
VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

D E P A R T M E N T O F I N F O R M A T I O N S Y S T E M S

SYNCHRONIZATION OF DNS RECORDS BETWEEN
LDAP DATABASE AND DNS SERVER

DIPLOMOVÁ PRACE
MASTER'S THESIS

AUTOR PRÁCE Be. MARTIN BAŠTI
AUTHOR

B R N O 2015

VYSOKÉ UČENI TECHNICKE V BRNE
B R N O U N I V E R S I T Y O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ
F A C U L T Y O F I N F O R M A T I O N T E C H N O L O G Y

D E P A R T M E N T O F I N F O R M A T I O N S Y S T E M S

SYNCHRONIZACE DNS ZÁZNAMU MEZI LDAP DATABÁZI
A DNS SERVEREM
SYNCHRONIZATION OF DNS RECORDS BETWEEN LDAP DATABASE AND DNS SERVER

DIPLOMOVÁ PRAČE
MASTER'S THESIS

AUTOR PRÁCE Bc. MARTIN BAŠTI
AUTHOR

VEDOUCÍ PRÁCE Ing. RUDOLF ČEJKA
SUPERVISOR

B R N O 2015

Abstrakt
Cílem t é t o p r á c e je prozkoumat možnos t i uložení D N S dat v L D A P d a t a b á z i a jejich obous­
t r a n n é synchronizace s D N S serverem s v y u ž i t í m s t a n d a r d n í c h technologi í , paralelizace a
j e d n o d u c h é rozš i ř i te lnos t i o podporu různých D N S a L D A P serverů s r ů z n ý m i D N S sché­
maty. P r á c e dá le popisuje r ů z n á s c h é m a t a pro uložení dat v L D A P d a t a b á z i a analyzuje
p rob l é my spo jené se synchron izac í a navrhuje jejich řešení . V ý s l e d k e m je prototyp synchro­
nizační aplikace s d o p o r u č e n ý m i n a s t a v e n í m i pro D N S server a L D A P d a t a b á z i , k t e r á je
schopna efekt ivně synchronizovat D N S data.

Abstract
The a im of this thesis is to discover possibilities in storing the D N S data i n the L D A P
Database and keep them synchronized i n two-way manner, using standard technologies,
paralelization and possibil i ty of extensions to support various types of L D A P and L D A P
servers w i th various D N S Schemas. Th is thesis also describes various Schemas for storing
D N S data i n an L D A P database and analyzes issues related to synchronization and pro­
vides solutions how to solve them. The result of this thesis is a proof-of-concept code of
synchronization applicat ion wi th recommended settings for the D N S server and the L D A P
database, which w i l l be able effectively to synchronize the D N S data.

Klíčová slova
synchronizace, D N S , d o m é n o v ý server , B I N D , L D A P , ad re sá řový server

Keywords
synchronization, D N S , nameserver, B I N D , L D A P , directory server

Citace
M a r t i n Baš t i : Synchronizat ion of D N S Records between L D A P Database and D N S Server,
d ip lomová p ráce , Brno , F I T V U T v B r n ě , 2015

Synchronization of DNS Records between LDAP
Database and DNS Server

Prohlášení
Proh lašu j i , že jsem tuto diplomovou p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana Ing. Rudolfa
Čejky.

M a r t i n B a š t i
M a y 26, 2015

Poděkování
Děkuji svému e x t e r n í m u konzultantovi Ing. Pe t ru Špačkovi za p o s k y t n u t í o d b o r n é pomoci .

© M a r t i n B a š t i , 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 5

2 Technology Overview 7
2.1 Doma in Name System (DNS) 7

2.1.1 D N S Archi tecture 7
2.1.2 Resource Records (RRs) and Zones 9
2.1.3 Zone Transfer 11
2.1.4 D N S Notify 12
2.1.5 Dynamic Updates (D D N S) 12
2.1.6 B I N D 9 D N S server 13

2.2 Lightweight Directory Access Pro toco l (L D A P) 14
2.2.1 Archi tecture 15
2.2.2 L D A P D a t a Interchange Format (L D I F) 16
2.2.3 Schemas, Object Classes and At t r ibutes 16
2.2.4 Syncrepl - Content Synchronizat ion Operat ion 18
2.2.5 Indexation 18
2.2.6 Search Scopes 18

3 Us ing an L D A P Server as D a t a Storage for the D N S 20
3.1 Advantages and Disadvantages of Us ing an L D A P Server as D N S D a t a Storage 20
3.2 L D A P Schemas for D N S D a t a 21

3.2.1 Cosine Schema 21
3.2.2 dNSZone Schema 21
3.2.3 B I N D - D L Z Schema 23
3.2.4 F r e e l P A Schema 24
3.2.5 Comparison of the L D A P Schemas 26
3.2.6 Summary 27

4 Synchronization Issues 28
4.1 Change Detect ion 28

4.1.1 Per iodica l Detect ion 28
4.1.2 Notifications 29
4.1.3 Requested by Use r /Ano the r System 29

4.2 Synchronizat ion Speed 29
4.2.1 D a t a Caching 30

4.3 Incremental Changes 30
4.4 L D A P Schema Granular i ty 31

4.4.1 Record Class 31

1

4.4.2 T T L 31
4.5 Causal i ty 32
4.6 Dupl ica ted Notifications 33
4.7 Conflicts 33

4.7.1 Records W h i c h Cannot Coexist Together 34
4.7.2 Different S O A Values 34
4.7.3 Record Changed on B o t h Sides Simultaneously 34
4.7.4 Record Removed and A d d e d on B o t h Sides Simultaneously 34
4.7.5 Record Removed and Changed on B o t h Sides Simultaneously 34
4.7.6 Singleton Records which Have More than One Value 35
4.7.7 Different T T L 35

4.8 D N S S E C 35

5 Implementation 37
5.1 Proposed Synchronizat ion A l g o r i t h m 37

5.1.1 K e y w o r d Definitions 37
5.1.2 Algor i thms 38

5.2 Synchronization Daemon Design 42
5.2.1 H i g h Level Overview 43
5.2.2 Synchronizat ion States 45
5.2.3 P l u g i n Interface 46

5.3 Implementation Details 48
5.3.1 Implementation Details of the Synchronizat ion Daemon 48
5.3.2 Implementation Details of B I N D 9 P l u g i n 49
5.3.3 Implementation Details of L D A P P lug in 50

5.4 System Requirements 51
5.4.1 Synchronizat ion Daemon 51
5.4.2 B I N D 9 51
5.4.3 389 Directory Server 52
5.4.4 Basic Settings 52

5.5 Limi ta t ions of the Current Implementation 53
5.6 Eva lua t ion of the Synchronizat ion Daemon Implementation 54

5.6.1 Compara t ion w i t h bind-dyndb-ldap P l u g i n 54

5.6.2 Possible Future Improvements 54

6 Summary 56

A Content of D V D 60

B States D iagram of the Synchronization Daemon 61

C User M a n u a l 63

C . l Installation 63
C.2 Usage 63

C.2.1 dnssyncd 63
C.2.2 dnssyncd-control 63

C.3 Configuration F i le 63
C.3.1 G loba l Configuration Options 64

2

D F r e e l P A L D A P Schema

List of Figures

2.1 Example of the D N S tree 8
2.2 Search scopes 19

3.1 Mul t i -Mas t e r D N S Topology 20
3.2 dNSZone schema definition 22
3.3 dNSZone schema example 22
3.4 D L Z schema definition 23
3.5 D L Z schema example 24
3.6 F r e e l P A schema definition 25
3.7 F r e e l P A example 26

4.1 F r e e l P A schema granularity example 32

5.1 Synchronizat ion topology 43
5.2 dnssyncd diagram 44

B . l Synchronizat ion states diagram 62

4

Chapter 1

Introduction

The current trend in information technologies is to provide solutions that consist of sev­
eral sub systems integrated into one product. These solutions may for example consist
of authentication, authorization and accounting services, database, user interface, and host
management including D N S services. Integration reduces administrat ion overhead allow­
ing to manage data centrally, specifying privileges and identification for user and services.
Example of the integrated product mentioned above is the open source project F r e e l P A .

A n authoritative D N S server, specifically B I N D 9 server, uses mainly zone files as source
of D N S data, which are stored locally on the server's file system. A s the integration requires
some central database for a l l data, in case of F r e e l P A it is an L D A P database, so updat ing
D N S data v ia zone files is not an option. For this reason a bidirect ional synchronization
between an L D A P database and a D N S server must be established.

The a im of this thesis is to analyze various schemas and provide solutions for various
synchronization challenges. The result is a proof of concept implementat ion of a synchro­
nizat ion daemon, named dnssyncd, which synchronize D N S records between an L D A P
database and a D N S server. For in i t i a l implementat ion were chosen the B I N D 9 D N S
server and 389 Directory Server as the L D A P database.

The synchronization daemon should meet several goals.
The first goal is that the synchronization daemon must support plugins which w i l l allow

to extend synchronization for various types L D A P schemas, L D A P and D N S servers. To
meet this goal a plugin interface must be created. The interface must require as min ima l
as possible methods to be implemented i n a plugin. O n other hand interface may provide
optional methods which may improve the synchronization.

The second goal is that as much as possible standardized operations/technologies must
be used to ensure the plugins can share some parts of implementat ion and creation new
plugins w i l l be easier. These standardized technologies w i l l minimize differences between
particular implementations of plugins.

Chapter 2 Technology Overview provides basic information about D N S and L D A P
technologies, and describes standardized methods and configurations which can be used
for synchronization daemon implementation.

Various schemas for storing D N S data i n L D A P database and advantages of storing
data in L D A P database are discussed i n chapter 3 Us ing an L D A P Server as D a t a Storage
for the D N S .

Synchronization challenges which can affect the synchronization daemon and possible
solutions are described in chapter 4 Synchronization Issues.

Chapter 5 Implementation contains implementat ion details of the synchronization dae-

5

mon, describes synchronization algori thm, the daemon design and plugin interface. Th is
chapter also evaluate differences between the synchronization daemon and bind-dyndb-ldap
plugin for B I N D 9 server that allows read D N S data from L D A P database, but using dif­
ferent approach.

6

Chapter 2

Technology Overview

This chapter describes D N S , L D A P and related util i t ies. The description is focused on ex­
plaining the standardized technologies suitable to use i n the synchronization of D N S re­
source records wi th L D A P (directory) server. The methods used to dynamical ly modify
the records and methods used to get resource records from the D N S server are the focus
of this chapter. This chapter also covers how the B I N D 9 server works, the description how
stores resource records, and ways of managing zones.

The end of this chapter covers basic information about L D A P and directory server.

2.1 Domain Name System (DNS)

This section contains information from R F C 1034 [] and R F C 1035 []. B o t h R F C s
describe the domain name system. Relevant updates of these R F C s w i l l be mentioned
in the text.

2.1.1 D N S A r c h i t e c t u r e

The D N S consists of three major components:

• domain name space and resource records i n the namespace,

• name servers,

• resolvers.

Resolvers are programs that get information from name servers. A resolver is typical ly
a system routine that is directly accessible without using a protocol. Resolvers are beyond
the scope of this thesis and w i l l not be explained further.

D o m a i n Name Space and Resource Records

A domain name space is a tree structure (see figure 2.1 Example of the D N S tree), where
each node or leaf contains corresponding resource sets (which may be empty). Every node
or leaf has a label . Labels can be 0 to 63 octets length, and the same label can be used
for more nodes, except brothers. The nul l label (zero length label) is reserved for the root
of the domain name space tree.

A domain name consists of sequence of labels usually separated by dots ("."). The two
types of domain names are: relative names and fully qualified domain names.

7

Figure 2.1: Example of the D N S tree

Ful ly qualified domain names (F Q D N) , or absolute domain names, are label sequences
ending wi th the root label. These strings i n printed form end wi th a dot. For example,
F Q D N domain: "example.com.".

A character str ing that represents the start ing labels of a domain name is a relative
domain name. A relative domain name can not end wi th the root label (the dot) . Relative
domain names can be completed to F Q D N s by the local system knowledge. For example,
relative domain: "example.com" or only "example".

Relative domain names are taken relative to a well known origin. Relat ive names are
mostly used i n user interfaces and master zone files, where they are relative to a single
origin domain name. For example, two domain names, an F Q D N origin name "com." and
a relative name " for .example", can construct the F Q D N name "for.example.com.".

The m a x i m u m length of a domain name is l imi ted to 255 octets.
A s R F C 1034 [23, section 3.1] specifies, names in the domain name system are case-

insensitive and consist of A S C I I value. A s R F C 4343 [11] clarifies, D N S names were expected
to consist only of val id A C S I I characters, however, the ind iv idua l octets are not l imi ted
to va l id A S C I I character codes. Unprintable A S C I I characters have to be mapped i n textual
representation to the escape sequence wi th backslash, followed by three digits that represent
unsigned decimal value of the A S C I I character.

The internationalized domain names, latest specification in R F C 5 8 9 1 [19], are encoded
into A S C I I form using the punycode algori thm.

A s mentioned above, a domain name identifies node, and every node has a set of resource
information. The set of resource information consists of part icular resource records (R R) .
Resource records w i l l be mentioned later in this section.

Name Servers

Name servers are programs which hold information about the domain name space. The servers
can cache information about any part of the domain tree, but in general, a particular server
has complete information about subset of the domain space and pointers to other domain

8

http://example.com
http://example.com
http://for.example.com

servers. The server is an authori ty for these subsets (parts), which have complete informa­
t ion. The authoritative information is organized into zones, which are distr ibuted among
the servers.

A zone can be available from several name servers. Typical ly , a given name server
supports one or more zones, which give authoritative information about a smal l section
of the domain trees only. The server can have an amount of cached (non-authoritative)
data about the other parts of tree.

A pr imary (or master) server contains authoritative D N S resource records for zone.
Secondary (or slave) servers the download zone resource records from the pr imary server
using the zone transfer. Secondary servers are used to distribute load. The synchronization
daemon acts as a secondary D N S server from the point of view of the D N S pr imary server.
The zone transfer w i l l be covered later.

Every zone change must be made at the pr imary server. The changes are then dis­
t r ibuted to the secondary servers.

2.1.2 R e s o u r c e R e c o r d s (R R s) a n d Zones

Resource records consists of:

• owner (name),

• type,

• class,

• T T L ,

• R D A T A .

The owner is the domain name where the R R is found.
The type is an encoded 16 bit value that specifies the type of resource i n the R R . Every

type has a part icular purpose. Some of them are shown in table 2.1. The most important
type of record for this thesis and synchronization mechanism is the S O A (Start of a zone
of authority) R R . The S O A resource records w i l l be explained later. The other R R types
are not important for this thesis and w i l l not be explained any further.

A an IPv4 host address
AAAA an IPv6 host address
CNAME identifies the canonical name of an alias
PTR a pointer to another part of the domain name space
SOA identifies the start of a zone of authori ty
NS the authoritative name server for the domain

Table 2.1: Examples of resource record types

The class is an encoded 16 bit value which identifies a protocol family or an instance
of a protocol. O n l y the I N class, the Internet system, w i l l be used i n this text and i n the syn­
chronization program. Other classes are historical and not used.

The T T L value, the t ime to live value, is a 32 bit integer that represents in seconds for
how long a R R can be cached before a resolver should discard it.

