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Abstract 
The goal of this thesis is to present the nonlinear control system design algorithm 

named the localization method. Theoretical basics and method's capabilities in 

application for simple linear and nonlinear plants are shown.  

The method is applied for earlier developed linear and nonlinear models of the coal 

power plant's once-through boiler's output superheater. There are descriptions of the 

plant features, elements and parameters.  

The control of the plant is proceed by two control cascades; each of these cascades 

uses the localization controller and the special element for derivatives evaluating − the 

differentiating filter.  

Through the research there were the different localization loop configuration 

developments. Simulation results for these variants of the localization loops are 

presented.  

Key words: localization method, differentiating filter, output superheater of 

once-through boiler. 
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1 Introduction 

The control system synthesis − one of the main aims for the control theory. This 

aim becomes significantly complicated while being used for a nonlinear plant. 

Nowadays there are rather impressive numbers of different researches at this topic, but 

the most of them are usually connected only with correction of the nonlinear systems 

behavior. Despite the large number of researches, there are few regular algorithms for 

nonlinear control system design. Therefore, there is a need for new algorithms 

development. Nowadays existing algorithms for the nonlinear control systems 

synthesis: the big gains method, the sliding modes method, the robust control, the 

nonlinear model predictive control. 

In this thesis alternative nonlinear control system design algorithm is presented. It 

has quite clear and regular design algorithm. Main idea of this method is the 

nonlinearities and disturbances influence localization in the inner fast processes 

subsystem. Therefore, it is called the localization method. 

The design procedure and capabilities of the method will be demonstrated by 

processes simulation, applied to the models of the output superheater of the coal power 

plant's once-through boiler. Electrical energy field is very important nowadays, 

increasing prices for energy sources and power grid complexity growth put forward 

more and more requirements for control systems of all types of power plants, often 

absolutely new in comparison to the situation twenty or ten years ago. Therefore, the 

simulation model creation, the control system design based on these models and 

verification before the complementation into the real power plants are very important 

tasks for the control theory. 

The once-through boiler itself by means of control theory is a very large 

complicated nonlinear plant with non-stationary parameters, which can be divided to 

many subsystems. The own control system is needed for each of these subsystem. 

Therefore, overall control system has huge number of parameters, controllers, etc. In 

this thesis it is considered only one element of the high-pressure part of the once-

through boiler − the output superheater. 
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2 The controlled process description 

2.1 The once-through boiler's output superheater 
In this thesis, we will take the output superheater of coal power plant's once-through 

boiler as a plant for control system design. The once-through boiler has different 

technological parts – high-pressure and intermediate-pressure. Each of these parts 

consists of the set of heat exchangers, valves, spray attemperators, etc.The structure 

scheme of once-through boiler is presented on fig.2.1. 

 

Figure 2.1 – The once-through boiler structure scheme 

The detailed description of this structure can be found in [1]. While passing each 

heat exchanger or reheater, the steam is being heated by flue-gas burners. After passing 

the high-pressure part of a boiler, the steam is directed into the biflux heat exchanger, 

where it is again reheated.  

Such system has multiple inputs and outputs (MIMO). The most important for this 

research are steam parameters: temperature, mass flux, pressure. Also, one of the most 

interesting input variables is the power plant load level. Electricity production from all 

types of sources in every moment must satisfy requirements of all consumers. 

Parameters of the electricity in a power grid, production-consumption rate, economical 

factors (such as energy cost price) – all these factors are taken into account during the 

current power load choice from different energy sources. Due to a situation in the power 

grid (for example, sharp increase or decrease in energy consumption), the load level of a 

power plant can be significantly changed. Changes in power load level, in turn, lead to 
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changes in processes inside heat exchangers – the dynamic, the border conditions are 

not constant. In this research, we will focus on the control system for one part of the 

once-through boiler – the output superheater of the high-pressure part. The main aim for 

such system is obtaining and maintenance of set of desired steam parameters – mainly, 

the temperature.  

Each presented subsystem – heat exchanger, reheater, evaporator, etc. – can be 

described by its own simulation model. In this thesis, we are interested only in the 

output superheater model. The structure scheme of the output superheater with a control 

element is presented on fig. 2.2. 

 

Figure 2.2 – The structure scheme of the superheater 

The steam is fed to input of the spray attemperator, where it is mixed with cooling 

water according to the valve position. After mixing, precooled steam goes to the heat 

exchanger. Steam heating is made by a flue gas burning. Amount of heating energy 

depends on current plant's load level (it is also called heating energy level – Q-level). In 

this case, the control system actuator is the valve – by changing its position we can 

change the parameters of steam on the output of heat exchanger. One of important 

system features is the possibility to measure the steam temperature on the input of the 

heat exchanger. 

Nowadays, several simulation models of the superheater has been developed [2,3]. 

Real mathematical model of superheater is high-ordered and strongly nonlinear, 

therefore, for the beginning of control system design we will use linearized simplified 

model. Obtained controller, after several parameters tuning, will be subsequently used 

for nonlinear model simulation. 
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2.2 The linearized model of the superheater 

The set of superheater linearized models was developed by the Institute of 

Mechatronics and Computer Engineering in Technical University of Liberec [3]. Usual 

purpose of linearization is control algorithm synthesis or state observer design. Primary 

aim of this development was the decreasing of computation requirements for the 

processes simulation in nonlinear model. It was proofed, that plant's dynamic and state 

properties in linearized models are relatively accurately correspond to same properties 

in nonlinear model. The detailed process analysis is presented in [3]. 

Inputs and outputs of the output superheater, important for the control circuit, are: 

 Inputs: 

 푉 − cooling valve position (controller output from 0 to 1); 

 푄 − source of heat (flue gas); 

 Input steam parameters − temperature, pressure, mass flow; 

 Parameters of cooling water; 

 Measured outputs: 

 푇 − steam temperature on the input of heat exchanger (after mixing with 

cooling water); 

 푇 −the output steam temperature (main controlled parameter). 

 

Operating mode for boiler is between 50% and 100% of the power load (which is 

equal to 0% to 100% of electrical power output). Power level value influences all 

superheater inputs. Temperature of the output steam must remain constant (575°C) − it 

is the primary aim for the control system design. 

The linearized model has only two input values − valve position and input steam 

temperature, and two outputs − steam temperatures after mixing and on the output of 

heat exchanger. All other inputs depend on current power load level, therefore, they are 

not realized as input signals, but they are considered as transfer functions parameters. 

Thus, model in each operating point (which is defined by power load level) has different 

parameters. The structure of linearized model is presented on fig. 2.3. 
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Figure 2.3 – The linearized model structure 

It is necessary to choose set of operating points before using linearization. In this 

thesis, chosen operation points are 50 %, 70 %, 90 % and 100 % of power load. 

