BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
USTAV POCITACOVE GRAFIKY A MULTIMEDII

PHOTOGRAPHIC DETAIL ENHANCEMENT METHODS

METODY ZVYRAZNUJiCi DETAILY VE FOTOGRAFII

MASTER’'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. TOMAS HUDZIEC
AUTOR PRACE
SUPERVISOR Doc. Ing. MARTIN CADIK, Ph.D.

VEDOUCI PRACE

BRNO 2019



Vysoké uéeni technické v Brné
Fakulta informagnich technologii

Ustav pocitadové grafiky a multimédii (UPGM) Akademicky rok 2018/2019
Zadani diplomové prace AT
21515
Student: Hudziec Tomas, Bc.
Program: Informacni technologie  Obor: Pocitacova grafika a multimédia
Nazev: Metody zvyraznujici detaily ve fotografii

Photographic Detail Enhancement Methods
Kategorie: Zpracovani obrazu
Zadani:
1. Seznamte se s problematikou metod pro zvyraznéni detailu v obraze.
2. Vyberte a popiSte metody vhodné pro implementaci.
3. Do jiz existujiciho systému implementujte alespon tfi zvolené metody.
4. S metodami experimentujte, posudte jejich vlastnosti pfi pfevodu videosekvencia LDR i HDR obrazd,
implementované algoritmy porovnejte a diskutujte moznosti budouciho vyvoje.
5. Dosazené vysledky prezentujte formou videa, plakatu, ¢lanku, apod.
Literatura:
e Dle pokyn( vedouciho.
Pfi obhajobé semestralni ¢asti projektu je poZzadovano:
e Body 1 az 3 zadani.
Podrobné zavazné pokyny pro vypracovani prace viz http://www.fit.vutbr.cz/info/szz/

Vedouci prace: Cadik Martin, doc. Ing., Ph.D.
Vedouci Ustavu: Cernocky Jan, doc. Dr. Ing.
Datum zadani: 1. listopadu 2018

Datum odevzdani: 22. kvétna 2019

Datum schvaleni: 1. listopadu 2018

Zadani diplomové prace/21515/2018/xhudzi01 Strana 1z 1


http://www.fit.vutbr.cz/info/szz/

Abstract

This thesis studies several methods for enhancing details in digital photographs. Methods’
algorithms are described and implemented to existing system using C++ and OpenCV.
Methods are then compared in terms of the time and memory complexity and their re-
sults are evaluated using users’ questionnaire. Work overally gives overview of present
photographic detail enhancement methods and discuses their future development.

Abstrakt

Tato préace studuje 4 metody pro zvyraznovani detaild v digitalnich fotografiich. Algoritmy
metod jsou popsdny a implementovany do stavajiciho systému pomoci C++ a OpenCV.
Metody jsou nasledné porovnany z hlediska ¢asové a paméfové naroc¢nosti a vyhodnoceny
jsou také jejich vysledky pomoci uzivatelského dotazniku. Prace obecné poskytuje prehled
soucasnych metod pro zvyraznéni detailt ve fotografii a diskutuje jejich budouci vyvoj.
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Chapter 1

Introduction

Big progress in digital and photographic technologies in the last few decades brought new
options, how photographs can captured and processed to get desired informations. Today
digital image processing is used for various tasks and in diverse fields. To name few, there is
object recognition in photograph or video, quality metrics of materials in industry process
or architecture, determining diagnose from medical images, restoration of artworks and
many more.

For good quality of photographs, contemporary cameras not only capture image, they
also compute it. Thence here comes concept of computational photography. Its applications
can be found on many of modern smartphones, e.g. features as HDR and panorama.

In fact, nowadays, almost everyone, who owns a smartphone, is a photographer. Huge
amount of photographs is taken and being shared every day, but not all of taken pictures are
of good quality, though. In big amount of pictures, there is often not much time to edit every
single photograph manually, so there is a need for automatic or at least semi-automatic
enhancing methods. Many of them are already implemented in photo-editing softwares.
However, continuing research in this area brings improvements and new approaches every
year.

This thesis studies few candidates of methods for detail enhancement in photographs,
which were presented in research in recent years. First, field of photographic detail en-
hancement is introduced and its methods are categorized in chapter 2. Next chapter 3
contains description and theoretical principles for each method. Implementation of meth-
ods is described in chapter 4, where methods are implemented as plugins into existing
software system. Chapter 5 contains comparison of methods’ metrics, such as time and
memory complexities and visual evaluation of their results via users questionnaire. In the
last chapter 6 there is a conclusion of this work.



Chapter 2

Photographic Detail Enhancement

Reasons, why would we want to enhance images, are several. It can be desire to enhance
have wrong quality of images due to wrong light conditions, fog or other reason. Images
can be enhanced also for artistic purposes. One of studied methods is mentioned further
is such artistic. It can be also more serious reason, like to get better diagnose in medical
applications, such as radiograph or other image. In industry, enhancing photographs of
manufactured products can help to detect defects on materials.

2.1 Digital image Representation

At first, let there be defined, what is an digital image. As computer works with numbers,
digital image must be represented in numbers, so computer could work with it. Here helps
mathematical definition.

2.1.1 Mathematical definition of grayscale image

Grayscale image can be defined as 2D function: f : R?> — R, where f(z,y) gives image
intensity at position (z,y) Realistically, we expect the image only to be defined over a
rectangle, with a finite range:

f:0.m—1]x1[0..n—1] —[0,1],

where m and n is width and height of image, respectively. Usually image intensity is
normalized to interval [0, 1], which represent energy of signal: 0 = zero energy is black and
1 = full energy is white. When speaking about energy, it is important to mention, that
digital image can be also viewed as 2D signal.

Image 2D function rectangular space is sampled on a regular grid into units — pixels
(picture elements) and then quantized — rounded to nearest discrete value representable by
computer. Such rectangular matrix of discrete numbers is digital representation of image.
Following figure 2.1 shows different views on digital image.



Y()l'igin

0000000---0000000
000000 D000D00
00000 00000
0000 0000
D00 --55.5 000
000 55 000
S5, .

: 111 .

11 :

000 1 000
000 X 000
0000 0000
00000 00000
000000 000000
0000000---0000000

Figure 2.1: From left to right: Grayscale image (“viewed from upper”). Image plotted as a
2D function in 3D space. Image as 2D numerical array/matrix. Images taken from Digital
Image Processing (DIP) book [13, p. 55].