9

The R D A T A are type and class dependent data, which describe the resource.
The following textual representation of the resource records w i l l be used i n the text and

examples later. The R R i n the textual representation consists of an owner name (domain
name), T T L , class, type and R D A T A values separated by space. This is a common way
of representing D N S records. T T L and class can be omit ted. If the domain name is empty,
the previous one w i l l be used.

example.com. 3600 IN NS ns.example.com.
ns.example.com. 3600 IN A 192.168.1.0

3600 IN AAAA 2001:db8:0::1
host.example.com. 3600 IN A 172.16.0.1

3600 IN A 10.0.0.1

If the class value is omit ted in the examples later, it w i l l be considered that the class
is I N , the Internet system.

The resource records may be grouped into a resource record set (RRSe t) . A s R F C
2181 [, section 5] describes, the R R S e t is a group of resource records wi th the same label
(owner), class and type, but w i th different data.

Standard zone files use the textual representation; the following example shows a part
of a zone file used by a master server. O n l y authoritative information is wri t ten i n a zone
file.

$TTL 2d ; zone TTL default =
$0RIGIN example.com.
@ IN SOA ns.example.com

2014010500
3h
15m
3w
3h

)
IN NS ns.example.com.
IN MX 10 mail.example.com

server IN A 192.168.1.1
www IN CNAME server

2 days or 172800 seconds

root.example.com.
se = s e r i a l number
ref = refresh
ret = update retry
ex = expiry
min = minimum

The zone file above starts w i th a S O A record, which stores an addit ional information
about the zone. This type of R R w i l l be explained i n detail later.

S O A Resource Records

This type of R R controls the detection of changes of the secondary servers. The detection
is based on pol l ing (or by the D N S Notify mechanism, see section 2.1.4 D N S Notify) .

The R D A T A format of a S O A R R specified by R F C 1035 []:

• M N A M E , the domain name of the name server that is pr imary for this zone.

• R N A M E , a domain name, which specifies the e-mail address of the person responsible
for this zone.

10

http://example.com
http://ns.example.com
http://ns.example.com
http://host.example.com
http://example.com
http://ns.example.com
http://mail.example.com

• S E R I A L , the unsigned 32-bit value. It is the version of the original copy of the zone.

• R E F R E S H , a 32-bit t ime interval i n seconds before the zone should be refreshed.

• R E T R Y , a 32-bit t ime interval i n seconds that should elapse before a failed refresh
should be retried.

• E X P I R E , a 32-bit t ime value i n seconds that specifies the upper l imi t on the time
interval that can elapse before a zone is no longer authoritative.

• M I N I M U M , the unsigned 32 bit m i n i m u m T T L that is usead mainly wi th negative
caching as is specified i n R F C 2 3 0 8 [9, section 4], which is out of scope of this work.

To detect changes, secondary servers check the S E R I A L field of the S O A R R for the zone.
If any changes are made, the S E R I A L field i n the S O A R R of the zone is always advanced.

The periodic pol l ing of the secondary servers is controlled by R E F R E S H , R E T R Y ,
and E X P I R E parameters i n the S O A R R for the zone. Whenever a new zone is loaded
in a secondary server, the secondary server waits R E F R E S H seconds before checking wi th
the pr imary server for a new serial. If this check cannot be completed, new checks are started
every R E T R Y seconds. If the secondary server finds it impossible to perform a serial check
for the E X P I R E interval, it must assume that its copy of the zone is obsolete and discard
it. The check is a simple query to the pr imary server for the S O A R R of the zone.

R F C 1982 [32] specifies a way how to check i f a new S E R I A L number is newer than
the actual value. The definition of the result of a comparison of any two S E R I A L numbers
s i and S2 is as follows:

s i is said to be less than S2 if, and only if, s\ is not equal to S2, and

(s i < s2 and s2 - s\ < 2 (3 2 - 1 ^ or (s\ > s2 and s\ - s2 > 2 (3 2 - 1 ^

s i is said to be greater than S2 if, and only if, s\ is not equal to S2, and

(s i < S2 and s2 - s\ > 2 (3 2 _ 1)) or (si > s2 and s\ - s2 < 2 (3 2 _ 1))

The synchronization daemon must carefully detect any changes i n the S O A S E R I A L
of the part icular zone to ensure up to date synchronization.

2.1.3 Z o n e Transfer

A s mentioned above, the zone transfer is a method to get a l l zone data from the server.
Zone transfer is used by secondary servers to get data from pr imary servers. Two methods
of the zone transfer exist: authoritative or full zone transfer (A X F R) and incremental zone
transfer (I X F R) . A secondary server using zone transfer is called an A X F R or I X F R client.

A X F R

The full zone transfer (A X F R) is explained i n detai l in R F C 5936 [20].
The objective of the A X F R is to transfer the contents of a zone, in order to permit

the A X F R client to reconstruct the zone, as it exists at the pr imary server for the given
zone serial number.

A n A X F R client must ensure that only a successfully transferred copy of the zone can
be used. If any error occurs (or a D N S notify request is received), the A X F R client must

11

continue to serve the previous version of the zone. This is called a two-stage model, and
any implementat ion of A X F R client must be equivalent to this model.

A n A X F R response from a server that is transferring the zone's content consists of a se­
ries of D N S messages. The first message in the series must be the S O A resource record, and
the last message must conclude wi th the same S O A R R . The zone content is represented
as an unordered collection (set) of resource records.

I X F R

The incremental zone transfer (I X F R) is covered i n R F C 1995 [25].
The full zone transfer mechanism is not efficient i n propagating minor changes of the zone,

as it transfers the entire zone. The incremental zone transfer is more efficient.
A n I X F R client sends an I X F R message containing the S O A serial number of its copy

of the zone. A n I X F R server replies w i th a message containing only differences required
to make that version of zone current. Alternat ively, the I X F R server can choose to transfer
zone as A X F R (for example, when I X F R is not available).

If the incremental zone transfer is available, one or more difference sequences are re­
turned. The list of difference sequences is preceded and followed by a copy of the server's
current version of the S O A . Each difference sequence represents one update to the zone (one
S O A serial change) consisting of deleted R R s and added R R s . The first R R of the deleted
R R s is the older S O A R R and the first R R of the added R R s is the newer S O A R R .
A modification of an R R is performed first by removing the original R R and then adding
the modified one. The sequences of differential information are ordered oldest first newest
last.

2.1.4 D N S N o t i f y

A slow propagation of D N S data i n a zone can be caused by the zone's relatively long
R E F R E S H interval. Us ing a D N S Notify message, a pr imary server advises to secondary
servers that zone was changed, as explained i n R F C 1996 [38].

W h e n the pr imary server has updated one or more records i n the zone, it sends the D N S
Notify message to the secondary servers. The notify message is sent only when a S O A serial
changes.

W h e n the secondary server receives the notify message, it queries for the zone's S O A
record, and i f the S O A S E R I A L is newer, the server w i l l start the A X F R or I X F R transfer.
Due to the D N S architecture more D N S notify messages can be received. For example,
the server sends several copies of the D N S notify message v i a U D P , unt i l the message
is considered as delivered through unreliable network.

2.1.5 D y n a m i c U p d a t e s (D D N S)

Original ly the D N S was designed to support queries for a stat ically configured database,
where updates were made by manual edit ing of masterfiles by administrator. The R F C 2136
[37] brings the method to dynamical ly update the D N S resource records.

A dynamic update is a D N S message, which the client sends to the pr imary server
to add or delete a resource record in a part icular zone. The update message must contain
a S O A record of a part icular zone, where the updated record belongs, and a set of records
to change/add/delete. The update operation is atomic.

12

The server must check the requestor's permissions. For example, i n B I N D 9 the option
allow-update has to be configured i n configuration file per zone. The option specifies
the list of network addresses or keys which are allowed to perform the D D N S . Another ,
more granular, way i n B I N D 9 is a configuration of the update-policy settings.

If a zone is updated and the S O A record is not changed in the dynamic update, then
the pr imary D N S server shall increment the S O A serial value to ensure that the changes
w i l l be distr ibuted properly.

The nsupdate u t i l i ty [] submits the D D N S requests to a name server. The u t i l i ty input
is a textual representation of R R s , which is transformed to D D N S message. The example
of adding a new A record dynamical ly using the nsupdate u t i l i ty is shown below.

nsupdate
> update add host.example.com A 192.168.1.2
> send

This u t i l i ty can be used wi th the synchronization program to perform D D N S updates
of the D N S master server.

2.1.6 B I N D 9 D N S server

The Berkeley Internet Name D o m a i n (B I N D) is a widely used free name server software.
The B I N D was originally wri t ten at Univers i ty of Cal i fornia at Berkeley. It is maintained
by the Internet System Consor t ium (ISC) [] now. Versions older than B I N D 9 are officially
deprecated.

Overview

The B I N D 9 is running only as a single process, named, which is configured by the named. conf
configuration file. Please remember that different distr ibutions of operating system may
have different predefined values i n the named. conf file.

This version is based strongly on masterfiles, and the configuration file. The config­
urat ion file contains zone definitions, paths to master files to the particular zones, and
configuration attributes of the zones.

If you change any information i n the zone files, the B I N D 9 must be reloaded.

R N D C utility

Fortunately, the remote name daemon control (rndc) u t i l i ty allows to dynamical ly reload
zones without the need to restart the whole B I N D 9.

The rndc u t i l i ty also allows to dynamical ly add and remove new zones. Th is feature
can be used to create a new zone and synchronize its records from the L D A P database, or
remove the zone when it was removed from L D A P . The example below shows adding and
removing the zone using the rdnc.

rndc addzone example.com in~'{type master; f i l e "master/example.com";};'
rndc delzone example.com

To allow rndc to add new zones, the allow-new-zones yes; statement is required
in options part of the named, conf.

13

http://host.example.com
http://example.com

options {
allow-new-zones yes;

} ;

Allowing zone transfer and D D N S

The B I N D 9 allows to specify the set of the name servers (addresses optional ly wi th port,
T S I G keys) that are allowed to execute an A X F R or I X F R transfer. The transfer has to be
allowed globally or par t icular ly per zone i n the configuration file named.conf.

To allow the I X F R zone transfer, the global option provide-ixfr has to be set to yes
(by default in B I N D 9).

Using the same format of addresses as for the zone transfer, B I N D 9 allows to specify
the sources of dynamic updates, which are allowed to modify records.

The following example shows how to allow the I X F R zone transfer requested by the lo-
calhost on the part icular port and receiving updates from the localhost.

options{
provide-ixfr yes;

} ;

zone "example.com." IN {
type master;
f i l e "data/example.com";
allow-transfer {127.0.0.1 port 62123; };
allow-update {127.0.0.1; >;

} ;

2.2 Lightweight Directory Access Protocol (LDAP)

This section explains the L D A P and describes methods and features that are important for
understanding. The information i n this section w i l l be useful i n the next chapters where
L D A P methods w i l l be used in synchronization context.

A s R F C 4511 [35] specifies, an L D A P is a protocol, which defines the method of how
directory data is accessed. A l so , the standard R F C 4512 [)] defines and describes how
data is represented.

B o t h R F C 4512 [] and Z y T r a x L D A P book [5] are two of the main sources of infor­
mat ion for this section.

The L D A P is designed to support bigger amount of reading than wr i t ing data, which
means that the directory servers are read-optimized and the information should not be
changed often. The question is, why is the L D A P directory server used as a storage for
D N S resource records when D N S data can change using dynamic updates? The answer is,
because a major part of the D N S system does not change the resource records too often and
D N S could be only a subsystem in a bigger system which uses an L D A P server as a data
storage." For example the D N S is a subsystem of Microsoft Ac t ive Directory [! !] and
F r e e l P A [2], which both use an L D A P directory server as a storage.

Some specific configurations or technical issues i n this thesis are related to the 389
Directory Server. Other implementations of the L D A P server may behave differently

14

http://example.com

2.2.1 A r c h i t e c t u r e

A s ZyTrax [, chapter 2] and Oracle [26, chapter 9] manual pages describe, the L D A P
defines four models:

• A n information model, which defines what k ind of information is represented i n an
L D A P system. This model is focused on data entries. A n entry consist of attributes
that contain data. E a c h attr ibute has a type and a value (or more values). The type
of an attr ibute has an associated syntax that defines what k ind of information can
be stored i n the value of the attribute, and how the value behave during directory
operations.

At t r ibutes are members of object classes. A n attribute allowed in the object class can
be optional (keyword M A Y) or mandratory (keyword M U S T) and object classes may
inherit characteristics of parent object classes. L D A P directory entries are usually
represented in a hierarchical tree structure called the directory information tree (DIT) .

• A naming model specifies how entries are named, organized and referenced i n an
L D A P directory server. Entr ies are named according to their posi t ion in the hierarchy
by a distinguished name (D N) . The distinguished name consists of components called
relative distinguished names (R D N s) . The first R D N of a D N is the least significant
and the last R D N is the most significant.

The dist inguish name DN: cn=John Smith, ou=people, dc=example, dc=com con­
sists of R D N names RDN: cn= John Smith, RDN: ou=people and RDN: dc=example,
dc=com (the last one can be spli t ted into two R D N s) .

• A functional model defines what you can do wi th the information i n the L D A P d i ­
rectory and how it can be updated and accessed. This model also covers a search
operation, size or t ime l imits of the search operation and search scopes. Search scopes
w i l l be explained further i n section 2.2.6 Search Scopes.

• A security model, defines how you can secure information in an L D A P directory.

The L D A P architecture supports creating replicas. One or more copies of the direc­
tory can be slaved from a master (or masters) to replicas. There is a difference between
transactional databases and the L D A P , where i n the L D A P context, a temporary lack
of synchronization is unimportant and synchronization may take some time. This must be
considered in the application design of synchronization between D N S and L D A P . The appli­
cation has to be aware of this temporary inconsistence, which may occurs between multiple
master servers.

Two possible replication configurations exist:

• In the master-slave deployment, mentioned before, the D I T is copied to slave servers.
A slave server operates w i t h read-only mode and a l l changes must be made on the mas­
ter server.

• In the multi-master deployment, more servers running master D I T s may be updated
and the updates are propagated to peer masters.

15

2.2.2 L D A P D a t a Interchange F o r m a t (L D I F)

The L D I F is a file format typical ly used to import and export L D A P data. The L D I F
is specified i n R F C 2849 [15].

L D I F files can be used i n following cases: to in i t ia l ly construct the D I T structure,
to add records into a directory, to import a directory, to export a directory, and to apply
bulk changes to a directory.

The most important case, which w i l l be used often i n this thesis, is making the D I T
structure.

A n example of an L D I F file is shown below. There must be at least one blank line
between entries. Th is L D I F file adds person entry named " J o h n Smi th" into database, and
includes parent entries.

Example of"LDIF #

dn: dc=example,dc=com
dc: example
objectclass: top
objectclass: dcObject

dn: ou=people, dc=example,dc=com
ou: people
description: A l l people
objectclass: top
objectclass: organizationalunit

dn: cn=John Smith,ou=people,dc=example,dc=com
objectclass: top
objectclass: person
cn: John Smith
cn: J Smith
sn: smith
uid: jsmith

2.2.3 Schemas , O b j e c t Classes a n d A t t r i b u t e s

The R F C 4512 [39, section 4] describes schemas as packages that group together related
object classes and attributes. The attributes defined i n one schema can be used i n an object
class defined i n another schema.