The structure scheme of the output superheater, obtained by using identification 

method [4], is presented on fig. 2.4: 

 

Figure 2.4 – The structure scheme of the linearized superheater model 

On this scheme there are ∆푣, ∆푇 , ∆푇 − changes of valve position and steam 

temperatures; 푑푇 , 푑푇 − temperature disturbances. 

Dynamic and static effects of front-end spray on change of the steam temperature 

푇 after the spray attemperator are approximated by the transfer function (2.1): 

 퐺 (푝) =
푘

(푇 푝 + 1)(푇 푝 + 1)(푇 푝 + 1) ; (2.1) 

where parameters 푘 , 푇 , 푇 , 푇  are changing due to selected operating point. 

Dynamic and static effects of input steam temperature change on the output steam 

temperature 푇  are approximated by the transfer function (2.2): 
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 퐺 (푝) =
푘

(푇 푝 + 1)(푇 푝 + 1)(푇 푝 + 1) ; (2.2) 

where parameters 푘 , 푇 , 푇 , 푇  are changing due to selected operating 

point. 

Identification of transfer functions parameters was based on the data from the 

original nonlinear model experiments in the neighborhood of required power load 

levels. Different parameters values choices according to operation point are presented in 

Table 1. 

Table 1.Model parameters values in different operating points 

Q level 푘  푇  푇  푇  푘  푇  푇  푇  

50% -118.7 1.69 1.82 3.8 1.0675 51.4641 51.2095 53.5572 

70% -73.69 1.69 1.82 3.8 1.1313 39 39 39 

90% -48.99 1.69 1.82 3.8 1.1723 28 28 28 

100% -40.63 1.69 1.82 3.8 1.1948 25 25 25 

Simulation linearized model is developed in MATLAB Simulink.  Parameters 

values switching is made through Lookup Table block. This block uses the input values 

to generate outputusing the linear interpolation and extrapolation method. Simulation 

scheme is presented on fig. 2.5. 

  

Figure 2.5 – The simulation scheme of linearized superheater model 
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2.3 The nonlinear model of the superheater 
The nonlinear simulation model was developed by Faculty of Mechatronics, 

Informatics and Interdisciplinary Studies of Technical University of Liberec. This 

model is complicated, has high order. It is proofed [1], that temperature dynamics of 

output superheater can be described by equations: 

 푑푇
푑푡 =

1
푚 푐 × 푄̇ − 훼푆(푇 − 푇) ; 

푑푇
푑푡 = −

푚̇
∆푉푝̅ 푟∗푇 + 훼

푆
푉푝̅푐̅

(푇 − 푇) + 훺
푚̇
∆푉

푇
푝 . 

(2.3) 

In these equations there are 푇 − the temperature of barrier (tube wall); 푇 − the 

steam temperature; 푚 , 푐 − barrier's mass and heat capacity; 푄̇ − the input heat 

power; 훼 − heat exchange coefficient; 푆 − the heat exchange area; 푚̇ − the steam mass 

flow; 푉 − inner tube dimension; ∆푉 = 퐹 ∗ 휕푧, where  퐹 − the cross-section area, 푧 − 

space coordinate; 푝, 푐̅ − mean values of steam density and heat capacity in whole tube; 

푟∗ =

⎣
⎢
⎢
⎢
⎡

1 0 . . 0
−1 1 0 . 0
0 . . . .
. . . . 0
0 . 0 −1 1⎦

⎥
⎥
⎥
⎤

;  훺 = [1 0 . 0] . 

The accuracy of such solution is enough high. The difference between simulation 

and real plant's values is very small both in the steady state, and in dynamic. The 

structure scheme of nonlinear simulation model is shown on fig. 2.6. 
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Figure 2.6 – The simulation scheme of nonlinear superheater model 

The nonlinear simulation model also makes heating level recalculation with Lookup 

Table blocks, as input parameters it takes output steam temperature reference point 

(usually 575°C) and power load level Q. Nonlinearities of this model are contained in 

changes of time constants and gains. In this thesis we won't go deeply into analysis of 

structure and processes in nonlinear model. We will use controllers, designed for the 

linearized models, and tune them in order to make them robust. 

2.4 The control system design task 
Plant for a control system design can be described by two ways: 

 Linearized model: is described in subchapter 2.2, presented by transfer 

functions (2.1) and (2.2) and linear simulation model. 

 Nonlinear model: is described in subchapter 2.3, presented by nonlinear 

simulation model. 

The actuating variable limitation is as follow: 

 0 ≤ 푈 ≤ 1. (2.4) 

There are control system aims for the linearized model. 
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 Making output variable (steam temperature) equal to input reference point. 

Initial point for output variable is equal to zero. The output steam 

temperature disturbance is equal to zero. The system functionality must be 

checked for every chosen operating point (푄 = [50,70,90,100]%). 푄 level 

during processes passing remains constant. Requirements for steady state 

and dynamics: 

 푡 ≤ 1000푠, 휎 ≤ 10%, ∆ ≤ 5%; (2.5) 

where 푡 − setting time, 휎 − overshoot, ∆ − steady state error. 

 Neglecting the output steam temperature disturbance in the steady state 

(reference remains constant). Disturbance has a ramp form. The system 

functionality must be checked for every chosen operating point. 푄level 

remains constant. 

 Suppression of the 푄 level changes influence in the steady state. Switching 

between operating points can be made by step between nearest ones (for 

example 50%→70%), or by ramp in whole operating range. Disturbance is 

equal to zero. 

For nonlinear model simulation the only aim is to suppress operating point changes 

in the steady state and with zero disturbances. Operating points changing is made by the 

same way, as for the linearized model. 
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3 The nonlinear control system synthesis, 
based on the localization method 

3.1 General control aims 
The control system synthesis implies controller addition to the plant in order to 

obtain needed steady and dynamic properties.  

 

Figure 3.1 – The functional scheme of a SISO control system 

Plants, considered in this chapter, can be described by the output equation: 

푦( ) = 푓 푡, 푦, … , 푦( ) + 푏 푡, 푦, … , 푦( ) 푢.  (3.1) 

In general case, functions 푓 (. ) and 푏 (. ) can be unknown, the dependence ont 

represents disturbance and plants parameters unsteadiness influence. We will assume 

only that the range of possible 푓 (. ) and 푏 (. ) values is known (for example: |푓 (. )| ≤

푓 , |푏 (. )| ≤ 푏 , 푖 = 1, 푛), and the speed of these functions changes is 

significantly (at least, by one order) lower than main processes in a plant. 

Control aim is to obtain such an actuating action  푢 = 푢(. ), which will satisfy the 

condition 

lim → 푦 = 푟.     (3.2) 

The condition (2.2) must be fulfilled with given steady state accuracy 

  |∆(∞)| = |푟 − 푦(∞)| ≤ ∆ .    (3.3) 

Together with steady state requirements (3.2),(3.3), there are also requirements to 

the system dynamic behavior: 

     푡 ≤ 푡 _ ; 휎 ≤ 휎 ,    (3.4) 
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where 푡  is setting time, 휎 is overshoot. 

