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Abstract 
This thesis studies several methods for enhancing details in digi ta l photographs. Methods ' 
algorithms are described and implemented to existing system using C + + and O p e n C V . 
Methods are then compared in terms of the t ime and memory complexity and their re­
sults are evaluated using users' questionnaire. Work overally gives overview of present 
photographic detai l enhancement methods and discuses their future development. 

Abstrakt 
Tato p r á c e studuje 4 metody pro zvýrazňován í de t a i l ů v d ig i tá ln ích fotografiích. A lgo r i tmy 
metod jsou p o p s á n y a i m p l e m e n t o v á n y do s távaj íc ího s y s t é m u p o m o c í C + + a O p e n C V . 
Me to dy jsou nás l edně p o r o v n á n y z hlediska časové a paměťové n á r o č n o s t i a vyhodnoceny 
jsou t a k é jejich výs ledky p o m o c í už iva te l ského d o t a z n í k u . P r á c e obecně poskytuje p řeh led 
současných metod pro z v ý r a z n ě n í de t a i l ů ve fotografii a diskutuje jejich b u d o u c í vývo j . 
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Chapter 1 

Introduction 

B i g progress i n digi ta l and photographic technologies i n the last few decades brought new 
options, how photographs can captured and processed to get desired informations. Today 
digi ta l image processing is used for various tasks and in diverse fields. To name few, there is 
object recognition i n photograph or video, quali ty metrics of materials i n industry process 
or architecture, determining diagnose from medical images, restoration of artworks and 
many more. 

For good quali ty of photographs, contemporary cameras not only capture image, they 
also compute i t . Thence here comes concept of computational photography. Its applications 
can be found on many of modern smartphones, e.g. features as H D R and panorama. 

In fact, nowadays, almost everyone, who owns a smartphone, is a photographer. Huge 
amount of photographs is taken and being shared every day, but not a l l of taken pictures are 
of good quality, though. In big amount of pictures, there is often not much time to edit every 
single photograph manually, so there is a need for automatic or at least semi-automatic 
enhancing methods. M a n y of them are already implemented i n photo-editing softwares. 
However, continuing research in this area brings improvements and new approaches every 
year. 

This thesis studies few candidates of methods for detai l enhancement in photographs, 
which were presented i n research i n recent years. F i r s t , field of photographic detai l en­
hancement is introduced and its methods are categorized i n chapter 2. Next chapter 3 
contains description and theoretical principles for each method. Implementation of meth­
ods is described in chapter 4, where methods are implemented as plugins into existing 
software system. Chapter 5 contains comparison of methods' metrics, such as t ime and 
memory complexities and visual evaluation of their results v i a users questionnaire. In the 
last chapter 6 there is a conclusion of this work. 

2 



Chapter 2 

Photographic Detail Enhancement 

Reasons, why would we want to enhance images, are several. It can be desire to enhance 
have wrong quali ty of images due to wrong light conditions, fog or other reason. Images 
can be enhanced also for artistic purposes. One of studied methods is mentioned further 
is such artistic. It can be also more serious reason, like to get better diagnose i n medical 
applications, such as radiograph or other image. In industry, enhancing photographs of 
manufactured products can help to detect defects on materials. 

2.1 Digital image Representation 

A t first, let there be defined, what is an digi ta l image. A s computer works wi th numbers, 
digi ta l image must be represented i n numbers, so computer could work w i t h i t . Here helps 
mathematical definition. 

2.1.1 M a t h e m a t i c a l def ini t ion of grayscale image 

Grayscale image can be defined as 2D function: / : R2 —>• R, where f(x, y) gives image 
intensity at posit ion (x, y) Realist ically, we expect the image only to be defined over a 
rectangle, w i th a finite range: 

/ : [0 ..m- 1] x [0 . . n - 1] -)• [0,1], 

where m and n is wid th and height of image, respectively. Usual ly image intensity is 
normalized to interval [0,1], which represent energy of signal: 0 = zero energy is black and 
1 = full energy is white. W h e n speaking about energy, it is important to mention, that 
digi ta l image can be also viewed as 2D signal. 

Image 2D function rectangular space is sampled on a regular gr id into units - pixels 
(picture elements) and then quantized - rounded to nearest discrete value representable by 
computer. Such rectangular matr ix of discrete numbers is d ig i ta l representation of image. 
Following figure 2.1 shows different views on digi ta l image. 
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Figure 2.1: F r o m left to right: Grayscale image ("viewed from upper"). Image plotted as a 
2D function in 3D space. Image as 2D numerical a r ray /mat r ix . Images taken from Dig i t a l 
Image Processing (DIP) book [13, p. 55]. 

2.1.2 R e p r e s e n t i n g colours in images 

Colours in image are represented by storing three values for red, green and blue components 
instead of one as i n grayscale. W i t h these three colours, any colour can be represented. 
Such image then has 3 channels, which can be stored as matrices. Other types than R G B 
also exists, though. 

2.2 Digital image processing 

Image processing, i n most basic terms, is operation, that takes as input one image / , 
performs some computations on it and outputs another image g. Such processing can 
process intensities/ranges of each pixel separately - that is called point processing (range 
transformation): 

g(x,y) = t(f(x,y)) 

G o o d example is creating image negative, where t{x) = 1 — x for image range [0,1]. 

Some operations preserve pixel intensities, but change pixel positions: 

9(x,y) = f(tx(x,y),ty(x,y)) 

where tx and ty are translat ion functions. Examples can be rotat ion, change of scale, 
warping - pixels are moved to another posit ion. 

2.3 Image details and their enhancing 

For this thesis, which is concerned about photographic detail enhancement, it is important 
to define the details, which are going to be enhanced. B y details are meant smal l changes 
in local contrast of image. For example some texture of wood or wal l as is visible on figure 
2.2. 
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Figure 2.2: Example of detail enhanced image wi th method L o c a l Lap lac ian F i l t e r ing [22]. 
Exaggeration of details on texture of wood and wal l are part icular ly observable. Source of 
image is archive of M a r t i n Cadik ' s testing H D R images available on his web page [18]. 

2.4 Image detail enhancement methods overview 

There are more cri teria for divisions of methods. This section gives overview of recent detail 
enhancement methods and provides their categorization based on different criteria. 

2.4.1 D a t a vs. A l g o r i t h m or ientat ion 

Firs t divis ion can be into data-driven and behaviour-driven approaches. 
Data-driven methods are more oriented on data (images i n this case). They often 

employ some machine learning - t ra ining some internal model on big dataset of images and 
then they can apply learned knowledge on previously unseen image to get desired result. 
Authors Bychkovsky et a l . used difference learning [6], and recently convolutional neural 
network was used by G h a r b i et a l . [12]. 