Object classes are sets of attr ibute defined inside schemas. Object classes may be
organized i n a hierarchy and inherit a l l the properties of parents (superior classes) and this
hierarchy is terminated wi th the abstract top object class. There are three types of object
classes: S T R U C T U R A L i n which a case can be used to create an entry and specify the D I T
structure, A U X I L I A R Y are used to augment the characteristics of entries, and A B S T R A C T
class, which provides a base of characteristics from which other object classes can inherit .
A n A U X I L I A R Y class cannot inherit from a S T R U C T U R A L class, and an A B S T R A C T
class cannot inherit from either S T R U C T U R A L or A B S T R A C T classes. M A Y and M U S T
keywords define optional, respectively mandratory attributes wi th in an object class.

16

Every object class has a unique Object Identifier (OID) , which consist of decimal num­
bers separated w i t h dots. Enterprise OIDs must be registered by I A N A .

The object class definition from R F C 4512 [39, section 4.1.1] is shown below.

WSP ObjectClassDescription = "(
numericoid
[SP "NAME" SP qdescrs]
[SP "DESC" SP qdstring]
[SP "OBSOLETE"]
[SP "SUP" SP oids]
[SP "ABSTRACT"/"STRUCTURAL
[SP "MUST" SP oids]
[SP "MAY" SP oids]
extensions WSP ") "

object i d e n t i f i e r
short names (descriptors)
description
not active
superior object classes

/"AUXILIARY"] ; kind o f c l a s s
attribute types
attribute types

Where SP and WSP means space, respectively optional space, qdescrs and qdstring are
text strings and oids are object identifiers (OID) . The example below, taken from ZyTrax
[5, section 3.3], shows what an object class definition can look like.

objectclass (2.5.6.2 NAME 'country' SUP top STRUCTURAL
DESC '2 character iso 3611 assigned country code'
MUST c
MAY (searchGuide $ description))

Attr ibutes are defined as a part of schema and can be included in one or more object
classes. At t r ibutes can be used i n object classes as single value or mu l t i value. For example,
only one password and more e-mail addresses can be allowed in a schema. At t r ibutes are
mult i-valued by default.

A n attr ibute definition can include S Y N T A X of type and matching rules for comparison,
for example rules for a case sensitive or case ignore match.

The attr ibute definition from R F C 4512 [, section 4.1.2] is shown below.

AttributeTypeDescription = " (" WSP
numericoid
[SP "NAME" SP qdescrs]
[SP "DESC" SP qdstring]
[SP "OBSOLETE"]
[SP "SUP" SP oid]
[SP "EQUALITY" SP oid]
[SP "ORDERING" SP oid]
[SP "SUBSTR" SP oid]
[SP "SYNTAX" SP noidlen]
[SP "SINGLE-VALUE"]
[SP "COLLECTIVE"]
[SP "NO-USER-MODIFICATION"]
[SP "USAGE" SP usage]

object i d e n t i f i e r
short names (descriptors)
description
not active
supertype
equality matching rule
ordering matching rule
substrings matching rule
value syntax
single-value
collective
not user modifiable
usage

extensions WSP ") " extensions

The example below is taken from F r e e l P A D N S schema [3], and represents how the D N S
T T L attribute.

17

attributetype (1.3.6.1.4.1.2428.20.0.0
NAME 'dNSTTL'
DESC 'An integer denoting time t o ~ l i v e '
EQUALITY integerMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)

Further details about L D A P schemas are beyond of the scope of this thesis.

2.2.4 S y n c r e p l — C o n t e n t S y n c h r o n i z a t i o n O p e r a t i o n

A syncrepl (Content Synchronization Operation), as R F C 4533[18, section 1] describes,
allows a client to request a copy of a fragment of a D I T . Syncrepl supports two modes:

• refreshOnly: pol l ing for changes - the client receives a l l entries matching the search
criteria, and a cookie, represents the state. Client can pass cookie to the server and
get only newer data since cookie was received. W h e n data are received, connection
is closed.

• refreshAndPersist: l istening for changes - same as the refreshOnly, plus the server
continues sending updates after the in i t i a l po l l (both sides must keep their connection
open).

The entries returned by syncrepl contain U U I D (Universal Unique Identifier), which
keeps the same per entry, instead of D N , which can change. U U I D s identify entries uniquely.

The syncrepl i n refreshAndPersist mode can be used as notification mechanism to detect
any changes i n D N S subtree.

2.2.5 Indexat ion

A s is mentioned i n the R e d Hat Directory Server manual [, chapter 7], an L D A P server can
mantain indexes of attributes to speed up the search, whose filter uses indexed attribute.
Implementation of indexes depends on the part icular directory server, but there are four
common index types:

• Presence index (P R E S) , which contains a list of entries that contain a part icular
attribute.

• Equa l i ty index (EQ) improves searches for entries containing a specific attribute value.

• Approximate index (A P P R O X) is used for effective approximate (sounds-like) searches.

• Substr ing index (S U B) is costly to mainta in index, that is used to efficient searching
against substrings.

Proper configuration of indexes is crucial to get a good synchronization performance
wi th the D N S server.

2.2.6 Search Scopes

A n L D A P server can perform search in several scopes defined in OpenLdap [12], as is shown
in figure 2.2 Search scopes:

18

• B A S E indicate searching only the entry at the base D N , resulting i n only that entry
being returned (if the entry matches the filter).

• O N E indicate searching al l entries one level under the base D N , but not including
the base D N and not including any entries under that one level under the base D N .

• C H I L D R E N indicate searching al l entries at a l l levels except the specified base D N .

• S U B T R E E indicate searching of a l l entries at a l l levels under and including the spec­
ified base D N .

Please note, some implementations of L D A P client allows less types of scope, for example
python L D A P (base, one, and subtree) [36].

CHILDREN SUBTREE

Figure 2.2: Search scopes

19

Chapter 3

Using an LDAP Server as Data
Storage for the DNS

This chapter describes the advantages and disadvantages of using an L D A P server as a stor­
age for D N S data, describe several L D A P schemas which can be used to store D N S data.

3.1 Advantages and Disadvantages of Using an LDAP Server
as DNS Data Storage

The L D A P database has several advantages agains storing D N S records in zone files on a D N S
server.

Zones and records stored i n the L D A P database can contain addi t ional attributes
of records which the D N S server can't handle, as the L D A P schema can be easily ex­
tended to support new attributes instead of D N S protocol. The new attributes can store
addi t ional values lsuch as when new records was added, who adds that record. A l so L D A P
A C I s (Access Con t ro l Instructions) allows to restrict who can modify which zones.

mm*
Authoritative DNS Server

LDAP Multi-Master Replication Topology

-nil
Authoritative DNS Server

Figure 3.1: M u l t i - M a s t e r D N S Topology

Storing data in the L D A P database together w i th using mult iple D N S servers, which
are synchronized directly wi th this database, leads into multi-master D N S topology where
al l D N S servers can be authoritative for one zone, as figure 3.1 M u l t i - M a s t e r D N S Topology
shows. This eliminates the part icular D N S servers as single points of failure, because there
are addi t ional authoritative servers w i th the same copy of D N S sub tree.

Usual ly the L D A P is used w i t h other services, and the L D A P database is used as backend
allows integrate services together, for example as F r e e l P A and Microsoft Ac t ive Directory,

20

which integrate authentication, authorization service, computer hosts management, user
management, D N S and more services together. These integrated services may need to add
new records, which are easier to add into the L D A P database using existing code, without
the need to implement extra functionality of adding records into the D N S . A l so those
products usually have a nice (interactive) user interface, which allows to manage zones and
records i n very comfortable way using the L D A P as data storage.

The main disadvantage is more points of failure than i n the classic D N S topology. These
addi t ional points of failure can be caused by L D A P replication issues, by synchronization
daemon itself or by connection problems between the synchronization daemon and the op­
posite sides.

3.2 LDAP Schemas for DNS Data

Here is a brief description of some of the L D A P schemas, which may be used to store D N S
data. The following schemas w i l l be covered i n this section:

• Cosine schema

• dNSZone schema

• B I N D - D L Z schema

• F r e e l P A schema

These schemas w i l l be compared at the end of this section.

3.2.1 C o s i n e S c h e m a

The specification for this schema can be found in R F C 1274 [27]. In R F C 4524 [] were
the D N S records related parts of schema removed.

The schema (as defined i n R F C 1274 []) contains only few D N S related definitions:

• attributes for A , N S , M D , M X , S O A , and C N A M E records (R D A T A)

• Associated Name attribute - domain name

• D N S domain object class, containing the attributes listed above

The R D A T A values of the R R s are stored in the part icular attributes of the object class.
These attributes represent the type of the R R s .

3.2.2 d N S Z o n e S c h e m a

This schema, as is shown in figure 3.2 dNSZone schema definition, contains only one ob-
jectclass (dNSZone), which representing both a master zone and records.

The object class requires two mandatory attributes represents a relative name of a record
(relativeDomainName) and a zone name (zoneName). A l l the other attributes are optional
and represent T T L value, C L A S S value, and several types of D N S records (radically ex­
tended when compared wi th Cosine schema). The records are stored in textual representa­
t ion, an attr ibute represents a type of a R R .

The schema requires to specify the relative domain and the zone name for each entry,
which is the main difference from the other schemas described here, that do not allow

21

dNSZone

+zoneName
+relativeDomainName
DNSTTL
DNSCIass
ARecord
AAAARecord
CNAMERecord
PTRRecord
TXTRecord

+ MUST attributes

Figure 3.2: dNSZone schema definition

to specify the zone name together w i th the record name in the same entry. In this manner,
the schema does not respect the tree structure of the D N S , because the domain names do
not have to construct a tree.

DN: dc=com

DN: relativeDomainName=www,..

objectclass: dNSZone
relativeDomainName: www
zoneName: example.com
ARecord: 192.0.2.1
TXTRecord: "dNSZone example"

DN: dc=example,..

relativeDomainName=host,..

objectclass: dNSZone
relativeDomainName: host
relativeDomainName: host2
relativeDomainName: host3
zoneName: example.com
CNAMERecord: www.example.com.

DN: relativeDomainName=sub,.

objectclass: dNSZone
relativeDomainName: sub
zoneName: domainl.com
zoneName: domain2.com
ARecord: 192.0.2.10

Figure 3.3: dNSZone schema example

The following example in figure 3.3 dNSZone schema example follows a usage described
in documentation for B I N D 9 S D B backend [4].

A s shown i n the figure, several ways how to store D N S data exist. The example shows
the big freedom which the dNSZone schema allows. A n entry could contain just one R R S e t
(entry DN: relativeDomainName=www, . . .) and follow the tree structure. A l so one entry
can contain several relative names (as show i n entry DN: relativeDomainName=host,...),
which share one or more record attributes (R D A T A) , which together create several records
wi th the same data part in a zone. The most interesting combination, which is also
allowed, is using the same relative name inside several zones. In this case (entry DN:
relativeDomainName=sub, . . .) i n each specified domain the A record (sub. domainl. com,
sub.domain2.com) w i th same R D A T A value exists.

22

http://example.com
http://example.com
http://www.example.com
http://domainl.com
http://domain2.com
http://sub.domain2.com

3.2.3 B I N D - D L Z S c h e m a

dlzZone

+dlzZoneName

dlzHost

+dlzHostName

dlzGenericRecord
+dlzRecordld
-HdlzHostName
+dlzType
+dlzTTL
+dlzData

dlzARecord
+dlzRecordld
+dlzHostName
+dlzType
+dlzTTL
+dlzlPAddr

dlzNSRecord

+dlzRecordld
+dlzHostName
+dlzType
+dlzTTL
+dlzData

dlzSOARecord
+dlzRecordld
+dlzHostName
+dlzType
+dlzTTL
+dlzSerial
+dlzRefresh
+dlzRetry
+dlzExpire
+dlzMinimum
+dlzAdminEmail
+dlzPrimaryNS

+ MUST attributes

Figure 3.4: D L Z schema definition

In case of the D L Z schema [1], a l l object classes of the D L Z schema have only mandatory
attributes, as is shown in figure 3.4 D L Z schema definition, where several object classes
from the schema are shown. The object class representing a zone (dlzZone) stores only one
attr ibute - the zone name. To distinguish records into separate subtrees for different owner
names, the host objectclass is used (dlzHost), which contains just one attr ibute to specify
the relative owner name.

The records are identified by unique I D (dlzRecordld), and a l l records contain a relative
owner name (dlzHostName), a record type (dlzType) and a T T L value (dlzTTL). There
are three special record types defined as object classes, S O A , M X and A record.

The S O A record is represented as the dlzSOARecord object class, and the part icular
parts of the S O A record are represented as attributes of that object class. The A record
(dlzArecord) object class definition contains special attr ibute for IP address. The M X
record (dlzMXRecord) objectclass definition contains an addit ional attribute for preference
value and inherits data part used to specify exchanger value from the generic object class
(see bellow).

The generic record object class (dlzGenericRecord) is used for other record types.
The schema contains several others objectclass definitions for other records, but these
records just inherit a l l attributes from the generic record object class without adding
any new attribute. These addi t ional object classes are for the N S (dlzNSRecord), T X T
(dlzTextRecord), P T R (dlzPTRRecord), and C N A M E (dlzCNAMERecord) records. The record
type is always specified by dlzType attribute, except for the special records mentioned be­
fore, where this attr ibute must respect the object class, so in this schema the dlzGenericRecord
object class can be used to store any record types, without the need to define addit ional
object classes or attributes. The attribute dlzData is used to store R D A T A part of records
in textual form, for a l l generic record types.

23

This schema allows to store only one record per entry.
The D L Z schema allows two ways how to structure D N S data in the D I T .
The figure 3.5 D L Z schema example shows the first way, which is preferred. The dlzZone

is the parent entry of a dlzHost entry, and the dlzHost entry is the parent of dlz*Record
entries. This structure allows better human readability. The figure shows one zone wi th
two different owner names. The dlzRecordId=l represents S O A record i n zone apex (zone
apex is represented by @ character). A s shown i n the figure, the owner name www contains
two records (A and T X T) , which are i n separated entries, as was mentioned before.

The second way is that the dlzZone entry is parent of dlz*Record entries directly,
without the dlzHostName entries layer. Information about owner name is stored inside
of every record entry, so technically this layer is not needed.

DN: ou=DNS,
DN: dlsZoneName=example.com,

objectclass: dlzZone
dIZoneName: example.com

DN: dlzHostName=@,

objectclass: dlzHost
dlzHostName: @

DN: dlzHostName=www,

objectclass: dlzHost
dlzHostName: www

DN: dlzRecordld=l,

objectclass: dlzSOARecord
dlzRecordld: 1
dlzHostName: @
dlzType: SOA
dlzSerial: 12345
dlzRetry: 900
dlzExpire: 1209600
dlzRefresh: 3600
dlzMinimum: 3600
dlzAdminEmail: root.example.com
dlzPrimaryNS: ns.example.com

DN: dlzRecordld=2,

objectclass: dlzARecord
dlzRecordld: 2
dlzHostName: www
dlzType: A
dlzlPAddr: 192.0.2.1

DN: dlzRecordld=3,

objectclass: dlzTextRecord
dlzRecordld: 3
dlzHostName: www
dlzType: TXT
dlzData: "Text data"

Figure 3.5: D L Z schema example

3.2.4 F r e e l P A S c h e m a

The figure 3.6 F r e e l P A schema definition shows a simplified definition of the schema.
The F r e e l P A schema allows to store two types of zones, forward and master, as defined
in the B I N D 9 server documentat ion [, section 6.2.28.1].