In order to meet the steady state requirement (3.3) and the dynamic requirement 

(3.4), the closed loop desired equation should be constructed. It can be defined through 

output variable (3.1): 

푦( ) = 퐹 푦, 푦̇, … , 푦( ), 푟 .    (3.5) 

The desired equation can be relatively easy constructed as a linear differential 

equation for most types of plants (3.2). Firstly, one should choose desired root values – 

thus to satisfy requirements (3.3). Secondly, desired characteristic equation (3.5) is 

constructed accordingly to chosen roots.  

3.2 The method description 
The localization method as a nonlinear control system synthesis method has been 

researched by Automatics department of Novosibirsk State Technical University for 

more than 30 years [5]. The main idea of this method is highest-order output variable 

derivative usage in case of plant description (3.2) in a feedback loop. Supposed 

actuating equation is: 

푢 = 푢(푥, 푥̇, 푟).     (3.6) 

Using of 푥̇ in this equation (or output variable derivatives) allows to obtainthe 

indirect evaluation of the right-hand side of the plant's differential equation, giving the 

actual information about nonlinearities and disturbances. 

The simplest actuating equation (3.6) is proportional: 

     푢 = 퐾(퐹 (푥, 푟) − 푥̇),     (3.7) 

where 퐾 is the controller gains matrix. 

Capabilities of actuating equation (3.7) can be illustrated on nonlinear first-order 

plant. The mathematical model of such a plant: 

푦̇ = 푓(푡, 푦) + 푏(푡, 푦)푢, 푦 ∈ 푅 ,    (3.8) 

where|푓(. )| ≤ 푓 , |푏(. )| ≤ 푏  and 푏(푡, 푦) ≠ 0. 
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The desired differential equation must be constructed according to requirements 

(3.4) and (3.5): 

   ẏ = 퐹(푦, 푟).     (3.9) 

We will use the first-order actuating equation (3.7) 

푢 = 푘(퐹(푦, 푟) − 푦̇).    (3.10) 

Substituting (3.10) into (3.8), we will obtain closed loop equation: 

푦̇ = 푓(푡, 푦) + 푏(푡, 푦)푘(퐹(푦, 푟) − 푦̇), 

resolving to 푦̇, we will obtain: 

           푦̇ = ( , )
( , )

+ ( , )
( , )

퐹(푦, 푟).    (3.11) 

Increasing of the gain 푘 to the limit of 푘 → ∞ transforms (3.11) to 

푦̇ → 퐹(푦, 푟). 

Thus, the appropriate choice of controller parameters allows obtaining desired 

properties (3.9) in the closed loop. Steady state error can be calculated through the 

equation: 

    ∆≈ ( , )
( , )

.      (3.12) 

All nonlinearities and disturbances, described by functions 푓(푡, 푦)and 푏(푡, 푦), can 

be compensated by big values of  푘. Due to the localization method recommendations, 

values of  푘 should be chosen according to equation 

푏 푘 ≈ (20 … 100).    (3.13) 

In case of choosing controller parameters according to (3.13) the steady state 

accuracy (3.12) can by evaluated by the equation 

        ∆≈ (0.05 … 0.01)푓(푡, 푦).    (3.14) 
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This effect appears due to the disturbance localization, which is illustrated on the 

closed loop structure scheme: 

 

Figure 3.2 – The structure scheme of a closed loop 

This scheme has two circuits. Outer circuit is usual output variable feedback loop, 

while inner circuit is formed by output derivative feedback. The influence of functions 

푓(푡, 푦) and 푏(푡, 푦), suppressed by the big gain 푘, is localized in this inner circuit. Also, 

inner circuit is non-inertial structure (doesn't have any inertial elements). 

In order to realize actuating equation (3.10) in practice, we need to make sure that 

actuating variable values won't go over plant actuating limitations. Taking equation 

(3.8) into the right-hand side of (3.10), we will obtain: 

푢 = 푘(퐹(. ) − 푓(. ) − 푏(. )푢). 

After few transformations this equation forms as follows: 

     푢 =
(.)

퐹(. ) − 푓(. ) .       (3.15) 

The asymptotic actuating equation in case of  푘 → ∞ in closed loop has a form: 

      푢 = 푏 (. )[퐹(. ) − 푓(. )].     (3.16) 

Some conclusions, following from (3.15) and (3.16): 

1. The asymptotic actuating equation (3.15) corresponds to accurate control task 

solution. By equating right-hand sides of output equation (3.8) and desired equation 

(3.9), after few transformations we will obtain accurate actuating equation, similar to 

(3.16). 
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2. Actuating variable values in the closed loop stay finite even in case of infinite 

controller gain  푘. 

3. The equation (3.16) allows calculating the maximum actuating variable value in 

worst case – when all functions reach their limits: 

푢 = 푏 (|퐹 | + |푓 |). 

This is the maximum limitation of the actuating value in a closed loop. Desired 

processes (3.9) can be acquired in the closed loop control system, if the following 

requirement is met: 

      푢 = 푏 (|퐹 | + |푓 |) ≤ |푈|.   (3.17) 

3.3 The differentiating filter 
The system must be able to evaluate the output derivative 푦̇ in order to realize the 

actuating equation (3.10) in practice. Proposed solution is the special structure 

implementation. This structure is called differentiating filter, and it is realized on 

integrators. The differential filter (in case of first-order plant) can be defined as the 

dynamic structure of a first order 

 휇푦̇ + 푦 = 푦     (3.18) 

or of a second order 

     휇 푦̈ + 2푑휇푦̇ + 푦 = 푦,     (3.19) 

In dependency on the measurement noise level. In these equations 푦 is estimated 

output value; 휇 is the parameter, which describes the filter's lag, 푑 is damping 

coefficient. Second-order differentiating filter structure with zero initial conditions has a 

following form: 
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Figure 3.3 – The structure scheme of a second-order differentiating filter 

The differentiating filter is a linear structure, its transfer function can be rewritten 

from differential equation forms (3.18) and (3.19): 

      푊 = =
( )

,    (3.20) 

where 퐷(휇푝) is the filter characteristic polynomial (it is also called "filtrating 

polynomial"). 

The equation for the output variable derivative, with taking to account (3.20), can 

be written in a following form: 

푦̇ =
( )

푦. 

Due to the fact, that 푝푦 = 푦̇, this equation can be rewritten to: 

푦̇ =
( )

푦̇. 

If we take limit 휇 → 0 in equations (3.18), (3.19), we can consider 푦̇ → 푦̇ – the 

output derivative evaluation is equal to its real value. Therefore, the filter with a small 

lag must be chosen in order to realize the actuating equation (3.10). In practice, it is 

enough to make processes in the filter one order slower, than processes in plant. The 

differentiating filter implemenation leads to the processes with different speed 

appearance in the closed loop; besides, faster processes must be stable to keep system 

operability. 
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3.4 The different transient processes speeds analysis 
As it was noted, processes in main and filtering circuits have the different speed. 

