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Abstract 
This thesis considers two models allowing to utilize uncertainty information in the tasks of 
Automatic Speaker Verification and Speaker Diarization. 

The first model we consider is a modification of the widely-used Gaussian Probabilistic 
Linear Discriminant Analysis (G-PLDA) that models the distribution of the vector utter­
ance representations called embeddings. In G - P L D A , the embeddings are assumed to be 
generated by adding a noise vector sampled from a Gaussian distribution to a speaker-
dependent vector. We show that when assuming that the noise was instead sampled from 
a Student's T-distribution, the P L D A model (we call this version heavy-tailed P L D A ) can 
use the uncertainty information when making the verification decisions. Our model is con­
ceptually similar to the H T - P L D A model defined by Kenny et al. in 2010, but, as we show 
in this thesis, it allows for fast scoring, while the original H T - P L D A definition requires 
considerable time and computation resources for scoring. We present the algorithm to train 
our version of H T - P L D A as a generative model. Also, we consider various strategies for 
discriminatively training the parameters of the model. We test the performance of genera-
tively and discriminatively trained H T - P L D A on the speaker verification task. The results 
indicate that H T - P L D A performs on par with the standard G - P L D A while having the ad­
vantage of being more robust against variations in the data pre-processing. Experiments 
on the speaker diarization demonstrate that the H T - P L D A model not only provides better 
performance than the G - P L D A baseline model but also has the advantage of producing 
better-calibrated Log-Likelihood Ratio (LLR) scores. 

In the second model, unlike in H T - P L D A , we do not consider the embeddings as the 
observed data. Instead, in this model, the embeddings are normally distributed hidden 
variables. The embedding precision carries the information about the quality of the speech 
segment: for clean long segments, the precision should be high, and for short and noisy 
utterances, it should be low. We show how such probabilistic embeddings can be incor­
porated into the G - P L D A framework and how the parameters of the hidden embedding 
influence its impact when computing the likelihood with this model. In the experiments, 
we demonstrate how to utilize an existing neural network (NN) embedding extractor to 
provide not embeddings but parameters of probabilistic embedding distribution. We test 
the performance of the probabilistic embeddings model on the speaker diarization task. The 
results demonstrate that this model provides well-calibrated L L R scores allowing for better 
diarization when no development dataset is available to tune the clustering algorithm. 
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Abstrakt 
Tato práce se zabýva dvěma modely, které umožňují využít informace o nejistotě v úlohách 
automatického ověřování mluvčího a diarizace mluvčích. 

První model, který zvažujeme, je modifikací široce používané gaussovské pravděpodob­

nostní lineární diskriminační analýzy (G­PLDA) , modelující rozložení vektorových reprezen­

tací promluv nazývaných embeddingy. V G ­ P L D A se předpokládá, že embeddingy jsou 
generovány přidáním šumového vektoru navzorkovaného z Gaussova rozložení k vektoru 
reprezentujícímu mluvčího. Ukazujeme, že za předpokladu, že šum byl místo toho vzorkován 
ze Studentova T­rozdělení, model P L D A (tuto verzi nazýváme P L D A s těžkým chvostem, 
heavy­tail, H T ­ P L D A ) může při rozhodnutí o ověření mluvčího využít informace o nejistotě. 
Náš model je koncepčně podobný modelu H T ­ P L D A definovanému Kennym et al. v roce 
2010, ale jak ukazujeme v této práci, umožňuje rychlé skórování, zatímco původní definice 
H T ­ P L D A je značně časové a výpočetně náročná. Představujeme algoritmus pro trénování 
naší verze H T ­ P L D A jako generativního modelu a zvažujeme rovněž různé strategie diskrim­

inativního trénování parametrů tohoto modelu. Generativně a diskriminativně trénovanou 
H T ­ P L D A testujeme na úloze ověřování mluvčího. Výsledky naznačují, že H T ­ P L D A fun­

guje podobně jako standardní G ­ P L D A , přičemž má výhodu v odolnosti vůči změnám v 
předzpracování dat. Experimenty s diarizací mluvčích ukazují, že H T ­ P L D A poskytuje ne­

jen lepší výsledky než základní G ­ P L D A , ale skóre logaritmického poměru věrohodností 
(log­likelihood ratio, L L R ) produkovaná tímto modelem jsou lépe kalibrovaná. 

Ve druhém modelu nepovažujeme (na rozdíl od H T ­ P L D A ) embeddingy za pozorovaná 
data. Místo toho jsou v tomto modelu embeddingy normálně rozložené skryté proměnné. 
Přesnost (precision) embeddingů nese informaci o kvalitě řečového segmentu: u čistých 
dlouhých segmentů by přesnost měla být vysoká a u krátkých a zašuměných promluv by 
měla být nízká. Ukazujeme, jak lze takové pravděpodobnostní embeddingy začlenit do 
skórování založeného na G ­ P L D A , a jak parametry skrytého embeddingů ovlivňují jeho 
vliv při výpočtu věrohodností s tímto modelem. V experimentech demonstrujeme, jak lze 
využít existující extraktor embeddingů založený na neuronové síti (NN) k produkci nikoli 
embeddingů, ale parametrů pravděpodobnostního rozložení embeddingů. Pravděpodobnos­

tní embeddingy testujeme na úloze diarizace mluvčích. Výsledky ukazují, že tento model 
poskytuje dobře kalibrovaná skóre L L R umožňující lepší diarizaci, pokud není k dispozici 
vývojová datová sada pro ladění shlukovacího algoritmu. 

Klíčová slova 
Ověřovánu mluvčího, diarizace mluvčích, pravděpodobnostní lineární diskriminační analýza, 
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Chapter 1 

Introduction 

This thesis is dedicated to the task of automatic speaker recognition (SR) and the closely 
related task of speaker diarization (SD). Let us consider both tasks. 

Regarding SR, we concentrate on one of the forms of this problem - text-independent 
speaker verification (SV). That is, the SR system is supposed to compare two sets of audio 
recordings called enrollment and test. Each set is assumed to be generated by a single 
speaker. The task is to answer the question of whether the test set was generated by the 
same speaker as enrollment or whether enrollment and test were uttered by two different 
speakers. In this work, we discuss methods assuming that both sets, enrollment and test, 
are equivalent; exchanging them does not lead to a different result. A pair enrollment-test 
is referred to as a trial. If the speakers for both sets are the same, the trial is called target 
trial, while if the speakers are different, it is non-target. As follows from the name "text-
independent" SV, the message conveyed by the speech should not be relevant for the final 
decision. On the contrary, in text-dependent SV, not only the identity but also the uttered 
phrase of the test recording has to match the identity and phrase of the enrollment recording 
for the trial to be considered target. We do not consider text-dependent SV in this thesis. 

The task of Speaker Diarization is to annotate an audio recording that might contain 
speech of many speakers with speaker labels. In other words, the diarization system is sup­
posed to break the recording into speaker-homogeneous regions and indicate which regions 
belong to the same speaker and which come from different speakers. 

1.1 Classical approach to SV and SD 

A typical modern SV system consists of three stages: frame-level acoustic feature extraction, 
utterance-level embedding extraction, and the back-end comparing the embeddings. The 
first stage converts an audio signal into a sequence of feature vectors, each of them extracted 
from a short excerpt from the speech where the acoustic properties of the signal are assumed 
to be constant. Usually, frame features are extracted every 10 ms, and the length of a single 
frame is 20 ms. The output of the feature-extraction stage for a single recording is a matrix 
where each row corresponds to one frame from the utterance. Thus, the number of rows 
in the feature matrices is different for recordings of different lengths. Direct usage of the 
acoustic feature matrices for speaker recognition is impractical because of the large amount 
of data and inconsistency in matrix sizes for the signals of different lengths. For these 
reasons, the set of acoustic features is further processed by a model transforming them 
into a fixed-length utterance-level vector representation, i.e., after this modeling stage, each 
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Figure 1.1: Typical speaker verification pipeline. The subscripts in the blocks correspond 
to the dimensionality of the output of the current stage. 

audio recording is represented by a single vector of fixed size called embedding. A more 
detailed overview of the embedding extraction techniques is given in Section 2.4. Finally 
embeddings of different utterances are compared using a back-end model. The general 
scheme of the speaker verification pipeline is shown in Figure 1.1. In this work, we adopt 
the same three-stage processing; however, we primarily concentrate on the last stage, the 
back-end model. 

A similar approach is used in most of the diarization systems. As in SV, frame-level 
features are extracted for the recording of interest. Then, instead of extracting a single 
embedding for the whole recording, the audio is split into short segments, and an individual 
embedding is extracted for each of them. Finally, these embeddings are compared by the 
back-end model as in SV. The difference between speaker recognition and diarization is that 
instead of comparing a pair of (sets of) embeddings, one is interested in clustering or parti­
tioning all of the embeddings from the same recording into speaker-homogeneous clusters. 
This clustering usually requires modeling the embeddings extracted from the recording; the 
same back-end models that are used in SV can be applied for the SD task. Hence, the 
back-end models we discuss in this thesis would be equally suitable for both SV and SD. 

1.2 Motivation and outline of the thesis 

Our primary motivation for this work is to utilize uncertainty information when making a 
speaker verification decision. That is, the confidence of the SR system should be affected 
by the quality of the input audio. Intuitively, short audio of poor quality should be trusted 
less than a long clean recording. To this end, we have worked in two main directions: 

First, we start with the back-end model aimed to work with the audio recordings rep­
resented as embeddings. We present a variant of a heavy-tailed P L D A (HT-PLDA) model. 
We show how this model allows for better data-dependent uncertainty propagation com­
pared to a widely used Gaussian P L D A (G-PLDA) . Our model formulation allows for a 
relatively fast scoring, and we mitigate excessive computational requirements that were the 
main drawback of the original H T - P L D A [Kenny, 2010]. H T - P L D A is a generative model 
of the observed data, i.e., it represents our beliefs of how the data (embeddings) were gen­
erated. Here, we present two main strategies for training it. The first one is generative 
training, i.e., the parameters of H T - P L D A are estimated so that the model fits the training 
data well. That is, the parameters are chosen to maximize the likelihood of the observed 
training data. On the other hand, the discriminative approach does not aim at modeling the 
observed data. Instead, the parameters of the model are learned to optimize a pre-defined 
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objective function which is believed to correlate well with the performance of the model 
on the task of interest. Usually, the model trained discriminatively does not reflect our 
beliefs on the underlying process generating the data. Instead, it is selected to model the 
separation boundary between the classes (e.g., target vs. non-target trials in SV). In our 
case, however, we keep the functional form of H T - P L D A even for discriminative training. 
We use various objective functions to learn model parameters. 

H T - P L D A is a back-end model, and each audio recording is represented by an embedding 
vector ( H T - P L D A treats the embeddings as the observed data). Even though it allows for 
better uncertainty propagation than a conventional G - P L D A , still, it has limited abilities to 
utilize the uncertainty since pre-extracted embeddings have already lost most of this infor­
mation. The only source of uncertainty available to the H T - P L D A model is the distribution 
of the embeddings. Hence, we move to the second approach to utilize the uncertainty: we 
assume that the observed data are sets of acoustic features, while embeddings participate 
in the model as hidden variables. Then, instead of extracting a "point" vector embedding 
per recording, we extract the parameters of the embedding distribution. This distribution 
should be sharp for long high-quality audio recordings, i.e., the model should be certain 
where the true embedding is for such recordings; for short and noisy recordings, the em­
bedding distribution should be flat - there is high uncertainty about where the embedding 
for such recording should be. In our approach, the parameters of the embedding distribu­
tions are estimated by a neural network (NN). We construct the network by utilizing the 
existing N N embedding extractor (the original embedding is used to infer the mean of the 
probabilistic embedding) and augmenting it with several additional blocks responsible for 
estimating the precision of the embedding distribution. We model the distribution of hid­
den embeddings with a Gaussian P L D A model. We train both G - P L D A and probabilistic 
embedding extractor jointly in a discriminative way. 

1.3 Structure of the thesis 

The rest of this thesis is organized as follows. Chapter 2 presents some general notes on 
SV and SD, including common data assumptions, standard approaches to solving SV and 
SD, and performance metrics to evaluate the quality of the model. Then, in Chapter 3, we 
discuss the P L D A model, its commonly-used variant Gaussian P L D A (G-PLDA) , and in­
troduce P L D A with heavy-tailed noise ( H T - P L D A ) . This chapter is based on our previously 
published works [Brummer et al., 2018a, Brummer et al., 2018b]. Chapter 4 presents the 
H T - P L D A model trained as a generative model along with experiments and results achieved 
with it. This chapter expands on both theoretical and practical parts of our work [Silnova 
et al., 2018]. Then, Chapter 5 introduces a few options of estimating H T - P L D A parameters 
discriminatively. For each method, we pair the theoretical introduction with the section 
describing the corresponding experimental setup and results. Some of the discriminative 
approaches to training the H T - P L D A model were published before in [Brummer et al., 
2018b, Silnova et al., 2020], others are summarized here for the first time. In Chapter 6, 
we describe a model utilizing probabilistic embeddings initially presented in [Silnova et al., 
2020]1, introduce the training strategy adopted in our experiments, and present experimen­
tal results of this model on the SD task. Finally, Chapter 7 concludes the thesis and provides 
some possible future work directions. 

1 [Silnova et al., 2020] received the inaugural Jack Godfrey Best Student Paper Award at Odyssey: The 
Speaker and Language Recognition Workshop, 2020, Tokyo, Japan. 
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1.4 Claims of the thesis 

The main contributions of this thesis can be summarized in the following points: 

• P L D A with heavy-tailed noise: We introduce a modification to a widely-used 
Gaussian P L D A model - H T - P L D A . Unlike the earlier version of H T - P L D A , our 
modification allows for fast scoring of speaker verification trials. Besides that, we 
demonstrate the mechanism of propagating the uncertainty in H T - P L D A . 

• Generative training recipe for H T - P L D A : We derive a fast algorithm to learn 
the parameters of the H T - P L D A model. The experiments on the speaker verification 
task show that generatively trained H T - P L D A performs on par with the Gaussian 
P L D A baseline. Even though H T - P L D A does not always bring a performance gain 
compared to G - P L D A , it is more robust to variations in the input data. 

• Analysis of various discriminative training strategies for H T - P L D A : We 
describe four different approaches to discriminative learning of the H T - P L D A param­
eters. The methods are tested on the speaker verification and speaker diarization 
tasks. The results of different training strategies are analyzed and compared. 

• Derivation of algorithms to sample from partition posterior: One of the 
introduced discriminative training approaches requires sampling from the posterior 
distribution of possible partitions of training data into speaker clusters. We describe 
various sampling algorithms and derive the particulars for the H T - P L D A model. 

• Probabilistic speaker embeddings: We introduce a model that considers the em-
beddings as hidden variables. We derive the formulae for computing the likelihood 
with the model and propose a discriminative training strategy to estimate the model 
parameters. Finally, we test the model performance on the speaker diarization task. 
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Chapter 2 

Preliminaries of speaker verification 
and speaker diarization 

2.1 Data assumptions 

We start by introducing the assumptions we make about the data we are dealing with. 
Generally speaking, the data used for SR come from two categories: Training (Development) 
and Evaluation data. For both of them, the same assumptions are made: 

• The data are in a form of a collection or set 7Z of iV audio recordings rf 1Z = 
{ n , . . . , rjv} • Recordings can be represented differently, for example, as raw audio, 
sequences of acoustic features, embeddings, etc. Each recording contains speech of a 
single person. 

• Recordings of different speakers are independent of each other. 

• Recordings of the same speaker are interchangeable (their order does not matter). 

Additionally, we assume that for the training data, speaker labels are known and given 
as a vector C = ..., IN}, where each li is an integer corresponding to r^. C defines a 
partition of audio recordings from the dataset 1Z into speaker clusters. Hence, we refer to 
it as a speaker partition. For the evaluation data, the task is to infer the labels. 

Many probabilistic approaches and models in speaker recognition, including the P L D A 
model described later, make use of the above-mentioned assumptions. The assumptions are 
mathematically convenient, however, they might not be very realistic. 

By De Finetti's theorem [Chow and Teicher, 1997], these assumptions are equivalent 
to the concept of the hidden speaker identity variable. For each speaker, we assume the 
existence of a hypothetical variable carrying the information about the speaker's identity. 
We assume that this variable is a real-valued <i-dimensional vector z £ Such vectors 
are unobserved; hence, the name "hidden" speaker variables/vectors. Vectors z are uniquely 
assigned to speakers, so speaker identity can be perfectly deduced from its hidden vector if 
it is known. The observed data are assumed to be generated by some underlying process 
that uses a single speaker hidden variable to generate a single recording (the assumption for 
the recording to contain speech of a single speaker). Due to the exchangeability assump­
tion, recordings of the same speaker (meaning they share the same z) are conditionally 
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independent given z. 

p{Ki\x)= n p \̂*)- (2.1) 

Above, IZi is a set of iVj recordings from 1Z known to belong to speaker i. 
As z is hidden, the exact value z generating the data for a given speaker in the above 

equation is unknown. Hence, to compute the likelihood of the recordings from IZi, one has 
to marginalize over all possible values of z generated from some prior distribution 7r(z). In 
this document, we always assume standard normal prior 7r(z) = A^(z | 0,1). 

Here and in the following, triangle brackets denote expectation. Hs denotes the hypothesis 
that all of the recordings from IZi belong to the same speaker i, i.e., they share the same 
speaker variable z. 

Finally, due to the between-speaker independence assumption: 

Expression (2.3) provides the likelihood for any specific partition C (defining m speaker 
clusters) of a set of recordings 7Z. However, this expression makes sense only in combination 
with some probabilistic model Ai (it can be either a true model generating the data or 
some approximation to it). For the real audio data, the true model is unknown (most likely, 
it even does not exist as our data assumptions are obviously not correct); so, we assume 
that Ai is some human-designed model (e.g., P L D A model as will be discussed in detail in 
Sections 3.1 and 3.2). Then, (2.3) evaluated for the training data would allow us to assess 
how likely the correct partition of the data C* is, compared to other partitions C given the 
model Ai. 

However, to be able to evaluate (2.3), one has to make sure that two operations are 
tractable. First, there should be a tractable way to pool together recordings hypothesized 
to belong to the same speaker. Second, computing the expectation over the prior of the 
hidden variable should be feasible. Let us assume for now, that the model Ai allows for 
performing these operations. 

2.2 Speaker verification 

2.2.1 Obtaining a speaker verification score 

Given the model Ai, one can use (2.3) to evaluate the likelihood of the evaluation recordings 
given some hypothetical partition C. And, what is more relevant for the SV task, two such 
partitions can be compared. Suppose, we are given some alternative partition £ ' of the data 
1Z = {TZ'i, ...,lZ'm,}, then, we can form a likelihood ratio: 

(2.2) 

(2.3) 

PjJZ | C) 
p{iz i a) (2.4) 

G 



Logically, if the value of the likelihood ratio is higher than 1, the partition C is more likely 
to be a true partition of the data than CI (given model M). If it is smaller than 1, the 
opposite is true. 

For practical reasons, log-likelihood ratios are often preferred; the above formula in a 
logarithmic form is: 

i o g(lii^) =^ i o g(n^i Z)\ -Eiog(n^iZ)\ • (2-5) 

(2.4) or (2.5) allow comparing any pair of possible data partitions. However, in speaker 
verification, which is the main task of this work, the partitions of interest are very specific: 
either two sets of recordings 72.1,72.2 ( m the simplest case, these are individual recordings) 
come from the same speaker (£ or Hs denoting same-speaker hypothesis) or from two 
different speakers {£' or denoting different-speaker hypothesis). For this particular 
problem, (2.5) is: 

i \ i \ p ' 6 ) 

- log ( J] P(r \z)j - log / J] P(r\ z) j . 

(2.6) gives so-called verification score {log-likelihood ratio score (LLR)) . The verification 
decision in SV depends on the score. The score reflects confidence in the same-speaker 
hypothesis. The higher the score, the more sure the system is that the trial is a target trial. 
The opposite is also true: lower scores correspond to the system being more sure in the trial 
to be non-target. Hard decisions are made by introducing a threshold: if the score is higher 
than its value, the trial is considered to be a target trial (system makes an accept decision); 
if it is lower than the threshold, the trial is non-target {reject). 

L L R (2.6) can be used for both: to evaluate speaker verification performance of a trained 
model, or to train a model discriminatively (Section 5.2). More general (2.5) can also be 
used for some of the discriminative training strategies (Sections 5.3, 5.4, and 5.5). 

2.2.2 Speaker verification performance metrics 

At the end of the previous section, we mentioned how the L L R score could be used to 
decide whether the trial should be accepted or rejected. The question of this section is how 
to quantify the performance of the speaker verification system (model M). To be able to do 
it, one has to have a labeled evaluation set T in the form of a collection of trials f 6 T with 
the corresponding target/non-target labels. The goal of the system is to assign the correct 
labels to all trials in T. 

By fixing a threshold r , one obtains a hard decision for each trial t £ T as described in 
Section 2.2.1. As an outcome, there are four categories of trials. The first two categories 
consist of correctly classified trials: correctly accepted target trials and correctly rejected 
non-target trials. The third category are the target trials which were rejected (so-called 
false reject or miss errors); suppose there is i V m i s s of them. And, finally, the fourth category 
are those trials which were incorrectly classified as targets {false accept or false alarm); iVfa 

of them. 
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Errors made by the system come from the trials of the last two categories. Then, for a 
given trial set, miss and false alarm rates are: 

c> _ -̂ miss /9 7 n 
-'•'miss — j.,. V • ) 

J'non 

where iVtar and i V n o n are the total numbers of target and non-target trials in set T• Note 
that the actual accept and reject decisions depend on the threshold value r; by changing it, 
the number of trials in each category and, consequently, error rates change. 

Equal Error Rate (EER) is a common metric used to summarize the performance of an 
SV system; it is defined as the false alarm or miss rate when the threshold r = f is set in 
such a way that these two error rates are equal: 

E E R = J R f a ( f ) = i ? m i s s ( f ) . (2.9) 

E E R is one of the metrics we use to track the performance of the speaker verification systems 
in this thesis. However, when computing E E R , both kinds of error are treated in the same 
way, while in some applications, one type of error might be more acceptable than the other. 
Hence, we also use another metric that takes this consideration into account. 

Depending on the application, each type of error has a cost associated with it. Then, 
the goal is to minimize the total cost caused by the system's errors. Different systems can 
be compared with these total costs. To formalize this idea, let us introduce a Detection Cost 
Function (DCF) metric defined by American National Institute of Standards and Technology 
(NIST) [Martin and Greenberg, 2010] to evaluate the performance of a speaker verification 
system at a fixed operating point. By the operating point, we mean costs associated with 
errors of each type and prior probabilities of target/non-target trials. 

D C F is defined as a weighted sum of two error probabilities: 

C D e t = C m i s s P ( e r r o r | t a r )P t a r + C f a P(error | non)P n o n . (2.10) 

To compute the value of the cost Cb e t f ° r trial set T and threshold r , error probabilities 
P(error | tar) and P(error | non) are replaced with miss and false alarm rates i ? m i s s and i?fa 

as they are the maximum likelihood estimates of the true probabilities. C m i s s and Cf a define 
relative costs associated with each error type. P t a r = P(HS) is a prior probability of the 
same-speaker hypothesis (target trial), while Pnon = 1 — P t a r = P(Hd) is a prior to obtain a 
non-target trial. Together, a triplet (Cmiss> Cf a , P t a r ) defines an operating point of interest. 
These parameters are set by the operator of the SV system based on a target application. 

To improve the interpretability, D C F is normalized with the best default value Cdefauit 
that can be obtained without processing the data, i.e., always accept or reject every trial, 
whichever results in a lower cost: 

Cdefauit — m i n { C m i s s P t a r , C f a P n o n } , 
C D e t (2.H) 

C , 
c d efault 

Then, the value of C n o r m = 1 corresponds to a "dumb" system which assigns the more 
likely (taking the costs into account) label to all of the trials; C n o r m = 0 to a system that 
does not make any errors. 
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Similarly to error rates, D C F depends on a threshold value used to compute it. When 
the threshold is fixed by the system operator, the value of D C F is referred to as an actual 
D C F . A n oracle metric called minimum Detection Cost Function (minDCF) is defined as a 
minimum possible value of D C F achieved by setting the threshold optimally: 

m i n D C F = m i n C n o r m ( r ) . (2.12) 
T 

Unlike E E R , minDCF takes into account the relative importance of the two errors. However, 
it still does not provide a direct way to evaluate how the system would behave when applied 
to a real task (with an arbitrarily set threshold). 

However, if the system is known to output the log-likelihood ratio scores, there is a 
way to analytically set the threshold for any operating point ( C m i s s , Cf a , Ptar)- The optimal 
threshold r* is selected to minimize the expected D C F . When the accept decision for a trial 
t is made, the probability of making an error is the probability of a false alarm, i.e., that 
the trial is non-target P(non | t). Conversely, when t is rejected, the system makes a miss 
error with probability P(tar | t). Consequently, the corresponding expected costs for trial t 
are: 

(^accept = ^ ( n o n I t) = CiaP(t I n o n ) ^ 

Ptar ( 2 ' 1 3 ) 

(C) r eject = CmissP(tar | £) = CmissP(t | tar) • 

P(t) in the expression above is the prior probability of a particular trial t. In practice, this 
quantity is impossible to evaluate, but as we will see shortly, that is not needed as P(t) 
cancels out in the threshold expression. 

To minimize the expected cost, we have to accept when ( C ) a c c e p t < ( C ) r e j e c t and reject 
when ( C ) a c c e p t > ( C ) r e j e c t . Let us look at the case when the expected costs for both decisions 
are equal: 

C f a P ( i | non)|̂ g = C m i s s P ( t | t a r ) - ^ | . (2.14) 

By reorganizing the terms and taking a logarithm of both parts: 

, Pit | tar) Cfa(l ~ Ptar) * . 
P(t | non) C m i s s P t a r 

On the left side of (2.15), there is a log-likelihood ratio score, and, on the right side, there 
is a value of the score when both hypotheses are equally likely, i.e., the right side defines 
an optimal threshold r* if the system outputs true L L R scores. In this case, the values of 
D C F computed at T* , and minDCF are the same. 

However, even with the probabilistic model that allows us to calculate L L R scores, the 
actual values of the scores are not well-calibrated LLRs because of the mismatch between 
model assumptions about the data and the actual data distribution. In such a case, fixing 
the threshold to r* would result in a higher value of D C F than minDCF. If so, the system is 
said to be miscalibrated, and the difference between actual and minimum DCFs is referred 
to as a calibration loss. D C F with the analytically set threshold (2.15) is the primary metric 
in NIST speaker recognition evaluations (SRE) [Lee et al., 2020]. This metric encourages 
the system to output the true log-likelihood ratio scores. Eventual adjustments in different 
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Table 2.1: D C F parameters used by NIST in speaker recognition evaluations of different 
years. Two DCFs were computed and averaged as a primary metric for cases when two sets 
of parameters were used. 

Year Task Cmiss Cfa -ftar 

2016 -
1 
1 

1 
1 

0.01 
0.005 

2018 
Conversational Telephone Speech (CTS) 

1 
1 

1 
1 

0.01 
0.005 

Audio from Video (AfV) 1 1 0.05 

2019 
Conversational Telephone Speech (CTS) 

1 
1 

1 
1 

0.01 
0.005 

Audio from Video (AfV) 1 1 0.05 

editions of the evaluations are made to the operating points of interest by setting parameters 
Cmiss > Cfa; a n d -ftar-

The particular values of the parameters used by NIST in different editions of the S R E 
are given in Table 2.1. When two sets of parameters are given for a single task, the primary 
metric ( C P r m ) was defined as an average of two DCFs computed at the two operating points. 
In this work, when evaluating the performance on the telephone condition, we adopt the 
parameters as they were defined by NIST in 2016, 2018 CTS, and 2019 CTS [Sadjadi et al., 
2017, Sadjadi et al., 2019, Sadjadi et al., 2020]: for the telephone task, we report C m ™ as 
the average minimum detection cost function for two operating points with the probability 
of target trials P tar = 0.01 and P tar = 0.005. When the performance is evaluated on Audio 
from Video data, C m ™ is minDCF computed with the probability of target trial P t a r = 0.05. 

Usually, the last step of the speaker verification system is the calibration. Its purpose is 
to minimize the calibration loss and to transform the scores output by the system to true 
LLRs . The common calibration strategy is a linear calibration: 

s* = as + b. (2.16) 

The new value of a score s* is a linear transformation of the original score s. Parameters of 
the transformation a and b are shared across all scores. They are trained to optimize the 
Binary Cross-Entropy objective (as in Section 5.2) on a held-out set of development scores 
with known target/non-target labels. Such optimization results in a and b that make the 
scores closer to the true L L R for a wide range of operating points [Brummer, 2010b]. 

As this calibration strategy is pretty simple and works well, the actual value of D C F is 
often not closely tracked at the time of system development. Instead, minDCF is watched 
and compared across systems. The hope is that the calibration step will mitigate the gap 
between actual and minimum D C F . In this work, we adopt the same strategy and track the 
performance of the speaker verification systems in terms of minDCF and E E R . 

2.3 Speaker diarization 

The task of a diarization system is to split the audio recording containing the speech of one 
or several speakers into speaker-homogeneous regions and then cluster these regions into 
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speaker clusters. 
In general, speakers can overlap, leading to regions with more than one speaker talking 

simultaneously. However, here, we do not account for such a possibility. We assume that 
at any time, only one person is speaking or there is silence. We understand that this 
assumption is unrealistic and will lead to errors in the output of the diarization system due 
to overlapping speech. To reduce it, some separate approach to handle overlapped speech 
would be needed; we do not consider any of them in this thesis. 

In the following Sections 2.3.1 and 2.3.2, we describe one general approach to diarization 
and a metric used to assess the performance of the diarization system. 

2.3.1 Diarization pipeline 

First, let us note that there are various strategies for diarization. Here, we concentrate on 
just one of them used in our work. 

We perform diarization by the following procedure: 

• Perform voice activity detection (VAD). For our experiments, we use ground truth 
V A D labels. 

• Split the speech regions of the test utterance into short overlapping segments. We use 
1.5 s long segments with 0.75 s overlap in this work. If the speech region is shorter 
than 1.5 s, the whole segment is used. 

• For each of the segments, extract an embedding representation. For example, this 
might be one of the embeddings described in Section 2.4. In Chapter 6, we discuss 
an alternative to the commonly used vector embeddings (probabilistic embeddings 
utilizing the uncertainty information). 

• Cluster the embeddings so that the segments of the same speaker are put to the 
same cluster. One of the clustering techniques widely used in diarization is a greedy 
algorithm called Agglomerative Hierarchical Clustering (AHC) [Jain and Dubes, 1988]. 
Below, we present it in more detail. 

• Once the clustering of the embeddings is done, the performance of the diarization can 
be evaluated as described in Section 2.3.2. 

Agglomerative Hierarchical clustering 

A H C belongs to the family of hierarchical clustering methods. These methods transform 
a matrix of pairwise distances (or similarities) between the elements into a sequence of 
nested partitions. Hierarchical methods are usually split into two large groups: divisive and 
agglomerative. Divisive methods start with assigning all data points to a single cluster and 
then perform splitting until a stopping criterion is satisfied. On the contrary, agglomerative 
clustering starts from the finest partition of the data and then gradually merges clusters. 
Usually, in agglomerative methods, the stopping criterion is defined by setting a similarity 
threshold value a: once all of the inter-cluster similarities are lower than the threshold, the 
clustering procedure stops, a is a hyperparameter of the algorithm and has to be tuned to 
achieve good clustering. 

A H C is formally presented in Algorithm 1, where we use the following notation: IZi is a 
cluster containing zero, one, or more datapoints rj. At the initialization, all clusters IZi are 
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Algorithm 1: A H C 
Initialize clusters and similarity matrix: 

TZi = n , V i ; 
Sij = s(ri,rj), V i , j / v, 
Sa = — oo: 

while > a, V i , j do 
Find two closest clusters to merge: 

= argmaXjjSj,-; 
Let i* < j*, then Tli* = Ki* U Uj*, Kj* = 0; 

Update similarity matrix: 
Si*k = Ski* = s(Tli*,llk),Vk / i*; 
Skj* = Sj*k = -oo, \/k 

end 

singletons. The similarity between clusters IZi and IZj is denoted as s(lZi,lZj), similarity 
between any cluster and an empty cluster is assumed to be —oo. By s(ri,rj), we denote a 
similarity between individual data points. Matrix S is composed of similarity scores between 
all pairs of clusters currently obtained by the algorithm. It is initialized with the pairwise 
similarities of the individual data points and updated as the algorithm progresses. 

A particular implementation of the A H C algorithm depends on the definition of pairwise 
point similarity and inter-cluster similarity. Regarding inter-cluster similarities, there are 
several approaches. For example, single-link A H C [Sneath et al., 1973] defines this similarity 
as the maximum of pairwise similarities of individual elements of two clusters: 

s(JZ.\,1Z.2) = maxs(n,rj) : n G lZi,rj G 72.2-

Complete-link A H C [King, 1967] defines it as the minimum of all pairwise similarities be­
tween two clusters: 

s(7£i,72,2) = mins(n,rj) : n G 1ZI,VJ G 72-2. 

In diarization, unweighted average linkage A H C also known as unweighted pair group method 
using arithmetic averages ( U P G M A ) is often used [Sell et al., 2018]. In U P G M A , the 
similarity between two clusters is computed as an average pairwise similarity: 

* j 

where N\ and N2 are the numbers of points in two clusters. 
Here, we assume that the pairwise similarities between individual points are LLRs (2.6) 

evaluated given some back-end model Ai (we discuss different options for a model Ai in 
Sections 3.1, 3.2, and 6.1). Assuming such similarity scores, we are not limited to U P G M A 
or other generic algorithms. In fact, we can compute the proper L L R scores (2.6) for two sets 
of segments to belong to the same speaker class or two different ones. In terms of Speaker 
Verification, it would correspond to evaluating a score for a multi-enrollment/multi-test 
trial. From the theoretical point of view, this approach should be better as the scores at 
any stage of the algorithm have probabilistic interpretation, while we cannot say the same 
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about intermediate scores used in U P G M A . Moreover, as discussed in [Silnova et al., 2020], 
such an approach corresponds to a greedy maximization of the log-likelihood of the correct 
segment clustering. At each stage of the algorithm, the current clustering is updated with 
one of the possible clusterings (those that differ from the current one only by having two 
clusters merged) such that the total log-likelihood of the data is maximized. We use this 
version of A H C in the experiments presented in this work. 

