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Abstract 

The dissertation thesis focuses on the plausibility of mechanical testing of soft 

biological tissues and on the predictive capabilities of different material models, all assessed 

using finite element method. 

The first part of the thesis is dedicated to an introduction into the problem. Next soft 

biological tissues related to the problem and the ways of their mechanical testing are 

described according to the most recent knowledge. 

The second part of the thesis deals with finding the optimal experimental setup using 

computational modelling by virtual simulation of the mechanical testing.  

Results have confirmed that two narrow clamps per edge as well as commonly used 

hooks are applicable for biaxial tension testing of different soft tissues using square shape 

specimens. Use of clamps is therefore a time efficient, easy and reliable alternative not 

inferior to hooks. The analysis focused on recommendations for the choice of type, number 

and size of gripping elements for different specimen size was also carried out in the thesis.  

The third part of the thesis examines the predictive capabilities of material models of 

soft tissues and their dependencies. It can be concluded that the resulting mechanical 

behaviour of a fitted material model depends on starting parameters and there are no “ideal” 

starting parameters to be used when fitting experimental data. Despite the absence of “ideal” 

starting parameters, the most efficient way of achieving the best approximation of 

experimental data from many data sets is proposed. Furthermore, it is also concluded that a 

constraint of the fitted parameters results in unpredictable influence on the quality of the fit. 

Finally, the presumption of affine and non-affine deformation of material models was 

analysed in order to explain the large contradictions between the structure-based constitutive 

models and the results of biaxial tests under different testing protocols. Although certain 

differences between the analysed models were found out, they were not significant enough to 

explain those large contradictions. 

Further possible areas of investigation are mentioned as the last part of the thesis. 

 

Key words: soft biological tissues, biaxial mechanical testing, computational modelling, 

constitutive model, sensitivity analysis, predictive capability, affine deformation 
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Abstrakt 

Dizertační práce se zabývá věrohodností mechanického testování měkkých 

biologických tkání a predikčními schopnostmi různých modelů materiálů. Obě oblasti byly 

zkoumány užitím metody konečných prvků. 

První část práce je věnována úvodu do problému a popisu měkkých biologických 

tkání, které s problémem souvisí, a rešerši nynějšího způsobu jejich mechanického testování. 

Druhá část práce se zabývá hledáním optimálního nastavení experimentálního zařízení 

za použití počítačového modelování pomocí virtuální simulace mechanických testů. 

Výsledky analýzy potvrdily, že dvě úzké svorky po délce hrany, stejně jako běžně 

používané háčky, jsou použitelné pro dvouosé tahové zkoušky různých měkkých tkání za 

použití čtvercového vzorku. Použití svorek je proto časově úsporná, jednoduchá a spolehlivá 

alternativa, která není podřadná použití háčků. V práci byla rovněž provedena analýza, jejímž 

výsledkem jsou doporučení ohledně typu, počtu a velikosti uchycení pro různě velké vzorky. 

Třetí část práce zkoumá predikční schopnosti modelů materiálů měkkých tkání a 

závislosti těchto schopností. Lze shrnout, že výsledné mechanické chování proloženého 

modelu materiálu závisí na počátečních parametrech a že neexistují „ideální“ počáteční 

parametry při prokládání experimentálních dat. Navzdory absenci „ideálních“ počátečních 

parametrů je navržen v rámci možností nejefektivnější způsob aproximace experimentálních 

dat z mnoha jejich souborů. Dále je možné shrnout, že omezení hodnot parametrů modelu při 

prokládání experimentálních dat ústí v nepředvídatelný vliv na kvalitu aproximace. 

V závěrečné části práce byl analyzován předpoklad afinní a neafinní deformace 

modelů materiálů za účelem vysvětlení velkých rozporů mezi výsledky strukturně založených 

modelů a výsledky dvouosých testů při různých testovacích protokolech. Ačkoli byly zjištěny 

určité rozdíly mezi výsledky analyzovaných modelů, přece nebyly dostatečně významné, aby 

vysvětlily výše uvedené velké rozpory. 

V poslední části práce jsou zmíněny další možné oblasti výzkumu. 

 

Klíčová slova: měkké biologické tkáně, dvouosé mechanické testování, počítačové 

modelování, konstitutivní model, citlivostní analýza, predikční schopnost, afinní deformace 
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1 Introduction 

Design, realisation and evaluation of mechanical tests have a significant influence on 

quality of the measured and modelled stress-strain data. Reliable and accurate description of 

mechanical behaviour of the tested material is fundamental for further calculations of any 

structure (e.g. carrying capacity of a bridge, economic design of a bicycle, or rupture risk of 

an aortic aneurysm). 

For classical structural materials (crystalline) just uniaxial tests are sufficient. 

Standardisation of the experimental setup ensures high accuracy of their results. Materials 

showing large strains (e.g. rubber or soft tissues) need biaxial tests which are not standardized 

and are influenced by load transmission to the specimen due to St. Venant’s principle. Their 

accuracy is therefore lower.  

In order to find the optimal experimental setup we can use computational modelling to 

virtually simulate the mechanical testing with the aim to evaluate the influence of various 

experimental setups on the resulting stress-strain data. Also operator’s influence causing 

inaccuracies in the setup is significant and should be examined.  

Especially finite element (FE) models can help us to simulate mechanical behaviour of 

soft tissues and other materials showing large strains [1][2][3][4][5] which are the object of 

interest in this thesis. FE models enable us to simulate real tests of soft tissues. The main 

advantage of virtual testing is the inherent knowledge of the mechanical properties 

(characteristics) and behaviour of the virtually tested material specimen. Thus you can 

compare the virtually measured data with the input material model to evaluate the inaccuracy 

of the results obtained using the chosen testing setup which is, to the author’s best knowledge, 

a novel approach. This principle is almost impossible in real testing due to the mostly 

unknown exact material properties of the measured material. Another positive of 

computational modelling is the absence of measurement noise and unwanted operator’s 

influence on the testing and also the possibility of large amount of simulations with different 

experimental setups. 

The measured stress-strain data are implemented into the following FE analyses via 

material models. The predictive capabilities of material models, which are based on measured 

data, are capable to influence the results of FE analyses significantly. Thus the predictive 

capability and its dependencies should be also examined. 

 



11 

 

1.1 Motivation 

Our research group at the Brno University of Technology, Institute of Solid 

Mechanics, Mechatronics and Biomechanics, was focusing on calculation of the rupture risk 

of abdominal aortic aneurysm. Uniaxial and biaxial tension tests of healthy porcine aorta, of 

the human aortic aneurysm wall and of intraluminal thrombus were performed here in order to 

obtain stress-strain data describing mechanical behaviour of these soft tissues. These data 

create a basis for material model identification. 

Our experimental setup differs from those commonly used elsewhere in the way how 

the load is transferred onto the specimen. Instead of many hooks or one wide clamp we use 

two slim clamps per edge, see Figure 3. This approach was repeatedly dissented in the process 

of reviewing our articles by some researchers from other research groups as they were of the 

opinion that this approach cannot give reliable results. Therefore in this thesis I investigated 

the influence of different gripping methods on the measured biaxial stress-strain data using 

computational modelling, together with other possible influencing factors of experiment 

realisation. 

To my best knowledge, such extensive analysis has not been performed till now. I 

investigated hooks used commonly to grip the specimen 

[1][7][8][12][13][15][16][21][22][24][25][26] as well as clamps which so far have been used 

by our group only [17][29]. 

Furthermore, different material models are commonly used which exhibit different 

predictive capabilities. Thus the predictive capability and its dependencies are also examined 

in this thesis. 

 

1.2 Goals of the thesis 

a) To perform a literature review about mechanical testing of soft biological tissues and 

about the influence of experiment realisation on the mechanical characteristics of soft 

biological tissues. 

b) To investigate the influence of experiment realisation on mechanical characteristics of 

soft biological tissues using computational modelling of selected types of tests. 

c) To investigate the predictive capability of material models and its dependencies. This 

goal emerged from further scientific work under solved projects. 
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2 Soft biological materials 

Accurate simulation of biaxial tension tests of soft biological tissues requires thorough 

knowledge of mechanical properties of those tissues which are the subject of testing. In my 

case it is specifically the abdominal aortic wall. 

 

In this chapter only a rudimentary medical minimum is introduced for orientation in this 

work. An extensive description of the issue can be found in the literature [40], graduate works 

[41][42][43][44], online e-learning of Biomechanics course [45], or on the websites of 

medical faculties of the Czech and Slovak Republic [46]. Those sources form a basis for this 

chapter. 

 

The knowledge of the basic properties of the measured tissue is a needed prerequisite for 

proper setup of the experiment. As examples we can mention the choice of type of mounting 

(gripping) the specimen or of a correct keeping of nonstandard boundary conditions, such as 

specimen immersion in physiological solution or maintaining a constant temperature 

corresponding to body temperature. Furthermore the knowledge of mechanical and structural 

properties of the tissue creates a solid basis for advanced structural material models such as 

Holzapfel 2000 [34] or Holzapfel 2005 [71] models, Gasser model [35], Martufi-Gasser 

model [70]. In addition to the results of biaxial tests, these models use also structural data 

such as, for example, fibre orientation and distribution, or waviness. 

 

The most common tested soft tissues are the blood vessel wall (see references in the 

bibliography), skin [39], the bladder wall [47], small intestine [13] or tendon [48]. 

 

In the next chapter a wider description of the abdominal aortic wall is offered which is 

the subject of the simulated mechanical tests in this thesis. 

 

2.1 Abdominal aortic wall 

Abdominal aorta has the outer diameter of 20-25 mm [49] and a wall thickness of about 

1,8 mm [50][51]. Abdominal aortic wall consists of three layers: tunica intima, tunica media 

and tunica adventitia. 
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The inner layer (tunica intima) is formed by a thin layer of endothelial cells, ensuring 

the smooth flow of blood. It has distinctly orthotropic behaviour and axial stiffness is greater 

than the circumferential [45]. Its thickness increases with age [54]. 

 

The middle layer (tunica media) is the thickest aortic layer formed by smooth muscle 

cells, elastin and collagen [45][55], see Figure 1. The picture represents the structure of 

abdominal aorta of a rat. 

 

 

Figure 1 The microstructure of the tunica media including tunica intima. Coordinates r, z, 

and θ represent radia,l axial, and circumferential directions, respectively. Dimensions of the 

specimen θ × z × r are 80 μm × 60 μm × 45 μm. Elastin (white letters EL, IEF,ES and EP), 

smooth muscle cells (blue nucleus, cytoplasm white) and collagen (indicated by the black 

arrows) can be seen [56]. 

 

In a normal state the tunica media absorbs majority of the load caused by the blood 

pressure.  
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The outer layer (tunica adventitia) consists mainly of collagen fibres and fibroblasts. 

The collagen fibres are arranged in almost isotropic way [29]. 

 

The collagen fibres at a normal blood pressure and without external influence 

(overload, impact, etc.) are wavy [57].  

 

It is clear that the most important building components of the wall are elastin, collagen 

and smooth muscle cells. Elastin and collagen are fibrillar components of the extracellular 

tissue. Together with binding cells they form a connective tissue [59]. In the following the 

function and structure of these essential components of the wall of the abdominal aorta are 

described.  

 

2.2 Main components of aortic wall 

Elastin 

From a mechanical point of view elastin is very pliable with the ductility of about 70 

% [61], the Young’s modulus value differs according to different sources from 523 kPa [62] 

to 1200 kPa [91]. In FE simulations I use the value 900,8 kPa [32]. Elastin exhibits 

approximately linear response in the Green strain vs. Cauchy stress space. Elastin gradually 

degrades with age [54]. 

 

Collagen 

Collagen fibres provide the vessel wall with tensile strength and stiffness [63] and are 

the stiffest part of the vessel wall. The ductility is in the range of 2–4 %, Young’s modulus in 

units of GPa [64]. 

 

Smooth muscle cells 

The function of smooth muscle cells is muscle contraction and protein synthesis for 

tissue remodelling. They are characterised by a wide hysteresis loop, significant relaxation 

and Young’s modulus in the range between 15 to 25 kPa [45]. 

These cells are mainly responsible for the viscoelastic behaviour of the arterial wall 

[65]. With a greater loading speed the artery wall exhibits higher stiffness [66].  

Smooth muscle cells can bring inaccuracies into measuring mechanical properties of the 

wall because of their changed state from in vivo to in vitro. The changes could be for example 
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due to different chemical environment or ceased innervation and nutrition and consequent 

death of the cells. 

 

2.3 Properties of aortic wall 

The aortic wall as a whole exhibits an approximately equal strain range under 

physiological load up to about 25÷30 % [29] and the strength of about 1 MPa [45]. Although 

it is commonly considered as incompressible, number of contradictive experimental results 

exists and it is still under investigation [74], see chapter 3.3 for more intense literature search 

on this topic. 

The artery is axially prestressed, thereby reducing the risk of loss of shape stability 

when the artery is bent. This prestressing effect represents itself by longitudinal shortening 

after removal from the body. This effect influences the character of stress distribution in the 

arterial wall. In case of a healthy young (porcine) aorta, the value of axial pre-stretch can 

achieve 21÷43 % depending on the position of the specimen along the aorta [77]. In case of 

human abdominal aorta the value of about 40 % drops to a few percent with increasing age 

[92]. Another effect influencing the stress distribution in the wall is the residual stress [72]. 
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3 Mechanical tests of soft biological tissues 

Computational, especially finite element models (FEM) represent a relevant approach 

in biomechanics of soft tissues nowadays and help us to simulate mechanical behaviour of 

soft tissues. Quality of the model depends primarily on the quality of input data which are 

obtained from experiments. Credibility of the experiment thus defines the quality and 

plausibility of the computational model. 

It was shown that the choice of experiment type and its various features can be 

decisive for accuracy of the results, may cause significant errors in some cases and thus 

negatively influence outputs of the computational models. In case of soft biological tissues the 

measured stress-strain data based on uniaxial or biaxial tension tests give different mechanical 

behaviour of the measured material. The apparent initial stiffness and overall anisotropy 

differs greatly, namely the material model proposed by Raghavan and Vorp [31] versus the 

Microfiber model [29] and the work of Vande Geest [30] or Tong [16]. 

The influence of the inaccurate or non-ideal realisation of the experiment with chosen 

features can also influence the results negatively. 

An example of specimen preparation and biaxial testing is introduced below. In Figure 

2 acquiring of the specimens of human and porcine aortic tissue is shown. Small specimen 

size (typically 15 x 15 mm) should be noted. 

 

     

Figure 2 Acquiring of the specimen of the human aorta from a surgery (left) and from a 

porcine aorta (middle). Specimens are cut according to axial and circumferential directions 

(right). 

 

Specimen is gripped with clamps or other gripping elements into the testing device, 

see Figure 3. Contrast points (markers) in the middle of the specimen serve as tracking points 

for off-line evaluation of the deformation of the specimen. 
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Figure 3 Gripped specimen with contrast points (markers) in the centre of the specimen. 

 

In biaxial testing of soft tissues, stresses are calculated by dividing the total force by 

the undeformed cross section area. Intrinsically the assumption of uniform stress distribution 

throughout the specimen cross section is introduced here. Strains, however, are calculated on 

the basis of the (optically recorded) undeformed and deformed positions of markers (contrast 

points) in the central part of the specimen called region of interest (ROI) below. 

Consequently, the calculated value represents an average throughout the ROI. This difference 

may have significant consequences on the accuracy of the stress-strain curves obtained from 

these tests, especially if using square shaped specimen. In these specimens the load acting at 

the specimen edges is not far enough from the ROI in the sense of Saint Venant’s principle, 

therefore the stress and strain distribution throughout the evaluated region of the specimen is 

not uniform and the non-uniform load distribution along the specimen edge influences the 

measured data. 
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We cannot evaluate the accuracy of experimental data from the experiment itself 

because we are neither able to measure stresses nor evaluate (non)uniformity of their 

distribution. However, they can be easily evaluated in FE simulations where also dimensions, 

including the deformed ones, can be assessed with higher accuracy, and, moreover, we know 

the ideal (input) material properties for comparison. The goal of the FEM simulations is 

therefore to assess the inaccuracy of the measured data, to determine main influences on the 

measured data and to design the best setting of the testing device. 

 

3.1 Uniaxial tension tests 

Most engineering materials like steel or plastics are isotropic and usually undergo small 

strains, so a uniaxial tension test is sufficient to describe their mechanical behaviour in the 

range of small deformations. Soft tissues exhibit however large strains and an anisotropic 

behaviour due to their fibrous structure which is equivalent to composites. It has been shown 

by several authors that for credible constitutive models of soft tissues biaxial tension tests 

should be preferred to uniaxial ones because they correspond better to the physiological load 

of these tissues in human body [6][7]. 

Nevertheless, uniaxial tension test are still used to measure the strength and the 

mechanical behaviour of the material in different axes, typically in the direction of fibres and 

the direction perpendicular to fibres, and they are used to determine parameters of different 

material models [77][78][79][80]. 

 

3.2 Biaxial tension tests 

As stated above, in soft tissue testing biaxial tension tests are preferred to uniaxial ones. 

In contrast to uniaxial tension tests there are no generally agreed standards for the execution 

of biaxial tensile tests; their arrangement, specimen shape and size, as well as the way of load 

transmission on the specimen (gripping elements used), are chosen solely by the staff or the 

designer of the respective testing machine. It has been shown that the chosen features can be 

decisive for accuracy of the results and may cause significant errors in some cases 

[8][9][10][37]. In all these papers the effect of specimen gripping was investigated using 2D 

simulations.  
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Figure 4 Different gripping methods and specimen shapes [8]. 

 

In [8] four, six and eight hooks or one wide clamp were used on square shaped (25 

mm edge length) or cruciform specimens. The examined specimen shapes are shown in 

Figure 4. Only equibiaxial tests were simulated. Hooks were evaluated as the best gripping 

method according to more even stress distribution through the specimen. This approach to 

evaluation of the suitability of different experimental setups is indirect, as it only indicates a 

possible influence on the measured data, not the measurement error itself. More about the 

evaluation of the accuracy of biaxial tension tests is written in chapter 4.2. According to the 

conclusion of this paper, four hooks are sufficient; more hooks cannot offer better results. One 

clamp was not recommended to use as it constrains transversal deformation and therefore 

substantially redistributes the stresses, primarily by inducing high stress concentrations at the 

corners between the clamps and also by essential “stress-shielding” of the central region [8]. 

Similar cases were analysed also in [9] and [10], see Figure 5. 
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Figure 5 Different gripping methods using sutures or one wide clamp 

on square or cruciform specimen [9][10]. 