Therefore, in order to analyze these processes, we must use the process separation 

method[]. The structure scheme of the closed loop with inserted differentiating has a 

following form: 

 

Figure 3.4 – The structure scheme of a closed loop with inserted differentiating filter 

In case of a first-order differentiating filter usage the closed loop equations can be 

written in a following form: 

푦̇ = 푓(. ) + 푏(. )푘 퐹(. ) − 푦̇ ,
휇푦̇ = 푦 − 푦.

�    (3.21) 

As far as there is the derivative in a right-hand side of the first equation, it is 

necessary to bring this equation to a standard form. Therefore, we define the new 

variable 푧 = 휇 (푦 − 푦)and transform the equation system (3.21): 

푦̇ = 푓(. ) + 푏(. )푘[퐹(. ) − 푧],
휇푧̇ = 푓(. ) + 푏(. )푘[퐹(. ) − 푧] − 푧.

�   (3.22) 

The fast processes subsystem definition: 

푦 = 푐표푛푠푡, 휇푧̇ = 푓(. ) + 푏(. )푘[퐹(. ) − 푧] − 푧.  
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Figure 3.5 – The structure scheme of a fast processes subsystem 

The characteristic equation of the fast processes subsystem with a first-order 

differentiating filter has a following form: 

휇푝 + 푏푘 + 1 = 0. 

In general case: 

퐷(휇푝) + 푏푘 = 0.     (3.23) 

As far as the fast processes subsystem is linear, general linear system stability 

criterions are applicable for a stability check. In case of using first- or second-order 

differentiating filters this subsystem will be stable with any positive values of b(.). 

Slow processes subsystem (휇 = 0 in (3.22)): 

푦̇ = 푓(. ) + 푏(. )푘[퐹(. ) − 푧], 푓(. ) + 푏(. )푘[퐹(. ) − 푧] = 푧. 

These equations can be transformed into: 

푦̇ = ( , )
( , )

+ ( , )
( , )

퐹(푦, 푟).    (3.24) 

Consequently, the slow processes subsystem description (3.24) is equal to the 

closed loop with an accurate differentiating (3.11). Therefore, in combination with 

stable fast processes system behavior is determined by slow processes, which will be 

close enough to the desired equation (3.9) in case of the correct choice of controller 

parameters. The design scheme of a closed loop with differentiating filter is presented 

on the fig.3.6: 
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Figure 3.6 – The design scheme of a closed loop with a differentiating filter 

In this case the localization circuit is slow processes subsystem, and it is inertial. 

3.5 The arbitrary-order system design 
Next aim will be the design of localization control system for a plant, described by 

equation 

푦( ) = 푓 푡, 푦, 푦̇, … , 푦( ) + 푏 푡, 푦, 푦̇, … , 푦( ) ,   (3.25) 

where|푓(. )| ≤ 푓 , |푏(. )| ≤ 푏  and 푏(푡, 푦) ≠ 0. 

The desired dynamic behavior is defined by the desired equation of n-order: 

푦( ) = 퐹(푦, 푦̇, … , 푦( ) , 푟).     (3.26) 

Actuating equation: 

푢 = 푘 퐹(. ) − 푦( ) .     (3.27) 

Placing (3.27) into (3.26), we will obtain the closed loop equation. After resolving 

to 푦( ) it takes form: 

푦( ) = (.)
(.)

+ (.)
(.)

퐹(. ).      (3.28) 

Increasing gain to the limit 푘 → ∞ gives 푦( ) → 퐹 푦, 푦̇, … , 푦( ) , 푟 . Therefore, 

the correct choice of controller parameters allows realizing desired parameters (3.26) 

with given accuracy (3.12) for arbitrary-order plant as well. Parameter 푘 choice should 

be made according to equation (3.13). 
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The actuating variable value stays finite even if the controller gain is infinite, its 

maximum is defined by the equation (3.17) and mustn't go through the plant's 

limitations. In order to realize actuating equation (3.27) we will need the differentiating 

filter of at least nth-order (which will be able to evaluate 푦( )). The structure scheme of 

such an arbitrary-order filter is presented on fig.3.7:  

 

Figure 3.7 – The structure scheme of a nth-order differentiating filter 

The transfer function of such a structure: 

푊 (휇푝) =
( )

=
⋯

,    (3.29) 

where 휇 – the parameter with small values, which represents filter's lag; 푑 , 푖 = 1, 푛 − 1 

– determines process properties in a filter. The parameters calculation is made by root 

locus method, the desired locus is chosen according to evaluations: 

        푡 ≈ 0.1푡 ; 휎 ≈ 0.1휎.     (3.30) 

The design structure scheme of a closed loop is presented on fig.3.8: 
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Figure 3.8 – The design structure scheme of a localization closed loop 

The transfer function of a fast processes subsystem (marked by a dotted line) is 

(3.23). Chosen subsystem parameters must maintain its stability. 

The overall design algorithm for the localization method: 

1) The construction of a desired equation of nth-order (3.26) according to 

requirements (3.4) and (3.5). 

2) The controller gain 푘 calculation according to (3.13). 

3) The differentiating filter (3.29) choice. Chosen filter must have small lag. 

4) The check of a fast processes subsystem stability; the correction elements 

implemenation, if it is necessary. 

5) The structure realization of a closed loop. 

3.6 The method's capabilities demonstration 
As it was mentioned before, the main idea of the localization design method is 

using of the output variable derivatives in an actuating equation. Difference between 

real derivative value and its desired behavior (defined by desired equation 퐹(. )) must be 

reduced to zero by the controller. In previous chapters we considered only the 

proportional actuating equation (gain 푘). In practice, any suitable actuating equation can 

be defined to meet plant's requirements – of course, changes in actuating equation lead 

to changes in fast processes subsystem. Therefore, in combination with the actuating 

equation complementation one must also recheck stability of fast processes subsystem. 

In this chapter we will demonstrate localization method's capabilities, considering 

only proportional actuating rules, applied to linear and nonlinear plants of second-order. 
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All process simulations were made in MATLAB Simulink. 