2.3.2 Diarization performance metric 

The result of the procedure described in the previous section is a sequence of speech segments 
with cluster labels assigned to them. Merging consecutive segments belonging to the same 
cluster, one gets the final diarization output. The question arises on how to evaluate the 
quality of the diarization, i.e., how to compare it with the reference ground truth label for 
the utterance. Here, we discuss a widely used (including this work) performance metric to 
evaluate the diarization quality. 

As in the case of Speaker Verification, we follow the performance metric introduced by 
NIST for its Rich Transcription Meeting Recognition Evaluation [Fiscus et al., 2006]. The 
metric is called Diarization Error Rate (DER) and is computed for each test utterance 
individually. 

First, all possible mappings between the system output labels and the reference labels 
are found. One mapping sets the correspondence between speaker clusters from the system 
output and the ground truth speaker labels. Then, for each mapping, D E R is computed as 
described below; the lowest D E R is used as the final performance metric. 

For a fixed mapping, three components of the error made by the system are: 

• The miss error (tm) - total duration of the speech not assigned to any of the speakers. 

• The false alarm error (tfa) - total duration of the silent segments assigned some speaker 
label. 

• The speaker error (ts) - total duration of speech segments assigned to the wrong 
speaker. 

The total error time is the sum of the three components. To compensate for the difference 
in length of individual utterances, the error time is normalized by the total speech duration 
T as defined by the reference labels. 

BER=tm + t^a + t s . (2.17) 

Defined in this way, D E R has the following properties. Perfect diarization output cor­
responds to D E R = 0, and the empty hypothesis (not assigning any speaker labels for the 
whole utterance) results in D E R = 1. However, one should notice that 1 is not an upper 
bound for D E R . For example, if the system believes there are regions of overlapped speech 
when there are not, D E R can be higher than 1. 

Reference labels are the result of human annotation, and due to that, they might have 
certain problems. Precisely marking a border between two speakers or speech and silence 
is a difficult task, and there is no certainty that the annotator can perform it perfectly. 
Consequently, there will be errors impacting the total D E R because a human annotator and a 
system disagree on the speech boundaries, which might be not the real errors. To compensate 
for the possible imprecision of annotators, NIST introduced a forgiveness interval ("collar") 
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of 250 ms on each side of the reference speech boundary that is excluded from the D E R 
computation. In this work, we do not use such intervals, i.e., the exact boundaries are used 
when computing D E R . We refer interested readers to [Landini et al., 2022] for a thorough 
discussion of collars in D E R evaluation. 

2.4 Embedding extactors 

As was mentioned in the introduction, embeddings are low-dimensional representations of 
audio recordings. Typically, they are derived from matrices of frame-by-frame acoustic 
features and used in their place to represent the audio. In this section, we briefly introduce 
two popular types of embeddings used in speaker recognition tasks and this thesis: i-vectors 
and x-vectors. 

2.4.1 I-vectors 

The i-vector paradigm emerged from the series of works on speaker recognition. The founda­
tion for it was laid with the introduction of Universal Background Model ( U B M ) [Reynolds 
et al., 2000]. U B M represents a speaker-independent distribution of acoustic features, in 
other words, it intends to model the universe of all possible speakers. It is a Gaussian 
Mixture Model (GMM) trained on large amounts of data coming from many speakers. Indi­
vidual Gaussians in the mixture represent some arbitrary phonetic or acoustic classes. The 
typical size of G M M used in speaker recognition applications is 1024-4096 components in 
the mixture. Parameters of the model 9 (mixture weights, means, and covariance matrices 
of individual components) are optimized to maximize the likelihood of the training data. 
Typically, 9 is learned by Expectation-Maximization (EM) algorithm. Then, U B M can be 
adapted using the maximum a posteriori (MAP) criterion to model any target speaker, the 
parameters of the speaker model are 9S. Evaluating log-likelihoods of the test utterance with 
two models ( U B M and an enrolled speaker model) allows to compute speaker verification 
score s as L L R : 

Later, it was proposed to use the MAP-adapted speaker model not for direct scoring 
but rather for feature extraction [Campbell et al., 2006]. One can stack the means of 
the adapted G M M into a single vector, the so-called supervector, representing the whole 
utterance. Supervectors have an obvious advantage over acoustic feature representation: 
their size is fixed for all recordings. Supervectors can be used as input to some classifier, 
e.g., support vector machine (SVM). However, supervectors have a significant limitation in 
their applicability due to their high dimensionality. For example, for G M M of size 1024 
and 39-dimensional acoustic features, the size of the supervector is 1024 x 39 = 39936. To 
overcome this disadvantage, the i-vector model was introduced [Dehak et al., 2011]. I-vector 
framework assumes that important speaker and channel variability in the supervector can 
be compressed into a low-dimensional representation: 

Here, M is a G M M supervector, m is a speaker and channel-independent vector (in practice, 
U B M mean supervector). T is a so-called total variability matrix; its columns define the 
basis of low-dimensional subspace where the important variability of supervector space lies. 

(2.18) 

M = m + Tr. (2.19) 
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Usually, the size of this subspace is set to 400-600. r is a hidden vector having a standard 
normal prior; M , in this model, is also normal: 

M ~ A/"(m, TT') . (2.20) 

Given the observation (frame-by-frame acoustic features), one can calculate the posterior 
for r. Assuming Gaussian prior, the posterior is also Gaussian. I-vector is defined as a M A P 
point estimate of r, i.e., it is the mean of the posterior distribution. Thus, the i-vector is a 
low-dimensional representation of the audio recording - embedding - that can be used as an 
input to some back-end model. 

2.4.2 Neural Network Embeddings (X-vectors) 

For a long time, i-vector embeddings were an integral component of state-of-the-art speaker 
verification systems. In parallel, researchers, inspired by the success of Artificial Neural 
Networks (ANN) in many machine learning tasks, pointed their attention to using ANNs 
in speaker verification. At first, ANNs were used to augment an existing i-vector ap­
proach, e.g., by replacing acoustic features with NN-derived feature matrices (bottleneck 
features) [McLaren et al., 2015, Lozano-Diez et al., 2016] or by using N N acoustic models in 
place of generative Gaussian mixture models for extraction of sufficient statistics [Lei et al., 
2014, Kenny et al., 2014]. Later, however, the NN-derived embeddings started to appear. 
One of the first examples are text-dependent speaker embeddings called d-vectors [Heigold 
et al., 2016]. D-vector is an average activation of the last hidden layer of a neural network 
trained for speaker classification. Later, a similar approach was used for text-independent 
speaker verification: x-vector embeddings were introduced [Snyder et al., 2017,Snyder et al., 
2018]. 

Afterward, many variants of the neural architectures and training objectives used for 
extracting speaker embeddings appeared [Zeinali et al., 2019, Okabe et al., 2018, Huang 
et al., 2018]. However, the majority of these models share the same global structure. The 
network is split into two parts: frame-level and segment-level. The first one is transforming 
an input speech signal frame-by-frame; then, there is a pooling mechanism aggregating the 
frame-level features into a single representation for the whole speech segment. The second 
part of the network operates on the segment level, typically passing the pooling output 
through several dense layers before the network output. The activation of one of the dense 
layers after the pooling is used as a speaker embedding. Typically, the network is trained to 
discriminate between training speakers, e.g., by classifying training examples into speaker 
classes. It is believed that the embeddings extracted from the network trained in such a 
way have to contain speaker information. Then, such audio representations will be useful 
for the final task of speaker verification, identification, or diarization. 

Figure 2.1 displays an example of the embedding network architecture. This architecture 
follows the official Kaldi diarization recipe [Sell et al., 2018,Snyder et al., 2019]. Also, the 
same architecture is used to extract embeddings for the experiments described in this thesis. 
In this network, the frame-level layers are Time Delay Neural Network (TDNN) [Peddinti 
et al., 2015], the pooling is done by computing a mean and a standard deviation of the frame-
level outputs of the T D N N layer before the pooling. There are two fully-connected layers 
after the pooling. The output of one of them or the concatenation of the two is considered as 
an embedding. The network is trained with a multi-class cross-entropy objective to classify 
training speakers. 
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Figure 2.1: Neural network architecture used for speaker embedding extraction. The ar­
chitecture follows the official Kaldi diarization recipe [Sell et al., 2018,Snyder et al., 2019]. 
This architecture is used for the experiments of this thesis. Also, it serves as a baseline and 
initialization for the probabilistic embedding model introduced in Chapter 6.2.2. 

2.5 Data 

This section gives a brief overview of the datasets used for training and evaluating the 
performance of the models described in this thesis. Further on, in the main part of this 
thesis, we will refer to the training and evaluation datasets by the names defined in this 
section. 

2.5.1 Training data 

For the experiments described in this thesis, we used the following data sources to train 
embedding extractors and back-end models: 

VoxCeleb2 - the development part of a large-scale speaker verification dataset automati­
cally collected from YouTube [Chung et al., 2018,Nagrani et al., 2019]. In total, this 
set contains over 1 million segments from more than 140k sessions belonging to 5994 
speakers. The majority of the data are in English, however, some other languages 
are also present. In the original distribution, audio from a single recording session is 
split into several short segments. When VoxCeleb2 is used for training the embed­
ding extractor network, its original form is used. When we use it to train a back-end 
model, we concatenate all the short audio chunks belonging to the same session be­
fore embedding extraction. We refer to this concatenated version of VoxCeleb2 as to 
VoxCat. When using VoxCeleb2 for discriminative training of the H T - P L D A model, 
for some of the experiments, we restrict the set to include the data from 2000 speakers 
only that results in approximately 48k concatenated recordings, we call this subset 
VoxCat-S. The experiments with VoxCat-S are aimed at choosing hyper-parameters 
of the training; once the parameters are selected with this small-scale dataset, we train 
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one model on the whole VoxCat with the found parameters. A small dataset from 
100 speakers is used as a cross-validation set for discriminative training and is called 
VoxCat-CV (it is disjoint from both VoxCat and VoxCat-S). 

P R I S M - training part of P R I S M collection [Ferrer et al., 2012]. This set contains several 
datasets, including Fisher English parts 1 and 2, Switchboard 2 and 3, Switchboard 
cellular 1 and 2, and NIST SRE 2004-2010 (Mixer collection). Speakers overlapping 
with the evaluation set SRE10c05 described below are excluded from this set. In 
total, this set contains approximately 100k utterances from 16k speakers. We use this 
set to train the i-vector extractor. 

A M I - dataset consisting of 100h of meeting recordings [Carletta et al., 2006]. It consists 
of 171 meetings, each containing speech of 3 to 5 speakers. We use this dataset for 
discriminative training of back-end models used in diarization systems. 

2.5.2 Evaluation data 

When evaluating the performance of the speaker verification models, we report the results 
on the following telephone evaluation conditions (datasets): 

SRE10 c05,f - female part of condition 5 of NIST S R E 2010 [Martin and Greenberg, 2010]. 
These data are telephone recordings in English collected in North America. The female 
portion of SRE2010 is considered more difficult than the male one, so it is typical to 
report the result only on this subset to speed up the scoring. This set includes 236781 
trials (3704 targets and 233077 non-targets). 

SRE16 - evaluation dataset collected for NIST SRE 2016 [Sadjadi et al., 2017]. These are 
telephone recordings collected outside of North America. The evaluation set contains 
utterances in two languages: Tagalog and Cantonese. The evaluation protocol does 
not include cross-gender or cross-language trials. Consequently, two sub-conditions 
can be specified for this data: SRE16, Cantonese (19298 target trials and 946098 
non-targets) and SRE16, Tagalog (17764 and 1003568 targets and non-targets, re­
spectively) where the two languages are considered separately. 

Alternatively, we report the performance on Audio from Video (AfV) data: 

VoxCelebl-O - original test set of VoxCelebl [Nagrani et al., 2017], it contains data from 
40 speakers not overlapping with the rest of VoxCeleb 1 and 2. This set consists of 
37720 trials (equal number of target and non-target trials). 

VoxCelebl-E - test set containing 579,818 trials (equal number of target and non-target 
trials) randomly sampled from the whole VoxCelebl dataset. It includes data from 
1251 speakers. 

VoxCelebl-H - "hard" test set consisting of 550,894 (equal number of target and non-
target trials) trials sampled from the whole VoxCelebl dataset so that enrollment and 
test segments belong to the same nationality-gender cluster. It includes data from 
1251 speakers. 

As both VoxCelebl-E and VoxCelebl-H contain data from the training and test set 
of VoxCelebl, we use only VoxCeleb2 for training the models. 
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SITW core-core - core-core condition of Speakers in the Wild (SITW) evaluation data-
set [McLaren et al., 2016] consisting of 721788 trials (3658 target and 718130 non-
target). These are speech segments in English from open-source media. In nature. 
SITW is similar to VoxCeleb data. 

Performance of the diarization systems described in this thesis is evaluated on 

D I H A R D 2019 dev and eval - diarization data released as the development and eval­
uation set for D I H A R D 2019 [Ryant and et al., 2018,Ryant et al., 2019] diarization 
challenge. Both sets contain utterances from several different sources. Individual DI­
H A R D domains differ by the number of speakers per utterance (from 1 to 10), level 
of background noise, amount of overlapped speech, etc. For example, L I B R I V O X are 
clean recordings of a single speaker, implying that there is no speech overlap. While 
CIR domain consists of restaurant recordings with up to 8 speakers per recording, 
noisy background, and on average 25% of the time, there is a speaker overlap. The 
full list of domains includes: 

• Audiobooks 

• Broadcast interview 

• Child language 

• Clinical 

• Courtroom 

• Map task 

• Meeting 

• Restaurant 

• Sociolinguistic field recordings 

• Sociolinguistic lab recordings 

• Web video 

A detailed description of each domain can be found in [Ryant et al., 2019]. The final 
performance is presented as the average performance on all domains. 
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Chapter 3 

P L D A model 

This chapter is dedicated to the Probabilistic Linear Discriminant Analysis (PLDA) model. 
P L D A is a probabilistic model initially introduced in computer vision [Ioffe, 2006,Prince and 
Elder, 2007] and subsequently adopted for speaker verification [Kenny, 2010]. In speaker 
recognition, P L D A models the embedding representations of audio recordings, i.e., the ob­
served data are given in the form of .D-dimensional real-valued vectors r-j £ WLD. 

We start by presenting the most widely-used Gaussian P L D A model and then describe 
the modifications we introduce to it. We call our modified model heavy-tailed P L D A (HT-
P L D A ) . This model was introduced in [Brummer et al., 2018a], and [Brummer et al., 2018b]. 
Another variant of H T - P L D A was proposed before in [Kenny, 2010]. In turn, we will mention 
how our model differs from the former one. 

P L D A is based on the data assumptions made in Section 2.1 and utilizes the concept 
of hidden speaker identity variable. It assumes that in the observed data, the speaker com­
ponent can be decoupled from the other factors generating the data. In practice, it means 
that the total variability of the observed data comes from two sources: inter-speaker vari­
ability, indicating the differences between individual speakers, and intra-speaker variability, 
showing the variations of different data points belonging to the same speaker. 

There are several modifications to the P L D A model which differ slightly in the way 
inter- and intra-speaker variabilities are represented. Here, we restrict our attention to a 
model called Simple P L D A [Brummer, 2010a]. Further, we will refer to it simply as P L D A . 
According to this model, the observed data can be expressed as: 

Here, v^j is the j - t h observed vector (embedding) of dimension D of the i-th speaker, rj^ is 
a vector of noise of dimension D, Zj is a hidden speaker variable of dimension d < D, fi is 
a mean of the observed data. Usually, the data are centered before training or evaluating 
the P L D A model, so, in the future, we assume that fi is just a vector of zeros and omit it 
from (3.1). In (3.1), FZJ is responsible for inter-speaker variability representation, while r/y 
corresponds to intra-speaker variability. 

P L D A assumes that the data are generated by the following procedure. For each speaker 
i, a single hidden speaker variable is sampled from its prior distribution Zj ~ tt( z )- The 
sampled variable is projected into the observed data space by a transformation matrix F . 
In the general case, F is assumed to be a D-by-d rectangular matrix, meaning that the 
speaker variable is forced to live in a low-dimensional subspace spanned by the columns of 
F . Then, for each utterance of a given speaker, the vector of noise rj^ is sampled from 
its corresponding distribution. Noise is assumed to have the same dimensionality as the 

fi + FZJ + rjij. 
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observed data. Then, factors depending on speaker and noise are added. 

3.1 Gaussian P L D A ( G - P L D A ) 

3.1.1 Likelihood evaluation 

G - P L D A model assumes that the prior over speaker hidden variable is a multivariate stan­
dard normal distribution 

7r(z) = JV(Z | 0,1). (3.2) 

The noise is also Gaussian: each rj^ is sampled from a multivariate normal distribution 
with zero mean and a fixed covariance matrix W _ 1 . The observed embedding is a sample 
from a Gaussian distribution as well: 

P ( r i j | z i ) = A A ( r i j | F z i , W - 1 ) 

|W|5 1 
= ——£ exp [-^{rij - F z i ) ' W ( r i j - F Z i ) ] 

(27r) 2 ^ (3.3) 
, i 

exp [ - ^ F ' W F z , - 2 z ; F ' W r i j + r ^ W r ^ ) ] . 
2 (27T) 

Notice that the likelihood P(r | z) is a Gaussian distribution of the observed embedding r, 
but, when considered as a function of the hidden variable z, it is a Gaussian function. Con­
sidering the likelihood (3.3) as a function of z and ignoring the components not depending 
on z, (3.3) can be rewritten as: 

L(ZJ) oc exp[a-jZj - ^Z-BZJ ] , (3.4) 

where we have used the following definitions: 

Bij = F'WI-JJ, B = F ' W F . (3.5) 

From (3.5) we see that vectors a^ depend on the observed data v^j and consequently differ 
for different data points, while matrix B depends only on the model parameters and is fixed 
for all Vij. 

As was mentioned earlier, to compute the likelihood ratio (LR) (2.4) for two partitions 
£, one has to be able to perform two operations: pooling the recordings hypothesized to 
belong to the same speaker and computing the expectation over the likelihood with respect 
to the prior vr(z). 

The pooling operation is trivial: 

Ni Ni 

n p(rv i z ^ ^ exp^2(aijzi - 2 z i B z * ) 

(3-6) 
/ Ni 't2 

= exp 2_^aijzi ~ YZr'1 * 
L i=i 

As seen from (3.6), the likelihood of several recordings pooled together has the same func­
tional form as the likelihood of a single recording with parameters equal to summed parame­
ters (3.5) of individual likelihoods. This operation corresponds to collecting zero-order (Ni) 
and first-order ( X ^ i rij) statistics of the observed data. 
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The second required operation is evaluating the expectation with respect to the prior. 
Remember, G - P L D A assumes a standard normal prior A^(z | 0,1). For a (raw or pooled) 
likelihood, parameterized by a, B (we have omitted the indices here), the expectation w.r.t. 
the prior is [Briimmer et al., 2018a]: 

(P ( r | z )> = / P ( r | z)vr(z)dz 

exp a'z - - z ' B z F \ 2 ; dz 

exp [a'z - ±z ' (B + I)z] 
— - dz ci 

e x p ^ a ^ B + I ) " 1 ^ f exp [ a ' z - ±z ' (B + I)z - ^a!(B+ 
1 ~ ~ dz 

(3.7) 

|B + I | i JRd y/(2ir)d\B + I\-5 

1 2 V }- Af(z | (B + I) a, (B + I)" 1 ) dz 
IB +11 2 J]Rd |B + I|3 

_ e x p ^ a ^ B + I ) " 1 ^ 

|B + I |I 

The same formula in the log domain: 

I i 
log(P(r | z)}^ = - a ' ( B + I ) _ 1 a - - log|B + I| + const. (3.8) 

Joining (3.6) and (3.8), we get a general formula for log-likelihood of the data of speaker i 
having Aj recordings: 

1 Ni Ni 

log P(Ki \HS) = -J2 a!ij(NiB + I ) " 1 ^ a^- - - log| A j B + I| + const. (3.9) 
3=1 3=1 

To find the total log-likelihood of the data, one has to sum expressions (3.9) over all speakers. 
Computing log-likelihood (3.9) requires two expensive operations, namely matrix inver­

sion (iVjB + I ) - 1 and finding a matrix determinant | A j B + I|. But, since matrices B are 
fixed and equal for all of the recordings, these operations can be done only once for all 
of the speakers having the same number of recordings iVj. For example, when calculating 
L L R score (2.6) for single-enrollment/single-test verification, it is necessary to perform the 
matrix inversion and determinant only twice: for matrices 2B + I and B + I used when 
computing log-likelihood of one- or two-speaker partitions respectively. Then, the results of 
these operations can be reused for all trials. 

3.1.2 Mode l training 

One of the most widely accepted ways to estimate the parameters of the G - P L D A model, 
F and W , is an iterative Expectation-Maximization (EM) algorithm [Prince and Elder, 
2007, Briimmer, 2010a]. E M training proceeds as a series of updates for F and W that lead 
to Maximum Likelihood (ML) estimates for these parameters. The complete derivation 
of the E M algorithm can be found in [Briimmer, 2010a]; here, we present only the update 
formulae for G - P L D A parameters. E M algorithm proceeds in the alternation of the following 
steps until convergence: 
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E-step Compute matrices K and L using current model parameters: 
m Ni Ni 

K ^ ^ B + I ) - 1 ^ ^ . ] , 
i=l j=l j=l 

m Nt Nt 

L = E mNiB+1)-1 [ i + E E +1)-1] 
i=l j=l j=l 

M-step Update parameters F and W: 

F = K'L"1, 

(3.10) 

(3.11) 

i=i j=i 

• Minimum-divergence step Rotate estimated F: 

/ , m Ni Ni s 

F <- F cholf - E { (N iB + I)"1 [I + E Bij E 4(^ B + ) ) . (3'12) 
^ » = 1 J = l i = l ' 

where chol(A)chol(A)' = A denotes Cholesky decomposition. 

The E M algorithm is a fast and simple way of training the G - P L D A model, however, 
that is not the only option. For example, there are various discriminative methods to 
estimate P L D A parameters [Burget et al., 2011,Borgstr6m and McCree, 2013,Rohdin et al., 
2014,Rohdin et al., 2016]. 

Due to its simplicity, G - P L D A is widely used. However, although the assumption of the 
fixed intra-class variability for all speakers makes G - P L D A computationally convenient, it 
limits its ability to utilize the uncertainty information from the embeddings. Hence, below, 
we present an alternative model that allows for uncertainty propagation. 

3.2 Heavy-tailed P L D A ( H T - P L D A ) 

In [Kenny, 2010], an alternative to the G - P L D A model, called heavy-tailed P L D A was shown 
to be a better model of i-vector embeddings [Dehak et al., 2011]. Instead of the standard 
normal prior for the speaker variable and Gaussian noise in G - P L D A , H T - P L D A of [Kenny, 
2010] assumed that both speaker variables and noise are sampled from a Student's T-
distribution. H T - P L D A was shown to outperform simpler G - P L D A , but the computational 
cost was considerable. 

Subsequently, [Garcia-Romero and Espy-Wilson, 2011] showed that a simple length nor­
malization (LN) procedure applied to the i-vector embeddings helps to "Gaussianize" them. 
This matched the performance of H T - P L D A , with negligible extra computational cost com­
pared to G - P L D A . Thus, G - P L D A with length-normalization was established as the stan­
dard back-end for scoring in text-independent i-vector based speaker recognizers. Later, the 
same scoring recipe was adopted for embeddings extracted by a neural network, so-called 
x-vectors [Snyder et al., 2017,Snyder et al., 2018,McLaren et al., 2018]. 

Here, we simplify the model of [Kenny, 2010] by assuming that only the noise variable rj 
is distributed according to Student's T-distribution. In contrast, the prior for the speaker 

22 



variable z is a standard normal Gaussian as in G - P L D A . As we show below, this assumption 
allows us to develop a fast scoring recipe and thus mitigate the main drawback of the original 
H T - P L D A . As we will see in Section 3.2.3, the introduction of heavy-tailed noise results in 
better uncertainty propagation compared to G - P L D A . 

Let us consider the generative process assumed by the model we propose in detail. The 
equation describing the observed data stays the same as in the general P L D A case ( (3.1) 
with zero mean): 

rij = Fzi + V i j . (3.13) 

As in G - P L D A , hidden speaker variables are assumed to be sampled from standard normal 
distribution Zj ~ A/"(0,1), and F is a D-by-d factor loading matrix. However, now, the noise 
is generated differently than in the G - P L D A case. H T - P L D A assumes that noise variables 
are sampled from Gaussian distribution with variable precision. For every utterance, first, 
a positive scalar aij called precision scaling factor is sampled from a Gamma distribution 
with both shape and rate parameters set to | : 

The parameter v is known as the degrees of freedom [Kenny, 2010, Bishop, 2006]. Once the 
precision scaling factor is sampled, the noise variable is generated from a normal distribution: 

r ^ - A / ^ K - W ) " 1 ) , (3.15) 

where W is a positive definite D-by-D matrix fixed for all recordings. 
Similarly, as for G - P L D A (Section 3.1.1), the likelihood of an observed data point is: 

P(rij | Z i , atj) = Af(rij | Fzh (ayW)-1). (3.16) 

Marginalizing out the hidden precision scaling factors ctij, we notice that the observed data 
r are distributed according to Student's T-distribution [Bishop, 2006]: 

P{Tij | Zi) = I M(rij | Fzi, ( a i i W ) " 1 ) g ( a i i | u/2, v/2)da 

' ° U±D (3.17) 
I r • • — H' •z • I' w I r • • — H •z • I 2 

T(Tij | F Z i . W . I / ) oc 
1 | (rjj - F z Q ' W f o j - FZJ 

In (3.17), we have omitted a normalizing constant since it is irrelevant for our purposes. 
Although we have a closed-form expression for the likelihood, it is not the case for the 

likelihood ratios of the form (2.4). But, given some additional assumptions, we can build 
an approximation such that the likelihood ratio can be written in a closed form. 

3.2.1 Gaussian likelihood approximation 

First, we show that likelihood (3.17) considered as a function of z is proportional to a 
probability density function (PDF) of a T-distribution. For that, let us notice that the 
quadratic form in (3.17) (with omitted indices) can be rewritten as follows: 

(r - F z ) ' W ( r - Fz) = z ' ( F ' W F ) z - 2 z ' F ' W r + r ' W r 

= (z - m ) ' ( F ' W F ) ( z - m) + r ' G r (3.18) 
= Q z | r + r ' G r , 
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where we have defined: 

m = ( F ' W F ) _ 1 F ' W r , 

G = W - W F ( F ' W F ) - 1 F ' W , 

Qz]r = (z - m ) ' F ' W F ( z - m). 

(3.19) 

Necessary assumption to perform the transformation of (3.18) is that the matrix F ' W F is 
invertible. 

Combining (3.18) and (3.17): 

P(Tij | Z j ) OC 1 + 
(rij - F z i ) ' W ( r i j - Fzt 

u+D 
2 

. , Qz\r + r'ijGrij 
1 H 

v 
v + r^-Gry + Qz\x 

v+D 
2 

2 

2 

(3.20) 

Now, we consider the rearranged likelihood (3.20) as a function of hidden vector z. Omitting 
the terms not depending on z: 

L(ZJ) oc 1 + 

2 

1 + 
Qz|r v + D-d 

^ Qzjr _ 
i/ + r ' , G r j 

2 

1 + 

oc T ( z I rrijj, 

(zi - m y J ' F ' W F f z i - m ^ O ^ ^ G 

(3.21) 

u -\-d 
2 

F ' W F , i/') 

= T ( z | im^bijF'WF, i/ '), 

where we have defined: 

v1 = v -\- D — d, (3.22) 

and, m and G are given by (3.19). 
We have shown that the likelihood function of z is proportional to the P D F of a T-

distribution for the hidden z. Parameters for this distribution are v', m^-, and 6^-(F'WF). 
Notice that the degrees of freedom parameter v' has to be strictly positive and for the 
mean to be defined, it must satisfy the condition v' > 1. So, the second assumption for 
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the derivations (3.20), (3.21) to be valid is that d < D is satisfied. That is not a strict 
assumption: in a typical G - P L D A speaker recognition system, it is often the case anyway. 
Moreover, often, the dimensionality of the speaker subspace is assumed to be much smaller 
than the one of the observed space D » d, so that v' is large. Wi th the growth of the 
degrees of freedom parameter v, the T-distribution approaches Gaussian, and in the limit, 
when v reaches infinity, it is a Gaussian distribution. As in our case v' has a high value, 
we assume that the T-distribution is already close enough to a Gaussian so that we can 
approximate the likelihood with a Gaussian function: 

L(zi) oc T ( z | uiy, bijF'WF, v) » A/"(z | m i j ; ( f t ^ F ' W F ) - 1 ) . (3.23) 

Then, similar to G - P L D A , the likelihood can be written as: 

L(ZJ) oc expfa^Zj - ^ z - B ^ Z j ] , (3.24) 

where 

Btj = hjF'WF, aij = B i j m i j = hjF'Wnj. (3.25) 

Comparing (3.5) and (3.25), notice that in H T - P L D A case both a^ and B y depend on the 
observed data, while for G - P L D A , matrices B depend only on the model parameters. 

3.2.2 Efficient evaluation of H T - P L D A likelihood 

We have approximated the likelihood with a Gaussian function, so now it is possible to find 
the likelihood ratio scores (2.4) in a closed form. As mentioned above, the two operations 
necessary to compute the L R are pooling and evaluating the expectation with respect to 
the prior. The formulae stay almost the same as in the G - P L D A case (3.6),(3.7): 

1_, 
2 

N, Ni p Ni 

Vij I ZJ) oc exp ^2 aijz 

j=i lj=i ~ j=i 

l „ , I \\ exp [̂ a^ (Bij + I ) _ 1 a j j 
(3.26) 

oc 
\Bij + I|3 

And, the log-likelihood of the data of speaker i having Ni recordings is: 

Ni ,Ni \ - 1 Ni 1 Ni 

log. 
3=1 

p{Ki \hs) = ~Y^ <j ( B ^ + 1 ) H ^ ~ 9 l o e C B y + r l + c o n s t 

i = i 

(3.27) 
i = i i = i 

Then, the log-likelihood (2.3) of the whole dataset 1Z partitioned into speaker clusters by C 
for the H T - P L D A model is: 

log. 
j m r J f j s Nt \ —1 Ni Ni 

i=i L i = i i = i i = i i = i 

+ const. (3.28) 

As commented before, to evaluate (3.28), one has to perform matrix inversion and com­
pute matrix determinant, which are expensive operations. For G - P L D A , it was not a prob­
lem since these operations had to be performed just a few times: as seen from (3.9), it is 
necessary to compute (iVjB + I ) _ 1 and |iVjB + I| only once for each Ni, and then the result 
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could be reused for all speakers who have the same number of recordings. Now, however, 
the matrix B j j is unique for every recording, which means that for every speaker i, matrix 
^2f=i ^ij + I is & l s o unique, and the expensive operations have to be done many more 
times than in G - P L D A case. Considering the example of computing the L L R score for the 
single-enrollment/single-test speaker verification trial, we saw that for the G - P L D A case, 
it was enough to compute determinant and matrix inversion only twice for all trials. At 
the same time, now, it has to be done for matrices B e n r +1, B t e s t +1 and B e n r + B t e s t + I 
separately for every trial. This leads to a significant slowdown of computing likelihood and 
L L R verification scores with the H T - P L D A model. However, we can overcome this problem: 

First, notice that matrices B y = fry-F'WF differ only by scaling factors bij. The positive 
semi-definite matrix F ' W F remains fixed for all recordings. This matrix can be factorized 
using eigenvalue decomposition as V A V . The matrix A is a diagonal matrix of non-
negative eigenvalues k = 1.. . d, V is an orthonormal matrix having the eigenvectors as 
its columns. Then, the matrix B +1 (here, we drop the indices for brevity) is: 

B + I = 6 V A V ' + I = V ( 6 A + I ) V . (3.29) 

B + I has the same orthonormal eigenvector bases as F ' W F , and the eigenvalues of this 
matrix are bX^ + 1. From this, we can deduce the matrix inverse and determinant needed to 
compute the expectation from (3.26). The determinant is just a product of all eigenvalues 
of a matrix: 

d 

| B + I| = J J ( 6 A f c + l ) . (3.30) 
fe=i 

The inversion is also simple: 

(B + I ) " 1 = V ( 6 A + I ) _ 1 V / (3.31) 

Now, putting (3.30) and (3.31) into the second equation from (3.26), we get: 

exp[ ia 'V(6A + I ) - 1 V ' a ] 
[P(r | z)) oc 

exp[i J2 fe=l b A f c + l . 

(3.32) 

rifc=i(6A f c H-l)5 

Here, a& are the components of a = V ' a . Then, (3.28) can be rewritten as: 

m d r (\^Ni 7, \2 Ni 

2 w 
m d r (ST-Ni - \2 Ni 

i=l k=l J2f=i bijXk + 1 3=1 

+ const. (3.33) 

To summarize, in our formulation of H T - P L D A , it is enough to compute a single eigen­
value decomposition for the fixed matrix F ' W F and then, computation of the likelihood 
and the likelihood ratio can be performed with comparable speed to the G - P L D A model. 
To compute the likelihood, one needs to collect the following speaker statistics: 

Ni Ni Ni 

h = Y, h , ai = £ atj = V ' F ' W ]T bijTij. (3.34) 
j=i j=i j=i 
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3.2.3 Notes on H T - P L D A 

Let us make a few additional comments regarding the presented H T - P L D A model: 

• Gaussian P L D A is a special case of the H T - P L D A model. One can realize it by 
noticing that when the degrees of freedom parameter of the noise distribution is set 
to infinity v —> oo, the noise distribution is Gaussian as in the G - P L D A case. Also, 
looking at the scaling factors b = i / + ^ , G r , it is evident that when v is infinite, scalars 
b do not depend on the data anymore and are equal to 1. Then, the parameters of 
the likelihood function L(z) are a = F'Wr and B = F ' W F for both G - P L D A and 
H T - P L D A . 