2.1.2 Representing colours in images

Colours in image are represented by storing three values for red, green and blue components
instead of one as in grayscale. With these three colours, any colour can be represented.
Such image then has 3 channels, which can be stored as matrices. Other types than RGB
also exists, though.

2.2 Digital image processing

Image processing, in most basic terms, is operation, that takes as input one image f,
performs some computations on it and outputs another image g. Such processing can
process intensities/ranges of each pixel separately — that is called point processing (range
transformation):

9(z,y) = t(f(z,y))

Good example is creating image negative, where ¢(xz) = 1 — x for image range [0, 1].

Some operations preserve pixel intensities, but change pixel positions:

g(JJ,y) = f(tz(x,y),ty(x,y))

where t, and t, are translation functions. Examples can be rotation, change of scale,
warping — pixels are moved to another position.

2.3 Image details and their enhancing

For this thesis, which is concerned about photographic detail enhancement, it is important
to define the details, which are going to be enhanced. By details are meant small changes
in local contrast of image. For example some texture of wood or wall as is visible on figure
2.2.



Figure 2.2: Example of detail enhanced image with method Local Laplacian Filtering [22].
Exaggeration of details on texture of wood and wall are particularly observable. Source of
image is archive of Martin Cadik’s testing HDR images available on his web page [18].

2.4 Image detail enhancement methods overview

There are more criteria for divisions of methods. This section gives overview of recent detail
enhancement methods and provides their categorization based on different criteria.

2.4.1 Data vs. Algorithm orientation

First division can be into data-driven and behaviour-driven approaches.

Data-driven methods are more oriented on data (images in this case). They often
employ some machine learning — training some internal model on big dataset of images and
then they can apply learned knowledge on previously unseen image to get desired result.
Authors Bychkovsky et al. used difference learning [6], and recently convolutional neural
network was used by Gharbi et al. [12].

Behaviour-driven methods focus on procedures, how algorithm operates on given
data and what computations are done. Following methods in this section are behaviour-
driven.

2.4.2 Domain aspect

Another division is based on domain, in which method operates.

Spatial domain methods “The term spatial domain refers to the image plane itself,
and image processing methods in this category are based on direct manipulation of pixels
in an image.” [13, p. 104]

Intensity transformations perform their operation on image pixels itself, pixel by
pixel — e.g. contrast stretching method, which applies S-curve function to on every pixel
[13, p. 106,115]. Example of S-curve is sigmoid function, which is used later in method #1,
and there it will be defined. Here on figure 2.3 is shown, how sigmoid function stretches
contrast of image.
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Figure 2.3: Contrast stretching with sigmoid function. From left: input image, sigmoid
function, output image processed by sigmoid. Images taken from tutorial on intensity
transforms of images [20].

Spatial filtering inferences output pixel from result of operation on neighborhood of
input pixel — e.g. sharpen filter with Laplacian spatial mask [13, p. 160-162].

Histogram manipulation changes distibution of pixel intensities in image, it can be
used for increasing contrast — e.g. various forms of histogram equalizations, such as [13,
p. 122-144], [31].

Transform domain methods Processing does not have to be done on image itself, but
also on its different representation, which is more suitable in some cases. Such methods
transform an image into transform domain, there predefined operation is performed, and
finally by applying inverse transform output image is obtained. Scheme of the process is
shown at figure 2.4.

T(uwv) | Operation | R[T(w.v)] | Inverse
f(x,y) —>»{ Transform > R > (ransform —> g(x.y)
Spatial L Y J Spatiz_ll
domain Transform domain domain

Figure 2.4: Diagram of image processing using transform domain [13, p. 94].

As a good example can serve filtering image in frequency domain, where discrete e.g.
Fourier transform is used [13, p. 199]. Another example is logarithmic domain, which is
better to work with high dynamic range images.

2.4.3 Edge-preserving decomposition methods

Being spatial domain based, these methods decompose input image into more layers and
perform operations with them.

Most simple example works with 2 layers: Given input image I, base layer B is its
smoothed version obtained by some smoothing algorithm which preserves significant edges,
further described in section 2.4.4. Detail layer D is difference of input image and base
layer: D = I — B. Enhanced image E is acquired, when scaled detail layer (multiplied by
some constant) is added back to input image: E =1+ s-D.

Image edge-preserving decomposition methods can be divided into two categories: local
filter based and global optimization based [14, p. 1].



Figure 2.5: Basic approach for detail image enhancement. Scale coefficient s is set to 4 in
this case. Detail layers are normalized for better visibility.

Local filter based Algorithms filtering image in local area are e.g. Bilateral filter [28]
and local Laplacian filters [22].

Global optimization based These methods solve some global optimization problem,
e.g. for smoothing [10], [29], or getting scale and shift coefficients for detail and base layer,
respectively [26].

2.4.4 Edge-preserving smoothing

Smoothing in detail enhancement is used to produce base layer, as mentioned in previous
section. Here may arise question on why such smoothing must be edge-preserving. For
input image 2.6a results for different smoothing methods are shown.

Using Gaussian blurring on figure 2.6¢, halo effect! in result around significant edges is
introduced because Gaussian blurring does not preserve them. However, detail enhancement
using edge-preserving smoothing on figure 2.6d produces halo-free result 2.6e, because the
edges are preserved.

Therefore, smoothing used in detail enhancement pipeline must preserve significant
edges in image.

! Artefacts around edges in image looking like halo (shine).



(a) Input image for smoothing [1]

(b) Gaussian blurring with o = 8 (c) Detail enhancement with halo effect

(d) LO edge preserving smoothing [29] (e) Halo-free result of detail enhancement

Figure 2.6: Gaussian blur is example of smoothing, which does not preserve edges (b).
Therefore, in detail enhancement, blue halo effect is introduced around edges (¢). When
edge preserving smoothing is used (d), detail enhanced result is halo-free (e). Scale = 4
was used for detail enhancement. Example is exaggerated for obviousness. Original image
is from results web page [1] for method discussed later [3].



2.4.5 Methods using image pyramids

Some methods [22], [3] use image pyramids — representation of image at different scales,
originally described by authors Burt and Adelson [5]. As one method [3] will be studied in
chapter 3, concept of these pyramids is presented below.

N\
\LevelJ-1

N\ Level J (base)

Figure 2.7: Illustrational scheme of image pyramids [13, p. 463]

Gaussian pyramid Starting with full resolution image, next level of Gaussian pyramid
is made by blurring the image with Gaussian blur (approximation filter) and then scaling
down by deleting every second row and column from image (downsampling) — left-top
branch in pyramid system 2.10, result is approximation (on figure there should be level
j + 1 above it).