A master zone contains records that are authoritative. A forward zone does not contain
any records. This type of zone allows to specify forwarding (forward policy and forwarders)
for a part icular name (instead of global forwarding).

24

http://example.com
http://root.example.com
http://ns.example.com

idnsZone

+idnsName
+idnsSOArName
+idnsSOAmName
+idnsSOAserial
+idnsSOArefresh
+idnsSOAretry
+idnsSOAexpire
+idnsSOAminimum
+idnsZoneActive
idnsUpdatePolicy
idnsAllowQuery
idnsAllowTransfer
idnsForwarders
idnsForward Policy

idnsForwardZone

+idnsName
+idnsZoneActive
idnsForwarders
idnsForward Policy

+ MUST attributes

idnsRecord

+idnsName
dNSTTL
ARecord
AAAARecord
NSRecord
CNAMERecord
PTRRecord

Figure 3.6: F r e e l P A schema definition

The master zone definition, represented by the object class idnsZone, contains manda­
tory attributes representing a zone name (idnsName), and a flag (idnsZoneActive), which
can disable the whole zone. Also the S O A record, which is a mandatory attr ibute as well,
is handled differently than the other records. The S O A record is separated into several at­
tributes (idnsSOArName, indsSOAmName, idnsSOAserial, idnsSOArefresh, idnsSOAretry,
idnsSOAexpire, idnsSOAminimum) representing a part icular part of a S O A record.

The object class also contains attributes representing B I N D 9 policies for zone
(idnsUpdatePolicy, idnsAllowQuery, idnsAllowTransfer) and forwarding settings
(idnsForwarders, idnsForwardPolicy).

The forward zone definition, represented by the object class idnsForwardZone, con­
sists only of four attributes. It contains two mandatory attributes representing a zone
name (idnsName) and a flag (idnsZoneActive) showing i f the zone is active in name-
server, and two optional attributes representing settings for forwarders and forward policy
(idnsForwardZone and idnsForwardPolicy).

The resource records are stored as attributes of the idnsRecord object class, which
has the only mandatory attribute, representing owner name of R R (idnsName). Each
type of the R R is represented by an attribute representing the part icular type of a R R
record (ARecord, AAAARecord, NSRecord, PTRRecord, CNAMERecord, . . .) . The attributes
representing R R s are multi-valued, which allows to store mult iple R D A T A for the part icular
owner (domain name) in one entry, so one entry can contain mult iple R R s , respectively it
contains R R S e t . Par t icular R D A T A of the records are stored i n textual form as defined
in part icular R F C s for various records.

This schema has implemented most of the standard records types.
The figure 3.7 F r e e l P A example, shows a simple example how D N S data are stored

in F r e e l P A .
Zones of a l l types and records are part of one D N S subtree in a D I T .
Forward and master zones share the same namespace, so forward and master zone can

not coexist together (which is not allowed in B I N D name server as well).
The zone f wzone i n the example is a forward zone. There are no D N S records allowed.
The other zones, example.com. and sub.example.com., are master zones. Zone

sub.example.com. is a subzone of the zone example.com.. A s the figure shows, there

25

http://example.com
http://sub.example.com
http://sub.example.com
http://example.com

DN: idnsname=example.com.,

objectclass: idnsZone
objectclass: idnsRecord
idnsName: example.com.
idnsZoneActive: true
idnsSOAmName: ipa.test.
idnsSOArName: zonemgr.ipa.test.
idnsSOAserial: 1414600858
idnsSOArefresh: 3600
idnsSOAretry: 900
idnsSOAexpire: 1209600
idnsSOAminimum: 3600
NSRecord: ipa.test.

DN: cn=dns,..

DN: idnsname=sub.example.com.,

objectclass: idnsZone
objectclass: idnsRecord
idnsName: sub.example.com.
idnsZoneActive: true
idnsSOAmName: ipa.test.
idnsSOArName: zonemgr.ipa.test.
idnsSOAserial: 1414600858
idnsSOArefresh: 3600
idnsSOAretry: 900
idnsSOAexpire: 1209600
idnsSOAminimum: 3600
NSRecord: ipa.test.

DN: idnsname=fwzone.com..

objectclass: idnsForwardZone
idnsName: fwzone.com.
idnsZoneActive: true
idnsForwarder: 203.0.113.1
idnsForwardPolicy: only

DN: idnsname=www,.

objectclass: idnsRecord
idnsName: www
ARecord: 192.0.2.1

DN: idnsname=web,.

objectclass: idnsRecord
idnsName: web
CNAMErecord: www

Figure 3.7: F r e e l P A example

is no tree hierarchy between chi ld and parent zones i n F r e e l P A D I T . The tree hierarchy
is kept only between master zones and theirs records.

The zone apex records are stored inside zone entries, for example N S record ipa.test.
in bo th zones in the example.

Records are represented by a relative domain name (except for zone apex records as was
mentioned above). Fol lowing records www and web belong to the example.com. zone, so
in absolute form records represent domain names www. example. com and web. example. com.

The other schemas, described before, support only a subset of those R R types.
The F r e e l P A schema [] is part of the bind-dyndb-ldap p lugin for B I N D 9.

3.2.5 C o m p a r i s o n of the L D A P Schemas

Only the L D A P schemas described above are compared i n this section, except the Cosine
schema that is a very basic schema and w i l l not be covered i n this comparison.

Granulari ty

The B I N D - D L Z schema has the highest granularity. Th is schema allows to specify the T T L
for each record separately, instead of F r e e l P A or dNSZone schema, where the T T L value
can be set only per owner name. A s i n the D N S system, the T T L is specified per a record,
respectively as R F C 2181 [33, section 5.2] describes, the T T L value should be the same for
al l records i n the R R S e t . Th is may be a l imi ta t ion for the D N S data synchronization.

N u m b e r of Record Types

The B I N D - D L Z schema allows to store any record types, because it supports generic record
object class. The record types are identified by an addit ional attribute, which allows to use

26

http://example.com
http://example.com
http://sub.example.com
http://fwzone.com
http://example.com

any new record. The other schemas mentioned in this thesis have predefined attributes per
record type, which work as identifier for record types.

Enforcing tree structure

The F r e e l P A and B I N D - D L Z schema definitions require a parent-child structure for zones
and records. The dNSZone schema allows any structure of D N S entries, as the information
about the zone (or several zones) is stored directly i n the entry wi th records.

The F r e e l P A schema also requires exactly one S O A record, as the S O A record is stored
directly in the zone object class.

Storing R D A T A values

A s it was mentioned before, the B I N D - D L Z schema allows to store only one record per
entry (the R D A T A attribute is defined as single valued). The other schemas store R D A T A
part of the record as mult ivalued attributes.

Search for records

The search speed is quite important for fast synchronization. The worst case for search
records is the dNSZone, where the search filter must evaluate almost a l l entries to find
a part icular zone and record, as this schema allows to specify the same record for several
zones, or specify the same R D A T A for several records inside the same entry.

Achiev ing better speed is allowed by F r e e l P A schema and B I N D - D L Z schema, where
to find a record, it is required to just search i n the subtree, where the root of this subtree
is a zone name. The F r e e l P A schema also allows to get a l l records for the same owner name
at once, because a l l the data related to the same owner are stored i n one entry.

Addi t iona l features

The F r e e l P A schema allows to specify addit ional D N S configuration:

• two zone types, forward and master,

• forwarders and forwarding policy,

• policies for transfer, query, update.

Those features are bounded to the B I N D name server.
Also the F r e e l P A schema contains special a zone attr ibute (idnsZoneActive), which

allows to temporari ly disable zone synchronization, without removing or moving any D N S
data in L D A P .

3.2.6 S u m m a r y

The various L D A P schemas for D N S data have their advantages and disadvantages. How­
ever for purpose of this thesis the F r e e l P A schema was chosen as the referential schema.
The F r e e l P A schema is used for proof of concept implementation of the D N S synchroniza­
t ion daemon.

The schema allows intuit ive storage for the D N S data, keeps the tree structure and
stores a l l the records in the same entry, which allows fast and easy access to data.

27

Chapter 4

Synchronization Issues

This chapter contains information about various synchronization issues that may happen
during synchronization of records between an L D A P database and a D N S server. These is­
sues are for example: a detection of when a record change occurs, several types of record con­
flicts, how data caching influences synchronization, and proper causality resolution of record
changes. Some of the issues could be resolved i n several ways, whose advantages and dis­
advantages w i l l be discussed i n this chapter.

4.1 Change Detection

A short t ime delay between a change and its detection is crucial to ensure good usability.
A long delay can cause connection issues i n dynamic environments, where new hosts, such
as v i r tua l machines, are added into topology on demand. In these environments, it is not
acceptable to have delay i n minutes. A s new hosts can be added on demand, there must be
a possibil i ty of a dynamic change detection, otherwise synchronization daemon just ends
up as a regular cron job.

The detection should not waste system resources but it should keep the delay as short
as possible. Do ing the synchronization i n an infinite loop without any wait ing or change
detection is not an op t imal idea, because it causes high usage of system resources.

There are several methods of change detection, that are suitable for different environ­
ments, respectively some of them can be used as fallback mechanism.

Notifications should be used wi th periodical detection as the default detection method
should, where the periodical detection can work as fallback i f any issues happen. This
should cover the most use cases. Other use cases are described in the part icular sections,
which follows.

4.1.1 P e r i o d i c a l D e t e c t i o n

This type of detection is suitable for networks, where the t ime delay is not so crucial ,
or where notifications cannot be used. Another advantage of this type is in deployment,
where a lot of changes is made on one side, but a system administrator is fine wi th doing
synchronization just once per period of t ime to save system resources.

This solution might be even better than dynamic notification in environments, where
changes are made often and neither of sides supports sending incremental changes. Do ing
an overall synchronization every five minutes is far more efficient than doing it every ten
seconds because one or two records were changed.

28

Of course, this type of detection is not usable and notifications should be used i f the en­
vironment needs to have the data synchronized as soon as possible.

The periodical detection of change may be used as fallback method i f notification mech­
anism failed (for example a U D P notification message is lost).

4.1.2 Not i f icat ions

B o t h synchronization sides must support notifications to ensure the detection delay w i l l be
as smal l as possible.

Each side may support different notification mechanism, which has its own advantages
and disadvantages. Usually, notification mechanism requires addi t ional system resources,
such as extra threads, connections, bigger amount of memory or extra C P U on al l sides
(synchronization daemon, both data source sides).

D N S uses a notification mechanism that was described i n section 2.1.4 D N S Notify.
Th is mechanism requires an extra opened port on daemon side, which receives notify mes­
sages, and an extra thread, which parses these messages and executes responsive actions.
A s the D N S notify messages are usually send through the U D P protocol, the synchroniza­
t ion daemon may occasionally miss this event and the synchronization may be delayed.

L D A P may use syncrepl described i n section 2.2.4 Syncrepl - Content Synchronizat ion
Operat ion as notification mechanism. These mechanisms require to keep network connec­
tions open and extra thread on both sides.

4.1.3 R e q u e s t e d by U s e r / A n o t h e r S y s t e m

The synchronization should be allowed on demand, respectively it can be triggered by user
or process, which could be the best approach i n some specific environments.

This method can be used i n environments where an administrator uses some framework
buil t on top of the L D A P database to add D N S records. It is suitable for smal l companies,
where only one person is responsible to keep the D N S system up to date, and he runs
synchronization on demand, or i n environments where just one synchronization at midnight
is required.

There could be another system i n environment that keeps information about records
wi th complex logic above the possibilities of synchronization daemon, which may decide
when synchronization should be executed. In this case, the system just gives signal to dae­
mon A P I to execute synchronization.

This on demand synchronization also allows to run synchronization i n various t ime peri­
ods, which is a more specific case of periodical detection. For example, dur ing the business
hours, detection of changes may be executed more often than during night just using a cron
job.

This method can also be used as a fallback method, i f an administrator detects that
the notifications do not work.

4.2 Synchronization Speed

The synchronization speed is affected by various factors, such as the network l ink speed,
the amount of data to be received or send, the amount of data to be processed, the response
delay from the remote side, etc.

29

To reduce the amount of data to be transferred and processed, incremental changes may
be used (details are described i n section 4.3, Incremental Changes).

A data caching also allows to save some resources by reducing the number of times when
getting data from remote side is required. The cache can temporari ly keep the results during
temporal connection loss instead of processing a l l data inputs again. Caching is described
in section 4.2.1 D a t a Caching.

A s zones are independent, a computing of differences for each zone can be done par-
allelly. Usua l ly the L D A P server and D N S servers allow to open parallel connections, so
getting data and sending updates can be done independently for each zone per remote
side. If parallel connections are not supported by remote sides, respectively parallel queries
are internally serialized in those servers, it causes a bottleneck, which degrades the possi­
ble speed. However, it is s t i l l important to know this case, even if this si tuation cannot be
solved by the synchronization daemon, so at least parallel computat ion can br ing a speedup.

4.2.1 D a t a C a c h i n g

The main reason for caching is to make synchronization and computat ion of differences
faster. The records cache stores a l l sucessfully synchronized records per zone. This cache
can be used to detect changes since last event i n case when the remote side does not support
sending incremental changes. A l so , the cache helps to improve performance if bo th sides
support notifications (if we can rely that notifications are received immediately) , but i f one
of remote sides (or both) does not support sending incremental changes, the synchronization
process can determine changes without querying opposite side to get data for comparison.
The data is compared localy using the cache and no addi t ional data from the opposite side
has to be downloaded.

For example, i f the D N S server sends notify message (with a higher S O A serial number
than the current), but it allows only A X F R transfer, a difference can be computed by using
a cache without downloading the full set of records from the second side (L D A P) . Less data
downloaded and less data compared make synchronization faster than downloading al l data
and doing full comparison.

The disadvantage is the permanent memory consumption using the cache.

4.3 Incremental Changes

Incremental changes cover both an abil i ty of the remote side to send incremental data and
an abil i ty of the opposite side to receive update in incremental format.

In this case, the smallest incremental entry is one D N S record. A s was mentioned
i n section 2.1.2 Resource Records (RRs) and Zones, the record is identified by: owner
name, type, class, T T L and R D A T A . A n y change made to a record can be considered
as removing one record and adding a different new record.

The abi l i ty to receive incremental updates implies, that the remote side must be able
to work on records basis, e.g. must be able to remove a part icular record or to add a par­
t icular record without any addit ional information (except the zone name where the record
belongs).

The D N S servers natural ly work on record basis, it is not an issue for them. How­
ever, various L D A P schemas may not fulfill this requirement, for example when a schema
stores a l l R D A T A values i n one S T R I N G as S I N G L E - V A L U E D attr ibute per owner. This

30

is an exaggerated example, none of the schemas listed i n section 3.2 L D A P Schemas for
D N S D a t a use that format, but is not impossible to create this type of schema.