• If v is small, noise is heavy-tailed. In this situation, data starts affecting the estimated 
scalar b through the expression r'Gr. Let us look closer at it. Recall that G is defined 
as: 

G = W - W F ( F ' W F ) - 1 F ' W . 

Then, 

F ' G = F ' W - F ' W F ( F ' W F ) - 1 F ' W = 0. 

And, so: 

r'Gr = (Fz + r/)'G(Fz + r?) = z'F'GFz + 2z'F/Gr? + r/Gr? = r/Grj. 

From the last equation, we see that speaker hidden variable z does not affect the 
estimated scalar 6, and that noise 77 is the only factor impacting it. Intuitively, for 
the noisy recording, the noise component of the embedding should be large, making 
T/'Gr/ also large, which in turn, makes the scaling factor b low, and this recording 
has a lower impact when computing the log-likelihood (3.28). And in the opposite 
case, when the recording is of high quality, the noise is low while b is high, making the 
impact of this recording in the log-likelihood calculation larger. This is the mechanism 
for propagating uncertainty into the scoring. On the contrary, in G - P L D A , all scaling 
factors b are equal, and no uncertainty is propagated. 

• As was mentioned above, when using G - P L D A , length normalization is a standard 
pre-processing step for the embeddings. However, in our case, the estimation of the 
uncertainty relies on the expression r'Gr. Our assumption is that length normalization 
interferes with the proper uncertainty estimation. Therefore, part of the experiments 
in the following chapters is dedicated to comparing G - P L D A with length-normalized 
embeddings against H T - P L D A with raw embeddings. 

• Parameters of the model are 9 = {F,W, i/}. These have to be known to use the 
model. As we have mentioned before, the parameter v is responsible for turning the 
model into heavy-tailed P L D A if its value is low or into Gaussian P L D A in the limit 
case v —> oo. Consequently, by fixing the value of is, we essentially select what kind 
of model we intend to use. Hence, we will always consider v to be fixed as a part of 
the experimental setup. In the following sections, we investigate various strategies to 
estimate parameters F and W with v fixed. We refer to it as training of the H T - P L D A 
model, keeping in mind that G - P L D A is a special case of H T - P L D A and thus can be 
trained in the same way. 
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Chapter 4 

HT-PLDA trained as a generative 
model 

This chapter presents an approach to estimating the parameters of the generative H T - P L D A 
model defined in Section 3.2. Originally, it was presented in [Silnova et al., 2018]. 

The goal of the training is to find such model parameters 9 = {F, W } that the marginal 
likelihood of the data 1Z for the correct speaker partition C*: P(1Z \ C*,9) (see (3.28)) is 
maximized. Recall the generative process assumed by the H T - P L D A model. It assumes 
that there are two sets of hidden variables involved in data generation. Each speaker i has a 
corresponding hidden speaker variable Zj, and a set of precision scaling factors for Gaussian 
noise OLi = {ajjj}^^ (3.13). These hidden variables are dependent in the true joint posterior 
P(ZJ,QJ | IZi), and this posterior cannot be written in a closed form. So, it is not possible 
to perform a direct optimization to find 9* = argmaxg(P(lZ \ C*,9)) and we have to rely 
on approximate inference methods. 

4.1 Variational Bayes inference 

Here, similar to [Kenny, 2010], we use a mean-field variational Bayes inference (VB) 
[Jaakkola, 2001, Bishop, 2006]. 

Generally, in variational inference, true posterior P is approximated by a distribution Q. 
Approximate distribution Q is from a restricted family of distributions. During the inference, 
we are looking for the member of this family that is the closest to the true posterior in terms 
of Kullback-Leibler (KL) divergence. The family of Q is selected so that the inference is 
feasible. Q, for example, can be restricted to belong to a specific parametric family, then 
only parameters of Q have to be estimated during inference. 

Mean-field V B imposes another kind of restriction: the approximate distribution Q has 
to be a factorized distribution. That means the hidden variables have to be partitioned into 
disjoint groups assumed to be independent, and the total distribution is a product of several 
factors. However, no particular assumptions are made on the functional form of the factors. 
In the case of H T - P L D A , we approximate the posterior as the product of distributions over 
all hidden variables in the model: 

P(z, a\K,£)~ Q(z, « ) = J ] Qi(z)Qi(a) . (4.1) 
i. 

Following the V B approach and taking into account factorization (4.1), we define the fol-
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lowing decomposition of the total log-likelihood of data: 

log P(K I C) = L + KL(Q(z , a) \ | P(z , a\H,£)) = 

= L + E KL(Qi(z)Qi(cx) 11 P(Zi, on | 7^)), (4.2) 

where L = L(Q(z, a)) is the VB lower bound given as (see Appendix A for the complete 
derivation): 

L 
P(K,z,a\£,e) 

Q(z, a) log — ; dz d a 
Q(z,a) 

P(Ki,z,a I g)\ 
Qi(z)Qi(oc) / Q i ( z ) Q i ( a ) 

E (log P(K.t \z, a, 9))Qi (z)Qi(a) KL(Qi (z ) II P(z)) - K L ( Q i ( a ) || P (a) ) (4.3) 

= E ff E W ) + f b g | W | " \ E ( ^ ' ) 4 W % ' + ( ^ > ' F ' W E ( ^ > , 
i j j j 

- ^ E<^>tr«z^>F'WF) - KHQi(z) II P(z)) - K L ( Q i ( a ) || P (a) ) 
i 

The second term in (4.2) is K L divergence between approximate and true posterior. We 
want to find such distribution Q(z, a) that this divergence is minimized. As K L divergence 
is non-negative, it would be minimized by maximizing the lower bound L. Thus, training 
is done by maximizing L w.r.t. both 9 and the Q-factors. 

Mean-field V B recipe suggests to optimize L iteratively, doing partial maximizations 
w.r.t. Qi(ot), Qi(z), and 9 in round-robin fashion. Optimization with respect to Q(a) and 
Q(z) is variational, rather than parametric. Analytic solutions for Q factors can be found 
by evaluating expectations [Bishop, 2006]: 

logQ:(a) = <logP(i2 i ,a ,z) 

logQ:(z) = ( l o g P ( J R i , z , « ) 

+ const, 

+ const. 
(4.4) 

Evaluation of expectations can be done in a closed form (we provide the derivations in 
Appendix A) . The optimal Qi(ot) is a product of independent gamma distributions, and 
Qi(z) is a multivariate Gaussian: 

Qt(a) oc G Uj I VAf~, \ + U3WrtJ - r^WF<z i > + i t r « z ^ } F ' W F ) ) , 

, Ni Ni Ni s 

Q*{z) <xj\f(z I (E<^>F'WF + I ) " 1 E (<%'}F 'W % , (E(«, J >F'WF + i ) " 1 ) . 

(4.5) 

As seen from (4.5), the parameters of each Q-factor depend on the expectations taken 
with respect to the other factor. In practice, it implies that the parameters of Qi(ot) and 
Qi(z) can be estimated iteratively by fixing the parameters of one of them at the time and 
computing the expectations to evaluate the parameters of the other one. This procedure 
must be repeated for every speaker, which makes this recipe slow. 
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To get a fast alternative, we use an approximation to compute Qi(a), which is different 
from the standard V B solution given by (4.5): Qi(a) is selected so that (a^) = bij (see 
(3-22)): 

N, + D-d v + r'^Gri 
Q i ( « 0 = I I Sl I ^ f ^ , ~^f^ • (4.6) 

By substituting bij for (a^) in the mean-field solution (4.5), the second Q-factor is: 

Ni 

Qi{z)=M{z | Z i . B r 1 ) oc P(z) J]AA(z | m ^ B ^ 1 ) , (4.7) 

j=i 

where precision and mean are respectively given as: 

Ni Ni 

Bi = J^ bijF'WF + I = E B « + I. 
j=i j=i 

iVj Ni 

* = B , R L E ^' F ' W % = B-1 EA^'-
j=l j=l 

(4 i 

Approximation (4.6) agrees with the likelihood approximation we made in Section 3.2.1 in 
the following sense: notice that the true posterior for Zj can be expressed as: 

P(z I Hi) oc P(z)]JP(rij I z). (4.9) 
j 

True likelihoods, -P(r«j | z), are T-distributions. Comparing (4.7) and (4.9), one can notice 
that (4.7) is basically (4.9) with applied Gaussian likelihood approximation of (3.23). 

Having the closed-form expressions for both Q-factors, training proceeds with maximiz­
ing V B lower bound L (4.3) w.r.t. parameters 9. By computing partial derivatives of L 
w.r.t. matrices F and W and setting them to zero, we get the update formulae: 

F = K ' L " 1 , 
m N (4.10) 

N 
i=i j=i 

Above, matrices K and L are computed as: 

m Ni 
K = E ^ E ^ r i j ' 

i=l 1=1 , , 

(4.11) 
m Ni y ' 

L = EE^'(B," 1+^)-
i=l j=l 

To summarize, the training proceeds by alternating the following steps until convergence: 

• Given current model parameters, estimate Q{a) and Q(z) using (4.6) and (4.7) re­
spectively. 
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• Estimate matrices K and L using (4.11). 

• Update model parameters F and W using (4.10). 

• Perform minimum-divergence steps on the hidden variables priors -P(z) and P(a): 

— Rescale estimated matrix W (see Example 2.6: Multivariate t-distribution with 
known degrees of freedom in [McClachlan and Krishnan, 2008]): 

m Ni 
W ^ X X ^ W (4-12) 

i=l j=l 

— Rotate estimated matrix F [Briimmer, 2010c]: 

/ 1 m \ 
F ^ F C W - E ( ^ + ^ ) • (4-13) 

^ i=l ' 
A l l of the above steps can be done in a closed form, and the resulting optimization 

algorithm proceeds very similarly to the EM-algorithm for training Gaussian P L D A [Briim­
mer, 2010a] (see Section 3.1.2). Comparing the two algorithms, one can see that the only 
difference between them is that for the new algorithm, the speaker statistics over observed 
data are weighted by scaling factors b^: 

In the E M algorithm, the necessary statistics were: 

Ni Ni 
Ni> Z>tf. Xr'.'r'.r (4-14) 

3=1 3=1 

while for V B training of H T - P L D A model, they are: 

Ni Ni Ni X>> XX'''J- J2bi3ri3r'ij- (4'15) 
3=1 3=1 3=1 

As was noted in Section 3.2.3, when degrees of freedom parameter u is low, bij scale down 
the impact of the noisy utterances and scale up the impact of the high quality utterances 
when computing the likelihood (3.33) and speaker statistics (4.15). When degrees of freedom 
parameter v is set to infinity, all of the scalars bij become equal to 1, and V B training of 
H T - P L D A models becomes exactly equivalent to the E M algorithm for G - P L D A . 

Finally, it is worth noting that the posterior precisions, B j , can be simultaneously di-
agonalized, requiring but a single eigenvalue decomposition of F ' W F per iteration (as in 
Section 3.2.2). This allows computing the inverse matrices B " 1 faster and consequently 
speeds up the training even more. 

4.2 Experiments and results 

To verify whether H T - P L D A is a competitive alternative to a standard G - P L D A for the 
task of automatic speaker verification, we performed a few sets of experiments. 
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4.2.1 H T - P L D A for i-vectors 

The first set of experiments compares H T - P L D A and G - P L D A when models are combined 
with i-vector utterance embeddings (see Section 2.4.1). We assume that, unlike for the G-
P L D A case, length normalization would harm the performance of H T - P L D A since it will 
interfere with its natural ability to estimate uncertainty. And on the contrary, lack of length 
normalization should harm the performance of G - P L D A while not affecting the H T - P L D A . 
We compare both P L D A models on two speaker verification conditions from Section 2.5: 
SRE10c05,f and SRE16. 

The same i-vector embeddings are used to train both P L D A models. They were extracted 
as described below. We used 60-dimensional spectral features: 20 M F C C s , including Co, 
augmented with A and A A coefficients. The features were short-term mean and variance 
normalized over a 3 second sliding window. With those features, we train a G M M U B M 
with 2048 diagonal components in a gender-independent fashion. Then, we collect sufficient 
statistics and train the i-vector extractor on P R I S M dataset (see Section 2.5.1). The dimen­
sionality of i-vector embeddings was set to D = 600. The same i-vector extractor is used for 
all i-vector experiments of this thesis; thus, we do not describe it in detail in the following 
sections. 

We applied global mean normalization to the i-vectors (because our H T - P L D A model 
does not have a mean parameter). In some cases, length normalization was applied to i -
vector embeddings. No other pre-processing was done. For both G - P L D A and H T - P L D A , 
the dimensionality of the speaker subspace was the same: d = 200. 

The results are reported in terms of the equal error rate (EER, in %) as well as the 
average minimum detection cost function for two operating points of interest in the NIST 
SRE 2016 (C£-™) - see Section 2.2.2. 

Table 4.2 compares traditional G - P L D A with H T - P L D A trained using V B approxima­
tion. The first two lines show the G - P L D A baseline, with and without length normalization. 
As expected, length normalization helps to shape the distribution of i-vectors to fit better 
Gaussian assumptions made by G - P L D A . Consequently, the performance of G - P L D A is 
significantly worse when no length normalization is applied. 

The middle section (lines 3 and 4) of Table 4.2 presents the results for generative V B 
training of H T - P L D A as described in this chapter. No length normalization was applied 
to i-vectors before training or scoring the model. In the third line, training was done with 
v —y oo and testing with v = 2, meaning that at training time, the model was effectively G-
P L D A , and the uncertainty could play its role only during testing. Comparing the results 
with the performance of G - P L D A trained on unnormalized i-vectors, we can notice that 
introducing heavy-tailed behavior only at test time can already considerably close the gap 
created by lack of length normalization. 

In the fourth line, both training and testing had v = 2. That means that heavy-tailed 
mode was used both in training and testing. This setting also outperforms Gaussian P L D A 
without length normalization. However, both of these variants of H T - P L D A do not manage 
to improve the performance of G - P L D A with L N (line 1) for any of the test conditions. 

To see how length normalization affects the performance of H T - P L D A , we train two 
more H T - P L D A models: again, one is fully heavy-tailed, and the other uses the heavy-
tailed mode only at test time. This time, both models are trained on length-normalized 
i-vectors. The results are presented in the last two lines of Table 4.2. Although we expected 
that length normalization would harm the performance of the H T - P L D A model, the results 
suggest that it is not true. Comparing lines 3 to 5 and 4 to 6, we see that the performance 
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Table 4.1: x-vector topology proposed in [Snyder et al., 2019]. K in the first layer indicates 
different feature dimensionalities, T is the number of training segment frames and m in the 
last row is the number of speakers. 

Layer Layer context (Input) x output 

frame 1 [* -2,t-l,t,t+l,t + 2] (5 x K) x 1024 
frame2 \t] 1024 x 1024 
frame3 [t - 4 , t - 2 , t , t + 2,t + 4] (5 x 1024) x 1024 
frame4 \t] 1024 x 1024 
frame5 \t-3,t,t + 3] (3 x 1024) x 1024 
frame6 \t] 1024 x 1024 
frame 7 \t-A,t,t + 4] (3 x 1024) x 1024 
frame8 [t] 1024 x 1024 
frame9 It] 1024 x 2000 

stats pooling (frame7,frame9) 0,T 2*1024+2*2000 x 512 
segment 1 0 ,T 512 x 512 
softmax 0,T 512 x m 

did not degrade with the introduction of L N . Moreover, it seems to improve slightly for the 
SRE10 condition. 

Even with L N applied, H T - P L D A is inferior to G - P L D A with L N . However, one has to 
notice that, unlike Gaussian P L D A , H T - P L D A is not as sensitive to length normalization: 
its presence or absence does not change the performance as dramatically as in the case of 
G - P L D A . Later, in Section 4.2.3, we will investigate more the robustness of H T - P L D A to 
the pre-processing done to the embeddings prior to model training. 

4.2.2 H T - P L D A for x-vectors 

We performed a similar experiment with x-vector embeddings instead of i-vectors. Now, we 
compare the performance of different back-ends on VoxCelebl-O, VoxCelebl-E, VoxCelebl-
H, and SITW core-core conditions described in 2.5.2. The performance metrics are E E R 
and minimum detection cost function, with the prior probability of a target trial set to 0.05. 

We extract the embeddings with x-vector neural network presented in Section 2.4.2. The 
particulars of training the embedding extractor are as follows. The acoustic features are 40 
filterbank features with 16 kHz sampling frequency. The network is trained on 200 frames 
long segments randomly cropped from the original training recordings. We perform a four­
fold augmentation of the training dataset: along with its original version, we add reverber­
ation, noise, babble noise, and music. The network architecture is shown in Table 4.1. The 
same embedding extractor is used in all subsequent x-vector experiments. 

We used VoxCeleb2 and VoxCat sets described in Section 2.5.1 to train the embedding 
extractor and back-end P L D A models, respectively1. 

1Here, as in the majority of the experiments in this thesis, the data sets used for training the embedding 
extractor and the back-end model are overlapping in terms of speakers. This is a sub-optimal scenario for 
the following reason. When training the extractor, it is supposed to decrease the within-speaker and increase 
the across-speaker spread in the embedding space. This effect is more pronounced for the speakers used for 
training than for the new speakers. Consequently, when the back-end is trained on the same speakers, the 
estimates of within-class and between-class distributions will not fit well the test data from a set of new 
speakers. Thus, a better strategy to train the back-end might be to have a separate set of speakers not used 
for training the extractor. However, at the time of performing the experiments of this thesis, we did not 
consider this issue. 
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Table 4.2: Comparison of error rates on SRE10 and SRE16 of Gaussian P L D A versus generatively trained heavy-tailed P L D A using 
i-vectors. The performance metrics are (7^^=0.5minDCFo.oi + 0.5minDCFo.005, and EER(%). 

# System L N 
SRE10c05,f SRE16 , all SRE16, Cantonese SRE16, Tagalog # System L N 
/"iPrm 

min E E R /"iPrm 
min E E R /"iPrm 

min E E R /"iPrm 
min E E R 

1 G - P L D A , E M yes 0.26 2.5 0.97 16.5 0.68 9.7 0.99 21.0 
2 G - P L D A , E M no 0.33 4.0 0.97 17.8 0.69 11.5 0.98 21.3 

3 H T - P L D A , trn v = oo, tst v = 2 no 0.30 2.7 0.97 16.7 0.68 10.0 0.98 21.2 
4 H T - P L D A , trn v = 2, tst v = 2 no 0.31 3.2 0.97 16.9 0.69 10.4 0.99 21.3 

5 H T - P L D A , trn v = oo, tst v = 2 yes 0.27 2.7 0.96 16.6 0.67 10.1 0.98 21.2 
6 H T - P L D A , trn v = 2, tst i / = 2 yes 0.28 3.0 0.97 16.8 0.69 10.3 0.99 21.3 

CO 

Table 4.3: Comparison of error rates on VoxCeleb and SITW of Gaussian P L D A versus generatively trained heavy-tailed P L D A using 
x-vectors. The performance metrics are C m ™=minDCFo .o5, and EER(%). 

# System L N 
VoxCeleb 1-0 VoxCeleb 1-E VoxCeleb 1-H SITW core-core # System L N 

min E E R min E E R min E E R min E E R 

1 G - P L D A , E M yes 0.12 1.6 0.13 1.8 0.23 3.7 0.21 3.0 
2 G - P L D A , E M no 0.18 3.0 0.17 3.0 0.26 5.1 0.30 8.1 

3 H T - P L D A , trn v = oo, tst v = 2 no 0.12 1.9 0.12 2.0 0.20 3.4 0.19 3.5 
4 H T - P L D A , trn v = 2, tst v = 2 no 0.12 2.0 0.12 2.1 0.21 3.6 0.19 3.6 

5 H T - P L D A , trn v = oo, tst v = 2 yes 0.12 1.9 0.12 2.0 0.20 3.4 0.19 4.4 
6 H T - P L D A , trn v = 2, tst v = 2 yes 0.12 2.0 0.13 2.1 0.21 3.6 0.19 4.6 



For all of the models, 512-dimensional embeddings were centered, then their dimension­
ality was reduced to 300 by linear discriminant analysis (LDA), then, optionally, the L N 
step was applied. We set the size of the hidden speaker subspace d to 200 for all models. 

Similarly to the i-vector experiment, we compare the performance of the baseline G-
P L D A model to the H T - P L D A model initialized from G - P L D A (when training the model, 
the degrees of freedom parameter v was set to infinity, while when testing, it was set to 2) 
and H T - P L D A model that was trained generatively as described in Section 4.1. A l l three 
models were trained on x-vectors with and without L N . The results are shown in Table 4.3. 
Looking at the results, we confirm the findings of the i-vector experiments: The presence 
of length normalization is critical for a good performance of the baseline G - P L D A model 
(compare lines 1 and 2 of the table), while for both H T - P L D A s , we do not observe the 
same behavior (lines 3 and 5, and 4 and 6). In most cases, the performance of H T - P L D A 
with and without L N is similar. The only exception is SITW core-core condition, where 
not doing L N provides better performance in terms of E E R . H T - P L D A with and without 
L N outperforms G - P L D A without L N on all of the test conditions, while when comparing 
H T - P L D A to G - P L D A trained on length-normalized x-vectors, we see that it results in 
the same or better C^™ for all conditions, while E E R for VoxCelebl-O, VoxCelebl-E, and 
SITW degrades when switching from G - P L D A with L N to any variant of H T - P L D A . 

4.2.3 Robustness of H T - P L D A to embedding pre-processing 

As was seen in the example of i-vectors and x-vectors (Sections 4.2.1 and 4.2.2), H T - P L D A 
is less sensitive to the presence of L N compared to G - P L D A . L N is a simple operation that 
is cheap to perform, so the robustness of H T - P L D A in the absence of L N is not such a 
great advantage over G - P L D A , especially taking into account that G - P L D A provides better 
results. Often, however, many pre-processing steps are applied to embeddings before training 
the P L D A model. If H T - P L D A is robust to their presence, absence, or permutation, it will 
save time and resources in tuning the model. 

We performed the following experiment with the x-vector based system. We use dif­
ferent combinations and order of length normalization and L D A dimensionality reduction 
for 512-dimensional neural network embeddings (x-vectors of Section 2.4.2) prior to train­
ing Gaussian and heavy-tailed P L D A models for testing on VoxCelebl-E set. The only 
pre-processing step, always present for all of the systems, is centering. 

The results are shown in Table 4.4. Each line of the table corresponds to a different 
pre-processing procedure applied to x-vectors before training the models. For example, the 
line designated as L N + L D A corresponds to a system where both length normalization and 
L D A were done, and L N was done before L D A , while L D A + L N means that both of them 
were performed but in the opposite order. The first two columns correspond to the results 
of the G - P L D A model, while the last two are showing H T - P L D A performance. 

As can be seen, the performance of Gaussian P L D A varies greatly depending on what 
kind of pre-processing was applied to x-vectors. Especially striking is the difference in 
performance induced by the order of L N and L D A (lines 4 and 5). So, one may conclude 
that when selecting and tuning the back-end for some particular task, several options of 
embedding pre-processing have to be tried before applying G - P L D A . On the other hand, 
H T - P L D A does not seem to be affected by these factors. Even without any pre-processing, 
it provides competitive results, which can be slightly improved by including L N or L D A , 
but the difference would not be that prominent. 

H T - P L D A could serve as a robust model that quickly provides a reasonable baseline for 

35 



Table 4.4: Comparison of performance on VoxCelebl-E of Gaussian and Heavy-tailed P L D A 
with different pre-processing steps applied on input x-vectors. The performance metrics are 
CP™=minDCF 0 .o5, and EER(%) . 

# Pre-processing steps 
G - P L D A H T - P L D A # Pre-processing steps 
min E E R ^ P r m 

min E E R 

1 - 0.18 3.0 0.12 1.9 
2 L N 0.22 3.6 0.12 1.8 
3 L D A 0.17 3.0 0.12 2.1 
4 L N + L D A 0.22 3.6 0.13 2.0 
5 L D A + L N 0.13 1.8 0.13 2.1 
6 L N + L D A + L N 0.14 1.9 0.13 2.1 

an embedding system. While this baseline performance might still be improved by carefully 
tuning G - P L D A , the performance gains are moderate. 

4.2.4 Scaling factors b depending on the audio quality and duration 

According to the theory, different recordings lead to different scaling factors bij for the 
hidden speaker variable as defined by (3.22). We expect that for clean recordings, these 
scalars should be higher, and for noisy ones, they should be lower. That is the way the 
uncertainty is propagated in the model. The same should be true for the recordings of 
different lengths: short recordings should have lower bij than long ones. To verify that it is 
indeed the case, we perform the following experiments. 

We use the x-vector system trained on the VoxCeleb2 database. To train the x-vector 
extractor, we use the original training data along with four augmented versions of them. 
Once the network is trained, we extract x-vector embeddings for the concatenated version of 
VoxCeleb2 development utterances, i.e., we use VoxCat set as defined in Section 2.5. Also, 
we extract x-vectors for the augmented versions of the utterances. 

Then, we keep x-vectors of 100 speakers aside and use the rest to train the H T - P L D A 
model with the V B generative training approach. The trained model is then used to compute 
the scaling factors b for each set-aside recording. Here, we treat each recording indepen­
dently, i.e., no information about the speaker identity is used, and recordings of the same 
speaker are not pooled together. 

For the first experiment, we filter out of the pool of set-aside recordings all utterances 
shorter than 60 seconds in order to eliminate the possible effect of the recording duration. 
Then, we plot the histograms of the scalars for the original version of the data along with 
the augmented versions of the same utterances (different types of augmentations are pooled 
together for better clarity of the graph). The normalized histograms are shown in Figure 4.1. 

As expected, the histogram corresponding to the original data is shifted to the right 
compared to the histogram plotted for the augmented utterances. In other words, the 
scaling factors for the original data are generally higher than those for augmented data. 
However, the histograms are highly overlapped: many original utterances have lower scaling 
factors than many of the augmented utterances. There can be several reasons for this 
phenomenon: one possible explanation is that we have no evidence of the original data 
being clean. So, some of the original recordings may actually be of a lower quality than 
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Figure 4.1: Normalized histogram of the scaling factors b for the original and augmented 
versions of the VoxCat utterances longer than 60 seconds. 

some other recordings with augmentations. Another interpretation for the precision factors 
to be similar for audio of different quality is that the x-vector extractor network saw the 
same data we used for the plots at training time. Also, augmentations of the same types 
were used when training the extractor. Consequently, the extractor should have learned 
to suppress these augmentations and extract similar embeddings for differently augmented 
versions of the data. 

Apart from the quality of the audio, the duration of the recording should affect the 
estimated precision. To verify this hypothesis, we use the same embeddings as for the 
previous experiment (this time without eliminating the embeddings for short utterances). 
Now, however, we look only at the original recordings. For each of them, we plot its 
scalar b against its duration. The result is shown in Figure 4.2. As expected, low scaling 
factors correspond to recordings of short duration. As the duration increases, the precision 
grows. However, for one-minute or longer utterances, duration stops being the primary 
driver affecting the value of b. 

4.2.5 Summary 

As can be seen from the experiments of Sections 4.2.1 to 4.2.3, H T - P L D A trained on i -
vector and x-vector embeddings do not necessarily provide a performance gain compared 
to a simpler G - P L D A model. At the same time, H T - P L D A has the advantage of being 
more robust to the variations in the input data and to the configuration of embedding 
pre-processing steps. 

Also, we have seen that H T - P L D A model is indeed able to utilize uncertainty information 
(Section 4.2.4). Especially well it was pronounced in the experiment considering utterances 
of various durations. 

In the following chapter, we consider alternative methods of training the H T - P L D A 
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Figure 4.2: Dependence of the precision scaling factors b on the utterance duration. Each 
dot on the graph corresponds to one utterance from the VoxCat set. No augmentations 
were applied. 

model to see whether its properties are kept and whether H T - P L D A is still a competitive 
model compared to G - P L D A when the training strategy is changed. 
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Chapter 5 

Discriminative training of H T - P L D A 
model 

This chapter concentrates on discriminative approaches to estimate the parameters of the 
H T - P L D A model of Section 3.2. The approach of Section 5.2 was originally discussed 
in [Briimmer et al., 2018b], similar objective to the one used in Section 5.5 was presented 
by us in [Silnova et al., 2020]. Other discriminative approaches to training the H T - P L D A 
model described in this thesis have not been published. 

5.1 Maximum conditional likelihood 

Maximum likelihood (ML) is a natural criterion for supervised training of generative models. 
That is, the model parameters 9* are chosen as: 

9* = argmaxP(data | labels, 9). (5-1) 
e 

We used similar training criterion in Chapter 4. There, 1Z and C were used as data and 
labels and 9 were the parameters of H T - P L D A model. 

Similarly, the natural criterion for discriminative training is Maximum Conditional Like­
lihood (MCL) : 

9* = argmaxP (labels | data, 9). (5.2) 
e 

If all data points are independent of each other, the M C L objective can be factorized as: 

9* = argmax TT P(labeh | datumj,6>) = argmin > (—logP(labelj | datum,, 9)). (5.3) 
n n 

The last expression is the cross-entropy objective. One example of such a criterion is 
described in Section 5.2. More details are given there, but in short: to use the cross-entropy 
objective of the form (5.3), we organize the original dataset 1Z with labels C into a set of 
training examples - speaker verification trials, where each trial consists of a pair of recordings 
and a binary label indicating whether both recordings belong to the same speaker or not. 
We assume that the trials are independent so that we can use the cross-entropy objective. 
As it is a two-class classification problem, we call the objective Binary cross-entropy (BXE) . 
Similarly, Section 5.5 describes a more general training strategy where the training examples 
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are not limited to pairs of recordings but can be tuples of several recordings. For each such 
tuple, we want to be able to partition it into speaker clusters. As there is a finite number 
of possible partitions, we can enumerate them. Then, the partitioning problem can be 
considered a classification problem: each tuple belongs to one of the possible partition 
classes, and the label corresponding to a such tuple is the index of the correct partition. 
Thus, we can train a model to properly partition tuples of recordings into speaker clusters 
with Multi-class cross entropy ( M X E ) . 

Alternatively, we may consider the set of recordings 1Z and the corresponding set of 
speaker identity labels (correct partition) C* directly as data and labels in (5.2): 

According to the data assumptions (see Section 2.1), individual recordings may or may 
not depend on each other, depending on whether they come from the same speaker or 
different speakers. Hence, it is not possible to factorize M C L into components corresponding 
to individual recordings. Rather, we have to consider the set 1Z as a single example where 
C* serves as a single "label" for the whole dataset. In other words, in this case, training with 
the M C L objective means maximizing the posterior of the correct partition of the entire 
data set into speaker clusters. 

Let us look closer at the posterior probability of the correct partition: 

Computing the posterior exactly is possible only for rather small data sets. The reason 
is the normalization term in the denominator where the sum is computed over all possible 
partitions C of the set 1Z. The number of possible partitions of the set of iV recordings is the 
iV-th Bell number Bjy. The growth of Bell numbers with an increase of iV is prohibitively 
fast. For example, for iV = 75, the corresponding Bell number exceeds 10 8 0 . And the 
typical data set for which we would like to use training objective (5.5) contains thousands 
of recordings. Moreover, the denominator depends on the values of parameters 9 and cannot 
be ignored in the optimization process. So, even though there is an explicit formula for the 
partition posterior, in practice, it is impossible to use it for training and even to evaluate it. 

Hence, we need to consider some alternatives to directly optimizing (5.5). We consider 
two such alternatives: pseudolikelihood in Section 5.3 and approximate posterior of the 
correct partition with Markov chain Monte-Carlo ( M C M C ) sampling in Section 5.4. Also, 
notice that the objective of the interest operates on the posterior distribution, and the to-
be-trained P L D A model supplies only the likelihood term P(1Z \ C). Hence, some prior 
distribution over different partitions P{£) has to be defined. We use a two-parameter 
version of Chinese restaurant process (CRP) as a prior in this work. The details of C R P 
are provided in Appendix B. 

5.2 Discriminative training with Binary Cross-Entropy 

The underlying task behind Binary Cross-Entropy (BXE) objective function applied to 
pairs of recordings is the speaker verification problem. Speaker verification is the task of 
answering whether the speaker in some given recording, called test, is the same as in the 
fixed reference recording - enrollment. Keeping in mind the task, it is natural to consider 
the data to be organized as a set of pairs of recordings - trials. Given a dataset 1Z of size 

9* = a r g m a x P ( £ * \K,6). (5.4) 

Zcp(n\£)p(cy 
(5.5) 
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N, one can produce ' 2 ~ ' trials where we have excluded the trials of the same recording 
compared to itself. Also, for many methods, including H T - P L D A , the trial is considered 
symmetric, so there is no difference in which of the two recordings is called "enrollment'' 
and which "test". Hence, there is a division by 2 in the possible number of trials. The goal 
is to separate target trials where both enrollment and test recordings contain speech of the 
same speaker from non-target trials for which the speakers in the enrollment and test are 
different. The assumption we make is that all of the trials are independent of each other. 

First, let us consider a single trial. One can assign an L L R score of the form (2.6) to 
it. Then, as was discussed in Section 2.2.1, the decision on whether the trial is target or 
non-target can be based on this score. If the score is higher than some threshold r , the trial 
is assumed to be a target trial; inversely, if the score is lower than the threshold, we assume 
the trial is non-target. The score depends on the recordings in the trial as well as on the 
parameters 9 of the assumed underlying model ( H T - P L D A in our case). The log-probability 
of correctly classifying a single trial is: 

log P(kj | tu Tj) = log 

log Uij = kj log = lijT, 

P(ri, rj\l = l)P{l = 1) + P(n, Tj\l = -l)P(l = -1 ) (5.6) 

= - l o g ( l + aije(-li*Si*)). 