Behaviour-driven methods focus on procedures, how algori thm operates on given 
data and what computations are done. Fol lowing methods in this section are behaviour-
driven. 

2.4.2 D o m a i n aspect 

Another divis ion is based on domain, in which method operates. 

Spatial domain methods "The term spatial domain refers to the image plane itself, 
and image processing methods i n this category are based on direct manipulat ion of pixels 
i n an image." [13, p. 104] 

Intensity transformations perform their operation on image pixels itself, p ixel by 
pixel - e.g. contrast stretching method, which applies S-curve function to on every pixel 
[13, p. 106,115]. Example of S-curve is sigmoid function, which is used later i n method #1, 
and there it w i l l be defined. Here on figure 2.3 is shown, how sigmoid function stretches 
contrast of image. 
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Figure 2.3: Contrast stretching wi th sigmoid function. F r o m left: input image, sigmoid 
function, output image processed by sigmoid. Images taken from tutor ia l on intensity 
transforms of images [20]. 

Spatial filtering inferences output p ixel from result of operation on neighborhood of 
input p ixel - e.g. sharpen filter w i th Laplac ian spatial mask [13, p. 160-162]. 

Histogram manipulation changes dis t ibut ion of pixel intensities i n image, it can be 
used for increasing contrast - e.g. various forms of histogram equalizations, such as [13, 
p. 122-144], [31]. 

Transform domain methods Processing does not have to be done on image itself, but 
also on its different representation, which is more suitable i n some cases. Such methods 
transform an image into transform domain, there predefined operation is performed, and 
finally by applying inverse transform output image is obtained. Scheme of the process is 
shown at figure 2.4. 

f(x,y) 

Spatial 
domain 

Transform T(u,v) ^ Operation R[T(u,v)] ̂  Inverse Transform w R transform 

Transform domain 

-> g(x,y) 

Spatial 
domain 

Figure 2.4: Diagram of image processing using transform domain [13, p. 94]. 

A s a good example can serve filtering image i n frequency domain, where discrete e.g. 
Fourier transform is used [13, p. 199]. Another example is logari thmic domain, which is 
better to work wi th high dynamic range images. 

2.4.3 E d g e - p r e s e r v i n g d e c o m p o s i t i o n m e t h o d s 

Being spatial domain based, these methods decompose input image into more layers and 
perform operations wi th them. 

Most simple example works wi th 2 layers: G iven input image I, base layer B is its 
smoothed version obtained by some smoothing a lgor i thm which preserves significant edges, 
further described in section 2.4.4. Detail layer D is difference of input image and base 
layer: D = I — B. Enhanced image E is acquired, when scaled detai l layer (mult ipl ied by 
some constant) is added back to input image: E = I + s • D. 

Image edge-preserving decomposition methods can be divided into two categories: local 
filter based and global opt imizat ion based [14, p. 1]. 
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I B D 

Figure 2.5: Basic approach for detail image enhancement. Scale coefficient s is set to 4 in 
this case. De ta i l layers are normalized for better visibil i ty. 

Local filter based Algor i thms filtering image i n local Bi la te ra l filter [28] 
and local Laplac ian filters [22]. 

Global optimization based These methods solve some global opt imizat ion problem, 
e.g. for smoothing [10], [29], or getting scale and shift coefficients for detai l and base layer, 
respectively [26]. 

2.4.4 E d g e - p r e s e r v i n g s m o o t h i n g 

Smoothing in detail enhancement is used to produce base layer, as mentioned in previous 
section. Here may arise question on why such smoothing must be edge-preserving. For 
input image 2.6a results for different smoothing methods are shown. 

Using Gaussian b lurr ing on figure 2.6c, halo effect 1 i n result around significant edges is 
introduced because Gaussian blurr ing does not preserve them. However, detai l enhancement 
using edge-preserving smoothing on figure 2.6d produces halo-free result 2.6c, because the 
edges are preserved. 

Therefore, smoothing used i n detai l enhancement pipeline must preserve significant 
edges i n image. 

1 Artefacts around edges in image looking like halo (shine). 
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(a) Input image for smoothing [1] 

(b) Gaussian blurring with a = 8 (c) Detail enhancement with halo effect 

(d) LO edge preserving smoothing [29] (e) Halo-free result of detail enhancement 

Figure 2.6: Gaussian blur is example of smoothing, which does not preserve edges (b). 
Therefore, i n detail enhancement, blue halo effect is introduced around edges (c). W h e n 
edge preserving smoothing is used (d), detai l enhanced result is halo-free (e). Scale = 4 
was used for detail enhancement. Example is exaggerated for obviousness. Or ig ina l image 
is from results web page [1] for method discussed later [3]. 
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2.4.5 M e t h o d s us ing image p y r a m i d s 

Some methods [22], [3] use image pyramids - representation of image at different scales, 
originally described by authors B u r t and Adelson [5]. A s one method [3] w i l l be studied in 
chapter 3, concept of these pyramids is presented below. 

Figure 2.7: I l lustrat ional scheme of image pyramids [13, p. 463] 

Gaussian pyramid Star t ing wi th full resolution image, next level of Gaussian pyramid 
is made by blurr ing the image wi th Gaussian blur (approximation filter) and then scaling 
down by deleting every second row and column from image (downsampling) - left-top 
branch i n pyramid system 2.10, result is approximation (on figure there should be level 
j + 1 above i t ) . 

level 0 

Figure 2.8: Gaussian pyramid of example image. Taken from presentation on web of method 
#2 [2] and changed background. 
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Laplacian pyramid Laplac ian is an operator of second derivative. In Lap lac ian pyramid, 
it is approximated w i t h difference of Gaussians. Lap lac ian pyramid stores difference images 
between blurred versions of neighbor levels. Level j i n pyramid is made by making difference 
between itself and downsampled and then upsampled self. Upsampl ing is done by inserting 
zero filled rows and columns after every second row/co lumn. Interpolation filter can be 
also Gaussian blur - left-top-down-right path in pyramid system 2.10, result is prediction 
residual. 

level 2 
level 3 
{residual 

level 1 

level 0 

Figure 2.9: Laplac ian pyramid of example image. Taken from presentation on web of 
method #2 [2] and changed background. 

Downsample r 

Level j 

Approx imat ion 2i f i lter 2i 

2 t Upsampler 

Interpolat ion 
f i lter 

Predict ion 

A+ 

^ Level J -1 
approx imat ion 

Level j 
> predict ion 

residual input image 

Figure 2.10: System for creating image pyramids [13, p. 463] 
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Chapter 3 

Methods enhancing details in 
photographs 

After introduct ion into topic and needed theoretical background, we can approach descrip­
t ion of selected methods. A t every method, principle and algori thm is described and also 
its result pictures are shown. 