The special case described i n section 4.4 L D A P Schema Granular i ty affects some of schemas
mentioned before, but to solve this special case, there is no need to have the information
about other records, so it is considered as an incremental upgrade and a separate issue.

Downloading incremental changes from D N S is allowed by configuring I X F R zone trans­
fer. A n L D A P database combined wi th a proper schema and syncrepl (described i n 2.2.4
Syncrepl - Content Synchronizat ion Operation) can be used to receive incremental updates.
In case of F r e e l P A schema, the whole owner entry where the change occured is returned
by syncrepl. There is no possibil i ty to decide which record was changed without caching
the original value.

Less records mean lower number of comparisons, so incremental changes allow faster
synchronization.

Unfortunately, the availabil i ty of incremental changes depends on the D N S server and
the L D A P server and i n some cases it cannot be enabled. For this reason, the synchroniza­
t ion daemon has to support the overall synchronization by comparing a l l records on both
sides.

4.4 LDAP Schema Granularity

A s mentioned before, D N S system natural ly works wi th records as w i th the smallest entries.
Respectively as R F C 2181 [33, section 5.2] describes, to have different T T L s i n the R R S e t
is deprecated, but synchronization cannot rely on it and must s t i l l handle the record
as the smallest possible block, because it is s t i l l possible to have different T T L s in the RRse t .
However, L D A P schemas may not consider the record or even R R S e t as the smallest inde­
pendent unit , and may use the RRSe t s , respectively a group of RRSe t s , which shares some
values among records. Th is is a case of F r e e l P A schema as it uses just one entry per owner
name, which shares the same value for T T L and C L A S S for a l l records belonging under
this owner. The following two sections describe the issues wi th schema granularity where
various values must be mapped into a one for a R R S e t or a group of RRSe t s .

4.4.1 R e c o r d Class

Current ly only the IN (I N T E R N E T) class is commonly used, so this issue can be solved
by support ing only IN class without decreasing real usability.

4.4.2 T T L

A s figure 4.1 F r e e l P A schema granularity example shows, the most serious issue wi th
F r e e l P A schema is setting the T T L value just per owner name. M u l t i p l e records wi th
different T T L values, must be mapped to one T T L value for a whole owner name repre­
sented by F r e e l P A L D A P entry.

In this case, there are several solutions that can be chosen by system administrators
to fulfill their requirements.

Possible solutions for schemas that share mult iple T T L values for mult iple R R sets:

Ignoring T T L value
The T T L w i l l be ignored for synchronization, a default T T L value specified by ad­
ministrator w i l l be used for the L D A P .

31

DNS record 1
FreelPA record entry

owner: test
type: A
TTL: 3600
RDATA: 192.0.2.1 objectclass: idnsrecord

objectdass: top
dnsTTL: ???
ARecord: 192.0.2.1
TXTRecord: FIT@VUT

idnsname=test,...

DNS record 2

owner: test
type: TXT
TTL: 4800
RDATA: FIT@VUT

Figure 4.1: F r e e l P A schema granularity example

Using the lowest/highest T T L value
The lowest/highest T T L w i l l be used per owner. Th is solution does not scale well and
should not be used, because the T T L value w i l l always decrease/increase for whole
owner name.

Using the latest T T L value
In this case administrator must count w i th fact that one record w i l l change the T T L
for the whole owner name.

Ignoring T T L value & using the latest T T L value for L D A P
A T T L value w i l l be ignored during comparison. The records on the D N S side w i l l
keep their T T L values and the owner entry on the L D A P side w i l l always rewrite
the current T T L value wi th the value from the latest updated record. The new
records from the L D A P side w i l l be synchronized to the D N S w i t h the current T T L
value i n the L D A P owner entry.

For schemas where records are stored as separate entries, one-to-one mapping for T T L
synchronization can be used.

4.5 Causality

The abil i ty to detect which changes happened first, using notify mechanism may be influ­
enced by several factors:

• a notify message is going through network wi th a bigger delay,

• a notify message can be lost,

• the L D A P multi-master replication can cause the delay, if a record change was made
in different a L D A P server than the one directly connected to the synchronization

A l l of issues listed above cause the notification that was created first may be delayed so much
that notification from opposite the side which was created after the first can, arrive earlier

daemon.

32

than the first notification message. This may result into a record conflict or replacement
of newer data by older data.

A s synchronization is not dependent on notifications (periodical check, triggered check),
the common mechanism described i n section 4.7 Conflicts to solve record conflicts must
exist, because i n many cases there is no way to detect which change happened first. Not i f i ­
cations can be used to detect causality only for improving synchronization results, the syn­
chronization daemon cannot rely on causality derived from notification mechanism.

The D N S notify messages do not support any timestamps, only an S O A serial number,
which determine ordering only on the D N S side, which w i l l not help to determine the overall
causality of a l l messages.

To avoid issues caused by an unreliable causality detection, after receiving a notifica­
t ion from one side, bo th side should be checked for changes, instead of directly applying
the changes to the second side.

Of course, i n environments where mainly one way synchronization happens for most
of the time, downloading changes just from the side where a notification originated may
make the synchronization faster without negative effects.

4.6 Duplicated Notifications

The synchronization process must implement detection of duplicated notifications, as the D N S
notify messages can be sent in mult iple copies. Th is detection may be implemented by com­
paring the S O A numbers and processing only messages wi th higher numbers.

There is a special case, which can be considered as a duplicate notification: when
records are updated on the remote side, then the remote side w i l l generate a notification
that references the data that were i n update sent by the synchronization daemon. For exam­
ple, the synchronization daemon sent the update containing the record test A 192.0.2.1
to a D N S server. Then the D N S server generates a new notify message because it received
a new record (test A 192.0.2.1), but this records was already processed by the synchro­
nizat ion daemon.

The synchronization must filter this k ind of notifications to avoid processing data that
were already processed. In case of the D N S notify messages, the S O A serial numbers can
be used as described above. In case of the L D A P and syncrepl, the returned entries must
be compared wi th a record cache to detect i f the notify message contains any new changes.

4.7 Conflicts

Several types of conflict may happen dur ing synchronization. Some types of conflicts may
happen just w i th incremental data, other just w i th full data exchange w i t h no history.

On ly the conflicts that can be caused by synchronization are discussed. The conflicts
caused by improper input data, which violates rules specified i n R F C documents, are not
handled by synchronization daemon and can lead into error state. Th is k ind of conflicts
should be checked and resolved on remote synchronization sides.

This section describes various conflicts that must be solved by the synchronization
daemon.

A l l issues mentioned here can be solved by choosing the authoritative side, where the val­
ues from this server w i l l replace the conflicts.

33

4.7.1 R e c o r d s W h i c h C a n n o t C o e x i s t Toge ther

Some record types, such as C N A M E [, section 3.6.2] and D N A M E [34, section 2.4], cannot
coexists w i th other records under the same owner name. Respectively as R F C 4035 [31,
section 2.5] specifies, for the signed C N A M E record, there can be R R S I G and N S E C R R
sets for the same owner as for the C N A M E R R .

For example, this conflict may easily happen, if a new A record and a new C N A M E
record were simultaneously added on remote synchronization sides for the same owner name.

Solutions for this si tuation are to keep those part icular records unsynchronized and let
an administrator to decide which record should be there, or choose an authoritative server.

4.7.2 Different S O A Values

A s the one S O A record only is allowed per zone, this conflict may happen often, as it can
not be resolved by keeping both S O A records as R R set.

The easiest part of the S O A synchronization is the S O A serial number. The highest
serial number can be safely chosen as the right value, because the serial is used to detect
changes i n the zone, the higher serial the newer version of zone data available, and thus
the highest value should be used to spread changes to other servers. O f course the S O A
serial number is increased after each synchronization event.

The other parts of S O A records are not resolvable as easily as the serial number. For
example dur ing the in i t i a l synchronization, i f the S O A records mismatch, there is no way
how to decide which value is the right one. The changes after the in i t i a l synchronization
can be compared per part icular value in the R D A T A part of the record, and non conflicting
changes can be merged.

The solution i n this case is to mark one remote side as authoritative for the S O A records,
and values from this side w i l l be used for the S O A result record.

4.7.3 R e c o r d C h a n g e d o n B o t h Sides S imul taneous ly

This case happens when a record A is on both sides, then simultaneously an A record
is replaced wi th B represented by A —>• B record on the one side and C represented by A —>
C record on the other side.

The recommended solution in this case is to keep both changes (A —> [B, C]).

4.7.4 R e c o r d R e m o v e d a n d A d d e d o n B o t h Sides S imul taneous ly

This case can happen i f the synchronization daemon receives contradicting messages from
incremental changes. In this case, i f data were synchronized before, one side sent wrong
data, which may be caused by a malfunction.

This issue can be solved by the synchronization cache, which can detect which side sent
the wrong data.

4.7.5 R e c o r d R e m o v e d a n d C h a n g e d o n B o t h Sides S imul taneous ly

In fact, this case that could look like a conflict is not a conflict. A s the D N S system works
wi th records, this is interpreted as the record was removed on one side and the same record
was removed on the other side, plus another record was just added. Removing the same
record on both sides is not a conflict, and adding new record is not a conflict either.

34

4.7.6 S ing le ton R e c o r d s w h i c h H a v e M o r e t h a n O n e V a l u e

Singleton record is a record type that allows to have only one R D A T A value per owner.
For example the singleton record is the D N A M E record type [34, section 2.4].

This case can happen when one side creates a new D N A M E record and the other side
creates new a D N A M E record too but w i th a different R D A T A value. A s mentioned above,
this cannot be solved by merging into one R R set containing two records. The solution
is to keep these records unsynchronized or choose the authoritative side.

4.7.7 Different T T L

If the same record on both sides contains different T T L values, several strategies can be
used to solve this issue.

The higher value or the lower value can be used as the resolution, default value, or
an authoritat ive server can be chosen. A possible solution is also not to compare the T T L
values, but then the T T L values must be maintained manual ly on both sides, which miss
the goal of the synchronization daemon.

4.8 DNSSEC

D N S S E C - D N S Security Extensions, as R F C 4033 [29, section 3] describes, is a technology
that allows to verify the authenticity of record or gives a proof that a record really does not
exist, by using public key cryptography. D N S S E C builds a trusted signatures chain from
the root zone to the chi ld zones, where the root zone keys are well known and each chi ld
zone can be validated using the record in a particular parent zone.

The D N S S E C technology adds several new types of records, which are specified i n R F C
4035 [30], R F C 5155 [10, section 3, section 4], and R F C 4431 [21], into the D N S system:

D N S K E Y record contains a public key for each private key that was used to sign a zone.
D N S K E Y record is used to validate R R S I G signatures i n the zone.

R R S I G record is created for each authoritative R R set and contains d igi ta l signatures for
that part icular R R set.

N S E C , N S E C 3 records are used to "provide authenticated denial of existence" for D N S
data, because even replies for a name that does not exist must be signed.

N S E C 3 P A R A M record contains parameters to be used for generating N S E C 3 record.

D S records are used to verify D N S K E Y key records and must be stored i n the parent zone.

D L V record allows to validate a D N S record out of normal delegation chain.

The N S E C 3 P A R A M , D S and D L V records can be handled by the synchronization dae­
mon as any other regular records. The other D N S S E C related records (D N S K E Y , R R S I G ,
N S E C , N S E C 3) are usually created by a D N S server not by user. The D N S server uses pr i ­
vate keys, which are stored (and generated) local ly on the D N S server, to generate R R S I G ,
N S E C and N S E C 3 records, and to put public part of the key into D N S K E Y record. N o
private key can be exposed into the D N S system, so there are two approaches how to handle
them for synchronization purposes, mainly i n D N S multi-master environments.

35

The first approach is that the only D N S server in the topology has the private keys
to generate signatures, and other D N S server w i l l use the same signatures. Then al l the gen­
erated records (D N S K E Y , R R S I G , N S E C , N S E C 3) are synchronized to the opposite sides,
respectively these records must be synced into the L D A P database. This may require
an addi t ional configuration of the D N S servers which should not generate signatures.

The second approach is that a l l the D N S servers have their own private keys, and each
server signs the records by itself. In this case, for each generated K S K key a D S record
must be added to the parent zone. The synchronization daemon can ignore a l l D N S K E Y ,
R R S I G , N S E C and N S E C 3 records, because a l l D S records are stored i n the parent zone
and any signed record by any key can be successfully validated. This approach should be
also used i n case when only one D N S server is i n topology.

36

Chapter 5

Implementation

This chapter contains high level design of the synchronization daemon and various designs
of part icular parts of this daemon.

This chapter also contains information about public interfaces, which can be used to ex­
tend functionality by more plugins.

A t the end of this chapter, how various settings of the daemon effect the synchronization
process is discussed.

5.1 Proposed Synchronization Algorithm

The following section contains high level algorithms for synchronization of D N S records.

5.1.1 K e y w o r d Def in i t ions

This section describes keywords used i n further i n this text, i n description of algorithms or
in description of the daemon design.

The keywords are:

incremental data contain information which modifications happened since last time.

all data contains a l l current D N S data without information about changes made in the past.

DNSDataPackage data structure that stores information about records, including a flag
if it contains incremental data.

DNSUpdatePackage data structure that stores information about data that w i l l be up­
dated.

DataCache data structure that contains a l l current records that were already synchro­
nized.

authoritative value, authoritative source synchronization side chosen by a user whose
values are used in case of conflicts.

initial synchronization is the first synchronization per zone, when the synchronization
daemon requires to download a l l D N S records from both sides.

37

5.1.2 A l g o r i t h m s

For better understanding, the following algorithms are simplified and implementat ion de­
tails are omit ted in this section. Also a part of paralelization, various submodules, user
settings and communicat ion routines are omit ted or very simplified i n the representations.
These details are covered in section 5.2 Synchronizat ion Daemon Design, algorithms listed
here, give only basic picture of how synchronization is executed.

The descriptions of the part icular algorithms follow.

T T L Conflicts Resolution

A l g o r i t h m 1 resolves the T T L conflicts, when the records wi th the same owner, type, class
and R D A T A have different T T L values for each side. Th is algori thm compares the records
which should be added only. Removing records cannot cause the T T L conflict.

M e t h o d resolveTTLConflicts (^ 4 , B: DNSUpdatePackage; cache: DataCache)
Data: D N S updates
Result: Resolved T T L conflicts
/* Only updates which adds new records must be compared. */
for each record a G A.add, b G
B.add where a and bare the same record with different TTL value do

if cache then
if a G cache then

/* b i s newer, use b */
Remove a from update A . a d d ;
continue;

end
else if b G cache then

/* a i s newer, use a */
Remove b from update B .add ;
continue;

end
end

if authoritative source is specified then
if source(A) is authoritative then

/* Do not update authoritative side */
Remove a from A . a d d ;

end
else

Remove b from B.add ;
end

end
else

Remove a and b form updates;
A d d a add b to unresolvable records list;

end
end

Algor i thm 1: Resolving conflicts of T T L

38

Comparat ion of S O A records

This method is used for comparing S O A records. A s there can be only one S O A record per
zone, the resolving conflicts occurs in different manner than for other record types. A s shown
in algori thm 2, each attr ibute of the S O A record is compared separately. The algori thm
is t ry ing to decide which S O A changes are new by comparing them wi th the cached S O A
record. If there is an unresolvable conflict, an error is returned or authoritative value is used
(if authoritative side is configured).