Here, lij G {1, —1} is a true label assigned to a trial (r-j, rj) (1 corresponds to target and —1 
to non-target trials). Notice that in the other sections, labels were speaker labels associated 
with recordings r € TZ, while, here, each label has a binary value assigned to a pair of 
recordings. Sij = Sij{9) denotes the L L R score, aij is a scalar representing the ratio 
between prior probabilities of the incorrect and correct classes. 

By noticing that 

Pil = -1 ) 
P(l = 1) 

(5.6) can be written as : 

\ogP{k3 | rh rj) = - log(l + e - M ^ - r ) ) ; (5.7) 

where r depends on the prior probabilities of the classes (or, rather, on the prior probability 
of the target trial P(l = 1), as the prior of non-target is simply P(l = —1) = 1 — P(l = 1)). 
Notice that r is the optimal threshold if the relative costs of the miss and false alarm errors 
are equal (see Section 2.2.2) (and also if the score sij can be trusted as a good L L R score). 

Now, we expand our attention to the whole training data set and consider the M C L 
objective (5.2) which, in this case, is maximizing a (log-)probability of correct labeling of 
the training trials. As the trials are assumed to be independent, the log-probability is a sum 
of expressions (5.7) where the sum is calculated over all trials in the training set. Just by 
inverting the signs, one can minimize the B X E error function: 

E(9) = ^ log(l + e - ^ - r ) ) , (5.8) 
{id} 

where 9 denotes model parameters. Optimal parameters are obtained by minimizing the 
cross-entropy objective: 9* = argmin 6 /(P(^)). E{9) can be further modified by introducing 
scalar weights for individual components of the sum: 

E(9) = Y, log(l + e - ' « ( a « - T > ) . (5.9) 
{iJ} 
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This can be useful, for example, to weight target and non-target trials as their proportion 
in the training set may differ from the one assumed by the target application. 

(5.8) (or (5.9)) is a general definition of the B X E objective, that was repeatedly used for 
speaker recognition in the past [Brummer et al., 2007, Bürget et al., 2011, Brummer et al., 
2014, Heigold et al., 2016, Snyder et al., 2016,Rohdin et al., 2018,Rohdin et al., 2020]. To 
apply the B X E objective to estimation of parameters of the H T - P L D A model, we plug in 
the correct expressions for the L L R score Sij derived from the model. 

Closed-form expression for the L L R score with H T - P L D A model can be obtained by 
combining (2.6) and (3.28) (see Appendix C for the complete derivation): 

SHT-PLDA = ^ T % Y % + 1 r, p , r . + r / A . , r . + ^ ( 5 1 0 ) 

where we have used the following definitions: 

Ti = 6fWF[((6 i + 6 i ) F , W F + I)"1 - (^F'WF + I)" 1]F'W, 

Tj = 6 |WF[((6i + bj)F'WF + I)"1 - (bj-F'WF + I ^ J F ' W , 

A i j = 6 i 6 i WF ( (6 i + 6j)F'WF + I ) " 1 ^ , 

kij = ~ log|(6i + 6j)F'WF + I| + ^ l o g ^ F ' W F + I| + 1 l o g ^ F ' W F + I| 
(5.11) 

v + r'(W - W F ( F / W F ) " 1 F / W ) r ' 

H T - P L D A parameters: factor loading matrix F, noise precision matrix W , and degrees 
of freedom v participate in calculating the L L R score and, consequently, B X E objective 
(5.8). As before, we fix v and do not attempt to re-estimate it. As we have mentioned in 
Section 3.2.3, v is responsible for the choice of the model ( G - P L D A vs. H T - P L D A ) ; hence 
we select the model we want to use before training it. The two other parameter matrices 
are learned by minimizing the objective. 

There are various algorithms to conduct minimization of the objective function. For 
example, for the discriminative training of G - P L D A in [Burget et al., 2011] authors use 
Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm to do full-batch 
optimization. We decided to use the Stochastic Gradient Descent (SGD) method similarly 
to [Rohdin et al., 2018]. 

We would like to emphasize a few practical aspects of the learning process: 

• As the training is stochastic, the question of how to form the batches arises. In [Ro­
hdin et al., 2018], this question was addressed for a similar problem of joint training 
of embedding extractor and G - P L D A with B X E objective. There, two strategies are 
discussed: forming mini-batches with trials between as many speakers as possible 
(maximizing the number of non-target trials) or forming them to have as many ut­
terances per speaker as possible (maximizing the number of target trials). However, 
in [Rohdin et al., 2018], the training was performed for an end-to-end system, i.e., 
the embedding extractor and back-end model were trained jointly, and the size of one 
batch had to be rather small because of the memory limitations. In our case, we train 
only the back-end model, meaning that we can afford to have larger mini-batches. 
Thus, we always select a set of speakers to form the batch. Then, all of the target tri­
als of these speakers and a subset of all possible non-target trials between the selected 
and all the other speakers are used in the mini-batch. Non-target trials are selected 
in such a way that by the end of the iteration, all of them were seen. 
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• Training would be very slow if we directly optimize B X E with LLRs given by (5.10) 
and (5.11) due to a large number of expensive operations such as matrix inversion 
and computation of matrix determinant. Section 3.2.2 discussed a way to speed up 
these calculations by noticing that by doing a single eigenvalue decomposition, the 
two operations significantly simplify. 

• W is a precision matrix. So, it has to be symmetric and positive semi-definite. How­
ever, there is no guarantee that after the SGD update, this will be respected. To 
overcome this problem, we represent W = W W and learn components of W rather 
than learning W. 

• Parameters of the model can be initialized randomly. However, one can use the pa­
rameters of the generatively trained H T - P L D A or G - P L D A as an initialization for 
the discriminative training. In this case, one can include the regularization term to 
the objective preventing the trained parameters from deviating severely from the ini­
tial values. In our experiments, we use L2 regularization, i.e., the final objective to 
optimize is: 

E{9) = E{9) + c(||vec(F - F 0 ) | | | + ||vec(W'W - W 0 ) | | | ) , (5.12) 

where c is a coefficient regulating the strength of regularization, F, W and Fo, Wo 
are, respectively, current and initial values of the parameters to learn, || • H2 is L2 
vector norm and "vec" denotes the vectorization operation. 

When parameters are initialized randomly, we rather use early stopping of the training 
once we observe performance degradation on the cross-validation set. 

• The above considerations are not specific to the B X E objective. Later, when training 
the back-end model with other discriminative objectives, we also use the efficient 
approach to compute likelihoods of Section 3.2.2, the factorization of the precision 
matrix (to make sure that it is positive semi-definite), and L2 regularization. 

5.2.1 Experiments and results 

We performed the experiments to assess the SV performance of the H T - P L D A model trained 
with binary cross-entropy objective with i-vector and x-vector embeddings. 

BXE-trained H T - P L D A for i-vectors 

First, let us discuss the i-vector based system. Here, we use the same i-vectors (see Sec­
tion 2.4.1) as the experiment of Section 4.2. However, unlike before, for the discriminative 
training via SGD, we split the P L D A training dataset (PRISM set of Section 2.5) into 
training and cross-validation subsets. Cross-validation was done on a randomly selected 
subset of 10% of the speakers, leaving the other 90% for training. This gave 8740 ut­
terances for cross-validation and 90309 for training. We report the performance of the 
i-vector based system on SRE10c05,f and SRE16 evaluation sets in terms of EER(%) and 
C m ™ = 0 . 5 minDCFo.01 + 0.5 minDCFo.oos-

When training H T - P L D A discriminatively with objective (5.8), we initialize the training 
with parameters of the baseline G - P L D A model, set degrees of freedom v to 2, and retrain 
other parameters of H T - P L D A (matrices F and W) regularizing them towards the initial 
parameter values. 
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The results are shown in Table 5.1. The first part of the table repeats the results from 
Table 4.2 for two baseline systems. These are Gaussian P L D A applied to length-normalized 
i-vectors and i-vectors without length normalization. In the middle part of the table, we 
present the results of the generatively trained H T - P L D A models corresponding to lines 4 
and 6 from Table 4.2. Finally, last two lines of Table 5.1 show the performance of H T - P L D A 
models trained discriminatively with B X E objective (5.8). Thus, comparing lines 1-2 to lines 
3-4 or 5-6 allows us to see the effect of the back-end model, and lines 3-4 and 5-6 compare 
different approaches to training the H T - P L D A model. 

For discriminatively trained H T - P L D A , we see the same trend as in Section 4.2: HT-
P L D A seems to be more robust to the presence or absence of the L N step; its performance 
does not vary as much as the performance of G - P L D A . Comparing lines 3-4 to 5-6, one 
can notice that for some of the conditions (SRE10c05,f), the discriminative training of the 
H T - P L D A provides better results than the generative and for others ( C p ™ for SRE16, 
Cantonese) the trend is opposite. One of the possible reasons for the discriminative training 
not working that well for SRE16 is the training data that we are using: there is no data 
similar to SRE16 in our training set. Indeed, generative training works better when limited 
training data is available, while discriminative training strategies benefit from utilizing the 
in-domain training data. 

BXE-trained H T - P L D A for x-vectors 

For x-vector embeddings, we perform a similar experiment. The embedding extractor is 
trained on the VoxCeleb2 dataset. VoxCat set is used to train the baseline Gaussian P L D A , 
generatively trained H T - P L D A , and H T - P L D A trained discriminatively with B X E . VoxCat-
C V is the cross-validation set for stochastic training (see Section 2.5 for more detail). We 
center the data and apply L D A transformation reducing the dimensionality of embeddings 
from 512 to 300. We report the performance in terms of EER(%) and Cm-™=minDCFo.o5 
on the VoxCelebl-O, VoxCelebl-E, VoxCelebl-H, and SITW core-core. 

As the baseline, we use G - P L D A trained on unnormalized x-vectors and x-vectors with 
length normalization applied. Also, we use two generatively trained H T - P L D A models. 
Finally, we train two H T - P L D A models discriminatively with the B X E criterion. Both 
models are initialized with the baseline G - P L D A model (with corresponding embedding 
pre-processing L N vs. no LN) . We do L<i regularization of parameters towards their initial 
values. The regularization strength (coefficient c from (5.12)) was tuned on VoxCelebl-O: 
c was set so that E E R on this condition was not degrading with training. 

The results of these experiments are presented in Table 5.2. Lines 1 - 4 correspond to 
G P L D A baselines and generatively trained H T - P L D A s from Table 4.3. Lines 5 and 6 of the 
table correspond to two H T - P L D A models trained discriminatively with the B X E criterion. 
As one can see from the results, training H T - P L D A discriminatively for unnormalized x-
vectors provides a significant improvement compared to the G - P L D A model from which it 
was initialized. However, it is worth mentioning that most of the gain comes from switching 
to the heavy-tailed variant of P L D A even before the model is retrained (compare lines 2 and 
3 of Table 4.3). We also see that the results of the BXE-trained H T - P L D A model are slightly 
better than those of the generatively trained model; however, the performance difference 
is marginal - the most significant improvements are in E E R for SITW and VoxCelebl-H 
conditions. 

For x-vectors with L N , training H T - P L D A generatively or discriminatively is beneficial 
only for VoxCelebl-H condition, where we see the performance improvement in terms of 
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Table 5.1: Comparison of error rates on SRE10 and SRE16 of Gaussian P L D A versus H T - P L D A trained generatively or discriminatively 
with B X E criterion (5.8). The performance is reported in terms of (7^^=0.5minDCFo.oi + 0.5minDCFo.oo5> a n d EER(%). 

# System L N 
SRE10c05,f SRE16 , all SRE16, Cantonese SRE16, Tagalog # System L N 
/~iPrra 

min E E R /~iPrra 
min E E R /~iPrra 

min E E R /~iPrra 
min E E R 

1 G - P L D A , E M yes 0.26 2.5 0.96 16.5 0.68 9.7 0.99 21.0 
2 G - P L D A , E M no 0.33 4.0 0.97 17.8 0.69 11.5 0.98 21.3 

3 H T - P L D A , V B yes 0.28 3.0 0.97 16.8 0.69 10.3 0.99 21.3 
4 H T - P L D A , V B no 0.31 3.2 0.97 16.9 0.69 10.4 0.99 21.3 

5 H T - P L D A , B X E yes 0.19 2.0 0.87 16.1 0.78 10.3 0.95 21.4 
6 H T - P L D A , B X E no 0.21 2.1 0.90 15.1 0.73 9.3 0.97 20.2 

Table 5.2: Comparison of error rates on VoxCelebl and SITW test sets of Gaussian P L D A versus H T - P L D A trained generatively or 
discriminatively with B X E criterion (5.8). The performance is reported in terms of C^j^^minDCFo.05, and EER(%). 

# System L N VoxCelebl-0 VoxCelebl-E VoxCelebl-H SITW core-core # System L N 
/~iPvm 

min E E R ^ P r m 
min E E R /~iPvm 

min E E R /~iPvm 
min E E R 

1 G - P L D A , E M yes 0.12 1.6 0.13 1.8 0.23 3.7 0.21 3.0 
2 G - P L D A , E M no 0.18 3.0 0.17 3.0 0.26 5.1 0.30 8.1 

3 H T - P L D A , V B yes 0.12 2.0 0.13 2.1 0.21 3.6 0.19 4.6 
4 H T - P L D A , V B no 0.12 2.0 0.12 2.1 0.21 3.6 0.19 3.6 

5 H T - P L D A , B X E yes 0.12 1.9 0.12 2.0 0.20 3.4 0.19 4.3 
6 H T - P L D A , B X E no 0.12 1.8 0.11 1.9 0.20 3.3 0.18 3.1 



both Cj^™ and E E R . There is an improvement in C^™ for SITW condition; however, we 
see significant degradation in E E R when switching from G - P L D A to H T - P L D A . This re­
sults from the performance drop when switching G - P L D A to heavy-tailed mode without 
retraining it (lines 1 and 5 of Table 4.3). 

Comparing lines 3-4 to 5-6, we notice that discriminatively trained models perform 
slightly better or the same as generative ones for unnormalized and length-normalized x-
vectors. As noted in the i-vector experiment description, this is expected as we train the 
models on an in-domain training set. If there was a shift between training and evaluation 
data, we expect the trend to be the opposite. 

Overall, we confirm our previous observation - the performance of the H T - P L D A model 
trained on embeddings with or without length normalization is similar, i.e., H T - P L D A is 
robust to embedding pre-processing. 

5.3 Pseudolikelihood 

As discussed before, discriminative training with objective (5.4) and (5.5) is intractable in a 
realistic scenario due to the high number of computations required to evaluate the objective. 

Here, we look at the alternative objective function called pseudolikelihood (PSL), which 
was introduced as an approximation to the true intractable likelihood [Besag, 1975, Dawid 
and Musio, 2015]. PSL is a composition of likelihoods computed for a single observed 
variable at a time while others are fixed. Below, we present how this objective looks in our 
case. 

We start by fixing one data partition C for all of the points in a dataset except for one 
r-j with a label k according to C. The probability of assigning a label k to r-j is: 

P(k | rj,72.\j,£\j) 
P{1Z\C\i,li)P{li | cv 

P(Ti,K\i I £ \ i ) 
_ P(1Z | C)P(h | Cv) 

_ P(1Z | C)P{h | C\j) 

~ Y,i>iP{K\C'i)P{l'i\C\i)' 

Here, C\~ denotes the whole partition (set of labels) with a single label k excluded, CJi is a 
partition which is the same as C but with label U changed to l[. Unlike the posterior for 
the partition C of the set 1Z, the posterior of assigning a label for a single point is tractable 
as the number of components in the denominator can not be higher than m + 1, where 
m is a number of speakers assumed by C\~. P{1[ \ C\~) is defined by the C R P prior and 
can be computed with (B.2). P(JZ \ C) is a likelihood for the whole partition. As shown 
in Section 3.2, there is a closed-form formula (3.28) to approximate the (log-)likelihood of 
H T - P L D A up to a normalization constant, but this normalization constant is the same for 
both numerator and denominator in (5.13) so it can be safely ignored. 

Pseudolikelihood then is defined as a product of the posteriors of individual points to 
be correctly assigned, given that the assignment of the other points is fixed. That is: 

1>(K, £*, 9) = J] P(l* | TZ, 9). (5.14) 
i. 

Above, we explicitly include the model parameters 9 into the objective function. 
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In some sense, PSL follows the intention of the objective (5.4) - maximizing posterior of 
the correct partition. In (5.4), the correct partition of a dataset is compared to all possible 
partitions; each component of PSL compares very similar partitions and looks at arguably 
the most difficult cases when a single point has to be correctly assigned a label. 

Similarly to other objectives, instead of maximizing PSL, we can minimize its negative 
logarithm: 

argmax ip(lZ, C *, 9) = argmin[— logi/>(7£, C*, 9)] = argmin[— > l o g P ( £ * | Cu,TZ, 9)}. 
e e e i 

(5.15) 

Notice that the PSL objective function cannot be decomposed into a sum of independent 
error functions: each component in the sum (5.15) depends on the whole training dataset. 
Thus, we can not use stochastic training; instead, we have to use full-batch optimization 
techniques to learn the model parameters. 

5.3.1 Experiments and results 

For the PSL training, we experiment with i-vector and x-vector embeddings. The general 
comment for both sets of experiments is that the training with PSL objective takes a long 
time. This is because no stochastic training is possible for the PSL objective - to make a 
single update, one has to compute the objective and the gradients for the whole training 
data. Thus, it was not feasible to tune the training hyper-parameters; the presented results 
are achieved with a single run of the training without tuning the learning rate, the strength 
of regularization, etc. 

H T - P L D A trained with PSL on i-vector embeddings 

The i-vectors used in this experiment are the same as used in Sections 4.2.1 and 5.2.1: the 
i-vector extractor was trained on P R I S M dataset, 600-dimensional i-vectors were extracted 
and centered. For one of the baseline models, the embeddings were length normalized. A l l 
back-end models were trained on 90% of the speakers from P R I S M dataset (same as when 
training the model with B X E ) . Parameters of the C R P prior are estimated on the training 
set so that the expected number of speakers for the given number of recordings (B.5) was the 
same as the true number of speakers in the training set (see Appendix B for more details). 
We test the performance on SRE10c05,f and SRE16. The results are shown in Table 5.3. 

The first two lines of the table repeat the baseline results of Section 4.2.1. These results 
are achieved with the Gaussian P L D A model applied to normalized and unnormalized i -
vectors. The third line corresponds to the results of the H T - P L D A model initialized from 
the second baseline and further trained with the PSL objective computed for the training set. 
H T - P L D A model trained with PSL objective outperforms the baseline G - P L D A trained on 
unnormalized i-vectors on SRE10c05,f and SRE16, all conditions. In contrast, on Cantonese 
and Tagalog sub-conditions of SRE16, it only improves one of the performance metrics. 
When H T - P L D A is compared to the first baseline ( G - P L D A with LN) , we notice that for 
the majority of test conditions, there is performance degradation when training H T - P L D A 
with PSL on unnormalized i-vectors. 
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H T - P L D A trained with PSL on x-vector embeddings 

For x-vector embeddings, the experimental setup is the same as in Section 4.2.2: x-vector 
extractor is trained on VoxCeleb2, back-end models are trained on VoxCat set, this set is 
also used to estimate the parameters of C R P similarly to i-vector experiment. 

The embeddings are centered and their dimensionality is reduced by L D A from 512 to 
300. Then, the embeddings could be length-normalized or not. For all discriminatively and 
generatively trained models, the size of the speaker subspace (hidden vector z) was fixed to 
200. 

We report the performance in terms of EER(%) and C^™=minDCFo.o5 on SITW core-
core, VoxCelebl-O, VoxCelebl-E, and VoxCelebl-H. The results are shown in Table 5.4. 

The first four lines of the table correspond to G - P L D A baseline models and generatively 
trained H T - P L D A s from Table 4.3: both are trained on raw or length normalized x-vectors. 
Lines 5 and 6 show the results of two H T - P L D A models trained discriminatively to maximize 
the pseudolikelihood of the training data. Both models are initialized with the baseline 
G - P L D A model (with corresponding embedding pre-processing) with L2 regularization of 
parameters towards their initial values. 

Analyzing the results, we make several observations: discriminatively trained H T - P L D A 
models perform similarly or slightly better than generatively trained ones; for most of the 
test conditions, discriminative training of H T - P L D A on raw embeddings results in better 
performance than training on length-normalized embeddings; G - P L D A with L N provides 
the best results in terms of E E R on all test conditions except VoxCelebl-H, however, is 
usually better for H T - P L D A models. 

5.4 Approximate partition posterior 

In this section, we return to objective (5.4). Let us repeat it here for convenient referencing: 

9 = argmax — — - 7 — - — — „. (5.16) 

£* is the correct partition of the data 1Z into speaker clusters; the sum in the denominator 
is over all possible partitions. Optimizing this objective would force the model to maximize 
the posterior probability of the correct partition. 

However, as mentioned before, computing this posterior exactly is possible only for small-
scale problems where the number of points in the set 1Z does not exceed 10-12. For practical 
tasks, 1Z would have several thousand elements, and computation of the normalizer in (5.16) 
would be impossible due to a large number of components in the sum (Bell number). 

Hence, instead of computing the objective exactly, we propose to use its approximation 
and also an approximation of its gradient. We rely on numerical sampling, often referred 
to as the Monte Carlo method. The general idea here is based on the assumption that 
even though the correct distribution cannot be evaluated, it is still possible to sample from 
it. Then, we can draw a set of n independent samples C\,... ,£n from the posterior and 
approximate the sum in the denominator by a sum over unique sampled partitions. 

Then, the posterior becomes: 

P ( n 1 v m = P(n\c*,e)p(c*) ^ p(K\c*,d)p(£*) 
^ I ") ^ p m C i e ) p { C ) ~ E « = i e ) p { C i ) • V- <) 

With such an approximation, the denominator is underestimated. But, by sampling 
new unique partitions, the estimation approaches the actual value of the normalizer. In the 
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Table 5.3: Comparison of error rates on SRE 2010 and 2016 of Gaussian P L D A with and without L N , versus discriminatively 
trained heavy-tailed P L D A using i-vectors. Discriminative training is performed with the PSL objective. The performance metrics 
are C m ™ = 0 . 5 m i n D C F 0 . 0 i + 0.5minDCF 0 . 005, and EER(%) 

# System L N SRE10c05,f SRE16, all SRE16, Cantonese SRE16, Tagalog # System L N 
/~iPvm 

min E E R /~iPvm 
min E E R /~iPvm 

min E E R 

1 G - P L D A , E M yes 0.26 2.5 0.96 16.5 0.68 9.7 0.99 21.0 
2 G - P L D A , E M no 0.33 4.0 0.97 17.8 0.69 11.5 0.98 21.3 

3 H T - P L D A , PSL no 0.28 2.6 0.93 17.3 0.75 10.9 0.97 22.2 

Table 5.4: Comparison of error rates of Gaussian P L D A with and without L N , versus discriminatively trained heavy-tailed P L D A using 
x-vectors. Discriminative training is performed with the PSL objective. The performance is reported on VoxCelebl-O, VoxCelebl-E, 
VoxCelebl-H, and SITW core-core condition in terms of C m j n

n=minDCFo.o5, and EER(%). 

# System L N VoxCelebl-0 VoxCelebl-E VoxCelebl-H SITW core-core # System L N 
/"iPrm 

min E E R /"iPrm 
min E E R /"iPrm 

min E E R /"iPrm 
min E E R 

1 G - P L D A , E M yes 0.12 1.6 0.13 1.8 0.23 3.7 0.21 3.0 
2 G - P L D A , E M no 0.18 3.0 0.17 3.0 0.26 5.1 0.30 8.1 

3 H T - P L D A , V B yes 0.12 2.0 0.13 2.1 0.21 3.6 0.19 4.6 
4 H T - P L D A , V B no 0.12 2.0 0.12 2.1 0.21 3.6 0.19 3.6 

5 H T - P L D A , PSL yes 0.12 2.0 0.12 2.1 0.21 3.5 0.19 4.0 
6 H T - P L D A , PSL no 0.12 1.8 0.12 1.9 0.20 3.3 0.18 3.2 



limit, when the number of drawn unique samples reaches the number of possible partitions 
n —> .Bat, the estimation of the denominator becomes exact. However, the vast majority 
of the possible partitions would have a very low probability and would not significantly 
contribute to the sum in the denominator. So, an accurate approximation can be achieved 
with a relatively low number of the most probable samples. Our assumption (perhaps 
naive) is that all relevant partitions with significant contributions to the denominator were 
sampled. With high probability, samples drawn from the posterior would come from the 
regions of its high probability. In other words, they would be partitions assigned a high 
posterior probability. And so, the sum over these samples would closely approximate the 
true normalizer. 

Generally, estimating the denominator P(JZ) is a challenging problem; various alter­
natives to the approximation described above can be found in the literature on Bayesian 
model evidence (see, for example, [Friel and Wyse, 2012]). However, most of the other op­
tions are more complex than the one described here. Thus, we opted for this conceptually 
simpler approach, understanding that it provides a rather crude approximation to the model 
evidence. 

To train the model, we need to be able to compute the gradient of the objective. One 
way would be to calculate the gradient of the approximate objective (5.17). However, here, 
we use a different approach and directly derive an approximation to the gradient of the true 
posterior. For convenience, below, we consider the log-posterior and its gradient rather than 
the posterior itself: 

VelogP(C* \TZ,9) = Velog(P(TZ 

= Velog(P(n 

= Velog(P(TZ 

= Velog(P(TZ 

^Velog(P(TZ 

(5.18) 

The last line of (5.18) shows that the exact gradient of the log-posterior can be approximated 
by a positive gradient of the log-likelihood for the correct partition and a negative average 
of the gradients of the log-likelihoods for sampled partitions. Note that here, the samples 
Ci,... ,Cn are no longer assumed to be unique. This method of estimating a gradient is 
known as Contrastive Divergence (CD) [Hinton, 2002, Tieleman, 2008]. 

Intuitively, such an approximation to a gradient makes sense, as the first component 
pushes the log-likelihood (and, consequently, log-posterior) up, while the second suppresses 
the log-posteriors of the sampled partitions (which are probable given the current model 
parameters). When the posterior of the correct partition increases, it will be sampled more 
often, so the gradient will decrease. In the limit case, when all of the sampled partitions are 
the correct one, the gradient vanishes. 

To summarize, if one is able to retrieve samples from the posterior distribution over 
partitions, it is possible to compute both an approximate objective with (5.17) and an 
approximate gradient with (5.18). Hence, a sampling method is needed, which we address 

JC*,9)P(JC*)) ~ V 0 l o g ( ^ P(n | C, 9)P{£)) 

c 

c* 

c 

c 

0 ) ) EcVe(P(K\£,9)P(£)) 

P(K | C,9)P{C) 
o ) ) - ^ o g p { n \ c , t ^ c p { n ^ 9 ) p { c ) 

9))-(VologP(n\£,9))P{m) 

9))--Yve\ogP(K\Ci,9). 
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below in Sections 5.4.1 to 5.4.5. 

Experiment on the approximate training 

Before we move to the particular sampling algorithm, let us first address the following 
questions. How good are the approximations (5.17) and (5.18), and can they really be used 
for model training? To answer them, we run a small-scale experiment on a synthetic dataset. 
The set is very small and consists of only eight 10-dimensional embeddings; we assume a 
2-dimensional latent subspace {D = 10, d = 2). The embeddings are generated from the 
H T - P L D A model with known parameters. There are just eight data points for us to be able 
to compute the objective and the gradient exactly and compare these true values with their 
approximations. 

Figure 5.1 shows the progress of the objective (approximate or exact) with the progress 
of the training for this simple experiment. The horizontal axis of the graph corresponds 
to the number of parameter updates, and the vertical one shows the value of the objective 
at each iteration. We run two trainings with 50 iterations of gradient ascent in each. The 
first computes the exact posterior and the exact gradient (we can do it since there are 
only 4140 possible partitions for a set of eight points) - this is an ideal scenario for the 
training (the progress of the training is shown by a solid red line on the plot). We also 
report the approximate objective computed with the sampling procedure at each training 
iteration (dashed red line). The second system uses an approximate posterior estimate and 
approximate gradient to make an update - this is how we are going to train the model on 
real data; there is no other choice for a large-scale dataset. The progress of the approximate 
posterior with the approximate gradient training strategy is shown as a solid blue line on the 
plot. Finally, we compute the exact objective for the parameters updated with approximate 
gradients (dashed blue line). This way, we can see whether the approximate training would 
improve the true objective. 

In all cases, to get the approximation, we run a single chain of Smart-Dumb/Dumb-
Smart (SDDS) sampler (introduced below in Section 5.4.4) and use 50 samples to compute 
the approximate objective and gradient. Notice that all 50 samples are used for the gradient 
estimation, but fewer are used for the objective function if some of the 50 samples are 
repeating. 

As seen from the plot, when one has the access to the exact gradients, the training 
proceeds faster than with the approximate approach. After the same number of updates, 
the model parameters trained with the exact gradients provide a better true objective. At 
the same time, we see that even the approximate way of computing gradients improves the 
exact objective. It suggests that such training is still useful and can be used to estimate 
the parameters of the H T - P L D A model. Unfortunately, the approximate objective does 
not really correlate with the exactly computed one. Consequently, using it to track the 
performance should be done with caution. 

5.4.1 General notes on sampling 

First, we start with a general introduction to sampling strategies used in this work. 
Many sampling methods are based on the idea that the samples from the distribution of 

interest p(z) can be obtained by the following process: first, fix some distribution q{z) called 
a proposal distribution. Proposal distribution should be selected so that one can sample from 
it. Then, draw samples from the proposal distribution and evaluate how well they fit into 
the distribution of interest. Drawn samples are filtered so that only those evaluated to be 
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Figure 5.1: Comparison of approximate and exact computation of training objective and 
gradients for training H T - P L D A model with objective (5.4). The experiment is done on a 
small synthetic dataset of 8 10-dimensional points for which the exact objective could be 
evaluated. 

a good fit to the distribution of interest are kept. Particular sampling methods differ in 
the way they define the proposal distribution. Also, the evaluation of the sample to fit the 
desired distribution differs for different methods. 

In scope of this work, we use Markov Chain Monte Carlo ( M C M C ) sampling with 
Metropolis-Hastings acceptance test [Metropolis and Ulam, 1949, Hastings, 1970, Bishop, 

In this method, the samples are drawn sequentially. The proposal distribution is defined 
so that the current sample drawn from it depends on the value of the previous sample 
zt+i ~ q(z | zt). The value sampled from the proposal distribution is a candidate to be 
included in the sampling chain. The candidate is accepted with the probability At(zt+i, zt) 
depending on the last accepted sample and the current candidate. If the candidate is 
accepted, it is added to the sequence of the accepted samples zt+i = zt+i- If it is not 
accepted, the candidate is discarded, and the last accepted sample is used in its place, i.e., 
zt+i = zt- It can be shown that the sequence of accepted samples z\,..., zt, • • • forms a 
Markov chain (hence, the name of the method) with the equilibrium distribution p(z). 

Let us look closer at the probability of accepting the candidate. In the Metropolis-
Hastings algorithm, it is calculated as: 

Note that the expression for the acceptance probability includes the desired distribution p(z) 
evaluated at zt and zt+i- The assumption made here is that even if it is impossible to evaluate 
the distribution exactly, at least it should be possible to represent it as p(z) = Z • p(z) 
where p(z) can be evaluated and the normalizing term Z does not depend on z. In the 

2006]. 

(5.19) 
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case of sampling from the posterior of the correct partition (5.5), p{z) is the numerator that 
can be evaluated, and Z = Z{9) is the inverse denominator, which does not depend on a 
particular partition of interest but just on the model parameters. Then, in the acceptance 
test, the normalizing factors cancel and can be ignored: 

At(zt+l,zt) = min 
p(zt+i)q(zt I zt+i] 
p(zt)q(zt+i I zt) 

(5.20) 

The elements of the acceptance test balance each other: the ratio takes into 
account the relative probability of a next sample compared to the previous one. And, the 
ratio shows how probable it is to "reverse" the sampling if the current candidate 
is accepted. In other words, how probable would it be to draw a current sample from a 
proposal distribution q(z \ zt+i). So, for the candidate to be accepted, at least one of 
the two should be true: the candidate has a significantly higher probability than the last 
accepted sample according to the desired distribution, or the acceptance of this candidate 
would not lead to a stagnate chain, i.e., there is a high probability to return to the last 
accepted sample again. 

After running a sampling procedure for some time, one obtains a sequence of accepted 
samples. However, this sequence cannot be directly treated as independent samples from the 
desired distribution. First, the beginning of the sequence corresponds to a burn-in period, 
when the Markov chain was still far from its equilibrium. So, one has to discard some 
fixed number of first accepted samples. Second, neighboring samples in a chain are highly 
correlated. A solution to overcome this problem is to discard relatively many samples in a 
chain between those to keep. 

One of the best-known M C M C sampling algorithms is Gibbs sampling (GS) [Geman and 
Geman, 1984]. It assumes that the distribution of interest is defined for high-dimensional 
variable z = {z\,..., zn}; and, that even though the joint distribution p(z) is intractable, 
the conditional distribution over the individual elements p{zi | zw) can be evaluated. Then, 
the proposal distribution q{zt+\ \ zt) is constructed so that all of the elements except for 
Zi of the proposed sample keep their value with probability 1, and the probability of the 
changed element is given by the conditional p[zi | z J : 

zt = {z{, • • •, zj,..., } zt+i = {z[,..., z\+1,..., }, 

q(zt+l | zt) = p(zl+1 \z\,..., zj_1} • • •, 4 ) -

In the case of Gibbs sampling, it can be shown that the Metropolis-Hastings acceptance test 
is always equal to 1, and, consequently, every candidate from a Markov chain is accepted. 

