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Abstract 
In this work we discuss approximative techniques for the analysis of Markov chains, namely, 
state space aggregation and truncation. F i rs t , we focus on the applicat ion of the former 
method for the analysis of discrete-time models: we redesign the clustering algori thm to 
handle chains w i t h an arbi trary structure of the state space and, most importantly, we 
improve upon existing bounds on the approximat ion error. The developed approach is then 
integrated wi th uniformisation techniques, in both standard and adaptive forms, to approx
imate continuous-time models as well as provide estimates of the approximat ion error. Th is 
theoretical framework along w i t h existing truncation-based techniques were implemented 
wi th in P R I S M model checker. Experiments confirm that newly derived bounds provide a 
several orders of magnitude precision improvement without degrading performance. We 
show that the resulting aggregating approach can provide a val id model approximation 
supplied by adequate approximat ion error estimates, i n both discrete and continuous time. 
Then , we perform a comparative analysis of aggregating and t runcat ing techniques, il lus
trate how different methods handle various types of models, and identify chains for which 
aggregating, or truncating, analysis is preferred. F ina l ly , we demonstrate a successful usage 
of approximative techniques for model checking Markov chains. 

Abstrakt 
P ř e d k l á d a n á p r á c e je z a m ě ř e n a na popis a p r o x i m a t i v n í c h technik pro a n a l ý z u Markovských 
ře tězců , k o n k r é t n ě na metody za ložené na agregaci nebo ořezávání s t avového prostoru. N a 
z a č á t k u je p ř e d s t a v e n postup umožňuj íc í apl ikaci agregace pro modely d i sk r é tn ího času s l i 
bovolnou s t rukturou s tavového prostoru a je odvozen lepší odhad a p r o x i m a č n í chyby. D a n ý 
postup je pak propojen s un i fo rmizačn ími technikami, jak se s t a n d a r d n í tak s a d a p t i v n í , 
což umožňu je p rovádě t a n a l ý z u ře t ězců spo j i t ého času spolu s odhadem a p r o x i m a č n í chyby. 
N a v r ž e n á technika spolu s exis tuj íc ími metodami za loženými na ořezávání byly implemen
továny v r á m c i n á s t r o j e P R I S M . P r o v e d e n é experimenty potvrzuj i , že nově odvozený odhad 
a p r o x i m a č n í chyby vylepšuje p ře snos t o několik ř á d ů bez zhoršen í celkové výkonnos t i . Je 
u k á z á n o , že v ý s l e d n á ag regačn í metoda je schopna poskytnout val idní aproximaci modelu 
spolu s a d e k v á t n í m i odhady a p r o x i m a č n í chyby, a to jak v d i s k r é t n í m tak i ve spo j i t ém čase. 
Nás l edně je provedeno p o r o v n á n í s technikami za loženými na ořezávání s t avového prostoru 
a je d i s k u t o v á n o pro k t e r é t ř í d y Markovských ř e t ězců je ta či ona metoda použi te lně jš í . 
Nakonec je d e m o n s t r o v á n o ú s p ě š n é použ i t í a p r o x i m a t i v n í c h technik pro model checking 
Markovových m o d e l ů . 
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Chapter 1 

Introduction 

Probabi l i ty plays a prominent role i n the design and model l ing of systems wi th unpre
dictable or unreliable behaviour. Markov chains are a class of such probabil ist ic modell ing 
tools that have been extensively used i n many areas of science and engineering, including 
analysis of performance of computer networks, rel iabil i ty of communicat ion and security 
protocols [2, 1], in the study of various quantitative attributes of biochemical reaction net
works [19, 5] or genetics [14]. A Markov chain can be thought of as a collection of states 
accompanied by function that describes a probabil ist ic nature of a transi t ion between any 
pair of states. Depending on the type of the model, these transitions can occur in discrete 
or continuous time. A n analysis of such chain is carried out through simulation-based ex
ploration of its execution paths or using numerical schemes, usually by solving a system 
of equations. For an analysis of continuous-time models, a typica l method employed is 
uniformisation, which is based on a time-discretisation of the chain of interest [23]. 

Unfortunately, an efficient analysis Markov models is difficult to achieve i n practice 
due to the state-space explosion problem. In order to enable the handling of larger state 
spaces, several approximat ion techniques have been introduced. These techniques typical ly 
solve a smaller chain - the one wi th the reduced state space - and then interpret results in 
terms of the original model . State aggregation methods [1] construct this smaller chain by 
clustering the state space. State-space t runcat ion methods [ ], on the other hand, work by 
dynamical ly neglecting states w i th insignificant probabili ty. In both cases an approximation 
error has to be quantified. In practice, highly accurate probabi l i ty estimates are crucial , 
for example i n rel iabil i ty analysis of safety-critical systems or when checking satisfiability 
of temporal logic formulae. 

K e y contributions 

In this work we expand the existing framework for the analysis of Markov chains v ia state-
space aggregation and provide its first in-depth comparison wi th truncation-based tech
niques. Inspired by the applicat ion of the adaptive approach developed for the analysis 
of biochemical reaction networks in [ ], we first focus on the design of an accurate and 
efficient aggregation method applicable to chains w i th an arbi trary structure of the state 
space. We start i n the discrete setting and redefine a notion of the state-space abstraction 
in order to arrive at precise bounds on the approximat ion error. These results are then used 
to design a new aggregating scheme that preserves a l l properties of a Markov chain, and 
we show that this preservation is necessary for integrating it w i th uniformisation method 
to enable analysis of continuous-time models. Th is integration is then carried out, and 
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explicit bounds on the approximat ion error are derived. F ina l ly , we introduce adapt ivi ty 
to our aggregating scheme that allows reducing the required number of computat ion steps. 

A to ta l of eight approximative methods for Markov chain analysis (5 existing and 3 new 
ones) were implemented in probabil ist ic model checker P R I S M [ ] and were also integrated 
wi th model checking algorithms. Experiments confirm that newly derived bounds provide 
a several orders of magnitude precision improvement without degrading performance. We 
show that the resulting aggregating approach can provide a val id model approximation 
supplied by adequate approximat ion error estimates, i n both discrete and continuous cases. 
Then , we perform a comparative analysis of aggregating and t runcat ing techniques, il lus
trate how different methods handle various types of models and identify chains for which 
aggregating, or truncating, analysis is preferred. F ina l ly , we demonstrate a successful usage 
of approximative techniques for model checking Markov chains. 

Related work. 

Simulat ion methods are able to analyse a Markov chain - as well as any other stochastic 
model - by s imulat ing one-time trajectory of the process; collecting the statistics from mul
tiple realisations then allows to estimate the transient probabil i ty dis t r ibut ion. A common 
example of such technique is Gillespie's Stochastic Simulat ion A l g o r i t h m (SSA) [12, 24]. 
The main disadvantage of S S A is its slow convergence. Moreover, al though simulation-based 
analysis allows to employ adapt ivi ty (e.g. [9]), these methods in general give weak precision 
guarantees i n the form of confidence intervals. Nonetheless, this approach is suitable for 
situations where highly accurate probabi l i ty estimates are not required. S S A , along wi th 
other simulation-based techniques, is implemented wi th in a C O P A S I [15] tool developed 
for the analysis of biochemical network models. 

A widely studied numerical method to deal w i th large state spaces is t runcat ion which 
works by neglecting states wi th insignificant probabili ty, computing an underapproximation 
of the true probabi l i ty dis t r ibut ion and then using probabil i ty loss as an error estimate. 
In the context of continuous-time chains, a combinat ion of t runcat ion wi th adaptive uni-
formisation is a highly celebrated technique known as fast adaptive uniformisation ( F A U ) 
[21, 7, 6]. Truncat ion techniques utilise the fact that usually a significant por t ion of the 
probabil i ty mass is concentrated i n a smal l subset of the state space and can result in poor 
accuracy i f this mass is spread over a large number of states. 

A common representative of the state-space aggregation techniques is a clustering based 
on (bi-) s imulat ion equivalence [ ]. This technique exploits symmetries of a concrete model 
and performs exact numerical computat ion but, unfortunately, can only be applied to a 
specific domain of Markov processes. The work of [ ] presents an algori thm to approximate 
probabil i ty distributions of a Markov model forward in t ime, which served as an inspirat ion 
of the adaptive scheme proposed in [ ], where a formal error analysis steers the adaptation. 
This novel use of derived error bounds allows far greater accuracy and flexibili ty as it 
accounts also for the past history of the probabi l i ty mass wi th in specific clusters. 

Structure of this paper. 

In Chapter 2 we give an overview of the necessary theory regarding both discrete- and 
continuous-time Markov processes; we describe an aggregation approach presented i n [1] 
and revise uniformisation technique, as well as its fast adaptive version. In Chapter 3 we 
redefine a notion of a state-space aggregation of a discrete-time Markov chain, introduce 
techniques that w i l l allow us to approximate chains wi th arbi t rary structure of the state 
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space, explore various aggregation strategies and, most importantly, we derive a more pre
cise approximat ion error bound. Last ly, we perform a thorough experimental evaluation of 
al l approximative techniques. In Chapter 4 we develop state-space aggregation for contin
uous Markov processes by combining results from the previous chapter w i th both standard 
and adaptive uniformisation, as well as derive explicit bounds on the approximation error, 
and discuss experimental results. F ina l ly , in Chapter 5, we give notes on the implemen
tat ion and collect a l l the facts and issues that could serve as a departure point for the 
follow-up research. 
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Chapter 2 

Preliminaries 

In this chapter we review the necessary theory and introduce notat ion that w i l l be used 
throughout the paper. F i r s t , we discuss discrete-time Markov chains along wi th existing 
exact and approximate techniques for their analysis. Then we generalise the argument into 
the continuous case and describe procedures for handling continuous-time models. 

2 . 1 Discrete-Time Markov Chains 

Definition 1. [17, 3] A discrete-time Markov chain (DTMC) is a pair D = (S,P), where 

• S is the set of states and 

• P : S x S —>• [0,1]; V r G S X^se5 - ^ ( r ' >s) = 1 is the transition probability function. 

Set S describes a l l possible states of the model and expression F(D(k) = s), s G S, k G No 
denotes the probabil i ty that D T M C D resides at state s at t ime k. The function P estab
lishes probabilities of transitions between the states, namely: 

i.e. t ransi t ion probabi l i ty from state r to s applies whenever state r is visited, regardless of 
what has happened i n the past: the next state of the process depends only on its present 
state. Th is assumption is known as the Markov property. Unless stated otherwise, we 
w i l l assume that the state space S is finite. A state s for which P(s, s) = 1 w i l l be called 
absorbing. Sometimes it is helpful to lay out the model i n the so-called transition probability 
graph, whose nodes are the states and whose arcs are non-zero transitions, see Figure 2.1. 

The model is init ial ised v i a the dis t r ibut ion po(s) := F(D(0) = s) and its transient 
probabil i ty dis t r ibut ion Pk(s) := F(D(k) = s) at t ime step k > 0 is 

We denote pk := \pk(s)]s£S to be the row vector of transient probabilities at t ime k and 
P := [P(r, s)]r,se5 to be the transi t ion probabil i ty matr ix . Recursion (2.1) can be then 
equivalently expressed as a vector-matrix mult ipl icat ion: 

F(D(k + 1) = s I D(k) = r, D(k - 1) = r f c _ i , . . . , D(0) = r 0 ) 

= F(D(k + 1) = s I D(k) = r) -. P(r, s), 

(2.1) 
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Figure 2.1: A simple D T M C . 

Pk = P k - i - P - (2-2) 

A n act of performing one such mul t ip l ica t ion w i l l be called an iteration, a probability prop
agation, a discrete time-step or s imply a step. A problem of finding transient dis t r ibut ion 
Pk is often referred to as the transient analysis of the chain. Comput ing this vector direct ly 
using (2.2) typical ly suffers from the state space explosion problem and we are therefore 
interested in providing an efficient and accurate approximation. 

Example 1. Let D = (S, P) be D T M C as i n Figure 2.1 that starts at state so, i.e. po = [1, 0, 0, 0] 
and the corresponding transi t ion probabil i ty mat r ix is 

P = 

0.8 0.2 0 0 
0.4 0.2 0.4 0 
0 0 0.4 0.6 
1 0 0 0 

Let us compute P 4 : 

P i = Po P = [0.8,0.2,0,0]; 

P2 = P i P = [0.72,0.2,0.08,0]: 

P3 = P2 P = [0.656,0.184,0.112,0.048]: 

P4 = P3 P = [0.6464,0.168,0.1184,0.0672] 

The final d is t r ibut ion describes probabilit ies of residing in each of the states at t ime 4, 
e.g. there is less than 0.7% probabil i ty that D T M C w i l l end 

2.1.1 M o d e l C h e c k i n g 

In general, a stochastic model checking [ ] is a method for verifying whether a system 
exhibits a certain property by calculat ing the l ikel ihood of occurrence of various events 
during its execution. M o d e l checking algorithms input a description of a model along wi th 
specification expressed in probabil ist ic temporal logic, and return a probabil i ty for a given 
model to satisfy this property. In the context of D T M C s , as a specification language we 
use Probabilistic Computation Tree Logic (PCTL), an extension of Computation Tree Logic 
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(CTL). A l though expressive capabilities of P C T L are quite r ich, the pr imary goal of this 
paper is to show that approximation techniques can be efficiently integrated wi th model 
checking algorithms. Therefore, we w i l l restrict ourselves only to specific types of formulae, 
the resulting framework can then be easily generalised to handle any k ind of specification. 
A n exhaustive description of P C T L syntax and of model checking procedures is presented 
i n [17]. Here we w i l l define properties of interest and algorithms for their evaluation in a 
straightforward way. 

Let D = (S, P) be D T M C wi th in i t i a l d is t r ibut ion pq. Let A be a predicate over states 
in S and let Sat(A) denote the set of states that satisfy A. A n expression [0- f c^4] asserts 
a property of the model of eventually reaching any of the states i n Sat(A) w i th in first 
k time-steps, assuming in i t i a l d is t r ibut ion po- Similarly, a formula [D-^-A] represents an 
event of never leaving subset of states Sat(A) w i th in first k time-steps, assuming in i t i a l 
dis t r ibut ion pq. Here we assume that the t ime horizon k is finite and consider only time-
bounded specifications. Operator 0 is called 'eventually', 'future' or 'diamond' ; operator • 
is called 'always', 'globally ' or 'box'. B y F(()-kA) or P(\J-kA) we w i l l denote the l ikelihood 
of the corresponding event happening. The following definition w i l l help us compute these 
probabilities. 