A l l following methods have similar structure - they take one image as input, perform 
some computat ion wi th it and output one enhanced image again. Before going to explain 
methods, here is common notat ion used i n a l l methods: 

• I - Input Image 

• B - Base layer (smoothed version of input image) 

• D - D e t a i l layer, D = I - B 

• E - Enhanced output image 

Subindex p means one pixel i n image - e.g. Ip is p ixel w i th index p i n image / . 

3.1 Edge-Preserving Decompositions for Multi-Scale Tone 
and Detail Manipulat ion 

Described by authors Farbman et a l . [10], this method introduces a way to construct edge-
preserving multi-scale image decompositions, which is well suited for progressive coarsening 1 

of images and for multi-scale detail extraction. M e t h o d introduces edge-preserving image 
smoothing operator using weighted least squares ( W L S ) opt imizat ion framework. This 
operator is used to construct edge-preserving multi-scale decompositions of image. These 
decompositions can be used for image detail enhancement. 

3.1.1 E d g e - p r e s e r v i n g s m o o t h i n g v i a W L S (Weighted Least Squares) 

Base and detail layers are needed i n this method to perform detai l enhancing. Those 
are obtained by smoothing original image and other operations. Authors present edge-
preserving smoothing approach based on the W L S opt imizat ion framework, which gives 

1Image smoothing, which smoothes minor edges and preserves significant edges in image. 
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better results compared to linear Gaussian filter and Bi la te ra l filter [10, p. 3]. Fol lowing 
paragraphs contain their description. 

"Edge-preserving smoothing may be viewed as a compromise between two possibly 
contradictory goals. G i v e n an input image I, we seek a new image B , which, on the one 
hand, is as close as possible to I, and, at the same time, is as smooth as possible everywhere, 
except across significant gradients i n I." [10, p. 3] 
Formally, this may be expressed as seeking the m i n i m u m of 

where the subscript p denotes the spatial locat ion of a pixel . The goal of the data term (Bp — 
Ip)2 is to minimize the distance between B and / , while the second (regularization) term 
strives to achieve smoothness by min imiz ing the par t ia l derivatives of B. The smoothness 
requirement is enforced i n a spatially varying manner v i a the smoothness weights ax and 
ay, which depend on / . F ina l ly , A is responsible for the balance between the two terms: 
increasing the value of A results i n progressively smoother images B. 

3.1.2 M u l t i - s c a l e edge-preserv ing decompos i t ions 

Using the edge-preserving operator described above, it is easy to construct a multi-scale 
edge-preserving decomposition. It consists of a coarse, piecewise smooth, version of the 
image, along wi th a sequence of difference images, capturing detai l at progressively finer 
scales. 

3.1.3 M u l t i - s c a l e tone m a n i p u l a t i o n for deta i l enhancement 

A s said before, one of applicat ion of the method is image detail enhancement. It is done 
wi th multi-scale tone manipulat ion. G iven an image, a three-level decomposition (coarse 
base level B and two detail levels D1, D2) of the C I E L A B lightness channel is constructed. 

Input parameters for the applicat ion are r\ - controll ing exposure of base layer and 
boosting factors 8§, Si, 82 for one base and two detail layers. The result of the manipulat ion 
E at each pixel p is then given by 

Ep = fi + S(50,VBp -fi) + StfuDl) + S(S2,D2), (3.2) 

where \x is the mean of the lightness range, and S is a sigmoid curve: 

S ^ x ) = i + e - ° s ' ( 3 - 3 ) 

which is appropriately shifted and normalized. 
Similarly, layers of coarse, medium and fine detail boosting are computed. F i n a l detail 

enhanced image is obtained as their mean average. A l l layers are shown i n Figure 3.1. 

input image coarse scale boosting medium scale boosting fine scale boosting combined result 

Figure 3.1: Mult i -scale tone manipula t ion using edge-preserving decompositions. Images 
taken from method's paper [10, p. 8]. 1 < ? 



3.2 Fast Local Laplacian Filters 

Described by authors A u b r y et a l . [3], this method employs image pyramids, which concept 
was outl ined i n chapter 2. 

3.2.1 B a c k g r o u n d o n local L a p l a c i a n filters 

This method is based on older "non-fast" method by authors Paris et a l . [22]. 
Its a lgori thm is following: For each pixel i n the Gaussian pyramid of the input (red 

dot), its value go is looked up. Based on go, the input image is remapped using a pointwise 
function. Next , a Lap lac ian pyramid is bu i ld from this intermediate result, then the appro­
priate pixel is copied into the output Lap lac ian pyramid . Th is process is repeated for each 
pixel over a l l scales un t i l the output pyramid is filled, which is then collapsed to give the 
final result. For more efficient computat ion, only parts of the intermediate pyramid need 
to be generated. Scheme of approach is depicted on figure 3.2. 

Figure 3.2: L o c a l Laplac ian Fi l ters a lgori thm overview. Image taken from authors's paper 
[22, p. 5]. 

3.2.2 D e s i g n of the r e m a p p i n g funct ion 

L o c a l Laplac ian filters are used e.g. for tone mapping and detail manipulat ion. Authors 
proposed following remapping functions to compute the coefficient (£, x, y) - which means 
pixel at posi t ion (x, y) i n pyramid level t. 

r(I ) = U + sign(Ip-g)ar(\Ip-g\/ar)a i f Ip < ar 

' ''' \g + sign(Ip - g)(/3(\Ip - g\/ar) + ar) i f Ip > ar 

where: Ip is the pixel from input image, g is the coefficient of the Gaussian pyramid at 
(£, x, y), which acts as a reference value, a controls the amount of detai l increase (0 < a < 1) 
or decrease (a > 1), (3 controls the dynamic range compression (0 < f$ < 1) or expansion 
(/? > 1), and ar defines the intensity threshold the separates details from edges. Sample 
functions are shown in figure 3.3. 

3.2.3 Efficient local l ap lac ian f i l tering 

Authors propose an acceleration technique to evaluate local Laplac ian filters on single-
channel images, which encompasses also detail manipulat ion. 
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edge-aware detail manipulation 
detail smoothing detail enhancement 

edge-aware tone manipulation 
rone mapping inverse tone mapping 

combined operator 
detail enhance + tone map 

a> 1 
ß=l r(J) 

gz-

0 < a < 1 
0 < B < 1 

Figure 3.3: Fami ly of point-wise remapping functions for edge-aware manipulat ion. Func­
t ion plots obtained from authors's paper [22, p. 5]. 