Now, we return from the general discussion of the sampling algorithms to our particular 
problem. We need to be able to sample from the posterior over the partitions of a set 
P(C | 1Z) assuming that the underlying model generating the observed data is H T - P L D A 
with fixed parameters 9. In the following sections, we consider several algorithms to perform 
this task including Gibbs Sampling (GS) [Geman and Geman, 1984], Split-Merge (SM) [Jain 
and Neal, 2004] and Smart-Dumb/Dumb-Smart (SDDS) [Wang and Russell, 2015]. We start 
by building a Gibbs sampler for the partition sampling problem. 

5.4.2 Sampling from the partition posterior: Gibbs sampling 

Suppose we are at a time point t of the sampling process, and the current state of the 
Markov chain is . defines a partition of a set of N observations into m clusters. By 
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the definition of GS, we fix all of the labels except for one if . 

l?+1) ~P^\ri,Kv,£V). (5.22) 

Then, is repeating except for lf+1^- Sampled label lf+1^ can take values from 1 
to m + 1 as the point can either join an existing cluster or start a new cluster. The same 
procedure is repeated for other labels one at a time. The labels to sample can be selected 
randomly by sampling an index i from a uniform distribution. Another option is to visit all 
of the indices in a round-robin fashion. Note that the proposal distribution in GS has the 
same form as individual components of the PSL (5.13): 

q ( C ^ \ ^ ) = P(lf+1)\rl,TZv,^) 

P(TZ | 4 ) , z f + 1 ) ) P ( z f + 1 ) | 4 ? ) (5.23) 

= ZT=+I 1 4 > , * p = j ) p ( i f + 1 ) = j 14>) ' 

Here, as in PSL, we assume Chinese Restaurant Process prior: P(lf+1'1 | £ y ) is computed 
with (B.2). Likelihood terms P(7Z \ C) can be computed with (2.3) and (3.26) up to some 
normalization constant which cancels in the ratio. 

Thus, Gibbs sampling provides a relatively easy way to sample from a posterior over 
partitions. However, this approach has a major drawback: as Gibbs sampling changes a 
single label at a time, it has a low mixing capability, i.e., to move from one probable partition 
to another, it might be necessary to pass through a sequence of very improbable partitions. 
That means that Gibbs sampling can get stuck in a single mode of the posterior distribution 
(i.e., all generated samples are from that single mode), and it might take "infinitely" long 
time before exploring other plausible partitions 1 . 

Hence, a more general algorithm able to take more dramatic steps in a partition state 
space is needed. 

5.4.3 Sampling from the partition posterior: Split-Merge algorithm 

The Split-Merge algorithm proposed in [Jain and Neal, 2004] has the desired property that 
GS lacks - it can perform rapid steps in a partition state space. In this algorithm, instead 
of sampling a label for a single data point at a time, the proposal distribution allows for 
transitions from a current partition by splitting or merging its clusters. 

Let us consider in detail a single iteration of the Split-Merge algorithm. 
Suppose, that the current state of the sampler at time t is , that partitions N points 

into m clusters. Partition labels are lf^ G { 1 . . . m} and each cluster i = 1,. . . , m has 
elements. To construct the next candidate C^t+1\ perform the following steps: 

• sample two indices i and j from a uniform distribution, I® and l^p are the correspond­
ing labels defined by . 

1Here, by the local mode of the partition posterior distribution, we understand a set of partitions that 
are different only in a few labels and are similarly likely. For example, we can describe a mode as some 
"mode representative" partition and the partitions obtained by moving several points from one cluster to 
another in the "representative". While, if it is necessary to change many labels (e.g., split a large cluster), 
then we say that the new partition belongs to another mode of the posterior distribution. 
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• If ftp = ftp, i.e., both of the sampled points belong to the same cluster, a split is 

performed. Without loss of generality, assume ftp = ftp = m. 

— Introduce a new cluster label m + 1. 

— Assign label m to point ri, and m + 1 to point Tj. 

— For each remaining points r^u^x such that ftp = m, assign independently and 
with equal probability label m o r m + 1, 

— Compute the acceptance probability and sample from it. If the proposed can­
didate is accepted, £ (-' + 1* ) has m + 1 clusters. The new numbers of elements in 
clusters are then: i v f + 1 ) = Np} Vi < m and, N^+1) + = N$. 

• If ftp 7̂  ftp, i.e., two sampled points belong to two different clusters, a merge is 

performed. Without loss of generality, assume, ftp = m — 1, ftp = m. 

— For each point ru such that ftp = m assign label m — 1. 

— Compute the acceptance probability and sample from it. If the sample is ac­
cepted, has m — 1 clusters. The new numbers of elements in clusters are 
then: i v f + 1 ) = i v f ) Vi < m - 1 and, + N$ = A r™_i )-

The remaining question is how to perform the acceptance test. According to Metropolis-
Hastings algorithm, acceptance probability is calculated by (5.20). In our notation, it is: 

P(K | £(t+V)P{£(t+V)g(£V | £(*+!)) 

' p(n | £( ' ) )p(/ : ( ' ) )g(/ : ( '+ 1 ) | £(*)) 

P (7 i | £ ) (3.28) and P ( £ ) (B.6) components are given by the H T - P L D A model and C R P 
prior, respectively. Note that for H T - P L D A , when computing the likelihood ratio between 
two partitions, both numerator and denominator are the products over terms corresponding 
to clusters defined by these partitions (see (2.3)). As two partitions of interest £ ( ' + 1 ) and 

are the same for almost all of the clusters, most of the product components cancel, and 
they do not have to be evaluated to perform a single sampling iteration. 

Let us look at how to compute ( / (£( ' + 1 ) | £(*)) and g ( £ ^ | £ ( ' + 1 ) ) . For the split case, 
they are: 

| £«)) 
1 1 / A ^ W l ^ " ' -

N N — 1 \ N J V 2 

a(r(t) I - 1 1 i V m i V"^+i (5.24) 
N N — 1 N N 

qJpp\Cp+p) _N(^1)NJX1P 
g(£( '+ 1 ) | £ W ) ~ ATWATW ' 

/v ( t ) 

The first equation of (5.24) shows a probability of a cluster being split. Terms 1/N and 
1/(N — 1) correspond to probabilities of selecting two points of interest uniformly, (Nm /N)2 

is the probability of two selected points to come from the cluster m. Finally, ( l / 2 ) A r ™ ) _ 2 

corresponds to the probability of independently assigning new cluster labels to the remaining 
Nm —2 points from the original cluster. The second equation of (5.24) gives the probability 
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of an inverse proposal which, in fact, is a merge of two clusters in state C ^ T + 1 \ There, term 
\/N(N-\) is still the probability to select two points uniformly, ( iV^ + 1 ) /N) and /N) 
are the probabilities of the selected points to belong to the clusters m and m + 1 in state 
£(*+!). Finally, the third equation of (5.24) gives a ratio needed to compute the acceptance 
test. 

Similarly, for the merge step: 

1 1 N(t) , JV ( < ) 

1 1 m—1 i v m N N — 1 N N 

-1) 
, ( £ W I £ ( ^ ) ) A ^ A e i V l X ^ 

Indeed, the S M algorithm provides a way to perform drastic moves in the partition 
space. It can explore the state space better than Gibbs sampling due to its ability to 
overpass low-probability regions on the transition from one probable area to another. On 
the other hand, Split-Merge introduces a somewhat complicated scheme of building the 
proposal distribution and requires performing an acceptance test, increasing computational 
complexity. Moreover, the acceptance rate of Split-Merge is likely to be very low. As the 
decisions to split and merge are entirely random, it is quite likely that most of the proposed 
partitions will not be accepted because of the extremely low likelihood. For example, there 
are 256 ways to split a cluster of 10 points into two: most of the splits will lead to a highly 
unlikely clustering, and only a few would be sensible. So, it might take a large number of 
computations and a long time before an accepted sample appears. 

5.4.4 Sampling from the partition posterior: Smart -Dumb/Dumb-Smart 
algorithm 

Smart-Dumb/Dumb-Smart [Wang and Russell, 2015] algorithm tries to address the problem 
of a low acceptance rate of the Split-Merge while keeping its advantage of high mobility in 
the state space. 

The main idea of the S M is kept: the proposal distribution is designed to perform a 
split of a cluster into two or a merge of two different clusters. What is different in SDDS is 
how these splits and merges are done. It is proposed to replace random proposals of S M by 
smart split and merge. Smart proposal distribution makes likely partitions to be sampled 

with a higher probability. In other words, it tries to increase P^p(^|£(t)]p(£(t)) ^ P a r t of the 
acceptance test. 

However, introducing smart splits and merges does not necessarily lead to a higher 
acceptance rate compared to a standard S M . The reason is the second part of the acceptance 
test g(£(t+i)i£(t)) • When a smart proposal is given, it is highly unlikely that at the next 
iteration, it will be reversed by an opposite smart proposal, i.e., q(C^ \ C^T+1^) is extremely 
low. For example, suppose the proposal distribution suggests splitting a cluster into two 
well-separated parts. In that case, the probability of merging those parts back again is low, 
and a smart merge strategy would assign a low probability to sample it from the proposal 
distribution. That leads to the total acceptance probability being low and many samples 
not passing the acceptance test. 
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To overcome this problem, the authors of the SDDS propose to pair each smart proposal 
with its dumb version. And, when computing the acceptance test, consider the dumb reverse 
for the smart proposal and the other way around. Even as dumb proposals might be quite 
unlikely, the idea is that still, their probability would be higher than a smart reverse of a 
smart proposal. 

Now, we consider the particulars of SDDS. The notation is the same as before: 
is the current partition of N points at time t, m is the number of the clusters defined by 
£ W , Np\ Vi G { l . . . m } are the numbers of elements in the clusters according to the 
current partition. Additionally, the SDDS algorithm assumes that all points in the dataset 
are arbitrarily ordered prior to sampling, and their order remains fixed during the sampling. 
Also, we introduce an action variable at € {'SS-DM', 'SM-DS' , 'DS-SM' , 'DM-SS'}, where 
the first letter stands for Smart or Dumb and the second for Split or Merge. Then, a single 
iteration of the SDDS algorithm is: 

• Sample at uniformly. 

• If at = 'SS-DM' , perform smart split 

— Sample cluster index i based on the inverse likelihood of each cluster: 
i ~ C a t ( p i , . . . ,pm), Pk on l/P(JZk | Hs), Hs is a single speaker hypothesis. 
Without loss of generality, assume i = m. Such choice of the distribution to 
sample the index of the cluster to split was proposed by the authors of the SDDS 
algorithm. However, we saw that this choice might be suboptimal. Below, when 
describing the Smart Split step in detail, we comment on what modifications we 
make to the original algorithm. 

— Introduce a new label m + 1. 
— Retrieve the indices for points in a cluster m, without loss of generality, assume 

that the points have indices 1,..., N$. 

— Assign the first point from lZm label m. 

— For the second point, compute the probabilities of it joining the first point or 
staying separate. Sample label m o r m + 1 based on these probabilities. 

— Repeat the same procedure for the remaining points, i.e., sample one label at 
a time based on the probabilities of this point joining one of the two emerging 
clusters. 

— Compute a value of an acceptance probability taking into account that the in­
verse proposal is a dumb merge. If the proposal is accepted, has m + 1 
clusters. The new numbers of cluster elements: N-t+1^ = Vz < m and, 
i V ( i + 1 ) + N(t+1) - N(t) 

• If at = 'SM-DS' , perform smart merge 

— Randomly sample cluster index i. Assume, i = m. 

— The second cluster j is sampled based on the posterior to be merged with the 
cluster i: j ~ C a t ( p i , . . . ,pm-i), Pk oc P(TZ | £ ^ + 1 ^ ) P ( £ ^ + 1 ^ ) , where £JJ,'+1^ is a 
partition where clusters i and k have the same speaker label. Assume, j = m — 1. 

— For each point ru such that = m, assign label m — 1. 
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— Compute the acceptance probability taking into account that the inverse proposal 
is a dumb split. If the proposal is accepted, C^t+1^ has m — 1 clusters. The new 
numbers of clusters elements: N^t+1^ = Vi < m — 1 and, N^_x + Nm = 
N{t+]\ 

771—1 
• If at = 'DS-SM' , perform dumb split 

— Randomly sample cluster index i . Assume, i = m. 

— Introduce a new label m + 1. 

— For each point ru such that = m, assign independently and with equal prob­
ability label m o i m + 1, 

— Compute the acceptance probability taking into account that the inverse proposal 
is a smart merge. If the proposal is accepted, £ ( - ' + 1 - ) has m + 1 clusters. The new 
numbers of clusters elements: N-t+1^ = Vi < m and, Nm+1^ + N^^1 = Nm . 

• If at = 'DM-SS' , perform dumb merge 

— Randomly and independently sample two cluster indices i,j. Assume, i = m, j = 
m — 1. 

— For each point such that = m assign a label m — 1. 

— Compute the acceptance probability taking into account that the inverse pro­
posal is a smart split. If the proposal is accepted, C^t+1^ has m — 1 clus­
ters. The new numbers of clusters elements: N^t+1^ = Vi < m — 1 and. 

This is a general procedure for performing a single step in SDDS. Let us consider possible 
proposal strategies separately and see how to compute the acceptance probability for each 
of them. 

Smart Split - Dumb Merge, Dumb Merge - Smart Split 

When performing a smart split, the first step is to select a cluster for splitting. Accord­
ing to the paper proposing SDDS [Wang and Russell, 2015], it should be sampled from a 
distribution inversely proportional to the likelihoods of individual clusters, i.e., cluster m 
is chosen with probability proportional to p^1 rjj % • In our experiments, however, we saw 
that this approach results in a very high probability for small clusters (sometimes consisting 
of a single point) to be selected for a split. Hence, we modified the probability of selecting 
cluster m for a split as follows: 

P m 0 C p ( n m \ H s y ( 5 ' 2 6 ) 

The intuition behind using (5.26) is to promote splitting those clusters which would 
"like" to be split, i.e., those for which the likelihood of splitting the cluster into individual 
points is high relative to the likelihood of that cluster as a whole. 

Once the cluster to split is selected, for the first point of the cluster n , the label m is 
assigned with the probability 1. Suppose, the assignment of the points n , . . . , r^-i is already 
done: they were assigned labels Ck-i = {h, • • •, h-i}- We denote the subset of points from 
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r i , . . . ,rfc_i, which were assigned label m, as TZ'm, and similarly, points from TZ'm+1 were 
assigned label m+1 (TZ'm n TZ'm+l = 0). Now, we are assigning label lk G {m, m + 1} to rk. 
It is sampled with probability 

v(i - • \ i?> i?> r \ - P(7^ , rk | £ f c _ i , / f c = i ) P f a = i \ £k-i) 
{ k " 1 ' m' " E M m , m + i } P m , r k | £fc-i, f̂c = j)P(h = J I Ck-iY 

(5.27) 

Then, the probability of the full split is computed iteratively: 

UNP P(r-) N™ 
q(£^ | £<*>) oc , y J ] P ^ I (5-28) 

P\K>m | -HSJ " 
The inverse proposal is a dumb merge. Its proposal probability is: 

| £(*+!)) = 2 ^ — 1 (5.29) 
m + l m 

where components l / ( m + 1) and 1/m correspond to selecting two clusters one after the 
other uniformly from m + 1 clusters defined by C^t+1\ The scalar 2 corresponds to the fact 
that two clusters could be selected in a different order but resulting in the same partition 
£ « . 

So, we have all components in place to be able to compute the acceptance probability. 
Proposal probabilities are given by (5.28) and (5.29), and the likelihood and the prior are 
defined by the model. 

Proposal probabilities for a symmetrical move dumb merge - smart split are computed 
analogously to (5.28) and (5.29). Proposal probability for the dumb merge is given by: 

g ( £ ( t + 1 ) | £(*>) = — —*—, (5.30) 
mm — 1 

notice that the values in denominator are different from (5.29). That is because now the 
merging happens for the partition with m clusters. 

The inverse proposal now is the smart split; the split follows the same procedure as 
described above for the direct smart split proposal, i.e., point-by-point assignment of new 
labels for the cluster to split. Then, its proposal probability is given as follows: 

q{C® | C ^ ) oc p f f P.{rj\ fl P(h I K>-i,K»rk,Ck-i). (5.31) 

Above, we took into account the fact that after dumb merge defines only m — 1 
clusters, ^ V ^ - i ^ 1S ^ n e total number of elements in the newly merged cluster m — 1. 

Notice that smart split processes the data points in a specific order. For the same 
cluster, if the points are reordered, (5.28) would result in a different proposal probability 
and possibly a different split. That is why SDDS has a requirement to define and fix the 
order of the data points before running the sampling procedure. Otherwise, one would have 
to account for all possible permutations of the points in the cluster m — 1 when computing 
the probability of a smart split inverse proposal. However, as we order the points in advance, 
there is only one way of performing a smart split step and, consequently, only one way of 
computing the inverse proposal probability for dumb merge. 
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Smart Merge - Dumb Split, Dumb Split - Smart Merge 

For the smart merge, first, a random cluster is selected with probability —. Then, the 
second one is sampled with a probability proportional to the likelihood of a merged cluster: 
P(lZm,lZm-i | Hs). So, the proposal probability is: 

q{£(t+i) | ^ = l P(7e m ,7em_i | Ha)p(c^}j) = i ^ P O c ^ V ) . 
^ E , m = i 1 ^ ( ^ m , ^ | P s ) P ( 4 t + 1 ) ) rn 

(5.32) 

Above, we denoted the normalizer l / X ^ i 1 P(R-m,7Zj \ HS)P(£-J+1^) as cm. The probabil­
ity of an inverse dumb split proposal is calculated as: 

(*+i) 
s ( j C W | j C ( H - i ) ) = 1 f l y ' - 1 , (5.33) 

m - 1 V2, 

where the first ratio accounts for the probability of a cluster to be selected for a split 
(uniformly out of m — 1 clusters defined by i2 (-' + 1- )). The second term is a probability of a 
particular split for the selected cluster. Again, we have all of the elements to compute the 
acceptance test. 

The symmetrical dumb split step uses similar equations. First, the proposal probability 
is calculated as: 

q{CW | £ « ) = - ( \) • (5.34) 

And, the probability of the inverse smart merge is 

q(£® | £{t+1)) = {cm + cm+1)^—P{Km,Km+1 | Ha)P(£%(5.35) 
m + 1 ^ 

Notice that the inverse smart merge now has a scalar ( c m + c m +i) . This accounts for the 
fact that for a merge, one cluster is selected randomly, and the second is joined with it. So, 
we have to consider both cases: when the second cluster was merged with the first and the 
other way around. cm denotes the normalizing coefficient for selecting cluster m first and 
merging m + 1 with it, and c m + i corresponds to the second case. 

5.4.5 Combination of S D D S and G S 

The proposal strategy of SDDS allows for large steps in a sample space while preventing the 
acceptance rate from being extremely low. The authors of the method propose to combine it 
with Gibbs Sampling. They suggest interleaving SDDS steps with GS. The motivation is to 
combine the advantages of both strategies: on the one hand, SDDS accounts for the dramatic 
movements in the state space, and on the other hand, GS can refine the samples by changing 
the labels of the individual observations. For example, GS would not have any problems 
when a single point has to be moved from one cluster to another. In contrast, SDDS would 
have to perform a split isolating this single point into a separate cluster first, and only after 
that do a merge of this one-point cluster with the second one. The intermediate sample 
might be very unlikely, so it is almost impossible to accept it. In that case, SDDS would 
not be able to perform this simple adjustment of the sampler state. 
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Notice that the authors of SDDS propose to do a full iteration of GS between each 
SDDS step. That means that GS has to be run for all of the points. However, this slows 
the sampling process significantly as each label has to be sampled individually. Instead, 
we propose to sample just a few labels after each SDDS step. For example, in most of our 
experiments, we sample as many labels after each SDDS proposal as needed to pass through 
all data points three times during sampling. Moreover, we propose using the approximate 
version of GS, where several labels are sampled simultaneously. It is not theoretically correct 
as the probabilities for the next label to sample depend on the sampled values from the 
previous ones. However, assuming that the number of labels to sample is much smaller than 
the total number of points, we assume that the GS points are independent of each other, 
and their sampled labels will not be significantly affected by the approximate sampling 
procedure. 

To summarize, SDDS in combination with GS provides a way of sampling the partitions 
from their posterior distribution. Using it, we can employ the contrastive divergence strategy 
to compute the approximate gradient of the objective (5.4). Hence, we can use, e.g., gradient 
ascent to train the parameters of the H T - P L D A model. 

An important question to be answered when using such complicated sampling methods 
as described above is how to verify that the sampler is implemented correctly and indeed 
generates samples from the intended distribution. Also, it is important to be able to track 
when the sampler is warmed-up and to compare different samplers (e.g., comparing S M 
against SDDS). As these questions deviate from the main storyline of this thesis, we do not 
include this discussion here, but we comment on them in Appendix D. 

5.4.6 Speaker Verification experiments and results 

For the experiments on training the H T - P L D A model by maximizing the approximate pos­
terior of the correct partition with contrastive divergence, we use only x-vector embeddings. 
The experiments are split into two main parts. We start with the experiments aimed at 
answering the questions of how different settings of the SDDS sampler affect the model 
training. In particular, we are interested in what impact the initialization of the Markov 
chain has on the convergence of the algorithm, how many Gibbs sampling steps have to be 
done between each iteration of the SDDS algorithm, what is the difference between using 
samples from the same Markov chain compared to running several chains in parallel, and 
what is the necessary number of samples to use for the gradient approximation. These 
experiments are done by training the model on a smaller VoxCat-S set (as described in 
Section 2.5). The experiments and results are presented in Appendix E. 

After that, we train new models with those sampler settings that we found to be optimal 
and see how the trained models perform on speaker verification and diarization tasks. The 
speaker verification results are presented in this section, while diarization experiments are 
shown in the next Section 5.4.7. 

Summarizing the findings of the experiments presented in Appendix E, we are per­
forming the training with the approximate partition posterior objective with the following 
settings: we use a single sample from the posterior; to get this sample, we run SDDS for 200 
iterations and interleave them with Gibbs Sampling so that we pass through all the training 
data at least once in the course of sampling. Markov chain at each iteration is initialized 
with the sample used at the previous iteration, i.e., we perform Persistent Contrastive Di­
vergence [Tieleman, 2008] rather than a standard C D . In this section, we are interested to 
see how the improvement of the true partition posterior probability translates into speaker 
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verification performance. 
We train the H T - P L D A model on the whole VoxCat set, unlike in the experiments on the 

sampler settings (Appendix E) where only a smaller VoxCat-S was used. The embeddings 
we use are x-vectors from Section 2.4.2 trained on VoxCeleb2 set. Prior to training the HT-
P L D A model, the embeddings are centered, and their dimensionality is reduced to 300 by 
L D A . Then, the embeddings are used as they are, or we perform the length normalization 
step. We test the performance on VoxCelebl-O, VoxCelebl-E, VoxCelebl-H, and SITW 
core-core conditions. 

Table 5.5 summarizes the speaker verification results for the experiments we performed. 
As before, as baseline models, we use generatively trained G - P L D A and H T - P L D A mod­
els trained on embeddings with and without L N (lines 1-4 of Table 5.5). Then, the last 
two lines of the table correspond to H T - P L D A models trained with Persistent Contrastive 
Divergence to maximize the approximate posterior of the correct data partition. As can 
be seen, for both normalized and unnormalized embeddings, discriminatively trained HT-
P L D A models outperform corresponding H T - P L D A s trained generatively. However, the 
relative improvement is larger in the case of unnormalized embeddings. Also, discriminative 
training of H T - P L D A on embeddings without L N results in similar or better performance 
than both G - P L D A baselines. While when L N is applied to the embeddings, G - P L D A 
outperforms H T - P L D A models on most of the test conditions (all except VoxCelebl-H and 
^ m h f for SITW core-core). Thus, we can conclude that discriminative training brings some 
performance gain compared to generatively trained models. Interestingly, the best results 
are achieved when the H T - P L D A model is trained on the embeddings without L N . That 
supports our intuition that length normalization should be detrimental to the performance 
of H T - P L D A due to its effect on estimated uncertainty b. 

5.4.7 Speaker Diarization experiments and results 

As seen from the results of the Speaker Verification experiments, the approximate partition 
posterior is an effective objective for training the back-end H T - P L D A model for verification 
purposes. However, this objective is very different from the target objective of the speaker 
verification model. Thus, we believe that we might not observe all of the benefits of train­
ing the model to maximize the posterior of the correct partition when looking at speaker 
verification performance only. 

Based on these considerations, we believe it makes sense to test the H T - P L D A trained 
with this objective on the diarization task. Maximizing the posterior of the correct partition 
is more consistent with the goal of diarization than with the verification problem. Hence, 
we expect it to be more beneficial to use a model trained with this objective in diarization. 

We perform the diarization following the standard pipeline described in Section 2.3.1 (for 
all models except for the first baseline). A l l of the elements of the diarization system are fixed 
except for the P L D A model used to provide the L L R scores for the A H C clustering algorithm. 
Then, different P L D A models are compared in how they perform in the diarization task. 
We test the performance on both development and evaluation sets of D I H A R D 2019. In 
this case, we use the development set for selecting the hyper-parameters for the training 
and the optimal threshold to stop merging clusters in A H C . 

Baselines 

In this experiment, we use four baselines (lines 1-4 of Table 5.6). A l l of them use the same set 
of x-vector embeddings as described in 2.4.2. The extractor and the baseline G - P L D A were 
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Table 5.5: Speaker recognition performance for the H T - P L D A models trained to maximize the approximate posterior of the correct 
partition of the training data. The performance is reported on VoxCelebl-O, VoxCelebl-E, VoxCelebl-H, and SITW core-core condition 
in terms of C m ™ = m i n D C F 0 . o 5 , and EER(%) . 

# System L N 
VoxCelebl-0 VoxCclcbl-E VoxCclcbl-H SITW core-core # System L N 
s~iPvm 

min E E R /"iPrm 
min E E R /^rPrm 

min E E R /^rPrm 
min E E R 

1 G - P L D A , E M yes 0.12 1.6 0.13 1.8 0.23 3.7 0.21 3.0 
2 G - P L D A , E M no 0.18 3.0 0.17 3.0 0.26 5.1 0.30 8.1 

3 H T - P L D A , V B yes 0.12 2.0 0.13 2.1 0.21 3.6 0.19 4.6 
4 H T - P L D A , V B no 0.12 2.0 0.12 2.1 0.21 3.6 0.19 3.6 

5 HT-PLDA,Par t . Post. full yes 0.12 1.9 0.12 2.0 0.20 3.4 0.19 4.3 
6 HT-PLDA,Par t . Post. full no 0.12 1.7 0.12 1.8 0.21 3.3 0.18 2.9 



trained on VoxCeleb2 and VoxCat sets, respectively. In all cases, embeddings were length-
normalized before P L D A training. The first baseline system is the Kaldi [Povey et al., 2011] 
diarization recipe [Sell et al., 2018] with the same G - P L D A model as used in the second 
baseline. The difference between the two systems is the pre-processing that is done to the 
embeddings prior to scoring them with a P L D A : in addition to L N , Kaldi recipe performs 
per-utterance principal component analysis (PCA) dimensionality reduction to retain 30% 
of variability in the embeddings and, after that, additional length normalization. Also, 
the first two baselines use different versions of the A H C algorithm: the first baseline uses 
the U P G M A A H C , while in the other systems, we use the A H C algorithm with correct 
L L R scores for the intermediate steps. The first baseline is presented here to show the 
performance that can be achieved by using additional pre-processing of the embeddings. 
We could not use the same pre-processing of the embeddings for the trained H T - P L D A 
model because of its requirement to have the hidden speaker space of significantly lower 
dimensionality than the observed space. Hence, the second baseline is presented for the 
comparison of G - P L D A and H T - P L D A with fixed pre-processing of the embeddings. 

The third line shows the performance of the diarization system with a G - P L D A model 
given by interpolation of two G-PLDAs . One of them is the same model as used in baseline 
2 (trained on VoxCat), and the second one is the G - P L D A model trained on A M I data. The 
interpolation weights for both models are equal to 0.5. Finally, the last baseline (line 4) is 
the same as baseline 3, just this time, we transform the G - P L D A to H T - P L D A by setting 
the degrees of freedom parameter to 2. 

Discriminative training strategy 

For training with the objective of maximizing the posterior of the correct partition, we 
adopt a different strategy than we used in speaker verification experiments. Now, we do 
not use all training data as a single training example. Rather, each utterance from the 
training set is used separately. A M I dataset consists of meeting recordings, consequently, 
each utterance contains speech of several speakers. Each utterance is processed the same 
way as the test diarization data, i.e., split into short overlapping speech segments. In this 
case, each training utterance represents a separate partitioning problem. Then, we can 
define the objective for each utterance separately: to maximize the posterior of the correct 
partition (the correct diarization solution) for this particular utterance. One can compute an 
approximate gradient by using a sampling algorithm for each training utterance separately. 
We use the following strategy for training the model: we compute the approximate gradients 
for ten utterances, average them, and make a single update to the model parameters. Then, 
the next ten utterances are used to make the next update, so we proceed until there is no 
more data left. Then, the utterances are shuffled so that new batches are formed, and the 
process is repeated. 

To compute the gradient for a single utterance, we use one sample from the SDDS 
algorithm. SDDS iterations are interleaved with Gibbs sampling steps so that each point is 
visited three times during the sampling process. Unlike for speaker verification, we do not 
use persistent contrastive divergence as by the time we visit the same utterance again, the 
model parameters have already changed substantially. Instead, SDDS is initialized with the 
finest partition (each data-point forms a separate cluster) every time. To compensate for 
the initialization that is far from the high probability region of the posterior, we run more 
SDDS steps than in the verification experiments; in all diarization experiments, the number 
of SDDS steps was fixed to 900. The prior for each training utterance is set so that the 
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expected number of speakers in the utterance is the true one (see Appendix B). 

Training data 

To train the model in the way described above, we need a training set where each utterance 
contains speech of several speakers and is annotated with diarization labels. That is why we 
introduced an additional dataset (AMI) for training compared to the baselines trained on 
VoxCat only. In our experiments, we explore two strategies for discriminative training of the 
model on the additional data (AMI dataset in addition to VoxCat). The first approach we 
follow is to initialize the H T - P L D A model on the G - P L D A model trained on the VoxCat set 
(baseline 2), then retrain the model on A M I with regularization towards initial parameters' 
values. The second approach is to assume that we have two P L D A models, one is the HT-
P L D A model based on baseline 2 (that is fixed), and the other is the H T - P L D A we train on 
A M I (this one is initialized from the baseline P L D A ) . Then, the two models are interpolated, 
and the SDDS sampling is done with the parameters of the interpolated model. However, 
the approximate gradient is computed with respect to the parameters of the second HT-
P L D A only. In other words, we train the second model to interpolate well with the initial 
one. 

When just a single training dataset is used to train the model (lines 1-2), we center 
the evaluation data with the mean of this dataset. When the model uses both VoxCat and 
A M I training data (i.e., lines 3-6), the evaluation data are centered with the vector that is 
the average of the means of two training sets, while each training set is centered with its 
own mean. In our experiments, we have noticed that the proper centering of the evaluation 
data is critical: the results significantly degrade when only one of the training means (i.e., 
VoxCat or AMI) is used for centering or, even when the evaluation data are centered with 
their own mean. We do not understand the reasons for this behavior and would like to 
investigate this in the future. 

Results and discussion 

The results of four baseline systems, along with two discriminatively trained models, are 
shown in Table 5.6. For each system, the results are shown for two values of threshold a 
used to stop merging clusters in A H C . One is a = 0 - optimal threshold if the P L D A model 
outputs proper L L R scores; the other is the optimal value of a tuned on the development 
set, i.e., optimal a is set in the oracle way for "dev" set. 

Comparing lines 1 and 2 of Table 5.6, we see the effect of the additional pre-processing 
done by the first approach as well as the alternative A H C algorithm ( U P G M A for the first 
approach). When comparing lines 2 and 3, we should see what improvement comes from 
using the additional data for training. Lines 3 and 4 demonstrate the effect of having the 
H T - P L D A model instead of the G - P L D A . Finally, comparing the discriminatively trained 
H T - P L D A models (lines 5 and 6) with baseline 4 shows the effect of discriminative training. 

First, we want to point out that all four baselines show similarly good performance if one 
is allowed to tune the threshold of the clustering algorithm. In particular, we do not see any 
significant improvement in the optimal performance when using the Kaldi recipe compared 
to our baselines without additional P C A and length-normalization done before scoring the 
embeddings. However, taking the default zero threshold results in significant performance 
degradation for our Gaussian P L D A models (lines 2 and 3), while the first baseline shows 
a smaller performance drop. That indicates that the G - P L D A scores are not correct LLRs ; 
in other words, the scores provided by the model are miscalibrated, although, for the Kaldi 
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Table 5.6: Comparison of diarization performance of G - P L D A and H T - P L D A on D I H A R D 
2019 development and evaluation sets. H T - P L D A is trained discriminatively to maximize 
the approximate posterior of the correct diarization of the training utterances. The optimal 
A H C stopping threshold is selected to minimize D E R on D I H A R D 2019 development set. 
The performance is reported in terms of D E R (%). 

# System 
dev 

=0 
eval 

a optimal 
dev eval 

1 Baseline Kaldi 27.12 27.74 20.45 21.35 
2 G - P L D A Vox 50.78 49.15 21.81 22.38 
3 G - P L D A Vox+AMI 61.12 59.82 22.28 22.24 
4 H T - P L D A Vox+AMI 20.41 21.80 20.20 21.66 

5 
6 

H T - P L D A Vox -»AMI, 
H T - P L D A Vox + A M I . 

Part. 
Part. 