Definition 2. Let D = (S,P) be D T M C and let Sat(A) C S. A PCTL driven transfor
mation of D given A is a D T M C D[A] = (S, P[A]) where 

{ 1, i f r G Sat(A) and r = s 

0, i f r G Sat(A) a n d r / s 
P(r,s), otherwise. 

In other words, the resulting chain is this same chain wi th the states i n Sat (A) made 
absorbing, see Figure 2.2. 

Figure 2.2: A P C T L driven transformation of D T M C from Figure 2.1 given A = s G {S3}. 

Proposit ion 1. Let D = (S,P) be D T M C wi th in i t i a l d is t r ibut ion p0. Let D[A] be 

its P C T L driven transformation given A having the same in i t i a l d is t r ibut ion Pq^ '•= po 

and denote to be its transient probabil i ty dis t r ibut ion at t ime k. Then P(()-kA) = 

Justification of this proposit ion goes as follows. B y making each of the states a G Sat(A) 
absorbing, we ensure that any probabil i ty mass that reaches a never leaves this state. After 
k discrete steps, the to ta l probabil i ty mass accumulated i n a gives a probabil i ty of reaching 
it wi th ing k steps; the sum over a l l states in A then produces the desired result. 
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Notice that F(\D^kA) = 1 - P ( 0 - f c - ^ ) , i.e. the event of never leaving subset Sat(A) 
complements the event of eventually reaching a state i n Sat(->A) = S \ Sat(A). Using 
Proposi t ion 1, we arrive at the result: 

P ( D ^ 4 ) = 1 - £ P^A\a') = Y , P ^ A \ a ) . 
a'£S\Sat(A) a£A 

2.1.2 A d a p t i v e State-Space A g g r e g a t i o n 

A high-level description of an aggregation of a Markov model would be a clustering of its 
state space and then treating resulting clusters as states of a new Markov chain. Defining a 
suitable transi t ion probabil i ty function on this new clustered state space and working wi th in 
this abstract framework allows us to approximate transient probabilities of a concrete, 
unaggregated model, as well as provide bounds on the approximat ion error. A performance 
increase is achieved since now we are dealing wi th a smaller model . O u r starting point w i l l 
be the aggregation scheme presented i n [ ], applicat ion of which to discrete-time chains is 
described i n this subsection. 

Let D = (S, P) be D T M C . Let $ = {<pu <pn}, ( J " = 1 Pi = S, i ^ j <fii n ipj = 0 form 
a par t i t ion on S and be called the abstract (aggregated) state space. Elements ip G $ w i l l be 
called abstract states or clusters. B y expression \ip\ we w i l l denote the size of the cluster, 
i.e. the number of concrete states comprising i t . Clusters of size 1 w i l l be called trivial. Let 
LT : <£ x <£ -> M > 0 defined as 

n ( ^ ) = o E E p ^ ( 2 - 3 ) 

be the abstract transition probability function. The intui t ion behind this equation is that it 
encompasses the average incoming probabil i ty to cluster a from cluster p. A pair A = ( $ , LT) 
describes the abstract (aggregated) DTMC. The model is ini t ial ised using probabil i ty distr i
but ion 7To : $ —>• M>o defined as 

no(<r) = E p ° ( s ) ' 

that is, the probabil i ty of being i n cluster a at t ime 0 is the sum of the probabilit ies of 
being in either of its concrete states. Transient probabil i ty dis t r ibut ion at t ime step k > 0 
is then defined recursively: 

Kk(o-) = ^ 7 r f c _ i ( p ) n ( p , a ) . (2.4) 

Similar ly as before, we denote 7Tk = [7Tfc(cr)]0-e$ to be the row vector of transient probabilit ies 
at t ime k > 0, II = [IL(p, cr)] P i 0- e$ to be the abstract t ransi t ion probabil i ty mat r ix and 
express recursion (2.4) as 

TTk = 7 T k - l • L I . 

Having 7Tfc, we define pk • S —>• M>o to be an approximat ion of the concrete transi t ion 
probabilities Pfc(-) and compute it as follows: 
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Pk(s) 
TTfc(cr) 

s £ a. (2.5) 
a 

that is, the probabil i ty of a cluster is distr ibuted uniformly between its states. If we pick 
par t i t ion $ such that | $ | <C working wi th the abstraction ($ ,11) w i l l allow us to 
approximate pk using 7Tk much more easily than performing propagations (2.1) directly. 
A n error associated wi th this approximat ion can be derived from the structure of ($ , I I ) . 
Introduce the quanti ty 

and denote e(p) := ^o-e* e(P> a)- Let efc(s) := pk(s) — Pk(s) be the approximation error for 
state s at t ime k and let ek := [ek(s)]ses denote the corresponding row vector; the overall 
error is captured by its L i - n o r m that is quantified recursilvely: 

The term ||eo||i is called aggregation error and it describes the inaccuracy introduced when 
we replaced exact po w i th pQ. Addi t ional ly , dur ing each discrete step, a propagation error, 
associated w i t h the usage of abstraction II instead of P, is produced and is captured by 
e(-, •): this quanti ty accounts for the m a x i m u m difference, for a given pair of clusters, 
between the abstract t ransi t ion probabil i ty and (rescaled) pointwise incoming probabili ty. 
The product of 7Tk-i(p)e(p) hereby gives the (upper bound of) error generated from p, the 
sum over a l l abstract states i n (2.7) then yields the overall error. The reason for computing 
the L i - n o r m of ek and not ek itself is that, again, we want to reduce the computat ion 
complexity of the error estimation: equation (2.7) suggests that one step of this estimation 
is equivalent to performing a scalar product of vectors in the abstract (i.e. w i th reduced 
state space) setting. 

The transformation described above w i l l be referred to as a state space aggregation based 
on incoming transition probabilities. We have not yet discussed how a par t i t ion $ of S is 
obtained: update equations above can give suggestions on what such partit ions should be. 
Fi rs t , aggregation error captures point-wise difference po(s) — p~o(s) = po(s) — vro(c")/|cr| = 
Po(s) ~ X^s'eo-Po(-s')/l c rl) s o w e c a n minimise this error by aggregating together states wi th 
similar probabili ty. In Markov chains it is often the case that at any given t ime instance a 
majority of the probabil i ty mass is concentrated i n a part icular subset of states and that 
adjacent states (i.e. those connected by a possible transition) tend to have similar transient 
probabilities. 

Second, a propagation error that depends on both (approximate) transient probabil i ty 
dis tr ibut ion and error factor e suggest that we should minimise e(-) for clusters that cur
rently have significant transient probabil i ty and therefore use clusters of smal l size for such 
states. The in tui t ion behind this conclusion is that, when propagating probabil i ty from p to 

(2.6) 

(2.7) 

where 
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a, we are effectively forwarding probabil i ty mass (in one step) to those states in a that were 
previously unreachable (in one step) from any of the states i n p, see Figure 2.3; conversely, 
we are pushing probabil i ty to cluster a from those states in p that do not have any of the 
states in a as their direct successor. We are effectively accelerating the system and this 
probabil i ty mass forwarding is the source of the propagation error. Hence, we arrive at a 
conclusion that the size of the cluster should be inversely proport ional to its (approximate) 
transient probabil i ty: a state w i t h significant probabil i ty w i l l form a cluster of size 1, and 
therefore its neighbours, that are more likely to have significant probabil i ty as well, are also 
likely to form a t r i v i a l c luster 1 . O n the other hand, a group of states wi th smal l probabil i ty 
mass can be clustered together: an insignificant TT^Q w i l l cancel large e(). F ina l ly , states 
wi th moderate transient probabil i ty w i l l be aggregated to clusters of medium size. 

Figure 2.3: In (a) we consider a simple D T M C that determinist ically starts in the left-most 
state (numbers inside nodes denote current transient probabilit ies); i n (b) we construct its 
aggregation, notice how the first (second) state has effectively lost (gained) some probabil i ty 
mass - this is aggregation error; i n (c) we perform one i teration i n the abstract setting, 
observe that the right-most state has effectively gained, due to propagation error, some 
probabil i ty mass: in the unaggregated setting this state is unreachable unt i l after the th i rd 
iteration. 

These two rules gives us a hint, not a recipe, about how a par t i t ion is constructed. 
In [1], a state-space aggregation method was used to analyse biochemical systems and the 
clustering was created based on the a pr ior i known structure of the model as well as on 
the knowledge of underlying physical phenomena. Later , in Chapter 3, we w i l l develop a 
different approach that w i l l help us analyse chains w i t h an arbi trary structure of their state 
space. U n t i l then, assume that a specific clustering is given. 

Having the par t i t ion, we can compute 7To, estimate aggregation error ||eo||i, establish ab
stract t ransi t ion probabil i ty mat r ix II and construct a vector of error factors e := [e(a')] ( 7 e$. 
We then proceed by propagating probabi l i ty mass using abstract structures and quantify 
error using update equation (2.7). The final result pk is then constructed by deaggregating 
the state space and the probabil i ty dis t r ibut ion 7Tk, as in (2.5). 

Also , as we perform discrete steps, a probabil i ty dis t r ibut ion changes and at some time 
a cluster w i th large e(-) may accumulate a lot of probabil i ty mass and start to produce a 
significant error. Hence, we need to adapt our state space par t i t ion to the new (approxi-

^ o t e tha t for \p\ = \a\ = 1, e(p,a) = 0. 
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mate) probabil i ty dis t r ibut ion. A n adaptive state space aggregation is a method of using 
different clusterings sequentially i n t ime, where the quali ty of each clustering is quantified 
analogously, w i th the use of (2.7). One has to expl ic i t ly define when a par t i t ion is no longer 
to be considered inappropriate and a concrete realisation of this check w i l l be discussed in 
the next chapter. Final ly , since usually a system starts determinist ically in a concrete state 
(,Po(s) = 1 f ° r some s), we want to run the model for some time without aggregating it 
(i.e. using partit ions consisting of t r i v i a l clusters). The overall procedure is presented in 
A l g o r i t h m 1. 

A l g o r i t h m 1: Adapt ive state space aggregation of D T M C 

Input : D T M C (S, P), in i t i a l d is t r ibut ion po, t ime horizon k, parameter noAgg < k 
Output: pk, upper bound on ||ek||i 

1 i = 0; 
2 while i < noAgg do 
3 Pi+i = Pi • P; 
4 i = i+l; 
5 end while 
6 ( $ , 7Ti, II, err Agg, e) = aggregate^, P , p ;): 
7 e | | i = errAgg; 
8 while i < k do 
9 e Iii = e IK + • e T ; 

10 7Ti+l = 7Ti • II; 
11 i = i+l; 
12 if checkPartition(7Ti) = false then 
13 Pi = deaggregate(*,7Ti); 
14 ( $ , 7Ti, II, errAgg, e) = aggregate(S, P , p ;): 
15 E 111 = E 111 + errAgg: 
16 end if 
17 end while 
18 p k = deaggregate(*,7r k ) : 
19 return pk, e i ; 

Keep i n mind that since a problem of model checking t ime-bounded specifications of 
a D T M C is reduced to the problem of its transient analysis, adaptive aggregation can be 
util ised while working wi th the corresponding P C T L driven transformation. O n a final note, 
observe that we do not require a normalisat ion condit ion Vp G $ X^o-e* H(p, c ) = 1 to be 
true, i.e. mat r ix II might not be ' t ransi t ion' in a strict mathematical sense. In this case, 
elements of vectors 7Tk might not sum to one and therefore such vectors cannot be called 
'probabil i ty vectors'. Therefore, given II, abstraction ($ , II) might or might not be viewed 
as a D T M C according to the Defini t ion 1. However, we s t i l l want to associate elements 
of II w i t h t ransi t ion probabili t ies and elements of 7Tk w i t h transient probabilities i n the 
abstract setting. To avoid any confusion, we w i l l reserve the term 'stochastic' for matrices 
and vectors that satisfy the corresponding normalisat ion property. V io l a t ion of stochasticity 
should not discourage us from using such abstractions: functions II (respectively, 7Tfc) s imply 
serve as higher-level representatives of functions P (respectively, pt) on a new state space 
and provide us w i th approximations of their concrete counterparts. 
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Example 2. Consider D T M C from Example 1 and let us compute approximat ion P4. 
Denote OQ := {so}, o\ := { s i } , U23 := {525-83} and let the state space par t i t ion be $ = 
{do, cri, (J23}. T h e n TTO = [1,0,0], i.e. po = [1,0,0,0] and therefore | |eo| | i = 0 - none 
of the states has effectively changed its transient probabil i ty due to aggregation. The 
corresponding abstract t ransi t ion matr ix is 

n 
0.8 0.2 
0.4 0.2 
1 0 

0 
0.2 
0.5 

Error factors associated wi th this par t i t ion are: 

e(<70) = 0; 

e(<7i) = e(<7i,<723) = 0.6: 

e(<J23) = e(a23, 0"o) + e(o"23, 023) = 0.5 + 0.1 = 0.6. 

Cluster do produces no error since it and a l l of its successors are t r iv i a l . E r ro r in o\ orig
inates from probabi l i ty forwarding into cluster 023. Final ly , error in cluster 023 comes 
from 1) probabil i ty forwarding from s2 to previously inaccessible so and 2) propagat
ing probabil i ty to itself much differently as compared to unaggregated case. Let e := 
[e(<To), e(ui) , e(u23)]- N o w we can perform iterations using vectors and matrices of size 3: 

| |e x | | i = | | e o | | i + 7 ro-e T = 0; TTI = vr0 • II = [0.8, 0.2, 0]; 
| | e 2 | | i = l l e i j l i + 7Ti • eT = 0.12; vr2 = TTI • II = [0.72,0.2,0.04]; 
Sea Si = | |e2| | i + 7T2 • eT = 0.264; vr 3 = vr2 • II = [0.696,0.184,0.06]; 
| | e 4 j j i = jjesjji + 7T3 • eT = 0.4104; vr4 = vr 3 • n = [0.6904,0.176,0.0668]; 

from where p 4 = [0.6904,0.176,0.0334,0.0334]. For any state s the point-wise uncertainty 
is bound by 11111, that is, \p(s) —p(s)\ < 11e4111; exact calculations from Example 1 confirm 
this result. Note that we managed to obtain meaningful approximation, despite the fact 
that neither of II, 114 or P4 are stochastic. 