The serial numbers of S O A records are handled i n different way, the highest serial num­
ber (that w i l l be later incremented) is chosen for the new S O A record to achieve the change
w i l l be distr ibuted to a l l slave servers.

M e t h o d newSoaC^, B: DNSDataPackage; cache: DataCache)
Data: D N S data received from zone plugins and D N S cache
Result: new S O A value
/ * I n i t i a l i z e with values of A * /
soa = = SOACA soa);
Compare each S O A attribute between A and B , except serial;
for each attribute which does not match do

if cache then
Compare values against cache and use the one which changed;
In case both values changed, use authoritative value or ra i se
Error (.Unable to synchronize SOA);

end
else

Use value that is authoritative, or ra i se Error (.Unable to synchronize
SOA);

end
end
soa.serial = max (A soa. serial, B.soa.serial);
return soa;

A l g o r i t h m 2 : Resolving values of a new S O A record

Diff A lgor i thm

The following algori thm, algori thm 3, is responsible for returning proper differences that
w i l l be used for update. A s wri t ten i n algori thm representation, the first part is responsible
to generate a new S O A record, using the previously defined method newSoaO.

The method removeSameRecords () compares record sets and returns only records that
do not match. There is a difference between incremental and non-incremental D N S data.

W i t h non-incremental data (all records), we can only add new records to both sides,
because there is no way how to detect which records should be removed. W i t h incre­
mental data, there must be a separate comparison for newly added and removed records.
Please note the sides are switched for results from removing the same records on sides
(B, A <— A, B), because the records that were added on the A side must be also added
v ia update on the B side and vice versa.

The method resolveConflicts() solve record conflicts (except T T L conflicts), that
were discussed in section 4.7 Conflicts. Th is method must also provide the list of records

39

that cannot be synchronized.
Before the updates are sent to the remote servers, the S O A serial is incremented.

Method d i f f (A, B: DNSDataPackage; cache: DataCache)
Data: D N S data received from zone plugins and D N S cache
Result: updateA, updateB: DNSUpdatePackage ; list of record that were not

synchronized
soa = newSoaC^, B, cache);
if both A and B are incremental then

updateB.add, updateA.add = removeSameRecords(Aadded, B.added);
updateB.remove, updateA.remove = removeSameRecords (.A.removed,
B. removed);

end
else if both A and B contain all records then

| updateB.add, updateA.add = removeSameRecords (A.all, B.all);
end
else

/* This case i s unsupported */
/* Records should be compared with records i n the cache to get

incremental data, or both sources should send a l l records */
end
resolveTTLConflicts (.updateA, updateB, cache);
resolveConflicts (. upda teA , updateB, cache);
increment (soa.serial);
updateA.soa = soa, updateB.soa = soa;
return updateA, updateB

Algorithm 3: Compu t ing records differences

Synchronization Algorithm

A l g o r i t h m 4 describes the synchronization process for a part icular zone. For each zone
an extra process and separate data cache are created, which ensures that a synchronization
failure of one zone w i l l not affect others.

The method d i f f () , which was previously defined, is used to compute updates. The pro­
cess always waits for any external event to start a new synchronization loop. The process
itself can not decide when it should happen.

40

M e t h o d zoneSync (zonename: DNSName)
while true do

if initial synchronization then
A , B <— download al l records of zone zonename;

end
else

A , B <— try to download incremental changes of zone zonename;
A , B compute incremental changes using the cache i f non-incremental
data was received;

end
updateA, updateB = d i f f (A, B, cache);
Send updates (updateA, updateB) to remote sides, i f required;
if initial synchonization then

Initialize cache for the zone zonename;
end
else

Update cache for the zone zonename;
end
Wai t for next event;

end

A l g o r i t h m 4: Zone synchronization
A l g o r i t h m 5 describes the main loop of the dnssyncd synchronization daemon, which

is mainly responsible to detect which zones w i l l be synchronized and send events to partic­
ular zone processes to run synchronization.

The detection of zones which w i l l be synchronized is made first. This depends on current
settings, it can be a static list of zones or a dynamic source of zones can be specified.
A s previously mentioned, each zone has its own process which performs synchronization
of records.

The rest of the time the main loop just waits for any event. The most common events
and matching actions are listed i n algori thm representation.

41

Method mainLoopO
Parse settings;
Detect ion which zones w i l l be synchronized;
for each zone to be synchronized do

Create zone, if needed;
Create a new zone process;
/* Executed i n a new process */
zoneSync{zone name)

end
while true do

event <— wait for an event;
switch event do

case timer ends
Send event to a l l zone processes to start synchronization;

end
case records changed notification

Send event to the part icular zone process;
end
case new zone notification

A d d new zone;
Start zone process for the part icular zone;

end
case zone removed notification

Stop zone process for the part icular zone;
Remove zone;

end
case user event

Execute actions required by a user;
end

endsw
end

Algorithm 5: M a i n loop of the dnssyncd daemon

5.2 Synchronization Daemon Design

A s figure 5.1 Synchronizat ion topology shows, the proof of concept of the synchronization
daemon (dnssyncd) is connected i n topology between an L D A P Server and a D N S server
(represented by 389 D S and B I N D 9).

The standard L D A P operations are used to update D N S records (and zones) i n the L D A P
database, specifically the L D A P search operation is used to get records and zones data and
the L D A P modify operation is responsible for updat ing and creating records and zones
in the L D A P database. Syncrepl is used as a notification mechanism.

In case of the D N S server, a zone transfer is used to download records from the server,
dynamic dns updates (D D N S) are used to update records, rndc u t i l is used for zone cre­
at ion/delet ion and notifications are arranged by D N S Notify messages.

Details are explained i n following sections.

42

SyncRepl ._DNS Notify

dnssyncd

LDAP Search/Mod

Zone Transfer

—* iiiil
DDNS, rndc

LDAP DB DNS Server

Figure 5.1: Synchronizat ion topology

5.2.1 H i g h L e v e l O v e r v i e w

The D N S synchronization daemon is a multiprocess application, which consists of the fol­
lowing separate processes as the figure 5.2 dnssyncd diagram shows:

• core module,

• zone module (one per zone),

• management module,

• and notify modules (optional).

The communicat ion between modules (processes) is ensured v ia messages. (Message
flows are represented as arrows i n the figure.) The core module works as a central hub,
where a l l the other modules are connected. A l l messages must pass through the core module,
as dashed arrows show i n the figure, which is responsible for rout ing to proper subprocess.

Core M o d u l e

Core module is the main process of the synchronization daemon, which exists first and
manage the other modules/processes. Th is module parses settings files, creates other pro­
cesses on demand, control other modules, destroy processes when they are unneeded. This
module is also responsible for adding and removing zones and detection of new zones using
core plugins, which are described i n detai l in section 5.2.3 Core Plugins .

A s the synchronization of zone is done on records level, the core module requires to know
only zone names. The only actions that core module does wi th zones are: creating a new
zone i f it should exists, removing a zone i f it should be removed, detect i f there is any new
zone that should be synchronized, and create a zone module for each zone.

43

Figure 5.2: dnssyncd diagram

Zone Module(s)

Synchronization of records is done by zone modules. The synchronization algori thm, de­
scribed in 5.1.2 Algor i thms, is executed i n this module.

One zone module instance exists for each zone. The zone module is responsible for
keeping the part icular zone synchronized, for getting record data, updat ing record data, and
resolving conflicts. Zone modules are independent on each other, so i f there is an issue wi th
synchronization of a zone, other zones are not affected and w i l l continue to be synchronized.

Zone modules wait un t i l the core module requests to start synchronization by a message.
The reason for relying on a message is that the only core module is aware of any external
event, like received notification, manual triggered synchronization or timeout event.

Also these modules allocate the highest amount of system resources compared to the other
synchronization daemon modules, as they keep lot of D N S data in cache and work wi th
bigger amount of data dur ing synchronization phase which must be stored i n memory and
of course computat ion of differences uses a lot of C P U power.

Zone modules use zone plugins described in detail in section 5.2.3 Zone Plugins.

44

Notify Module(s)

Notify module is responsible to wait for any notification event from a D N S or an L D A P
server and then to immediately send a message to the core module. Current implementat ion
allows just one notify module per one side (one for D N S , one for L D A P) . E a c h module
is a separate process.

Notify modules are opt ional part. Plugins for them may not be implemented, or notifi­
cation modules may be disabled i n settings. T h e n other methods of change detection must
be used, such as a periodical detection.

The notification method is strongly dependent on remote service. The plugin interface
is described in section 5.2.3 Notify Plugins.

Management M o d u l e

Management module allows direct control over the dnssyncd daemon. The supported
actions are:

• L i s t a l l zones that are being synchronized wi th their synchronization status.

• Show a part icular zone in detail .

• A d d a new zone that w i l l be synchronized.

• Delete zone from synchronization daemon.

• Suspend synchronization for a part icular zone.

• Force starting synchronization for a zone.

A user can use dnssyncd-control C L I uti l i ty, which is part of the daemon imple­
mentation. This u t i l i ty implements a l l operations mentioned above by sending a requests
to the daemon. The C L I u t i l i ty contains bui l t - in help.

5.2.2 S y n c h r o n i z a t i o n States

The figure B . l Synchronizat ion states diagram shows the state diagram of the D N S syn­
chronization daemon. These states are independent between zones, i.e. only zone modules
work wi th them.

The part icular synchronization states i n daemon are:

i n i t — plugins initialization Zone plugins are being ini t ia l ized, testing configuration
and connection to servers.

active_read — synchronization is getting D N S data Synchronization process started,
zone plugins are gathering D N S data required by synchronization algori thm.

active — synchronization active Synchronizat ion algori thm is computing differences and
creating D N S updates.

active_write — sending updates Zone plugins are sending D N S updates to servers.

unsynced_readf a i l e d — failed to get D N S data Unsynchronized because at least one
of zone plugins cannot gather the D N S data from the server.

45

unsyncecLwritef a i l e d — failed to send updates Unsynchronized because at least one
of zone plugins cannot successfully send the data to the server.

unsynced — usynchronized Synchronizat ion algori thm is not able to compute differences,
or any internal error during the synchronization.

sync — synchronized The D N S zone was successfully synchronized. The process w i l l sleep
unt i l new synchronization is required.

part_synced — partially synchronized Some of D N S records cannot be successfully syn­
chronized. These records are recorded and user can show them.

suspended — synchronization suspended - A cr i t ical error happened, synchronization
was disabled by user, or synchronization process got stuck between unsynchronized
states for too long. This means the process does not exist, just the core module keeps
its status. Synchronizat ion must be manually re-enabled for this zone.

5.2.3 P l u g i n Interface

Plugins work as a bridge between remote servers and synchronization daemon. Each server
type has different A P I , different methods how to access data, how to modify data or how
to receive notifications.

A plugin must do mapping between different data format: the format required by syn­
chronization daemon and data served by remote server. A l so plugins must map daemon
calls to appropriate actions. Each type of plugin has a different subset of actions.

A l l required operations by synchronization daemon which plugins must implement are
mentioned i n following sections.

C o m m o n Interface

A l l plugin types have to provide a list of mandatory and optional (with default values)
arguments which mus t /may be used in synchronization daemon configuration file for that
particular plugin. A l so the p lugin must provide static method to validate options, which
raise exceptions if requirements were not met.

Core Plugins

A s mentioned before, core plugins are required for zone operations, so a l l methods this type
of plugin implements are zone related.

The methods required for this plugin are:

add_zone(zonename, records) - this method is called by the daemon when a new zone,
specified i n parameter zonename, must be added. The zone is created wi th records
specified i n parameter records

del_zone(zonename) - this method is called by daemon when a zone, specified in param­
eter zonename, must be removed.

zone .exists (zonename) - called by daemon for detection i f the zone wi th name specified
in the parameter zonename exists.

46

get_zone_records(zonename) - called by the daemon to get a l l the records from the zone
that is specified i n parameter zonename, usually during creating this zone on opposite
synchronization side.

get_zones() (optional) - i f this method is implemented, a plugin may serve as a source
of a l l zones that should be synchronized. Otherwise, i f none of plugins implements
this method, a user have to specify which zones should be synchronized manually
in configuration file (or v i a the management module).

Zone Plugins

For each zone a new instance of a zone plugin is created to ensure the ind iv idua l zones are
processed separately. The methods implemented by the zone plugin work wi th the D N S
records of the part icular zone.

M e t h o d required for this type plugin:

get_zone_data(all_records=False, rr_owners) - returns records from zone. B y de­
fault the synchronization daemon expects records in incremental form. The option
al l jrecords forces the plugin to return a l l actual records. The options rr_owners
pushes the plugin to return only the records for specified owners. If no owners are
specified, records from al l owners must be returned.

update(zonedata) - method is called when the update, specified in zonedata, is ready
to be sent to the remote server.

process_notify.message(message) - method is called when a notify message, passed
through parameter message, for this plugin was received from the core module.

process_message(message) - this method is called when a message different from the no­
tify message is received. This method allows custom implementat ion for custom mes­
sages send from core or notify plugins belonging to the same group as the zone plugin.

Notify Plugins

Notify plugins must communicate only v i a messages, as they are mostly independent
of the core module and they just wait for notifications from remote servers. The only
method that has to be implemented is run () , where the code is executed as a separated
process.

Messages

Messages allow to communicate between different parts of synchronization daemon and
plugins.

Notify plugins can send following messages:

Not i fyRecordMsg - destination for this message is a zone plugin. Th is message may
contain information about new records, removed records or just information i f syn­
chronization for part icular zone should start.

Not i fyNewZoneMsg - destination is the core module, which decides i f a new zone should
be added to opposite side and a new zone module created.

47

Not i fyRemovedZoneMsg - destination is the core module, which decides if it is allowed
to remove zone.

A s mentioned before, notification plugins are optional , so not a l l of these messages must
be used.

5.3 Implementation Details

This section describes implementat ion details of the synchronization daemon and both
B I N D 9 and L D A P wi th F r e e l P A schema plugins.

5.3 .1 I m p l e m e n t a t i o n Deta i l s of the S y n c h r o n i z a t i o n D a e m o n

Configuration

The synchronization daemon is configured v i a configuration file. Th is file is in J S O N format,
consists of three parts: global daemon configuration, synchronization configuration and
plugins configuration. For details please read appendix C.3 Configuration F i l e .

Normalizat ion of Records

A l l received records are derelativized to absolute domain name, before they can be com­
pared v i a synchronization algori thm. This must be done for R D A T A part of records where
a domain name is used too.

D N S S E C

The D N S S E C records RRSIG, DNSKEY, NSEC and NSEC3 are ignored by synchronization
daemon. The approach where a l l D N S servers generate their own signatures for records
is used.

Paralelization

Even tough the threads are sufficient for the synchronization daemon, the implementat ion
of C P y t h o n threads [13] is using a global lock, which means that the part icular threads are
executed only one by one. To avoid this l imi ta t ion , the implementat ion v i a processes was
used to support parallel computing.