Thei r strategy is based on the fact that the nonlinearity (remapping function) comes 
from the dependency on g (pixel from Gaussian pyramid) . Character izat ion of this de­
pendency i n terms of signal processing allows them to design a theoretically grounded 
subsampling scheme that is more than an order of magnitude faster than the previous 
algori thm. 

Fast method comes wi th following optimizations: 

• number of precomputed pyramids is fixed, this a lgori thm has linear complexity i n the 
number of pixels [3, p. 6] 

• use of linear interpolation instead of a sine kernel for reconstructing the signal [3, p. 6] 

Opt imized algori thm is 50x times faster than older method i n S W and 10 times faster in 
H W [3, p. 6]. 

Figure 3.4: Left: original image. Right : detail enhanced image wi th Fast L o c a l Laplac ian 
Fi l ters w i t h parameters a = 0.5, fact = 6, N = 40. Images taken from authors's results [1]. 
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3.3 Art-Photographic Detail Enhancement 

This "art ist ic" method, described by authors Son et a l . [26], is inspired by principles 
of art photography, where exaggerated depiction of fine-scale detai l is desirable and puts 
photography into aesthetic and artistic style. 

The central idea, as described by authors, is "to introduce a piecewise smooth tone 
transform model to obtain extremely exaggerated local contrast for each region i n the 
image (a l a art photograph) while keeping the resulting tone wi th in the target dynamic 
range." [26, p. 1] 

3.3.1 T o n e T r a n s f o r m M o d e l 

This section is based on authors's description from [26, p. 3]. Input image / is decomposed 
into base layer B and detail layer D, where B is obtained by smoothing / , and D = I — B. 
Let Dp denote the detail coefficient at each pixel p, that is, Dp = IP — BP. A simple way of 
enhancing detail would be to boost the detail coefficients Dp as follows: 

where sp is a scale factor. However, the possible range of sp is bounded by the input tone 
value at i because Ep cannot exceed the m a x i m u m dynamic range of the display device. Th is 
could greatly l imi t one's abi l i ty to enhance detail , especially i n the already dark or bright 
regions. Th is problem is mit igated by the following modification to the tone transform 
model: 

where tp denotes the amount of vert ical shift applied to the base layer BP. This model 
transforms the tone i n two ways: t parameters are shifting the base layer and s parameters 
are scaling the detai l layer. In a dark region of photograph, a positive tp would brighten 
the base BP and thus make possible for sp to be larger. Similar ly, a negative shift would be 
desirable in a highly bright region. 

3.3.2 Image d e c o m p o s i t i o n into base a n d deta i l layer 

This section is based on authors's description from [26, p. 4]. 
Ideal base layer B obtained from / would have a constant tone wi th in each homogeneous 

region while preserving the shape of the edges as closely as possible to those i n / . In this 
method, LQ smoothing [29] is performed on / to obtain B. 

It is known that overly sharpened or blurred edges i n B can cause visual artifacts near 
edges during detail enhancement. Since LQ operation is designed to generate piecewise 
constant regions, it may produce many oversharpened edges. 

This issue is addressed by classifying the sharpened edges into two groups: strong (hard) 
edges and smooth (soft) edges. The solution is composed of three passes and is designed to 
protect bo th types of edges from oversharpening: 

• LQ smoothing 

• LQ smoothing wi th adaptive A map 

• adaptive Gaussian blurr ing 

Ep — B„ + D' — B„ + SpD, (3.5) 

(3.6) 
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LQ smoothing 

In the first pass, B base layer is obtained by performing the original LQ smoothing on / . 
The purpose of this pass is to bu i ld an adaptive A-map to guide the second pass. 

Or iginal ly presented by X u et a l . [29], LQ smoothing minimizes LQ norm gradient in 
image by solving following problem: 

m m J J2(BP ~ h? + A • C ( S ) | (3.7) 

where C(B) = #{i\\öxBp\ + l^-Bpj ^ 0} is a non-zero gradient counting function. Th is 
minimiza t ion is then solved v i a special al ternating opt imizat ion wi th auxi l iary variables. 

Adapt ive LQ smoothing 

The second pass performs LQ smoothing on I again but this t ime using adaptive Xp recorded 
in the A-map. Since Xp gets progressively smaller near the edges, this avoids oversharpening 
of strong edges and keeps their original shapes. 

The adaptive A-map used for the second pass is computed as follows. After the first 
pass, strong step edges can be easily detected from B1 by thresholding G1, the gradient 
of B1. Edge pixels are determined v i a thresholding Gp> a (default threshold a = 0.2 for 
al l results), where Xp is set as 77(1=3 0) to properly preserve the original edge shape without 
oversharpening. To avoid numerical errors a smal l 77 is used instead of zero. A s there is a 
move away from edges, i.e., Gp < a, Xp should rapidly increase up to A to ensure piecewise 
flattening of edges wi th in homogeneous region. Th is behavior is modeled wi th the minus 
half of integral bisquare function 

f* 

The adaptive Xp at p ixel i is then defined: 

Xp = 3(X-rj)P(G1

p-a,a)+rj (3.9) 

wi th default value of a = 0.1. 
Let B2 denote the outcome of this adaptive LQ smoothing. 

if u < —a 
if - a < u < 0 (3.8) 

if u > 0 

Adapt ive Gaussian blurring 

Final ly , the edges i n B2 are adaptively Gaussian-blurred as described i n [29]. The proper 
Gaussian scale at each pixel is measured by comparing the blurred version of B2 and I. The 
outcome of this final smoothing serves as B. 

Detai l layer 

Deta i l layer is then obtained by s imply substracting base layer from original image, i.e. 
D = I - B . 
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3.3.3 D e t a i l M a x i m i z a t i o n 

Once the base and detail layers are ready, opt imizat ion of the tone transform parameters sp 

and tp can be done to bring out as much detai l as possible. In this method, the process of 
detail enhancement is formulated as a constrained opt imizat ion problem, which is designed 
to maximize image detail while preserving scene structure. 

Weight for piece wise control 

The piecewise control of brightness i n each region is enabled by introducing a weight wp G 
[0,1] that is inversely proport ional to the gradient magnitude of the base layer B. The 
weight is defined as wp = K(\7Bp)2, where K{u) denotes Tricube function: 

f ( l - | ^ | 3 ) 3 i f V S „ < l 
wp = K(VBP) = r + , P 7 (3-10) 

I 0 otherwise 

Parameter a determines the value of u where wp drops to zero. Default value of a is set to 
0.2. 