 

In all cases the boundary conditions affected the measured mechanical response of the 

tissue. Samples appeared to become less extensible and stiffer when clamped (using one 

broad clamp). The gripping method had no effect on the collagen fibre (re)distribution at the 

sample centre [9]. The shear strain inducted in tissue samples was negligible [9]. Broad 

clamps with their high stress concentrations between the clamps in the specimen corners 

redistribute the load from ROI significantly, resulting thus in a stress-shielding effect [10]. 

This effect is particularly notable in case of square specimen and less pronounced for 

cruciform specimen [10]. 

 

Although both square-shaped [6][7][8][9][12][13][14][15][16][17] and cruciform 

[7][8][18][19] specimens are commonly used for biaxial testing of soft tissues, the cruciform 

specimens require a much larger amount of tissue for the same ROI size compared to the 

square shaped ones [7]. Therefore square specimens are preferred if the specimen size is 

limited (e.g. for arterial tissues) although they are rather sensitive to the non-uniform load 

distribution along the specimen edges due to disruption of the Saint Venant’s principle. 

 

In contrast to cruciform specimens, however, it is not possible to keep a sufficient 

distance (in the sense of St. Venant’s principle) between the gripping elements and the 

specimen centre for square shaped specimens; consequently, the assumption of uniform stress 

distribution throughout the specimen cross section is disturbed. On the contrary, strains (or 

stretches) are calculated on the basis of the (optically recorded) undeformed and deformed 

positions of markers (contrast points) in the central area of the specimen [11](ROI). The 

calculated components of deformation gradient tensor are then transformed into principal 
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coordinate system and polar decomposition is applied to obtain the principal components of 

stretch tensor. Thus the calculated values of stresses represent average values throughout the 

whole cross section of the specimen, while strains are averaged throughout the ROI only. This 

difference may have a significant impact on the accuracy of the stress-strain curves obtained 

from these tests because the values in the ROI can be overestimated or underestimated in 

comparison with the average values throughout the specimen; the difference depends on the 

number, shape, dimensions and position of the gripping elements. Typically, for two gripping 

elements the values of stresses and strains are lower in the ROI than the average throughout 

the specimen, while for three gripping elements they are higher because of the central 

gripping element. In general, clamps, sutures (threads), or hooks (sometimes joined into 

rakes) are commonly used as gripping elements introducing the load into the specimen in 

biaxial testing. 

Examples of using hooks to grip the specimen are shown in Figure 6. 

 

    

Figure 6 Example of gripped specimen using hooks (left [13], right [16]) and markers. 

 

In some cases also rakes are used [25][37], see Figure 7. Rakes differ from hooks in 

the induced boundary conditions when constant displacement load is introduced by their 

individual pins instead of constant forces acting on every hook.  
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Figure 7 Specimen gripping using rakes (left [25], right [37]). 

 

While hooks are applied most frequently and considered as a standard gripping 

method (see among others [20][21][22][23][24][25][26][27]), clamps were rejected as 

unacceptable by some authors [8][9][10][37]. However, this rejection was substantiated by 

numerical or experimental analyses done only for broad clamps used one per specimen edge, 

while two or more narrow clamps per edge were ─ according to our knowledge ─ presented 

by our group only [17][29], see Figure 8. 

 

 

Figure 8 Real specimen of young porcine aortic tissue gripped 

using two clamps (A) or four hooks (B) per edge. 

 

From a practical point of view, the application of clamps brings several advantages 

compared to hooks. Manipulation with clamps is easier and faster, it allows repeatable 

mounting and unmounting of the specimen without tearing it which is important for reaching 

the optimal spatial position of the clamps. Also avoidance of the risk of operator injury which 

exists when using sharp hooks is worth to be mentioned. On the other hand, any thorough 
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analysis has not yet been performed to compare the accuracy of the measured stress-strain 

curves when using several clamps or hooks per specimen edge. Therefore a comparison of 

these two methods is addressed in my doctoral thesis to assess advantages and drawbacks of 

both methods and to validate the application of clamps. 

 

3.3 Compressibility tests 

Arterial wall is commonly considered incompressible. In opposite to this fact some 

researchers still investigate this simplification [75] because number of contradictive 

experimental results exist, as stated in [74], see Table 1 for comparison of some of the results. 

In spite of these facts most of the constitutive models for arterial wall are defined as 

incompressible since this also simplifies analytical calculations [74] and ensures better 

convergence of numerical FE solution. 

Table 1 Summary of experimental data from past studies on incompressibility of arterial wall 

[76]. NS – not specified, US - ultrasound 

Publication Year Animal Artery 
Spec. 

quant. 
V0 (μL) dV/V0 (%) Method 

Lawton 

[81] 
1954 Canine Aorta NS 1000 Negligible Extension tests 

Carew et al. 

[82] 
1968 Canine Various 31 

426 – 

2933 
Negligible 

Static inflation 

 test 

Tickner, 

Sacks 

[83] 

1967 Human Various 9 NS Up to 35% 
X-ray 

measurements 

  

Canine 

Thoracic 

aorta 
2       

  

Femoral 

artery 
2       

Dobrin, 

Rovick 

[85] 

1967 Canine Carotid NS NS Negligible 
X-ray 

measurements 
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Chuong, 

Fung 

[84] 

1984 Rabbit 
Thoracic 

aorta 
4 

41,9 – 

53,9 
Negligible 

Strip 

compression 

Girerg et al. 

[87] 
1992 Human 

Mammary, 

 Radial 
6 

cca 32,3 

(for 1 cm 

 length) 

Negligible 
US 

measurements 

Faury et al. 

[86] 
1999 Mouse Various 14 NS 15 – 18% Transillumination 

Boutouyrie 

et al. 

[88] 

2001 Human Carotid 15 

103,5 

(for 1 cm 

 length) 

4,7 ± 2,7% 
US 

measurements 

Chesler 

et al. 

[89] 

2004 Mouse 
Left 

pulmonary 
12 cca 0,3 15 – 20% Transillumination 

Di Puccio 

et al. 

[90] 

2012 Swine 
Renal 

artery 
2 

78,5 – 

251,3 
6 – 20% 

Dynamic 

inflation 

test 

 

The experimental setup of incompressibility test is mostly based on a pressure load acting 

on a flat specimen [84] or on an internal pressure on a whole aorta tube [90][76], see the 

review article [76] for detailed description of different experimental setups. 
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4 Sensitivity analysis of gripping method - Methodology 

I have stated above that experiments cannot be used to evaluate the influence of different 

clamping methods on the resulting measured mechanical behaviour of soft tissues. The main 

reasons are as follows: 

 

1. In reality we do not know the true mechanical properties of the measured tissue. 

So I cannot compare measured results with the ground-truth (ideal) data.  

2. Experiments suffer from different numerous errors caused by the operator, 

mechanism, material non-homogeneity, etc. These errors cannot be separated to 

evaluate only those of them we are interested in, e.g. the influence of different 

clamping method. 

The preliminary simulations in chapter 4.2 have shown that assessment of strain non-

homogeneity throughout the specimen (which is the only feasible way how to evaluate 

accuracy of experiments) may be misleading. Because of that I have chosen the approach 

based on computational modelling of the tests; in this work I simulate different 

mechanical tests using FE method where the input material properties are known at the 

beginning, so comparison of the (virtually) measured and true (input) data is feasible. This 

comparison enables me to assess the accuracy of the chosen experimental setup. 

 

4.1 FE parametric study 

Finite element simulations of biaxial tension tests were realized and the resulting stress-

strain curves (evaluated in the same manner as in real experiments) compared with the input 

ones by means of coefficient of determination R2. The investigated parameters were type of 

gripping elements (hooks or narrow clamps), their number (2÷5) and size (0,25÷5 mm), 

specimen size (18÷35 mm), testing protocol (different displacement ratios), and specimen 

material (healthy artery, aneurysm wall tissue,  elastin, intraluminal thrombus). In this study 

rakes were not analysed because of its limited use amongst research groups who prefer hooks. 

Further extension of this multiparameter study would require an excessive amount of 

computational time and is planned in future, see chapter 9.3. 

The main goal of the study was to compare the most common gripping method (hooks) 

with the method applied by our research group (clamps). 
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At first 2D and 3D simulations using isotropic material model were created in the same 

manner as in previous studies [8][9][10] and resulting R2 compared. The results for chosen 

isotropic materials differ significantly (see chapter 5.1), thus we assume that using 3D 

simulations is a more realistic approach which is then used throughout all this study. Other 

main reasons for not using 2D simulations emerged as well, firstly the impossibility of 

simulating radial pressing of the specimen by the clamps which means neglecting the effect of 

clamping. Moreover, no incompressible anisotropic material model was able to fit the 

material curves with sufficient accuracy; therefore a double layer model (with independent 

Holzapfel formulations used for media and adventitia) was used which naturally cannot be 

reduced to 2D. To the author’s best knowledge, a 3D analysis of the effect of the above 

investigated parameters on results of biaxial tension tests of soft tissues was not yet published. 

 

The description of the computational model below is relevant for the 3D modelling 

approach. 

 

4.1.1 Geometry 

First I have analysed the effect of number and size of the gripping elements. For this 

purpose a geometrical model of the tested specimen with dimensions 18x18x1,8mm (unless 

stated otherwise below) was created; in fact, only its 1/8 was modelled due to its assumed 

symmetries (see Figure 10). The dimensions were chosen according to a typical specimen size 

of the tested arterial tissues [16][29][30]. The load was transferred to the specimen by either 

clamps or hooks. 

 

Although real hooks pierce the sample which leads to tissue damage and creates 

discontinuities, I have chosen a simpler way of how to model this interaction. A set of holes 

of the same diameter as the diameter of the hooks was created, and the hooks were modelled 

as straight cylinders put into these holes. A frictionless contact algorithm was used between 

the hooks and the specimen. This simplification ensures an easy convergence of the model 

without necessity of application of damage and failure models which are generally very time 

consuming. Numbers of hooks were chosen on the basis of literature search as summarized 

(with the specimen sizes) in Table 2. With the exception of one team [8], all researchers used 

between 2 and 5 hooks per specimen edge, therefore I kept the same numbers in the analysis. 
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In addition, I have also simulated the case with clamps, specifically with 2 clamps per 

edge. Here, instead of creating holes in the specimen model, a foregoing load step was applied 

in which the specimen was compressed by the clamps perpendicularly to the contact surface 

since the clamps only squeeze the tissue instead of penetrating it. Load transmission between 

the clamps and specimen was ensured by a rough contact algorithm (which assumes infinite 

friction in tangential direction) to simulate small teeth on the gripping surfaces of the clamps 

(Figure 10) which are omitted in the clamp geometry with the aim to improve convergence of 

the calculation, reduce the size of the model and, consequently, to reduce the computation 

time. 

 

Table 2 Overview of parameters of experimental setups published in literature. 

Number of hooks Length of the edge Reference 
Number of hooks normalized 

per 18 mm edge 

5 7 mm [25] 12,9 

4 7 mm [21] 10,3 

5 10 mm [15] 9,0 

4 10 mm [13] 7,2 

8 20 mm [8] 7,2 

6 20 mm [8] 5,4 

4 20 mm [8][26] 3,6 

5 25 mm [22] 3,6 

5 30 mm [15] 3,0 

3 20 mm [16] 2,7 

4 28 mm [7] 2,6 

2 15 mm [12] 2,4 

5 45 mm [1] 2,0 

4 39,5 mm [24] 1,8 

2 22 mm [12] 1,6 

2 35 mm [12] 1,0 

 

The diameter of hooks was varied between 0,25 and 1mm and the width of clamps was 

between 1,75mm and 5mm, both stepped by 0,25 mm. Length of gripping (distance of the 

hook or clamp tip from the specimen edge) was set to 2 mm. For each number of gripping 
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elements the specimen edge was virtually divided into the same number of intervals and each 

element was placed in the middle of this interval to ensure the most uniform load distribution 

along the specimen edge (see Figure 9). Only if the distance between the neighbouring 

elements in the corner tended to zero, their position was shifted away from the corner to keep 

a minimal distance of 1 mm between them as usual in the experimental practice. This 

disruption of uniform load distribution across the sample is applied in numerous studies 

[13][15][16][25] and aims at reduction of the stress concentrations in the corner, which would 

evoke tissue failure under lower loads. 

In biaxial testing machines the load is usually distributed into individual gripping 

elements either via a system of balance levers [11] or via nylon threads 

[8][13][15][16][25][26]. Our machine employs balance levers so I mimic them also in our 

computational model. This setup allows me to apply the displacement on the base lever (see 

Figure 10), and the levers ensure a uniform force distribution into the individual gripping 

elements.  

 

 

Figure 9 Geometry of emplacement of hooks and clamps according to their numbers. 

The solid lines represent the largest and the dotted lines the smallest investigated size of the 

gripping element. 
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Figure 10 Geometry of 1/8 of the analysed experimental setup showing gripping via four 

hooks (left) and two clamps (right) per edge. The system of levers with knuckle joints ensures 

an even distribution of the load induced by the displacements Ux  and Uy  prescribed to the 

model as indicated by the red arrows in both figures. 

 

Different types of displacement-controlled biaxial tests were simulated, with 

displacement ratios ux/uy of 1 (equibiaxial), 2 (½) and 4 (¼); due to local deformation similar 

to a real experiment, strain components cannot keep a fixed ratio. All the models were tested 

for sufficient mesh density and optimized for computational efficiency. 

 

4.1.2 Applied material models 

Local effects in the vicinity of gripping elements may depend significantly on 

mechanical properties of the tested tissue such as initial stiffness, strain stiffening and 

anisotropy. Therefore I have considered several different material models with substantially 

different stress-strain curves related to tissues of healthy young (porcine) aortas and (human) 

aortic aneurysms. 

(i) For healthy young porcine aortas I chose an (incompressible) isotropic constitutive 

model (denoted as material 1 below) based on the Yeoh strain energy density function 

(SEDF) [28]: 
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where I1 is invariant of right Cauchy-Green deformation tensor and ci are material 

parameters. On the basis of stress-strain curves from different types of biaxial tests [29], their 

values were fitted for the 3rd order Yeoh model (n=3) with the resulting values of c1 = 17,4 

kPa, c2 = 0,0 kPa, c3 = 13,8 kPa. This model corresponds to mean population data for which 

the anisotropy is less pronounced due to individual differences.  

(ii) Arterial wall can be more accurately modelled by anisotropic models. I chose the 

two-layered Holzapfel model [34] (denoted as material 2 below) with the following SEDF: 
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where µ is Neo-Hookean parameter related to stiffness of the isotropic component of 

arterial wall (mainly arterial elastin), 
,i jk  are parameters (i =1,2) for the individual layers 

media (j=A) and adventitia (j=B) determining the anisotropic contribution of fibres to the 

strain energy density, and Im are pseudoinvariants of the right Cauchy-Green deformation 

tensor (see [34]) related to stretches of the individual fibre families; in each layer the 

Holzapfel model assumes two families of fibres perfectly aligned in two directions ±φj 

symmetric with respect to the circumferential direction. Parameters were obtained by fitting 

this model to our mean population response of previously published experimental biaxial data 

[29]. The resulting parameters are µ = 10,0 kPa, k1A = 9,68 kPa; k2A = 1,32; φA = 0,97 rad; k1B 

= 14,68 kPa; k2B = 0,813; φB = 0,18 rad. Let me note there were convergence problems using 

this material which prevented me from inducing higher strains than some 15% till now. Due 

to the very high compliance of the model in radial direction and shear, an excessive mesh 

distortion occurred much sooner than in case of the isotropic approximation of the same tissue 

(material 1). I tried to apply other anisotropic material models, but only this material model 

was able to converge to sufficient stretch magnitude, see chapter 4.1.3 for detailed 

information. 

(iii) Abdominal aortic aneurysms exhibit significantly different mechanical behaviour 

compared to healthy aorta [30] and are often modelled also as a Yeoh-like material according 
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to eq.1 (for n=2) with constants c1 = 174 kPa, c2 = 1881 kPa (see [31], denoted as material 3 

below).  

(iv) Arterial elastin exhibits relatively high initial stiffness but it gradually softens [32] 

and is usually modelled via Neo-Hookean SEDF which can be defined by eq.1 with n=1 and 

c1 = 163 kPa (denoted as material 4 below).  

(v) Intraluminal thrombus (occurring frequently in abdominal aortic aneurysms) is a 

very compliant material compared to arterial wall [16] and I model it via Ogden-like SEDF: 
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where parameter μ = 3,5 kPa is estimated from uniaxial tensile tests [33] (denoted as 

material 5 below). 

Equibiaxial stress-strain responses of all the described materials are presented inFigure 

11. 

 

 

Figure 11 Equibiaxial stress-strain curves of all the investigated materials demonstrate 

fundamental differences in their behaviour. 
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4.1.3 Numerical problems of anisotropic material models 

Different soft biological tissues can be characterised by different anisotropic material 

models. In the computational model used in this analysis various material models were tested 

in order to widen the applicability of the results. 

I tried to apply the following models of compressible material: 

- Holzapfel double layer 2000 [34] 

- Gasser 2006 [35] 

The used anisotropic models were nearly incompressible to simulate the nearly 

incompressible behaviour of soft tissues (see chapter 3.3). Their compressibility parameter 

influenced strongly the convergence of the computational model. With values in the range of 

nearly incompressible mechanical behaviour the model was either unable to converge to 

sufficient stretch magnitude or even failed in the first load step – radial pressing of the 

specimen with clamps. 

Microfiber model [29] was not used due to much higher computational time and 

consequently excessive amount of time required for the high number of simulations needed. 

 

4.1.4 Contacts 

Clamps 

Rough contact between specimen and clamp simulates the teeth on the clamp surface. 

The huge imbalance in material stiffness (steel-aorta) has also to be taken into consideration. 

Normal stiffness was manually changed according to radial load of the specimen in the first 

load step. Contact stiffness had to be updated in every iteration because of large strains of the 

soft tissue. The overall setup of the contact pair is described below. 

 

Always used: 

Behaviour: Asymmetric 

Formulation: Augmented Lagrange 

Time Step Controls: Automatic Bisection 

Update Stiffness: Each Iteration, Aggressive 

 

Sometimes used to improve convergence: 

Normal Stiffness manually set to 0,1.  
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Penetration Tolerance manually to 0,0125 mm 

 

Hooks 

Contact between hook and specimen was modelled as frictionless. The imbalance of 

materials (steel-aorta) was also taken into consideration. Normal stiffness was manually 

changed in dependence on loading direction (protocol) and fibre orientation (for anisotropic 

models). Contact stiffness had to be updated in every iteration because of large strains of the 

soft tissue. The overall setup of the contact pair is described below. 

 

Always used: 

Behaviour: Asymmetric 

Formulation: Augmented Lagrange 

Time Step Controls: Automatic Bisection 

Update Stiffness: Each Iteration, Aggressive 

Interface Treatment: Adjust to Touch 

 

Sometimes used to improve convergence: 

Normal Stiffness manually set to 10. 