Management module

The current implementat ion of management module uses the D - B U S as the way to receive
requests from outside. A s is wri t ten on the official page [14], D - B U S is a message bus
system, which allows different applications to communicate. A d d i t i o n a l information about
D - B U S is out of scope of this thesis and w i l l not be discussed more.

The management module of the dnssyncd daemon is wai t ing for any request over D -
B U S from the dnssyncd-control ut i l i ty. The current implementat ion allows to control
the daemon only as a root user.

48

5.3.2 I m p l e m e n t a t i o n Deta i l s of B I N D 9 P l u g i n

This section explains how the required operations are implemented for B I N D 9 D N S server
in the plugin.

Gett ing Records

Records are downloaded from the D N S server using A X F R / I X F R mechanism, which was
explained in sections 2.1.3 A X F R and 2.1.3 I X F R . The preferred mechanism is I X F R except,
for the in i t i a l synchronization.

D N S data downloaded through I X F R is parsed by plugin, into result consists of lists
of added records and removed records since the last download.

The plugin internally keeps the latest S O A serial to be able to get just the new changes
next t ime, and is also responsible for marking data as incremental if I X F R were successful.
In case the I X F R is not supported by the D N S server, the D N S w i l l return A X F R answer
and the plugin must detect this si tuation and properly mark data as non-incremental.

U p d a t i n g Records

Records are updated on the D N S server using D D N S that was described i n section 2.1.5
Dynamic Updates (D D N S) .

One D D N S message is handled by the D N S server as one transaction, a l l or none records
are updated.

A d d i n g a New Zone

A l l new zones are added by plugin into B I N D 9 server v ia R N D C util i ty, mentioned i n sec­
t ion 2.1.6 R N D C ut i l i ty .

The following template is used to create a new zone v ia R N D C :

rndc addzone <zone name> '{
type master;
f i l e <path to~zone f i l e > ;
allow-transfer { 127.0.0.1; ::1; };
allow-update { 127.0.0.1; ::1; };
also-notify { 127.0.0.1 port <port>; ::1 port <port>; };

>;'

Because the zone file must be stored locally, the current implementat ion does not allow
to use remote D N S server and synchronization daemon must run on the same machine
as the D N S server. This file was created wi th plugin before the rndc command was executed.
The zone files contains records that has been downloaded from opposite synchronization
side, as the zone is new and no record conflicts are possible.

The template shown above also shows settings for update, zone transfer and notifi­
cations, which are needed for proper functionality of the D N S B I N D 9 synchronization
plugin.

To make the new zone active, the rndc reconfig command must be executed after
the zone was added.

49

Removing a Zone

A s the adding of a new zone, the removing a zone is also done by R N D C util i ty.
The following template shows how zone can be removed using R D N C :

rndc delzone <zone name>

Also the rndc reconf i g command must be executed after that to make the new zone
configuration active on the server.

Notifications

The notification plugin for B I N D 9 is permanently wai t ing at localhost for both U D P and
T C P notify messages sent by server.

If a notification is received, the S O A serial of the part icular zone from notify messages
is compared wi th the last S O A serial known by the zone plugin, and i f the received S O A
is newer then the synchronization for this zone should start. The received notification
message from the B I N D 9 server can contain a list of changed records, but as R F C 1996
[38, section 3.7] defines, these hints are unsecured and thus the list of records is ignored
by plugin.

Detection of New Zones

Current implementat ion does not support this feature.

5 . 3 . 3 I m p l e m e n t a t i o n Deta i l s of L D A P P l u g i n

Only the F r e e l P A schema is currently supported by current plugin implementation. The D N S
related parts of the F r e e l P A schema are listed i n the appendix D F r e e l P A L D A P Schema.

The standard L D A P operations, ldapadd, ldapmod and ldapdelete allows to imple­
ment a l l required operations except notifications.

The major issue here is mapping the D N S records to the D I T structure and vice versa.
This means especially mapping S O A record into several attributes in zone object, creating
record wi th proper T T L value, adding R D A T A of records to proper attributes per record
type.

For the L D A P entries where T T L is not specified the default T T L value, 8400 is used.
This T T L value can be modified i n the settings file.

The F r e e l P A schema stores zone apex records i n the zone L D A P entry. Th is must be
handled in a special way because other records belong to the subtree of the zone entry.

Instead of the D N S plugin, the L D A P plugin does not need to have an L D A P server
on the same machine as the dnssyncd daemon is running, a l l operation can be done remotely.

Notifications

The syncrepl in refreshAndPersist mode is used as the notification mechanism.
The data received v i a syncrepl is not used for synchronization. The data is just used

to decide i f synchronization is needed, and i f yes then standard synchronization cycle start.
For the removed entries, the syncrepl returns only uuid , which is the unique identifier for

every entry. The notification plugin must store uu id and belongings owner and zone names,
to be able to dist inguish which record or zone was removed. After the first connection,

50

the L D A P server returns v i a syncrepl a l l entries w i th uu id i n a part icular subtree, which
are used to ini t ial ize plugin database of uuids.

A s mentioned before, the syncrepl returns whole entry, which i n case of F r e e l P A means
the several records are returned. In this case the data cache is used to determine which
records were changed.

Detection of New Zones

Detection of new zones is solved in two ways. The first is the notification plugin, which
v i a the syncrepl returns new zone entries. The second is a standard L D A P search done
periodically.

This approach is also used for detection of removed zones.

5.4 System Requirements

This section describes the requirements to be able to run the synchronization daemon.

5.4.1 S y n c h r o n i z a t i o n D a e m o n

Requirements of the synchronization daemon:

• the daemon must be executed under the root user,

• it requires python 2.7 interpreter (It is not compatible w i th python 3 . x due to used
libraries.),

• required packages: python-ldap 1, python-dns2, and python-dbus3.

5.4.2 B I N D 9

This section contains requirements of the B I N D 9 D N S server to be able to work wi th
the dnssyncd daemon. The following information is applicable for B I N D version 9.9.

General Settings

To be able to add new zones, the following configuration must be added into the B I N D 9
configuration file (usual path /etc/named.conf).

options {
allow-new-zone yes;

} ;

Also , to support creating a new zone dynamically, the permissions of the B I N D 9 working
directory must be changed.

chmod g+w /var/named/

A disabled I X F R zone transfer can be enabled by:

x h t tp : / /www.py thon- ldap .o rg /
2 ht tp : / /www.dnspython .org / , currently (may 19th 2015) is master branch required
3 h t tp : / /www. f reedesk top .o rg /wik i /Sof tware /dbus /

51

http://www.python-ldap.org/
http://www.dnspython.org/
http://www.freedesktop.org/wiki/Software/dbus/

options {
prov ide - ix fr yes;

} ;

Setting U p rndc Ut i l i ty

The rndc u t i l i ty and B I N D 9 must be properly configured wi th shared secret key. This
configuration can be done by executing the following command line ut i l i ty:

sudo rndc-confgen - a

Setting U p Zones Configurations

A s previously mentioned, the zones must contain following configuration lines that allows
them to be synchronized by the synchronization daemon:

zone "example.com." IN {
allow-transfer { 127.0.0.1; ::1; };
allow-update { 127.0.0.1; ::1; };
also-not i fy { 127.0.0.1 port <port>; ::1 port <port>;

} ;

In case the zones are configured manual ly by the zone files, the following line w i l l enable
I X F R from files:

zone "example.com." IN {
ixfr-from-differences yes;

}:

5.4.3 389 D i r e c t o r y Server

This section contains requirements of the 389 Directory Server required by the synchroniza­
t ion daemon. These settings are applicable for 389 Directory Server version 1.3.3.

5.4.4 B a s i c Sett ings

Basic settings requires:

• To have the 389 Directory Server installed.

• Created a user, whose credential w i l l be used by the synchronization daemon to com­
municate wi th the L D A P database.

• Create the new container where D N S zones and records w i l l be stored.

• Verify the user is allowed to read, write and modify entries i n the container.

This configuration is only directory server related and it is out of scope of this work.
Details can be found i n the official documentation.

52

http://example.com
http://example.com

A d d i n g F r e e l P A Schema

The F r e e l P A schema must be added into the directory server. This can be done by copy­
ing the attr ibute types and object classes listed in appendix D F r e e l P A L D A P Schema
into the directory wi th schemas (usually /etc/dirsrv/schema/) and restarting the L D A P
server.

Syncrepl Configuration

Syncrepl on the 389 Directory Server can be enabled by the following modification of the server
configuration:

ldapmodify .. .
dn: cn=Content Synchronization,cn=plugins,cn=config
changetype: modify
replace: nsslapd-pluginEnabled
nsslapd-pluginEnabled: on

dn: cn=Retro Changelog Plugin,cn=plugins,cn=config
changetype: modify
replace: nsslapd-pluginEnabled
nsslapd-pluginEnabled: on

replace nsslapd-attribute
nsslapd-attribute: nsuniqueid:targetUniqueld

replace nsslapd-changelogmaxage
nsslapd-changelogmaxage: 2d

5.5 Limitations of the Current Implementation

A s this proof of concept of the synchronization daemon runs only at localhost, some negative
effects caused by a computer network are suppressed. Th is covers: almost no delay caused
by network connection, no loss of a notification message, no slowdown of data transfer
caused by a slow network connection.

The synchronization speed is negatively affected by high level programming language,
which is slow by itself. The computat ion and synchronization itself has not been opt imized
and may cause a serious delay. A s having better readabili ty and less lines of code is better
for the proof of concept, some opt imizat ion and rewri t ing to low level code for cr i t ica l parts
may be needed for product ion implementat ion to achieve speed needs.

The synchronization daemon implements support only for IN zone class, a l l records
without the specified class are by default considered as belonging into the IN class. Records
wi th other classes are ignored.

Case when one side sent data i n incremental format and the second side sent a l l data
is not supported because of the internal data cache, which returns incremental update
from al l data, so this case never happen i n the implementation. So, the synchronization

53

algori thm is implemented only for the cases when both sides sent incremental updates or
both sides send al l records.

5.6 Evaluation of the Synchronization Daemon Implementa­
tion

A s the synchronization daemon it the universal solution for several types of D N S and
L D A P servers, the opposite approach is to have specialized solution for specific servers.
A s the example of specialized solution the bind-dyndb-ldap p lugin was chosen. Detai led
information and compison follows i n the following subsection.

Also , the synchronization daemon can be improved as discussed later i n this section.

5.6.1 C o m p a r a t i o n w i t h bind-dyndb-ldap P l u g i n

The bind-dyndb-ldap, as is wri t ten on the official page [], is a plugin for the B I N D 9 server
that allows to read and write D N S data to an L D A P backend. Currently, this p lugin is used
in the F r e e l P A project to synchronize records between an L D A P server and the B I N D 9
server.

A s the bind-dyndb-ldap uses internal B I N D 9 A P I , it has higher possibilities to con­
t ro l the D N S server than dnssyncd. The bind-dyndb-ldap p lugin has instant access
to the record database on the D N S server, it does not need to keep own cache. The bind-dyndb-ldap
plugin knows about each new record added on the D N S server immediately, but the dnssyncd
daemon must rely on the notification mechanism.

The bind-dyndb-ldap p lugin also allows to directly configure the settings for zones
and B I N D 9 settings, which B I N D 9 internal A P I allows. It also means forwarders and
forwarding policy, policies for dynamic updates, transfers and D N S queries can be con­
figured using the L D A P . Also , the bind-dyndb-ldap p lugin supports the forward zones
synchronization. The synchronization daemon can not achieve this functionality without
an available public A P I on the B I N D 9 D N S server. However, the bind-dyndb-ldap p lugin
must adapt to changes i n the internal B I N D 9 A P I , which can be changed rapidly, instead
of the standardized methods and the public A P I , which the synchronization daemon uses.

Also as the bind-dyndb-ldap p lugin is running i n the B I N D 9 namespace, the error
in that plugin can cause terminat ion of the D N S server. In the multi-master L D A P topol­
ogy, error caused by a L D A P entry may cause the failure of a l l D N S servers which are
synchronized wi th L D A P database. In case the dnssyncd daemon, the daemon is sepa­
rate process, and terminat ion of the synchronization daemon due an error, does not affect
the D N S servers.

O n the other hand, the bind-dyndb-ldap p lugin is t ight ly bounded wi th the B I N D 9,
which prevents it to be used for other D N S servers. The synchronization daemon, w i th plu­
gin interface, allows to extend functionality for several types of D N S servers. Respectively,
is ready to be used in only records synchronization mode wi th standardized operations wi th
any D N S server.

5.6.2 Poss ible F u t u r e Improvements

To allow work wi th B I N D 9 remotely, the S S H transport of zone file templates for zones that
w i l l be added can be implemented. This w i l l allow the new zone to be added by the call ing

54

rndc u t i l i ty remotely, which is not possible now because rndc requires a zone file on a local
file system for new zones.

Also , there is a possible solution, how to get list of a l l zones from B I N D 9 server, but it
is not preferred. The rndc u t i l i ty allows to export B I N D 9 records database into a file. Th is
file can be parsed and a list of zones w i l l be extracted. Another solution can be to write
a plugin for the B I N D 9 server that can provide a list of zones, through D - B U S interface
for example.

The current implementation uses the python programming language, which is inter­
preted and slow. There is a possibil i ty to rewrite the performance cr i t ica l parts of the dae­
mon into python C-extension modules, where the code is compiled and much faster.

The currently supported method to b ind into L D A P database is only the simple b ind
(username and password). The L D A P plugin can be extended wi th new authentication
methods, such as kerberos authentication.

It is possible to implement the D N S S E C zone signing in the synchronization daemon
to have zones signed on the fly for D N S servers that do not allow to sign zones dynamically.

Security

A s the proof of concept, the synchronization daemon does implement only the basic security,
which is not enough to be used i n product ion environment.

For any L D A P connection T L S / S S L or S A S L layer should be used. A l s o an access
control should be applied for the synchronization daemon to be able to read and modify
only the D N S subtree of an L D A P database.

The D N S dynamic updates, zone transfers and notify messages are currently configured
wi th simple I P address filtration, which is not enough. To improve security, the T S I G
mechanism specified i n R F C 2845 [i] can be used. T S I G allows authentication using
shared secrets and one way hashing. T S I G is out of scope of this thesis and w i l l not be
explained i n more detail .

55

Chapter 6

Summary

The objective of this study is to analyze various schemas how to store D N S data i n L D A P ,
provide solution to synchronizing records and create a proof-of-concept implementat ion
of the synchronization daemon that synchronizes the D N S records between a D N S server
and an L D A P database. The current proof-of-concept is implemented for the B I N D 9 D N S
server and the 389 Directory Server L D A P database wi th F r e e l P A schema. This schema
was compared in text w i th several other schemas, where each schema implements a different
model of how to storage D N S data.

This daemon was designed as a multiprocess application that allows to synchronize
D N S zones independently and in parallel . For each zone there is a local cache containing
belonging records kept i n each process. The records help to resolve conflicts of D N S records
that could appear. Several types of conflicts and synchronization issues that must be solved
by synchronization are described i n the text.

The synchronization daemon, as was defined i n goals, implements an interface that
allows to add new plugins to extend the abil i ty to synchronize f rom/to different types of D N S
servers, L D A P databases using various schemas, or even a database different than L D A P .
A s was defined i n second goal, the synchronization daemon also uses the standardized
mechanism, for example, zone transfers, notification messages and dynamic D N S updates,
which should be supported by a l l D N S servers, and thus implementat ion of new plugins for
different server is simplified.