Detai l measure 

Given the decomposition of image I = B + D, the amount of detai l i n / is measured as the 
squared sum of a l l detail coefficients Dp in the detai l layer D. Thus for the transformed 
image E = sD + B + t in E q . 3.6, the goal is to maximize ^ | | s p Z ? p | | 2 . To ensure piecewise 
smooth variat ion of s and t, the detail maximiza t ion scheme must simultaneously minimize 
the smoothness terms | | V s p | | 2 and | | V t p | | 2 . This is to encourage region-based control of 
brightness and detail , inspired by the conventional process of art photography. 

Objective function 

Objective function to be minimized for maximiz ing detai l is: 

f(s,t) = -Y/\KDp\\2 

i (3.11) 
+ r1^wp\\Vsp\\2 + r2^wp\\\7tp\\2, 

i i 

wi th constraint: 
0 < Ep = (Bp + tp) + SpDp < 1 (3.12) 

This constraint keeps output 's image i n tonal range [0,1] and sp w i t h tp from going infi­
nite. "The i r smoothness terms further l imi t any drastic change of sp and tp in the local 
neighborhood except at region boundaries." [26, p. 5] 

Authors chose to solve the min imiza t ion problem using quadratic problem solver - this 
is to obtain sp and tp that minimize f(s,t). For convex problem condit ion, they constrain 
r • wp to be larger than 2 by modifying wp to wp = K(S/Bp) + 2 / r . To achieve piecewise 
constant scales and shifts, they use large values of r\ and r 2 (with default value r\ = 200 
and r 2 = 500). 

2 Operator V (nabla) means gradient operation, which can be computed as difference of neighbor elements. 
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Detai l control via interpolation 

Once the opt imized image E has been obtained, it can be optionally used as an upper 
bound to control the amount of detai l enhancement v ia linear interpolation wi th the input 
image / . Fol lowing equation shows the linear interpolation between images / and E using 
parameter / i G [0,1]. 

Eli = nE + {\- n)I 

= n(sD + B + t) + (l-n)(D + B) (3.13) 

= {ns + [\ - n))D + B + nt 

Figure 3.5 shows result of method Ar t -Photographic De ta i l Enhancement on input image. 

Figure 3.5: Left: Or ig ina l image. Right : Output image processed by the method. Notable 
is brightening of dark area, where shift coefficients tp shifted base layer to brighter values. 
Images are from authors' results [25]. 

3.4 Content Adaptive Image Detail Enhancement 

This method, described by authors K o u et a l . [14], uses modified L 0 norm gradient min i ­
mizat ion algori thm, originally presented by X u et a l . [29]. The algori thm is used for image 
smoothing to get base layer of image. Here, the a lgori thm is modified to produce detail 
enhanced image directly. 

3.4.1 C o n t e n t adapt ive deta i l enhance o p t i m i z a t i o n 

M i n i m i z i n g L 0 norm gradient i n image is a global minimiza t ion problem. 
"Enlarging the gradients of a source image is an effective method to sharpen the im­

age. However, halo artifacts and gradient reversal artifacts could be produced i f a l l the 
gradients of the source image are enlarged. To reduce such effects, only a l l the gradients 
except those of pixels at sharp edges are enlarged. Such an idea is formulated as an L$ 
norm based global opt imizat ion problem to derive an appropriate. Same as existing global 
opt imizat ion problems, the proposed performance index consists of a data fidelity term and 
a regularization term. A lagrangian factor A is used to adjust the importance of the two 
terms to control the degree of the enhancement. Based on these, the opt imizat ion problem 
is formulated as follows:" [14, p. 2] 
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m m 
E 

Y,(EP - Ipf + A • C(E — Kol) (3.14) 

"where E is the detail-enhanced image, I is the input image, p is the pixel index of the 
images, o denotes the element-wise product operator. For simplicity, we use I to stand for 
K o I. Note that C(E — I) is the LQ norm of the gradient field, which equals the number 
of non-zero elements of the gradient field of E — I defined" [14, p. 2] 

C(E - I) = dx{Ep - i p ) + dy(Ep - Ip) / 0} (3.15) 

"where # is a counting operator. 
Wi thou t loss of generality, it is assumed that the detail layer is enhanced times i n the 

final image. KP is then computed as follows:" [14, p. 2] 

1 + 
k 

1 _|_ ev(Vp-Vp) 
(3.16) 

"where Vp is the variance of the pixels i n the 3 x 3 neighborhood of the p-th p ixel , Vp is 
the mean value of a l l the local variances. r\ is calculated as ln(0.01)/(min(Vp) — Vp), it 
guarantees the factors of smal l variance pixels be close to 1 + k. So w i t h 3.16, the factors 
of large variance pixels are close to 1." [14, p. 2] 

Results of this method can be seen on figure 3.6. 

Figure 3.6: Or ig ina l image (left) and enhanced image wi th Content Adapt ive Image Deta i l 
Enhancement method (right). Or ig ina l image as i n author's paper [14, p. 3] and enhanced 
image computed from the original w i th the code. 
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3.5 Deep bilateral learning for real-time image enhancement 

The last studied method in this thesis is described by authors G h a r b i et a l . [12]. It is based 
on t ra ining neural network on pairs of input and output images, between which there can be 
arbitrary transform operation, even human retouch. Treat ing transform operation as black 
box, neural network w i l l learn it from differences of gradients between input and output 
images through backpropagation. Then, given some test unseen image, it can reproduce 
learned edit operation. 

This method was added rather as representative of novel data-driven approach, so only 
outline of architecture is here provided, as described by authors. However, this method has 
potential for future development of image editations. 

3.5.1 A r c h i t e c t u r e out l ine 

"Network architecture of this method seeks to perform as much computat ion as possible 
at a low resolution, while s t i l l capturing high-frequency effects at full image resolution. It 
consists of two distinct streams operating at different resolutions. The low-resolution stream 
(top) processes a downsampled version / of the input I through several convolutional layers 
so as to estimate a bilateral gr id of affine coefficients A . This low-resolution stream is further 
split in two paths to learn both local features U and global features Gl, which are fused 
(F) before making the final prediction. The global and local paths share a common set of 
low-level features Sl. In turn, the high-resolution stream (bottom) performs a min ima l yet 
cr i t ical amount of work: it learns a grayscale guidance map g used by our new slicing node 
to upsample the grid of afHne coefficients back to full-resolution A. These per-pixel local 
afHne transformations are then applied to the full-resolution input, which yields the final 
output O." [12, p. 4] 

L O W - R E S COEFFICIENT P R E D I C T I O N 
§3.1.2 local features L% 

full-res input I 

FULL-RES PROCESSING 

pixel-wise 
network 

ow res input T §3.1.1 low-level features Si §3.1.3 global features G1 

§3.2 bilateral grid 

of coefficients 

M 
§3.1.4 fusion ™ ™ 

F I 

1 
slicing 

layer 

£ L 1 
§3.4.1 guidance mapg §3.3 sliced coefficients A 

§3.4.2 full-res outputO 

Figure 3.7: Method 's system architecture. Image taken from method's paper [12, p. 4]. 
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Chapter 4 

Implementation of photographic 
detail enhancement methods 

4.1 Tone Mapping Studio 

Methods are implemented as plugins into existing software system - Tone M a p p i n g Studio 
( T M S ) [19]. It is a plugin-based framework wri t ten in C + + for image processing operations, 
mainly for H D R tone mapping and color-to-grayscale conversions. Its main author, M a r t i n 
Cadik , has also done studies on evaluation of these types of methods [8], [7]. Other types 
of methods are also implemented i n T M S , such as image detai l enhancement methods. The 
program wi th its graphical user interface - tmogui - is shown on figure 4.1. 