3.6.1 Linear second-order plant 
The proposed plant is described by a transfer function: 

퐹 (푝) = = ,    (3.31) 

where 푏 = 10, 푎 = 3, 푎 = 5. The output curve with 푟 = 1 is presented on fig.3.9: 

 

Figure 3.9 – Output variable changes in the plant (2.31) 

Processes quality requirements: 

∆≤ 0.05푟; 푡 ≤ 4푠;  휎 = 0.   (3.32) 

The proportional actuating equation will be used: 

푢 = 푘(퐹(푦, 푦̇, 푟) − 푦̈).     (3.33) 

According to the design algorithm, firstly the desired equation of a second order 

must be defined. There must be no overshoot in a closed loop, so the imaginary part of 

chosen roots must be equal to zero. Taking into account speed requirement from (3.32), 

we will choose desired roots 푝 = −2, 푝 = −3.  The desired equation takes form: 

푦̈ = 퐹(푦, 푦̇, 푟) = −5푦̇ − 6푦 + 6푟.   (3.34) 
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The controller gain 푘 is calculated according to (3.13). The upper limit of an 

acceptable steady state error is 5%, so it will be enough to make 푏푘 = 20. Therefore, 

we can choose 푘 = 2. 

The processes speed in a differentiating filter must be significantly lower (at least 

by one order), than the speed of plant's processes. According to requirements (3.32), the 

processes setting time in plant should be lower, then 3 seconds. Therefore, processes in 

filter should end in approximately 0.3 seconds. For general case, filter parameters can 

be chosen by root locus method (similar to the desired equation parameters choice). In 

case of second-order differential filter implementation, it is possible to use much more 

faster and suitable evaluation: 

휇 ≈ 0.1푇∗,
푑 ≈ (0.5 … 0.7),

�     (3.35) 

where 푇∗ is the desired time constant, 푇∗ ≈ 3푡 . Therefore, we can choose 

     휇 = 0.1; 푑 = 0.5.     (3.36) 

Placing calculated parameters (3.36) into the differential equation of a second-order 

filter (3.20) we will acquire the filtrating polynomial: 

퐷(휇푝) = 0.01푝 + 0.1푝 + 1. 

The characteristic equation of the fast processes subsystem: 

0.01푝 + 0.1푝 + 21 = 0. 

This subsystem is stable.  

Structure realization of the closed loop is presented on fig.3.10: 
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Figure 3.10– The simulation scheme of a closed loop 

 

Output and actuating variables changes are presented on fig.3.11 (푟 = 1): 

 

Figure 3.11 – Output and actuating variable changes in a closed loop 

The desired quality of processes is obtained: setting time is 3 seconds, no overshoot, 

steady state error doesn't go beyond 5%. One of proportional actuating rule problems 

can be seen on the actuating variable curve – there are big "peaks" of the actuating 
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value, arising in the beginning of processes. Using of more complicated rules can 

decrease these peaks.  

3.6.2 Nonlinear second-order plant 
The proposed nonlinear plant is described by an differential equation: 

푦̈ + 푎 푦̇ + 푎 푦 = 푏푢,    (3.37) 

where 푏 = 2, 푎 = 1, 푎 = 1. Output variable changes are presented on fig.3.12: 

 

Figure 3.12 – Output variable changes in the plant (3.37) 

Process quality requirements are represented by expressions (3.32); we will use the 

actuating equation (3.33) for the closed loop design. Due to the similarity of 

requirements, we can also use the same desired equation (3.34). 

According to (3.13), in order to obtain 푏푘 = 20 we choose 푘 = 10. 

The fast processes subsystem will be also the same, as it was in previous chapter. 

Structure realization of the closed loop is presented on fig.3.13: 
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Figure 3.13 – The simulation scheme of a closed loop 

Output and actuating variables changes are presented on fig.3.14 (푟 = 1): 

 

Figure 3.14 – Output and actuating variable changes in a closed loop 
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The desired quality of processes is obtained: setting time is 3 seconds, no overshoot, 

steady state error doesn't go beyond 5%. The added plant's nonlinearity brings further 

increase of actuating variable peaks in the beginning of the transient processes. Also, 

oscillations can be seen in the beginning of transient processes. They are caused by the 

derivative evaluating process in the differentiating filter – it takes some time to make 

outputs of plant and differentiating filter equal. 
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4 Localization control system design 

4.1 The control task analysis 
The control system synthesis for the set of linearized models is presented in this 

chapter. Summarizing transfer functions (2.1) and (2.2), we will obtain transfer function 

for the whole system 

 

퐺(푝) = 퐺 (푝)퐺 (푝) =

=
푘

(푇 푝 + 1)(푇 푝 + 1)(푇 푝 + 1) ∗ 

∗
푘

(푇 표푢푡 푝 + 1)(푇푇표푢푡 푝 + 1)(푇푇표푢푡 푝 + 1). 

(4.1) 

 

Due to classical approach to localization synthesis method, differentiating filter for 

such plant will be 6th order. The design and the calculation of parameters for such filter 

are quite complicated; also, high-order differentiating filter brings additional 

oscillations into the closed loop. As it was mentioned in the plant description, there is a 

possibility to measure the temperature on the input of the heat exchanger. Therefore, we 

can use output of the 퐺 (푝)-block in the control circuit. Moreover, according to the 

numerical values of plant's parameters, presented in Table 1, transient processes in 

퐺 (푝)- and 퐺 (푝)-blocks have significantly different speeds. Time constants of 

퐺 (푝) are 1-2 orders lesser, then time constants of 퐺 (푝). Due to these factors, it is 

possible and reasonable to use cascade control principle. Each of presented plant's 

transfer functions will be controlled in its own circuit by the localization controller and 

the 3rd order differentiating filter. Structure scheme of the closed loop is shown on fig. 

4.1. 

Thus, in closed loop with two cascades transient processes have four stages, 

separated by processes speed criterion. From the fastest to the slowest: 

 Processes in the differentiating filter of the inner circuit (~ milliseconds); 

 Processes in the inner circuit (~ seconds); 

 Processes in the differentiating filter of the outer circuit (~ tens of seconds); 

 Processes in the outer circuit (~ hundreds of seconds). 
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Figure 4.1. – The structure scheme of the closed control loop 

In order to choose controllers gain values 푘 , 푘 , transfer functions (2.1) and 

(2.2) must be rewritten in form  

 퐺 (푝) =
푏

푝 + 푎 푝 + 푎 푝 + 푎 ; (4.2) 

 
퐺 (푝) =

푏
푝 + 푎 푝 + 푎 푝 + 푎 . (4.3) 

In these equations:  

푏 =
푘

푇 푇 푇 ; 푏 =
푘

푇 푇 푇 ; 

푎 =
1

푇 푇 푇 ; 푎 =
1

푇 푇 푇 ; 

푎 =
(푇 + 푇 )(푇 + 푇 )(푇 + 푇 )

푇 푇 푇 ; 

 푎 =
(푇 + 푇 )(푇 + 푇 )(푇 + 푇 )

푇 푇 푇 ; 

푎 =
푇 + 푇 + 푇

푇 푇 푇 ; 푎 =
푇 + 푇 + 푇

푇 푇 푇 . 
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In case of power load level changes, plant parameters 푏  and 푏  are also 

changed. Controller gain, found for one of linearized models, can be unacceptable for 

model with another power load level. Firstly, controller gain must satisfy fast processes 

subsystem stability condition (characteristic equation (3.23)). On the other hand, the 

requirement for the steady state error (3.13) must be also met. Therefore, after searching 

controller gain value for the model with one power load level, we should tune this gain 

in order to make the controller capable of working with whole set of models. The initial 

calculation of the controller parameters will be made for the plant with 50% power load 

level. 