Post. 
Post. 

full 
full 

20.29 
20.28 

21.18 
21.16 

19.83 
19.89 

20.86 
20.92 

recipe (line 1), miscalibration is less severe. A n interesting observation is that when we 
interpolate two G - P L D A models (line 3), the performance does not improve compared to 
the single model even with the optimally set threshold, i.e., we cannot conclude that the 
additional training data definitely improves the performance (at least in our experiments). 

Second, when heavy-tailed behavior is turned on for the interpolation of the models, we 
see an improvement in the performance of the resulting model for both optimal and zero 
threshold scenarios. H T - P L D A model outperforms or results in a similar performance to 
other baselines, and, most importantly, we do not observe large differences in the optimal 
and zero threshold setting for this model. 

Comparing the discriminatively trained H T - P L D A models (lines 5 and 6) to comparable 
G - P L D A baseline systems (lines 2 and 3), we see that the former have better performance in 
both scenarios: the default threshold a = 0 and the optimally set threshold. However, the 
improvement from discriminative training of H T - P L D A is relatively small (compare lines 
5-6 to line 4). It shows that interpolation of two H T - P L D A models is a good back-end 
model for diarization and indicates that how the model was trained is less important. 

We notice that both discriminatively trained models, the one trained to combine well 
with the baseline P L D A (line 6) and the one initialized from the baseline and retrained on 
A M I (line 5), perform similarly well in both scenarios: when the A H C stopping threshold 
is set in an oracle way or when it is set analytically. Moreover, discriminative training 
of H T - P L D A results in a well-calibrated system (the performance differences between the 
default and optimal thresholds are rather small). 

Finally, the discriminatively trained H T - P L D A outperforms the first baseline, especially 
in the case of the analytically set threshold. This shows that the additional P C A and L N 
done by the Kaldi baseline are not essential for good diarization performance. 

5.5 Partitioning tuples of recordings 

Training the H T - P L D A model to maximize the approximate posterior of the correct parti­
tion was discussed in detail in the previous Section 5.4. The sampling-based method was 
shown moderately effective for training H T - P L D A models, but it has a significant drawback: 
its high computational and time complexity. To cope with this problem, we propose to use 
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a stochastic version of the same objective. We follow the same principle as in the case of 
training the model with the B X E objective. There, training data were organized as a set 
of binary trials considered independent. Then, the objective is a sum of objective functions 
computed for each pair. Here, we repeat the same procedure and reorganize the data into 
tuples (sets of several individual data points). The number of elements in a tuple (in the 
following, the size of a tuple) is selected to be low enough to allow for exactly computing the 
posterior of the correct partition. And the objective function we consider is a multi-class 
cross-entropy. 

Above, we denote as T a set of all possible (tuple IZt, partition £*) pairs of a feasible size 
that can be created out of the set 1Z with labels C * . The number of the components in the 
denominator of each term is the A^-th Bell number, where Nt is the size of the corresponding 
tuple. 

Notice that when T is limited to include pairs of points, this objective is just B X E . 
However, when tuples can be larger, the objective becomes more general than the binary 
cross-entropy. And still, it is much simpler compared to partitioning a large dataset. 

In the case of B X E , we discussed two approaches to training the model. One is to use 
some full-batch optimization method, e.g., L - B F G S as used in [Burget et al., 2011] to train 
the G - P L D A model. The other is to rely on a stochastic optimization method such as SGD. 
However, the prerequisite for SGD is that the objective function can be broken up into 
many terms, such that each of those terms (when scaled up) is an unbiased estimate of the 
full criterion. That is exactly the case for B X E , and we use stochastic optimization when 
training H T - P L D A with this objective. 

In the case of the objective (5.36), most probably, full-batch optimization will be infea-
sible due to a large number of tuples in T• But luckily, we can use the stochastic method 
as the objective can be broken up into separate batches similar to B X E . Moreover, we pro­
pose to generate the batches dynamically and define one iteration as a certain number of 
parameter updates (batches seen) rather than the number of batches needed to see all of 
the training examples. As we do not plan to use all possible training examples, we propose 
the following scheme to generate them as the training progresses: 

• F ix the prior distribution over partitions for the expected size of the training examples. 
If the size is fixed, there will be only one distribution. If the size varies, one prior 
distribution for each possible size of the training tuple has to be generated. Here, we 
use a C R P prior with fixed parameters. Such training examples generation ensures 
that the training data agrees with the prior. As discussed in Appendix B, this is 
important to assure that the trained model provides proper likelihoods. 

• Fix some order of the speakers in the training data set. 

• For each individual example i 6 T : 

— Sample the size Nt of the example (optional). 
— Sample one partition from the prior over Bjyt options. Suppose the partition has 

mt clusters. 

(5.36) 

(5.37) 
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— For each cluster in the partition, sample the needed number of utterances from 
the data of the next speaker on the list. If the current speaker does not have 
enough utterances, skip to the next speaker. 

Once we pass over all the training speakers, we shuffle the speakers and start from the 
beginning of the new speaker list. Constructing training examples in this way, we ensure 
that all training speakers are used. 

In Appendix F, we describe the procedure allowing us to evaluate the objective (5.36) 
efficiently by splitting each training minibatch into sets of examples of the same size Nt. 
Then, for each of these sets, one can pre-compute several sparse matrices allowing for fast 
summation to calculate speaker statistics (3.34) and likelihoods (3.33). 

5.5.1 Speaker Verification experiments and results 

Size of the tuples 

Before, we mentioned that the tuples used as training examples must have a reasonable size, 
but we did not elaborate further. As mentioned, the main computational challenge when 
computing partition posterior for a single tuple is computing its normalizing term. For a 
tuple of size 8, there are Bg = 4140 components in the normalizing term, while for size 9, 
there are Bg = 21147. That is already prohibitively high taking into account that for a 
single update, we would have to compute the posterior for a large number of tuples. So, we 
limit the size of tuples to 8 or less in our experiments. 

Also, it is unclear what size of the examples will be beneficial in terms of performance 
and whether it should be the same for all of the examples. To address this question, 
we run the following experiments. The experimental setup here is the same as in Sec­
tions 5.2.1, 5.3.1, 5.4.6, i.e., we use x-vector embeddings extracted for VoxCat set. The 
embeddings are centered, and their dimensionality is reduced to 300 with L D A . We did not 
use length normalization in this experiment. The results of the baseline models as well as 
of the models trained to partition tuples of recordings are shown in Table 5.7. 

As two baselines, we use the generatively trained G - P L D A and the H T - P L D A model 
discriminatively trained with the B X E objective (line 4 of Table 5.2). Baselines are trained 
using the same data as we use for the discriminative training to maximize the posterior of 
the correct partition for training examples. A l l of the trained models are initialized with 
the G - P L D A (baseline model, line 1 of Table 5.7) and, as before, we use L2 regularization 
of the model parameters towards the initial ones. 

To begin with, we train the H T - P L D A model with objective (5.36) and the tuple size is 
fixed to 2; the results of this model are presented on line 3 of Table 5.7. The model trained 
in this way should be equivalent to the baseline from line 2. The only difference is how we 
form batches and define iterations in the new setting. Before, we always made sure that 
all of the examples were used for training, while now, some of the examples might be used 
several times while some are not used at all. 

Then, we increase the size of training examples to 4 and 8; the results of these models 
are shown in lines 4 and 5, respectively. Finally, for the training, we sample tuples of sizes 
varying from 2 to 8, and tuples of each size are sampled with equal probability (line 6 of 
Table 5.7). 

Analyzing the results, one notices that training on the pairs of recordings (line 3) results 
in slightly worse performance than training with the B X E objective on all possible pairs 
(line 2). It is understandable as the training objective in these two cases is the same, but 
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Table 5.7: Comparison of different sizes of the training examples for training H T - P L D A 
model to partition tuples of recordings. The experiments are done with x-vector embeddings 
without length normalization. The results are shown for VoxCelebl-0 and SITW core-core 
conditions in terms of C^™=minDCFo .o5, and EER(%). 

# System Size 
VoxCelebl-0 SITW core-core # System Size 

min E E R min E E R 

1 G - P L D A E M - 0.18 3.0 0.30 8.1 
2 H T - P L D A B X E 2 0.12 1.8 0.18 3.1 

3 H T - P L D A Part.Post tuple 2 0.12 1.9 0.19 3.4 
4 H T - P L D A Part.Post tuple 4 0.12 1.8 0.18 3.3 
5 H T - P L D A Part.Post tuple 8 0.11 1.7 0.18 3.0 
6 H T - P L D A Part.Post tuple 2-8 0.12 1.7 0.17 2.9 

the strategy of presenting the examples to a model is different. In the former case, not all 
of the possible training pairs are used. 

Training on examples of larger size leads to moderate performance improvements, with 
the best performance achieved when examples of 8 embeddings are used for training. How­
ever, it has to be said that for smaller training examples (pairs of recordings), we observed 
that the model quickly learns to correctly classify most of the examples. Consequently, the 
error on these examples is low; thus, the gradients are close to zero. In other words, train­
ing on such examples is ineffective, and the actual training happens only when the model 
is presented with some hard example. In the case of larger examples, many more of them 
are challenging for the model, and thus, the training is more effective. 

Finally, training on examples of various lengths leads to the same or better performance 
than training on the largest tuples only. However, such training takes longer to complete 
as for training examples of each size, the objective and the gradient have to be computed 
separately (see Appendix F) , while for the batches consisting of examples of the same size, 
the gradient can be computed more effectively. Thus, we will not proceed with training on 
examples of varying sizes. 

Approach to construct the training examples 

In the previous experiment, we noticed that many of the training examples are very easy 
for the model. Then, most of the training examples quickly become useless for the training 
as the error for them is low and the gradient is close to zero. That slows down the training, 
and, as we expect, it leads to poorer performance of the trained model. To overcome this 
problem, we generated the training examples so that they are more difficult for the model 
and, consequently, the training is more effective. That is done by modifying the method of 
example generation described above. As follows from the process, a single example consists 
of data from speakers nearby in the speaker list. We make use of this fact and place the 
most similar speakers next to each other on the list so that when the example is created, 
it will be composed of utterances of similar speakers. Consequently, it would be harder for 
the model to separate their clusters compared to completely different speakers. To place 
similar speakers nearby in the list, we follow the procedure below. 

Every time we need to reset the speaker list, we use the current model parameters to 
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Table 5.8: Comparison of two strategies for generating training examples for training HT-
P L D A model to partition tuples of recordings. The experiments are done with x-vector 
embeddings without length normalization. The results are shown for VoxCelebl-0 and 
SITW core-core conditions in terms of C^™=minDCFo .o5, and EER(%). 

# System Size Examples 
VoxCelebl-0 SITW core-core 

# System Size Examples 
^ P r m 

min E E R min E E R 

1 H T - P L D A Part.Post tuple 2 random 0.12 1.9 0.19 3.4 
2 H T - P L D A Part.Post tuple 8 random 0.11 1.7 0.18 3.0 

3 H T - P L D A Part.Post tuple 2 hard 0.11 1.6 0.16 2.7 
4 H T - P L D A Part.Post tuple 8 hard 0.11 1.7 0.18 2.9 

5 H T - P L D A Part.Post tuple 2 hard+random 0.11 1.7 0.17 2.7 
6 H T - P L D A Part.Post tuple 8 hard+random 0.12 1.6 0.16 2.6 

build a matrix of pairwise similarity scores ( L L R speaker verification scores). For enrollment 
and test, we use all data available for the speakers: embeddings for each speaker are averaged 
so that there is a single embedding per speaker. Then, the first speaker is selected randomly. 
The second one is the one that has the highest similarity score to the first; the third is the 
most similar to the second among the speakers that are left, and so on. We proceed in this 
way t i l l the end of the list. As a result, we have a list of speakers, where each next one is 
the most similar available speaker to the previous one. 

We compare this approach with the one where the speakers are placed randomly. Ta­
ble 5.8 shows the results. Here, we use the H T - P L D A models trained on randomly generated 
examples of sizes 2 and 8 as two baselines. The results are presented in lines 1 and 2 of 
Table 5.8 and repeat the results from Table 5.7. Then, two models are trained with the hard 
example generation procedure described above; their results can be found in lines 3 and 4. 
Finally, we test the scenario when half of the examples are generated randomly, and the 
other half is supposed to be more difficult for the model. Our motivation for including these 
results is to prevent the model from over-training on hard training examples by sacrificing 
the performance on easier ones. The results of the models trained in this way are presented 
in lines 5 and 6 of Table 5.8. 

Results indicate that for training with pairs of recordings, our scheme of generating 
harder training examples was effective: there is a consistent performance improvement of the 
model trained only on hard examples compared to the random example generation strategy. 
However, we do not see a similar effect for big training examples. Training only on hard 
tuples of size eight does not bring any performance gain compared to random examples. It 
can be explained by the fact that larger examples of eight recordings are already challenging 
enough for the model to train effectively even on randomly generated examples. When the 
model is trained on the mixture of randomly generated and hard examples, we notice that 
for pairs of recordings (tuples of size two), there is no performance gain in adding easier 
examples compared to the model trained only on difficult pairs. In contrast, for tuples of 
size 8, there is a small improvement when random examples are added to the hard ones. 

Finally, we present the results on all test conditions VoxCelebl-O, VoxCelebl-E, 
VoxCelebl-H, and SITW core-core for embeddings with and without L N . These results are 
achieved with the models trained with the strategy that we found the most beneficial in the 
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previous experiments: we train H T - P L D A models discriminatively with objective (5.36) on 
the mixture of hard and randomly generated examples of size 8. The results of these models, 
along with those of baseline G - P L D A and H T - P L D A models, are shown in Table 5.9. 

Similar to other discriminative training approaches, we notice that H T - P L D A trained 
on unnormalized embeddings performs better than the one trained on x-vectors with L N . 
Moreover, this model outperforms all generatively trained baseline models: G - P L D A and 
H T - P L D A trained on embeddings with and without L N . 

5.5.2 Speaker Diarization experiments and results 

Similarly to training H T - P L D A to maximize the posterior probability of the correct partition 
for the whole dataset, we test the models trained with objective (5.36) on the speaker 
diarization task. Our experimental setup repeats the experiments of Section 5.4.7: we use a 
pre-trained baseline G - P L D A model trained on VoxCat set and then discriminatively retrain 
it using A M I dataset. In all cases, we use x-vector embeddings trained on VoxCeleb2; the 
embeddings are always length-normalized before model training. At test time, we score the 
embeddings of the test utterances with a trained P L D A model; the matrix of pairwise L L R 
scores is used as an input to the A H C algorithm that is supposed to cluster the embeddings 
into speaker clusters. Similarly to Section 5.4.7, we center each training dataset (VoxCat or 
AMI) with its own mean vector. When two datasets are used for training the model, the 
evaluation data are centered with the average of the means of two sets. 

In the diarization experiment, we deviate from the training examples preparation scheme 
presented above. Instead, the training examples for the objective (5.36) are generated by 
the following procedure: 

• Sample a training utterance from A M I dataset. 

• For the given utterance, sample 8 speech segments randomly. Fix some order of the 
segments and use their corresponding speaker labels to define a correct partition for 
the example. 

As a prior, in this case, we use C R P described in Appendix B with parameters set in 
such a way that for the total number of segments of the whole training set (sum of segments 
for all training utterances), the expected number of speakers (see (B.5)) is equal to the true 
number of speakers in the training set. That is done by setting one of the parameters to 
zero and finding the other one by a numerical optimization method. 

The results of the baseline and discriminatively trained H T - P L D A models are presented 
in Table 5.10. The first part of the table repeats the baseline results presented in Sec­
tion 5.4.7. The first baseline is Kaldi recipe [Sell et al., 2018] that, in addition to centering 
and L N done by all models, performs per-utterance P C A dimensionality reduction and ad­
ditional L N . Then, there are two G - P L D A models: one is trained on VoxCat only; the other 
one is the interpolation of two G-PLDAs trained on VoxCat and A M I sets. Finally, the last 
baseline is the interpolated G - P L D A that was turned into H T - P L D A by setting the degrees 
of freedom parameter to 2. 

The second part of the table corresponds to the results of H T - P L D A models trained with 
objective (5.36) on A M I dataset. Similar to Section 5.4.7, we explore two ways of training 
the model on the additional training data. The first one is initializing the parameters with 
the parameters of the baseline VoxCat P L D A model and retraining them with regularization 
towards their initial values (line 5 of the table). The second is training a separate H T - P L D A 
model that is interpolated with the baseline model (line 6). 
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Table 5.9: Speaker recognition performance of generatively trained P L D A models and H T - P L D A models trained to maximize the posterior 
of the correct partition for training tuples of 8 recordings. The performance is reported on VoxCelebl-O, VoxCelebl-E, VoxCelebl-H, and 
SITW core-core condition in terms of C m - n

n =minDCFo .o5 , and EER(%). 

# System L N 
VoxCelebl-0 VoxCclcbl-E VoxCclcbl-H SITW core-core 

# System L N 
s~iPvm 

min E E R /"iPrm 
min E E R /̂ (Prm 

min E E R /̂ (Prm 
min E E R 

1 G - P L D A , E M yes 0.12 1.6 0.13 1.8 0.23 3.7 0.21 3.0 
2 G - P L D A , E M no 0.18 3.0 0.17 3.0 0.26 5.1 0.30 8.1 

3 H T - P L D A , V B yes 0.12 2.0 0.13 2.1 0.21 3.6 0.19 4.6 
4 H T - P L D A , V B no 0.12 2.0 0.12 2.1 0.21 3.6 0.19 3.6 

5 HT-PLDA,Par t . Post. tuples yes 0.13 1.9 0.13 2.0 0.22 3.7 0.19 3.9 
6 HT-PLDA,Par t . Post. tuples no 0.11 1.6 0.12 1.8 0.21 3.2 0.16 2.6 



Table 5.10: Comparison of diarization performance of G - P L D A and H T - P L D A on D I H A R D 
2019 development and evaluation sets. H T - P L D A is trained discriminatively to maximize 
the posterior probability of the correct partition of tuples of 8 segments. The optimal A H C 
stopping threshold is selected to minimize D E R on D I H A R D 2019 development set. The 
performance is reported in terms of D E R (%). 

# System 
dev 

=0 
eval 

a optimal 
dev eval 

1 Baseline Kaldi 27.12 27.74 20.45 21.35 
2 G - P L D A Vox 50.78 49.15 21.81 22.38 
3 G - P L D A Vox+AMI 61.12 59.82 22.28 22.24 
4 H T - P L D A Vox+AMI 20.41 21.80 20.20 21.66 

5 
6 

H T - P L D A Vox -> A M I , Part.Post, tuples 
H T - P L D A Vox+AMI, Part.Post, tuples 

20.85 
19.95 

21.45 
20.77 

20.27 
19.71 

21.13 
20.58 

Regarding the results, we confirm the conclusions of Section 5.4.7: all H T - P L D A models 
provide better calibrated L L R scores than any of the G - P L D A baselines resulting in a 
smaller gap between optimal clustering (oracle stopping threshold) and arbitrary threshold. 
In this experiment, we observe an advantage of training the A M I H T - P L D A model to 
interpolate well with the baseline over simple initialization on the baseline. This was not 
the case for H T - P L D A s trained discriminatively to maximize the approximate posteriors 
of the whole training utterances (compare lines 5 and 6 of Table 5.6). Also, we observe a 
larger improvement from discriminative training compared to the H T - P L D A baseline (lines 
4 and 6 of Table 5.10). 

5.6 Summary of discriminative training strategies 

Here, for more convenient comparison we present the results of all discriminative training 
approaches from Sections 5.2 to 5.5 side-by-side. Table 5.11 shows the results for the baseline 
G - P L D A models (lines 1 and 2), G - P L D A models turned into heavy-tailed ones by switching 
degrees of freedom parameter v from infinity to 2 (lines 3 and 4), generatively trained HT-
P L D A models with V B algorithm of Chapter 4 (lines 5 and 6), and discriminatively trained 
H T - P L D A s with various training strategies (lines 7-14). A l l models were trained on x-vector 
embeddings with and without length normalization. In all cases, embeddings were centered, 
and their dimensionality was reduced from 512 to 300 by L D A prior to model training. 
Discriminative training of H T - P L D A models was always initialized from the corresponding 
G - P L D A (meaning that the performance of the model before training was as shown on 
lines 3 and 4 for normalized and unnormalized embeddings, respectively), and, during the 
training, we regularized the parameters towards their initial values. 

Looking at the results of H T - P L D A s with various discriminative training objectives, we 
notice that the performance of the models trained on embeddings without L N is generally 
better than the model trained on length-normalized embeddings. We do not observe the 
same trend in generatively trained models: for G - P L D A , length normalization is essential for 
good performance, and for H T - P L D A , there is no significant difference between embeddings 
with or without L N (everywhere except for E E R of SITW core-core condition). 

Also, we notice that discriminative training is usually helpful in terms of speaker veri-
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fication performance: in most cases, it results in better performance than the performance 
of the model from which discriminative training was initialized. When comparing discrimi-
natively trained H T - P L D A models to G - P L D A with L N (the best performing baseline), we 
notice that most of them have comparable performance, while some training strategies result 
in considerable improvements on VoxCelebl-H and SITW core-core conditions. However, it 
is worth noting that the discriminative training was done on data very similar in nature to 
the evaluation data. As was mentioned before, this is the scenario when discriminative ap­
proaches perform the best. On the other hand, we would expect the generative approach to 
outperform the discriminative ones for a dataset considerably different from the evaluation 
data. 

Comparing different discriminative approaches, our observation is that training the 
model to partition relatively small tuples of embeddings results in the best performance. 
Moreover, for VoxCelebl-0 and SITW conditions, the performance of the model trained in 
this way is the best across all generative and discriminative training strategies. One possible 
explanation is that such an objective provides a good compromise between the complexity 
and feasibility of the training. On the one hand, training examples are more challenging 
than, for example, in B X E , so training is more effective, and the model has a chance of 
learning more complex dependencies in the training data. On the other hand, the training 
is much faster than for PSL and partitioning the whole training dataset; thus, we can afford 
better tuning of the training hyper-parameters. 

Finally, we want to note that different discriminative approaches require different com­
putational and time resources. To make a single parameters update when training with PSL 
or maximizing the posterior of the correct partition requires considerable time and computa­
tions to evaluate the objective and the gradients. This makes these objectives much harder 
to use in practice as the time needed to tune the training parameters can be prohibitively 
high. At the same time, the results are not necessarily better than those of the generatively 
trained model. On the other hand, the objectives allowing for stochastic optimization ( B X E 
and partitioning tuples of embeddings) can be incorporated into the SV or SD system devel­
opment much easier. Even though they are considerably slower than any of the generative 
approaches, the performance gains can be worth the investment of the resources. 

Thus, we believe that generative training should be used in most use cases. When in-
domain training data are available, it could be worth considering stochastic training with 
B X E or partitioning tuples of recordings. And, only if there is a strong reason to believe 
that computationally demanding objectives like, e.g., PSL are worth investing into, they 
should be tried. 
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Table 5.11: Speaker recognition performance for x-vector based G - P L D A and H T - P L D A models trained generatively or discriminatively. 
The performance is reported on VoxCelebl-O, VoxCelebl-E, VoxCelebl-H, and SITW core-core conditions in terms of C^j^^minDCFo.os: 
and EER(%). 

# System L N 
VoxCelebl-0 VoxCelebl-E VoxCelebl-H SITW core-core 

# System L N 
s~iPvm 

min E E R s~iPvm 
min E E R /^(Prm 

min E E R /^(Prm 
min E E R 

1 G - P L D A , E M yes 0.12 1.6 0.13 1.8 0.23 3.7 0.21 3.0 
2 G - P L D A , E M no 0.18 3.0 0.17 3.0 0.26 5.1 0.30 8.1 

3 G - P L D A , EM-> H T - P L D A yes 0.12 1.9 0.12 2.0 0.20 3.4 0.19 4.4 
4 G - P L D A , EM-> H T - P L D A no 0.12 1.9 0.12 2.0 0.20 3.4 0.19 3.5 

5 H T - P L D A , V B yes 0.12 2.0 0.13 2.1 0.21 3.6 0.19 4.6 
6 H T - P L D A , V B no 0.12 2.0 0.12 2.1 0.21 3.6 0.19 3.6 

7 H T - P L D A , B X E yes 0.12 1.9 0.12 2.0 0.20 3.4 0.19 4.3 
8 H T - P L D A , B X E no 0.12 1.8 0.11 1.9 0.20 3.3 0.18 3.1 
9 H T - P L D A , PSL yes 0.12 2.0 0.12 2.1 0.21 3.5 0.19 4.0 
10 H T - P L D A , PSL no 0.12 1.8 0.12 1.9 0.20 3.3 0.18 3.2 
11 H T - P L D A , Part. Post, full yes 0.12 1.9 0.12 2.0 0.20 3.4 0.19 4.3 
12 H T - P L D A , Part. Post, full no 0.12 1.7 0.12 1.8 0.21 3.3 0.18 2.9 
13 H T - P L D A , Part. Post, tuples yes 0.13 1.9 0.13 2.0 0.22 3.7 0.19 3.9 
14 H T - P L D A , Part. Post, tuples no 0.11 1.6 0.12 1.8 0.21 3.2 0.16 2.6 



Chapter 6 

Probabilistic embeddings 

In this chapter, we discover a different approach to incorporating uncertainty information 
into speaker verification or diarization pipeline. The approach discussed here can be equally 
used in both SV and SD tasks. Here, we target a diarization problem; hence, the choices of 
the model definition and a training objective are tailored toward this task. This chapter is 
based on our publication [Silnova et al., 2020], where we have initially described the idea; 
here, we present it in greater detail. 

It is worth noting that similar approaches were proposed for face recognition problem [Shi 
and Jain, 2019,Chen et al., 2021], image and cross-modal retrieval [Oh et al., 2018,Karpukhin 
et al., 2022,Chun et al., 2021], and speaker verification [Kuzmin et al., 2022]. In most of the 
mentioned papers, similar to our approach, the embeddings are treated as hidden variables. 
However, these papers propose to use posterior probability for embeddings given observed 
data, while in our approach, we use likelihoods for hidden embeddings instead. We will 
discuss our motivation to use likelihoods later in this chapter. Besides, in i-vector-based 
speaker verification, the embedding posterior uncertainty is explicitly given by the generative 
i-vector model. [Cumani et al., 2013,Cumani et al., 2014,Kenny et al., 2013,Stafylakis et al., 
2013] provide the details on integrating this uncertainty information into P L D A back-end 
model. In our case, however, we deal with discriminative embedding extractors and thus 
cannot build upon these works. 

The rest of the chapter proceeds as follows. We start by introducing the model where 
the embeddings are represented by hidden variables, unlike in the previous chapters where 
the embeddings were the observed data. Then, we describe a procedure for computing the 
likelihood of the observed data (e.g., matrices of acoustic features). We proceed with the 
scheme for estimating the parameters of embedding distributions. Finally, we describe some 
diarization experiments with the proposed model. 

6.1 Model description 

In the standard approach to SV, each speech segment is assumed to be represented as a 
single vector - embedding. Then, the back-end model works with the embeddings as with 
the observed data. This approach has its benefits: it represents both training and test 
data in a compact way, allows for relatively simple back-end models to be used, and, as 
we have shown in the case of H T - P L D A , there is a possibility for uncertainty propagation 
in this setting. In the previous chapters, by "uncertainty propagation" we understood the 
uncertainty about the speaker identity variable. The assumption was that the embeddings 
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Figure 6.1: Graphical model of the generative process for a single speech segment assumed 
by the probabilistic embedding model. 

themselves are well estimated but their distribution exhibits uncertainty about speaker 
identities: if distributions of embeddings for two speakers overlap, one cannot be certain 
which speaker a particular embedding belongs to. The approach we adopt now is different: 
we design the embeddings to explicitly represent the uncertainty in the form of a probability 
distribution. We represent the embedding as a hidden variable, i.e., we cannot directly 
observe it. For a high-quality long speech recording, the desirable property of this hidden 
variable would be to have a very sharp distribution and, for a noisy recording, to have a 
flat distribution. In other words, we assume the existence of some ideal true embedding; 
one should be certain about it for high-quality audio and be uncertain about the embedding 
value for low-quality recordings. Figure 6.1 shows a high-level graphical model formalizing 
the previous general notes. It displays the generative process assumed for a single speech 
segment. 

Here, we define two observed variables: s and I are a speech segment and its correspond­
ing speaker label, respectively, x is a hidden embedding variable. To work with the model, 
we have to specify the form of the embedding distribution and the model of dependencies 
between the variables in the graph. We propose the following choices: 

• The relation between a speaker label and a hidden embedding is modeled through 
the introduction of a hidden speaker variable z. Here, as before, we assume a single 
speaker variable per speaker, so there is a direct correspondence between z and I. We 
also assume that the embedding and the speaker variable are related by a Gaussian 
P L D A model (3.3) with parameters F and W - a factor loading matrix and a noise 
precision, respectively. 

• The form of the relation between x and s emerges from the considerations on the 
feasibility of the inference in the complete model and the P L D A model assumed for x. 
The particulars are shown below; here, we only mention that the posterior distribution 
of the hidden embedding variable for a single speech segment s is modeled by a normal 
distribution with parameters depending on the observed speech: P ( x | s) = A/"(x | 
x, B _ 1 ) . The expressions for the mean x and the precision B are given by (6.5). 
However, as described later, in our recipe, it is not necessary to know them explicitly. 

Before moving forward, we would like to comment on our motivation for using the graphical 
model of Figure 6.1. We were inspired by a generative P L D A and wanted to include it in 
the model. For this reason, our model had to contain the dependency of the embeddings on 
the labels (the generative process of P L D A assumes this). Keeping this part of the model 
fixed, we had two options for connecting hidden embedding x and observed speech s. One 
is to assume that the embedding is generated given the speech segment, i.e., the arrow 
connecting x and s points in the opposite direction to the one in Figure 6.1. Such a choice 
would better suit a discriminatively trained embedding extractor. However, in this case, 
speaker labels and observed speech become independent if the embedding is not observed, 
and it is impossible to recognize the labels from the speech. Thus, we opted for the second 
possibility depicted in Figure 6.1. 
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Figure 6.2: Graphical model of the generative process for iV speech segments. 

Considering the whole dataset of iV speech segments and taking into account the as­
sumption that the embeddings are generated by a P L D A model, we can get a more detailed 
graphical model in Figure 6.2. 

The meaning of variables I, s, and x is the same as before; these are a speaker label, an 
observed speech segment, and a hidden embedding, only this time, there are iV of them, m 
vectors Zj are hidden speaker variables. There is a single speaker variable connected to a 
hidden embedding per utterance. Speaker label I makes the selection of which one it is. 

Let us describe the assumed generative process depicted in Figure 6.2. First, N speaker 
labels C = l\.. .IN are sampled from the assumed prior (Chinese Restaurant Process, in our 
case). Assuming that labels C partition the data into m speaker clusters, sample m hidden 
speaker variables Zj from standard normal prior: Zj ~ 7r(z) = A/"(0,1). For each utterance of 
speaker i, sample hidden embedding Xjj from the Gaussian P L D A model with parameters 
F , W and using hidden vector Zj (see (6.2)). Finally, having a hidden embedding, sample the 
observation Sij ~ P(sij | Xjj). In practice, it is not possible to define P(sij | x j j ) exactly due 
to its high complexity. Thus, even though we assume the described generative process, it is 
impossible to use this model as a generative model. We cannot use it to generate synthetic 
data unless we define P(sij | Xjj). However, as will be shown later, it is not necessary to 
know P(sij | Xjj) to use this model to compute likelihood ratio scores for different partitions 
of the data or to be able to train the model discriminatively. It is enough to assume that 
P{ Sij | Xjj) belongs to a rather large family of distributions (see (6.3)). 

As in the previous chapters, we are interested in comparing likelihoods for partitions of 
the data; in order to do so, we have to be able to compute the likelihood ratio (2.4). To 
be able to compute it, one has to know how to compute the likelihood for the partition 
labels P(S \ C). With the current model, we still assume the same properties of the data 
described in Section 2.1: independence of recordings of different speakers and interchange-
ability of recordings of the same speaker. Hence, we can use the same factorization of the 
likelihood (2.3) as used for the standard P L D A model. The only difference now is that 
instead of a set of observed embeddings 1Z, we consider a set of observed speech segments 
S. As before, to compute the likelihood, one has to be able to perform three operations: 

• Compute a likelihood of a single segment for a speaker variable P(s | z). 

• Pool segments assumed to belong to the same speaker i, i.e., compute 

P ( s n , s i N i I z) = Y[ P(Sij I z). 

3 = 1 
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• Compute the expected value with respect to the speaker variable prior 

We will consider all three operations in turn. We start with computing the likelihood of 
a single speech segment. As a speech segment and its corresponding speaker hidden variable 
are not connected directly in our model but through a hidden embedding (see the graphical 
model in Figure 6.2), when computing P(s | z), we have to marginalize over all possible 
values of the embedding x: 

P(s | z) = j P(s I x)P(x I z) dx. (6.1) 

As we have mentioned before, we model the relation between a hidden embedding and a 
speaker variable by a Gaussian P L D A model (see (3.3)): 

P(x | z) = A/"(x | Fz, W 
|W|2 

~ 7D e x P 
(2tt)t 

- - ( x - F z ) ' W ( x - F z ) (6.2) 

where F and W are the parameters of the G - P L D A model - the factor loading matrix 
and the noise precision, respectively. Then, the second factor in the integral of (6.1) is 
Gaussian. If we assume that the first factor (likelihood for hidden embedding x) P{s | x) 
is also Gaussian function of x, then the whole integral (6.1) can be computed in a closed 
form. We use exactly this assumption and obtain: 

P(s | x) = h(s) exp ^x'B(s)x + x'B(s)x(s) (6.3) 

Here, h(s) is some strictly-positive real-valued function that is assumed to depend only 
on the observed speech and not on the hidden embedding. This function carries all the 
complexities of the distribution over speech. If we are after computing P(s | x) exactly 
(or generating data from the model), h(s) has to be known. But, as we are interested in 
expressions of the form (2.4), there is no need to evaluate h(s) as it cancels in the ratio 1. 
x(s) and B(s) are the parameters of the likelihood function, which is a Gaussian function 
of the embedding. Both x(s) and B(s) depend on the speech segment s. Below, for brevity, 
we will omit writing dependency on s explicitly. Instead, we will use B and x, keeping in 
mind that both depend on the observed speech s. 