T M S also provides command line program - tmocmd, which is par t icular ly suitable for 
usage i n scripts. 

4.2 Edge-Preserving Decompositions for Multi-Scale Tone 
and Detail Manipulat ion 

To use this method for detail enhancement, I followed recipe for multi-scale tone manipula­
t ion applicat ion described i n the paper [10, p. 7]. O n webpage for this method [17], Ma t l ab 
code is available, which was used as reference for implementation. 

Or ig ina l implementat ion consists of W L S opt imizat ion for image smoothing. In my 
implementat ion I used instead of W L S smoothing Fast G l o b a l Smoothing method. It is 
30x faster than W L S [21, p. 10] and also it is integrated i n O p e n C V l ibrary as 
cv: :ximgproc: :FastGlobalSmootherFilter Class. Parameters were set empirically, so 
that smoothing results would match wi th those of authors. 

F rom input image a three-level decomposition are constructed: coarse base layer B and 
two detai l layers D1 and D2. E a c h of this layers is passed to sigmoid function wi th different 
parameters - boosting factors. Output image is obtained by summing result from sigmoid 
function. Also parameters gamma, exposure, saturation are involved. 

M e t h o d algorithm implementation steps 

• smooth input R G B image twice by F G S filter to get two smoothed versions: less and 
more smoothed 
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Figure 4.1: Screenshot of Tone M a p p i n g Studio. 

• convert 2 smoothed versions to L a b color space and get their luminance channels: LO 
and L I 

• cal l tonemapLAB function 3 times wi th different parameters to get sub-results w i t h 
fine, medium and coarse details enhanced 

• make average from these sub-results to get final result 

t o n e m a p L A B function steps 

• calculate first difference image D1 by cal l ing sigmoid function on L — LO 

• calculate second difference image D2 by cal l ing sigmoid function on L 0 — L I 

• calculate base image by call ing sigmoid function on L I adjusted by exposure and value 
56 (= mean of lightness range) 

• luminance result is sum of difference images and base image 

In my implementat ion user can choose, from which sub-result images final result w i l l be 
composed: it can be one or more from coarse, medium and fine detai l enhanced. For each 
layer user can choose parameters gamma, exposure, saturation and also boosting factors 
5o - 62-
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O n figure 4.2 is comparison of my result w i th authors'. Authors ' result has more contrast 
in flower area, but also more blurred background. Otherwise are results similar. More 
identical result to authors' could be produced, i f the same smoothing would be used. 

Figure 4.2: F r o m left to right: original image, authors' result, my result. 

4.3 Fast Local Laplacian Filters 

Implementation for this method is done for L D R images as my project from previous course 
on Computa t iona l Photography. M y goal in this thesis is to extend it to work w i t h H D R 
images. Method 's a lgori thm is as follows: 

• Make grayscale version of input image 

• Calculate colours ratio as i for converting to rgb at the end. 

• E x t e n d image wi th border to make it of size of 2 n for pyramid functions. 

• M a i n a lgori thm on grayscale version of image wi th use of O p e n C V wi th pyramids: 
Gaussian Pyramids , Laplac ian Pyramids 

• get colours back by mul t ip ly ing result w i th color ratios 

For image pyramid functions I use O p e n C V functions cv: :pyrUp() and cv: :pyrDown(). 
M y contr ibut ion on method in this thesis: 

• Conversion of input H D R image into logari thmic scale and after ma in algori thm 
computat ion converting it back to normal scale. 

• Implementation of H D R postprocessing. 

• M o v i n g ma in algori thm code into a function. 

For implementing H D R support I also extended authors' fast method's code for H D R (it 
was only at original method). O n figure 4.3 are shown results. M y result is darker and have 
less details enhanced than fast authors' version, but certainly is better than simple gamma 
tone mapped image. The biggest amount of detai l enhances authors' original method, but 
it is a lot more t ime expensive (about 50x). 
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(a) Input gamma tone mapped image (b) M y result of tone mapping 

(c) Authors' fast method [3] (d) Authors' original method [22] 

Figure 4.3: Compar ison of results. Source of input H D R image is web page for paper on 
H D R Companding [16]. Others were generated using codes. 
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4.4 Art-Photographic Detail Enhancement 

Most of implementat ion of this method was done by Pavel Sedlaf in his bachelor thesis [24]. 
However, it could only handle very smal l images (to 32x32 pixels) due to huge memory 
consumption of program. Also , results does not seem the same as at original implementat ion 
of authors. M y goal was to extend abilities of current implementat ion to handle bigger 
images by using sparse matrices and also t ry to correct enhancing functionality. A l so 
computat ional t ime even for smal l image as 32x32 pixels is about 14 minutes on H P Probook 
4540s 1.9GHz Intel Celeron B840 wi th 4 G B R A M . 

4.4.1 A l g o r i t h m overview 

To briefly remind structure of algori thm, here is an overview of it: 

• Base Decomposi t ion 

— L 0 smoothing of input image / 

— adaptive L 0 smoothing 

— adaptive Gaussian blur smoothing (not implemented) 

— output is base layer B 

• De ta i l M a x i m i z a t i o n 

— obtaining detail layer as D = I — B 

— getting weights for piecewise control of brightness and detail 

— opt imizat ion of objective function to get scale and shift coefficients s and t 

— getting output enhanced image as E = (B + t) + sD 

4.4.2 Base decompos i t i on 

Smoothings for base decomposition are described in section 3.3.2. Implementation of first 
two steps (LQ smoothings) was done by previous author as described i n paper. 