 

4.2 The inner circuit controller design 

4.2.1 The controller parameters choice 
According to the synthesis algorithm, presented in chapter 3, first step of the control 

system design is desired equation choice. Dynamic requirements (2.5) must be fulfilled 

on the output of the outer circuit. The processes setting time in the inner circuit must be 

at least one order lesser than in the outer circuit, in order to maintain system's 

operability. Due to the processes speed division in whole system, it would be better to 

make the inner circuit processes two orders faster, than the outer ones. Therefore, 

desired dynamic properties of the inner circuit are 

 푡 ≈ 10푠;  휎 ≤ 10% (4.4) 

Inner circuit transfer function is 3rd order, therefore desired equation also should be 

3rd order. In order to obtain desired dynamics (4.4), chosen root locus of the desired 

equation will be 푝 = 푝 = 푝 = −1. Desired equation has form 

 ∆푇 = 퐹 푟, ∆푇 , ∆푇̇ , ∆푇̈ = −3∆푇̈ − 3∆푇̇ − ∆푇 + 푟. (4.5) 

In this chapter we will use the proportional actuating equation. 3rd order variant of 

(3.27) has form 

 푢 = 푘 (퐹 푟, ∆푇 , ∆푇̇ , ∆푇̈ − ∆푇 ).  (4.6) 

The controller gain is chosen according to equation (3.13). Using Table 1 values 

and transformation (4.3), for 푄 = 50% we obtain 푏 ≈ −10,16. Therefore, 
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chosen controller gain is 푘 = −2. The increase of 푄  leads to the decrease of |푏 | 

− possibly, it will be necessary to tune the controller gain during simulation of models 

with another 푄 . 

4.2.2 The differentiating filter design 
The processes setting time in the differentiating filter must be one order lesser, than 

processes in the circuit. Taking into account (4.4), requirement for the inner circuit 

filter's setting time is 푡 ≈ 1푠. The fast processes subsystem characteristic equation 

while using the 3rd order differentiating filter has form 

 푝 +
푑
휇 푝 +

푑
휇

푝 +
1 + 푏 푘

휇
= 0.  

Fast processes subsystem must be stable. According to the Hurwitz stability 

criterion [5], the sequence of determinants of Hurwitz matrix 퐻 principal submatrices 

must all be positive. Therefore, stability conditions for the 3rd order differentiating filter 

are: 

 푑
휇 > 0;  푑 푑 > 1 + 푏 푘 ;

1 + 푏 푘
휇

> 0. (4.7) 

Chosen filter parameters are 

휇 = 0.05; 푑 = 8; 푑 = 20. (4.8) 

Therefore, the characteristic equation of the inner circuit's fast processes subsystem 

takes form 

 0.000125푝 + 0.02푝 + 푝 + 21 = 0.  

This subsystem is stable. 

4.3 The outer circuit controller design 

4.3.1 The controller parameters choice 
Desired dynamic properties of the outer circuit are presented in equations (2.5): 

푡 ≤ 1000푠;  휎 ≤ 10%. 



38 
 

Outer circuit transfer function is 3rd order, therefore desired equation also should be 

3rd order. In order to obtain desired dynamics (2.5), chosen root locus of the desired 

equation will be 푝 = 푝 = 푝 = −0.05. Desired equation has form 

 ∆푇 = 퐹 푟, ∆푇 , ∆푇̇ , ∆푇̈ = 

−0.15∆푇̈ − 0.0075∆푇̇ − 0.000125∆푇 + 0.000125푟. 
(4.9) 

The actuating equation for the outer circuit is similar to the inner circuit's one 

 푢 = 푘 (퐹 푟, ∆푇 , ∆푇̇ , ∆푇̈ − ∆푇 ).  (4.10) 

The controller gain is chosen according to equation (3.13). Using Table 1 values 

and transformation (4.2), for 푄 = 50% we obtain 푏 ≈ 7.56 ∗ 10 . Therefore, 

chosen controller gain should be 푘 = 2,64 ∗ 10 . Such big gain value will lead to big 

oscillations of actuating value in the beginning of processes (limit actuating value can 

be evaluated by equation (3.17)). Also, the increase of 푄  leads to the significant 

increase of |푏 |, and such gain value can lead to the instability of the fast processes 

subsystem. Therefore, much more acceptable way is to decrease gain value, in order to 

meet all models stability requirements. In the worst case − 푄 = 50% − the steady 

state error can arise in the system. Through the experiments, gain value 푘 = 4 ∗ 10  

has shown acceptable result by both criterions − the stability and the steady state error. 

For 푄 = 50%: 푏 푘 ≈ 3,024.  

 

4.3.2 The differentiating filter design 
The parameter calculation process for the outer circuit differentiating filter is the 

same, as for the inner one. Taking into account (2.5), requirement for the outer circuit 

filter's setting time is 푡 ≈ 100푠. Chosen filter parameters are  

 휇 = 1; 푑 = 8; 푑 = 20; (4.11) 

these parameters satisfy requirements (4.7). The characteristic equation of the fast 

processes subsystem: 

 푝 + 8푝 + 20푝 + 4 = 0.  

This subsystem is stable. 
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4.4 Simulation results 

4.4.1 The inner circuit processes simulation 
Plant's transfer function is described by equation (2.1), numerical values of 

parameters are taken from Table 1. The simulation scheme for circuit with 푄 =

50% is presented on fig. 4.2. 

 

Figure 4.2 − The simulation scheme of the inner circuit 

The controller block realizes the actuating equation according to (4.5) and (4.6). 

The simulation scheme of this block is presented on fig. 4.3. 

 

Figure 4.3 − The simulation scheme of the inner circuit controller 
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The differentiating filter block realizes output derivatives evaluation. Numerical 

values are equal to (4.8). The simulation scheme of this block is presented on fig. 4.4. 

 

Figure 4.4 − The simulation scheme of the inner circuit differentiating filter 

Configuration parameters for the presented simulation: 

 Simulation time − 20 seconds; 

 Reference point change − 1°C. 

Simulation results for output and actuating variables are presented on fig. 4.5. 

 

Figure 4.5 − Output and actuating variable curves of the inner circuit processes 
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According to presented graphs, control task for the inner circuit is accomplished. 

Setting time for all linearized models is about 10 seconds, there is no overshoot, 

changes of power load level have almost no influence on the output variable curve. In 

the beginning of processes the actuating value doesn't satisfy limitation (2.4) − it is 

caused by the inner circuit simulation excluding outer circuit processes, reference point 

at the input of the inner circuit controller will have another value while simulating 

whole control system. 