From now on, we refer to computing parameters B and x of the likelihood function 
as to extracting probabilistic embedding. To show that these parameters indeed carry the 
uncertainty information about the embedding, let us consider the posterior for a single 
speech segment s. Combining (6.3), (6.2) and taking into account the standard normal 

1lt has to be mentioned that there is no guarantee that h(s) will always exist for a discriminatively 
trained model. We discuss this issue in more detail in Appendix A of [Silnova et al., 2020]. There, we argue 
that there are two possible ways of dealing with this: we can either develop a generative training scheme that 
would make sure that h(s) always exists or we can follow the common practice of designing discriminative 
models where this issue is ignored. Here, we follow the second approach keeping the generative training 
recipe for future work. 
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prior for hidden speaker variable z, the posterior can be shown to be Gaussian 2: 

P ( x I s) oc P(s I x )P(x) 

= P(s I x) J P ( x I z)vr(z)dz 

oc h(s) exp - x ' B x + x ' B x 
2 

exp - i x ' ( W - W F ( F ' W F + I ) - 1 F ' W ) x 
(6.4) 

oc h(s) exp - x ' B x + x ' B x 
2 

where we used the following notation: 

B = B + W - W F ( F ' W F + I ^ F ' W , 

x = B " 1 B x . 
(6.5) 

Thus, we have shown that the posterior of x for a single s is a Gaussian distribution with 
mean x and precision B which depend on P L D A parameters, x, and B . As P L D A pa­
rameters do not depend on the observed data s, we see that the only factors affecting the 
posterior distribution P ( x | s) are the parameters of the likelihood function x, B . In other 
words, by varying values of the parameters of the likelihood function, the probabilistic em­
bedding extractor can control the uncertainty assigned to each embedding. For example, as 
seen from the first equation of (6.5), assigning higher "precision" for the likelihood function 
results in higher precision for the embedding posterior distribution. 

Let us stress that we provided the equations (6.4), (6.5) for the posterior only to demon­
strate that our model allows for uncertainty propagation. Knowing the posterior (6.4) is 
not needed to use the proposed model: we do not use it for training or scoring. 

Finally, analyzing (6.4), we can motivate for why we decided to use likelihoods P(s | 
x) instead of posteriors P ( x | s) unlike other probabilistic embeddings papers (see, for 
example, [Oh et al., 2018]). As seen from the first line of (6.4), the posterior incorporates 
the prior over hidden embeddings P(x) . Thus, the embedding extractor that outputs the 
posterior parameters implicitly incorporates some fixed prior P(x) . This fact restricts the 
use of the model: one cannot change P(x) depending on the task at hand. For example, in 
our model, when the dataset contains a single speech segment, P(x) is given by P L D A , and 
it is a Gaussian as seen in (6.4). On the other hand, if there are several data points and the 
labels are not given, P(x) incorporates C R P for speaker labels and the P L D A back-end. 
Ideally, the extractor computing P ( x | s) for our model has to differentiate between these two 
cases. Besides, even if the prior P(x) in a model is fixed (this is the approach taken in [Oh 
et al., 2018]), in many cases, it will be a complex distribution. Consequently, the posterior 
has to incorporate this complexity. This would complicate both training and inference. For 
these reasons, we opted for extracting the parameters of the likelihood P(s | x) allowing us 
to plug in any appropriate prior when needed. 

We propose to model the dependence between speech recordings and likelihood param­
eters x and B by a neural network. We will discuss its architecture in more detail later in 
Section 6.2.1, for now we assume that we have a way to compute these parameters given a 
speech segment, i.e., there exists a function g(s) that implements mapping s —>• (x(s), B(s)). 

2Notice that the posterior is a single Gaussian only for the case when the labels are observed (or if the 
dataset contains a single datapoint as is the case in (6.4)). If the labels are not observed, we would need 
to integrate out not only the speaker variable z but also sum out hidden labels. The posterior becomes a 
mixture of Gaussians in this case. 
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Substituting P(x | z) and P(s | x) given by (6.2) and (6.3) in (6.1), we get the following 
expression for the likelihood for the speaker variable: 

where we have collected all of the likelihood's components not depending on the speaker 
variable into a single factor f(s). Again, as we are not interested in computing likelihood 
itself, but L R scores (2.4), f(s) can be ignored as it will cancel in the ratio. 

Therefore, if we obtain B and x, (6.6) provides a way to compute the likelihood for any 
speech segment and speaker variable. However, in practice, it would be very computationally 
expensive because of the matrix inverse operation. Moreover, the matrix to invert, B + W , 
depends on a speech segment meaning that this expensive operation has to be done for each 
segment. 

To cope with this difficulty, we restrict our attention to the special case of the G - P L D A 
model - the two-covariance model. This model assumes that both speaker and embedding 
variables live in the same Z?-dimensional space z, x G HD. It means that the factor loading 
matrix F is a square full-rank matrix. Notice that this assumption is opposite to the one 
we made for the H T - P L D A model. 

For any P L D A model, there exists a linear transformation such that in the transformed 
space, both within-class and across-class covariances are diagonal. Even more, one of them 
can be the identity matrix. We assume that this linear transformation was applied; within-
class covariance (and precision) matrix is diagonal W = diag(u>i . . . WD), Wd > 0 and 
across-class matrix is identity F 'F = I. The two-covariance model then implies that the 
factor loading matrix is itself identity F = I. 

Finally, as the specific form of the embedding parameters is a part of the model design, 
we can select them for our own convenience: we arbitrarily set matrix B to be diagonal 
B = diag(6i . . - bo), bd >= 0 understanding that this assumption might limit expressive 
power of the model. Then, (6.6) becomes: 

where Xd and Zd are the individual elements of the vectors x and z; bd and Wd are the diagonal 
elements of the embedding parameter B and the P L D A within-class precision matrix. 

Then, pooling together several segments Si = { s i , . . . s^} of the same speaker i (for the 
same value of z) is trivial: 

v 
P(s | z) oc Yl exp 

d=l 
Wd + bd 

wdbd 
{xdzd - ^ d ) (6.7) 

P(Si | z) Y[p(Sj\Z) 
i=i 
Ni D 

Wdbjd 
nii e x p Wd + bjd 

{XjdZd 

3=1d=l 
(6.8) 

d=l 
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where 

Wdbjd 
Ni 

3=1 

bd 

Wdbjd 
Ni 

(6.9) 

bjd, Xjd are the <i-th elements of embedding likelihood function parameters of the j - t h speech 
segment Sj. and bd are the individual elements of cumulative statistics for speaker i. 

Finally, let us consider the last operation needed for computing the likelihood P(S \ C) 
- the expectation of P(Si | z) with respect to the prior 7r(z), i.e., computing the likelihood 
for the same-speaker hypothesis of the segments from set Sf. P(Si \ Hs). In the G - P L D A 
model that we adopted here, the prior for z is a standard normal distribution. Then, the 
expectation is just a convolution of two Gaussians and can be found in a closed form: 

P(Si | Hs 

cx 

cx 

(P(Si | z)) 
D 

J ! exp 
d=l 

D 

J ! exp 
d=l 

D n 
d=l 

exp 

^7r(z) 

a-dZd 

adZd 

a-dZd 

;bdzd 

-bdzd 

7r(z) dz 

exp(—-z'z) dz 
(6.10) 

1 
(bd + l)zj dz 

1 a: 
cx 

V 

S f o + i ) * 6 ^ ' 2 ^ 1 ) 
d 

The derivations above are done analogously to (3.7) where more detailed derivations were 
given. 

Given (6.10), log-likelihood is: 

\ogP{Si\Hs) = 
1 D 

- Y 
d=\ (bd + 1) 

log(bd + 1) + const. (6.11) 

Looking closer at (6.9), we see the interaction between P L D A within-class precision pa­
rameters and embedding parameters. If, for some recording Sj, diagonal element of B at 
dimension d is very small bjd ~ 0 (the uncertainty about embedding along this dimension 
is high), then the whole ratio ^ ^ . d becomes close to zero and this dimension is effectively 
ignored when computing the statistics for a given speaker (and consequently also the likeli­
hood). If, on the other hand bjd S> Wd, then the weight ^ ^ . d becomes practically Wd- If 
it is true for all recordings, the model degrades to the standard Gaussian P L D A likelihood 
estimation formulae. If the parameters of the embedding are estimated correctly, we have 
a way to weigh the dimensions in the embedding space when computing the likelihood so 
that the reliable dimensions have a higher weight and affect the likelihood more than those 
that one cannot trust. 

To compute the log-likelihood for any partition of the speech recordings into speaker 
clusters (2.3), one has to sum terms (6.11) computed for individual clusters defined by such 
partition: 

1 D 

= 1 d=l 

'id 
(bid + 1) 

\og(bid + 1) + const, (6.12) 
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where we assume that C partitions <S into m speaker clusters, and are (d-th. dimension 
of) statistics (6.9) computed for i-th speaker defined by C 

Log-likelihood (6.12) can be computed up to a normalizing term that depends on the 
observations S but not on the partition C. As we are interested not in log-likelihood itself 
but L L R (2.5), we can ignore the normalizers as they will cancel in the ratio. 

To summarize, we derived a closed-form solution for evaluating the L L R score between 
two partitions for a Gaussian P L D A model with embeddings considered as hidden variables. 
To compute the likelihood for a partition of N recordings one needs: N vectors x̂ , N vectors 
hj (diagonals of B j ) - parameters of the likelihood function (6.3), and a diagonal P L D A 
within-class precision matrix W . As was mentioned before, the relation between a speech 
segment and parameters controlling embedding distribution is modeled by a neural network, 
so ultimately, to get hj and x̂ , we need to know the network parameters. 

Also, if one defines a prior over partitions P{C) and uses (6.12) to compute the likelihood, 
then, for small sets S, it is possible to compute the posterior for the particular partition £*: 

6.2 Experimental design 

In this section, we describe the design choices for the embedding extractor and the training 
objective for the model described above. The suggestions here are only a subset of many 
existing options. Both the extractor architecture and the training objective can be tailored 
to a particular task of interest. Here, we describe a setting that was used in our experiments. 

6.2.1 Estimating embedding parameters 

The parameters x and b for each speech recording have to be estimated by a neural network. 
We propose to use a network trained to extract speaker embeddings (not probabilistic) as a 
base network and augment it to estimate both vectors of parameters. Using this approach, 
we impose an assumption that the observed data come in a form that the original embedding 
extractor used as an input, i.e., if the original embedding network used raw audio signal or 
a matrix of acoustic features as an input, then our model also assumes s to be represented 
in the same way. For simplicity, we assume that s is a matrix of acoustic features. 

As an architecture we will build upon, we use the x-vector extraction network as de­
scribed in Section 2.4.2. Figure 2.1 (and Table 4.1) displays the x-vector extractor architec­
ture used in our experiments. This network was pre-trained and then modified to extract 
probabilistic embedding parameters. First, we strip from the network all layers after the 
embedding layer. Then, the network is augmented with additional layers and blocks. The 
first of them is a single linear layer transforming the original embedding. The output of 
the linear layer serves as the parameter x of the probabilistic embedding. This linear layer 
is assumed to perform the diagonalizing transformation that is assumed by our model (it 
makes sure that the across-class covariance of P L D A is the identity matrix and the within-
class covariance is diagonal). This layer is initialized with a transformation matrix set to 
diagonalize G - P L D A trained on the original embeddings. Then, an additional sub-network 
of two dense layers is added to the original architecture: as input, it takes the output of 
the statistics pooling layer and additionally, the length of the speech segment in frames. 
This network is supposed to output parameter b of the embedding likelihood function. The 
activation function for both of the layers is set to softplus. That way, the output vector 

P(C | S) (6.13) YJCp^)p(s\cy 
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Figure 6.3: The architecture for speaker probabilistic embedding extraction based on the 
pre-trained non-probabilistic embedding network (Figure 2.1). The gray blocks correspond 
to the parts of the original network and are fixed, the yellow blocks are the additional layers 
to train. 

is guaranteed to be non-negative. The initialization for the parameters of these layers is 
done randomly in such a way that the condition bjd 3> Wd is satisfied (i.e., we approximate 
infinite precision for the embedding). It is done by sampling weights from a standard normal 
distribution and setting a large constant bias for each dimension. The resulting network is 
depicted in Figure 6.3. Grey blocks on the scheme correspond to the parts of the original 
x-vector extractor, while yellow ones are the new layers described above. 

Figure 6.3 also includes a P L D A block even though it is not a part of the embedding 
extractor. This is because we want to train both probabilistic embedding extractor and 
P L D A jointly. At the beginning of training, P L D A within-class precision is set to a diago-
nalized within-class precision of the P L D A trained with baseline embeddings. Initialized in 
this way, P L D A and the embedding extractor very closely resemble the baseline system (it 
is not exact due to non-infinite embedding precisions). 

6.2.2 Training criterion 

Following the design of the embedding extractor described above, to use the model, we 
need to have the following parameters 9 = {9±, 9^,, w}, where 9± is the matrix to transform 
the embedding into x, 9^- the parameters of the neural network extracting b and w is 
the diagonal of P L D A within-class precision W . To train these parameters, we propose to 
use the same objective as described in Section 5.5: maximizing the posterior probability 
of the correct partition of training examples consisting of several utterances (5.36). Then, 
as in the case of H T - P L D A , we can train the model parameters using stochastic gradient 
ascent. To speed up the training, we evaluate the objective with the procedure described 
in Appendix F. In short, one can pre-compute several sparse matrices allowing to efficiently 
perform summations when computing statistics (6.9) and likelihoods (6.12) for all possible 
partitions of the training examples. 

In the case of probabilistic embeddings, we restrict the set of training examples to those 
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containing 8 points only. This is done considering that we plan to test this model primarily 
on the diarization task and it seems logical to stimulate the model to learn how to partition 
sets with a large number of speech segments. Also, 8 is the largest feasible size of the 
example for which one can compute the partition posterior exactly (see Section 5.5). 

6.3 Experiment 

We test the performance of the probabilistic embedding model on the diarization task repeat­
ing the experimental setup of Section 5.5.2. The first baseline model is the Kaldi diarization 
recipe. The embeddings and G - P L D A model we use in this approach are the same as for 
the second baseline. However, compared to the approach adopted here, the Kaldi recipe 
uses additional pre-processing stages as per-utterance P C A projection to retain 30% of the 
variability in the embeddings, additional length normalization, and projection of the P L D A 
parameters into the same low-dimensional space as well as another version of clustering 
algorithm - U P G M A A H C [Sell et al., 2018]. The results of the recipe on the D I H A R D 
2019 development and evaluation sets are shown in line 1 of Table 6.1. 

The rest of the models described here follow the approach described in Section 2.3.1 and 
differ by a model to compute L L R scores for the clustering algorithm. The second baseline 
uses the G - P L D A model trained on 512-dimensional length-normalized neural network em­
beddings to provide L L R scores for A H C . The embedding extractor and P L D A were trained 
on the VoxCeleb2 and VoxCat sets, respectively (see Section 2.5). Prior to scoring, the em­
beddings are multiplied with the L D A transformation matrix that not only diagonalizes the 
P L D A covariance matrices but also reduces the dimensionality of the data to 500, keeping 
the dimensions of the highest within-class precision (it is the same as keeping the highest 
across-class variability dimensions). The results of this model are in line 2 of Table 6.1. 
Notice that the baseline G - P L D A model from Table 5.10 had different performance because 
of different data pre-processing and G - P L D A settings: before, we did not use L D A , but 
we had to use low-dimensional speaker subspace, while now, we need to be consistent with 
probabilistic embedding approach and use L D A and two-covariance model. The embed­
ding extractor and P L D A from the baseline (line 2 of Table 6.1) are used to initialize the 
probabilistic embedding model as described in Section 6.2.1. The probabilistic embedding 
model now replaces the G - P L D A of the baseline when generating L L R scores for the A H C 
algorithm. Before training, the diarization performance of the baseline and the probabilistic 
embeddings is the same. 

Then, we train the parameters of the probabilistic embedding extractor and P L D A on 
the A M I dataset. The training examples for the objective (5.36) are generated by the same 
procedure as in experiments of Section 5.5.2: 

• Sample a training utterance. 

• For the given utterance, sample 8 speech segments (for diarization purposes, each 
utterance is split into short overlapping segments) randomly. Fix some order of the 
segments and use their corresponding speaker labels to define a correct partition for 
the example. 

As a prior distribution P(C), we use the Chinese Restaurant Process (see Appendix B) 
[Pitman, 1995, Fox et al., 2011, Zhang et al., 2019]. We assigned the parameters of the C R P 
such that the expected number of clusters (see (B.5)) for N segments was equal to the true 
number of speakers in the training set. N here is the total number of short segments in all 

85 



Table 6.1: Comparison of diarization performance of generatively and discriminatively 
trained G - P L D A , with and without embedding uncertainty on D I H A R D 2019 development 
and evaluation sets. The performance is reported in terms of D E R (%). 

# System 
(j-

dev 
=0 

eval 
a optimal 

dev eval 

1 
2 

Baseline Kaldi 
Baseline G - P L D A 

27.12 
44.28 

27.74 
41.09 

20.45 21.35 
23.82 23.98 

3 
4 

G - P L D A , Part.Post, tuples 
PLDA+uncertainty, Part.Post, tuples 

26.95 
22.95 

26.34 
23.38 

22.38 22.68 
21.61 21.84 

utterances in the training set. We always set one of the parameters to zero (concentration or 
discount), and the second one is found by a numerical optimization method. For the fixed 
number of points N, parameters of C R P affect the distribution of number of clusters (see 
Figure B . l ) . When deciding which out of two C R P parameters to set to zero, we select it 
so that the variance of the distribution of the number of clusters is maximized. C R P gives 
an exchangeable distribution that is invariant to the order of the speaker labels. This prior 
is appropriate for our procedure of randomly selecting the segments to form the training 
examples. However, if we generated the examples out of consecutive segments, we would 
want the prior to incorporate the information that the neighboring segments are likely to 
share the same speaker identity. Then, some other prior should be considered. 

To isolate the impact of the additional data and the discriminative training from the 
introduction of the uncertainty used, we train two models. For the first one, we fix the 
parameters of the embedding precision network and train only the L D A transformation of 
the embedding and P L D A precision; this corresponds to retraining the baseline P L D A on 
additional data with objective (5.36). The uncertainty information about the embedding 
is not used in this case. The result is shown in line 3 of Table 6.1. Then, we train a 
model where all of the parameters are learned, including the embedding parameters. The 
sub-network extracting the 500-dimensional vectors b has two hidden layers, each having 
1000 nodes. The results of the model using embedding uncertainty information are shown 
in line 4 of Table 6.1. Comparing lines 2 and 3, we can see the effect of the discriminative 
retraining of the P L D A model on A M I data. Finally, comparing lines 3 and 4, we can see 
the impact of the uncertainty information on the diarization performance. 

6.3.1 Discussion 

As can be seen from the results, both of the baseline models are miscalibrated. The per­
formance when the A H C stopping threshold is set to 0 is worse than the optimal one. 
Threshold 0 is the optimal maximum-likelihood threshold; the fact that it leads to infe­
rior performance tells that the G - P L D A models of the baselines do not output proper L L R 
scores for A H C . However, the Kaldi recipe baseline does not suffer from the miscalibration 
as much as the other one. Also, the optimal performance tuned on the development set 
for the Kaldi recipe is better than for the second baseline. By retraining the baseline from 
line 2 with the discriminative objective, we greatly mitigate the calibration problem and 
also improve the optimal performance. This model outperforms the first baseline for the 
0 threshold case, meaning that in the case when there is no development set to tune the 
threshold, it would result in a better performance. Finally, allowing the model to use the 
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uncertainty information together with retraining P L D A brings even further improvements 
in the performance and improves the calibration. Although the optimal performance of this 
model is still worse than the Kaldi baseline, it is already reasonably close to it. And, in the 
case when no development set is available to tune the threshold (using zero threshold), this 
method results in a significant improvement over both baselines. 

In summary, one can conclude that even though introducing uncertainty information in 
the form of probabilistic embeddings to the diarization approach does not necessarily result 
in a better performance than can be achieved without it, it allows for the model to be more 
robust and better calibrated. 
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Chapter 7 

Conclusion 

7.1 Summary 

This thesis presented two models allowing for utilizing uncertainty in speaker verification 
and diarization. 

First, we introduced a modification to the Heavy-tailed P L D A model. The original HT-
P L D A was shown effective for speaker verification task but had a significant drawback of 
high time and computational complexity. Our variant of H T - P L D A mitigates the limitations 
of the former approach and allows for fast scoring of verification trials. Also, we have shown 
that this model allows for the uncertainty information to propagate, unlike in more widely 
used Gaussian P L D A . 

We presented one generative and various discriminative approaches to train H T - P L D A . 
The generative method is faster and more reliable when only a limited amount of in-domain 
training data is available. Discriminative methods, on the other hand, are more demanding 
in terms of computations and time. However, when enough in-domain data is available for 
training, the discriminative methods can outperform the generative one. Among various 
training objectives that we have considered, we found that training the H T - P L D A model 
to partition tuples of several recordings into speaker clusters provided the best performance 
on average. Besides, training with this objective requires considerably less computational 
and time resources than when training with some other objectives presented in this thesis, 
making it more applicable in practice. 

We have presented speaker verification results for the H T - P L D A models trained on i -
vector and x-vector embeddings with and without length normalization. We have shown that 
the performance of the H T - P L D A model (either generatively or discriminatively trained) 
does not depend on the data pre-processing as much as in the case of G - P L D A . We have 
observed that length-normalization is crucial for the good performance of G - P L D A , while 
its presence has almost no effect on the results of H T - P L D A . Moreover, we have shown that 
other pre-processing steps, like dimensionality reduction, can significantly impact G - P L D A 
performance. We do not observe the same trend for H T - P L D A . 

We have used H T - P L D A for speaker diarization: in the experiments, we have shown 
that the scores provided by H T - P L D A are better calibrated LLRs than scores estimated 
with G - P L D A . This allows H T - P L D A to provide better diarization performance, especially 
in the case when no development data are available for tuning the stopping threshold for 
the clustering algorithm. 

Second, this thesis presented an approach to utilize uncertainty information by consider­
ing speaker embeddings as normally distributed hidden variables rather than observed points 
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in Z?-dimensional space. We have presented a scheme for augmenting an existing x-vector 
neural network to provide not a point embedding but parameters of the embedding distri­
bution. Then, these embedding distributions were modeled with the G - P L D A model. We 
have shown how the uncertainty estimate affects the computation of speaker statistics and, 
consequently, the likelihood. We used one of the discriminative approaches used for training 
H T - P L D A - maximizing the posterior of the correct partition for training examples con­
sisting of several speech recordings - to train both P L D A and embedding extractor jointly. 
Finally, we have tested the performance of the resulting model on the diarization problem, 
where the probabilistic embedding model was used to compute similarity scores used by 
the clustering algorithm. Here, similarly to the H T - P L D A case, we have observed that the 
model allowing for uncertainty propagation provides better calibrated LLRs resulting in a 
better diarization performance than the baseline G - P L D A model. 

The common conclusion for both H T - P L D A and probabilistic embeddings is that these 
models do not necessarily result in better performance than the baseline G - P L D A model. 
On the other hand, uncertainty information allows them to be more robust and reliable (e.g., 
see data pre-processing experiment of Section 4.2.2 or diarization with A H C clustering in 
Section 6.3). 

7.2 Future work 

In the future, we would like to improve the uncertainty estimation in both presented meth­
ods. This can be approached from different perspectives: 

• Training the embedding extractor jointly with the back-end model. Typically, the 
embedding extractors are trained to discriminate between the speakers in the train­
ing dataset. Such training does not encourage the uncertainty information to get 
propagated to the embeddings. 

However, in our experiments, we fixed the embeddings in the case of H T - P L D A . For 
probabilistic embeddings, we trained only the new layers that were added to a pre-
trained and fixed embedding network. 

We believe that if the embedding extractor is trained together with the back-end that 
utilizes the uncertainty, it can learn to preserve this information. 

Training the extractor together with the back-end is feasible only with some discrim­
inative training approach. Thus, we can consider some of the training objectives 
presented here. 

• For the extractor to be able to adequately estimate the uncertainty, input segments 
of a great variety of durations, signal to noise ratio (SNR) levels and other quality 
factors should be provided during training. It was not the case in our experiments: 
e.g., for training the probabilistic embeddings, all training segments were of the same 
duration. We believe that the models were not utilized to their full potential because 
of the limited variability in the training data. 

• The only quality measures in the current implementation of the probabilistic embed­
ding approach were segment duration and the output of the statistic pooling layer. 
The model is supposed to estimate the embedding precision based on these inputs. 
Adding additional quality measures such as, e.g., SNR estimate, the average energy 
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of the signal, or even the input spectrogram could help the model to estimate the em­
bedding uncertainty better. Consequently, we can expect performance benefits from 
adding such inputs to the model. 
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Appendix A 

Derivation of V B lower bound and 
optimal Q-factors for H T - P L D A 

Here, we show the complete derivations of the results presented in Section 4.1. Namely, 
we derive the variational lower bound L and the expressions for optimal factors Q{a) and 
Q(z). 

A . l V B lower bound 

As described in Chapter 4, V B lower bound is computed as: 

f P(K,z,a\C,d) 
L= / Q(z , a ) log — r d z d a 

= L P(Kj,z,a | Hs,9)\ 

( log P(Ki | Hs,z, cx, 9) + log + log P ( a ) 

Qi(z) Qi(oL 

(A. l ) 

where the last two expressions are negative K L divergences between variational factors Q(z) 
and Q(ot) and priors for hidden speaker variable P(z) and precision scaling factors P(OL) 
respectively. 

Expression (logP(7£j | Hs, z, a , ^))Q i(z)Q i(a) c a n ^ e evaluated taking into account that, 
in H T - P L D A model, likelihood is a Gaussian function with parameters depending on both 
z and a (see (3.16)). (3.16) gives the likelihood P{?ij \ z,a,9) for a single datapoint r^j. 
The likelihood of IZi consisting of iVj vectors belonging to the same speaker is: 

Ni Ni 
P(Ki | Hs,z,a,9) = ]JP(rij \ z,a,9) = J ] X r u \ Fzit ( c ^ W ) " 1 ) . (A.2) 

3=1 3=1 
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Taking into account (A.2), the expectation becomes: 

AT,; 

<logP(7*i I Hs,z,cx,e))Qiiz)Qi((x) = (J^logXirij I Fz,, ( a ^ W ) " 1 ) j 

I Ni E 
\j=i 
I Ni 

E 
\j=i 

logja^Wl - ^ log(2vr) - ^(r^ - Fz i ) ' ( a i i W)(r i i - Fz, 

^ log(aij) + \ log| W | - ' n , ^ ; W r , ; + n ^ F ' W r , , - J a ^ F ' W F z * + const 

U*)Qi(oc) 

= f E ( l 0 S(^ ' )> + y log |W| - 1 ^ H ™ ^ + ( z . / F ' W ^ h 
i i i 

" \ ^ < a y > t r « Z i z J > F ' W F ) + const. 
i 

Substituting (A.3) in (A . l ) , we get the final expression for V B lower bound: 

L = Eff E < l o s K ) > + y l o s i w i - §E ("<./HW r<./ + <«i> 'F 'wx;<««>i . 
» 3 3 3 

- ^ ( ^ ^ ^ ( ( ^ z ^ F ' W F ) - KL(Qi(z) || P(z)) - KL(Qj(a) || P(a)) 

(A.3) 

+const. 

(A.4) 

A.2 Estimating optimal Q(a) 

Analytic solutions for Q(a) can be found by evaluating expectation over Q(z) [Bishop. 
2006]: 

logQi(a) = (log P(Ri, a, z)) Q . ( z ) + const 

= (logP(i2i | a,z) + logP(a) + logP(z)) g . ( s ) + const 

= (logP(-Rj | a ,z)) Q . ( z ) + logP(a) + const, 

(A.5) 
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where P{Ri \ ct,z) is given by (A.2) and the prior P{OL) is Gamma distribution with shape 
and rate parameters set to | (see (3.14)). Then, substituting (3.16) and (3.14) in (A.5): 

N, 

\j=i 
y log(aij) + l- log| W | - . y . / ; r ; ; W r / ; + a ^ F ' W r ^ - - ^ a ^ F ' W F z , 

v, v 
Ni 
X ] - l o s l - i l"" 1 ! . i ! . 1

 ]1 ( )S(>'/;) - ^ + f < > i i s l . 
i = i 

^ TD 1 1 
= y i o g K ) - 2««j ' r i 3 Wr ! 3 + ( z i / F ' W a i j T i j - -a , j t r((z ! ^}F'WF) 

i = i L 

V 

2 

£ 
+ ( - - 1 Jlog(aij) - - a i j +const 

— + - - 1 ) log(a^ ; 

| - ^ - W r t f + ( z « ) ' F ' W a 8 3 r y - ^tr((z^)F'WF) + const 

.7 = 1 V 

1 7 + ° ' i + ^ r * J W r « " 4 ' W F ( Z * > + ^ ( { ^ ; ) F ' W F ) ) +const. 

(A.6) 

Thus, the optimal Qi(ot) is a product of independent gamma distributions: 

i/ + L> i / 1 , iV, 

n Qi(a) cx J ] a ( a 0 - | ^ + ^ . W r ^ - ^ ( z . ) + ^tr((z^)F'WF) ). (A.7) 

A.3 Estimating optimal Q(z) 

Similar to estimating the optimal Qi(a), one can find the optimal Q-factor for hidden 
speaker variable z: 

logQj(z) = (log P(Ri, a, z))g. ( a ) + const 

= (logP(Ri | a,z) + logP(a) + l ogP ( z ) ) Q . ( a ) + const (A.8) 

= (logP(-Rj | a , z ) ) Q . ( a ) + logP(z) + const, 

where the first component can be computed using (A.2); the prior P(z) is a standard normal 
distribution as assumed by the P L D A model. Then (A.8) becomes: 
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N, 

\j=i 

D 
log(o<y) + - log| W | - -ocijr'i W r y + n ^ F ' W r / ; - - a ^ z ^ F ' W F z , 

Qi(oc) 

d 1 , 
- 2 l o S ( 2 7 r ) ~ 2 Z i Z i + C O n s t 

AT,; 

z ^ F ' W ' J ^ < « i j > r i j " ^ £ { a i 3 } F ' W F ) z j - ^ z * + const 
i=i i=i 

• iVj IV; AT; 

logAAf z I ( ^ ( a i ] ) F ' W F + I ) " 1 ^ ( a i J ) F ' W r ! 3 , ( ^ ( a ! ] ) F ' W F + I ) " 1 )+const. 
V j=i j=i j=i 

N, 

(A.9) 

The optimal Qi(z) is a multivariate Gaussian: 

Ni Ni Ni 

Qi(z) oc M( Z I ( ^ ( a 1 3 ) F ' W F + I ) " 1 ^ i o . T ' W r , , ( ^ { a ^ F ' W F + I ) " 1 ). (A.10) 
j=i j=i j=i 
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Appendix B 

Chinese Restaurant Process 

Here, we describe Chinese Restaurant Process prior used when defining discriminative train­
ing objectives for H T - P L D A and probabilistic embedding models in Sections 5.3, 5.4, 5.5, 
and 6.2.2. 

We are interested in defining the distribution over all possible partitions of the dataset 
of size N into speaker clusters. Chinese Restaurant process [Goldwater et al., 2011, Pitman, 
1995,Fox et al., 2011,Zhang et al., 2019,Ghahramani and Griffiths, 2005] provides a recursive 
procedure to construct such distribution. It is defined as follows. 

Let us consider a case when the partition of N — 1 out of N points is fixed, and we are 
interested in computing the probability of the label of the remaining point. Assume the 
remaining point has index N; otherwise, we can just re-index them so that it is true. 

£\N = { h , h , •••,lN-i},k e { l , . . . ,m} . (B. l ) 

Here, £\N denotes the partition of the whole dataset with the last point removed. £\N 
distributes N — 1 data points (recordings) to m speaker clusters. The label of the last 
point can belong to {1, ...,m}, but this point can also form a separate cluster and can be 
assigned a new label IN = rn + 1. According to CRP , the probability for these alternatives 
is computed as: 

N-i+a > I o r ^ J, l . . .m ( B 2 )  

N - i + a , for ÍJV = m + 1 . 

Here, a > 0 and 0 < (3 < 1 are the C R P parameters called concentration and discount, 
respectively. I is an indicator function and = j) simply tells how many points belong 
to the cluster j according to 

Partition probability for the whole set is: 

P(C) = P(lN I C\N)P(C\N). (B.3) 

The first term is given by (B.2), while the second one can be computed by recursive appli­
cation of (B.2). 

Thus, the probability of the whole partition C can be computed iteratively. At each step 
of the recursion, we assume that the labels are consecutive integers. If that is not the case, 
simple reassignment of the labels can fix it. 

Finally, in the recursion, we arrive at the situation where the first point has to be assigned 
its label. Logically, with probability 1, it is assigned the first available label 1: 

= 1) = P(h = l I 0) = l . (B.4) 
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The same procedure applied in the opposite direction (from a single point to the parti­
tion of iV points) describes a generative process assumed by C R P . The generative process 
illustrates the restaurant analogy (hence, the name C R P ) , where customers come one by 
one to a restaurant and decide on whether to join other customers at an already occupied 
table or sit at an empty table. 