4.4.3 D e t a i l m a x i m i z a t i o n 

A s already said, detai l maximiza t ion is done by opt imizat ion of objective function to get 
scale and shift coefficients. Th is maximiza t ion is computed wi th quadratic programming 
( Q P ) . It is a mathematical opt imizat ion problem wi th linear constraints, which solves fol­
lowing equation: 

rp rp 

min x Hx + c x + CQ 
X 

s.t. Ax < b 
I < x < u 

for n-dimensional variables vector x and m constraints, where 

• H is n x n-dimensional real symmetric mat r ix also called Hessian matr ix , which defines 
terms i n quadratic equation 

• c is n-dimensional real-valued vector for linear programming 
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• Co is a constant 

• A is an m x n real ma t r ix of constraints 

• b is m-dimensional real vector w i th constraints' bounds 

• I is n-dimensional vector of lower bounds for variables 

• u is n-dimensional vector of upper bounds for variables 

For C + + programming language, there are lots of Q P solvers, which can be used to 
solve Q P problems (also called as Q P ) . Current solution used l ibrary q p O A S E S [11] - Q P 
solver based on a parametric active-set method. This method can effectively use a priori 
information to speed-up computat ion of a Q P solution, but its computat ional complexity 
grows exponentially w i th the number of constraints [4, p. 1-2]. It has been originally 
developed for smal l to medium scale Q P s featuring dense Hessian and constraint matrices. 

However, Q P in this method is large scale, because for each pixel i n image we need 
two variables - shift and scale parameters. Thus, for square image wi th edge size N, 
Hessian matr ix is of size 2N2 x 2N2. Even for very smal l image of size 256 x 256 Hessian 
matr ix w i l l contain (2 * 2 5 6 2 ) 2 = 1 7 . 1 8 x l 0 9 elements. Us ing 4-byte f l o a t type for storing 
real numbers, the Hessian would settle 6 4 G B i n memory, which is huge amount for today 
personal computers for such smal l picture. 

G o o d news are, that Hessian mat r ix is very sparse, because smoothness terms i n ob­
jective function 3.11 contain only neighbor elements (from gradient operator V ) , which 
in Hessian w i l l result i n non-zero elements near to diagonal, and zero elements elsewhere. 
Therefore, it is very desirable to use sparse mat r ix type to store Hessian matr ix . 

q p O A S E S addit ional ly comes wi th l imi ted support of sparse matrices, so my first steps 
led this way. Sparse mat r ix type here is stored in compressed sparse column ( C S C ) format. 
It represents a matr ix by three (one-dimensional) arrays, that respectively contain nonzero 
values, row indices, and the column pointers to first elements i n columns. 

So I implemented algori thm for converting triplets of non-zero entries of sparse matr ix 
(x, y, value) to arrays of C S C format. Th is a lgori thm first sorts non-zero elements to 
column-major order and then fills appropriately C S C arrays. F r o m those arrays q p O A S E S 
can bu i ld sparse matr ix . 

Memory for storing sparse matr ix was reduced, it was good step. However, when I tried 
to launch Q P solver on 64 x 64 image, memory usage grew to 3 G B . 

In spite of sparse matr ix support, linear algebra in q p O A S E S is implemented in dense 
fashion. So from there comes this high memory consumption. A l so computat ional time 
have not decreased. 

One more chance for q p O A S E S was external solver M A 5 7 [9] wri t ten i n For t ran. After 
obtaining personal license and compilat ion, sadly problems wi th undefined symbol error 
were met at l ink ing t ime. I made decision to look after some other Q P solving library. 

A s candidate was chosen O S Q P [27], open-source operator spl i t t ing Q P solver wri t ten 
in the C language, w i t h interfaces to high-level languages including Ma t l ab , P y t h o n and 
Ju l i a . Most impor tant ly for this method, it contains custom sparse linear algebra routines, 
which can exploit sparsity of input matrices. 

O S Q P use s imilar interface to q p O A S E S , so transi t ion was not complicated. Results 
are very good, since for 32x32 image computat ion t ime is 7s, which is 120x faster, than 
wi th previous solver. Largest tr ied image was 350x272, on which computat ion took 5m 22s 
and 5 7 0 M B on Lenovo X I Ca rbon 4th G e n 2 .50GHz Intel Core i7 w i th 8 G B R A M . 
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O n figure 4.4 there are results, bo th authors' and mine. M y result has changed colours 
and brightness, and it is not as expected. B u t compared to previous state, significant 
speedup was reached and bigger images were allowed. Structure of image is preserved, but 
it would require yet some fine tuning and debuging, un t i l result w i l l be similar to authors'. 

Figure 4.4: F r o m left to right: original image, author's result, my result. Source of original 
and authors' images is authors' result web page [25]. 

4.5 Content Adaptive Image Detail Enhancement 

This method uses modified LQ norm gradient minimiza t ion algori thm, which was originally 
used for image smoothing [29]. I used 0 + + implementat ion of original LQ norm gradi­
ent min imiza t ion a lgori thm available from github [30] and modified it inspired by author's 
modified version i n M A T L A B from author's web page [15], so implementat ion was straight­
forward. Modif ica t ion consists of addi t ional calculat ing of layer w i th variances of pixels 
in the 3 x 3 neighbourhood. F r o m that variance is then computed weight w i th sigmoid 
function, which is then used to modify computing of arbi trary variables h, v while solving 
global opt imizat ion problem - LQ norm gradient minimiza t ion . Output enhanced image is 
direct result of this modified algori thm. 

O n figure 4.5 is compared author's and my result. M y result has not as v i v i d colours 
as author's, but enhances details i n similar way. 

Figure 4.5: De ta i l enhancement using Content Adapt ive Image De ta i l Enhancement 
method. F r o m left to right: original image, author's result, my result. Image was taken 
from archive wi th reference source code from author's web page [15]. 
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Chapter 5 

Comparison and evaluation 

For comparison, methods w i l l be marked by their main author and year: 

• Farbman08 - Edge-Preserving Decompositions for Mul t i -Scale Tone and De ta i l M a ­
nipulat ion 

• A u b r y l 4 - Fast L o c a l Laplac ian Fi l ters 

• S o n l 4 - Ar t -Photographic De ta i l Enhancement 

• K o u l 5 - Content Adapt ive Image De ta i l Enhancement 

5.1 Methods' metrics 

Firs t comparison of methods is their performance, which is t ime and memory complexities. 