4.4.2 The closed loop processes simulation 
Results of closed loop (whole system) processes simulation are presented in this 

subchapter. Plant's transfer function is described by equation (4.1), numerical values of 

parameters are taken from Table 1. The simulation scheme is presented on fig. 4.6. 

 

Figure 4.6 − The simulation scheme of the closed loop  

Outer controller and differentiating filter blocks have the same structure, as inner 
ones. Numerical values of controller parameters are set according to (4.9),(4.10); 
numerical values of differentiating filter parameters are set according to (4.11). The 
closed loop with such parameters doesn't meet actuating variable limitation (2.4) − 
oscillations amplitude in the beginning of processes exceeds this limitation by three 
orders. Without changes in the control loop, the normalization of input and output 
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signals was supposed as possible solution. Therefore, normalizing gains were added into 
the simulation scheme. 

Results of the processes simulation for different power load levels and without 
disturbances are presented on fig. 4.7. 

 

Figure 4.7 − Output and actuating variable curves of the closed loop processes 

The first graph represents normalized output variable changes. It can be seen, that 

different power load level values have almost no influence on the output curve. The 

steady state error value is acceptable. Changes in 푄  lead to changes in the actuating 

oscillations amplitude values, it can be seen on the second graph. As it was mentioned, 

the increase of 푄  brings the increase of plant's outer circuit gain value. The 

controller gain, at the same time, remains constant. Therefore, the overall system's gain 

is also increasing − which leads to actuating oscillations increase. The third graph 

represents actuating variable changes in first 5 seconds. 

The actuating limitation (2.4) brings two big problems into the design of the control 

system with the actuating equation (4.10). This proportional actuating rule supposes, 

firstly, relatively big actuating oscillations amplitude in the beginning of transient 
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processes, and, secondly, these actuating oscillations often make the actuating variable 

switching its sign − both of these features contradict with (2.4). The first problem 

during the simulation can be solved as it was suggested − by entering normalization 

gains. During the real system application this problem will arise again − as far as output 

variable is not electric signal, there will be problems with the realization of the 

normalization (need for special converters, special tuning, etc.). The only second 

problem solution using actuating equation (4.10) is decreasing of the outer circuit 

processes speed, in order to make the actuating variable not to cross the zero limitation. 

On the other hand, the decreasing of the outer circuit processes speed brings problems 

with the dynamic requirements (2.4) satisfaction. 

4.4.3 The closed loop reaction on the disturbance 
Results of the processes simulation for different power load levels and with the 

ramp 푑푇  (fig. 2.4) disturbance addition (start time 500s, slope 0.01°C/s) in the steady 

state are presented on fig. 4.8. 

 

Figure 4.8 − Output and actuating variable curves of processes with added ramp 
disturbance 
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Output variable curves for all power load levels are acceptable. Disturbance feed 

forward on the outer circuit differentiating filter also causes "peaks" of the actuating 

variable. The same problems, as for the reference point reaction, also arise for the 

disturbance reaction. Actuating limitation (2.4) is again not satisfied.  

4.4.4 The closed loop reaction on the power load level changes 
Results of the processes simulation for the step change of 푄  from 50% to 70% 

in the steady state (step time = 500s) are presented on fig. 4.9. 

 

Figure 4.9 − Output and actuating variable curves of processes with the step 
change of Qlevel in the steady state 

Output and actuating variables curves are acceptable. In the real system switching 

process can have bigger setting time because of the valve opening speed (the step rise of 

the actuating value is impossible). 

Results of the processes simulation for the ramp change of 푄  from 50% to 

100% (start time = 500s, slope 0.5%/s) in the steady state is presented on fig. 4.10. 



45 
 

Output and actuating variables curves are acceptable. Overall, different changes of 

plant parameters in the steady state are worked out by localization circuit successfully. 

 

Figure 4.10 − Output and actuating variable curves of processes with the ramp change 
of Qlevel in the steady state 

To summarize, the two-circuit localization control loop with actuating rules (3.27) 

is not able to satisfy all requirements, which are given for discussed plant. Big values of 

outer circuit controller gain 푘 , needed to compensate outer circuit own gain, make 

the satisfaction of the actuating value limitation (2.4) almost impossible. The 

normalization of signals is possible, but it significantly complicates the control system 

application and rises it cost. On the other hand, the localization circuit almost perfectly 

deals with changes of plant's dynamic due to the power load level changes. Also, all 

mentioned problems are located in outer circuit, processes in the inner one are 

acceptable. 

The possible solution for arisen problems is changing of the outer circuit actuating 

equation (4.10). As it was told in Chapter 3, main idea of the localization method is the 

output derivative usage. The proportional actuating equation (3.27) is the simplest 

variant of possible localization rules. In the next chapter we will consider another 

actuating rule − with the integrator addition to the control circuit. 
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5 Localization control loop improvement by 
integrator implementation 

5.1 Outer circuit control loop recalculation 

5.1.1 Controller parameters choice 
As it was told in the previous chapter, using of the actuating equation (3.27) doesn't 

allow getting required processes qualities in the outer circuit. Therefore, in this chapter 

we will consider more complicated actuating algorithm. The inner circuit's structure and 

parameters remain the same, as before.  

The standard option for making system astatic in the control theory is the integrator 

addition into the control loop. This element allows to obtain zero steady state error 

without using the big valued gain. Therefore, in order to decrease actuating value 

oscillation amplitudes and to fully neglect steady state error, we will use the direct 

connection of gain and integrator in the outer circuit control loop. The general case 

actuating equation takes form 

푢 =
푘
푝 퐹(. ) − 푦( ) ; 

or, in our case 

 푢 =
푘

푝 (퐹 푟, ∆푇 , ∆푇̇ , ∆푇̈ − ∆푇 ). (5.1) 

The outer circuit desired equation stays the same. The controller gain 푘  now can 

be significantly decreased in order to satisfy the actuating limitation (2.4). During 

processes simulation there was used 푘 = 40. 

5.1.2 The differentiating filter design 
The outer circuit differentiating filter's structure remains the same. Numerical 

values of filter's parameters (4.11) also can be used without changes, but it is necessary 

to recheck fast processes subsystem stability. After applying actuating equation (5.1), 

the outer circuit fast processes subsystem can be described by characteristic equation  

퐷 (휇 푝)푝 + 푏 푘 = 0, 
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or, in expanded form, 

푝 +
푑
휇 푝 +

푑
휇

푝 +
푝 + 푏 푘

휇
= 0. 

According to Hurwitz criterion, stability conditions for such fast processes 

subsystem are 

푑 푑 > 1; 푑 푑 − 푏 푘 푑 휇 − 1 > 0. 

Chosen differentiating filter parameters (4.11) satisfy this conditions. The fast 

processes subsystem is stable. Also, influence on the stability of the controller gain 푘  

can be seen from the second condition. 