. level 3

level 2 (residual)

level 1

level O

Figure 2.8: Gaussian pyramid of example image. Taken from presentation on web of method
#2 [2] and changed background.



Laplacian pyramid Laplacian is an operator of second derivative. In Laplacian pyramid,
it is approximated with difference of Gaussians. Laplacian pyramid stores difference images
between blurred versions of neighbor levels. Level j in pyramid is made by making difference
between itself and downsampled and then upsampled self. Upsampling is done by inserting
zero filled rows and columns after every second row/column. Interpolation filter can be
also Gaussian blur — left-top-down-right path in pyramid system 2.10, result is prediction
residual.

o level 3

level 2 (residual)

level 1

level 0

Figure 2.9: Laplacian pyramid of example image. Taken from presentation on web of
method #2 [2] and changed background.

Downsampler

Approximation 2* > Levelj-1
filter approximation

Zf Upsampler

Interpolation

filter
Prediction
) - Level j
) Le\(el J >+ prediction
input image residual

Figure 2.10: System for creating image pyramids [13, p. 463]
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Chapter 3

Methods enhancing details in
photographs

After introduction into topic and needed theoretical background, we can approach descrip-
tion of selected methods. At every method, principle and algorithm is described and also
its result pictures are shown.

All following methods have similar structure — they take one image as input, perform
some computation with it and output one enhanced image again. Before going to explain
methods, here is common notation used in all methods:

e [ — Input Image

e B — Base layer (smoothed version of input image)
o D — Detail layer, D =1 — B

e F — Enhanced output image

Subindex p means one pixel in image — e.g. I, is pixel with index p in image I.

3.1 Edge-Preserving Decompositions for Multi-Scale Tone
and Detail Manipulation

Described by authors Farbman et al. [10], this method introduces a way to construct edge-
preserving multi-scale image decompositions, which is well suited for progressive coarsening’
of images and for multi-scale detail extraction. Method introduces edge-preserving image
smoothing operator using weighted least squares (WLS) optimization framework. This
operator is used to construct edge-preserving multi-scale decompositions of image. These
decompositions can be used for image detail enhancement.

3.1.1 Edge-preserving smoothing via WLS (Weighted Least Squares)

Base and detail layers are needed in this method to perform detail enhancing. Those
are obtained by smoothing original image and other operations. Authors present edge-
preserving smoothing approach based on the WLS optimization framework, which gives

mage smoothing, which smoothes minor edges and preserves significant edges in image.

11



better results compared to linear Gaussian filter and Bilateral filter [10, p. 3]. Following
paragraphs contain their description.

“Edge-preserving smoothing may be viewed as a compromise between two possibly
contradictory goals. Given an input image I, we seek a new image B, which, on the one
hand, is as close as possible to I, and, at the same time, is as smooth as possible everywhere,
except across significant gradients in 1.” [10, p. 3]

Formally, this may be expressed as seeking the minimum of

> ((Bp LA (az,pm (Z—B) +ayy (1) (%—f))) , (3.)

p

where the subscript p denotes the spatial location of a pixel. The goal of the data term (B,—
I,)? is to minimize the distance between B and I, while the second (regularization) term
strives to achieve smoothness by minimizing the partial derivatives of B. The smoothness
requirement is enforced in a spatially varying manner via the smoothness weights a, and
ay, which depend on I. Finally, A is responsible for the balance between the two terms;
increasing the value of A results in progressively smoother images B.

3.1.2 Multi-scale edge-preserving decompositions

Using the edge-preserving operator described above, it is easy to construct a multi-scale
edge-preserving decomposition. It consists of a coarse, piecewise smooth, version of the
image, along with a sequence of difference images, capturing detail at progressively finer
scales.

3.1.3 Multi-scale tone manipulation for detail enhancement

As said before, one of application of the method is image detail enhancement. It is done
with multi-scale tone manipulation. Given an image, a three-level decomposition (coarse
base level B and two detail levels D', D?) of the CIELAB lightness channel is constructed.

Input parameters for the application are 1 — controlling exposure of base layer and
boosting factors dg, d1, do for one base and two detail layers. The result of the manipulation
E at each pixel p is then given by

Ep:/-L"{'S((SOaan_M)+S(51’D;)+S(52aD12;)a (32)

where p is the mean of the lightness range, and S is a sigmoid curve:

1

S(a,z) = m,

(3.3)

which is appropriately shifted and normalized.
Similarly, layers of coarse, medium and fine detail boosting are computed. Final detail
enhanced image is obtained as their mean average. All layers are shown in Figure 3.1.

input image coarse scale boosting medium scale boosting fine scale boosting combined result

Figure 3.1: Multi-scale tone manipulation using edge-preserving decompositions. Images
taken from method’s paper [10, p. 8]. 19



3.2 Fast Local Laplacian Filters

Described by authors Aubry et al. [3], this method employs image pyramids, which concept
was outlined in chapter 2.

3.2.1 Background on local Laplacian filters

This method is based on older “non-fast” method by authors Paris et al. [22].

Its algorithm is following: For each pixel in the Gaussian pyramid of the input (red
dot), its value g is looked up. Based on gg, the input image is remapped using a pointwise
function. Next, a Laplacian pyramid is build from this intermediate result, then the appro-
priate pixel is copied into the output Laplacian pyramid. This process is repeated for each
pixel over all scales until the output pyramid is filled, which is then collapsed to give the
final result. For more efficient computation, only parts of the intermediate pyramid need
to be generated. Scheme of approach is depicted on figure 3.2.

R & =
Intermediate
_— > Laplacian
EEataiaes .00 | P | Pyramid

Sub-image

o Output
| Laplacian

S | Pyramid

Figure 3.2: Local Laplacian Filters algorithm overview. Image taken from authors’s paper
[22, p. 5].

3.2.2 Design of the remapping function

Local Laplacian filters are used e.g. for tone mapping and detail manipulation. Authors
proposed following remapping functions to compute the coefficient (¢, z,y) — which means
pixel at position (z,y) in pyramid level ¢:

(3.4)

_ g+ sign(Ip — g)or(|Ip — g|/or)® if I, < oy
7(Ip) = { g ! g

g+ sign(ly — 9)(B(| L, — gl/or) +0v) i I, >0,

where: I, is the pixel from input image, g is the coefficient of the Gaussian pyramid at
(¢,z,y), which acts as a reference value, a controls the amount of detail increase (0 < o < 1)
or decrease (o > 1), 8 controls the dynamic range compression (0 < 3 < 1) or expansion

(8 > 1), and o, defines the intensity threshold the separates details from edges. Sample
functions are shown in figure 3.3.