 

4.1.5 Mesh specifics 

The mesh requires special setting according to the expected large deformation in the 

vicinity of contact between the specimen and gripping element. Linear elements were used as 

they are better suited for hyperelastic behaviour of specimen. 

Dense mesh was used only in the areas of contact; in the ROI the mesh was relatively 

rough as seen in Figure 12. The low mesh density in the measured region had negligible effect 

on results because of small deformation gradient. 
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Figure 12 Different mesh sizing in the region of interest and in the contact region. 

 

Elements in the contact area have to be specially shaped according to the expected 

deformation. In the case of clamps I prescribed compression of the specimen by roughly 50 

%, so the elements had to be pillar-like shaped, see Figure 13, Figure 14. Similarly in the 

contact area with hooks the elements were elongated in the direction of their expected 

compression (see Figure 15). 

 

 

Figure 13 Pillar-like elements in the contact region under clamps. 
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Figure 14 Long-shaped elements in the contact region under the clamp, 

before and after compression. 

 

 

Figure 15 Long-shaped elements in the contact region with hooks 
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4.2 Evaluation of accuracy of biaxial tension tests 

Typical strain distributions under load of 0,1 N in the equibiaxial test (with two 

materials) for setups with 2 clamps, 2 hooks and 4 hooks are shown in Figure 16 and reveal 

interesting differences in strain distribution across the specimen.  

 

Use of 4 hooks gives a rather homogeneous strain (and consequently stress) distribution 

in a large part of the specimen (including the ROI), while both 2 hooks and 2 clamps result in 

much more non-homogeneous strain patterns showing a strip of higher strain values between 

the opposite gripping elements (outside of the ROI), in accordance with the expectation of 

major stress flow lines between them. In spite of these differences, however, the R2 values 

representing the accordance between the resulting and theoretical responses are comparable in 

all of these cases (Figure 18) and surprisingly the lowest R2 value corresponds to the most 

uniform strain distribution (4H).  
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Figure 16 Distribution of natural strain εx for various gripping setups and two materials 

(isotropic and anisotropic) at the same load of 0,1 N during equibiaxial tensile test. 

Two hooks and two clamps provide similar strain distributions for each material while four 

hooks provide more uniformly distributed strains in most of the specimen. 

 

Instead of assessing the non-uniformity of stresses or their maximum values 

throughout the specimen or the non-uniformity of strains in the ROI, as done in the previous 

studies [7][8][9][12][21] (see Figure 17) or the comparison of averaged stress value in ROI 

with the loading stress as done in [10], I evaluated the results of simulations by a novel 

approach based on comparison of the resulting stress-strain curves obtained from the 

simulations with the corresponding theoretical responses of the original material models 

specified in chapter 4.1.2 by means of coefficient of determination R2 (R2 = 1 for identity). 
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Figure 17 Von Mises stress distribution from the centre of the specimen  

(normalized distance = 0) to grippers (normalized distance = ±0.5)[8]. 

Square specimen was gripped via 4 (SA4), 6 (SA6) and 8 (SA8) hooks. Normalized distance 

was used because of specimen size varied with different gripping methods. 

 

Evaluation using non-uniformity of stresses throughout the specimen 

The reason why the previous way of evaluation using the non-uniformity of stresses 

throughout the specimen was refused in this study is analysed below. According to the 

geometry of the specimen, the load of 1 N results in 123 kPa of (average engineering) stress 

independently of the experiment setup and material. For this analysis an isotropic model was 

used (model (iv) in chapter 4.1.2). The corresponding strain distributions along the specimen 

axis (from the centre to the edge) for different setups are presented in Figure 18 where the 

theoretical strain value (i.e. the natural strain calculated from the input equibiaxial stress-

strain curve,  using thus intrinsically the assumption of their uniform distribution throughout 

the whole specimen) corresponding to the stress of 123 kPa is depicted. While the curves 

represent distributions of strains along the symmetry plane, the straight lines (denoted as 

“eval.” in the legend) show the average strains evaluated throughout the ROI. Evidently the 

more homogeneous distribution of strains for 4 hooks induces overestimation of the strain 

evaluated in the ROI, while for 2 hooks or 2 clamps the strain in the ROI corresponds better 

to the theoretical value as documented also by R2 values. It is evident, that the evaluated strain 

value (and thus the R2 value) depends on the position of the marker and in the presented case 

the less uniform distributions of strains (and consequently stresses) give better accordance 
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with the theoretical value than the more uniform distribution (4H lines in Figure 18) which 

overestimates the strain value in the ROI due to its steep decrease towards the edge. 

 

 

Figure 18 Distribution of strains across the half of the specimen for 2 clamps (2CL), 

2 hooks (2H) and 4 hooks (4H) for material (iv). 

 

Evaluation using comparison of resulting and input stress-strain curves  

In my work I used comparison of resulting stress-strain curves obtained from the 

simulations with the corresponding theoretical responses of the original material models. The 

input (original, theoretical) stress-strain curve for each of the simulated tests was calculated 

analytically from the applied constitutive model by using the formula below for a chosen set 

of corresponding discrete strain values. 

 𝑆𝑖𝑗 =
𝜕𝑊

𝜕𝐸𝑖𝑗
= 2

𝜕𝑊

𝜕𝐶𝑖𝑗
 (4) 

 

Where  𝑆𝑖𝑗 are components of 2. Piola-Kirchhoff stress tensor, 

 𝑊 is the strain energy density function related to unit undeformed volume, 

 𝐸𝑖𝑗 are components of Green-Lagrange strain tensor, 

 𝐶𝑖𝑗 are components of Cauchy-Green deformation tensor. 

 

To obtain the resulting curve, all the quantities were calculated from the simulations in 

the same manner as in the experimental approach described in chapter 3.2. So the engineering 

stress was calculated from the total reaction force in the gripping elements and the 

undeformed specimen cross section area, while stretches were evaluated from displacements 
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of the mesh nodes located in the ROI similarly to the markers in real experiments. Due to the 

perfect symmetry and homogeneity of the 1/8 model and markers positioned in the symmetry 

planes, only one stretch component (representing average value for the ROI) was calculated 

from the corresponding displacement component of each of the markers, and no more 

recalculation (e.g. rigid body rotation) was needed as done in evaluation of real experiments. 

The R2 value was calculated for each of the simulated tests separately by comparing the 

resulting stress-strain curve with the input (theoretical) one for the same loading protocol, and 

then the resulting R2 for each specific setup of the test (type, number and size of gripping 

elements, material model, and specimen size) was calculated as average of all the applied 

loading protocols as follows: 

 𝑅2 =
𝑅1:1
2 + 𝑅1:2

2 + 𝑅2:1
2 + 𝑅1:4

2 + 𝑅4:1
2

5
 (5) 

 

For isotropic materials it holds 𝑅1:2
2 = 𝑅2:1

2  and 𝑅1:4
2 = 𝑅4:1

2 . 

 

The R2 value averaged for all the protocols was used in all analyses below with the 

exception of the analysis of influence of the loading protocol itself (par. 5.3). This approach 

was used for the specimen size 18x18 mm to estimate the best possible number and 

dimensions of the gripping elements and the effect of the material properties. Then we 

analysed also the effect of the specimen size under assumption of unchanged initial specimen 

thickness. 

 

4.3 Evaluation of the parametric study 

The quantitative evaluation of the individual cases was done as follows:  

 

1) FE computational models (2-dimensional and 3-dimensional) were created for each of 

the evaluated assemblies in ANSYS software. 

2) Resulting stresses and strains during the loading process were calculated in the same 

manner as in the experimental approach. 

 Engineering stresses (1st Piola-Kirchhoff) were calculated as total force in the 

given direction divided by the undeformed cross section area. 

 Stretches (principal components of deformation gradient tensor) or engineering 

strains were calculated from the positions of markers in the central region of the 

specimen in their undeformed and deformed configurations. 
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3) The corresponding theoretical curve was calculated for the set of chosen strain values 

using eq. (4). 

4) The resulting stress-strain curve was compared with the theoretical one by means of 

coefficient of determination R2 (R2 =1 for identity). 

 

4.4 Limitations of the computational model 

The created computational model represents a limited agreement with reality, so a 

number of simplifications and presumptions was made. 

 

Simplifications 

First, we simplified the process of penetration of the hook into the tissue by assuming 

the hole of the same diameter as the hook; so no stress is induced in the tissue before loading 

while in reality the penetration of the hook induces some stresses in the tissue which 

compress the hook. The effect of this simplification was not explored, it is assumed to be 

local only without any significant impact on the evaluated stress-strain curves. The straight 

shape of the hooks is not realistic either but they are placed in straight holes so that a full 

length contact (and better convergence) is ensured from the onset of loading; the differences 

against a curved hook in a curved hole are expected to be local only without any impact on 

the results.  

 

Presumptions 

Also all the numerical analyses assumed homogeneous materials while soft tissues are 

more or less heterogeneous which may affect primarily the results for large specimens which 

are naturally more heterogeneous. Next, perfectly symmetric and accurate positions of clamps 

and hooks were assumed in all the presented analyses. Naturally, the accuracy of the 

positioning of clamps or hooks represents another important operator-dependent factor 

influencing the accuracy of the experiment. 

 

 

  



42 

 

5 Sensitivity analysis of gripping method - Results 

Simulation of one case took from 20 minutes to 2 hours on a 6CPU 16GB RAM 

computer. Overall more than 600 analyses were performed. The results of different parametric 

analyses are presented in the following subchapters. 

 

5.1 Influence of 2D vs. 3D modelling 

In Figure 19 a comparison of 2D and 3D simulations is shown. The graph represents the 

most differing case – material model 5 using clamps to grip the specimen. The R2 differs 

significantly, indicating thus substantial differences in the results. Therefore it was concluded 

that 2D modelling is not acceptable and a full 3D approach has to be used instead. 

 

 

Figure 19 Comparison of resulting R2 using 2D or 3D simulations. 

Material model 5 was used. 

 

The differing results are probably caused by some 3D effects in the vicinity of clamps 

and their simplifications in the 2D model, namely by not pressing the clamps into the 

specimen or by absent specimen material under the clamps. 
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5.2 Influence of dimensions and numbers of grips 

Dependences of R2 on the type of gripping elements, their number and size are shown in 

Figure 20 for various materials. It is shown that the most appropriate width of the clamps is 

between 2 and 3 mm independently of the analysed material, while the decrease of R2 for 

clamps wider than 3 mm is highly material dependent. As the steep decrease of accuracy 

occurs for materials 1 and 3 which show pronounced strain stiffening, it can be concluded that 

this effect is probably related to material nonlinearity. However, as this effect is much less 

pronounced for the anisotropic material 2, its relation to the material anisotropy is also worth 

to be further investigated. On the contrary, the effect of hook diameter depends on the number 

of the applied hooks. Larger diameter is slightly better for two hooks for all materials, while it 

has a clear negative effect for 4 or 5 hooks, which becomes significant for material 4 with R2 

decreasing sometimes under 0,9. The effect of hook diameter is negligible for 3 hooks. 

For a more detailed interpretation, the same results are depicted in Figure 21 in a 

different way, grouped by the experimental setup instead of material. This representation 

makes it possible to assess the expected accuracy of a specific experimental setup and 

material type. 

 

 

Figure 20 Influence of different gripping elements, their number and size on R2 for various 

materials. In the legend CL and H denote clamps and hooks, respectively. 
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Figure 21 Impact of dimensions of gripping elements in the individual setups 

for different materials. 

 

This comparison shows that the accuracy is always excellent with two clamps below 4 

mm width, comparable with 2 or 3 hooks which give, however, a slightly worse accuracy for 

a highly non-linear material 3. The accuracy of setups with 4 or 5 hooks is slightly worse and, 

for some materials, decreases significantly for large diameters of the hooks. 
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Two clamps can also be used with adequate plausibility in a very wide range of sizes 

(1,75÷4,5 mm). These conclusions are valid for the basic specimen size of 18x18 mm and 

larger width of clamps is more suitable for large specimen sizes when it can partially 

compensate the deficit in number of gripping elements. On the other hand, use of wide clamps 

for small specimens cannot be recommended since they constrain the transversal deformation 

of the tissue too much which reduces the accuracy especially in non equibiaxial tests (see 

Figure 22).  

 

5.3 Influence of the loading protocol 

Figure 22 demonstrates a significant decrease in accuracy for non-symmetric loading 

protocols compared to the equibiaxial ones. This tendency occurs for both types and all 

numbers of gripping elements with isotropic materials, while for the anisotropic material it is 

less pronounced (it holds only if the load is higher in the softer material direction) and more 

dependent on the experimental setup. The increasing hook diameter improves the results for 

two hooks while it has an opposite effect for five hooks which is consistent with Figure 21. 
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Figure 22 Influence of the different testing protocols for anisotropic (mat. 2) and the stiffest 

(mat. 3) materials evaluated for gripping via 2 or 5 hooks and 2 clamps. 

The worst accuracy is always achieved for the most non-symmetric loading protocol. 

 

5.4 Influence of the specimen size 

The influence of the specimen size was investigated only for the hook diameter of 1 mm 

and for two clamps with 3,25 mm width. The results are presented in Figure 23. The accuracy 
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increases for all gripping setups with the increasing specimen size up to 30 mm representing 

the minimal specimen size needed for uniform load distribution via 5 hooks. Further increase 

of specimen size has negligible effect on the accuracy. This effect is most pronounced for the 

softening material model 4 (arterial elastin) and for the setup with 5 hooks. 

 

 

Figure 23 Influence of specimen size on accuracy for various types and numbers 

of gripping elements. 

 

With small specimens I obtained worse accuracy for four and five hooks than for 2 

hooks (consistent with Figure 20). This result can be explained by disruption of the uniform 

force distribution along the specimen edge because the gripping elements must be non-

uniformly distributed to keep some minimal distance between them in the specimen corner. 

This is supported also by the observed significant increase of accuracy with increasing 

specimen size for 4 and 5 hooks (see Figure 23) because it gradually diminishes the non-

uniform force distribution. When using small specimen with 18 mm edge, the obtained 

accuracy for 4 hooks is higher than for 5 hooks. This is because at small specimens, fewer 

hooks can be positioned more evenly than more hooks. Naturally this effect disappears for the 

largest specimens (above 30 mm) where a uniform distribution of hooks can be kept even for 

5 hooks.  
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On the other hand, for some materials and the largest specimens the accuracy for 2 

hooks or 2 clamps was significantly lower compared to 4 or 5 hooks setups. It means that 2 

gripping elements are not capable to induce sufficient strains in the middle of the specimen 

(see Figure 16) due to their large distance from the symmetry plane of the specimen. As 

shown in Figure 16 and Figure 20 and explained in chapter 4.2, for the accuracy of the results 

accordance of the strain in the ROI with the average value throughout the whole specimen is 

more important than the size of the portion of the specimen with (nearly) homogeneous strain 

distribution. Therefore for small specimens the less homogeneous strain distribution for 2 

gripping elements gives better results than for 4 hooks. For larger specimens the tendency is 

opposite because the overestimation of strains in the ROI decreases for 4 hooks and, on the 

contrary, 2 grips underestimate the strain in the ROI due to their increasing distance from the 

symmetry plane. Conclusively, a higher number of gripping elements should be avoided 

(regardless of the investigated material) if it could result in a non-uniform distribution of the 

load along the specimen edge, and 2 gripping elements should be avoided in tests of 

specimens larger than 30 mm. 

 

5.5 Summary of results 

A novel method of evaluation of the accuracy of biaxial tension tests was used which 

compares not the stress and strain distribution throughout the specimen but directly the 

simulated response with the theoretical material response based on input material models of 

the specimen (see chapters 4.2 and 4.3) by means of coefficient of determination R2. It was 

shown that this approach is superior to mere comparison of uniformity of strain (stress) 

distribution (see Figure 16). 

 

The results are valid for a wide range of material stiffness occurring at soft tissues, from 

the very compliant ILT up to the stiffest wall of abdominal aortic aneurysm, and for a wide 

range of strains exceeding their physiological values. The only exception was the case of the 

anisotropic model which showed convergence problems well below physiological stresses as 

described in section Material models. This is the reason for having used the isotropic 

approximation of the same material for which the convergence was much better, and the 

resulting curves could be calculated up to strains of some 30%.  
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The analysis of influence of dimensions and numbers of grips shows that 2 or 3 hooks 

and 2 narrow clamps per edge give the best accuracy for small specimens. Larger hook 

diameter increases the accuracy for two hooks and decreases for a high number of hooks (4 - 

5). Two clamps can be applied in a broad range of width (2 - 4 mm) independently of the 

analysed material. 

 

Specimen size influences the accuracy of results significantly. If a relatively uniform 

load distribution is kept, the value of R2 tends to the ideal value of 1 with increasing specimen 

size within the investigated range. In the case of a quite non-uniform load distribution using 

two clamps or hooks the R2 value does not tend to 1, but to a slightly lower value (0,98), for 

the material 3 it even decreases with larger specimen size, but still with acceptable value of R2 

= 0,95 for 35 mm specimen edge. For large specimens the use of more (typically 4 or 5) 

hooks is recommended. 4 clamps may give similar results for large specimens but this case 

was not analysed. 

 

All previous conclusions are relevant for different loading protocols. Non-equibiaxial 

protocols show worse accuracy than equibiaxial ones and are more dependent on the 

experimental setup as well as material properties. 

The realized analyses are much more comprehensive than those presented in previous 

studies [8][9][10] and the results do not contradict any of them for comparable cases.   
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6 Predictive capabilities of different material models 

A good computational model requires not only credible stress-strain experimental data 

but also their sufficiently accurate approximation by a mathematical function representing the 

chosen constitutive model. The ideal case is a material model accurately predicting a variety 

of stress-strain states on the basis of only minimum of needed experimental data. Uniaxial 

testing is less demanding in material preparation and size, measuring device and data post 

processing than biaxial testing. Thus many material models are fitted using uniaxial data only, 

predicting thus biaxial stress-strain states. Some of the used material models have better 

predictive capabilities than other models. Therefore validation of some constitutive models by 

assessing their capabilities in describing and predicting uniaxial and biaxial behaviour of 

porcine aortic tissue is the aim of another study done by the research group of my supervisor.  

The results were published in [95], the full text of which is attached as Appendix of this 

thesis. Here I present its basic concept and specify my individual contribution. 

In short, specimens of porcine aorta were prepared and measured under uniaxial and 

biaxial testing protocols. Four constitutive models were chosen for comparison of their 

predictive capabilities: Holzapfel 2000 ([34], denoted as HGO model below), Gasser 2006 

([35], denoted as GST model below), Four fiber family [93, 94] and Microfiber [70] were 

fitted using uniaxial data and then used to predict the biaxial measured data and vice versa. 