2.1.3 T h r e s h o l d A b s t r a c t i o n 

Threshold abstraction [ ] is yet another approximation technique that can be used for any 
class of Markov chains and its main idea for D T M C s can be described as follows. Let 5 
be the truncation threshold. We start w i th a probabil i ty d is t r ibut ion po and replace it w i th 
the dis t r ibut ion po by dropping the states that have negligible probabil i ty: 

* w - { o : ( s ) ' < 2- s> 

We then propagate probabi l i ty mass we are left w i th , obtaining pi, and then repeat trunca
tions before successive iterations. The resulting dis t r ibut ion p^ is an underapproximation 
of the true dis t r ibut ion since the probabil i ty mass that was truncated could have remained 
in a given state or might have been transported to other ones. The to ta l probabil i ty loss 
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1 — J2sesPk(s) then serves as an (exact) upper bound on the approximat ion error. Note 
that this technique can even be used for chains wi th an infinite state space because during 
each i teration we deal only wi th the sets of active/discovered states. 

Example 3. Consider again D T M C from Example 1 wi th in i t i a l d is t r ibut ion po = [1, 0, 0, 0]. 
Let 5 = 0.1 be the t runcat ion threshold. Then 

po = [1,0,0,0]; p i = po • P = [0.8, 0.2, 0, 0]; 
p i = [0.8, 0.2, 0, 0]; p 2 = p i • P = [0.72, 0.2, 0.08, 0]; 
p 2 = [0.72, 0.2, 0,0]; p 3 = p 2 • P = [0.656, 0.184, 0.08, 0]; 
p 3 = [0.656, 0.184, 0, 0]; p 4 = p 3 • P = [0.5984, 0.168, 0.0736, 0]; 

and | |e4 | | i = 1 — | | p 4 | | i = 0.16. State space reduction was achieved since during each 
iteration we have been working wi th at most three states at a t ime. 

The example above also illustrates one important property of threshold abstraction 
worth mentioning. Notice how s\ is constantly sending smal l portions of probabil i ty mass 
to S2 that are being immediately truncated. If S2 was absorbing (for instance, after a P C T L 
driven transformation during model checking), i n the long run, it could have accumulated 
a significant probabil i ty mass, yet constantly t runcat ing these smal l accruals would lead to 
an enormous error. In general, this does not happen wi th state space aggregation: working 
wi th clusters allows us to guess where the probabi l i ty is approximately located. O n the 
other hand, e-terms give us a rather conservative error bound compared to probabil i ty loss. 

2 . 2 Continuous-Time Markov Chains 

Now we w i l l generalise ideas from the previous section and introduce Markov chains that 
act in continuous time. 

Definition 3. [17] A continuous-time Markov chain (CTMC) is a pair C = (S,R), where 

• S is the set of states and 

• R : S x S —> M>o is the transition rate function. 

Similar ly as w i th D T M C s , we w i l l impl ic i t ly assume that the set S is finite. R is 
a function that for each pair of different states assigns a rate used as a parameter of 
an exponential dis t r ibut ion. Formally, a t ransi t ion from state r to state s can occur i f 
R(r, s) > 0 and the probabil i ty that this t ransi t ion is triggered wi th in t t ime units is 
1 — e~R(r's^'t. A probabil ist ic choice arises through race condit ion when for current state r 
there exist several states s such that R(r, s) > 0, the first t ransi t ion triggered then defines 
the next state of a C T M C . The t ime spent i n state r , before any such transi t ion occurs, is 
exponentially distr ibuted wi th parameter E(r) := ^2ses - ^ ( r ' s)> which is called the exit rate 
of state r . States for which E(r) = 0 are called absorbing. A C T M C is ini t ial ised v i a the 
dis tr ibut ion po(s) := P (C(0 ) = s). S imi lar to D T M C s , it is sometimes helpful to visualise 
C T M C s as a graph structure where edges represent non-zero transi t ion rates, as Figure 2.4 
suggests. 

Definition 4 . Let C = (S, R) be C T M C . An infinitesimal generator function Q : SxS —>• IK 
of C is defined as 

Q(r,s) 
—E(r), if r = s 
R(r,s), otherwise. 
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Figure 2.4: A simple C T M C . 

Definition 5. Let C = (S, R) be C T M C and Q be its infinitesimal generator function. Let 
q > m a x s £ s £ ( s ) be uniformisation rate. A uniformised DTMC of C given uniformisation 
rate q is a D T M C (S, uni f^) having transit ion probabil i ty function un i f | j defined as 

r i + Q(r,s)^ z y r = s 

u n i f | ( r , s ) = <̂  Q ( ) * ' , . 
[ V ' otherwise. 

A uniformised D T M C (£ , unif | j ) serves as a time-discretisation of the C T M C C = (S, R) 
wi th respect to the fastest event w i th rate q that can occur. Usually, we pick q to be the 
max imum exit rate i n S, which corresponds to the shortest mean residence t ime i n the 
system, although any value larger or equal tso this rate w i l l be sufficient. If r is the current 
state and r ^ s, then unifp(r , s) := S f c f l = gfcf) yields the probabil i ty of triggering the 
transi t ion from r to s given that any discrete transi t ion (i.e. including the one from r to r) 
occurs. Therefore, the complement 1 — ^2sesr=£s R^'s^ = 1 — = 1 + ^p- ='• umfq

R(r,r) 
gives the self-loop transi t ion probabil i ty from r to r . S imi lar ly as i n the previous section, 
we w i l l use symbols R, Q or unif^ to denote matrices associated w i t h the corresponding 
functions. We are interested in computing the transient probabil i ty dis t r ibut ion pt(s) •= 
P ( C ( t ) = s) for any t > 0, which is the interest of the uniformisation procedure. 

2.2.1 U n i f o r m i s a t i o n 

A n y Markov chain can be viewed [7] as a stochastic process X = {X(t),t G T} defined on 
a (discrete) state space S, acting i n t ime domain T and satisfying the Markov property. 
Probabi l i ty F(X(t) = s), s G S, t G T denotes the probabil i ty of residing i n state s at time 
t. The choice of a domain T determines the type of the chain we are dealing wi th : No for 
D T M C s , M > 0 for C T M C s . 

The main idea of a uniformisation method is to split C T M C C = {C(t),t G M>o} = (S, R) 
into two independent stochastic processes: {Dc(k),k G No}, Dc(k) G S and {Bc(t),t G K>o}, 
Bc{t) G N 0 such that 

pt(s) := F(C(t) = s) = F(Dc(Bc(t)) = s). 

Notice that DQ is a D T M C defined on the same state space as C and Be is a C T M C wi th 
an infinite state space. We w i l l refer to Be as a b i r th process associated wi th C . In the case 
where S is finite and a l l R(-, •) are bounded, the existence of such processes is guaranteed. 
F rom the independence of Dc and Be, we obtain: 
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oo 

F(Dc(Bc(t)) = s) = Y, HDc{k) = s) • F(Bc(t) = k). (2.9) 
fc=0 

Intui t ion behind this expression is as follows. Expression F(Dc(k) = s) represents a prob
abil i ty that C resides at state s after k 'discrete' jumps. Since we cannot know i n advance 
how many steps w i l l be performed, we invoke the to ta l probabil i ty theorem [3], where 
F(P>c(t) = k) captures a probabil i ty of performing k such steps wi th in t continuous time 
units. Intuitively, Dc keeps track of the current state of C and Be keeps track of an 
elapsed time (in probabil ist ic sense). Let us introduce shortcuts Uk(s) := F(Dc(k) = s) 
and j3k '•= F(Bc(t) = k) A concrete choice of Dc and BQ is of interest of the concrete 
uniformisation procedure. 

Definition 6 . Let C = (S,R) be C T M C . Standard uniformisation (SU) is a spl i t t ing 
(Dc, Be) according to the following rules: 

• q > m a x s g s B(s) is a uniformisation rate. 

• Bc = ( N 0 , RBc) is a C T M C s.t. F(Bc(0) = 0) = 1 and R B c is defined as: 

ft C -\ - / q> i f J = i + 1 

"BcKhJ) \ Qj o t h e r w i s e . 

• Dc = (S, unifjj) is a uniformised D T M C given rate q that has the same in i t i a l prob
abil i ty dis t r ibut ion as C. 

Figure 2.5: Poisson process wi th rate q. 

We recognise Be to be a pure birth process with constant rate q (i.e. Poisson wi th rate 
q), see Figure 2.5, for which analyt ical solution is known to be: 

Therefore, (2.9) becomes 
oo 

Pt(s) = Y/Ms)-i>qt(k). (2.10) 
k=0 

Final ly , for a given precision Efg, an iterative scheme of Fox and G l y n n [10] can provide 
bounds L, R such that 

R 

l - e f g < J 2 M k ) - (2-11) 
k=L 
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We can then truncate the infinite sum i n (2.10) to obtain an underapproximation of the 
true probabil i ty dis tr ibut ion: 

R 

k=L 

Combin ing (2.11) and (2.12), we arrive at the conclusion 

R R 

| | p t | | i = Ypt(s) = ^ ^ uk(s)i)qt(k) = Y^2uk(s)i)qt(k) 
seS s e S k = L k=Ls£S 

R R 

k=L s&S k=L 

>
 1

 "
 £

/<?> 

and therefore 

| |e t | | i = | |Pt - P t | | i = | | p t | | i - | | P t | | i = 1 - | | p t | | i < £fg, 

that is, we have a guarantee that the tota l probabil i ty loss that comes from truncation w i l l 
not exceed Efg. Notice that this proposit ion holds since transient probabilities Uk{s) sum 
to one. 

E x a m p l e 4 . Consider C T M C from Figure 2.4 having in i t i a l d is t r ibut ion po = [1,0,0,0]. 
Its t ransi t ion rate mat r ix is 

" 0 1 0 0 " 
2 0 2 0 
0 0 0 3 ' 

_ 5 0 0 0 _ 

We are interested in finding the transient probabil i ty dis t r ibut ion for this chain at time 
t = 0.4. The m a x i m u m exit rate is the one of S3, so q = 5 2 . Let Efg = 0.1. For this 
accuracy and the product q • t = 2, F o x - G l y n n procedure would return L = 0, R = 4 and 
V>q. t ~ [0.1353,0.2706,0.2706,0.1804,0.0902], where displayed values are truncated to four 
decimal places. R being equal to 4 means that we w i l l need to find distributions uo, - - -, 114 

for the uniformised D T M C . L being equal to zero means that we start to weigh these 
distributions start ing from the in i t i a l one. F ina l ly , the vector i/>q.t contains a l l five Poisson 
probabilities needed to perform this weighing from 0 to 4. Let Si := Ylk=o u k ' V'gt(^) 
denote the par t ia l sum. The uniformisation of R wi th rate q = 5 is the discrete chain from 

2 A n y numbe r larger or equa l to m a x s e s { - E ( s ) } w i l l do. I n prac t i ce , we o f ten choose m a x i m u m ex i t ra te 

mu l t i p l i e d b y 1.02, for nume r i c a l reasons. 
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Example 1 where we have already computed its probabil i ty distr ibutions. Therefore: 

s 0 = u o - W ( 0 ) ~ [0.1353,0,0,0]; 

si = s 0 + u i • ~ [0.3518, 0.0541, 0, 0]; 

s 2 = s i + u 2 • W ( 2 ) ~ [0.5467,0.1082,0.0216,0]; 

s 3 = s 2 + u 3 • W ( 3 ) ~ [0.6651, 0.1414, 0.0418, 0.0086]; 

s 4 = s 3 + u 4 • W ( 4 ) ~ [0.7234, 0.1566, 0.0525, 0.0147]. 

Final ly , pt = s 4 and | | e t | | i = 1 — | |pt | | i = 0.0526; we confirm that | | e t | | i < Efg. 

The main drawback of S U is that for large uniformisation rates q the mean of the Poisson 
dis t r ibut ion Vy(" ) is large and so is the upper t runcat ion point R. This means that to find 
the solution of C(t) one must perform plenty of iterations for the process Dc(k). Adapt ive 
uniformisation solves this issue by allowing the rates of the b i r th process to change i n each 
step. 