5.2 The closed loop processes simulation 
Results of closed loop with the changed outer circuit processes simulation are 

presented in this subchapter. Plant's transfer function is described by equation (4.1), 

numerical values of parameters are taken from Table 1. The simulation scheme structure 

remains the same (fig. 4.6), the only change is normalization gains deletion (the small 

controller gain makes them unnecessary). The structure and the numerical values of the 

differentiating filter blocks also remains the same (fig. 4.4; (4.11)). The structure 

scheme of the outer circuit controller is presented on fig. 5.1. 

 

Figure 5.1 − The simulation scheme of the outer circuit controller 

Results of the processes simulation for different power load levels and without 

disturbances are presented on fig. 5.2. 
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Figure 5.2 − Output and actuating variable curves of the closed loop processes 

These graphs show, that the integrator implemenation with decreasing of the 

controller gain in the outer circuit allow to satisfy the actuating limitation (2.4). Now, 

there are no oscillations of the actuating values in the beginning of the processes. On the 

other hand, such changes in the outer circuit decrease the localization circuit ability to 

neglect plant's dynamic changes due to the different power load levels, output variable 

curves for different 푄  values are different, but all of them are acceptable. Also, 

setting time has been increased in comparison to actuating equation (4.10). However, all 

dynamic and steady state requirements (2.5) are satisfied, the output and actuating 

variables behavior is acceptable. 
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5.2.1 The closed loop reaction on the disturbance 
Results of the processes simulation for different power load levels and with the 

ramp disturbance addition (start time 1000s, slope 0,05°C/s) in the steady state are 

presented on fig. 5.3. 

 

Figure 5.3 − Output and actuating variable curves of processes with added ramp 
disturbance 

The reaction on the disturbance with the changed outer circuit actuating equation 

(5.1) is slower, than for (4.10). On the other hand, oscillations of the actuating variable 

are now much smaller and don't overcome actuating limitation (2.4). Moreover, in real 

system application small "peaks" of the actuating value in the beginning and ending of 

disturbance value changes can be not processed by the valve (because of its opening 

speed, it won't be able to realize such fast changes). Overall, control loop is able to work 

out disturbance addition for all values of the power load level. 
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5.2.2 The closed loop reaction on the power load level changes 
Results of the processes simulation for the step change of 푄  from 50% to 70% 

in the steady state (step time = 1000s) are presented on fig. 5.4. 

 

Figure 5.4 − Output and actuating variable curves of processes with the step change of 
Qlevel in the steady state 

Output and actuating variables curves are acceptable. In the real system switching 

process can have bigger setting time because of the valve opening speed (the step rise of 

the actuating value is impossible). 

Results of the processes simulation for the ramp change of 푄  from 50% to 

100% (start time = 1000s, slope 0.5%/s) in the steady state is presented on fig. 5.5. 

Output and actuating variables curves are acceptable. Overall, different changes of 

plant parameters in the steady state are successfully worked out by the localization 

controllers with the integrator addition into the outer circuit. 
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Figure 5.5 − Output and actuating variable curves of processes with the ramp change 
of Qlevel in the steady state 

To summarize, in contrast with localization control loop, discussed in chapter 4, 

system with the integrator addition to the outer circuit is able to satisfy all requirements 

for dynamic, steady state (2.5) and actuating values (2.4). The integrator allows to 

remove oscillations of the actuating variable in the beginning of the processes, and 

makes steady state error equal to zero even with the small controller gain value. In 

comparison to the proportional actuating rule, disadvantages of this control loop 

configuration are the bigger setting time and the plant parameters influence increase. 

However, these disadvantages are not significant, and don't break the system's 

operability. 

In the next subchapter there are presented processes simulation results for the 

localization control loop (with the integrator in the outer circuit) in the nonlinear model 

of the output superheater. 
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5.3 The nonlinear model processes simulation 
The simulation scheme of the nonlinear output superheater is shown on fig. 5.6. 

 

Figure 5.6 − The simulation scheme of the output superheater 

The controller structure consists of two circuits: 

 The inner circuit − the controller, which realizes the actuating equation (4.6) 

with numerical parameters, equal to the desired equation (4.5); 

differentiating filter parameters are equal to (4.8). 

 The outer circuit − the controller, which realizes the actuating equation (5.1) 

with numerical parameters, equal to the desired equation (4.9); 

differentiating filter parameters are equal to (4.11). 

The nonlinear works with nominal values of the steam temperature. The nominal 

reference point for the output superheater is 푟 = 575°퐶.  As it was mentioned it the 

control task, the only aim for the nonlinear model simulation is to show the suppression 

of operating point changes influence in the steady state and with zero disturbances. 

Therefore, following graphs are representing system behavior in the steady state with 

different changes of 푄 . 

Results of the processes simulation for the step change of 푄  from 50% to 70% 

in the steady state (step time = 2000s) are presented on fig. 5.7. 
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Figure 5.7 − Output and actuating variable curves of processes with the step change of 
Qlevel in the steady state 

The step change of the power load level leads to actuating "peak" on the controller's 

output, but the "peak" isn't being processed by the valve. The nonlinear system reaction 

is slower, than the linearized one's, but it keeps stability and suppresses the 푄  

influence, making output steam temperature equal to the reference point. Results of the 

processes simulation for the ramp change of 푄  from 50% to 100% in the steady 

state (start time = 2000s, slope 0,01%/s) are presented on fig. 5.8. 

 

Figure 5.8 − Output and actuating variable curves of processes with the ramp change 
of Qlevel in the steady state 
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Similar to step change of the power load level, processes in case of its ramp rise are 

also much slower, than in linearized models. The control loop is capable of suppressing 

the power load level changes. 

The localization method also gives possibilities for further improvement of 

processes performance. Deeper nonlinear model analysis will give some options: 

 Numerical control parameters tuning. Control loops of the outer and inner 

circuits can be done faster (it should be remembered, that after any changes 

it is necessary to recheck control loops stability and plant's requirement 

satisfaction). 

 Increasing of controllers and differentiating filters order. It significantly 

increases the design procedure complexity, but allows to obtain better 

results. 
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6 Conclusion 

The localization method of the control system is presented in this thesis. The 

method was successfully applied for the linearized and nonlinear models of the once-

through boiler's output superheater. Presented results show, that such control system 

design algorithm has potential for further development.  

Different variants of localization control loop are presented. The results analysis 

shows, that the main idea (nonlinearities and disturbances localization) is working, but 

the most simple control equations are often insufficient for obtaining desired processes 

quality and satisfying all limitations. Therefore, the control equation complication is 

needed for the correct system's functioning. Also, calculated controllers parameters 

often should be tuned during the simulation experiments; it also can increase the 

processes performance. 

During any alterations in calculated controller parameters values there always must 

be a recheck of stability conditions for the localization circuits. Are some cases 

alterations of one parameters can cause undesired changes of another or even make 

system inoperable. 
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