Accuracy of the prediction was statistically evaluated and the models were ranked according 

to their predictive capability. The conclusion was that HGO and GST models were not 

capable to predict biaxial arterial behaviour while FFF model was the best of the investigated 

constitutive models. Knowledge of transversal strains in uniaxial tests improves predictive 

capability of the constitutive models. 

The author’s part in this study (see Figure 24) was the fitting of the measured data using 

different constitutive models followed by evaluating the accuracy of predictive capabilities. 

The result of the fitting and evaluating procedures is presented as a comprehensive overview 

of coefficients of determination R2 and normalized root mean square error (NRMSE) for all 

predictive capabilities of all models. 
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Figure 24 Schematic description of the process of evaluating the predictive capabilities 

of different material models [95]. The area of author’s work is marked red. 

 

A detailed description of author’s work regarding this analysis is presented in the 

following part of the thesis and in the Appendix C. In the enclosed journal article the 

constitutive models, fitting process and results are presented. In this thesis these issues are not 

fully repeated but only shortly mentioned or completely left out. The aim of the appendix part 

is to show the detailed process of fitting of the measured data and obtaining the accuracy 

coefficients of their respective predicting capabilities and the following part shows some 

specifics of the fitting process and its dependencies. This procedure exploits the program 

Hyperfit (www.hyperfit.wz.cz) and was not yet presented. 

 

6.1 Process of fitting the measured data using the program Hyperfit 

Hyperfit, in contrast to ANSYS or other fitting programs, is capable to fit multiple data 

sets of the same type of test using a single constitutive model. This enables us to calculate 

response based on any number of measured specimens, e.g. a mean population response. 

 

http://www.hyperfit.wz.cz/
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Firstly one specific feature of the analysis needs to be mentioned. The tested specimen 

was square shaped also when uniaxial tension test was applied instead of the usually used dog 

bone shape. The reason for this is explained in the journal article [95]: 

 

“The uniaxial tests were performed by unclamping one of the axes. 

It is also underlined that engineering strains in both principal directions εc and εa were 

recorded in all tests including the uniaxial ones. This was motivated by our effort to 

identify the effect of transversal strain on the predictive capability of the analyzed 

constitutive models since some of the analyzed constitutive models were shown 

previously not to estimate the transversal strain correctly (Skacel and Bursa, 2015). A 

secondary reason is in the use of square shape specimens which do not guarantee 

uniaxial state of stress during uniaxial testing. In this way we have obtained 7 data sets 

from 5 biaxial and 2 uniaxial tensile tests for each specimen.” 

 

In short, the use of the square shaped specimen enables us to change the biaxial test 

into uniaxial one by simple unclamping one of the axes and, moreover, we can measure the 

transversal strain in the same manner as in biaxial tests. This enables us to evaluate the effect 

of transversal strain on the predictive capability of the analysed constitutive models. 

The specimen is clamped into the testing device using multiple narrow clamps or 

hooks. These gripping elements cause a non-uniform deformation distribution along the edge 

of the specimen which may influence also the central part (ROI) of the specimen where 

strains are measured. Moreover, large deformations during the test cause rotation of the 

gripping elements inducing thus non-zero forces in the direction perpendicular to the direction 

of load. 

These transversal forces influence the transversal strains and disturb the uniaxial state 

of stress. Therefore it is not an ideal uniaxial test but a test under biaxial stress state in which 

we are not able to measure the transversal stress. If the transversal strain derives from biaxial 

stress state, we prefer to fit the data using biaxial test mode and thus involve both strains of 

the specimen. Due to this additional information the predictive capability of the model may 

increase as a result.  
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More about starting parameters and their influence on the resulting coefficient of 

determination is analysed in the chapter 6.2 below. The whole fitting process is documented 

in Appendix C.  
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6.2 Dependence of coeff. of det. on starting and constrained parameters 

6.2.1 Starting parameters 

The quality of the fit, quantified by the resulting coefficient of determination R2, 

depends on the starting point, which is defined as a set of starting parameters, see Table 3, 

Table 4 and Figure 25 below. 

 

The phenomenon was observed firstly when comparing the fit of the measured data 

using default starting points of the Hyperfit program and using parameters fitted previously 

from another measured data as a starting point. To examine the problem closely, only 

equibiaxial data sets (because of the rapid speed of fitting when using only one fifth of all 

datasets) were fitted using multiple starting points. Different starting points resulted in 

different coefficients of determination R2. The difference (distance) between the maximal and 

minimal R2 can be explained as an uncertainty of the fitting process or the influence of 

different starting points on R2. The analysis has been extended back to all five testing 

protocols. 

 

The phenomenon has been observed with all material models. The analysis is shown 

using the parallel Microfiber material model which is the best structural material model in 

regard of the prediction capabilities. The starting points are listed in the table below. The 

constraints are given by physical conditions only. The parameters are “free” to achieve any 

value, therefore it is called “All protocols, free” unlike the next chapter where the parameters 

are constrained. 

Table 3 Starting points of the Microfiber material model. 

Parameters Starting point Number Constraints 

Layer Name 1 2 3 4 Min Max 

m
e

d
ia

 

mu 1 5 500 50 0 - 

k 1 10 400 400 0 - 

l_min 1 1 1 1 1 - 

l_max 1,2 1,3 1,5 1,5 1 - 

b 0,1 0,5 1,5 1,5 0 - 

a
d

v
e
n

ti
ti
a
 mu 0 0 0 0 Fix Fix 

k 1 50 1,0E+07 1,0E+05 0 - 

l_min 1,1 1,2 1,1 1,3 1 - 

l_max 1,5 2 2 2 1 - 

b 0,1 0,5 0,5 0,5 0 - 
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Table 4 Coefficient of determination in dependence of starting point and data sets. 

Starting point 
Number 

Coefficient of Determination R2 

Equibiaxial only All protoc., free 

1 0,8525 0,9640 

2 0,9772 0,9812 

3 0,9972 0,9526 

4 0,9974 0,9669 

   
Min-Max distance 0,1449 0,0286 

 

 

Figure 25 Coefficient of determination in dependence on different starting points for 

equibiaxial data set and for all data sets combined. 

 

The greatest difference in the resulting R2 was observed when using the most “soft” 

stress strain response, (starting point Nr.1) where most of the parameters were near the zero 

value. The R2 values of the same starting points applied with different datasets differ not 

negligibly, therefore we can assume that there are no “ideal” starting points to be used when 

fitting experimental data. 

 

The influence of starting points is unexpected because in most cases there exists only 

one residual maximum (or minimum) of the maximized (or minimalised) function. In case of 
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complex constitutive models multiple maxima can be found during the fitting process. When 

fitting, the program finds only one local maximum which needn’t to be the global maximum. 

Therefore a restart of starting parameters is available in the program widening thus the area of 

search. Unfortunately we do not know the exact parameters of the material model which give 

the maximal and also unknown R2. Therefore we can never know the best starting points of 

the fitting process and it is recommended to use multiple starting points to increase the 

probability of the maximal achievable R2. 

 

From the author’s experience the most effective method how to achieve the best 

approximation of experimental data from many data sets is to select one group of the 

measured data sets and to fit this group using multiple starting points. The resulting set of 

parameters with the highest R2 is then used as a starting point for all the other data sets. This 

approach combines the probability of finding the best approximation with minimization of the 

calculation time. 

 

The fitted stress strain model curves are shown in the overview chapter below in 

comparison with the experimental data. 

 

6.2.2 Constrained parameters 

Some material models are structure based thus the parameters of the model should 

vary in a specific range of values. The value of R2 will be influenced by restraining the 

possible values of parameters. The question remains, what criterion should be maximized – 

the R2 which stands for the best fit of the measured data or that the parameters vary in a 

natural range of values? In [95] the authors have chosen to let the boundaries of the 

parameters free in order to obtain the best fit of the measured data. 

 

The constraints of the more constrained material model were chosen on the basis of 

the structural data measured in [29]. 
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Table 5 Starting points of the Microfiber material model, constrained and unconstrained. 

Parameters Starting point Number Free Constrained 

Layer Name 1 2 3 4 Min Max Min Max 

m
e

d
ia

 

mu 1 5 500 50 0 - 0 - 

k 1 10 400 400 0 - 0 - 

l_min 1 1 1 1 1 - Fix Fix 

l_max 1,2 1,3 1,5 1,5 1 - 1 2 

b 0,1 0,5 1,5 1,5 0 - 0 1,5 

a
d

v
e
n

ti
ti
a
 mu 0 0 0 0 Fix Fix Fix Fix 

k 1 50 1,0E+07 1,0E+05 0 - 0 - 

l_min 1,1 1,2 1,1 1,3 1 - 1 1,5 

l_max 1,5 2 2 2 1 - Fix Fix 

b 0,1 0,5 0,5 0,5 0 - 0 1,5 

 

Table 6 Coefficient of determination in dependence of starting point and (un)constrained 

parameters. 

Starting point 
Number 

Coefficient of Determination R2 

All protoc., free All protoc., constr. 

1 0,9640 0,9640 

2 0,9812 0,8796 

3 0,9526 0,9671 

4 0,9669 0,9669 

   
Min-Max distance 0,0286 0,0875 
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Figure 26 Coefficient of determination in dependence of different starting points for 

constrained and unconstrained parameters. 

 

Constraint of the parameters results in influencing the R2 of the fit unpredictably. In 

some cases the R2 values are practically the same (starting points 1 and 4), in the case of SP 3 

the difference is minimal and in the case of SP 2 the difference is large. 

 

It cannot be said that in the analysed case constraint of the parameters influences the 

resulting fit negatively because there is no significant dependence. 

 

The fitted stress strain model curves are shown in the overview chapter below in 

comparison with the experimental data. 
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6.2.3 Overview 

To give an overview of all the analysed cases and dependencies a summary table, 

figure and graphs are shown below. 

 

Table 7 Starting points of the Microfiber material model, constrained and unconstrained. 

Parameters Starting point Number Free Constrained 

Layer Name 1 2 3 4 Min Max Min Max 

m
e

d
ia

 

mu 1 5 500 50 0 - 0 - 

k 1 10 400 400 0 - 0 - 

l_min 1 1 1 1 1 - Fix Fix 

l_max 1,2 1,3 1,5 1,5 1 - 1 2 

b 0,1 0,5 1,5 1,5 0 - 0 1,5 

a
d

v
e
n

ti
ti
a
 mu 0 0 0 0 Fix Fix Fix Fix 

k 1 50 1,0E+07 1,0E+05 0 - 0 - 

l_min 1,1 1,2 1,1 1,3 1 - 1 1,5 

l_max 1,5 2 2 2 1 - Fix Fix 

b 0,1 0,5 0,5 0,5 0 - 0 1,5 

 

Table 8 Coefficient of determination in dependence of starting point, (un)constrained 

parameters and datasets 

Starting point 
Number 

Coefficient of Determination R2 

Equibiaxial only All protoc., free All protoc., constr. 

1 0,8525 0,9640 0,9640 

2 0,9772 0,9812 0,8796 

3 0,9972 0,9526 0,9671 

4 0,9974 0,9669 0,9669 

    
Min-Max distance 0,1449 0,0286 0,0875 
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Figure 27 Coefficient of determination in dependence on different starting points for 

constrained and unconstrained parameters and for different datasets. 

 

The resulting R2 varies in a range of values between approximately 0,85 and 1,00 with 

the highest density between 0,95 and 1,00. 

 

Every starting point generates a model curve which is fitted to the experimental data. 

All curves for each type of dataset or (un)constrained parameters are shown in Figures 28÷30 

below. 

 

Figure 28 Stress strain model curves for different starting points 

for equibiaxial dataset in comparison with experimental data. 
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Figure 29 Stress strain model curves for different starting points for all datasets 

in comparison with experimental data, unconstrained (free) parameters. 

 

 

Figure 30 Stress strain model curves for different starting points for all datasets 

in comparison with experimental data, constrained parameters. 

 

The table with all starting points, fitted parameters and residuals is in Appendix B. 
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6.3 Conclusion 

The process of fitting the measured data with different constitutive models is a time and 

attention demanding activity for the operator. Therefore further automation of the process is 

advisable in order to prevent operator-based mistakes and to quicken the process significantly. 

 

The resulting coefficient of determination R2 depends on the starting point, which is 

defined as a set of starting parameters. 

 

The greatest difference in resulting R2 was observed when using the most “soft” stress-

strain response where most of the parameters tended to the zero value. The R2 values of the 

same starting points applied on different datasets differed significantly. Therefore we can 

conclude there are no “ideal” starting points to be used when fitting experimental data. 

 

The most effective method how to achieve the best approximation of experimental data 

from many data sets is to select one group of the measured data sets and to fit this group using 

multiple starting points. The resulting set of parameters with the highest R2 is then used as a 

starting point for all the other data sets. This approach combines the probability of finding the 

best approximation with minimization of the calculation time. 

 

Constraint of the parameters results in unpredictable influencing the R2 of the fit. In two 

cases the R2 values were practically the same, in one case the difference was minimal and in 

one case the difference was large. It cannot be said that in the analysed case the constraint of 

the parameters influences the resulting fit negatively because there is no significant 

dependence. 
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7 The influence of affine deformation between matrix and fibres 

7.1 Motivation 

Constitutive models represent a challenging and important issue in biomechanical 

modelling. For description of mechanical behaviour of soft tissues different types of 

constitutive models have been used, from those formulated originally for rubber (e.g. 

Mooney-Rivlin model [97] and its simplified forms), through different types of isotropic or 

anisotropic phenomenological models proposed specifically for soft tissues (Demiray [98], 

Fung [99], Hayashi [100], and others), up to models reflecting at different levels the tissue 

structure (e.g. Lanir [101], Holzapfel [34], Gasser [35], Martufi [70]). A specific family of 

constitutive models reflecting active response of some soft tissues (e.g. Rachev [102,103], 

Stergiopulos [104]) is not addressed in this study. Many of these models are capable to 

describe uniaxial or biaxial responses of arterial tissues with acceptable accuracy but most of 

them fail in prediction of biaxial response on the basis of uniaxial testing only. A similar 

problem occurs if stress-strain behaviour of arterial tissue under various types of biaxial stress 

or strain is to be predicted on the basis of equibiaxial tests only. Therefore biaxial testing 

under different ratios of displacements or forces in both directions is preferred. However, 

when we tried to capture five different biaxial testing protocols (with maximum displacement 

ratio 5:1) for abdominal aortic aneurysm wall, none of the known constitutive models, incl. 

those based on structure tensor, was capable to describe them reasonably. Thus our hypothesis 

came into existence on possible disruption of the assumption on affine deformation which is 

used intrinsically in all models.  

 

7.2 Objective 

To evaluate the possible impact of disruption of the assumption of affine deformation 

on the stress-strain response of the material. If this impact was large enough to explain the 

differences between experimental data and the constitutive models, the failure of all models in 

description of mechanical tests of abdominal aortic aneurysm wall might be explained by 

their common intrinsic assumption which was never substantiated experimentally. 
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7.3 Methods 

In order to quantify the influence of possible non-affine deformation between matrix 

and collagen fibres, we have created a finite element model of a square-shaped specimen of 

soft tissue, with one family of collagen fibres oriented under varying angle to the direction of 

uniaxial load. 

 

7.3.1 Geometry 

The specimen consists of two layers of matrix (upper and lower) and many fibres 

aligned in one direction. 

 

 

Figure 31 Geometry of the specimen. Two layers representing the matrix 

and the fibres between the layers. 

 

Models with fibre angles from 0° up to 90° have been realized with the step of 5°. 

Examples of fibres under the angle of 10° and 25° are shown below. 
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Figure 32 Models with fibre angles of 10° (left) and 25° (right). 

 

7.3.2 Applied material models 

The sample consists of fibres and matrix, Figure 33. Each type needs its own material 

model with relevant material constants. 

 

 

Figure 33 The matrix (grey) and the fibres (red). Matrix and fibres have 

different material properties. 

 

Both material models are based on frequently used constitutive descriptions, such as 

Neo-Hooke and Yeoh material model, and experimentally acquired data. The presumption of 

incompressibility is active in both cases. 

The matrix is very pliable under low stress. The constant for Neo-Hooke material 

model has the value Mu = 20 kPa. 



66 

 

The fibres are typically described using exponential stress strain curve. At first only 

small amount of stress is needed to gain large strain, after some 20 % strain the dependence 

becomes much stiffer and the stress can reach very high values. The parameters of 5-param. 

Yeoh material model are c10 = 10 Pa, c20 = 8 MPa, c30 = c40 = 0, c50 = 200 MPa based on a 

typical measured data of the relevant tissue. 

 

 

Figure 34 Stress strain curves of the matrix (blue, left) and fibre (red, right) material models. 

 

The application of 5-param Yeoh material model in ANSYS Workbench user interface 

needs to be made by special Command in the solver section. The respective code is shown 

below. 

 

Figure 35 ANSYS Command code to define and change the properties of fibres. 
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7.3.3 Mesh specifics, connections 

The matrix was represented by 2D shell elements, while fibres were mimicked with 

shells perpendicular to the middle plane of the specimen and having the corresponding 

orientation with respect to the loading direction. The usage of 2D shell elements is explained 

in detail in the chapter 7.5. Each shell was divided into multiple elements along the fibre 

length and – for affine deformation – all the nodes were merged with the closest nodes of the 

matrix. In contrast, for non-affine deformation the displacements of nodes along the fibre 

length were independent of matrix deformation with exception of their end nodes. 

A mesh density convergence was checked in order to secure mesh independent results 

of the finite element analysis. 

 

 

Figure 36 Mesh of the model (without upper layer to see the fibres). Each body is in different 

colour. The fibres consist of multiple elements in the length direction. 
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Figure 37 Mesh of the fibres. The element size was set constant if possible. 

 

7.3.4 Loads and other boundary conditions, testing protocol 

All loads and boundary conditions were applied ideally along the whole edge of the 

specimen. Symmetry (frictionless support) was used on the lower surface to save the 

calculation time.  

Constraints (marked B and E in Figure 38 below) simulating symmetry were also 

applied on the relevant edges. 

The deformation load of maximally 30 % of the starting specimen length was applied 

in the +x and +y direction (marked C and D on the Figure 38 below). In the case of 

proportional tests one of the loads was lowered in the relevant ratio. For example for the ratio 

of 2:1 the loads are 30 % in x axis and 15 % in y axis. 

The testing protocol included uniaxial tension, planar tension, and biaxial tension with 

following displacement ratios: 1:1, 1:2, 2:1, 5:1, 1:5. 
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Note: As planar tension (plane strain tension) we denote the uniaxial tension test with 

constrained transversal deformation. If loaded in x direction with constrained displacement in 

y direction it is denoted as “dispY=0” below. 

 

 

Figure 38 Boundary conditions of the model. 

 

7.3.5 Parametric study 

The parametric study consists of input parameters which we assume might be 

influential and of the output parameters which are observed. At the end, a possible connection 

between input and output parameters is analysed.  

