E E P R O M device 

8.6. Reliability and WIP delay tests - E E P R O M em­
ulator mode 

Last test performed is about the overall reliablity of write and following read operations. 
This test also tests the value of the write in progress delay. 

8.6.1. Main idea of the test 
Random writes with according reads 

The main idea of the test is to perform a large number of random writes and verify written 
data wi th read command. A l l commands are done by the SPI master, SPI slave python 
A P I is not used. First , a random write data are generated. Data are written on a random 
address, wi th random data size and every byte of the write instruction is random. Same 
data is read from every memory location where the data was written. If written data has 
gone out of the page boundary, two read instructions must be executed because the write 
address rolled back to the starting address of the page. Read data is then compared wi th 
written data and if they are not same, the current random write is considered to be not 
sucesfull. The overall success rate is evaluated in percentage. 

W I P delay 

In this test, also a python script was developed that analyzes data from logic analyzer, 
where all the random writes and reads are captured. Data is exported from the logic 
converter file into a .csv file. Python script then analyzes .csv file and measures the 
average write in progress delay for every write command of the same size. In the end, 
the write in progress delay was not dependant on the write command byte length and 
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therefore one average value of the write in progress delay was measured. It is important to 
note that resolution of the measurement was one R D S R command, which takes relatively 
long time at this SPI clock frequency (390 us), therefore in reality, the write in progress 
delay can be dependant on the write command byte length, but it could not be detected 
wi th this measurement resolution. 

8.6.2. Results 
For all devices tested, 7500 random writes wi th according reads were executed. First, 
two different real E E P R O M devices were tested. First device was minorly flawed as the 
success rate for this device was 97%. The second real E E P R O M device had success rate 
of 100%. The average write in progress delay for both real devices was measured as 2.75 
ms, which translates to 7 R D S R instructions unti l the W I P bit had value 0. This W I P 
delay was configured into the E E P R O M emulator device and the test was executed on 
the emulator device. Success rate was 100% and the analyzed average delay was 2.75 
ms. 
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9. C O N C L U S I O N 

9. Conclusion 
The main goals of this thesis were to create a testing device for SPI master devices. 

This testing device should have general testing capability and also the capability to em­
ulate one specific real SPI slave device. S TM3 2 F3 0 3 K8 microcontroller was chosen as a 
platform for this device. N U C L E O development board was chosen containing this spe­
cific M C U . The main characteristic of this device is that it must be configurable from a 
personal computer. The device is connected to P C ' s serial U S B port v ia U A R T inter­
face, while using N U C L E O ' s S T - L I N K as U A R T - U S B adapter. Python A P I was created 
that can communicate wi th the embedded device. The main tasks of the A P I are to 
apply configuration onto the device as well as to receive report and acknowledgement 
messages from the device. Acknowledgement messages are expected to be received after 
every command. For easy device configuration, a Y A M L file is supported. The Y A M L 
file is created by the user to specify wanted configuration. The configuration from the 
Y A M L file is applied onto the device upon connection to the A P I . Before designing any 
method that can test the logic of an SPI master device, a feature that measures the SPI 
clock frequency was developed. The clock frequency of an SPI master can be measured 
wi th adequate resolution. First mode that tests the general function of an SPI master is 
stream mode. Stream mode is receive only mode and the main purpose of this mode is to 
stream every byte received via SPI directly to the python A P I . Some problems occurred 
due to difference in the SPI and U A R T interface speeds, but most of the problems were 
resolved by using a circular buffer wi th head and tai l pointers. Using this buffer ensures 
that reporting of the SPI bytes, that were received, happens asynchronically from actually 
receiving the SPI bytes. Next method for testing the basic logic of an SPI master is L U T 
(Look U p Table) mode. This mode allows the user to define L U T pairs. One L U T pair 
consists of a request that wi l l be received via the SPI interface from the SPI master and 
a response that wi l l be sent to the SPI master if the according request is received. This 
mode can function either in full-duplex or half-duplex mode. For more detailed testing 
of a specific SPI master, one real SPI slave device was chosen and its emulator was de­
veloped. A n SPI E E P R O M was chosen as a real SPI slave device. Emulator was created 
that accurately emulates logic behaviour of said real SPI slave device. One major l imita­
t ion of this emulator device is that the maximum clock frequency is much lower than the 
maximum SPI clock frequency of a real E E P R O M device. This is because all logic of the 
emulator device must be resolved inside interrupts, which is causing this l imitation. This 
l imitat ion should not be considered as major problem, because the developed device can 
be labeled as "proof of concept" or a prototype. For future development, M C U wi th much 
higher frequency could be used, which would massively improve this problem. Also, this 
l imitat ion was measured while considering continuous bit stream, which is highly unlikely 
in real situations. Verification tests were developed and executed for all existing features. 
Results of the tests were successful and all features are functioning as they should. 

There are a few possible improvements for future development. One of the major 
improvements for stream mode would be to modify the process of sending reports. Cur­
rently, one report contains only one received byte. It would be more effective if one report 
contained all the bytes that were not reported yet in that time moment. The plans for the 
E E P R O M emulator mode are to add support for more E E P R O M devices. Ideally develop 
some method how to easily define an universal E E P R O M device with one instance in a 
struct. 
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A l l set goals were accomplished and some of them were surpassed. The result of this 
thesis is a device that can be used to test existing SPI masters. It is possible to test 
universal SPI master using stream and L U T mode and it is also possible to test specific 
SPI E E P R O M master using E E P R O M emulator mode. Device can be configured from a 
P C via python A P I . 
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Appendix 
The thesis contains following appendixes: 

• C source codes: 

— spLmain.c 

— spLmain.h 

— uart_main.c 

— uart_main.h 

— uart_cmd_buff.c 

— uart_cmd_buff.h 

— eeprom.devices.c 

— eeprom_devices.h 

— eeprom_emulator.c 

— eeprom.emulator.h 

— L U T . c 

— L U T . h 

— main.c 

— main.h 

— stm32f3xx_it.c 

— stm32f3xx_it.h 

• python source codes: 

— spLslave.py 

— eeprom_unit_test.py 

— eeprom_delay_test.py 

— debugmode_unit_test.py 

• S T M 3 2 C u b e M x project file: 

— spi_slave.ioc 
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