3.2.3 Efficient local laplacian filtering

Authors propose an acceleration technique to evaluate local Laplacian filters on single-
channel images, which encompasses also detail manipulation.

13



edge-aware detail manipulation edge-aware tone manipulation combined operator

detail smoothing detail enhancement tone mapping inverse tone mapping detail enhance + tone map
(i 1 0<g<1 mile=1 a=1 oA 0=a<=1
r(i) 1 B=1 (i) 0<f<1| . ES (i) 0=p<1

80 £o

g i I I I ) i

Figure 3.3: Family of point-wise remapping functions for edge-aware manipulation. Func-
tion plots obtained from authors’s paper [22, p. 5].

Their strategy is based on the fact that the nonlinearity (remapping function) comes
from the dependency on g (pixel from Gaussian pyramid). Characterization of this de-
pendency in terms of signal processing allows them to design a theoretically grounded
subsampling scheme that is more than an order of magnitude faster than the previous
algorithm.

Fast method comes with following optimizations:

e number of precomputed pyramids is fixed, this algorithm has linear complexity in the
number of pixels [3, p. 6]

e use of linear interpolation instead of a sinc kernel for reconstructing the signal [3, p. 6]

Optimized algorithm is 50x times faster than older method in SW and 10 times faster in
HW [3, p. 6].

Figure 3.4: Left: original image. Right: detail enhanced image with Fast Local Laplacian
Filters with parameters o = 0.5, fact = 6, N = 40. Images taken from authors’s results [1].

14



3.3 Art-Photographic Detail Enhancement

This “artistic” method, described by authors Son et al. [26], is inspired by principles
of art photography, where exaggerated depiction of fine-scale detail is desirable and puts
photography into aesthetic and artistic style.

The central idea, as described by authors, is “to introduce a piecewise smooth tone
transform model to obtain extremely exaggerated local contrast for each region in the
image (a la art photograph) while keeping the resulting tone within the target dynamic
range.” [26, p. 1]

3.3.1 Tone Transform Model

This section is based on authors’s description from [26, p. 3]. Input image I is decomposed
into base layer B and detail layer D, where B is obtained by smoothing I, and D =1 — B.
Let D, denote the detail coefficient at each pixel p, that is, D), = I}, — B),. A simple way of
enhancing detail would be to boost the detail coefficients D,, as follows:

E, =B, + D, = B, + s,D,, (3.5)

where s, is a scale factor. However, the possible range of s, is bounded by the input tone
value at i because E), cannot exceed the maximum dynamic range of the display device. This
could greatly limit one’s ability to enhance detail, especially in the already dark or bright
regions. This problem is mitigated by the following modification to the tone transform
model:

Ey, = By + D, = (By +tp) + s,D, (3.6)

where t, denotes the amount of vertical shift applied to the base layer B,. This model
transforms the tone in two ways: t parameters are shifting the base layer and s parameters
are scaling the detail layer. In a dark region of photograph, a positive ¢, would brighten
the base B}, and thus make possible for s, to be larger. Similarly, a negative shift would be
desirable in a highly bright region.

3.3.2 Image decomposition into base and detail layer

This section is based on authors’s description from [26, p. 4].

Ideal base layer B obtained from I would have a constant tone within each homogeneous
region while preserving the shape of the edges as closely as possible to those in I. In this
method, Lo smoothing [29] is performed on I to obtain B.

It is known that overly sharpened or blurred edges in B can cause visual artifacts near
edges during detail enhancement. Since Lg operation is designed to generate piecewise
constant regions, it may produce many oversharpened edges.

This issue is addressed by classifying the sharpened edges into two groups: strong (hard)
edges and smooth (soft) edges. The solution is composed of three passes and is designed to
protect both types of edges from oversharpening:

e [ smoothing
e [,y smoothing with adaptive A map

e adaptive Gaussian blurring

15



Ly smoothing

In the first pass, B! base layer is obtained by performing the original Lo smoothing on I.
The purpose of this pass is to build an adaptive A-map to guide the second pass.

Originally presented by Xu et al. [29], Ly smoothing minimizes Ly norm gradient in
image by solving following problem:

B

min { > (By—IL)* + A C(B)} (3.7)
i

where C(B) = #{i||6.By| + |0yBp| # 0} is a non-zero gradient counting function. This

minimization is then solved via special alternating optimization with auxiliary variables.

Adaptive Ly smoothing

The second pass performs Ly smoothing on I again but this time using adaptive ), recorded
in the A-map. Since A, gets progressively smaller near the edges, this avoids oversharpening
of strong edges and keeps their original shapes.

The adaptive A-map used for the second pass is computed as follows. After the first
pass, strong step edges can be easily detected from B! by thresholding G, the gradient
of B'. Edge pixels are determined via thresholding Gll, > a (default threshold a = 0.2 for
all results), where ), is set as n(~ 0) to properly preserve the original edge shape without
oversharpening. To avoid numerical errors a small 7 is used instead of zero. As there is a
move away from edges, i.e., Gll) < a, A, should rapidly increase up to A to ensure piecewise
flattening of edges within homogeneous region. This behavior is modeled with the minus
half of integral bisquare function

% ifu<-—o
p(u,0) = %—%—1—3“765 if —oe<u<0 (3.8)
0 ifu>0
The adaptive ), at pixel ¢ is then defined:
Ao =3\ =n)p(Gy — a,0) +1 (3.9)

with default value of o = 0.1.
Let B? denote the outcome of this adaptive Ly smoothing.
Adaptive Gaussian blurring

Finally, the edges in B? are adaptively Gaussian-blurred as described in [29]. The proper
Gaussian scale at each pixel is measured by comparing the blurred version of B? and I. The
outcome of this final smoothing serves as B.

Detail layer

Detail layer is then obtained by simply substracting base layer from original image, i.e.
D=1-B.

16



3.3.3 Detail Maximization

Once the base and detail layers are ready, optimization of the tone transform parameters s,
and t, can be done to bring out as much detail as possible. In this method, the process of
detail enhancement is formulated as a constrained optimization problem, which is designed
to maximize image detail while preserving scene structure.