The input parameters are following: 

- The affinity of deformation: Fibres either are or are not connected to the matrix along 

the whole length of the fibre. In any case the fibres are connected to the matrix at the 

edges of the specimen. 

- The fibre angle: The fibres are oriented under different angles in the range from 5° to 

90° with the steps of 5°. 

The observed output parameter is the reaction force in relevant axis at the end of the 

loading process. 
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7.3.6 Examples of deformed state 

A better idea of the results of the analysis can be provided by examples of deformed 

state of chosen specimens with different fibre angles and with affine or non-affine 

deformation. 

In the pictures below, affine and non-affine deformations are presented on the left and 

right side, respectively. The testing protocol is equibiaxial. 

 

 

Figure 39 Example of affine (left - curved fibres) and non-affine (right - straight fibres) 

deformation, the fibre angle is 10°. 

 

 

Figure 40 Example of affine (left - curved fibres) and non-affine (right -straight fibres) 

deformation, the fibre angle is 25°. 
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Figure 41 Example of affine (left - curved fibres) and non-affine (right -straight fibres) 

deformation, the fibre angle is 40°. 

 

7.3.7 Evaluation of virtually measured data 

From each FEA we acquire one dataset of strains (displacements) and stresses (forces) 

corresponding to the respective biaxial (or uniaxial) test. The comparison is performed 

between two corresponding datasets which differ only in their affine or non-affine 

deformation. 

The simplest way of their comparison is done by calculating the difference (in %) of 

the force values at the end of the loading process where we assume the largest impact of 

affinity of deformation; affine and non-affine deformation cause different deformed shapes of 

fibres due to their interaction with the matrix. 

The datasets could be also compared more rigorously using the coefficient of 

determination R2. In each step of the calculation, this method compares two stress values for 

one specific strain value, normalizes their difference, and summarizes the results along both 

functions. 

The problem of the virtually measured datasets origins from the fact that the values of 

forces for both models are evaluated under different strains (although we prescribed the same 

displacement loads they may cause different strains). 

Therefore one dataset needs to be altered to make it comparable with the other dataset. 

The alteration is done using material model function. The exact way of comparison is 

described in the following steps: 

1) The first dataset is loaded into Hyperfit program. 
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2) A suitable material model is chosen and fitted on the data. The R2 of the fit needs to be 

maximized in order to ensure that the model is a reliable representation of the 

measured data. In all the analysed cases the R2 exceeded the value of 0,999. 

3) After having obtained the model curve of the first dataset, the second dataset is loaded 

into the program. 

4) The calculated R2 of the second dataset and the model curve from the first dataset 

quantifies their accordance. 

 

7.4 Results 

As expected, the shape of the fibres was curved for the affine and straight for the non-

affine deformation. The differences between both models were highly angle-dependent and 

ranged up to 10 percent regarding the force values at the end of the loading process. Such a 

difference might be significant for certain models but cannot explain the much larger 

contradictions between the structure-based constitutive models and the results of biaxial tests 

under different testing protocols. In addition, for the chosen constitutive model the coefficient 

of determination differs between both the respective stress strain curves by ∆R2 = 0,01÷0,02 

which is an insignificant value in comparison with the larger contradictions described above. 

 

Relative differences of maximal force values (with affine deformation model taken as 

basis) are shown for different loading protocols in dependence on the fibre angle in Figure 42 

below. 
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Figure 42 Relative differences of force values for different loading protocols in dependence 

on the fibre angle with preferred X direction. 

 

The maximal relative difference 10,2 % was measured in the case of equibiaxial 

testing protocol. The difference decreases with decreasing transversal displacements 

(longitudinal displacements are kept constant in all the tests). The sequence of protocols 

according to the decreasing transversal displacement is as follows: 1:1 – 2:1 – 5:1 – dispY=0 

– uniaxial test. 

The maximal difference in regard to fibre angle occurs in the range between 15° and 30° 

depending on the testing protocol. 

Table 9 Maximal force difference and its respective fibre angle for different testing protocols. 

The analyses have been performed with the fibre angle step of 5° which limits the accuracy of 

the evaluated angles. 

Protocol Difference [%] Angle [°] 

1 to 1 10,2 30 

2 to1 8,1 25 

5 to 1 7,3 25 

dispY=0 7,1 20 
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Figure 43 Graphical representation of the dependence of the fibre angle of the maximal force 

difference on the testing protocol. 

 

 

Figure 44 Maximal relative force difference as function of the fibre angle for uniaxial tests. 

The difference is highest for the angle of approximately 15° between the fibres and the axis of 

load and negligible for this angle being above 45°. 
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7.5 Discussion, limitations 

The analysis is based on only one type of material model for matrix and fibres with one 

set of material parameters only. We presume that different material behaviour (other types of 

material models and sets of parameters) will affect the results quantitatively but not 

qualitatively. The aim of the study is primarily not to quantify the difference between affine 

and non-affine deformation but to analyse the problem qualitatively. Furthermore, the 

material model used in the analysis is commonly used in the field of artery wall FEA. 

 

The usage of 2D elements instead of 3D or 1D was chosen for several reasons. If 3D 

elements would have been used, the FEM model would be very extensive as one can see in 

[96] and therefore unsuitable for sensitivity analyses. The specimen is thin, thus the stresses 

perpendicular to its midplane are negligible and the level of modelling in regard to the goals 

of the analysis admits 2D elements instead of 3D.  

The focus is on the mechanical behaviour of the fibres and of the specimen in the x-y 

plane, the stress strain state across the thickness of the specimen is not important for the 

results of the analysis. The FEM program did not enable a proper connection of 2D shell and 

1D link elements therefore the fibres were modelled using 2D shell elements where no 

problems regarding the mesh connections occurred. Furthermore, the shell elements may 

represent (from the perspective of mechanical behaviour) an infinite number of evenly 

distributed fibres (link elements) throughout the thickness of the specimen with evenly 

distributed stress throughout the thickness of the specimen. 

 

The limitation of the model is its limited applicability. The structures (specimens) need to 

be thin walled because of the in plane (2D) stress state. 
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8 Conclusion 

The dissertation thesis focuses on the plausibility of mechanical testing of soft biological 

tissues and on the predictive capabilities of different material models. Parameters of material 

models applied on these tissues are preferentially based on biaxial tension tests. The results of 

these tests can be significantly influenced by the choice of experimental setup which is chosen 

solely by the designer of the testing machine and the operator; there are no generally agreed 

standards for their execution. 

 

Hooks are most commonly used but their application may bring some problems. Our 

research group uses two narrow clamps because of their easy, quick and practical use. This 

novel gripping method needs validation of its plausibility which is one of the major goals of 

this doctoral topic. Other goals represent analyses of various additional influencing 

parameters of the experimental setup and realisation. Validation of our novel gripping 

approach is done through comparison with the standard approach using hooks. 

 

Computational modelling was used to examine all the named influencing parameters. A 

parametric FE model of biaxial tension test was created and different experimental setups 

were simulated. The accuracy of results was quantified by means of coefficient of 

determination R2 comparing the virtually measured stress-strain data with the theoretical 

response of the input model of the specimen material. This novel approach is based on the 

way how stresses and strains are calculated in experiments and the applied comparison of 

input and output curves is superior to evaluation of uniformity of strains and stresses 

throughout the specimen applied in previous studies. 

 

Present results have confirmed that two narrow clamps per edge as well as commonly 

used hooks are applicable for biaxial tension testing of different soft tissues using square 

shape specimens. Use of clamps is therefore a time efficient and reliable alternative not 

inferior to hooks. The analysis focused on recommendations for the choice of type, number 

and size of gripping elements for different specimen size was carried out in the thesis.  

 

The process of fitting the measured data with different constitutive models is a time and 

attention demanding activity for the operator. Therefore further automation of the process is 

advisable in order to prevent operator-based mistakes and to quicken the process significantly. 
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The resulting coefficient of determination R2 depends on the starting point, which is 

defined as a set of starting parameters, and there are no “ideal” starting points to be used when 

fitting experimental data. The most effective way of achieving the best approximation of 

experimental data from many data sets is based on the best fit of a selected data set and 

combines the probability of finding the best approximation with minimization of the 

calculation time.  

Furthermore a constraint of the fitted parameters results in unpredictable influencing of 

the R2 of the fit. 

 

The differences between models simulating affine and non-affine deformation were 

highly angle-dependent and ranged up to 10 percent regarding the force values at the end of 

the loading process. Such a difference might be significant for certain models but cannot 

explain the much larger contradictions between the structure-based constitutive models and 

the results of biaxial tests under different testing protocols.  
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9 Future work 

The analyses done in this doctoral thesis have shown some additional problems related to 

practical realization of experiments and their computational modelling. The solution to these 

problems could be provided by possible future work of the author or his continuator. 

 The inaccuracy of positioning of gripping elements along the edge of the specimen may 

also influence the results of biaxial testing and make them operator-dependent. It was not 

yet analysed.  

 Fitting of anisotropic constitutive models (without dispersion of fibre directions) to the 

experimental data from different biaxial tests resulted mostly in zero value of radial 

(isotropic) stiffness parameter. This disables a realistic simulation of compression of the 

tissue by clamps. A non-zero radial stiffness improves significantly the convergence of 

anisotropic material models, so application of other anisotropic material models could 

widen the validity of the study.  

 The accuracy of the anisotropic material models of soft tissues based on results of biaxial 

tension tests could be further improved by adding experimental evaluation of radial 

stiffness of the tissue which is missing in the current analyses as well as in literature. A 

more detailed description of this possible future work is elaborated below. 

 Hooks and clamps are widely used in biaxial testing. Nowadays also rakes are applied in 

some commercially available testing machines. Therefore further comparison between the 

named gripping elements could be useful. 

 

9.1 Experimental estimation of radial stiffness 

Radial stiffness of soft fibrous tissues has two major roles in this analysis. Firstly, in the 

case of using clamps when radial pressing is included, and secondly when fitting the 

experimental data with a material model. Radial stiffness of rabbit aorta and the influence of 

the stiffness on material model fitting were examined in an older study [69]. It proofs a great 

difference in material parameters when only data from biaxial testing or also from radial 

stiffness testing are used. The material constant c10 can be directly connected with radial 

stiffness of the tissue (see eq. (1) and more details in chapter 4.1.2). This constant is often 

obtained with zero value from the fitting procedures although it cannot represent the 

physiological state and mechanical reality but only the best mathematical fit of the material 

model. A significant drawback of such value is very low initial radial stiffness which brings 
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difficulties in convergence of the FE simulations of compression in this direction. Addition of 

some experiment considering radial stiffness into the set of fitted data could bring a better 

validity of the resulting material models. The inclusion of experimental data from radial 

stiffness mechanical tests into the fitting process, where till now only tests under axial or 

circumferential loads were used, is one of the problems which could be solved somewhere in 

the future. 

Standard tension test cannot be performed in radial direction because the maximum 

available length of specimen is about 2 mm which is far too small to grip via clamps or other 

gripping method. In case of inflation or radial compression tests the fibres are lengthened 

similarly as in case of biaxial tension test. Assuming relatively great specimen surface, on 

which the pressure would be applied, the radial compression test would tend to a volumetric 

test. On the basis of these problems a novel sophisticated experimental design is needed, 

possibly validated using FE simulations. The specimen size and shape and other experimental 

influencing parameters could have a major impact on experimental data, so a sensitivity 

analysis (experimental and computational) should be done to solve this issue. 

 

After acquiring the needed data representing the radial stiffness of the artery, re-fitting 

of the anisotropic material models could give more realistic description of their mechanical 

response; then the previous FE models of biaxial tension tests could be recalculated and the 

range of validity of the presented analyses extended. 

 

9.2 Using other anisotropic material models 

Different mechanical behaviour of various soft tissues can be described by different 

material models, usually anisotropic, hyperelastic, polynomial or exponential, with fibre 

families and their dispersion etc. Previous results (Figure 20 and Figure 21) show the 

influence of material model and its parameters on the accuracy of biaxial tension tests, so a 

possible extension of the study with additional material models could be useful. 

 

9.3 Analysis of gripping with rakes 

In this study rakes were not analysed because they are not so broadly used as hooks. 

The goal of the study was to compare the most common gripping method (hooks) with the 

method applied in our research group (clamps). Rakes represent an interesting way to grip the 
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specimen because they are easier to apply than hooks but they distribute the force load 

unevenly due to their axial movement restriction. Thus they differ from hooks and clamps 

significantly and represent an interesting approach which is worth of analysis. 

 

9.4 Inaccurate positioning of gripping elements 

All analyses were set up with all gripping elements ideally positioned with no 

inaccuracy. This assumption cannot be met in real experiment; the operator can never place 

the clamps or hooks accurately to their required position. There will be always some deviation 

from the prescribed position, see Figure 45. These deviations or inaccuracies from ideal 

positioning can influence the results significantly.  

 

Figure 45 Schematic representation of possible positioning of a gripping element (clamp). 

Red arrows show possible inaccuracy in positioning, green shows the possible area 

of gripping due to the inaccuracies. 

 

The sensitivity analysis of inaccurate positioning of gripping elements was, according 

to the author’s best knowledge, not yet accomplished. 

 

Every gripping element should be positioned independently on the other elements. This 

requires modelling of the whole upper (or lower) part of the specimen with no more use of 

two of the symmetry planes. This fact and many possible (inaccurate) positions of the 

gripping elements determine the great amount of different combinations and consequently of 

computational time required for the analysis. Therefore the planning of these simulated 

experiments becomes a very important issue. 
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A B S T R A C T

Introduction: Aim of this study is to validate some constitutive models by assessing their capabilities in de-
scribing and predicting uniaxial and biaxial behavior of porcine aortic tissue.
Methods: 14 samples from porcine aortas were used to perform 2 uniaxial and 5 biaxial tensile tests. Transversal
strains were furthermore stored for uniaxial data. The experimental data were fitted by four constitutive models:
Holzapfel-Gasser-Ogden model (HGO), model based on generalized structure tensor (GST), Four-Fiber-Family
model (FFF) and Microfiber model. Fitting was performed to uniaxial and biaxial data sets separately and de-
scriptive capabilities of the models were compared. Their predictive capabilities were assessed in two ways.
Firstly each model was fitted to biaxial data and its accuracy (in term of R2 and NRMSE) in prediction of both
uniaxial responses was evaluated. Then this procedure was performed conversely: each model was fitted to both
uniaxial tests and its accuracy in prediction of 5 biaxial responses was observed.
Results: Descriptive capabilities of all models were excellent. In predicting uniaxial response from biaxial data,
microfiber model was the most accurate while the other models showed also reasonable accuracy. Microfiber
and FFF models were capable to reasonably predict biaxial responses from uniaxial data while HGO and GST
models failed completely in this task.
Conclusions: HGO and GST models are not capable to predict biaxial arterial wall behavior while FFF model is
the most robust of the investigated constitutive models. Knowledge of transversal strains in uniaxial tests im-
proves robustness of constitutive models.

1. Introduction

Numerical modeling of mechanical behavior of arterial tissue can
help us in understanding design, function and pathology of arteries.
There are hundreds of studies where numerical simulations of arteries
are used for better understanding of many events occurring in arterial
tree such as rupture of abdominal aortic aneurysms (Erhart et al., 2014;
Khosla et al., 2014), or atherosclerotic plaques (Cheng et al., 1993;
Holzapfel et al., 2014), effects of angioplasty (Holzapfel et al.) or ar-
terial clamping (Gasser et al., 2002) on arterial wall, or effect of stents
on stresses in arterial wall (Lally et al., 2005). Constitutive models of
arterial wall establishing a mathematical relationship between de-
formations and stresses represent a vital part of all such studies. In last
few decades a great development of these models has been in progress.
While early studies relied on linear models (Mower and Gambhir,
1997), there are tens of more or less sophisticated models at this time

[see reviews Vito and Dixon, 2003; Holzapfel et al., 2010 and references
therein]. Their proposing tends clearly from phenomenological models
with the only aim to describe accurately a mechanical response of ar-
tery measured experimentally (Yeoh, 1993; Demiray, 1972; Raghavan
and Vorp, 2000) towards structure-based constitutive models (Gasser
et al., 2006; Martufi and Gasser, 2011; Weisbecker et al., 2015; Chen
et al., 2011) the individual parameters of which have a clear physical
meaning related to individual structural constituents of the arterial wall
such as elastin or collagen. These models also allow more sophisticated
analyses of stresses in the modeled arteries. Moreover, they are also
considered to be more robust (to have better predictive capability)
compared to phenomenological models. This means they should be able
to predict the mechanical response of arterial wall with high accuracy
even outside the range of experimental data. In fact this capability is
crucial for performing reliable numerical analyses of wall stresses in
arteries in vivo where the state of stress differs significantly from the
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conditions in the test. This is most pronounced in case of small (e.g.
coronary) arteries or parts of arteries (e.g. extracted atherosclerotic
plaque (Holzapfel et al., 2004)) which do not allow preparation of
specimens sufficiently large for planar biaxial testing and thus can be
tested only uniaxially.

Surprisingly the predictive capabilities of individual constitutive
models are tested rarely (Polzer et al., 2015; Hollander et al., 2011).
Instead the effort is focused on analyses of validity of claimed physical
meaning of structural parameters of individual models. Therefore it has
been shown that the response of model proposed by Holzapfel, Gasser,
Ogden (Holzapfel et al., 2000) (denoted as HGO below) differs sig-
nificantly from the response of fibrous tissue modeled with the same
structure as prescribed into model (Chen et al., 2011). The same was
shown for models based on generalized structure tensor (GST) (Gasser
et al., 2006) which were also shown not correctly capture the response
of materials modeled with widely dispersed fibers (Cortes et al., 2010;
Skacel and Bursa, 2014; Yoram Lanir, 2015). Moreover both models
were shown unable to capture the transversal strains of arterial tissue
(Skacel and Bursa, 2015). Nevertheless, it is not known how much these
limitations truly limit the predictive capability of mentioned models
since these models are known to accurately capture biaxial behavior of
various soft tissues if their parameters are not constrained according to
assumed tissue structure (or by other words if they are treated as
phenomenological models) (Holzapfel et al.,; Zhang et al., 2011;
Alastrué et al., 2008). If the error in predicting uniaxial or biaxial be-
havior was acceptable (Hollander et al., 2011) the mentioned models
could still be used as phenomenological despite the mentioned limita-
tions. More generally, the predictive capability is unknown for most of
other currently used constitutive models; this lack of information mo-
tivated our study. We analyzed descriptive and predictive capabilities
of four well known constitutive models by means of testing their ac-
curacy in capturing the experimental uniaxial and biaxial data and in
predicting the biaxial response of the specimen when fitted only to
uniaxial data (and vice versa).