Definition 7. Let C = (S,R) be C T M C . Adaptive uniformisation (AU) [7] is a spl i t t ing 
(DQ, Be) accoring to the following rules: 

• Let qo, qi,... be an infinite sequence of uniformisation rates satisfying 

qi>max{E(s)\seS,Ui(s)>0}. (2.13) 

• Bc = ( N 0 , RBc) is a C T M C s.t. P ( B c ( 0 ) = 0) = 1 and R B c is defined as: 

/ • -N, _ / Qi, if j = i+l 
RBC{I,J) - I Qj o t h e r w i s a 

• Dc = (S, unif 1^) is a D T M C whose transi t ion probabil i ty mat r ix during t ime step i 
is a uniformisation of R w i th rate 

We start at discrete t ime 0 w i t h a subset of states i n S that have non-zero in i t i a l 
probabil i ty uo(-), such states w i l l be called active or significant. The largest exit rate qo 
from the states wi th in this subset is to be the (local) uniformisation rate. We then compute 
unif® to be the transi t ion probabil i ty matr ix for process DQ at t ime 0, perform probabi l i ty 
propagation and obtain ui(-). We then repeat the procedure of defining the subset of active 
states, finding (local) uniformisation rate q\, uniformising the rate mat r ix according to this 
rate and propagating probabili ty. Th i s way we obtain a sequence qo,qi, ••• and can construct 
a b i r t h process, see Figure 2.6. In order to solve this C T M C , we apply S U . Notice that 
V i G No qi < q where q > maxs&sE(s) - we can use q as a (global) uniformisation rate for 
BQ and its solution is 

oo 

f3k = J2nDBc(l) = k)-i,qt(l), (2.14) 
1=0 

where DBC is a uniformised D T M C associated w i t h Be, see Figure 2.6. Observe that for 
k = 0: 

F(DBo(l) = 0) = HDBcil ~ 1) = 0) • ( 1 - (2.15) 
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(a) o W i H ^ a 

1-qc/q 1-qi/q 1-q2/q 

(b) ( o F ^ - H 1 

Figure 2.6: A general b i r th process (a) and its uniformised D T M C (b). 

and for k > 0: 

F(DBc(l) = k)= F(DBc(l - 1) = k - 1) • ^ z l + P ( D B c ( £ - 1) = fc) • ( 1 - * ) . (2.16) 

Hence, to compute only rates q o , m u s t be known: the computat ion of itfc(-) and 
/3fe can be interleaved. Combin ing (2.9) and (2.14), we are able to compute transient 
probabilities for C T M C C: 

oo oo oo 

pt(s) = Ms) • Pk = Ms) • F(DBc(0 = • ̂ M 0 - (2-17) 
fc=0 fc=0 z=o 

The inner infinite sum can be truncated using the F o x - G l y n n scheme for a given precision 
£fg. The outer summing can be stopped after step R when 22k=ofik > 1 — £bp for a given 
precision e^p < £fg> a n d so (2.17) becomes 

it' it 

pt(a) ^ J ^ u * ( s ) - Z ) P ( £ > ^ ( 0 = * ) - ^ ( 0 - ( 2 -!8) 
fc=0 Z=L 

B o t h truncations lead to an underapproximation of the true probabil i ty dis t r ibut ion and 
the to ta l error is given by the probabil i ty loss 1 — | |pt | | i w i th an a pr ior i specified bound 

-bp-

Example 5. Consider again C T M C (S,R) and t ime bound t from Example 4 and let 
£fg = £bp = 0-1; global uniformisation rate q, t runcat ion bounds L , R and a Poisson distr i
but ion V v ( ' ) f ° r ^ n e m n e r b i r th process remain the same. Let Si := X]fc=o u k ' Pk denote 
the par t ia l sum. Let V k := [F(DBc(0) = k), ...,F(DBC(R) = k)] be the solution of the b i r th 
process for the 'outer' discrete t ime horizon k; note that is not a probabil i ty dis t r ibut ion 
and its entries are not supposed to sum to one. 
Iteration i = 0: 

1. in i t i a l d is t r ibut ion for uniformised D T M C is uo = [1, 0, 0, 0]: 

2. so is the only active state, therefore, qo = E(so) = 1; 

3. using (2.15), we obtain v 0 = [1,0.8,0.64,0.512,0.4096]: 
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4. A, = v 0 • VqtT = 0.6544: 

5. s0 = u 0 - A) = [0.6544,0,0,0]: 

6. X]fe=o^fc = 0-6544 < Ebp, so we need to push probabil i ty and move on to the next 
iteration: 

7. ui = u 0 • unif£° = [0,1, 0, 0]. 

Iteration i = 1: 

1. s i is the only active state, so q\ = E(s\) = 4: 

2. using (2.16), we obtain vi = [0,0.2,0.2,0.168,0.136]: 

3. 0! = vi -VqtT = 0.1508; 

4. si = s0 + ui • ft = [0.6544, 0.1508, 0, 0]; 

5. X]fc=o A = 0.8052 < Ebp, more iterations needed; 

6. u 2 = ui • unif^1 = [0.5, 0, 0.5, 0]. 

Iteration i = 2: 

1. so and «2 are active, so qi = max{E(so), E(si)} = m a x { l , 3} = 3; 

2. using (2.16), we obtain v 2 = [0,0,0.16,0.224,0.224]; 

3. /32 = v 2 - V q t T = 0.1039; 

4. s2 = si + u 2 • /32 = [0.7064, 0.1508, 0.0519, 0]; 

5. Ylt=o Pk = 0.9092 > Ebp, we can now stop iterations. 

Final ly , pt = s2 and | | e t | | i = 1 — ||pt||i = 0.0907. We confirm that | | e t | | i < Ebp- Notice 
that, instead of four vector-matrix mult ipl icat ions performed i n 4, we needed only two. 

The main advantage of A U lies in the fact that uniformisation rates qi are 'discovered' 
w i th probabil i ty propagation and there is a chance that at a given t ime i, qi <C q, which 
allows a b i r th process to j ump at lower rates and therefore it is possible that R' w i l l be 
substantially lower than R. Numerical ly, this allows to perform much less vector-matrix 
multiplications to solve for DQ and at the same time arrive at the same result w i th the same 
accuracy as S U 3 . Furthermore, threshold abstraction can be used w i t h both S U or A U to 
solve for DQ , al though it is par t icular ly favourable w i t h A U since t runcat ing the state space 
using threshold 5 > 0 leads to smaller subsets of active states and a b i r th process can jump 
at even slower rates qi. In the sequel, we w i l l refer to the combinat ion of S U wi th threshold 
abstraction as fast SU (FSU), and to the combination of A U w i t h threshold abstraction as 
fast AU (FAU)4. A l so note that i n this case probabil i ty loss is the only way to estimate the 
approximation error since an a pr ior i specified error bound cannot be guaranteed. 

3 One could argue that the complexity of (2.12), which is R, is substantially lower than that of (2.18), 
which is R' • R, since during each step we must solve for a bir th process. However, due to its extremely 
simple structure, this computation is tr ivial compared to a vector-matrix multiplication needed to compute 
Ufe(-). However, as wi l l be shown later, in some cases solving for Be can become more noticeable. The 
bottom line here is that A U wil l always demonstrate better performance than S U , although this increase 
may not correlate wi th the reduction ratio R/R', see experiments at the end of Section 4.2. 

4 I n this case F S U can be used while solving a bir th process to further decrease complexity of the com
putation. 
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2.2.2 M o d e l C h e c k i n g a n d A g g r e g a t i n g C T M C s 

A l l the model checking procedures defined for D T M C s i n Subsection 2.1.1 automatical ly 
translate into the continuous case and can be applied i n combination wi th uniformisation 
techniques. In the case of C T M C s , the specification language is Continuous Stochastic 
Logic (CSL) that is also based on C T L . For the same reasons mentioned earlier, we w i l l 
restrict ourselves to its subset and consider only operators 'eventually', 0 ~ * A and 'always', 
\3—A. The i r semantics is defined analogously as i n the discrete case, except that bound 
t (again, s tr ict ly finite) is now considered on a continuous t ime-domain. A CSL driven 
transformation is, again, constructed by forcing states in Sat(A) to be absorbing. The 
desired probabil i ty A) (respectively, P ( D - * A ) ) for a given C T M C can be found using 
uniformisation to compute transient probabilities at t ime t of its C S L driven transformation 
and summing the resulting state probabilit ies over the set Sat(A). The resulting value is 
an underapproximation of the true probabil i ty and the upper error bound is again given by 
1 — | | p ^ ' A ' ( s ) | | i , since this value encompasses a to ta l probabil i ty loss for each of the states 
in S. A comprehensive description of C S L model checking can be found i n [17]. 

A s to the state space aggregation, one could suspect that it can be integrated wi th 
e.g. standard uniformisation while solving for uniformised D T M C . This idea was outlined 
in [1] and w i l l be reviewed i n Chapter 4, where we w i l l formalise this approach and rigorously 
derive bounds on the approximat ion error. 

20 



Chapter 3 

Adaptive Aggregation for D T M C s 

The goal of this chapter is to develop ideas presented in [1] and introduce a notion of 
a general state-space aggregation for discrete-time Markov models. Th is w i l l allow us to 
explore various aggregation schemes as well as obtain a better approximation error estimate. 

Definition 8 . Let D = (S,P) be D T M C wi th in i t i a l d is t r ibut ion p0. Let P : S x S -> M 
be any real function relating each pair of states, let po : S —>• R be a function that to each 
state assigns any real number and let functions pk • S —>• M , fc > 0 be recursively defined as 

Funct ion P w i l l be referred to as an approximation of P, functions pk as approximations of 
Pk and a structure (S,P) w i l l be referred to as an approximation of DTMC D. 

We are also interested in computing an approximat ion error efc(s) := Pfc(s) — Pk(s). 
Firs t , note that eo(s) = Po(-s) — Po(s) captures an error associated w i t h using po instead of 
Po- For k > 0, we argue as follows: 

(3.1) 

or, using mat r ix notation: 

Pk = P k - i • P- (3.2) 

Pk(s) + efc(s) = ^2 (Pfc-i(r) + e f c _i(r ) ) ^ P ( r , s) - P ( r , s) + P ( r , s)^ 

= ^ P f c - i ( r ) P ( r , s ) + ^ e f c _ i ( r ) P ( r , s ) + 

:Pfc(s) + ^2 e fc - i ( r )P( r , s) + ^pk-i(r) (P(r, s) - P ( r , s)) 
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from where 

efe(s) Y ek-i(r)P(r, s) + y ~ ] p f c _ i ( r ) ( P ( r , s) - P ( r , s)) . 
reS 

(3.3) 

reS 

This recursive formula gives us an insight into how an error is generated when we approx
imate a D T M C . The first summand represents a casual propagation of existing error as i f 
we were using exact transitions P ( r , s) for probabi l i ty propagation. O n the other hand, the 

term pk-i(r) (^P(r, s) — P ( r , s^j captures an error that is generated i n each step between 

states r and s while using an approximat ion P(r,s) instead of P(r,s); the sum over a l l 
states then yields the to ta l error generated into state s. If e k is a row vector associated 
wi th function e^, then for its L i - n o r m we obtain: 

| ek | | i = Y \ek(s) 
ses 

seS 

ses 

Y ek-i(r)P(r, s) + y~]pfc_i(r) (P(r, s) - P(r, s) 

res 

Yek-i(r)P(r,s) 
res 

res 

+ £ 
ses 

YPk-i(r) (P(r, s) - P(r, s) 
res 

Let us inspect the first term: 

ses 
Yek-i(r)P(r, s 
res 

< Y Y \ek-i(r)\P(r, s) = Y Y H-i(r)\P(r, s) 
sesres resses 

J ^ | e f c _ i ( r ) | J ^ P ( r . a ) = ^ | e f c _ i ( r ) | = | | e k _ i | | i , 
res ses res 

and therefore update equation for the L i - n o r m of the error vector at t ime k becomes 

| ek | | i < | | e k - i | | i + Y 
ses 

Ypk-
reS 

(r) P(r, s) - P(r, s) (3.4) 

where 

| | e 0 | | i = Y\P°(S^ ~Po(s)\• 
ses 

Let us now introduce a special class of approximate D T M C s . 

D e f i n i t i o n 9. Let D = (S, P) be D T M C and let $ be a clustering of S. Let II : $ x $ -> M 
be any real function relating each pair of clusters and define 7TO(<J) : = ^2sGaPo(s). Then an 

approximation (S,P) of D T M C D where P(r,s) = U ^ ' 1 , r £ p, s G a and po(s) = , 
s G a w i l l be referred to as a state-space aggregation of D given abstract state space $. 
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Notice that 

TTO(O-) 
s, a ' G a ^ p o ( s ) = P o ( S 0 

Similarly, 

(r, r ' G p), (a, a' G a) P ( r , s) = P(r', s') = ^Rlfl 
\a\ 

and therefore update equation (3.1) yields 

s,s' Go- pk(s) = y ^ P f e - i (r)P(r, s) = y~]pk-i (r)P(r, s') = pk{s). 
res res 

Three equalities above illustrate an important property of aggregation: any two states 
from two given clusters have the same approximate transi t ion probabil i ty P(-,-) and any 
two states i n a given cluster at any t ime step k > 0 share the same value of approximate 
transient probabi l i ty Pfc(-). Hence, instead of computing transient probabilit ies for each of 
the states, we can compute them for a single state wi th in each cluster or, equivalently, for a 
cluster as a whole. Let 7Tk(cr) := ^2seafik(s), k > 0; conversely, Pfc(a) = ^ j f f i , s G a, k > 0, 
due to Defini t ion 9 and the argument above. Then for k > 0: 

TTfc(o-) = 5^P~ f c (s) = J2J2pk-i(r)P(r,s) 
sea sea reS 

= E E E M ' ) f ( r , » ) = E E E " u M " t r ' 

sea pG$ rep SECT pG$ rep 1 1 ' ' 

= TTfc-l(p) n (p , OJ = 7Tfc-l(p) II(p, d ) y > y > 1 

2-^2^2^ \n\ \a\ 2.^1 \p\ \ a \ Z^i 
pe<j> sea rep 1 1 1 1 pe$ 1 1

 1 1 SG<X rep 

= ^ 7 T f e _ i ( p ) n ( p , a) , 

or in the mat r ix notation: 

7i"k = v r k _ i • IT. (3.5) 

Hence, we can operate w i t h vectors ir^ instead of p k . A s to an error associated wi th this 
aggregation, the second term i n (3.4) becomes 
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E 
ses 

^ p f e _ i ( r ) ( P ( r , s ) - P(r,s] 

E E 
o-e$ see-

51 Pfc-i ( r ) (^( r > s ) ~ P ( r > s ' 
rep 

E E 

E E 

crg$ SGCT 

E E 

E E 

E E 
pe$ rep 

TVk-i(p) /n(p,o-
|P | 

y-^ TTfc-l(p) v-> 

p £ $ 1̂1 rGp 

7Tfc_i(p) ^ |p | 

^ \P\ 

n(p,a) 

P(r,s] 

P(r,s] 

ten(ft,)-^p(M) 
V ' rep / 

E - - W ^ - ^ E ^ > ) 
pe$ \ 1 1 I r i rep / 

(jg$ se<r pe$ 

= Z)Z)Z) 7 r f c - 1 ^) 
pe$ o-e$ se<r 

= ^ 7 T f c _ 1 ( p ) ^ ^ 
pe$ o-e$ seo-

n(p,a) 

rep 

n(p,a) 
0" IPI rep 

n(p,a) 
0" 

rep 

If we denote r (p , a) := X s £ ( 7 ~ p E r e p P ( r ' s ) a n d T(p) : = S c t G $ t (P> T H E N F O R 

the L i - n o r m of the error vector we obtain 

| e k | | i < | | e k _ i | | i + ^ 7 r f c _ i ( p ) r ( p ) . 
pe$ 

(3.6) 