5.1.1 T i m e a n d m e m o r y complexi t ies 

In following list methods are sorted from fastest method to slowest: 

• Farbman08 - 0.7 second on 350x250 image 

• A u b r y l 4 - 2 seconds on 350x250 image 

• K o u l 5 - 10 seconds on 350x250 image 

• S o n l 4 - 5 minutes on 350x250 image 

In following list methods are sorted from least memory demand to biggest: 

• Farbman08 - 9 . 5 M B on 350x250 image 

• A u b r y l 4 - 2 4 M B on 350x250 image 

• K o u l 5 - 3 1 M B on 350x250 image 

• S o n l 4 - 5 0 0 M B on 350x250 image 
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5.2 User's visual questionnaire 

The second comparison aims on methods' results. Here, i n users' questionnaire, participants 
rated methods' results, how they like them, on 12 chosen input images, which are shown 
i n table 5.1. Or ig ina l M a t l a b codes were used to generate images for questionnaire, except 
for 3.method, where we used our own M a t l a b code (which was k indly provided to me 
by supervisor and edited by me afterwards). For 3.method was used R G B version wi th 
central differencies and results was histogram-equalized, except portraits . Questionnaire 
was created w i t h online service [23]. 

The questionnaire completed 308 respondents, from which were 70.78% men and 29.22% 
women. 

O n figure 5.1 there are global scores for each method through a l l 12 images. 

Global scores for methods 

Farbman08 Aubryl4 Sonl4 Koul5 
Method 

Figure 5.1: Char t of means of a l l scores. 

In appendix A there are scores of methods for each of 12 images. Enhanced images 
itself are also shown. 

5.2.1 E v a l u a t i o n of quest ionnaire results 

M e t h o d Farbman08 won. I guess it is because it made very l i t t le changes to original images 
compared to others. The worst rat ing had method Son l4 . I think it is because method 
was not exactly the same way implemented compared to original code and result was not 
correct. 

One important information from questionnaire is, that detai l enhancement methods 
are not suitable for editing portraits of people, and probably also animals. It is because 
people want to have smooth skin on photographs, and not enhanced every pigment and 
imperfection. 
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Chapter 6 

Conclusion 

The goal of this thesis was to study and compare five recent photographic detail enhance­
ment methods. Let ' s summarize characteristics of them. 

The first method was based on edge-preserving decompositions of image. One of its 
applications was tone manipulat ion, which was also implemented. The most complex part 
was smoothing based on Weighted Least Squares opt imizat ion. It was replaced by more 
recent and faster Fast G loba l Smoothing algori thm, but W L S implementat ion is planned 
for future work. 

The second method worked wi th Laplac ian pyramids, was based on previous similar 
study, but brought opt imizat ion and speedup. It was based on subsampling, which reduced 
computat ional cost and approximated well exact solution. Except detail enhancement, the 
method also d id good tone mapping. 

The th i rd method was artistic, and could br ing much details even from dark or bright 
regions of picture. It was because of shift coefficients of base layer, which method introduced 
instead of only scales of detail layer. Comput ing these coefficients was, however, very 
expensive, because of need for solving global opt imizat ion problem wi th huge amount of 
variables. 

The fourth method used for detai l enhancement adjusted LQ norm gradient minimiza­
t ion, which was originally used for image smoothing. It is also global opt imizat ion problem, 
but performance is yet unknown, because method was not yet implemented. 

The last method is the most recent one among others. It uses very different approach. It 
is data-driven and employs machine learning wi th convolutional neural network. A l though 
t ra ining requires some time, very big advantage is, that it can adapt on almost any image 
editation, even human retouch. It is also very fast - it runs on mobile hardware i n real 
time. 

For future development I see trend, which is going more to data-driven approaches, than 
exact mathematical algorithms. It can be predicted, that machine learning w i l l be used 
more and more in digi ta l image enhancement. 
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Appendix A 

Results of questionnaire 

Table A . l : Th is table presents results of questionnaire, where respondents rated methods' 
results on 12 photographs. B a r charts show score for each method on part icular image, 
the bigger score means better rat ing. Results for method S o n l 4 were histogram-equalized, 
except for human portraits. 

Questionnaire results on methods' comparison 
Or ig ina l image #01 Scores of methods' results 

S c o r e s f o r i m a g e # 0 1 

Farbman08 A u b r y l 4 Son l4 K o u l 5 
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Continuat ion of questionnaire results on methods' comparison A . l 
Or ig ina l image #02 Scores of methods' results 

S c o r e s f o r i m a g e # 0 2 

Farbman08 A u b r y l 4 S o n l 4 K o u l 5 
Or ig ina l image #03 Scores of methods' results 

Farbman08 A u b r y l 4 S o n l 4 K o u l 5 
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Continuat ion of questionnaire results on methods' comparison A . l 
Or ig ina l image #04 Scores of methods' results 

S c o r e s f o r i m a g e # 0 4 
3.0 

Farbman08 A u b r y l 4 Son l4 K o u l 5 
Or ig ina l image #05 Scores of methods' results 

S c o r e s f o r i m a g e # 0 5 

Farbman08 A u b r y l 4 Son l4 K o u l 5 
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Continuat ion of questionnaire results on methods' comparison A . l 
Or ig ina l image #06 Scores of methods' results 

S c o r e s f o r i m a g e # 0 6 

Farbman08 A u b r y l 4 S o n l 4 K o u l 5 
Or ig ina l image #07 Scores of methods' results 

Farbman08 A u b r y l 4 S o n l 4 K o u l 5 
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Continuat ion of questionnaire results on methods' comparison A . l 
Or ig ina l image #08 Scores of methods' results 

S c o r e s f o r i m a g e # 0 8 

Farbman08 A u b r y l 4 Son l4 K o u l 5 
Or ig ina l image #09 Scores of methods' results 

S c o r e s f o r i m a g e # 0 9 

Farbman08 A u b r y l 4 Son l4 K o u l 5 
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Continuat ion of questionnaire results on methods' comparison A . l 
Or ig ina l image #10 Scores of methods' results 

S c o r e s f o r i m a g e # 1 0 

Farbman08 A u b r y l 4 Son l4 K o u l 5 
Or ig ina l image #11 Scores of methods' results 

S c o r e s f o r i m a g e # 1 1 
3.0 

2.5 

2.0 

I I I I 
I I I I 

F a r b m a n 0 8 A u b r y l 4 S o n l 4 
M e t h o d 

K o u l 5 

Farbman08 A u b r y l 4 Son l4 K o u l 5 
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Continuat ion of questionnaire results on methods' comparison A . l 
Or ig ina l image #12 Scores of methods' results 

S c o r e s f o r i m a g e # 1 2 
3.0 

2.5 

F a r b m a n 0 8 A u b r y l 4 S o n l 4 
M e t h o d 

K o u l 5 

Farbman08 A u b r y l 4 Son l4 K o u l 5 
E n d of Questionnaire results on methods' comparison 
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Appendix B 

Content of memory media 

Memory media contains following content: 

• pdf document wi th this report of thesis 

• DTEXsource codes for this report 

• source codes of implemented methods wi th manual 

• binary executables of programs 
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