2. Methods

2.1. Mechanical testing

Experimental data were obtained from tensile testing of porcine
thoracic aorta harvested at a local slaughterhouse and stored frozen at
−18 °C till the testing. 14 aortas were thawed at room temperature and
square sized specimens 18 × 18 mm were cut out from the same
straight anterior part of each aorta. Excessive tissue was removed using
scalpel and tweezers. The circumferential specimen axis was marked for
later alignment in the testing device to avoid interchange of both
principal material directions (Polzer et al., 2015). Then markers were
drawn on each specimen edge to ensure repeatable mounting. It is
noted the repeated mounting was enabled due to application of narrow
clamps (two per specimen edge) instead of hooks. Acceptable accuracy
of this gripping method was confirmed elsewhere (Slazansky et al.,
2016). Before and after the test, the specimens were placed in 0.9%
saline solution heated to the temperature of testing (37 °C).

Displacement controlled tensile tests were performed (see Fig. 1)
using a custom made planar bi-axial testing device (Camea s.r.o, Czech
Republic) with fixed values of circumferential (uc) and axial (ua) dis-
placements of the clamps. The testing system is equipped with two 20 N
load cells PW4MC3 (HBM GmbH, Germany) and an optical strain
measurement system. More details regarding the testing device and
data acquisition can be looked up in (Erhart et al., 2014; Khosla et al.,
2014). Each specimen was clamped in the testing rig and 10 equi-
biaxial preconditioning cycles were performed at the maximum de-
formation of 6.3 mm with deformation rate of 0.333 mm/s. Afterwards

the specimen was unclamped, placed between two glass slides and its
thickness T was measured under specimen compression of ±1 0.1 kPa
using a thickness gauge. For a contactless measurement of in-plane
deformation four markers were created on the specimen surface. Then
the specimen was mounted into the testing rig again.

A pre-tension of 0.1 N was applied and five biaxial tests under
various loading protocols ( =u u: 1: 5/1: 2/1: 1/2: 1/5: 1c a ) were per-
formed by prescribing individual clamp displacements. In order to
precondition the specimen correctly for different mechanical tests, 5
loading cycles were repeated before each test using its loading protocol.
Circumferential Lc and axial La dimensions of the specimen were de-
termined using the first image acquired of the equi-biaxial protocol (by
measuring the pixel values and converting them by means of the known
pixel size). Afterwards the uniaxial tests were performed by unclamping
one of the axes, applying first the pretension of 0.1 N and then 5 pre-
conditioning cycles followed by the testing cycle. The same protocol
was used for the other axis. Seven specimens were first tested axially
and then circumferentially, while the other seven specimens were
tested in the opposite order. During the test evaluation the shear
stresses and specimen rotation were also calculated to make sure the
rotation was negligible and shear stresses two orders lower than normal
stresses. Finally, the axial Pa and circumferential Pc First Piola-Kirchhoff
(FPK) stresses were calculated from the recorded forces and the mea-
sured specimen dimensions as follows:

= =P F
L T

P F
L T

;a
a

c
c

c

a (1)

It is also underlined that engineering strains in both principal di-
rections εc and εa were recorded in all tests including the uniaxial ones.
This was motivated by our effort to identify the effect of transversal
strain on the predictive capability of the analyzed constitutive models
since some of the analyzed constitutive models were shown previously
not to estimate the transversal strain correctly (Skacel and Bursa,
2015). A secondary reason is in the use of square shape specimens
which do not guarantee uniaxial state of stress during uniaxial testing.
In this way we have obtained 7 data sets from 5 biaxial and 2 uniaxial
tensile tests for each specimen.

2.2. Constitutive models

For further analysis we have chosen four well known and widely
used constitutive models, all of them in their incompressible form. All

Fig. 1. Detail of the experimental rig with the tested specimen gripped by 8 narrow
clamps. Clamps are mounted using pin supports on the leverage system balancing the
forces transmitted by the clamps in their longitudinal direction and minimizing the
perpendicular forces.
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parameters of all considered models are listed in the Appendix A (see
Table A.1) together with their units. First we used the constitutive
model proposed by Holzapfel et al. (2000) which will be further de-
noted as HGO model. We used its two-layer version to respect different
mechanical properties of aortic media and adventitia. This model de-
scribes the strain energy density by the following function (SEDF):

∑ ∑

= + + = −

+
⋅

−
= =

−( )

ψ ψ ψ ψ c I

k
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e

2
( 3)

2
1
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j
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1
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1

2

( 1)j ij2 4 2

(2)

where c is a stress-like material constant describing the isotropic re-
sponse of elastin in the media, k j1 is a stress-like constant defining the
layer specific stiffness of collagen fibers, and k j2 refers to collagen-based
stiffening of each layer during deformation. I1 is the first invariant of the
right Cauchy-Green deformation tensor C, = ⋅I a Caj j j1 141 and

= ⋅I a Caj j j42 2 2 are invariants related to two families of fibers in each
layer; for direction vectors of fiber families 1 and 2 it holds

= φ φa (cos , sin , 0)j j j
T

1 and = − φ φa ( cos , sin , 0)j j j
T

2 , with φj re-
presenting the angle between each fiber family and the circumferential
direction in the undeformed state. Subscripts j=M,A relate to the media
and adventitia layers, respectively.

The second constitutive model was proposed by Gasser et al. (2006).
It is based on generalized structure tensor approach and will be further
denoted as GST model. SEDF for its two-layer version reads:
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where the newly introduced parameter = −Ε H C: 1ij ji represents
average strain measure of fibers for the layer j. Here the generalized
structure tensor = + − ⊗κ κΗ Ι a a(1 3 )( )ij j ji i contains the κ parameter
describing dispersion of each fiber family around its mean direction φj,
and a ji as well as the other parameters hold the same meaning as in the
above HGO model.

The third analyzed model was proposed by Baek et al. (2007),
Ferruzzi et al. (2011) and will be further referred to as four fiber family
(FFF) model. It is a variation of the HGO model with two orthogonal
and two arbitrary (but symmetric) diagonal families of fibers. Its SEDF
is:
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where 4 families of fibers are introduced. Invariants = ⋅I a Cai i i4 related
to each family of fibers are defined here similarly to the HGO model
while directions of the individual families of fibers are specified as

=a (0, 1, 0)T
1 and, =a (1, 0, 0)T

2 = φ φa (cos , sin , 0)T
3 and

= − φ φa ( cos , sin , 0)T
4 , with φ representing the angle between each

diagonal fiber family and the circumferential direction. It is further
assumed the diagonal families of fibers show the same mechanical
properties (see Ferruzzi et al., 2011), thus =k k14 13 and =k k24 23.

Finally, the fourth analyzed constitutive model was proposed
by Martufi and Gasser (2011), follows the work of Lanir (1983) and will
be further referred as Microfiber model to underline that it uses in-
tegration of the fiber stresses over a unit sphere instead of exploitation
of the generalized structure tensor such as in the GST model (see Eq.
(3)). The two layer version of the Microfiber model is defined by the
following SEDF:

∫∑= + = − +
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ω dj fj
a
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, j (5)

where ψfj
a represents the contribution of the fibers oriented in aj

direction and ωj is the domain of all possible fiber directions in the
individual layer (a unit circle in our case of in plane fiber distributions).
The FPK stress P in the given direction is determined as:
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where λ is the fiber stretch in the specific direction. The specific con-
stitutive model assumes the following uniaxial responses of fibers
(Martufi and Gasser, 2011):
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with = −Δλ λ λj jmax min , = +λ λ λ( )/2j jmax min , and kj referring to the
stiffness of the collagen fibril ─ proteoglycan complexes in the j layer.
This constitutive model is based on a triangular distribution of fiber
waviness with its lower and upper stretch limits being λ jmin and λ jmax
for the j-th layer, respectively.

This model was further adjusted on the basis of previous experi-
ments. Firstly, there is a good evidence for assuming a negligible por-
tion of fibers heading out of the axial circumferential plane (Gasser
et al., 2012; Tsamis et al., 2013), and secondly, on the basis of our
previous experiments (Polzer et al., 2015) the collagen distribution in
both media and adventitia can be described by planar von Mises dis-
tributions as follows:
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where the angle φj denotes the mean fiber orientation, while the fiber
concentration parameter bj quantifies the anisotropy in the j layer.
Isotropic and unidirectional (Dirac Delta) fiber distributions are defined
by =b 0j and → ∞bj , respectively. On the basis of the experiments
(Polzer et al., 2015) we have aligned φj with the circumferential di-
rection and constrained the concentration parameter to

∈b 0.5, 1.55media and ∈b 0, 0.5adventitia . Further we have set
=λ 1mediamin , (λmaxmedia was kept free), >λ 1.2adventitiamin and

=λ 2adventitiamax .

2.3. Fitting procedure

The above constitutive models were fitted to the experimental data
by means of Least square optimization using HYPERFIT software
(http://www.hyperfit.wz.cz, Brno University of Technology, Czech
Republic). Nelder-Mead (Gasser et al., 2008) iterative procedure was
used for the regression analysis. First, each model was fitted to biaxial
data (5 protocols) to confirm the capability of each model to capture the
measured biaxial responses of arterial tissue. Each fitting procedure was
repeated 3 times using different sets of starting parameters; the first one
giving much more compliant response with respect to experimental
data, the second producing a similar stiffness (in very rough sense), and
the third one being significantly stiffer. Unlike most available studies
we have not used the sum of squared differences as an error function for
the fitting procedure. Instead the fitting procedure was set to maximize
the coefficient of determination R2 which is a more robust choice ac-
cording to our experience and the obtained results are much less de-
pendent on the starting points compared to the sum of squared
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differences. Since more tests are fitted at once the resulting R2 is cal-
culated as an unweighted average of the R2 values from the individual
tests. This ensures the weight of each test is the same regardless of the
number of experimental points stored in the individual test. The lowest
admissible change of parameters between iterations was set to 0.01 and
the fitting procedure was stopped when R2 did not changed by more
than −10 5 between two consecutive iterations. The parameters re-
presenting the best fit among the above three starting points were
stored together with their R2. Similar to another study (Hollander et al.,
2011), the value of normalized root mean square error (NRMSE) was
also stored to provide alternative error metric for a better analysis of
quality of the fit. NRMSE is defined as follows:
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∑ −
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where n denotes the number of experimental points while yei and ymi are
individual experimental and model values, respectively. Unlike R2, the
NRMSE has a clear physical meaning of mean deviation between ex-
periment and model.

The same procedure was then applied to analyze the capability of
each model to capture both uniaxial tests. However, the fitting proce-
dure was repeated twice. In the first run we fitted the uniaxial tests in a
standard way, i.e. we did not include the transversal strain although
they were measured in our experiments. This test is further referred as
“uniaxial-one strain” test. In the second run of the fitting procedure, the
measured transversal strain was also included; thus we assumed a
biaxial state of stress with the transversal stress being unknown. This
condition also led to necessity of assigning zero weight to the stresses in
the second axis since they were not measured. Consequently, in this
case we used only one FPK stress which is a function of two strains. This
test is further referred as “uniaxial-two strain” test. Since the transversal
stress is unknown, we can estimate only qualitatively whether the va-
lues predicted by the individual models are reasonable which can be
quantified that we expect this stress to be positive but at least by order
lower than the maximal longitudinal stress.

The predictive capability of the individual models was tested in both
sequences. First, the parameters associated with the best fit of biaxial
responses were prescribed and their uniaxial-two strain response was
calculated for the same sets of strain values as in the measured uniaxial-
one strain responses. R2 and NRMSE were then calculated as a metrics
of the predictive capability of each model. The same procedure was
applied also vice versa, i.e. the best fit values from the model fitted to
either both uniaxial one-strain tests or both uniaxial-two strain re-
sponses were used to predict all the 5 measured biaxial tensile tests.
Finally, descriptive capability of each model and predictive capability
of each of their pairs were analyzed statistically using non-parametric
Man-Whitney test. Here a null hypothesis was used stating there is no
difference in descriptive/predictive capability of both models (in terms
of R2 values). The alternative hypothesis states that one of the models
has a better descriptive/predictive capability than the other. Statistical
testing was carried in Minitab 15.0 (Minitab Inc,). Finally, the sensi-
tivity of all constants to the different type of test (biaxial, two strain
uniaxial and one strain uniaxial) was tested by calculating the

−X X/biaxial two strain uniaxial and −X X/biaxial one strain uniaxial ratios of individual
constants of all models. The obtained values were then statistically
tested using non-parametric Wilcoxon test with null hypothesis stating
the median of each ratio equals to 1 and alternative hypothesis the
median differs from 1.

Overall 98 tensile tests of 14 specimens of porcine aortic tissue were
performed in order to test the descriptive and predictive capabilities of
the four chosen constitutive models of arterial tissue. 9 fitting proce-
dures were performed with the recorded data set of each specimen (5

biaxial, 2 uniaxial-one strain and 2 uniaxial-two strain test) to analyze
the descriptive capability of each of the 4 analyzed constitutive models
which gives 504 fits in total. Moreover, the predictive capability of each
model was tested in three directions (from biaxial to uniaxial-two
strain, from uniaxial-one strain to biaxial and from uniaxial-two strain
to biaxial) for each specimen and constitutive model resulting in ad-
ditional 168 analyses.

3. Results

3.1. Experimental testing

The performed experimental testing was capable to describe the
analyzed tissue in a wide range of stretch ratios covering the values
expected in the analyzed artery “in vivo”, as shown in Fig. 2. All rough
experimental data can be found in the electronic Supplementary files.
This provides a robust basis for testing the descriptive and predictive
capabilities of the chosen constitutive models.

Statistical descriptions of all constants of all the considered models
fitted to all the three types of test are provided in Table A.1. Here it was
observed that uniaxial types of test lead always to a significant increase
of c constant describing the initial isotropic response of each model.
This was further confirmed by calculating the biaxial/two strain uni-
axial and biaxial/one strain uniaxial ratios of each constant as pre-
sented in Table A.2. Statistical testing revealed which constants were
significantly dependent on the type of the test. For HGO model, c and
k M1 constants were dependent for biaxial/two strain uniaxial ratios and
c only for biaxial/one strain uniaxial ratios. For GST model it was c only
for the biaxial/two-strain uniaxial ratios and c k κ, ,M A2 for biaxial/one-
strain uniaxial ratios. For FFF model it was c k k, ,11 13 for biaxial/two-
strain uniaxial ratios and c k ϕ, ,11 for biaxial/one-strain uniaxial ratios.
Finally for the Microfiber model it was c k b λ b, , , ,M M A Amin for biaxial/
two-strain uniaxial ratios and c λ b λ, , ,M M Amax min for biaxial/one-strain
uniaxial ratios. All the ratios and p-values from the statistical testing are
presented in Table A.2 in the Appendix A.

3.2. Descriptive capability

The descriptive capability of all the considered models was very
good in both types of tests as shown in Fig. 3, Table 1 and Table A.3
provided in the Appendix A. All models captured the biaxial behavior
slightly worse than the uniaxial response. Testing of the above hy-
potheses revealed that FFF model performed statistically better than
HGO model in capturing the uniaxial-two strain response, while com-
parisons of the other models have not reached the level of significance.
On the other hand, the Microfiber model performed significantly worse
in capturing the biaxial responses compared to all the other models as
shown by both the lower values of R2 and the NRMSE of about 18%
being almost twice worse compared to the other models (see Table A.3).

Quality of capturing the uniaxial-two strain data was also described
by maximal perpendicular stress estimated by the individual models.
Their values presented in Table 1 should be negligible compared to the
maximal longitudinal stresses in the samples (130± 25 kPa). The re-
sults show the HGO and GST models estimate the transversal stresses as
high as 30%, while the Microfiber model predicts their magnitude to be
21% of the longitudinal stress. The best performance is shown by the
FFF model which predicts the transversal stress to be as low as 12% of
the longitudinal stress.

3.3. Predictive capability

In all models the prediction of uniaxial-two strain response on the
basis of the model parameters fitted to biaxial data resulted in a
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significantly worse performance compared to their descriptive cap-
ability, as shown in Fig. 5A, Table 2 and Table A.4. The Microfiber
model showed the best predictive capability in this test with median R2

still above 0.9 and NRMSE of about 22% while the other models were
statistically equal having the median of R2 about 0.8 and NRMSE about
30%.

All the models showed the worst performance in prediction of
biaxial response from the parameters estimated on the basis of uniaxial-
two strain or uniaxial-one strain tests as demonstrated in Fig. 4,
Fig. 5B,C, Table 2 and also Table A.4 in the Appendix A. Here, the GST
and HGO models failed completely, while the FFF and Microfiber
models were still capable to provide fairly accurate biaxial response
when fitted to uniaxial-two strain tests (Fig. 5B) having median of R2

about 0.8 and NRMSE about 30%. The FFF model gave a similar ac-
curacy even if fitted to uniaxial-one strain tests (Fig. 5C) while Micro-
fiber model showed already considerable error (median of R2 about 0.5
and NRMSE about 45%.

4. Discussion

Knowledge of both descriptive and predictive capabilities of con-
stitutive models represents a crucial information for researchers when

choosing a proper model for their simulations. It is most critical in cases
of deformation driven problems in which different deformation modes
occur than the tissue was tested in. Typical examples are all simulations
respecting the axial pre-stretch of arteries or simulations based on
closing an opened artery to induce residual stresses in it. If deformation
is prescribed in these simulations, the stress calculations depend criti-
cally on accuracy of the constitutive models used. Surprisingly, the
authors seldom show predictive power of the proposed constitutive
models (Gasser et al., 2006; Martufi and Gasser, 2011; Holzapfel et al.,
2000; Ferruzzi et al., 2011; Zeinali-Davarani et al., 2011) which en-
courages doubts about their robustness. Out of the models analyzed
here, the predictive capability of HGO model was investigated
(Hollander et al., 2011) showing one can expect about twice higher
error compared to micro structurally motivated constitutive model in
predicting torsion-pressure-elongation response of coronary arterial
media. Besides that the predictive power of the Microfiber model was
recently tested by our group which confirmed it is capable to predict
other biaxial responses when fitted to a single non-equibiaxial test
(Polzer et al., 2015). In the actual study, however, we used more
challenging combinations of experimental tests to verify both de-
scriptive and predictive powers of the chosen constitutive models.

Fig. 2. Experimentally covered ranges of stretches (left) and 1st PK stresses (right) of a typical sample. For sake of visibility, only every 3rd experimental point is shown.