Weight for piecewise control

The piecewise control of brightness in each region is enabled by introducing a weight w,, €
[0, 1] that is inversely proportional to the gradient magnitude of the base layer B. The
weight is defined as w, = K(VB,)?, where K (u) denotes Tricube function:

(1—|Z2P)* i VB, <1

) (3.10)
0 otherwise

wp = K(VBp) = {

Parameter a determines the value of v where w,, drops to zero. Default value of a is set to
0.2.

Detail measure

Given the decomposition of image I = B + D, the amount of detail in [ is measured as the
squared sum of all detail coefficients D), in the detail layer D. Thus for the transformed
image F = sD+ B+t in Eq. 3.6, the goal is to maximize Y, ||s,Dpl||?. To ensure piecewise
smooth variation of s and ¢, the detail maximization scheme must simultaneously minimize
the smoothness terms ||Vsp|/? and ||Vt,||?. This is to encourage region-based control of
brightness and detail, inspired by the conventional process of art photography.

Objective function

Objective function to be minimized for maximizing detail is:

Fs,t) == |lspDyl®
’ ) ) (3.11)
1Y wp||[Vspl? 412 Y wy|| V|2,
7 7

with constraint:
0< E,=(By+ty) +s,D, <1 (3.12)

This constraint keeps output’s image in tonal range [0,1] and s, with ¢, from going infi-
nite. “Their smoothness terms further limit any drastic change of s, and ¢, in the local
neighborhood except at region boundaries.” [26, p. 5]

Authors chose to solve the minimization problem using quadratic problem solver — this
is to obtain s, and t, that minimize f(s,t). For convex problem condition, they constrain
r - wp to be larger than 2 by modifying w), to w, = K(VBp) + 2/r. To achieve piecewise
constant scales and shifts, they use large values of r and 79 (with default value r1 = 200
and ro = 500).

2Operator V (nabla) means gradient operation, which can be computed as difference of neighbor elements.
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Detail control via interpolation

Once the optimized image F has been obtained, it can be optionally used as an upper
bound to control the amount of detail enhancement via linear interpolation with the input
image I. Following equation shows the linear interpolation between images I and E using
parameter u € [0, 1].

Ey=pE+(1—p)l
=u(sD+B+1t)+ (1 - p)(D+ B) (3.13)
=(us+ (1 —p))D+ B+ ut

Figure 3.5 shows result of method Art-Photographic Detail Enhancement on input image.

Figure 3.5: Left: Original image. Right: Output image processed by the method. Notable
is brightening of dark area, where shift coefficients ¢, shifted base layer to brighter values.
Images are from authors’ results [25].

3.4 Content Adaptive Image Detail Enhancement

This method, described by authors Kou et al. [14], uses modified L0 norm gradient mini-
mization algorithm, originally presented by Xu et al. [29]. The algorithm is used for image
smoothing to get base layer of image. Here, the algorithm is modified to produce detail
enhanced image directly.

3.4.1 Content adaptive detail enhance optimization

Minimizing L0 norm gradient in image is a global minimization problem.

“Enlarging the gradients of a source image is an effective method to sharpen the im-
age. However, halo artifacts and gradient reversal artifacts could be produced if all the
gradients of the source image are enlarged. To reduce such effects, only all the gradients
except those of pixels at sharp edges are enlarged. Such an idea is formulated as an Lg
norm based global optimization problem to derive an appropriate. Same as existing global
optimization problems, the proposed performance index consists of a data fidelity term and
a regularization term. A lagrangian factor A is used to adjust the importance of the two
terms to control the degree of the enhancement. Based on these, the optimization problem
is formulated as follows:” [14, p. 2]
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i E,—~ L)+ \XN-C(E-Kol 14
mEm{g( p—Ip)"+ A O ° )}, (3.14)

“where F is the detail-enhanced image, I is the input image, p is the pixel index of the
images, o denotes the element-wise product operator. For simplicity, we use I to stand for
K o I. Note that C(E — I) is the Lo norm of theA gradient field, which equals the number
of non-zero elements of the gradient field of £ — I defined” [14, p. 2]

C(E—1I) = #{pl

“where # is a counting operator.
Without loss of generality, it is assumed that the detail layer is enhanced times in the
final image. K, is then computed as follows:” [14, p. 2]

0By — Iy)| + |0, (Bp — )| # 0}, (3.15)

k

P 1+ en(Vo—Vp)

(3.16)
“where V), is the variance of the pixels in the 3 x 3 neighborhood of the p-th pixel, Vp is
the mean value of all the local variances. 7 is calculated as In(0.01)/(min(V,) — V), it
guarantees the factors of small variance pixels be close to 1 + k. So with 3.16, the factors
of large variance pixels are close to 1. [14, p. 2]

Results of this method can be seen on figure 3.6.

Figure 3.6: Original image (left) and enhanced image with Content Adaptive Image Detail
Enhancement method (right). Original image as in author’s paper [14, p. 3] and enhanced
image computed from the original with the code.
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3.5 Deep bilateral learning for real-time image enhancement

The last studied method in this thesis is described by authors Gharbi et al. [12]. It is based
on training neural network on pairs of input and output images, between which there can be
arbitrary transform operation, even human retouch. Treating transform operation as black
box, neural network will learn it from differences of gradients between input and output
images through backpropagation. Then, given some test unseen image, it can reproduce
learned edit operation.

This method was added rather as representative of novel data-driven approach, so only
outline of architecture is here provided, as described by authors. However, this method has
potential for future development of image editations.