Equations (3.5) and (3.6) allow us to compute approximation of the transient probabil i ty 
dis tr ibut ion as well as an upper bound on the L i - n o r m of the error vector. Note that neither 
II(-, •) nor T(-) change as t ime progresses: these values can be computed only once before 
the first propagation and i n the case where | $ | <C | 5 | , using (3.5) and (3.6) instead of 
(3.2) and (3.4) w i l l be more efficient. We have arrived at the same framework for D T M C 
approximate analysis as the one described i n Section 2.1.2. W h a t differs, however, is that 
newly derived procedures apply to any aggregation scheme IT, not only to (2.3). This allows 
us to experiment w i th different strategies and find the most suitable one. Furthermore, 
observe that 
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SSCT 

max 
SSCT 

U(p,a) 

\P\ 

n(p ^)-r! Ep( r> s' 
rep 

< \o~\ max 

=: e(p, a) 

<J P ^ 

and therefore (3.6) gives us a better error estimate than existing bound i n (2.7). To con
clude, we are now able to apply arbi t rary aggregation scheme II and compute approximation 
error w i th a better error bound. Let us introduce several aggregation schemas that w i l l be 
of great interest later on, once we establish the pr inc ipal aggregation algori thm: 

• state-space aggregation based on incoming t ransi t ion probabilit ies [1]: 

• state-space aggregation based on outgoing t ransi t ion probabilities: 

(3.7) 

n •oul. (3.8) 
aGp SGCT 

median-based state-space aggregation: 

n m e r f ( p , a) = med j ^ P(r, s) j . (3.9) 

It is necessary to explain where each of this schemas comes from. The first one originates 
from [ ] and was in detail described i n 2.1.2. Inspired by this approach, the second scheme 
was designed wi th one specific goal in mind , namely, observe that for each cluster p: 

£ I W P , *) = E h E E ^> *) = p E E E ^> -) 
gc£ IP' rSp SSCT f"Sp o-e$ SSCT 

rep seS ^ C / i rSp 

i.e. mat r ix I I o u i is stochastic, so vectors 7Tk (and therefore f>k) are stochastic as well and 
the abstract chain ($ , I I O U ( ) is the D T M C i n view of Defini t ion 1. This subtle difference 
has two large benefits. F i rs t , from the technical standpoint, this leads to a slightly better 
approximation compared to (3.7), as w i l l be shown later. Second, preserving stochasticity 
of p k w i l l be the key to safely use uniformisation method and F o x - G l y n n algori thm when 
dealing wi th C T M C s . 

The median-based scheme was derived using the following argument. Assume a specific 
state space clustering is given. We can arbi t rar i ly define our abstract t ransi t ion probabilities 
LT(-, •) and the approximat ion error accrual in each i teration w i l l be captured by (3.6). In 
order to minimize this accrual, it is sufficient to minimize each of the 
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r(p,cr) := ^ 

by picking a suitable n ( p , cr). We can safely pu l l \a\ in denominators out of the absolute 
value and instead minimize 

n ( /^ ) -nE p ( r ' s 

p\ 

We recognize this as a problem of min imiz ing the sum of the absolute deviations, for which 
solution is known [22] to be 

n(p , a) = med < {4 E P ( r ' s ) f = " M m ^ d ^ E P ( r ' s ) f ' 

So, in theory, this approach should give us the most accurate error bound. Notice that in 
this case Iimed is not stochastic. 

3.1 Adaptive aggregation algorithm 

For now we have been assuming that a specific state-space aggregation $ of S was given. 
Let us now describe how to construct such par t i t ion for a D T M C having arbi t rary structure 
of its state space. Also , i n order to use adaptive aggregation as described i n A l g o r i t h m 1, we 
need to specify a procedure for determining whether a par t i t ion is suitable for the current 
probabil i ty dis t r ibut ion. 

Firs t , we define adjacency of two states to be measured based on (mutual) t ransi t ion 
probabilities: a pair of states that are connected by a significant t ransi t ion probabi l i ty are 
'coupled' (in a probabil ist ic sense) and are good candidates to form a cluster. One would 
intui t ively suggest this approach when treating a Markov chain as a directed weighted 
graph. Second, a requirement of cluster size to be inversely proport ional to its transient 
probabil i ty w i l l be fulfilled by performing the clustering in a bottom-up fashion, where we 
try to merge clusters together unless their resulting probabil i ty exceeds a given threshold 5. 
This way, states wi th significant probabil i ty mass (i.e. above threshold 5) w i l l automatical ly 
form t r iv i a l clusters; conversely, states having negligible probabil i ty w i l l be aggregated to 
large clusters. Combined wi th the definition of adjacency mentioned earlier, it w i l l allow us 
to adequately par t i t ion any state space, regardless of its structure. The overall par t i t ioning 
A l g o r i t h m 2 is presented below. 

O n line 1, we sort a l l transitions in descending order; this way we establish levels of 
adjacency between the states and then we favour those pairs of states connected by the 
most significant transitions by t ry ing to aggregate them first. O n lines 2 to 4 we construct 
a par t i t ion consisting of t r iv ia l clusters. We then proceed from the bot tom to up and t ry 
to merge clusters together. F i r s t , we pick states src and dst that represent the source and 
the destination of a significant t ransi t ion from T; then we find clusters p and a containing 
the corresponding states and then merge them if their resulting probabil i ty sum w i l l not 
exceed a specified threshold 5. 
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A l g o r i t h m 2: State space par t i t ioning of a general D T M C 

Input : D T M C (S, P), i n i t i a l d is t r ibut ion po, probabi l i ty threshold 8 
Output: Pa r t i t i on $ of S. 

1 r = sor t (P) ; <£ = 0; 
2 for s £ S do 
3 $ = $ U {{*}}; 
4 end for 
5 for (src, dst) G T do 
6 p = clusterOf(src); cr = clusterOf (dsi); 
7 if p / cr and 7r(p) + 7r(cj) < (5 then 
8 $ = ( ( ^ \ { p } ) \ W ) U { p U a } ; 
9 7r(p U cr) = 7r(p) + 7r(cr); 

10 end if 
11 end for 
12 return $; 

Similar ly as i n Section 2.1.2, we w i l l use several parti t ions that w i l l adapt to the cur
rent probabil i ty dis t r ibut ion. The moment when a given par t i t ion is no longer consid
ered to be appropriate is detected when any non- t r iv ia l cluster has accumulated a non-
negligible amount of probabil i ty and hence starts to generate a significant error, i.e. proce
dure checkParti t ion() from A l g o r i t h m 1 asserts condit ion Vcr £ $ \a\ > 1 =4> ^ ( c r ) < S • 6', 
where 6' is some parameter. The choice of the parameters S and 6' natural ly allows us 
to adjust aggregation behaviour. For the choice of 5, b ig values w i l l allow the clustering 
procedure to merge more states together, so larger values of 5 usually mean larger state 
space reduction (and larger error). O n the other hand, 6' is a parameter that controls how 
frequently reaggregations are performed: i f 6' = 1, par t i t ion is no longer appropriate as 
soon as some cluster p accumulates probabi l i ty 7r(p) larger than 5, and this can happen 
even after one iteration; i f 6' > 1, it gives a par t i t ion checker some sort of inert ia i n the sense 
that now a cluster can accumulate more probabil i ty without being considered inappropri
ate. So, larger values of 5' w i l l result i n less frequent reaggregations (and larger error). 
In both cases there is no guarantee on the m a x i m u m number of clusters or the m i n i m u m 
number of reaggregations. Notice that the choice of parameters gives rise to the conflict of 
efficiency versus precision: large 5 allows to aggregate more and reduce complexity of the 
vector-matrix mult ipl icat ions, for the price of increased error; similarly, large 5' allows us 
to recluster less frequently, again, for the price of increased error. 

O n a final note, let us agree that a more straightforward way of establishing a par t i t ion 
would be to minimize error in (3.6) while satisfying some addi t ional constraints (e.g. a 
desired state space reduction). A l t h o u g h we studied general techniques for identifying 
clusters i n directed graphs [20], none of them provided an elegant and efficient solution to 
the problem. Therefore, several heuristics described above were taken into account that 
gave rise to A l g o r i t h m 2. Also , note that i n this a lgor i thm we require 7r(p) to satisfy a 
certain condit ion, not the product of 7r(p) • r (p) (which w i l l u l t imately generate an error). 
The reason for this is that constructing r- terms on the fly is computat ional ly demanding, 
so they are computed only after a par t i t ion is established. Analogously, dur ing par t i t ion 
check, we assert whether 7r(p) (not the corresponding product) satisfies a certain condit ion, 
because we have a guarantee that for 8' > 1 our par t i t ion is val id before the first probabi l i ty 
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propagation. However, in practice, asserting whether 7r(p) or ir(p) • r (p) satisfies a certain 
threshold does not lead to inherently different behaviour of the par t i t ion checker. 

3.2 Experimental evaluation 

Having now a broad arsenal of aggregation schemes and a complete a lgori thm they can 
be integrated into, it is t ime for experimental evaluation. Adapt ive aggregation procedure 
accompanied by a l l three schemes (3.7)-(3.9), as well as D T M C analysis based on threshold 
abstraction, were implemented i n P R I S M , explicit engine; this engine does not use symbolic 
data structures for model construction and was proved to provide the best performance for 
general models of a moderate size (up to ~ 10 7 states). A l l of the experiments (including 
those i n the next chapter) are run on a Cen tOS 6.5 server w i t h 12x Intel X e o n E5-2640 (6 
cores at 2.5 G H z ) and 64 G B R A M wi th a l l the algorithms being executed sequentially (1 
thread). 

In our first set of experiments, we t ry to apply ind iv idua l aggregation schemes i n various 
scenarios on analysing a simple D T M C and compare the achieved accuracy, both empirical 
(comparing to exact result) and theoretical (upper error bound on the L i - n o r m ) . We 
perform these experiments on two different models of different sizes exhibi t ing distinctive 
behaviour to eliminate any bias regarding the choice of the model under investigation. 
Overal l , we perform three different experiments having various goals i n mind: 

• Exper iment 1 ( E l e , E l t ) : We evolve the model for 100 (exact) steps, then perform 
our first par t i t ioning and compute abstract t ransi t ion matrices using three differ
ent approaches: median-based (Med), based on average outgoing (Out) or incoming 
(In) t ransi t ion probabilit ies. T h e n we perform a single step in this abstract setting. 
In a l l cases we w i l l be using the same value of aggregation threshold and therefore 
each scheme w i l l be working wi th exactly the same state space par t i t ion. We report 
empirical error (E l e ) and theoretical error bound on the propagation error ( E l t ) , 
i.e. ||eioi||i without aggregation error ||eioo||i, which would be same i n a l l cases since 
each technique uses the same state space pa r t i t i on 1 . The differences i n the obtained 
values w i l l arise only from of using different abstract t ransi t ion matrices. The goal 
of this experiment is to compare one-step behaviour of the various abstract transi
t ion functions. For the case of average incoming probabilities, we w i l l also compute 
theoretical bound using (2.7) (In') to check whether the new bound (3.6) (In) gives a 
better approximation. 

• Exper iment 2 (E2e, E2 t ) : Same as E l e & E l t , but after aggregation we perform 100 
consecutive steps without reclusterings. The goal of this experiment is to demon
strate the long-term behaviour of different aggregation approaches. A g a i n , the value 
reported i n E2t is ||e2oo||i ~~ Heioo||i> i-e. bound on the propagation error during each 
of the 100 steps after first aggregation. 

• Exper iment 3 (E3e, E3 t ) : Same as E2e & E2t , but dur ing 100 steps after the first 
aggregation we w i l l perform 10 addi t ional reclusterings at fixed times (105, 115, 125 
etc.). Since for each of the schemas the probabil i ty distributions during the corre
sponding times w i l l be approximately the same and the aggregation error is negligible 

1 W e could also filter out aggregation error in E l e , although it wi l l hardly make us any good: in this case 
errors are 'sign-sensitive' and can cancel each other out during the 101th step. 
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compared to propagation one, in E3t , again, we report only the bound on the prop
agation error. The goal of this experiment is to investigate behaviour of various 
approximations under regular reaggregations. 

E l e E l t E2e E2t E3e E3t 
M e d 1.93E-23 9.77E-24 3.59E-4 3.71E-4 3.50E-4 3.50E-4 
In ' 

2.07E-23 
1.31E-20 

3.58E-4 
1.33E-1 

2.01E-17 
7.17E-14 

In 
2.07E-23 

1.28E-23 
3.58E-4 

3.86E-4 
2.01E-17 

2.81E-17 
Out 2.51E-23 1.65E-23 6.40E-4 8.95E-4 2.85E-20 2.04E-19 

Table 3.1: Accuracy of various aggregation schemas. Mode l : Lotka-Vol te r ra [13], N = 400 
(160k states), 5 = l E - 2 5 . 

E l e E l t E2e E2t E3e E3t 
M e d 1.24E-9 8.09E-11 1.25E-7 1.40E-7 1.27E-7 1.27E-7 
In ' 

1.26E-9 
4.39E-6 

1.21E-7 
1.06E-2 

1.02E-7 
2.10E-4 

In 
1.26E-9 

1.07E-10 
1.21E-7 

1.52E-7 
1.02E-7 

1.11E-7 
Out 1.29E-9 1.27E-10 1.94E-7 2.80E-7 1.68E-8 3.17E-8 

Table 3.2: Accuracy of various aggregation schemas. M o d e l : Prokaryot ic Gene Expression 
[16], maxPop = 9 (700k states), 5 =1E-10 . 