Fig. 3. Descriptive capability of the analyzed constitutive models. All the models were capable to accurately capture both uniaxial-two strain (A), uniaxial-one strain (B), and biaxial (C)
behavior of arterial tissue. Statistical testing revealed the GST and FFF models to be the most accurate models in description of uniaxial tests. On the contrary, all the models performed
equally well in capturing the biaxial tests, with exception of the Microfiber model showing a significantly worse (although still very good) performance.
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4.1. Description of arterial behavior is model-independent

As expected, all the investigated models were capable to capture
uniaxial-two strain, uniaxial-one strain and biaxial behavior very ac-
curately. The worst (although still very good) performance was ob-
served for Microfiber model; this can be explained by (complete or
partial) constraint applied on majority of its parameters so that this
model did not have so much freedom to fit the experimental data as the

other models. This result was confirmed by other studies as well (Gasser
et al., 2006; Polzer et al., 2015; Hill et al., 2012; Tong et al., 2013). On
the other hand, these constrains resulted in the lowest sensitivity (or
highest robustness) of model constants to the underlying experiment.
The very narrow interquartile ranges of individual constant ratios for
the Microfiber model shown in Table A.2 confirm that the effect of
underlying experiment is small, although measurable (as confirmed by
p-values being often below 0.05). For the other models the picture is
blurred by larger interquartile ranges resulting mostly in statistical non-
significance (except for the case of constant c as discussed below).

Other models captured both uniaxial and biaxial behavior of arterial
wall better. However here it must be mentioned that observed values of
mean fiber family orientation ϕi and fiber dispersion κi does not cor-
respond to independently obtained values (see Table A.1) (Polzer et al.,
2015; Schriefl et al., 2012a, 2012b). In conclusion, HGO and GST
models can be also used for capturing the arterial behavior as long as
they are treated as phenomenological models similarly as the FFF
model.

A global conclusion can be drawn that the choice of a material
model is not important if one can guarantee that the range and ratio of
the deformation components occurring in the simulations lay inside the
range of the experiments on which the parameters were estimated.
Unfortunately, this verification is often omitted in current studies
dealing with numerical simulations (Ohayon et al., 2005; Polzer et al.,
2013; Cilla et al., 2012).

Table 1
Descriptive capabilities of the investigated constitutive models. All the models can accurately capture all types of experimental tests.

Model Capturing of uniaxial-two strain tests Capturing of uniaxial-one strain
tests

Capturing of biaxial tests

Median R2 [-] (interquartil
range)

Estimated transversal stress (Mean± Standard deviation [kPa]) Median R2 [-] (interquartil
range)

Median R2 [-] (interquartil
range)

HGO 0.993 38±20 0.987 0.983
(0.987 ÷ 0.996) (0.977 ÷ 0.99) (0.974 ÷ 0.986)

GST 0.996 38±13 0.991 0.982
(0.989 ÷ 0.996) (0.989 ÷ 0.993) (0.966 ÷ 0.997)

FFF 0.996 15±7 0.991 0.984
(0.994 ÷ 0.997) (0.989 ÷ 0.993) (0.978 ÷ 0.987)

Microfiber 0.993 27±9 0.98 0.950
(0.974 ÷ 0.996) (0.970 ÷ 0.987) (0.926 ÷ 0.956)

Table 2
Predictive capabilities of the investigated constitutive models. All the models were much
better in predicting uniaxial response when calibrated on biaxial data than vice versa.

Model Predicting uniaxial-
two strain tests when
fitted on biaxial tests

Predicting biaxial
tests when fitted on
uniaxial-two strain
tests

Predicting biaxial
tests when fitted on
uniaxial-one strain
tests

Median of R2 [-]
(interquartil range)

Median of R2 [-]
(interquartil range)

Median of R2 [-]
(interquartil range)

HGO 0.828 0.4 −14
(0.641 ÷ 0.912) (−6.4 ÷ 0.8) (−36 ÷ −3.7)

GST 0.826 −54 −4e7
(0.696 ÷ 0.893) (−1787 ÷ −15) (−2e8 ÷ −6e6)

FFF 0.797 0.829 0.845
(0.667 ÷ 0.916) (0.805 ÷ 0.894) (0.747 ÷ 0.899)

Microfiber 0.915 0.789 0.529
(0.887 ÷ 0.940) (0.673 ÷ 0.853) (0.371 ÷ 0.57)

Fig. 4. Visualization of predictive capability of the analyzed constitutive models for a typical specimen. All the models were fitted to either uniaxial one-strain (black lines) or uniaxial
two-strain data (grey lines) and then their predicted biaxial response of 5 different loading protocols was compared with experimental data. Only equibiaxial (in terms of displacements)
response in both circumferential (left) and axial (right) directions is shown. It is evident that HGO and GST models fail completely in these predictions while FFF and Microfiber models
give reasonably accurate predictions being even better when uniaxial two-strain data are used for the model calibration. Quality of the prediction of the HGO model from uniaxial two-
strain and one-strain data was = − =R NRMSE14; 266%2 and = − =R NRMSE0.2; 77%2 , respectively. For GST model it was = − =R NRMSE5; 178%2 and = − ⋅ =R NRMSE7 10 ; 10 %2 7 5 .
For FFF model it was = =R NRMSE0.91; 21%2 and = =R NRMSE0.74; 33%2 . For Microfiber model it was = =R NRMSE0.78; 30%2 and = =R NRMSE0.54; 45%2 .
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4.2. Uniaxial response is initially stiffer than biaxial

Our results show a significant effect of the type of experimental test
on the constant c which represents the initial isotropic stiffness of the
tissue in all the models. Regardless of the chosen model, c was con-
sistently 2–10 times higher (see Table A.1 and A.2) when the model was
fitted on uniaxial data as confirmed in Table A.2. Similar effect can be
also observed in the literature. For instance, the models fitted on uni-
axial tests of aneurysmal tissue (Raghavan and Vorp, 2000; Reeps et al.,
2013) show consistently several times higher initial stiffness compared
to the models fitted on biaxial tests of the same tissue (Tong et al., 2013;
Vande Geest et al., 2006). However, explanation of this phenomenon is
still unknown. It is underlined that the referenced studies use different
testing machines, experimental protocols, sample sizes and fitting
procedures so that a systematic error in the experiments or fitting
procedure is very unlikely. Therefore we hypothesize the explanation
may be in some basic assumptions used commonly in definitions of
constitutive models such as assumption on affine deformation or local
incompressibility. Consequently more research on this topic is needed.

4.3. Predictive power is highly model-dependent

A completely different situation occurred when the predictive
power of the investigated models was analyzed. Here the Microfiber
model performed best when being able to predict very accurately the
uniaxial-two strain response when fitted to biaxial tests; its median R2

was still above 0.9 and most of the predictions were not worse than
=R 0.8872 . In contrast, the other models predicted the uniaxial-two

strain response with a considerable error ( ∈R 0.64; 0.922 ). It is worth
to underline that none of the models failed completely in predicting
uniaxial response; although not presented here, one strain response
prediction was never worse than the respective two strain prediction.
This predictive power of all the models can be explained by the wide
range of biaxial tests used in our prediction when strains in some of
them are rather close to uniaxial testing (see Fig. 2).

Predictions of biaxial responses from uniaxial data were not only the
most challenging issues in this study but they have also the highest
practical relevance representing the indigenous motivation of our work.
It is because tissue specimens harvested from most arteries (except for
the largest ones such as aorta or iliac arteries) are nearly always too

small for biaxial mechanical testing (Holzapfel et al., 2004, 2005;
Cunnane et al., 2016); sometimes uniaxial testing may be chosen due to
the available testing equipment, or the tests may focus also on ultimate
stress (Reeps et al., 2013; Gasser et al., 2008; Raghavan et al., 1996,
2011). Our results show the choice of constitutive model is critical in
these cases. HGO model predicted biaxial response with large error
while GST model failed completely in these tests. In contrast, Microfiber
and surprisingly also FFF model provide reasonable predictions (al-
though not perfect). Especially the predictive power of the FFF model
was very good regardless of the type of uniaxial tests used in its cali-
bration; its predictions have mostly shown values of >R 0.82 and
NRMSE about 30%. This is a surprising result when considering the fact
the FFF model is solely phenomenological, i.e. collagen waviness is
included only implicitly in the collagen response function, and its four
families of fibers without any dispersion do not correlate with histo-
logical findings. Despite these limitations the FFF model was able to
predict the biaxial response more accurately (especially in term of
NRMSE, see Table A.4 in the Appendix A) than the Microfiber model. In
this structure based model a majority of parameters were constrained
according to the actual knowledge on the tissue structure, thus it was
expected to be more robust. This expectation was not confirmed for
predictions of biaxial tests, especially when the model calibration was
done on the basis of uniaxial-one strain data (in these cases inter-
quartile ranges were ∈ ∈R NRMSE0.37; 0.57 , 25%; 52%2 , respec-
tively); this failure indicates either possible oversimplifications in the
definition of Microfiber model (i.e. assumption of planar fiber dis-
tribution) and/or improper ranges of the structural parameters. From
this point of view it is suspicious that the values of fiber dispersion
obtained in media reach almost exclusively its lowest allowable value
(see values of bM in Table A.1). This suggests the fitting algorithm could
prescribe even smaller values than measured separately (Polzer et al.,
2015) which was also observed before (Polzer et al., 2015). Reasons for
that should be analyzed in future works.

Similarly, the performance of HGO and GST models was surprisingly
bad in the prediction mode regardless of the type of uniaxial tests used
for their calibration. The GST model predicts a very low fiber dispersion
especially for the adventitia (see Table A.1) which does not correspond
to the histological data (Polzer et al., 2015; Schriefl et al., 2012a) from
which we have extracted the applied range of dispersion parameters

∈ ∈κ κ0.19; 0.28 , 0.29; 0.33M A We tried to use also another fit of

Fig. 5. Predictive capability of the analyzed constitutive models. Uniaxial-two strain response predicted from biaxial data (A) is performed best by the Microfiber model, both Microfiber
and FFF models can predict the biaxial response rather accurately on the basis of uniaxial-two strain data (B) while FFF model is the most accurate in predicting the biaxial response on
the basis of uniaxial-one strain data (C). HGO and GST models fail completely in prediction of the biaxial response.
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the GST model where the fiber dispersion parameters κ were con-
strained on the basis of the known fiber dispersion (Polzer et al., 2015)
in porcine aorta but no improvement of results was observed. This is in
accordance with other studies (Chen et al., 2011; Cortes et al., 2010;
Skacel and Bursa, 2014; Yoram Lanir, 2015) where robustness of the
models based on generalized structure tensor (i.e. GST model) was
impeached. Our analyses confirmed that GST as well as HGO models
showed the worst predictive performance in this direction. Thus they
are not applicable for simulating biaxial states of stress when fitted to
uniaxial tests only.

4.4. Uniaxial-one strain vs. uniaxial-two strain data

Interestingly, the predictive capability of the Microfiber model was
relatively good when the biaxial responses were predicted from uni-
axial-two strain data while the error raised significantly when uniaxial-
one strain data was used for calibration (see Table 2 and Table A.4). We
can offer two possible explanations for that. Firstly, the stress in the
samples may be biaxial (with some transversal component) due to di-
rections of the used narrow clamps changing with specimen deforma-
tion and due to friction in the leverage system reducing the transversal
deformation of the specimen. In such case the performance of the Mi-
crofiber model cannot be impeached because no constitutive model
could predict biaxial response correctly if calibrated under wrong as-
sumptions (of true uniaxial stress state in this case). On the other hand
the calibration of the Microfiber model on the uniaxial-two strain data
led to estimation of maximal perpendicular force of (1,0 N±0,3 N)
when loaded by the maximum force of (4,4± 0,7 N) which we believe
is not a realistic value since the perpendicular force can be carried only
due to friction between clamps and leverage system. For comparison
the FFF model which showed a similar accuracy predicted a more
realistic maximal perpendicular force of (0,5± 0,3 N) when loaded by
the maximum force of (4,7± 0,6 N). Therefore, we prefer another ex-
planation stating the Microfiber model is oversimplified and does not
calculate the transversal strain correctly; this was shown for this model
already (and for HGO and GST models as well) (Skacel and Bursa,
2015), especially for strains above 30% (in our uniaxial experiments the
strains were up to 40%). Exploitation of transversal strain data evi-
dently improves the predictive capability in such case. However, this
hypothesis requires further investigation.

4.5. Large samples satisfy better the incompressibility assumption

All the results must be regarded with respect to features of the
performed test. Especially uniaxial tests are performed rarely with
square shape specimens of arteries (Reeps et al., 2010). This kind of
tests was motivated by two reasons. First, we wanted to ensure ana-
lyzing the same specimen in all the tests to avoid bias due to the known
inter specimen variability. This would be violated by cutting some
material away to obtain a narrower sample (with larger aspect ratio)
ensuring uniaxial stress state during uniaxial test. Second, our effort
aimed at minimization of problems with tissue compressibility. All the
analyzed models are used in their incompressible form as commonly
assumed (Gasser et al., 2002; Lally et al., 2005; Erhart et al., 2016,
2015). Although this can be a reasonable assumption for analysis of a
whole artery (Carew et al., 1968), it was shown that radial compression
(which is equivalent to biaxial tension) of specimens cut out of an artery
results in a fluid outflow causing violation of the incompressibility as-
sumption (Chuong and Fung, 1984). That study revealed the initial bulk
modulus of an arterial sample cut out of the artery was not more than

300 kPa. This value is definitely comparable with the stiffness values
exhibited during biaxial tests, thus the incompressibility assumption is
highly questionable in such kind of tests, as well as in pressure-exten-
sion tests when only a small piece of artery is used (Di Puccio et al.,
2012). As investigation of impact of sample compressibility on the ro-
bustness of constitutive models is beyond the scope of this study, we
tried to minimize the ratio of the cut surfaces of the specimen to its
volume and consequently also the effect of the fluid outflow. Therefore
we used a relatively large specimen size in this analysis, and it should
be kept in mind that a uniaxial state of stress might not be guaranteed
as discussed in chapter 4.3. However it is stressed out that even this
setup does not guarantee local incompressibility (Skacel and Bursa,
2015; Volokh, 2006) although it is assumed in all the analyzed con-
stitutive models.

4.6. Limitations

Besides the limitations discussed above, another one may lie in the
same deformation range used in both types of tests (biaxial and uni-
axial) which leads to significantly lower stresses in uniaxial tests (see
Fig. 2); this may deteriorate the prediction of biaxial responses from
uniaxial tests. Nevertheless we expect a similar impact on all models
thus it should not change the presented conclusions.

5. Conclusions

In this study we compare the descriptive and predictive capabilities
of four chosen constitutive models commonly used for simulations of
mechanical behavior of arterial tissue. Our results show that all the
models can be recommended if the simulated deformation range is
covered completely by experiments. The best predictive capability was
observed for the phenomenological FFF model which was the only one
capable to reasonably predict biaxial response when calibrated only on
uniaxial tests, regardless of their type. The structure based Microfiber
model performed comparably well if the transversal strains were
measured in uniaxial tests and used for calibration. However, it requires
structural information on the analyzed tissue as an additional input.
Consequently the FFF model can be recommended as the first choice if
the simulated deformations or their ratio lie out of the tested range. If
the detailed structure of the tissue is known and uniaxial experimental
data are available including transversal strains, the Microfiber model is
similarly robust. HGO and GST models are not capable to predict me-
chanical responses outside of the tested range and should not be used in
simulations in which the stress and/or strain ranges and ratios of their
components lay outside of the experimentally covered area.

Acknowledgement

This work is an output of project NETME CENTRE PLUS (LO1202),
created with financial support from the Ministry of Education,Youth
and Sports under the National Sustainability Programme I. This work
was also supported by the project No. 8E15B008 “New approaches in
structural analysis of soft biological tissues” as part of the program of
Czech-Bavarian cooperation in research and innovations provided by
Ministry of Education,Youth and Sports Czech Republic and BAYHOST.

Conflict of interest

The authors declare they have no conflict of interest.

F. Schroeder et al. Journal of the Mechanical Behavior of Biomedical Materials 78 (2018) 369–380

376



Appendix A

See appendix Tables A1-A4 here.

Table A.1
Statistical description of individual constants of all constitutive models obtained by fitting under various loading conditions-.

HGO model Units Biaxial tests Uniaxial two strain tests Uniaxial one strain tests
constant Median [-] Median [-] Median [-]

(interquartile range) (interquartile range) (interquartile range)

c kPa 8.3(2.45 ÷ 12.8) 22(16.6 ÷ 34) 21.5(12.4 ÷ 29.4)
k M1 kPa 23.14(13.75 ÷ 25.92) 15(11.2 ÷ 20.6) 25.9(19.4 ÷ 43.4)
k M2 – 0.69(0.55 ÷ 0.9) 1.46(0.93 ÷ 3.78) 1.14(0.33 ÷ 2.13)
ϕM rad 0.99(0.43 ÷ 1.35) 0.79(0.36 ÷ 1.15) 1.1(0.93 ÷ 1.16)
k A1 kPa 0.82(0.6 ÷ 1.2) 21.3(5.8 ÷ 29.9) 1.03(0.46 ÷ 2.47)
k A2 – 0.1(0.09 ÷ 0.11) 1.33(0.56 ÷ 2.04) 0.52(0.48 ÷ 0.58)
ϕA rad 0.983(0.976 ÷ 0.985) 0.58(0.23 ÷ 0.95) 0.09(0.074 ÷ 0.12)
GST model Biaxial tests Uniaxial two strain tests Uniaxial one strain tests
constant Median [-] Median [-] Median [-]

(interquartile range) (interquartile range) (interquartile range)
c kPa 9.41(8.24 ÷ 13.44) 22.6(19.4 ÷ 24.95) 28.2(24.5 ÷ 30.1)
k M1 kPa 21.89(14.65 ÷ 36.43) 20.42(12.94 ÷ 60.4) 19.68(17.95 ÷ 21.36)
k M2 – 1.51(0.95 ÷ 2.28) 2.32(1.5 ÷ 9.97) 18.61(16.17 ÷ 19.98)
ϕM rad 0.3(0.11 ÷ 1.11) 0.42(0.03 ÷ 0.77) 0.77(0.65 ÷ 0.81)
κM – 0.07(0.02 ÷ 0.14) 0.14(0.02 ÷ 0.28) 0.2(0.18 ÷ 0.2)
k A1 kPa 18.86(10.88 ÷ 23.22) 19.11(13.68 ÷ 41.09) 22.5(19.6 ÷ 26.2)
k A2 – 1.28(1.06 ÷ 1.54) 7.84(3.54 ÷ 29.33) 20.5(18.04 ÷ 21.88)
ϕA rad 0.99(0.06 ÷ 1.58) 0.73(0.25 ÷ 1.02) 0.73(0.67 ÷ 0.77)
κA – 0.07(0.02 ÷ 0.12) 0.1(0.04 ÷ 0.08) 0.07(0.06 ÷ 0.08)
FFF model Biaxial tests Uniaxial two strain tests Uniaxial one strain tests
constant Median [-] Median [-] Median [-]

(interquartile range) (interquartile range) (interquartile range)
c kPa 3.82(1.31 ÷ 10.54) 41.72(34.24 ÷ 48.76) 33.7(26.24 ÷ 42)
k11 kPa 49.21(42.27 ÷ 55.81) 14.29(8.66 ÷ 22.74) 24.8(18.7 ÷ 29)
k21 – 0.99(0.69 ÷ 1.16) 1.3(1.16 ÷ 1.74) 0.9(0.64 ÷ 1.13)
k12 kPa 38.92(19.05 ÷ 49.6) 21.84(7.33 ÷ 32.23) 29(24.2 ÷ 37.1)
k22 – 0.55(0.36 ÷ 1.18) 1.08(0.77 ÷ 1.86) 0.97(0.65 ÷ 1.34)

=k k13 14 kPa 34.39(25.11 ÷ 50.55) 1.58(0.26 ÷ 5.61) 22.1(18.5 ÷ 28.8)
=k k23 24 – 0.89(0.52 ÷ 1.19) 1.97(0.24 ÷ 4.98) 0.74(0.32 ÷ 1.11)

ϕ rad 0.66(0.57 ÷ 0.71) 0.68(0.23 ÷ 1.24) 0.52(0.51 ÷ 0.62)
Microfiber model Biaxial tests Uniaxial two strain tests Uniaxial one strain tests
constant Median [-] Median [-] Median [-]

(interquartile range) (interquartile range) (interquartile range)
c kPa 27.2(25.3 ÷ 27.8) 46.3(39.8 ÷ 51) 57.9(51 ÷ 66.3)
kM kPa 236(210 ÷ 257) 162(142 ÷ 237) 314(189 ÷ 376)
λ Mmax , – 1.15(1.12 ÷ 1.2) 1.14(1.1 ÷ 1.29) 1.3(1.26 ÷ 1.3)
bM – 0.5(0.5 ÷ 0.501) 0.52(0.5 ÷ 1) 0.56(0.51 ÷ 0.93)
kA kPa 20191(16695 ÷ 31339) 26918(17626 ÷ 35554) 23637(16448 ÷ 41453))
λ Amin , – 1.2(1.2 ÷ 1.2008) 1.23(1.2 ÷ 1.27) 1.26(1.25 ÷ 1.31)
bA – 0.002(0.0001 ÷ 0.03) 0.23(0.16 ÷ 0.45) 0.13(0.1 ÷ 0.3)

Table A.2
Sensitivity of individual constants of all models to individual tests. Ideally they should be 1 and the interquartile range should be very narrow. Results are completed by providing p-values
from testing whether the median of each ratio of the constants equals to 1.