3.5.1 Architecture outline

“Network architecture of this method seeks to perform as much computation as possible
at a low resolution, while still capturing high-frequency effects at full image resolution. It
consists of two distinct streams operating at different resolutions. The low-resolution stream
(top) processes a downsampled version I of the input I through several convolutional layers
so as to estimate a bilateral grid of affine coefficients A. This low-resolution stream is further
split in two paths to learn both local features L’ and global features G, which are fused
(F) before making the final prediction. The global and local paths share a common set of
low-level features S°. In turn, the high-resolution stream (bottom) performs a minimal yet
critical amount of work: it learns a grayscale guidance map g used by our new slicing node
to upsample the grid of affine coefficients back to full-resolution A. These per-pixel local
affine transformations are then applied to the full-resolution input, which yields the final
output O.” [12, p. 4]

LOW-RES COEFFICIENT PREDICTION §3.1.2 local features L

§3.2 bilateral grid
ﬁ ﬁ of coefficients
L
§3.1.4 fusion
P o fFe F

full-res input 1 low-res input T §3.1.1 low-level features S* §3.1.3 global features G*

FULL-RES PROCESSING

apply
coefficients

pixel-wise
network

=

§3.4.1 guidance mapg §3.3 sliced coefficients A

§3.4.2 tull-res output O

Figure 3.7: Method’s system architecture. Image taken from method’s paper [12, p. 4].
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Chapter 4

Implementation of photographic
detail enhancement methods

4.1 Tone Mapping Studio

Methods are implemented as plugins into existing software system — Tone Mapping Studio
(TMS) [19]. It is a plugin-based framework written in C++ for image processing operations,
mainly for HDR tone mapping and color-to-grayscale conversions. Its main author, Martin
Cadik, has also done studies on evaluation of these types of methods [8], [7]. Other types
of methods are also implemented in TMS, such as image detail enhancement methods. The
program with its graphical user interface — tmogui — is shown on figure 4.1.

TMS also provides command line program — tmocmd, which is particularly suitable for
usage in scripts.

4.2 Edge-Preserving Decompositions for Multi-Scale Tone
and Detail Manipulation

To use this method for detail enhancement, I followed recipe for multi-scale tone manipula-
tion application described in the paper [10, p. 7]. On webpage for this method [17], Matlab
code is available, which was used as reference for implementation.

Original implementation consists of WLS optimization for image smoothing. In my
implementation I used instead of WLS smoothing Fast Global Smoothing method. It is
30x faster than WLS [21, p. 10] and also it is integrated in OpenCV library as
cv::ximgproc: :FastGlobalSmootherFilter Class. Parameters were set empirically, so
that smoothing results would match with those of authors.

From input image a three-level decomposition are constructed: coarse base layer B and
two detail layers D! and D?. Each of this layers is passed to sigmoid function with different
parameters — boosting factors. Qutput image is obtained by summing result from sigmoid
function. Also parameters gamma, exposure, saturation are involved.

Method algorithm implementation steps

e smooth input RGB image twice by FGS filter to get two smoothed versions: less and
more smoothed

21



TMOGUI I
File Edit View Command Window Help

Josmoa|altx -a||®-

M= EF |[(» flowers12.png [1] ol | Tmo |Fi|ters | "
B B ~Tone Mapping
Library

I Aubryld. tml vl

Technique

[Aubry1a -]

Tone mapping and detail
manipulation using fast local
Laplacian filters

sigma [0.01, 1.00]

Al sl

N[2,15]

1 S B | FT

factor [-10, 10]

Al - E[s

r HDR

———
I 7y Z :
|B®lo.003s22 @ 1000 [l 255.000 ‘ = ] @ 1000 [l 1000
[o0% [o0% 4
info | output | i
istog Statistics Local info tool statistic:
Black:  0.00 <0.00; 0.00; 0.00> Below: 0.00% Neighbeurhs Sl
White: 1.00 <1.00; 1.00; 1.00> Above: 0.00% Avg. Luminan 0.4408 Luminanci0.5257
Gamm: 1.00 <1.00; 1.00; 1.00= Visible: 100.00° Max. Luminan 0.5912 Color: =0.83; 0.41; 0.40>
Averag 0.34 <0.44; 0.31;0.25> Extrem0.38 Btin. Eumine 0.2429
z R 5 Avg. Color <0.72; 0.33; 0.29>

[Tone mapping studio, 2004-2015

Figure 4.1: Screenshot of Tone Mapping Studio.

e convert 2 smoothed versions to Lab color space and get their luminance channels: L0
and L1

e call tonemapLAB function 3 times with different parameters to get sub-results with
fine, medium and coarse details enhanced

e make average from these sub-results to get final result

tonemapLAB function steps
e calculate first difference image D! by calling sigmoid function on L — L0
e calculate second difference image D? by calling sigmoid function on L0 — L1

e calculate base image by calling sigmoid function on L1 adjusted by exposure and value
56 (= mean of lightness range)

e luminance result is sum of difference images and base image

In my implementation user can choose, from which sub-result images final result will be
composed: it can be one or more from coarse, medium and fine detail enhanced. For each

layer user can choose parameters gamma, exposure, saturation and also boosting factors
do — 2.
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On figure 4.2 is comparison of my result with authors’ Authors’ result has more contrast
in flower area, but also more blurred background. Otherwise are results similar. More
identical result to authors’ could be produced, if the same smoothing would be used.

Figure 4.2: From left to right: original image, authors’ result, my result.

4.3 Fast Local Laplacian Filters

Implementation for this method is done for LDR images as my project from previous course
on Computational Photography. My goal in this thesis is to extend it to work with HDR
images. Method’s algorithm is as follows:

e Make grayscale version of input image
e Calculate colours ratio as i for converting to rgb at the end.
e Extend image with border to make it of size of 2™ for pyramid functions.

e Main algorithm on grayscale version of image with use of OpenCV with pyramids:
Gaussian Pyramids, Laplacian Pyramids

e get colours back by multiplying result with color ratios

For image pyramid functions I use OpenCV functions cv: :pyrUp() and cv: :pyrDown().
My contribution on method in this thesis:

e Conversion of input HDR image into logarithmic scale and after main algorithm
computation converting it back to normal scale.

e Implementation of HDR postprocessing.
e Moving main algorithm code into a function.

For implementing HDR support I also extended authors’ fast method’s code for HDR (it
was only at original method). On figure 4.3 are shown results. My result is darker and have
less details enhanced than fast authors’ version, but certainly is better than simple gamma
tone mapped image. The biggest amount of detail enhances authors’ original method, but
it is a lot more time expensive (about 50x).
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(a) Input gamma tone mapped image (b) My result of tone mapping

(¢) Authors’ fast method [3] (d) Authors’ original method [22]

Figure 4.3: Comparison of results. Source of input HDR image is web page for paper on
HDR Companding [16]. Others were generated using codes.
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4.4 Art-Photographic Detail Enhancement

Most of implementation of this method was done by Pavel Sedlar in his bachelor thesis [24].
However, it could only handle very small images (to 32x32 pixels) due to huge memory
consumption of program. Also, results does not seem the same as at original implementation
of authors. My goal was to extend abilities of current implementation to handle bigger
images by using sparse matrices and also try to correct enhancing functionality. Also
computational time even for small image as 32x32 pixels is about 14 minutes on HP Probook
4540s 1.9GHz Intel Celeron B840 with 4GB RAM.