For C R P with fixed parameters, the expected number of clusters for iV data points is 
given by [Zhang, 2008]: 

1, a = o,p = 0, 

W H - % « > M > 0 , (B.5) 
a ( * ( a + J V ) - * ( a ) ) , a > 0,0 = 0, 

where T(-) and are gamma and digamma functions, respectively. 
C R P defines an exchangeable distribution, meaning that the value of P{C) does not 

depend on the particular order the points are selected during the computation process 
described above. There is a closed-form expression to compute this probability for a given 
partition, i.e., running the iterative procedure is unnecessary [Ghahramani and Griffiths, 
2005]: 

p ( n r (q) / ? " T ( f + m) "L F ( E f = 1 ^ = j ) - / ? ) m f i , 
n L ) - r ( a + N) r ( f ) 11 r ( i - / ? ) ' ( B ' b j 

where T(-) is gamma function, and C is a partition of iV datapoints into m clusters. 
To summarize, C R P defines a suitable prior for our purpose of discriminative training 

to maximize the (approximate) posterior of the correct partition. The prior probability of 
any partition can be conveniently computed with (B.6). Let us add a few notes: 

• Properties of the C R P are defined by choice of its parameters a, (3. These parameters 
control the expected number of clusters and the variance of the number and sizes of 
clusters in different realizations of CRP. Figure B . l illustrates this fact. It was created 
as follows. We select two sets of parameters that result in the same expected number 
of clusters (200 clusters for 1000 points) and run 1000 realizations of C R P with each 
set. Then, we plot the histograms of the actual number of clusters in the obtained 
realizations. As we see, even though the expected number of clusters for both sets of 
parameters is the same, the variance of that number differs significantly. 

• To use C R P as a prior for discriminative training, one has to set the parameters 
beforehand so that they reflect the properties of the training data. If that is not done, 
we expect that the training would skew the model likelihoods to compensate for the 
mismatching prior. Ideally, we would want to estimate the parameters of the prior on 
n datasets as: 

n 
a*,P* = a r g m a x T T P ( £ * \a,0), (B.7) 

where, C* is a true partition of training set i. For example, this can be done in the case 
of diarization, where each utterance represents a separate partitioning problem. The 
parameters set in this way would not be overtrained on one particular training set and 
can be expected to fit the test data well. However, in practice, in all our experiments, 
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Figure B . l : Histogram of the actual number of clusters in 1000 realizations of C R P with 
parameters a = 74.91, /3 = 0 (blue) and a = 0,/3 = 0.75 (orange). Both sets of parameters 
result in the expected number of clusters (m) = 200 for 1000 data points. 

we use just a single dataset to estimate the parameters of CRP. By fixing one of the 
parameters a or f3, we can set the second one so that the expected number of clusters 
(m) (see (B.5)) equals the true number of speakers defined by £*. In practice, we 
typically set j3 = 0 and numerically solve the equation (m) = m* to find a. 
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Appendix C 

L L R score for H T - P L D A model 

Here, we derive the expression for the L L R score computed with the H T - P L D A model 
introduced in Section 3.2. 

The general definition of a log-likelihood ratio score Sij for two recordings rj and Tj 
( H T - P L D A assumes that they are embeddings) is given by (2.6): 

= l o g P ( r i , r i I Hs) - logP(r i , r J - | Hd 

= log<P(ri I z)P(rJ I z) log<P( r i I z)) log(P(r, I z) 
(C.l) 

By using (3.28) to compute the log-expectations over prior of the hidden z, L L R score 
becomes: 

(a* + aj) ' [ (Bi + Bj) +1] 1(ai + a,-) - log|(Bj + Bj) +1| 

aJ [B i + l] 1ai - log |Bi + I| - - a ^ B ^ + l] ^ - log |Bj+1 
(C.2) 

Notice that (3.28) also includes an additive constant, but these cancel when L L R is com­
puted, hence we do not include them in (C.2). a and B are defined by (3.25). Substituting 
them in (C.2), we get s^ as a function of H T - P L D A parameters W , F , u, and embeddings 
Vi and Vj\ 

(öiF 'Wr; + bjF'Wrj)' [{hi + Ö ^ F ' W F + I] " ^ F ' W r ; + bj-F'Wrj 

(biF'Wri)' [ ö iF 'WF + I] " ^ F ' W r ; - l o g l ^ F ' W F + I| 

(bjF'Wrj)' [(bj-F'WF + I] " ^ F ' W r , - - log|6j-F'WF + I| 

log|(6i + 6 j ) F ' W F + I| 

where scalars b are given by (3.22): 

v + D-d 
v + r ' ( W - W F ( F ' W F ) - 1 F ' W ) r ' 

(C.3) 

(C.4) 
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Reorganizing the terms in (C.3), we get the final expression for H T - P L D A L L R score: 

1. 

+ -ftft-WF 

[(&,: + &,)F'WF + I] 1 + [ftiF'WF + I ] _ 1 

+ bj)F'WF +1] _ 1 + [bjF'WF + I ] _ 1 

F'Wn+ 

F'Wr,+ 

+ bibjr'iWF[(ht + 6j)F'WF + I] V W r y 

l- bg|(6j + 6 J )F , WF +1| + 1 l o g ^ F ' W F +1| + 1 l o g | 6 i P / W P | 

where we have defined: 

Ti = 6|WF[((6 i + ^ F ' W F + I)"1 - (6iF'WF + I ^ J F ' W , 

Tj = bjWF[((bi + y F ' W F + I)"1 - (6 3F'WF + I ^ F ' W , 

Aij = 6j6 iWF((6 j + 6j)F'WF + I ^ F ' W , 

(C.5) 

(C.6) 

fcij- = - - log|(6i + 6j)F'WF +1| + - l o g ^ F ' W F +1| + - log |6 i F / WF + I|. 
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Appendix D 

How to check the sampling algorithm 

In Sections 5.4.2 to 5.4.5, we have described various methods to sample from the partition 
posterior P(C \ 1Z). The posterior over partitions is a complex distribution that is impossible 
even to evaluate for real-world large-scale tasks. Also, the sampling methods are very 
elaborated. These two factors make it difficult to verify whether the sampling method 
was implemented correctly and provides the samples from the correct distribution. Below, 
we discuss some approaches addressing this problem. However, notice that verifying the 
sampler is a hard problem that until recently was unsolved (see, e.g., [Brooks et al., 2011]); 
nowadays, several new methods have become available [Sriperumbudur et al., 2009, Rossi, 
2015, Yang et al., 2018] but it is still the area of active research. 

D . l Small-scale synthetic experiment 

One of the simplest ways to spot the problem when implementing a sampler is to generate 
a small-scale synthetic dataset such that it is feasible to compute the posterior over the 
partitions P(C \ 7Z) for this set exactly. Then, collecting the partitions produced by the 
sampler at hand and comparing their distribution to the true one allows us to see if the 
sampler generates samples from the correct posterior. We follow this approach and perform 
the following experiment. 

First, we run a generative process to generate a synthetic dataset of eight 10-dimensional 
data points: first, we fix the parameters of the H T - P L D A model 9* = {F*, W*, i /*} . Then, 
we sample the simulated "true" labels C* from the prior (in our case, C R P with fixed 
concentration and discount parameters). Finally, given the parameters 9* and the labels 
£*, sample the observed data 1Z. Since the dataset has 8 points, there are Bs = 4140 ways 
of partitioning them into speaker clusters. The true model and prior parameters are known 
exactly; consequently, it is possible to compute the posterior for each of the 4140 partitions. 
The true posterior is displayed on the top graph of Figure D . l . On the graph, the horizontal 
axis shows indices of possible partitions, and the vertical one displays corresponding values 
of the true posterior. 

Then, using the true model parameters, we run the sampler (in the case of this experi­
ment, SDDS with GS) and collect 10000 samples from it. To collect these samples, we keep 
the output of every 100th step of the SDDS chain. The lower graph of Figure D . l shows the 
normalized histogram of the partitions that were sampled in this way. Visually comparing 
the true posterior and the sample histogram, we see that the graphs are very similar. How­
ever, there are minor differences between them. A possible source of these differences is that 
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Figure D . l : Top: True posterior estimated with the correct model and prior parameters for 
each of 4140 partitions of the dataset consisting of 8 points. Bottom: Normalized histogram 
of 10000 sampled partitions retrieved by SDDS with GS sampling algorithm when correct 
model parameters were used. Since the graphs are similar, we can conclude that it is likely 
that the sampling algorithm produces samples from the correct posterior. 

we used a finite number of samples to approximate the posterior. To see whether this is 
the case, we sample from the multinomial distribution with the number of trials parameter 
set to 10000 (same as the collection of samples obtained with SDDS) and the true posterior 
used as event distribution. We collect 1000 samples from a such multinomial distribution. 
Normalizing each sample retrieved from the multinomial distribution by 10000 (number of 
trials), we get 1000 approximate posteriors. We compute the K L divergence between the 
true posterior and each of these 1000 approximate ones. We also compute the K L diver­
gence between the true posterior and the approximate posterior estimated with the samples 
obtained by SDDS. Figure D.2 shows the histogram of all these K L divergences, the red 
star on the horizontal axis indicates the K L divergence computed with the output of the 
SDDS sampler. From the graph, we see that this K L divergence is located among others 
showing that the approximate posterior estimated with the SDDS sample is similar to those 
approximate posteriors estimated from the finite number of samples from the true posterior 
distribution. 

This experiment shows that there is unlikely a mistake in the implementation of the 
SDDS sampling algorithm. Similar experiments can be done for other sampling methods; 
however, we do not show their results here. 
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Figure D.2: Histogram of K L divergences between the true (P) and approximate (Q) pos­
teriors. The approximate posteriors are estimated with the finite samples of 10000 elements 
from the true posterior. K L divergence between the true posterior and the approximate one 
estimated with 10000 SDDS samples is shown as the red star. 

D.2 Sampler quality measure 

The experiments described above allow us to conclude that the sampling method was im­
plemented correctly. Still, it is impossible to say when the sampler has warmed up or to 
compare several samplers this way. Consequently, we propose to consider the following 
quantity: 

O ( i o g p ( £ | n ) ) Q { m ) p { n ) 

[log P(£,1Z) 

[log p{c\n)) P(C\K)P(K) 

logP(K))Q(cn) - (logP(£,K) - logP{1l))p(c1Z) 

[log P(C,TZ)] 

[log p(£,n)] 
Q{c,n) 

[logP{K))p(1l) - {logP{C,K))p(c1l) + (logP(K))p(n) 

[logP(£,K))p(cny 

(D.l) 

Above, Q(C | TV) is used to denote the distribution from which the sampling algorithm is 
effectively sampling, and P(C \ 7Z) is the true partition posterior. For the perfect sampler, 
these two are equal Q(C \ 1Z) = P(C \ 1Z). For brevity, in (D.l) , we used the following 
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notation: 

Q(C,TZ) = Q(C | TZ)P(TZ). 

Approximate estimation of O can be done by noticing that it is possible to sample from 
P(C) and P(TZ \ C) by running the generative process described above and, consequently, 
it is possible to sample from P(TZ,C) by ancestral sampling (first, sampling C* ~ P(£>) 
and, then, TZ ~ P(TZ | £*)). Also, all of these distributions can be evaluated. Besides, if, 
when sampling from P(TZ, C), we discard C, we effectively sample from P(TZ), however it is 
impossible to evaluate it. Thus, one can approximate O by drawing N samples (TZi, C*) from 
P(TZ, £); given these samples, one can estimate the second component of (D. l ) . By running 
the sampler (drawing samples Ci from Q(C \ TZi)) for each of the IZi, we can approximate 
the first expectation in the last line of (D.l) . Thus, O can be approximated as: 

N N 

° * N Y , N P ^ i ^ i ) - log P(C*, TZ,)} = - J > = 5, (D.2) 
i=l i=l 

where, for future references, we have defined: 

5 = log P(JC,TZ) - logP(JC*,TZ). (D.3) 

Now, when we know that it is possible to estimate O approximately, let us look closer 
at it to see what properties O has. 

O = (logP(£,K))Q{cn) - (logp(c,n))p(c •R) 
0(C TZ) 

>gP{c,n))Q{cn) + { i o g ^ ^ ) Q { c n ) - {iogP{c,K))p{cn) 

P(C TZ) 

- KL(Q(£, TZ) 11 P(£, TZ)) + (logQ(£, TZ))Q{C^ - ( logP(£, TZ))p{£ 

(DA) 

ny 
The last line of (D.4) shows that O can be decomposed into three terms: negative K L 
divergence between Q and P and two entropy terms. The first term is equal to zero if 
and only if Q(£,TZ) = P(£,TZ) (the sampler is sampling from the correct distribution). 
Also, if the sampler is correct, the two other terms cancel. Thus, when the sampler is 
implemented correctly and it draws samples from the correct partition posterior, O becomes 
zero. However, the opposite is not true: we can not be sure that if O = 0, then the sampler 
is correct. The following example illustrates this issue. 

Let us assume that P(C, TZ) is fixed, from this follows that P(C \ TZ) and P(TZ) are also 
fixed. The only thing that we allow to change in this example is Q(C \ TZ). We can show 
that it is possible to define Q(C \ TZ) Ý P(£ I 7£) s o that O becomes zero. For every TZ. 
there may exist such a partition C-JI that the partition posterior evaluated at C-JI will be 
equal to the expected value of the posterior: 

( l o g P ( £ | TZ))p(cm = logP(Cn | TZ). (D.5) 

Let us assume that (D.5) is true for the model under consideration. Then, if we define 
Q(C | TZ) as a collapsed distribution with the only possible value C = Cfi for every TZ, O 
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becomes: 

O = < logP(£ | K ) ) Q { m ) P { 1 z ) ~ < logP(£ I K ) ) p { m ) p { n ) 

= < logP(£ T C | TZ))p(1Z) - {{\ogP{£ | Tl))p(m))p(1Z) (D.6) 

= {\ogP{Cn | ft) - < logP(£ | K ) ) p ( m ) ) p ( n ) . 

By taking into account (D.5), we notice that for Q{C \ TV) defined in this way O becomes 
zero. 

By this example, we have shown that O does not define a proper metric. However, it 
still possesses some useful properties that we can utilize. First, as shown above, there is a 
convenient way to approximate O. Second, we know that if the value of O is large, then 
the sampler is definitely sampling from the wrong distribution either because it was not 
implemented correctly or because it did not warm up yet. Finally, if we want to compare 
two samplers using O, we should trust more the one for which its value is lower as it is 
more likely to be correct. On the other hand, we have to notice that using O to train 
the parameters of the sampler automatically would probably lead to a degenerate solution 
similar to the example above; thus, one should not use O for this purpose. 

Finally, before moving to the experiments using O, let us notice that (D.l) can be 
considered as a degenerate case of Integral Probability Metric (IPM) [Sriperumbudur et al., 
2009]. I P M is given by: 

D(Q, P | TV) = sup [(f(C))Q{m) - (f(C))p(m)}, (D.7) 

where the supremum is taken with respect to the functions / belonging to the set J-. Set 
J- should be chosen so that it is rich enough to observe when Q is different from P . On 
the other hand, it has to be restrictive enough to keep the computation of I P M feasible and 
prevent the metric from growing arbitrarily large. Finally, it is desirable for T to consist 
of functions that are smooth enough not to select individual data points. Otherwise, two 
distributions might look different only because function / picked up different data points for 
two of them. Depending on the definition of J-, different flavors of I P M can be introduced. 
For example, Maximum Mean Discrepancy (MMD) [Sriperumbudur et al., 2009,Rossi, 2015] 
is an example of I P M with T defined as Reproducing Kernel Hilbert Space (RKHS). 

Comparing (D.l) and (D.7), one can notice that O = (D(Q,P | TV))P^ is a special 
case of I P M when the function set T consists of a single element f(x) = logP(x | TV). 

D.2.1 Using O to compare samplers for the true model 

We track approximate O to compare Gibbs sampling, Split-Merge, and SDDS. Also, we 
include the combination of SDDS and Gibbs Sampling as was proposed by the authors of 
SDDS. To do the visual comparison of the algorithms, we do the following: 

We create 20 independent datasets of 1000 points. First, we generate 20 different HT-
P L D A models: matrix W in each case is the identity matrix with random noise added 
to its diagonal elements; elements of factor loading matrix F are sampled from a normal 
distribution with zero mean and variance set to 3, degrees of freedom parameter u is set 
to 2 in all cases. Then, we sample 20 correct partitions Ci from C R P prior with fixed 
parameters. For each partition, we sample the necessary number of hidden speaker variables 
from a standard normal distribution and 1000 precision scaling factors ctij from Gamma 
distribution with both shape and rate parameters set to u/2 = 1. Then, for each partition, 
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we select one of the H T - P L D A models, sample noise variables rj^ from a normal distribution 
with precision o j j j W and generate the observations with equation (3.13). 

We run four sampling algorithms for each of the generated datasets; each time, the 
correct model parameters are used when sampling. The initial state of the sampler (initial 
partition) is just a random partition of the dataset, and it is the same for each sampling 
method. We compute 5 (see (D.3)) for each 100-th sample generated by each method. 
Then, 5 values are plotted, and the results are shown in Figure D.3. The upper half of the 
figure shows 5 graphs for each dataset separately. Different colors of the graphs correspond 
to different sampling methods. The lower half of the figure shows the average of 5 across 
different sets 5 for each algorithm, i.e., it shows the approximate O as defined in (D.2). 
The horizontal axis in both cases corresponds to the number of steps done by the sampling 
algorithm. For GS (and SDDS with GS), we take a sample of a single label as a single 
sampling step, i.e., to go over the whole dataset, GS has to run at least 1000 steps. Notice 
that the rejected proposal in SDDS and S M also counts as one step. 

In the beginning, all sampling methods start from the same values of 5 (this is because 
of the fixed initial partition used for different methods). The average 5 across datasets is 
far below zero for all of the algorithms; this is because the random partitions we use to 
initialize the samplers are highly unlikely for the model with given parameters, i.e., the 
algorithms have to warm up before they start sampling from the correct distribution. Then, 
values of 5 are growing for all four algorithms. Notice, however, that the growth rate for 
Gibbs Sampling, SDDS, and their combination is much higher than for the Split-Merge. 
SM still does not pass the warm-up period by the time other methods presumably sample 
from the correct distribution. Steps seen on the graphs of individual datasets in the case 
of S M come from the fact that most of the samples proposed by S M are getting rejected, 
and consequently, the value of 5 stays the same for a long time. And only eventually, the 
proposed sample is good enough to pass the acceptance test. Then, we see a rapid change 
in the value of 5. 

Looking at the other three methods, we see that SDDS provides the fastest growth of 5. 
On the other hand, two other methods slightly outperform it in the long run. That is, after 
some time of running the samplers, GS and SDDS with GS have a value of 5 closer to zero 
and still improving, while SDDS alone seems to get stuck. We explain it by the inability of 
SDDS to make fine adjustments, as was discussed above. 

As expected, SDDS with GS combines the advantages of both methods. The warm-
up stage for it passes almost as quickly as for SDDS, and it does not get trapped in a 
local optimum as SDDS does. From its graph, we see that 5 metric for SDDS with GS 
follows the desired behavior, and we can assume that this method indeed samples from the 
correct distribution and the burn-in stage for it passes reasonably fast. Hence, we adopt 
this algorithm for the experiments with the real data. 

D.2.2 Tracking the sampling for an unknown model 

Suppose a sampler is known to draw samples from the correct posterior. Then, for the real 
dataset and the warmed-up sampler, the significant deviations of 5 from zero must come from 
the fact that the parameters of the model are not the true ones. Figure D.4 corresponds to 
the experiment emulating this scenario. We run SDDS-GS sampling for the same datasets 
as used in Figure D.3. This time, instead of using the correct model parameters for the 
sampler, we use different ones. That is, the sampling is effectively done from a distribution 
different from the one the data were generated from. We plot the progress of 5 for the 
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Figure D.3: Progress of 8 for different datasets and sampling methods (Gibbs sampling. 
Smart-Dumb/Dumb-Smart, Split-Merge, and a combination of SDDS and GS). The results 
per dataset are shown in the upper plot. The averaged 5 across different sets are shown 
in the lower plot. At the beginning of sampling, values of 5 are much lower than zero, 
indicating that the burn-in stage is not passed yet for any of the methods (true partition 
has a higher posterior than accepted samples). By the end of sampling, all methods except 
Split-Merge produce samples resulting in 5 closer to zero, suggesting that they are sampling 
from the true posterior. The average acceptance rate for SDDS sampling is 10.27%, and for 
S M is 3.06%. The acceptance rate for GS is 100% by definition. 

sampling with the wrong model along with the graph from Figure D.3 (using the correct 
parameters). Comparing these, we see that in both cases, 5 approaches some fixed value 
after a burn-in stage. For the model with incorrect parameters, 5 converges to a value higher 
than zero (shown as a thin black line for reference). In contrast, as we saw before, for the 
correct parameters, it approaches zero. 

The experiment above shows that when the model parameters are not known exactly, 
the sampled partitions are more likely than the true one. 

Logically, minimizing 8 as a function of 9 should allow us to find such parameters that 
the correct partition appears among the likely ones. The gradient of S is: 

( D i 
W08(d) = VelogP{C \K,d)- V e l o g P ( £ * | K,9) 

= V0logP(TZ \C,9)- Ve\ogP{U I C*,9). 

Comparing (D.8) to (5.18), we see that the gradient of 5 is almost the same as the 
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Figure D.4: Comparison of 5 when sampling from the true model generating the ground 
truth labels (red line) and from a different model (green line). When the wrong model 
is used, the true partition has a lower likelihood than the sampled ones; consequently, 5 
converges to a value higher than zero. For the true model, the reference partition is among 
the likely ones, and 5 approaches zero. 

contrastive divergence approximation of the log-posterior gradient with a single contrastive 
sample. The only difference between (D.8) and (5.18) is the sign: minimizing 5(6) is equiv­
alent to maximizing l ogP(£* | 71,9) with contrastive divergence. 
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Appendix E 

Finding optimal settings of SDDS 
sampler for training H T - P L D A 

Here, we present the experiments aimed at showing how to set the parameters of the SDDS 
sampler for training the H T - P L D A model with maximum posterior of the correct partition 
objective (5.4). 

The setup for these experiments is the following: we use a Gaussian P L D A model trained 
on VoxCat-S (see Section 2.5.1) set as an initialization for the discriminative training of HT-
P L D A with contrastive divergence. The embeddings we use are x-vectors of Section 2.4.2. 
The network was trained on the VoxCeleb2 dataset. The embeddings are centered, and their 
dimensionality is reduced to 300 by L D A (with speaker classes) prior to training models. 
No length normalization is done. 

We track the training process on data from VoxCat-CV set (as described in Section 2.5.1) 
in the following way: after each parameter update, we draw N samples from the partition 
posterior of the cross-validation set, compute the value of Si as defined by (D.3) for each 
sample Ci from the posterior. Finally, we average Si across sampled partitions: 

1 N 

~5 = j v E ^ ' r - f l ) ' (E-i) 
i=l 

As described in Section D . l , lower absolute value of S corresponds to a posterior distribution 
where the true partition of the data is in a high-probability region. In other words, if we 
see that \S\ on a cross-validation set decreases as the training progresses, it means that the 
model becomes better suited for the data and assigns a higher probability to the correct 
partition. 

Sampling from the posterior over cross-validation set partitions is done by running a 
single chain of SDDS and collecting 50 samples from it. The chain is initialized with the 
correct partition. The warm-up stage is 100 samples, and we discard 100 samples between 
those that are used. The number of Gibbs sampling steps after each SDDS step is set in such 
a way that in the span of the sampling process, the label for each point has been sampled 
at least three times. The parameters of SDDS on the cross-validation set are kept fixed and 
stay the same in all of the experiments described below. 
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E . l Initialization of SDDS Markov chain 

First, we investigate how the initialization of the Markov chain affects the training with the 
approximate posterior of the correct partition objective. Theoretically, the initialization of 
the chain does not matter. The sampling algorithm must sample from the correct distri­
bution after a sufficient number of steps are done. In other words, after the burn-in stage, 
we should be guaranteed to receive a sample from the desired posterior starting from any 
initial partition. However, the length of this burn-in could be very different for different 
initializations. For a bad initial partition, it might take a prohibitively long time before a 
sample from the desired distribution could be collected. From a practical point of view, it 
is desirable to select the initial partition as close as possible to the high probability region 
of the posterior so that the burn-in does not take too long. 

Here, we experiment with two strategies to initialize the SDDS Markov chain. We train 
two H T - P L D A models. Both of them are initialized from the same G - P L D A . Each time, we 
run 30 iterations (30 parameter updates) of the contrastive divergence. At every iteration, 
we run a single SDDS chain and use 50 samples from this chain to approximate the gradient. 
These samples are separated by 100 SDDS accepted states, i.e., we use every 101st accepted 
sample of S D D S 1 . Also, the burn-in stage is fixed to 100 samples. We set the number of 
Gibbs sampling updates after each SDDS step so that GS passes through all the data at least 
three times during the sampling process. The difference between the two training strategies 
is how the SDDS sampler is initialized: in the first case, we initialize the chain from the 
true partition after each parameter update. For the second model, we use the last accepted 
sample from the previous iteration as the initialization for the new one. True partition 
is used to initialize the chain only at the very first iteration. This strategy is known as 
Persistent Contrastive Divergence (PCD) [Tieleman, 2008]. The motivation for using P C D 
is that parameters of the model for neighboring iterations are similar; consequently, posterior 
over partitions should not be too different. And the likely sample from the previous iteration 
should be in a high-probability region of the updated partition posterior. 

Figure E . l shows the progress of 5 computed on the cross-validation set for both initial­
ization strategies. At the first iteration, the two approaches are still the same, as both of 
them use the true partition for the first chain initialization. After that, for several iterations, 
both approaches perform similarly, but eventually, P C D outperforms the other approach. 
For the following experiments, we adopt the P C D strategy as we have seen it to be more 
efficient. 

E.2 Multiple SDDS chains 

In the previous experiment, we used a single chain to collect the samples from the partition 
posterior. We saw that it is effective in terms of improving the objective on the cross-
validation data. However, sampling in this way requires a large number of accepted states 
to be discarded for the collected samples to be independent of each other. Also, there is 
no possibility of parallelizing the sampling when only one chain is used. At the same time, 

1According to M C M C literature [Brooks et al., 2011], it might be unnecessary to sub-sample M C M C chain 
when computing the expectations w.r.t. the sampled distribution. The fact that the samples are correlated 
is not crucial for such estimation. However, in our case, we compute the gradient VeP(lZ | &,0) for each 
sampled partition d. Computing the gradient is an expensive operation, so it makes computational sense 
to do it only for sufficiently different partitions. Thus, here and in the following experiments, we sub-sample 
the chain. 
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Figure E . l : Comparison of 5 on cross-validation set when initializing the sampling chain 
from the true partition at each training iteration (red line) or from the last sample from the 
previous iteration (blue line) - Persistent Contrastive Divergence. 

running several Markov chains in parallel would allow us to collect the needed number of 
samples faster. Also, there is no need to run each chain for as long as the single one. We can 
keep only one sample from each of them. Here, we compare two such strategies. We check 
the training progress of the P C D with a single chain from the previous section. There, we 
use 50 samples from a single chain separated by 100 accepted states to compute the gradient. 
Alternatively, we approximate the gradient using 50 samples, each of them generated by an 
individual Markov chain. For each of these chains, we run 200 SDDS steps, and the last 
accepted state is used as a sample from the posterior. We use a higher number of burn-in 
steps to ensure that the only sample we use from each chain comes from the true posterior. 
When many samples from the same chain are used, we believe that even if the first few 
samples come from the burn-in period, there will be others that will overweight them. As 
in the case of the single chain, the many-chains approach also follows the P C D scheme, i.e., 
at each iteration, the chain is initialized from the last accepted state of the corresponding 
chain from the previous iteration. Notice that even though the approach with multiple 
chains requires more computations compared to a single chain, it allows collecting samples 
in parallel, thus providing faster training. 

Figure E.2 demonstrates the comparison between these two strategies for collecting the 
samples. The graph shows that both training strategies provide comparable results for the 
whole training time. 

As there is no performance advantage of the "one chain" approach, we proceed with 
multiple sampling chains in parallel in the following experiments. 
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Figure E.2: Comparison of 5 on the cross-validation set when running a single sampling 
chain or running 50 independent chains for a shorter time. The number of samples to 
approximate the gradient is the same in both cases. 

Gibbs Sampling steps to interleave SDDS moves 

The next question is what is the optimal number of Gibbs sampling steps to insert between 
SDDS iterations. The original algorithm [Wang and Russell, 2015] proposes to interleave 
each SDDS iteration with one full GS iteration. Unfortunately, it would not be feasible in 
practice, as one GS iteration would take too long time to perform. Instead, we perform GS 
steps for some fixed number of points at a time. Moreover, we further simplify the correct 
GS scheme by simultaneously sampling all of the labels as discussed in Section 5.4.4. For all 
systems, we fix the training strategy to the P C D with samples collected from 50 independent 
Markov chains. We compare three settings of the number of GS updates per iteration: we 
set the number of GS steps so that all of the data are visited by the Gibbs sampler at least 
k times while running all SDDS iterations, and we vary k to be 1, 3, or 5 (k = 3 was the 
default value in the previous experiments). In all three cases, the number of SDDS steps 
is fixed at 200 per chain. As we have approximately 50k utterances in the training set, the 
number of points to sample the label after each SDDS step is around 200, 600, and 1000 for 
k = 1, 3, 5. The results are shown in Figure E.3. 

As one can conclude from the plots, doing 1, 3, or 5 passes through the data with Gibbs 
sampling seems to provide comparable performance. As fewer GS steps lead to a faster 
sampling and we do not observe any significant benefit from increasing this number, we will 
set the number of GS steps between SDDS steps so that each point is visited by GS at least 
once during the sampling. 
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Figure E.3: Comparison of 5 on the cross-validation set when using different numbers of 
Gibbs samplings in between SDDS steps. 

E.3 Number of samples 

As seen from (5.18), the gradient of the log-posterior of the training data is approximated 
using gradients of n samples from the partition posterior. The question arises, how large 
should we set n. Theoretically, when n approaches infinity, the approximation becomes 
exact; it might seem logical to collect as many samples as possible for better training. 
However, as was mentioned earlier, the gradient approximation has the following effect: it 
pushes up the likelihood of the correct partition and lowers the likelihoods of the sampled 
partitions, which, with a high probability, are different from the correct one at least for the 
model at the beginning of the training. In other words, there is a single positive example 
and several likely negative examples. And the task of the training is to make the positive 
example more likely and negative examples less likely. Then, even a small number of negative 
samples should be sufficient to achieve the same behavior. 

In our experiment, we compare the training when 50 samples from 50 independent 
Markov chains were used with the case when just a single sample is used for the gradient 
approximation. Notice that the second strategy corresponds to minimizing 5 as was shown 
in (D.8). In both cases, we use the P C D . Figure E.4 displays the progress of the cross-
validation performance for these two training strategies. As the plots indicate, using more 
samples results in a more stable training as could be expected. Eventually, using 50 samples 
to approximate the gradient leads to a slightly better performance in terms of 5 on the cross-
validation set. However, using just a single sample allows for a significant decrease in the 
needed computations and consequent speed-up of the training process with a marginal loss 
in the final performance. Thus, in future experiments, we always use just one sample for 
gradient approximation. 
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Figure E.4: Comparison of 5 on the cross-validation set when using a single sample or 50 
independent samples to approximate the gradient. 
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Appendix F 

Efficient computation of partitioning 
of tuples objective 

Here, we describe how to efficiently compute objective (5.36) when training H T - P L D A or 
probabilistic embedding models. The objective is: 

where IZt, L% are i-th training example: set of several recordings (set of embeddings in case 
of H T - P L D A , set of speech segments, i.e., matrices of acoustic features for probabilistic 
embeddings) and its correct partition into speaker clusters, respectively. P(C) is the prior 
probability of a given partition. Each component in the sum (F.l) is the negative log-
posterior probability of the correct partition of the i-th example. 

We approach the evaluation of (F. l ) by the following procedure: 

• Consider all of the training examples that have the same size (number of elements 
to partition) N, assume there are T of them. If training set T contains examples of 
different sizes, perform the following for each of them and sum the results. 

• Compute sparse N-hy-(2N — 1) matrix Q with 0/1 entries. Rows of the matrix corre­
spond to individual points in the training example. Columns correspond to all possible 
subsets of points that can be created out of a set of size N. This matrix can be used to 
efficiently perform summations to compute statistics (3.34) (or (6.9) for probabilistic 
embeddings) for all possible subsets of N points. 

Above, b is a matrix of size T x N, each row of this matrix corresponds to one 
training example t = 1... T, i-th element of the i-th row is a scalar statistic bu 
computed with (3.22) (or with the second equation of (6.9)) for the i-th of N individual 
points vu from IZt- A is a 3-dimensional tensor of shape T x d x N. Along the first 
dimension of A we stack matrices containing N <i-dimensional column vector statistics 
an computed with (3.5) (or with the first equation of (6.9)) for the point vu. Then, b 
and A contain statistics for each of (2^ — 1) possible subsets of N points for each of 
T training examples. From these, one can compute \ogP(JZu \ Hs) for every possible 

(F.l) 

b = bQ, 

A = A Q . 

(F.2) 

(F.3) 
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subset of IZt using (3.27) (or (6.11)). The result of this operation is T-by-(2N — 1) 
matrix P. 

• Compute sparse Bjq-by-(2N — 1) matrix U , with 0/1 entries. Rows of this matrix 
correspond to possible partitions of iV points (iV-th Bell number BN of them), and 
columns correspond to the possible subsets of iV elements. Thus, each matrix element 
indicates whether a particular subset is part of a particular partition. This matrix can 
be used to efficiently accumulate log P(lZt \ £), for every possible value of C: P U ' 
is a matrix of size T x BN containing log-likelihoods for all possible partitions of iV 
points into speaker clusters for each training example t = 1,... T. 

• Compute a vector of log-priors over partitions of N points of length Bjy, let us denote 
it p. Elements of p are log P(Cl). 

• By adding the vector of log-priors p to each row of matrix P U ' containing log-
likelihoods and passing it through a softmax function, we obtain the matrix of log-
posteriors for every possible partition for every training example t. Selecting those 
elements of the matrix that correspond to the correct partitions of each example, 
summing them, and multiplying the result by -1 gives us the objective F . l . 
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