The results for two different models of two different sizes are showed in tables 3.1 and 3.2, 
where the displayed values were truncated to two decimal places. F i rs t , from a l l experiments 
we unequivocally confirm that the new error bound (3.6) indeed gives several orders of 
magnitude better estimate than the one based on e-terms (2.7). Second, experiment 1 
shows us that median-based aggregation exhibits the best one-step behaviour, followed by 
incoming, followed by outgoing. T h i r d , in experiment 2 we see a severe accuracy decrease in 
al l of the methods: probabil i ty dis t r ibut ion has changed and in the absence of reclusterings 
we obtain a significant error. Four th , al though median-based aggregation performs slightly 
worse than incoming averaging, its theoretical bound of the actual error is s t i l l the best 
one. F ina l ly , in experiment 3 we see that reclusterings can drastically improve the si tuation 
for incoming and outgoing approaches, w i th the latter having an edge of a couple of orders 
of magnitude. 

The difference in the obtained values arises from how an ind iv idua l scheme handles the 
problem of probabil i ty forwarding into big clusters. Median-based aggregation is very likely 
to pick med jX^rep -^(r's)} e c L u a l to zero, because a majority of states i n a big target cluster 
would be inaccessible in one step. Hence, no probabi l i ty forwarding occurs at a l l , and the 
error is generated by the opposite effect: states that are accessible in one step w i l l not get 
any probabi l i ty at a l l . In the long run, it seems to be ineffective because abstract transitions 
equal to zero now decelerate the system and reaggregations cannot improve the situation: 
median-based aggregation, as expected, produces the best error bound of its actual error, 
yet this error is intr insical ly poor and the scheme is of no great use to us. O n the other 
hand, strategies based on averaging always some probabil i ty mass, and 

the incoming version seems to be advantageous because a large size of a successor can 
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alleviate abstract t ransi t ion probabil i ty and probabi l i ty forwarding would be less apparent 
as compared to outgoing. The latter, however, seem to be much more susceptible to regular 
reclusterings. 

In the next set of experiments, we put a l l the approximat ion techniques to the real test. 
We pick a concrete model, namely, Lotka-Vol te r ra of 0 . 5 M states and compute approxi
mat ion of its transient probabil i ty dis t r ibut ion at t ime 10000. For a given precision (Acc) , 
ranging from le-1 to le-5, each method is required to compute the result as fast as possible 
guaranteeing this precision; an accuracy of the method is computed using (3.6) for outgo
ing (Out) and incoming (In) averaging, using (2.7) for incoming (In') averaging and using 
probabil i ty loss for threshold abstraction (Tru). To ensure a fair comparison, parameters 
for each of the methods are tuned indiv idual ly in each of the experiments i n order to obtain 
the best computat ion time. Concrete values of parameters that yield the presented results 
as well as other statistics (total number of aggregations, state space reduction, etc.) can be 
found i n e x p e r i m e n t s . t x t file on the accompanying storage device. Results of this exper
iment are presented i n Table 3.3 where we report acceleration wi th respect to the reference 
computat ion (10000 usual mult ipl icat ions of matrices of size 0 .5M) . In this table we d id not 
include data for median-based aggregation since for such large t ime horizon this approach 
failed to produce reasonable results. The choice of the model was completely arbitrary, and 
none of the methods could be more advantageous than other while analysing it , at least to 
our knowledge. 

A c c 1E-1 1E-2 1E-3 1E-4 1E-5 
Out 6.029 5.712 5.206 4.789 4.715 
Tru 5.142 4.944 4.720 4.541 4.541 
In 4.059 4.059 3.201 3.201 3.181 
In ' 3.380 2.935 2.785 2.785 2.650 

Table 3.3: M a x i m u m performance of various aggregation techniques. M o d e l : Lo tka -
Volterra , N = 700 ( .5M states), 10000 steps . 

It is clear that Out > In > In'. Second inequality comes from the usage of better 
theoretical bounds, which means that incoming averaging that uti l ised r instead of e can 
make use of larger empir ical error (by clustering more or reclustering less) to guarantee a 
certain precision. The first inequality is explained by the fact that outgoing averaging is 
more susceptible to reaggregations, and therefore fewer of those are required to guarantee a 
certain precision. We basically confirm our results from the first set of experiments. W h a t 
is new here, however, is the i l lustrat ion of behaviour of the state space truncation, which 
seems to be slightly inferior to outgoing averaging. Let us repeat this experiment w i th a 
different model, namely, a uniformised version of the two-component signalling pathway 
[25]; also, instead of transient analysis, bo th techniques w i l l perform model checking. 

State-space aggregation is a clear winner here. Let us also evaluate the precision of 
both methods s imilar ly as in Table 3.1. We pick the same Lotka-Vol te r ra model of size 
160k from the first group of experiments and evaluate it using outgoing averaging (Out) 
and threshold abstraction (Tru). The strategy here is the following. Fi rs t , we perform 100 
exact steps, then we start approximat ing using the same aggregation/truncation threshold: 
w i th aggregation, states w i t h probabil i ty below this threshold w i l l be aggregated; w i th 
threshold abstraction, such states w i l l be truncated. This way we perform 1, 100, 300, 
500, 700 or 900 discrete steps more (in the case of aggregation, we also perform regular 
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A c c 1E-1 1E-2 1E-3 1E-4 1E-5 
Out 9.191 8.373 7.308 5.149 4.179 
Tru 7.389 5.596 4.819 4.014 3.109 

Table 3.4: M a x i m u m performance comparison. M o d e l : two-component signalling pathway, 
populat ion bounds [18,42]; property of interest is F(\3-10000popRp < 27); number of states 
after P C T L driven transformation: 0 .5M. 

reclusterings, again at fixed times after 10 steps) and i n each case we report empir ical (e) 
and theoretical (t) error for both methods (for threshold abstraction both errors are defined 
as probabil i ty loss). The results are presented in Table 3.5. Keep i n m i n d that, contrary 
to experiments from Tables 3.3 and 3.4, both aggregation and t runcat ion use the same 
aggregation/truncation threshold. 

Steps 101 200 400 600 800 1000 
Tru 1.0E-8 5.2E-7 2.0E-6 4.1E-6 6.2E-6 7.9E-6 
Out(e) 1.2E-8 2.1E-7 2.6E-7 3.1E-7 3.2E-7 2.1E-7 
Out( t ) 1.4E-8 2.3E-6 7.7E-6 1.5E-5 2.0E-5 2.4E-5 

Table 3.5: Adapt ive aggregation versus state space t runcat ion accuracy comparison. Mode l : 
Lotka-Vol ter ra , N = 400 (160k states), S = l E - 2 5 . 

It is clear that aggregation gives a better empir ical error, which confirms our in tui t ion 
that aggregating the state space and having at least an approximate idea where the residual 
probabil i ty is located is better than truncat ing it completely. O n the other hand, thresh
old abstraction can provide an excellent theoretical bound on the error which ul t imately 
beats approximation bound based on r-terms. However, as Tables 3.3 and 3.4 suggest, this 
does not give threshold abstraction the necessary advantage: when allowed to tune param
eters individual ly, outgoing averaging is capable of s t r iking the perfect balance between 
state space reduction and a number of reclusterings in order to provide a more efficient 
approximation. 
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Chapter 4 

Adaptive Aggregation for C T M C s 

4.1 State-Space Aggregation for Standard Uniformisation 

Having now an efficient aggregating method for the D T M C s , let us now combine it w i th 
uniformisation technique i n order to analyse continuous-time chains. In A U , transi t ion 
probabil i ty matr ix for the internal discrete process changes each i teration wi th varying 
uniformisation rate; i n S U , however, this rate is fixed and the transi t ion probabil i ty matr ix 
is computed only once, so there seems to exist a way we could aggregate it and perform 
computat ion in the abstract setting. Such approach was already presented i n [1], al though 
a rigorous error bound is yet to be derived, which is the main interest of this section. 

Recal l that S U works by constructing a uniformised D T M C from the rate matr ix us
ing a single uniformisation rate; it proceeds by computing transient probabilities for this 
D T M C and then weighs them using a Poisson dis t r ibut ion V v ( ' ) - The F o x - G l y n n algo
r i thm provides us bounds L , R that allow us to truncate the infinite sum and compute the 
overall result as i n (2.12). The error associated wi th this t runcat ion is the probabil i ty loss 

l lP t l l i - | | p t | | i = E s e s P i ( s ) - E s e s P i ( s ) = 1 - J2sesPt(s)-
Now let us approximate pt w i th pt by replacing Uk w i th approximations Uk i n (2.12). 

Each Uk has an uncertainty associated wi th it and each Uk is being weighted wi th tpqt(k), 
so the overall error contributed is Efc=L l l e k | | i m^qt(k). We also lose some probabil i ty mass 
during the sum truncat ion and to estimate this loss we use the following lemma. 

L e m m a 2. Let {vkjfcgNo be an infinite sequence of vectors of the same dimension and let 
v : = E f c l o v k " wki where Wk are non-negative scalars for which E S = o wk = 1- If norms of 
Vk are bounded by some v*, i.e. 3v* \/k £ No | | v k | | i < v*, then | | v | | i < v*. 

Proof. 

I v l l i 
k=0 

oc 

E 
fc=0 

Wk • IIVicII! < yZWk ' v* 
k=0 

•DC' 

E 
fc=0 

Wk 

• 
Corol lary 2.1. Let v := Efc=L v k ' wk be a t runcat ion of v for arbi trary bounds L,R, 
where {vk} is consistent w i th L e m m a 2. Then for the tota l mass lost after this t runcat ion 
it holds: 

v l v i < v v l - (4.1) 
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If we treat symbols above in the context of C T M C s , Vk of course refers to Uk (or u j j , 
v refers to pt (or p t ) , v refers to pt (or p t ) and Wk is analogous to ipqt(k) (or j3{k)). For 
S U , A U , F S U or F A U , each of the | | v k | | i is bounded by 1 and so (4.1) takes its usual form 
1 — | | v | | i . For the state-space aggregation, there is i n general no guarantee on the form of 
approximations Vk, see the following example. 

Figure 4.1: Aggregation strategy based on average incoming probabilities may lead to 
diverging transient probabilities. 

Example 6 . Consider a D T M C i n Figure 4.1 and assume that it starts at s\. We are free to 
use different parti t ions as t ime progresses, so let us assume that we w i l l use t r i v i a l par t i t ion 
(i.e. unaggregated model) dur ing even iterations and a par t i t ion &0dd = {{-so}, {si, • • •, sn}} 
during odd ones. Therefore, dur ing the first i teration, a probabil i ty 1 w i l l get transported 
using abstract t ransi t ion probabil i ty n , resulting i n pi(sn) = TTI (SO) = n - D u r i n g the 
next step, this n is transported back to s\. A g a i n , apply <&0dd before propagating to obtain 
Pz(so) = 7T3(sn) = n2. It is clear that i n this scenario the to ta l probabil i ty mass i n the system 
w i l l be increasing exponentially. A l though this example is somewhat artificial , it conveys a 
message that for arbi t rary aggregation approaches there is no theoretical guarantee on the 
form of resulting approximations. 

The conclusion is: i n order to use aggregation techniques i n combination wi th the Fox-
G l y n n scheme, it is crucial to appeal to those abstractions for which {vk} is consistent 
w i th L e m m a 2. A perfect candidate here is the outgoing averaging approach that preserves 
stochasticity, | | v k | | i = 1, and so probabil i ty loss can be computed analogously to S U / A U . 
A s a bonus, this technique proved to be the most efficient one for the analysis of discrete-
time chains. Henceforth, under the term 'state-space aggregation' we w i l l impl ic i t ly assume 
the technique based on average outgoing probabilities. 

The rest of the a lgori thm remains conceptually the same: we work w i t h the abstraction 
of the uniformised D T M C , where notions of state adjacency, aggregation checking, etc. are 
analogous to those developed in the previous chapter. We are interested i n computing ap
proximate transient probabil i ty distributions of this D T M C that are then being weighed by 
Poisson probabilit ies. The overall error is the sum of the probabil i ty loss and approximation 
error for uniformised D T M C : 

R 

K H i < i - Hptlli + Y M 1 ' ^M*0- (4-2) 
k=L 

A combination of the state-space aggregation wi th S U w i l l be denoted as S U + . 
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4.2 State-Space Aggregation for Adaptive Uniformisation 

We have seen previously how adaptive uniformisation can drastically shorten the required 
number of iterations without any precision penalty. The goal of this section is to adopt this 
approach to the state space aggregation. We cannot apply adaptive uniformisation directly 
since we have developed our aggregation scheme for (uniformised) D T M C s : we would have 
to continuously recompute its transi t ion probabi l i ty matr ix each t ime a uniformisation rate 
qi changes, which is completely impract ica l . Instead, we could define this matr ix as a 
function of the uniformisation rate. 

Let (S, R) be C T M C and Q be the infinitesimal generator associated wi th R. Assume 
a specific state space aggregation $ of S is given. Us ing outgoing averaging (3.8), we have 

' repsea 
(4.3) 

where q is the uniformisation rate. In the case where p ^ a, we have V r G p Vs G a r ^ s, 
so that unifft(r, s) = Sfc^ l a n c | therefore equation (4.3) becomes 

r l rep sea * rep seer 

O n the other hand, i f p = a, we have to keep in mind self-loops: 

rep 

1 + Q(r, r) + j-v Q(r,s) 

1 

rep rep sep 

sep,r=£s 

Q(r,s) 

- y 
\P\ rep 

Q(r,s) 

sep 

" 1 rSp sSp 

We arrive at the following definitions: 

Definition 1 0 . Let (S, R) be C T M C wi th infinitesimal generator Q and let $ be the 
part i t ion of S. An abstract infinitesimal generator O : $ —>• $ is the function defined as 

Definition 1 1 . Let (S,R) be C T M C wi th par t i t ion $ of S. The exit rate of the abstract 
state a is the m a x i m u m exit rate of states wi th in this cluster: 

E{a) := m a x £ ( s ) . 
seer 

Proposit ion 3. Let (S, R) be C T M C , $ be the par t i t ion of S, O be the corresponding 
abstract infinitesimal generator and q > m a x f f e $ E{a) be the uniformisation rate. Then 

1 + e(p,cr) 

n o u t ( p , a) = 

Its proof was demonstrated in the derivation above. 

e(p,q) 

if p = a 

otherwise. 
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Corol lary 3 .1 . For the error factors r(-) associated wi th par t i t ion $ and abstract t ransi t ion 
function II(-, •) based on average outgoing probabilities, it holds: 

T(P,CT) £ @(p,a) 

\P\ r£p 

Proof. 