HGO model Biaxial to two-strain uniaxial ratios Biaxial to one-strain uniaxial ratios

constant Median [-] p-value Median [-] p-value
(interquartile
range)

(interquartile
range)

c 0.3(0.07 ÷ 0.5) 0.024 0.29(0.15 ÷ 0.63) 0.017
k M1 1.55(0.79 ÷ 2.34) 0.045 0.78(0.39 ÷ 1.18) 0.49
k M2 0.75(0.48 ÷ 0.98) 0.167 1.22(0.71 ÷ 1.51) 0.900
ϕM 1.44(0.74 ÷ 2.85) 0.149 1.06(0.38 ÷ 1.28) 0.754
k A1 1.09(0.63 ÷ 3.01) 0.286 0.64(0.365 ÷

0.88)
0.346

k A2 0.69(0.37 ÷ 1.95) 0.999 0.66(0.33 ÷ 2.08) 0.9
ϕA 1.36(0.62 ÷ 2.14) 0.187 1.71(0.61 ÷ 2.52) 0.069

(continued on next page)
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Table A.2 (continued)

HGO model Biaxial to two-strain uniaxial ratios Biaxial to one-strain uniaxial ratios

constant Median [-] p-value Median [-] p-value
(interquartile
range)

(interquartile
range)

GST model Biaxial to two-strain uniaxial ratios Biaxial to one-strain uniaxial ratios
constant Median [-] p-value Median [-] p-value

(interquartile
range)

(interquartile
range)

c 0.36(0.34 ÷ 0.67) 0.028 0.37(0.29 ÷ 0.49) 0.001
k M1 0.97(0.21 ÷ 3.24) 0.49 1.1(0.74 ÷ 1.64) 0.379
k M2 0.57(0.18 ÷ 8.9) 1 0.08(0.05 ÷ 1.64) 0.001
γM 0.36(0.12 ÷ 2373) 0.379 0.39(0.16 ÷ 1.03) 0.379
κM 0.46(0.13 ÷ 3.61) 0.9 0.38(0.1 ÷ 0.84) 0.149
k A1 0.69(0.42 ÷ 1.28) 0.414 0.85(0.45 ÷ 1) 0.209
k A2 0.2(0.03 ÷ 0.28) 0.233 0.08(0.05 ÷ 0.12) 0.117
γA 0.51(0.23 ÷ 1.94) 0.802 1.39(0.07 ÷ 2.31) 0.286
κA 0.52(0.2 ÷ 1.97) 0.727 0.29(0.11 ÷ 0.6) 0.001
FFF model Biaxial to two-strain uniaxial ratios Biaxial to one-strain uniaxial ratios
constant Median [-] p-value Median [-] p-value

(interquartile
range)

(interquartile
range)

c 0.10(0.02 ÷ 0.24) 0.001 0.10(0.03 ÷ 0.43) 0.001
k11 3.30(2.2 ÷ 6.36) 0.001 1.81(1.47 ÷ 2.74) 0.003
k21 0.75(0.48 ÷ 0.98) 0.167 1.22(0.71 ÷ 1.51) 0.379
k12 1.57(0.95 ÷ 7.26) 0.06 1.29(0.73 ÷ 2.03) 0.233
k22 0.49(0.25 ÷ 1.12) 0.295 0.92(0.48 ÷ 1.23) 0.66

=k k13 14 21.32(7.31 ÷ 886) 0.001 1.24(0.8 ÷ 2.24) 0.13
=k k23 24 0.75(0.13 ÷ 5.34) 0.315 1.41(0.97 ÷ 2.19) 0.06

ϕ 1.55(0.58 ÷ 2.87) 0.09 1.14(1.00 ÷ 1.44) 0.028
Microfiber

model
Biaxial to two-strain uniaxial ratios Biaxial to one-strain uniaxial ratios

constant Median [-] p-value Median [-] p-value
(interquartile
range)

(interquartile
range)

c 0.58(0.48 ÷ 0.72) 0.001 0.43(0.41 ÷ 0.47) 0.001
kM 1.37(0.97 ÷ 1.58) 0.017 0.78(0.6 ÷ 1.2) 0.616
λ Mmax , 1(0.94 ÷ 1.04) 0.398 0.89(0.88 ÷ 0.93) 0.002
bM 1(0.61 ÷ 1) 0.045 0.92(0.61 ÷ 1) 0.005
kA 1.1(0.62 ÷ 1.34) 1 0.77(0.51 ÷ 1.35) 0.754
λ Amin , 0.98(0.95 ÷ 1) 0.009 0.96(0.92 ÷ 0.97) 0.002
bA 0.04(0.0 ÷ 0.3) 0.002 0.05(0.001 ÷

1.01)
0.576

Table A.3
Descriptive capabilities of the investigated constitutive models assessed via NRMSE metric. All models except for Microfiber were able to capture measured data with
median of NRMSE£10%.

Capturing of uniaxial-
two strain tests

Capturing of uniaxial-
one strain tests

Capturing of
biaxial tests

Model Median NRMSE [%] Median NRMSE [%] Median of NRMSE
[%]

(interquartil range) (interquartil range) (interquartil range)

HGO 6.3 8.7 9.9
(4.8 ÷ 7.8) (7.4 ÷ 11.9) (8.8 ÷ 11.3)

GST 4.7 7.3 10
(4.1 ÷ 7.6) (6.2 ÷ 7.8) (8.5 ÷ 12.7)

FFF 4.5 7.2 9.6
(4 ÷ 5.9) (6.3 ÷ 8) (8.5 ÷ 10.8)

Microfiber 6.3 10.7 18.1
(5 ÷ 11.3) (8.9 ÷ 13.5) (15.6 ÷ 21.3)
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Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jmbbm.2017.11.035.
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15 Appendix B 

Table 10 Starting points of the Microfiber material model, constrained and unconstrained. 

Parameters Starting point Number Free Constrained 

Layer Name 1 2 3 4 Min Max Min Max 

m
e

d
ia

 
mu 1 5 500 50 0 - 0 - 

k 1 10 400 400 0 - 0 - 

l_min 1 1 1 1 1 - Fix Fix 

l_max 1,2 1,3 1,5 1,5 1 - 1 2 

b 0,1 0,5 1,5 1,5 0 - 0 1,5 

a
d

v
e
n

ti
ti
a
 mu 0 0 0 0 Fix Fix Fix Fix 

k 1 50 1,0E+07 1,0E+05 0 - 0 - 

l_min 1,1 1,2 1,1 1,3 1 - 1 1,5 

l_max 1,5 2 2 2 1 - Fix Fix 

b 0,1 0,5 0,5 0,5 0 - 0 1,5 
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Table 11 Starting points of the Microfiber material model with resulting fitted parameters and residuals R2 and NRMSE for equibiaxial dataset. 

Equibiaxial only Starting Point 1 

  

Starting Point 2 

  

Starting Point 3 

  

Starting Point 4 

Layer Name Start Fit 

R
2

 /
 N

R
M

SE
 

0
,8

5
2

5
 /

 0
,3

0
6

2
 

Start Fit 

R
2

 /
 N

R
M

SE
 

0
,9

7
7

2
 /

 0
,1

1
9

6
 

Start Fit 

R
2

 /
 N

R
M

SE
 

0
,9

9
6

9
 /

 0
,0

4
4

3
 

Start Fit 

R
2

 /
 N

R
M

SE
 

0
,9

9
7

4
 /

 0
,0

4
0

4
 

m
e

d
ia

 

mu 1 74,301 5 0 500 44,887 50 44,665 

k 1 22,561 10 1168,768 400 515,722 400 472,406 

l_min 1 3,694 1 1,096 1 1,368 1 1 

l_max 1,2 1,829 1,3 5,9 1,5 1,006 1,5 1,359 

b 0,1 3,048 0,5 0 1,5 0,194 1,5 0,192 

a
d

v
e
n

ti
ti
a
 mu 0 0 0 0 0 0 0 0 

k 1 0 50 357,138 1,0E+07 23302476 1,0E+05 160105 

l_min 1,1 7,198 1,2 1,064 1,1 5,398 1,3 1,263 

l_max 1,5 1 2 1 2 13,189 2 2,335 

b 0,1 3,143 0,5 0,098 0,5 0 0,5 0,016 

Table 12 Starting points of the Microfiber material model with resulting fitted parameters and residuals R2 and NRMSE 

for all datasets combined, unconstrained (free). 

All protocols, free Starting Point 1 

  

Starting Point 2 

  

Starting Point 3 

  

Starting Point 4 

Layer Name Start Fit 
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mu 1 28,347 5 0 500 29,605 50 27,152 

k 1 254,287 10 180,127 400 369,391 400 551,009 

l_min 1 137,171 1 1 1 1 1 1 

l_max 1,2 1,398 1,3 1 1,5 1,232 1,5 1,304 

b 0,1 0,392 0,5 0,091 1,5 0,288 1,5 0,108 

a
d

v
e
n

ti
ti
a
 mu 0 0 0 0 0 0 0 0 

k 1 622 50 2245,79 1,0E+07 26464120 1,0E+05 168845,4 

l_min 1,1 1 1,2 1,866 1,1 1,764 1,3 1,533 

l_max 1,5 1,34 2 1 2 1,396 2 2,978 

b 0,1 0 0,5 0,027 0,5 1,235 0,5 0,608 
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Table 13 Starting points of the Microfiber material model with resulting fitted parameters and residuals R2 and NRMSE 

for all datasets combined, constrained. 

All protocols, constrained Starting Point 1 

  

Starting Point 2 

  

Starting Point 3 

  

Starting Point 4 

Layer Name Start Fit 
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mu 1 28,346 5 0 500 26,907 50 27,156 

k 1 622,081 10 268,27 400 535,665 400 551,088 

l_min 1 1 1 1 1 1 1 1 

l_max 1,2 1,34 1,3 1 1,5 1,297 1,5 1,304 

b 0,1 0 0,5 0,057 1,5 0,106 1,5 0,108 

a
d

v
e
n

ti
ti
a
 mu 0 0 0 0 0 0 0 0 

k 1 0 50 1,091 1,0E+07 1,47E+08 1,0E+05 48799,92 

l_min 1,1 1,5 1,2 1,004 1,1 1,398 1,3 1,499 

l_max 1,5 1,5 2 2 2 2 2 2 

b 0,1 1,5 0,5 1,5 0,5 1,303 0,5 0,342 
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16 Appendix C 

Process of fitting the measured data using the program Hyperfit 

After starting the program, an empty working space shows up. In the left panel we choose 

Test data – Add (from file). It is possible to select multiple files in order to shorten the 

working time. 

 

 

Figure 46 Adding data sets into the Hyperfit program. 

 

The selected data sets show up in a form of stress strain graphs. In the heading we can see the 

type of experimental protocol, depending on the chosen data set. The main testing protocols 

are uniaxial, equibiaxial and biaxial. In relation to the analyses of aortic aneurysm, uniaxial 

and equibiaxial protocols are distant from the reality of aortic physiological stress – strain 

behaviour. Biaxial tension in axial and radial direction of the aortic tube is distributed 

normally in the ratio of ca 1:2 in case of healthy young person and in the ratio of 

approximately 1:5 in case of older people where the axial pretension decreases during the 

aging process. 
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Figure 47 Loaded data sets. Underlined testing protocols. 

 

For better representation of data sets, a sorting function is used. The experimental data 

obtained via uniaxial loading are on the left side of the window, the biaxial experimental data 

are on the other side. 

 

 

Figure 48 Sorted data sets. 
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Now we need to set up the uniaxial tension tests as biaxial tension tests with no perpendicular 

stress calculated, only strains in both axes and one stress, as explained in the relevant chapter. 

First, the type of experimental setup is changed from uniaxial to biaxial. In the upper case, the 

stress is practically zero in one axis; therefore we need to show the values of stress and strain 

in the other axis. 

 

 

Figure 49 The two uniaxial data sets will be set up. 



107 

 

 

Figure 50 Changing X and Y axis to show the desired data. 

 

Now we need to exclude the zero stress in perpendicular direction to loading vector. The 

weight of the values will therefore be zero. The data of strain in perpendicular direction 

influence the fitting process despite the exclusion of the corresponding stress. 
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Figure 51 Setting the weight of chosen stress values to zero, first window. 

 

 

Figure 52 Setting the weight of chosen stress values to zero, second window 
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The setting needs to be done in both cases of uniaxial tests. 

 

 

Figure 53 Setting the weight of chosen stress values to zero, second data set. 

 

Now the data sets are ready to be fitted. First we start with the fitting of biaxial data. The 

uniaxial data sets on the left will be deactivated. 
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Figure 54 Deactivating of the uniaxial data sets. 

 

Now another part of the program needs to be set up. The objective function which will be 

optimised (minimized or maximized) is in our case the Coefficient of determination R2. 
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Figure 55 Setting the Coeff. of Determination as the objective function. 

 



112 

 

The numerical method used to find the best fit must be set up now. The used values are a 

compromise of time and accuracy. 

 

 

Figure 56 Setting the numerical method. 

 

Lastly we need to choose and set the Model of material. 

 

 

Figure 57 Choosing the material model. 
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After clicking on the default starting “Neo Hooke” we go through numerous settings to define 

the desired model. In this case it is the Microfiber parallel model. The process is shown from 

left to right. 

 

 

Figure 58 Detailed way how to set up the first chosen material model. 

 

The first parallel model is chosen. 
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Figure 59 Choosing the second material model. 

 

The second parallel model is getting set up. 

 

 

Figure 60 Detailed way how to set up the second chosen material model. 
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After having chosen the model, its name, description and coefficients are shown in a blank 

sheet. 

 

 

Figure 61 Table of parameters for chosen material model. Default values. 

 

The Start and Min values are default values which are optional to change. The Microfiber 

parallel model works with two separate matrixes, but the overall matrix stiffness is just a sum 

of the two separate ones. Because of this, only one matrix constant is needed, the other one 

can be fixed to zero easing thus the process of fitting. 



116 

 

 

Figure 62 Constraining one matrix stiffness parameter. 

 

More about starting parameters and their influence on the resulting coefficient of 

determination is analysed after the explanation of fitting process in the chapter 6.2 below. 

 

After successful setup of the program and material model we can start the fitting process 

using the icon in the left upper corner of the screen. While the fitting process is running, a 

graph of residuum is shown to illustrate the success of the fitting process. 
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Figure 63 Start of the fitting proces. 

 

After a number of iterations the blue model curves get near the red measured ones. 

 

 

Figure 64 During the fitting proces the model curves (blue) are getting closer to the 

experimental data. 
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Once reaching the maximal possible value of the coefficient of determination, the fitting 

process stops. The values of the NRMSE and R2 are written down. 

 

 

Figure 65 After the fitting process is finished, the values of R2 and NRMSE are written down. 

 

Also the values of all the coefficients of the material model are written down. 

 

 

Figure 66 Also the model parameters are written down. 



119 

 

Now the uniaxial data will be fitted. In the first run using the recently fitted material model 

which was based on biaxial data and then using a new fitting process. Therefore the uniaxial 

data sets are activated and all the biaxial data sets are turned off. After clicking on the 

calculator icon in the upper left corner of the screen, the resulting NRMSE and R2 are shown. 

These values represent the capability of the material model to predict the uniaxial response on 

the basis of biaxial experimental data. 

 

 

Figure 67 Switching the data sets. Writing down the R2 and NRMSE. 

 

After this evaluation a new fitting process starts. In this case we fit the material model to 

uniaxial data. 
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Figure 68 Fitting the other data sets (uniaxial). 

 

After several iterations the blue model curves are getting near the measured data exactly in the 

same manner as before for the biaxial data. The only difference is the quicker fitting process 

caused by less data sets to be fitted. 

 

 

Figure 69 During the fitting process the model curves (blue) are getting closer to the 

experimental data (uniaxial). 
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After a short period of time the fitting process terminates. The values of the NRMSE and 

Coefficient of determination together with the model constants are written down. 

 

 

Figure 70 The fitting process is complete for all data sets. R2 and NRMSE are written down. 

 

 

Figure 71 The model parameters are also written down. 
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When the material model based on uniaxial data is complete, we switch again all the data sets 

from Activated to Deactivated and vice versa. After having calculated the NRMSE and R2 of 

the fitted material model based on uniaxial data which was now used to fit the biaxial data, we 

obtain and write down the values which represent the predictive capability of the model. 

 

 

Figure 72 The data sets are switched again and the R2 and NRMSE are written down. 

 

 