4.4.1 Algorithm overview

To briefly remind structure of algorithm, here is an overview of it:

e Base Decomposition

L0 smoothing of input image I

adaptive L0 smoothing

— adaptive Gaussian blur smoothing (not implemented)

output is base layer B
e Detail Maximization

— obtaining detail layer as D =1 — B

getting weights for piecewise control of brightness and detail

optimization of objective function to get scale and shift coefficients s and ¢

— getting output enhanced image as E = (B +t) + sD

4.4.2 Base decomposition

Smoothings for base decomposition are described in section 3.3.2. Implementation of first
two steps (L smoothings) was done by previous author as described in paper.

4.4.3 Detail maximization

As already said, detail maximization is done by optimization of objective function to get
scale and shift coefficients. This maximization is computed with quadratic programming
(QP). It is a mathematical optimization problem with linear constraints, which solves fol-
lowing equation:

min 2z Hz +c 'z + Co

x
s.t. Az <b
[ <z<u

for n-dimensional variables vector  and m constraints, where

e H is nxn-dimensional real symmetric matrix also called Hessian matrix, which defines
terms in quadratic equation

e ¢ is n-dimensional real-valued vector for linear programming
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® (g is a constant

e A is an m X n real matrix of constraints

b is m-dimensional real vector with constraints’ bounds

[ is n-dimensional vector of lower bounds for variables

e 1 is n-dimensional vector of upper bounds for variables

For C++ programming language, there are lots of QP solvers, which can be used to
solve QP problems (also called as QP). Current solution used library qpOASES [11] — QP
solver based on a parametric active-set method. This method can effectively use a priori
information to speed-up computation of a QP solution, but its computational complexity
grows exponentially with the number of constraints [4, p. 1-2]. It has been originally
developed for small to medium scale QPs featuring dense Hessian and constraint matrices.

However, QP in this method is large scale, because for each pixel in image we need
two variables — shift and scale parameters. Thus, for square image with edge size N,
Hessian matrix is of size 2N? x 2N?2. Even for very small image of size 256 x 256 Hessian
matrix will contain (2 * 2562)2 = 17.18x10? elements. Using 4-byte float type for storing
real numbers, the Hessian would settle 64GB in memory, which is huge amount for today
personal computers for such small picture.

Good news are, that Hessian matrix is very sparse, because smoothness terms in ob-
jective function 3.11 contain only neighbor elements (from gradient operator V), which
in Hessian will result in non-zero elements near to diagonal, and zero elements elsewhere.
Therefore, it is very desirable to use sparse matrix type to store Hessian matrix.

qpOASES additionally comes with limited support of sparse matrices, so my first steps
led this way. Sparse matrix type here is stored in compressed sparse column (CSC) format.
It represents a matrix by three (one-dimensional) arrays, that respectively contain nonzero
values, row indices, and the column pointers to first elements in columns.

So I implemented algorithm for converting triplets of non-zero entries of sparse matrix
(x, v, value) to arrays of CSC format. This algorithm first sorts non-zero elements to
column-major order and then fills appropriately CSC arrays. From those arrays qpOASES
can build sparse matrix.

Memory for storing sparse matrix was reduced, it was good step. However, when I tried
to launch QP solver on 64 x 64 image, memory usage grew to 3GB.

In spite of sparse matrix support, linear algebra in qpOASES is implemented in dense
fashion. So from there comes this high memory consumption. Also computational time
have not decreased.

One more chance for gqpOASES was external solver MA57 [9] written in Fortran. After
obtaining personal license and compilation, sadly problems with undefined symbol error
were met at linking time. I made decision to look after some other QP solving library.

As candidate was chosen OSQP [27], open-source operator splitting QP solver written
in the C language, with interfaces to high-level languages including Matlab, Python and
Julia. Most importantly for this method, it contains custom sparse linear algebra routines,
which can exploit sparsity of input matrices.

OSQP use similar interface to qpOASES, so transition was not complicated. Results
are very good, since for 32x32 image computation time is 7s, which is 120x faster, than
with previous solver. Largest tried image was 350x272, on which computation took 5m 22s
and 570MB on Lenovo X1 Carbon 4th Gen 2.50GHz Intel Core i7 with 8GB RAM.
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On figure 4.4 there are results, both authors’ and mine. My result has changed colours
and brightness, and it is not as expected. But compared to previous state, significant
speedup was reached and bigger images were allowed. Structure of image is preserved, but
it would require yet some fine tuning and debuging, until result will be similar to authors’.

Figure 4.4: From left to right: original image, author’s result, my result. Source of original
and authors’ images is authors’ result web page [25].

4.5 Content Adaptive Image Detail Enhancement

This method uses modified Ly norm gradient minimization algorithm, which was originally
used for image smoothing [29]. I used C++ implementation of original Ly norm gradi-
ent minimization algorithm available from github [30] and modified it inspired by author’s
modified version in MATLAB from author’s web page [15], so implementation was straight-
forward. Modification consists of additional calculating of layer with variances of pixels
in the 3 x 3 neighbourhood. From that variance is then computed weight with sigmoid
function, which is then used to modify computing of arbitrary variables h,v while solving
global optimization problem — Lg norm gradient minimization. Output enhanced image is
direct result of this modified algorithm.

On figure 4.5 is compared author’s and my result. My result has not as vivid colours
as author’s, but enhances details in similar way.

Figure 4.5: Detail enhancement using Content Adaptive Image Detail Enhancement
method. From left to right: original image, author’s result, my result. Image was taken

from archive with reference source code from author’s web page [15].
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Chapter 5

Comparison and evaluation

For comparison, methods will be marked by their main author and year:

e Farbman0O8 — Edge-Preserving Decompositions for Multi-Scale Tone and Detail Ma-
nipulation

e Aubryl4 — Fast Local Laplacian Filters
e Sonl4 — Art-Photographic Detail Enhancement

e Koulb — Content Adaptive Image Detail Enhancement

5.1 Methods’ metrics

First comparison of methods is their performance, which is time and memory complexities.