Case p 7̂  a: 

T(fi,<r) = ^2 

q ^ 

Case p = a: 

r(p,a 

n(p,cr) 1 ^ 

r£p 
E 
SSCT 

1 609, a) 

Id Q 

1 Q(r,s) 

\p\ ^ Q 

SSCT 

e ( p , a ) 

d r E « ( " ) 

E 

E 
SSCT 

E 
SSCT 

" i d y 2 ^ u n w r > s > 
\p\ r g p 

i + 
0 ( p , d ) 1 

R i + 
Q(r,r) 

+ E Q(r,a) 

1 , 1 e ( p , a ) 
Id lei o 

Q(r,a) 

IPI IP r£p 

E 
SSCT 

e ( P , d i 

r£p 

• 
Algebraic manipulations above allowed us to express n(-,-) and r(-) in terms of the 

uniformisation rate q. In the case when this rate varies during each iteration, we are now 
able to construct II(-, •) for probabi l i ty propagation, as well as r(-) for error estimation, on 
the fly. We w i l l no longer work wi th P and its abstraction IT, but w i t h Q and its abstraction 
0 : structure (S, 0 ) w i l l be therefore referred to as an abstract CTMC. Us ing the definition 
of the uniformisation rate (2.13) along wi th the Defini t ion 11 of the exit rate of a cluster, 
we can compute current uniformisation rate qi as 

qi > m a x { S ( s ) | uAs) > 0} = max{E(a) \ 7Ti(a) > 0}. 
ses ere* 

The resulting method combines both state space aggregation and adaptive uniformisa
t ion and its procedure can be outl ined as follows. F i rs t , we construct a state space par t i t ion 
<T> of S using in i t i a l probabil i ty dis t r ibut ion and aggregation threshold dagg, where adjacency 
of two states is now defined i n terms of the rate mat r ix R. The resulting par t i t ion would 
be exactly the same if we uniformised R first: uniformisation rate q does not affect relative 
magnitudes of between-state transitions. Hav ing $ , we can construct abstract infinitesimal 
generator 0 , along wi th the value of 
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E E B(p,a) 1 E^( r's) a P 
crg$ SGCT 

for each p G $ , which, according to Proposi t ion 3 and Corol la ry 3.1, w i l l allow us propagate 
probabil i ty of the uniformised D T M C and estimate the propagation error, regardless of the 
current uniformisation rate g«. This rate is given by the largest exit rate wi th in the set of 
active states, which, according to Defini t ion 11, is equivalent to the largest exit rate w i th in 
the set of active clusters. The error associated wi th this approximat ion can be estimated 
using (4.2). F ina l ly , we can combine the method above w i t h the threshold abstraction 
where i n each i teration we truncate insignificant clusters, i.e. those wi th probabil i ty smaller 
than Stru, i n order to obtain even smaller uniformisation rates. The resulting technique, 
denoted F A U + , is a hybr id between the state-space aggregation and F A U . Aggregation 
threshold 5agg that defines how much of the probabil i ty mass can constitute a cluster, along 
wi th the t runcat ion threshold 5tru defining which clusters are to be considered insignificant, 
w i l l drive the overall behaviour of the method, where i n the l imi t ing cases we can even 
simulate other approximat ion techniques, see Table 4.1, where A U + denotes a combination 
of A U wi th the state-space aggregation. A d a p t i v i t y of F A U + w i l l allow us to perform fewer 
iterations as compared to S U + . 

Table 4.1: F A U + parameters influence the overall behaviour of the method. 

4.3 Experimental evaluation 

We wish to compare both uniformisation techniques ut i l is ing threshold abstraction ( F S U 
& F A U ) and combinations of S U & F A U w i t h the state-space aggregation ( S U + & F A U + ) . 
Accuracy comparison for aggregation versus t runcat ion from Table 3.5 automatical ly trans
lates to S U + versus F S U since now we compute the same transient probabilities and only 
weigh them wi th Poisson probabilities afterwards. Accuracy comparison involving F A U or 
F A U + is t r icky because of varying uniformisation rates that lead to the non-linear progres
sion of t ime. However, A U differs from S U only i n the to ta l number of iterations and not 
in the overall precision, so general conclusions from Table 3.5 can also be applied when 
comparing S U + / F A U + wi th F A U . 

Therefore, we proceed by reconstructing experiments regarding the overall performance 
of ind iv idua l techniques from Tables 3.3 and 3.4 i n the continuous setting. For the first 
experiment we choose to model check the signalling pathway model of exactly the same 
size as i n 3.4. In table 4.2, for each of the techniques we report the t ime acceleration (with 
respect to SU) to guarantee a certain accuracy (Acc) . Concrete values of parameters that 
yield the presented results as well as other statistics (total number of aggregations, state 
space reduction, etc.) can be found i n experiments.txt file on the accompanying storage 
device. 

8tru Simulated method 
0 
0 

> 0 
> 0 

0 A U 
> 0 F A U 

0 A U + 
> 0 F A U + 
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A c c le-1 le-2 le-3 le-4 le-5 
S U + 3.4013 2.7783 2.3618 2.0365 1.6762 
F A U + 4.9886 3.6509 3.0145 2.4026 2.1696 
F S U 3.8363 2.7357 2.1929 1.9260 1.6473 
F A U 5.3504 3.9517 3.1911 2.6817 2.3142 

Table 4.2: Performance of various approximation techniques. M o d e l : two-component sig
nall ing pathway, populat ion bounds [18,42]; property of interest is F(\D-spopRp < 27); 
number of states after C S L driven transformation is 0 .5M, upper F G bound is 6131. 

Firs t , we observe that S U + and F S U exhibit approximately the same behaviour. Con
trary to what one could have deduced from Table 3.4, now both techniques are dealing 
wi th a C T M C that is being uniformised wi th a much lower rate and therefore the inner 
D T M C progresses much faster. State space truncation, because of the nature of its algo
r i thm, cannot notice this difference, but aggregation now has to perform more reclusterings. 
Second, we see that adaptive approach employed in both F A U and F A U + leads to a con
siderable performance improvement: in this case F A U / F A U + perform roughly twice as less 
iterations as F S U / S U + and are significantly faster than their non-adaptive counterparts. 
Notice that F A U + performs better than S U + since it is able to simulate aggregation/trun
cation strategy close to that of F A U , and therefore both F A U + and F A U exhibit a similar 
behaviour. 

In the second experiment we choose the Lotka-Vol te r ra model of exactly the same size 
and a continuous t ime horizon t for which the F o x - G l y n n scheme would give us an upper 
bound R to be approximately 10000, as in 3.3. Results are i l lustrated i n Table 4.3. 

A c c le-1 le-2 le-3 le-4 le-5 
S U + 7.2664 6.8700 6.1350 6.2728 5.9660 
F A U + 5.9984 5.9984 5.9984 5.6275 5.1405 
F S U 4.2299 4.2235 4.1854 4.1069 4.0239 
F A U 4.8737 4.6581 4.5796 4.5824 4.3070 

Table 4.3: Performance of various approximat ion techniques. M o d e l : Lotka-Vol ter ra , N = 
700, 0 . 5 M states; t = 0.5, upper F G bound is 10594. 

Firs t , observe that, al though F A U performs fewer iterations (again, approximately twice 
as less) than its non-adaptive counterpart, it does not seem to get such a drastic advantage 
over F S U . The difference from the previous experiment is that now truncat ion techniques 
F S U / F A U can achieve a much greater state space reduction (200x over 20x i n 4.2); probabil
i ty propagation is now computat ional ly less demanding, and therefore reducing the overall 
number of iterations for the price of solving a b i r th process during each step cannot help 
F A U much, al though it s t i l l sl ightly outperforms F S U . 

Second, S U + cleary surpasses both F S U and F A U . The difference from the previous ex
periment again arises from the state space reduction improvement and is explained from the 
algori thmic standpoint as follows. B o t h aggregating and t runcat ing techniques gain perfor
mance increase when dealing wi th smaller state spaces, however, i n this concrete example, 
F S U / F A U gained much less because of the way the probabil i ty propagation phase was im
plemented. The issue here is that the implementat ion of t runcat ion techniques (Tru, F S U , 
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F A U , F A U + ) we are currently evaluating propagate probabil i ty b l ind ly to a preallocated 
array, without remembering concrete states that were 'discovered' dur ing this propagation: 
such states are identified before the next i teration when constructing a set of active states, 
which is achieved by scanning over the whole state space. The second approach, proba
bly more intuit ive one, would be to remember discovered states during propagation phase, 
i.e. to collect target states to e.g. a tree set or a hash set, and then only scan through this 
set and remove insignificant ones before successive propagation. It might seem that the 
second approach would be superior since we are not dealing w i t h the whole state space. In 
practice, however, it turns out that the opposite is true. W h e n the state space is large and, 
in particular, the set of active states is large, maintaining a collection of discovered states 
during the propagation phase is much more computat ional ly demanding than propagating 
the probabil i ty b l ind ly and then scanning over the whole state space once before the next 
i teration. In other words, bo th implementations w i l l lead to performance improvement 
when dealing wi th smaller state spaces, but the second approach can gain more from larger 
reductions. Hence, i f we implemented the second variant, F S U / F A U would unquestionably 
perform much better in 4.3, but, analogously, truncation would perform much worse in 
and SU+ would become superior. B o t h implementations were tested, but the first variant 
is preferred because it can handle larger state spaces. Th is example was specifically de
signed to il lustrate this property and to pinpoint that, regardless of the implementation, 
state-space aggregation is capable of outperforming existing truncation-based techniques. 
The subtlety of implementat ion plays a great role when comparing efficiency of ind iv idua l 
techniques and it w i l l be marginal ly revisited i n the next chapter. A s to the F A U + , we see 
that now it performs worse than S U + , which is explained using the exact same argument 
above. Overal l , F A U + could not provide a balance between aggregation and t runcat ion 
and could not outperform the best of S U + / F A U alone. However, when faced wi th a model 
of the unknown nature, where appl icabi l i ty of S U + versus F A U is under question, a diverse 
behaviour of F A U + can considerably boost the analysis. 

F rom the experiments above we arrive at several conclusions. F i rs t and foremost, we 
have succeeded to establish a state space aggregation technique that can provide an ade
quate and efficient approximation of the C T M C analysis, bo th transient and model check
ing. Second, for some classes of models and regardless of the implementat ion of techniques 
of interest, state space aggregation even outperforms existing methods, including F A U . F i 
nally, we managed to integrate aggregation w i t h adapt ivi ty to reduce the required number 
of iterations, which may also tu rn out to be advantageous. 
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Chapter 5 

Final Considerations 

The first part of this chapter describes the implementat ion of a l l techniques discussed earlier 
wi th in the P R I S M framework. The second part is a collection of ideas, conjectures or just 
informal thoughts that do not directly contribute to any of the previous chapters, yet might 
be helpful to those wi l l ing to continue the research of approximative techniques. The closing 
part is the conclusion. 

5.1 Implementation 

A s was previously mentioned, a l l of the methods and aggregation schemes were implemented 
for P R I S M [17], explicit engine, in Java language. A l t h o u g h P R I S M has general procedures 
like S U or F A U already implemented, we had to rewrite them into a single package in order 
to ensure a completely fair comparison and to simplify the setting up of the experiments and 
the collection of statistics. The resulting package aggregation contains a l l the procedures 
and can be found at s r c / e x p l i c i t / . Some other files outside the package were slightly 
modified, sometimes to fix minor bugs, but mostly to redirect the computat ion flow into 
aggregation.AggregationModelChecker. Th is module serves as a playground where one 
can set up the experiments, evaluate them and construct reports; it also provides explicit 
procedures for constructing infinitesimal generators, uniformised D T M C s or P C T L / C S L 
driven transformations. 

Let us cover other modules in this package from the bo t tom to up. 

• Propagable is a wrapper over C S R (row start, column, data) representation of sparse 
transi t ion probabi l i ty / ra te matrices; it allows collecting pairs of states connected by 
a significant transit ion, computing exit rates, probabil i ty propagation and state space 
truncation. PropagableAbstract is its abstract 1 extension that quantifies error dur
ing the probabil i ty propagation and provides procedures for vector (de-)aggregation. 

• Outgoing, Incoming and Median are concrete realisations of PropagableAbstract 
that construct the abstract matrices using the corresponding scheme; the code of 
these modules could be refactored, but, since most of the t ime we were interested 
in the outgoing averaging, we found it unnecessary to overload it w i th flags and 
conditions. Also , Incoming module contains a flag that switches between e and r as 
error factors. 

1 i n both senses: it operates in aggregated setting and it cannot be instantiated 
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• Cluster and P a r t i t i o n provide abstractions that allow to work w i l l collections of 
states (clusters) and collections of clusters (partitions). O f part icular interest might 
be the reconfigure ( ) procedure that implements the bottom-up par t i t ioning algo
r i thm wi th the constant-time cluster merging (via l inked lists) and almost constant-
t ime cluster search (via dynamic tree-like structure), resembling the disjoint-set data 
structure [11]. 

• BirthProcess is a b i r th process solver; its instance can be sequentially supplied wi th 
rates qo, qi, • • • to obtain the corresponding /3o, j3\,.... 

• Solver is an interface, namely, a template (algorithm) for Markov chain transient 
analysers that do not perform aggregation; SolverAbstract is its aggregating coun
terpart. B o t h interfaces provide a default run() method that controls the behaviour 
of analysis and the collection of statistics in a uniform way. 

• F ina l ly , there are a to ta l of eight distinct modules that implement those interfaces. 
For non-aggregating one, there are: 

— Propagation - D T M C classic analysis; 

— Truncation - threshold abstraction for D T M C s ; 

— StandardUniformisation - S U ; 

— FastStandardUniformisation - F S U ; 

— AdaptiveUniformisation - F A U . 

Aggregating ones include: 

— PropagationAbtract - D T M C aggregating analysis; 

— StandardUniformisationAbstract - S U + ; 

— AdaptiveUnif ormisationAbstract - F A U + . 

The parameters to each of those methods are supplied during the experiment setup 
in aggregation.AggregationModelChecker module. Note that one could introduce an 
inheritance and derive each of the techniques as an extension (or, conversely, a general
isation) of another; this approach was actually implemented and tested, but turned out 
to be inefficient due to repetitive calls of polymorphic functions, plus it was not t r i v i a l to 
introduce a new technique. The resulting architecture presented here can be easily modified 
and provides a fair method comparison due to the shared run() environment i n Solver or 
SolverAbstract interfaces. 

Addi t ional ly , three major M A T L A B scripts were writ ten: 

• plot_evolution.m allows to visualise projections of probabil i ty distributions to con
crete values of variables, over a range of discrete steps. Refer to the script and to 
the aggregation.AggregationModelChecker: :dtmcExport procedure for usage de
scription. 

• plot_partition.m allows to visualise state space parti t ions. Refer to the script and 
to the aggregation.AggregationModelChecker::partitionExport procedure for 
usage description. 
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• fau.m is a M A T L A B implementat ion of F A U ; the F o x - G l y n n scheme is not used, 
instead, d is t r ibut ion starts at L = 0 and Poisson probabilities are generated unt i l a 
given precision is satisfied. 

The source code along wi th further details regarding instal lat ion, experiment setup and 
measured data can be found on the accompanying storage device. 

5.2 Further Research 

A t the end of Chapter 4 we mentioned an impact of the implementat ion on the overall 
performance of the method. Fi rs t , we have seen that distinct implementations of F A U 
perform differently under various models: one might consider designing F A U capable of 
switching between these implementations on the fly in order to achieve better performance. 
Similarly, for a given model, F A U + is capable of demonstrating a broad behaviour range 
under various parameter values: learning how to adaptively tune these parameters w i l l 
definitely lead to the overall performance improvement. F ina l ly , there are numerous pro
cedures i n the state-of-the-art aggregation algori thm that should be studied. In particular, 
reclustering (or, rather, clustering) of a chain is an extremely expensive operation that can 
add up to 50% of the overall computat ion time, so the efficient design of this a lgori thm can 
significantly increase performance of the method. Furthermore, the clustering procedure 
covers the par t i t ioning of the state space (see aggregation. Part i t ion) and constructing 
the abstract t ransi t ion matr ix , as well as error factors (see aggregation.Outgoing) and 
there might be a way to interleave both operations. Const ruct ing error factors along wi th 
clustering can drive the clustering a lgor i thm and one can arrive at more suitable partitions: 
even slight changes i n the resulting clustering can have an enormous impact on the overall 
precision of the method. For instance, we found out that sorting the transitions (see A l 
gor i thm 2, line 1) and favour pairs of states connected by a larger transi t ion can lead to 
precision improvement of up to two orders of magnitude, as compared to the case where 
we take any two states connected by a non-zero transi t ion. A t the same time, sorting is a 
rather cheap operation that is performed only once before the first aggregation. 

Moreover, we studied general approaches for the clustering of directed weighted graphs, 
but as was mentioned earlier, we have had no success. The ideal procedure must be kept 
simple since frequent reaggregations are the key to acceptable precision. We also analysed 
various clustering techniques experimentally and examined their effect on the empirical 
and theoretical error; one part icular approach exhibited a peculiar behaviour and is worth 
discussing here. 

Consider a simple Lotka-Vol te r ra model; its state space is encoded using two variables 
- number of predators vs. number of prey - and can be visualised i n a two-dimensional 
plane. Suppose we have progressed the model for some time and now we want to perform its 
first aggregation. We look for a par t i t ion that would minimise generated error, say, for the 
next 50 iterations, after which we w i l l reaggregate the chain. A state-of-the-art a lgori thm 
produces clustering depicted i n Figure 5.1 on the left. We can see that a majority of the 
probabil i ty mass is concentrated around (15,40), where active states form t r iv i a l clusters; 
far from this point we effectively have zero probabil i ty and therefore we use a single big 
orange cluster, this cluster w i l l be referred to as slave; in between, we use clusters of the 
medium s ize 2 . Let us compute error factors r(-) for each of the cluster; their magnitude is 

2 A strange bar-shape of clusters of medium size reflects the underlying structure of the state space. 
Transitions from any state can occur up (a prey is born), to the left (a predator dies) and to the lower 
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i l lustrated i n Figure 5.2 on the left, where warm colors correspond to higher values of error 
factor (concrete colormap is not depicted). We can identify four groups of states: 

1. T r iv i a l clusters inside the set of active states. A cluster i n this group has a l l of its 
successors t r iv i a l and generates no error at a l l . 

2. T r iv i a l clusters on the border of the set of active states. This cluster has some suc
cessors of medium size and produces some smal l error. 

3. Clusters of medium size. A cluster in this group has a gigantic successor (slave) and 
produces significant error. 

4. Slave cluster. Has successors of medium size and one large successor (itself); moderate 
value of T(-) mul t ip l ied by insignificant transient probabil i ty yield a negligible error. 

0 5 10 15 20 25 30 35 40 45 50 C 5 10 15 20 2£ 30 35 40 45 50 

Figure 5.1: A state space par t i t ion using A l g o r i t h m 2 (left) and by simulat ing a t runcat ion 
(right). 

Figure 5.2: A relative magnitude of error factors for the corresponding part i t ion. 

right (a predator is born and a prey dies). In the upper-left side of the state space, where we have a lot of 
prey and not so few of predators, a prey is more likely to be born, and so transitions up are favored during 
partitioning. 
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The obtained dis t r ibut ion illustrates the following fact: r(p,a) is large when successor 
a is large (notice that r(p,a) = 0 when \a\ = 1) and this error factor captures probabi l i ty 
forwarding into the cluster. A t the same time, slave cluster has a big successor (itself), 
yet its T(-) is not as large as for medium clusters. The reason for this is that slave cluster 
has a high intra-cluster density [20]: a majority of states that constitute the slave would 
propagate probabil i ty to this same cluster; hence, no error is introduced when we replace 
these concrete transitions by a high abstract self-loop (Il(slave, slave) « 1). M u l t i p l i e d by 
the smal l value of Tr(slave), this big cluster would generate l i t t le to no error. We arrive at 
the conclusion that big clusters are 'bad' not because they produce significant error, but 
because this error is generated because of them. 

Equipped wi th this knowledge, let us find an ' ideal ' clustering. It turns out that the best 
candidate that minimises the dis t r ibut ion of error factor is the one i l lustrated in Figure 5.1 
on the right. Th is clustering consists of t r iv i a l clusters as a set of active states (those wi th 
probabil i ty above the aggregation threshold) and a single slave cluster. The right side of 
Figure 5.2 depicts a dis t r ibut ion of r(-) , where colors are consistent w i th those on left. 
We see that, again, clusters inside the set of active states produce no error; clusters on 
its border produce a slightly larger error (their successor is now large); the slave cluster 
now has a smaller value of r(-) since now it is even more dense and its other successors 
are a l l t r iv ia l . Most importantly, we eliminated a pass of medium-size clusters that were 
completely inappropriate before. 

Is this the clustering we are looking for? N o . A l t h o u g h it indeed minimises the error 
factor and produces a smal l amount of error during the next 10-20 iterations, this par t i t ion 
is impract ica l i n the long run, when a shift of probabil i ty dis t r ibut ion occurs and states 
on the boundary of the set of active states start to forward significant probabi l i ty mass 
into the slave. It would help to recluster the state space frequently; ideally, we could 
refine the set of active states after each i teration and reconstruct slave cluster consisting of 
inactive states. Th is aggregating approach obviously resembles behaviour of the state space 
truncation, except for the fact that threshold abstraction propagates only into concrete 
(maybe undiscovered) states and never forwards a probabili ty. 

So, ideal aggregation strategy would be the one that simulates threshold abstraction, 
yet this conclusion is inconsistent w i th results we obtained i n experiments 3.3 and 3.4, 
where we proved that 'normal ' clustering is the superior one. The paradox here is that 
we have been answering the wrong question: we attempted to minimise theoretical error 
associated wi th our aggregation strategy. A l t h o u g h theoretical error is crucial , it is the 
only measurement of the precision of the method and a good bound can preserve several 
orders of magnitude of accuracy, it does not seem to help us wi th finding the best aggre
gation strategy. We fell into the same trap when we derived median-based aggregation 
scheme: although it indeed produces the best theoretical bound of its empir ical error, this 
approach is intr insical ly inaccurate and impract ical . The exact same argument applies to 
the truncation-like aggregation. O n the other hand, when we had attempted to improve 
empirical accuracy by employing the aggregation scheme that preserves stochasticity, or by 
sorting significant transitions before the first aggregation, we had always been successful. 

In the previous text we t r ied to quantify the error vector associated wi th our aggrega
tions. In theory, this error can be tracked precisely i n order to obtain exact results, but 
we want to reduce the overall complexity of this estimation. Therefore, we never worked 
wi th the vector directly, but w i th its L i - n o r m , a 1-step update of which was proved to be 
computat ional ly equivalent to performing a scalar product of two vectors over the abstract 
state space, as in (3.6). However, L\ is not the only metric that can be imposed on a vector, 
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others include Loo-norm (maximum deviation) or even point-wise error estimates £k(s) of 
efc(s) for concrete states 3 . Unfortunately, despite numerous attempts, we never succeeded 
to derive meaningful and pract ical bounds on anything beside L i , where we managed to 
capture a magnitude (i.e. sign-insensitive value) of the error generated i n each cluster dur
ing each step. A n y estimate of the error vector that allows to quantify a point-wise error 
w i l l be extremely beneficial for model checking algorithms where the quanti ty of interest 
is often computed based on a transient probabil i ty of a single state. Truncat ion methods 
rely solely on the probabil i ty loss that serves as an estimate of L i - n o r m and its doubtful 
that it can be improved. O n the other hand, aggregation methods are potential ly capable 
of estimating any type of error since, as comparison of the empir ical error suggests, aggre
gating the state space preserves information about the probabil i ty dis t r ibut ion to a higher 
degree. Der iv ing a bound on anything better than L i - n o r m w i l l allow to overcome the 
theoretical accuracy gap between aggregation and t runcat ion methods. Furthermore, in 
t roducing a sign-sensitive error t racking might be advantageous since positive and negative 
error accruals can cancel each other out. 

Let us present a final observation concerning the estimate of the error vector. Let s £ a. 
A p p l y i n g equation (3.3) i n the aggregated setting, we obtain 

res 
i(r)P(r, s) + y~]pfc_i(r) (P(r, s) - P(r, s)) 

res 

res 

res 
P(r,s)j 

Let 

be a 'signed' version of r (p ) . If e k and 7rk are row vectors and 7 

vector, than equation above can be expressed as: 
[l{p)\pe® is a column 

e k = e k _ i • P + 7r k_i • 7. 

Let us now expand this recursion: 

3 Note that e/b(s) < e/b(s) < ||ek||oo < | |ek| | i-
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P + 7T0 • 7, 

P + TTi • 7 = (e 0 • P + vr 0 • 7) • P + (vr 0 • n) • 7 

p 2 + 7T0 • (7 • P + n • 7 ) , 

P + 7T2 • 7 = ( e 0 • P 2 + vr 0 • (7 • P + n • 7)) • P + (vr 0 • n2) • 7 

P 3 + vr 0 • (7 • P 2 + n • 7 • p + n 2 • 7) 

2 

P 3 + 7 T 0 - ^ i r - 7 - P 2 " * , 
i=0 

fc-1 

P F C + 7 T O - ^ n i - 7-P*" 1"*-
i=0 

We obtained a compact expression for calculat ing an (exact) error vector at step k based 
on in i t i a l approximate probabil i ty dis t r ibut ion TTO. The first term represents a presence of 
the aggregation error that is being transported using unaggregated transi t ion matr ix . The 
second term decomposes the overall propagation error: a probabil i ty dis t r ibut ion TTO is first 
being propagated v i a aggregated transi t ion mat r ix for i steps and then it produces an error, 
which is then being transported using the concrete transi t ion matr ix . Th is formula cannot 
be applied directly wi th the state-space aggregation since we do not want to compute 
7 • p f c _ 1 _ * terms, but perhaps it can be simplified or approximated using some sort of 
decomposition. We currently lack the knowledge i n this area, so we w i l l leave as it is. 

5.3 Conclusions 

In this work we provided a comparative analysis of approximative techniques for Markov 
chain analysis, namely, methods based on aggregation or t runcation. We first focused on the 
design of an accurate and efficient aggregation method applicable to chains wi th an arbi trary 
structure of the state space. We started i n discrete setting and redefined a notion of the 
state-space abstraction i n order to arrive at precise bounds on the approximation error. We 
then used these results to design a new aggregating scheme that preserves a l l properties of 
a Markov chain and we showed that this preservation is necessary for integrating it w i th 
uniformisation method to enable analysis of continuous-time models. This integration was 
then carried out, and explicit bounds on the approximat ion error were derived. F ina l ly , we 
introduced adapt ivi ty to our aggregating scheme that allowed reducing the required number 
of computat ion steps. 

A to ta l of eight approximative methods for Markov chain analysis (5 existing and 3 new 
ones) were implemented in the probabil ist ic model checker P R I S M and were also integrated 
wi th the model checking algorithms. Experiments confirm that newly derived bounds pro
vide a several orders of magnitude precision improvement without degrading performance. 
We show that the resulting aggregating approach can provide a val id model approximation 
supplied by adequate approximat ion error estimates, i n both discrete and continuous cases. 
Then , we perform a comparative analysis of aggregating and t runcat ing techniques, il lus
trate how different methods handle various types of models and identify chains for which 
aggregating, or truncating, analysis is preferred. In particular, we prove that the designed 

e i 

e 2 

e 3 

eo 

e i 

e 0 

e 2 

e 0 

e 0 

ek = e 0 
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aggregation scheme is capable of outperforming existing methods, including F A U . F ina l ly , 
we demonstrate a successful usage of approximative techniques for model checking Markov 
chains. Future work w i l l include a further development of the error estimates, performance 
profiling and improvement upon existing algorithms, as well as effective combination of the 
approximative techniques w i th parameter synthesis or verification procedures. 
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