5.1.1 Time and memory complexities

In following list methods are sorted from fastest method to slowest:
e Farbman08 — 0.7 second on 350x250 image
e Aubryl4 — 2 seconds on 350x250 image
e Koulb — 10 seconds on 350x250 image
e Sonl4 — 5 minutes on 350x250 image
In following list methods are sorted from least memory demand to biggest:
e Farbman08 — 9.5MB on 350x250 image
e Aubryl4 — 24MB on 350x250 image
e Koulb — 31MB on 350x250 image

e Sonl4 — 500MB on 350x250 image
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5.2 User’s visual questionnaire

The second comparison aims on methods’ results. Here, in users’ questionnaire, participants
rated methods’ results, how they like them, on 12 chosen input images, which are shown
in table 5.1. Original Matlab codes were used to generate images for questionnaire, except
for 3.method, where we used our own Matlab code (which was kindly provided to me
by supervisor and edited by me afterwards). For 3.method was used RGB version with
central differencies and results was histogram-equalized, except portraits. Questionnaire
was created with online service [23].

The questionnaire completed 308 respondents, from which were 70.78% men and 29.22%
women.

On figure 5.1 there are global scores for each method through all 12 images.

3.0 Global scores for methods

0 .
Farboman08 Aubryl4  Sonl4 Koul5
Method

Figure 5.1: Chart of means of all scores.

In appendix A there are scores of methods for each of 12 images. Enhanced images
itself are also shown.

5.2.1 Evaluation of questionnaire results

Method Farbman08 won. I guess it is because it made very little changes to original images
compared to others. The worst rating had method Sonl4. I think it is because method
was not exactly the same way implemented compared to original code and result was not
correct.

One important information from questionnaire is, that detail enhancement methods
are not suitable for editing portraits of people, and probably also animals. It is because
people want to have smooth skin on photographs, and not enhanced every pigment and
imperfection.
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Table 5.1: Images used for questionnaire. Images 06 and 07 are ,,Designed by rawpixel.com
/ Freepik®.
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Chapter 6

Conclusion

The goal of this thesis was to study and compare five recent photographic detail enhance-
ment methods. Let’s summarize characteristics of them.

The first method was based on edge-preserving decompositions of image. One of its
applications was tone manipulation, which was also implemented. The most complex part
was smoothing based on Weighted Least Squares optimization. It was replaced by more
recent and faster Fast Global Smoothing algorithm, but WLS implementation is planned
for future work.

The second method worked with Laplacian pyramids, was based on previous similar
study, but brought optimization and speedup. It was based on subsampling, which reduced
computational cost and approximated well exact solution. Except detail enhancement, the
method also did good tone mapping.

The third method was artistic, and could bring much details even from dark or bright
regions of picture. It was because of shift coefficients of base layer, which method introduced
instead of only scales of detail layer. Computing these coefficients was, however, very
expensive, because of need for solving global optimization problem with huge amount of
variables.

The fourth method used for detail enhancement adjusted Lg norm gradient minimiza-
tion, which was originally used for image smoothing. It is also global optimization problem,
but performance is yet unknown, because method was not yet implemented.

The last method is the most recent one among others. It uses very different approach. It
is data-driven and employs machine learning with convolutional neural network. Although
training requires some time, very big advantage is, that it can adapt on almost any image
editation, even human retouch. It is also very fast — it runs on mobile hardware in real
time.

For future development I see trend, which is going more to data-driven approaches, than
exact mathematical algorithms. It can be predicted, that machine learning will be used
more and more in digital image enhancement.
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Appendix A

Results of questionnaire

Table A.1: This table presents results of questionnaire, where respondents rated methods’
results on 12 photographs. Bar charts show score for each method on particular image,
the bigger score means better rating. Results for method Sonl4 were histogram-equalized,
except for human portraits.

Questionnaire results on methods’ comparison
Original image #01 Scores of methods’ results
Scores for image #01

3.0

0.0-
Farbman08 Aubryl4  Sonl4 Koul5
Method
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Continuation of questionnaire results on methods’ comparison A.1

Original image #02 Scores of methods’ results

3.0 Scores for image #02

2.5

2.0

1.51

Score

1.04

0.51

0_
Farbman08 Aubryl4  Sonl4 Koul5
Method

Farbman08 Aubryl4 Sonl4 Koulb

Original image #03 Scores of methods’ results

3.0 Scores for image #03

2.5

2.0

1.51

Score

1.04

0.51

0_
Farbman08 Aubryl4  Sonl4 Koul5
Method

Farbman08 Aubryl4
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Continuation of questionnaire results on methods’ comparison A.1

Original image #04

FarbmanO8

Aubryl4

Scores of methods’ results
Scores for image #04

3.0

0.
Farbman08 Aubryl4  Sonl4 Koul5
Method

Koulb

Sonl4

Original image #05

Scores of methods’ results
Scores for image #05

3.0

2.5

0.
Farbman08 Aubryl4  Sonl4 Koul5
Method

Sonl4
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Continuation of questionnaire results on methods’ comparison A.1

Original image #06 Scores of methods’ results
Scores for image #06

3.0

0.0-
Farbman08 Aubryl4  Sonl4 Koul5
Method

;\ [T JTYII(% i 3
FarbmanO8 Sonl4

Original image #07 Scores of methods’ results
Scores for image #07

3.0

0.0-
Farbman08 Aubryl4  Sonl4 Koul5
Method

Farbman08 Aubryl4 Koulb
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Continuation of questionnaire results on methods’ comparison A.1

Original image #08

FarbmanO8

Scores of methods’ results
Scores for image #08

3.0

0.
Farbman08 Aubryl4  Sonl4 Koul5
Method

Sonl4 Koulb

Original image #09

Scores of methods’ results

3.0 Scores for image #09

0_
Farbman08 Aubryl4  Sonl4 Koul5
Method
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Continuation of questionnaire results on methods’ comparison A.1

Original image #10 Scores of methods’ results
Scores for image #10

3.0

0.
Farbman08 Aubryl4  Sonl4 Koul5
Method

Farbman08 Aubryl4 Sonl4 Koulb

Original image #11 Scores of methods’ results
3.0 Scores for image #11
2.5
2.0

0.
Farbman08 Aubryl4  Sonl4 Koul5
Method
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Continuation of questionnaire results on methods’ comparison A.1

Original image #12 Scores of methods’ results

3.0 Scores for image #12

2.5

2.0

1.51

Score

1.04

0.51

0_
Farbman08 Aubryl4  Sonl4 Koul5
Method

Farbman08 Aubryl4 Koulb

End of Questionnaire results on methods’ comparison
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Appendix B

Content of memory media

Memory media contains following content:
e pdf document with this report of thesis
e [ATEXsource codes for this report
e source codes of implemented methods with manual

e binary executables of programs
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