The result of this work is the working application, the synchronization daemon, which
synchronize the D N S records between the L D A P database and D N S server, using the stan­
dardized methods and allowing easily extend functionality for more types of L D A P and D N S
servers and L D A P schemas, using the defined interface for the synchronization plugins.

56

Bibliography

[1] D L Z L D A P schema. [Online; cit . 2014-11-10].
U R L h t t p : / / b i n d - d l z . s o u r c e f o r g e . n e t / l d a p _ e x a m p l e . h t m l

[2] F r e e l P A : A b o u t F r e e l P A . [Online; cit . 2014-11-05].
U R L h t t p : / / w w w . f r e e i p a . o r g / p a g e / A b o u t # W h a t _ i s _ F r e e I P A . 3 F

[3] G I T repostiry of bind-dyndb-ldap - F r e e l P A D N S schema. [Online; cit . 2014-12-10].
U R L
h t t p s : / / g i t . f e d o r a h o s t e d . o r g / c g i t / b i n d - d y n d b - l d a p . g i t / t r e e / d o c / s c h e m a

[4] How to use dnsZone w i t h the B I N D 9 sdb back-end. [Online; cit . 2015-03-09].
U R L h t t p : / / b i n d 9 - l d a p . b a y o u r . c o m / d n s z o n e h o w t o . h t m l

[5] L D A P for Rocket Scientists. [Online; cit . 2014-10-06].
U R L h t t p : / / w w w . z y t r a x . c o m / b o o k s / l d a p /

[6] NSUPDATE manpage. [Online; cit . 2014-11-07].
U R L h t t p : / / w w w . f r e e b s d . o r g / c g i / m a n . c g i ? q u e r y = n s u p d a t e & s e k t i o n = l

[7] R e d Hat Directory Server 8 - Manag ing Indexes. [Online; cit . 2014-11-12].
U R L h t t p s : / / a c c e s s . r e d h a t . c o m / s i t e / d o c u m e n t a t i o n / e n - U S / R e d _ H a t _
D i r e c t o r y _ S e r v e r / 8 . 2 / h t m l / A d m i n i s t r a t i o n _ G u i d e / M a n a g i n g _ I n d e x e s . h t m l

[8] B i n d D y n D B L D A P . December 2014, [Online; cit . 2015-05-20].
U R L h t t p s : / / f e d o r a h o s t e d . o r g / b i n d - d y n d b - l d a p /

[9] Andrews, M . : Negative Caching of D N S Queries (D N S N C A C H E) . M a r c h 1998,
[Online; cit . 2015-04-05].
U R L h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c 2 3 0 8

[10] B . Laurie , R . A . , G . Sisson: R F C 5155: D N S Security (D N S S E C) Hashed
Authent ica ted Den ia l of Existence. M a r c h 2008, [Online; cit . 2015-05-07].
U R L h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 5 1 5 5

[11] Eastlake, D . : R F C 4343: D o m a i n Name System (D N S) Case Insensitivity
Clar if icat ion. January 2006, [Online; cit . 2015-02-02].
U R L h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c 4 3 4 3

[12] Foundat ion, O.: O p e n L D A P Software 2.4 Adminis t ra tor ' s Guide . September 2014,
[Online; cit . 2015-01-12].
U R L h t t p : / / w w w . o p e n l d a p . o r g / d o c / a d m i n 2 4 / a c c e s s - c o n t r o l . h t m l

57

http://bind-dlz.sourceforge.net/ldap_example.html
http://www.freeipa.org/page/About%23What_is_FreeIPA.3F
https://git.fedorahosted.org/cgit/bind-dyndb-ldap.git/tree/doc/schema
http://bind9-ldap.bayour.com/dnszonehowto.html
http://www.zytrax.com/books/ldap/
http://www.freebsd.org/cgi/man.cgi?query=nsupdate&sektion=l
https://access.redhat.com/site/documentation/en-US/Red_Hat_
https://fedorahosted.org/bind-dyndb-ldap/
http://tools.ietf.org/html/rfc2308
https://tools.ietf.org/html/rfc5155
http://tools.ietf.org/html/rfc4343
http://www.openldap.org/doc/admin24/access-control.html

[13] Foundat ion, P . S.: The P y t h o n Standard L ib ra ry : threading - Higher-level threading
interface. M a y 2015, [Online; cit . 2015-05-18].
U R L h t t p s : / / d o c s . p y t h o n . o r g / 2 / l i b r a r y / t h r e a d i n g . h t m l

[14] freedesktop.org: D - B U S : W h a t is D - B u s ? Jan 2014, [Online; cit . 2015-05-06].
U R L h t t p : / / w w w .f r e e d e s k t o p . o r g / w i k i/Sof t w a r e / d b u s /

[15] G o o d , G . : R F C 2849: The L D A P D a t a Interchange Format (L D I F) - Technical
Specification. June 2000, [Online; cit . 2014-11-12].
U R L h t t p ://tools.ietf.org/html/rf c 2 8 4 9

[16] I S C : B I N D . [Online; cit . 2014-10-07].
U R L ht tp : / /www.isc.org/downloads/bind/

[17] I S C : BIND 9 Administrator Reference Manual. [Online; cit . 2015-03-06].
U R L h t t p : / /www. b i n d 9 . net / a rm99 . pdf

[18] K . Zeilenga, J . C : R F C 4533: The Lightweight Directory Access Pro toco l (L D A P)
Content Synchronizat ion Operat ion. June 2006, [Online; cit . 2015-03-02].
U R L h t t p ://tools.ietf.org/html/rf c 4 5 3 3

[19] Klens in , J . : R F C 5891: Internationalized Doma in Names in Appl ica t ions (I D N A) :
Pro toco l . August 2010, [Online; cit . 2015-02-10].
U R L h t t p ://tools.ietf.org/html/rf c 5 8 9 1

[20] Lewis, E . ; Hoenes, A . : R F C 5936: D N S Zone Transfer P ro toco l (A X F R) . June 2010,
[Online; cit . 2014-10-10].
U R L h t t p ://tools.ietf.org/html/rf c 5 9 3 6

[21] M . Andrews, S. W . : R F C 4431: The D N S S E C Lookaside Val ida t ion (D L V) D N S
Resource Record. February 2006, [Online; cit . 2015-05-07].
U R L h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 4 4 3 1

[22] Microsoft: Protocols and Interfaces to Ac t ive Directory. [Online; cit . 2014-11-06].
U R L h t t p : / / t e c h n e t . m i c r o s o f t . c o m/en-us / l i b r a r y / c c 9 6 1 7 6 6 . a s p x

[23] Mockapetr is , P . : R F C 1034: D O M A I N N A M E S - C O N C E P T S A N D F A C I L I T I E S .
November 1987, [Online; cit . 2014-09-12].
U R L h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c l 0 3 4

[24] Mockapetr is , P . : R F C 1035: D O M A I N N A M E S - I M P L E M E N T A T I O N A N D
S P E C I F I C A T I O N . November 1987, [Online; cit . 2014-09-12].
U R L h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c l 0 3 5

[25] Ohta , M . : R F C 1995: Incremental Zone Transfer i n D N S . August 1996, [Online; cit .
2014-10-10].
U R L h t t p ://tools.ietf.org/search/rfcl995

[26] Oracle: Oracle8i Integration Server Overview. [Online; cit . 2014-11-12].
U R L http://docs.oracle .com/cd/A87860_01/doc/ois.817/a83729/adois09 .htm

[27] P . Barker, S. K . : The C O S I N E and Internet X.500 Schema. November 1991, [Online;
cit . 2015-03-05].
U R L h t t p ://tools.ietf.org/html/rf c ! 2 7 4

58

https://docs.python.org/2/library/threading.html
http://freedesktop.org
http://www.freedesktop.org/wiki/Software/dbus/
http://tools.ietf.org/html/rfc2849
http://www.isc.org/downloads/bind/
http://tools.ietf.org/html/rfc4533
http://tools.ietf.org/html/rfc5891
http://tools.ietf.org/html/rfc5936
https://tools.ietf.org/html/rfc4431
http://technet.microsoft.com/en-us/library/cc961766.aspx
http://tools.ietf.org/html/rfcl034
http://tools.ietf.org/html/rfcl035
http://tools.ietf.org/search/rfcl995
http://docs.oracle.com/cd/A87860_01/doc/ois.817/a83729/adois09.htm
http://tools.ietf.org/html/rfc!274

[28] P . V i x i e , D . E . r., O . Gudmundsson: R F C 2845: Secret K e y Transaction
Authent ica t ion for D N S (T S I G) . M a y 2000, [Online; cit . 2015-05-20].
U R L h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c 2 8 4 5

[29] R . Arends, M . L . , R . Aus te in : R F C 4033: D N S Security Introduction and
Requirements. M a r c h 2005, [Online; cit . 2015-05-07].
U R L h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 4 0 3 3

[30] R . Arends, M . L . , R . Aus te in : R F C 4034: Resource Records for the D N S Security
Extensions. M a r c h 2005, [Online; cit . 2015-05-07].
U R L h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 4 0 3 4

[31] R . Arends, M . L . , R . Aus te in : R F C 4035: Pro toco l Modificat ions for the D N S
Security Extensions. M a r c h 2005, [Online; cit . 2015-05-06].
U R L h t t p s : / / t o o l s . i e t f . o r g / h t m l / r f c 4 0 3 5

[32] R . E l z , R . B . : R F C 1982: Serial Number Ar i thmet i c . August 1996, [Online; cit .
2015-02-01].
U R L h t t p ://tools.ietf . o r g/search/rfcl982

[33] R . E l z , R . B . : R F C 2181: Clarifications to the D N S Specification. Ju ly 1997, [Online;
cit . 2015-03-10].
U R L h t t p ://tools.ietf . o r g/search/rfc2181

[34] S. Rose, W . W . : R F C 6672: D N A M E Redirect ion i n the D N S . June 2012, [Online;
cit . 2015-05-06].
U R L https://tools.ietf.org/html/rfc6672

[35] Sermersheim, J . : R F C 4511: Lightweight Directory Access Pro toco l (L D A P) : The
Pro tocol . June 2006, [Online; cit . 2014-11-12].
U R L h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c 4 5 1 1

[36] python-ldap project team: python-ldap Documentat ion. September 2014, [Online;
cit . 2015-01-12].
U R L h t t p :
//www.python-ldap.org/doc/html/ldap.html#ldap.LDAPObject.search_ext_s

[37] Thomson, S.; Rekhter, Y . ; Bound , J . : R F C 2136: Dynamic Updates i n the D o m a i n
Name System (D N S U P D A T E) . A p r i l 1997, [Online; cit . 2014-10-12].
U R L h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c 2 1 3 6

[38] V i x i e , P . : R F C 1996: A Mechanism for P rompt Notif icat ion of Zone Changes (D N S
N O T I F Y) . August 1996, [Online; cit . 2015-10-09].
U R L h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c l 9 9 6

[39] Zeilenga, K . : R F C 4512: Lightweight Directory Access Pro toco l (L D A P) : Directory
Information Models . June 2006, [Online; cit . 2014-11-12].
U R L h t t p : / / t o o l s . i e t f . o r g / h t m l / r f c 4 5 1 2

[40] Zeilenga, K . : R F C 4524: C O S I N E L D A P / X . 5 0 0 Schema. June 2006, [Online; cit .
2015-02-10].
U R L https://tools.ietf.org/html/rfc4524

59

http://tools.ietf.org/html/rfc2845
https://tools.ietf.org/html/rfc4033
https://tools.ietf.org/html/rfc4034
https://tools.ietf.org/html/rfc4035
http://tools.ietf.org/search/rfcl982
http://tools.ietf.org/search/rfc2181
https://tools.ietf.org/html/rfc6672
http://tools.ietf.org/html/rfc4511
http://www.python-ldap.org/doc/html/ldap.html%23ldap.LDAPObject.search_ext_s
http://tools.ietf.org/html/rfc2136
http://tools.ietf.org/html/rfcl996
http://tools.ietf.org/html/rfc4512
https://tools.ietf.org/html/rfc4524

Appendix A

Content of DVD

The attached D V D contains:

• Electronic version of this thesis.

• Source code of the thesis (text).

• Source code of the synchronization daemon.

• F r e e l P A D N S schema L D I F file.

• V i r t u a l image of the test environment w i th preinstalled and preconfigured L D A P
database, D N S server and the synchronization daemon.

• R E A D M E file that contains basic information.

60

Appendix B

States Diagram of the
Synchronization Daemon

61

Appendix C

User Manual

C . l Installation

To instal l the synchronization daemon on the Fedora 21 system, please use the
dnssyncd-install-f2 1. sh shell script.

For other distributions please read instructions inside the instal lat ion script.

C.2 Usage

C.2 .1 dnssyncd

To run synchronization daemon, please execute command dnssyncd, which w i l l run the dae­
mon i n foreground. Daemon requires the configuration file specified in /etc/dnssyncd. conf.

C.2 .2 dnssyncd-contro l

To run control u t i l i ty of the synchronization daemon, please execute command dnssyncd-control.
The bui l t - in help can be shown by executing dnssyncd-control —help.

C.3 Configuration File

The configuration file is expected i n J S O N format. The following example shows the default
configuration file.

{
"global":{

"control_enabled": true,
"notify_plugins_enabled": true

},

"synchronization":{
"periodical_sync": 300,
"zones_to_sync":["zone.test."],
"zones_source": "ldap",
" i g n o r e _ t t l " : f a l s e ,
"authoritative": "ldap",
"plugins_conf":{
"bind":{

63

"plugin": "bind9",
"dns_server_ip":"127.0.0.1" ,
"dns_server_port":53,
"listen.on_notify_port":29458

>,
"ldap":{

"plugin": "ldap-ipa",
"ldap_server_address":"ldap://server.example.com",
"ldap_server_port":389,
"ldap_user_dn":"uid=admin,cn=users,cn=accounts,dc=example,dc=com",
"ldap_password":"Secretl23",
"ldap_base_dn":"cn=dns,dc=example,dc=com",
"ttl_sync_method": "latest_lowest"

}
}

}
}

C.3 .1 G l o b a l C o n f i g u r a t i o n O p t i o n s

control_enabled : truejfalse (default: true), enables the management module to allows
comunicate w i th the dnssyncd-control uti l i ty.

notify_plugins_enabled : truejfalse (default: true), enables the notifications plugins

Synchronization Options

periodical_sync : t ime period in seconds (default: 300 sec), specifies the period time
when new synchronization cycle should be executed

zones_to_sync : list of zones, specifies the zones which w i l l be synchronized

zones_source : configuration name, specifies the source of new zones

ignore_ttl : truejfalse (default: false), specifies if the T T L values should be ignored during
detection of changes

authoritative : configuration name, specifies which remote side is authoritative

plugins_conf : configuration of plugins i n dict ionary „[configurat ion name/,": p lugin op­
tions, contains the configuration for plugins

389 D S with I P A Schema Plugin

plugin : name of the plugin

ldap_server_address : ldap U R I

ldap .server _port : port number (default: 389)

ldap_user_dn : user D N to be used for connection

ldap_password : password to be used for connection

64

ldap_base_dn : D N of the subtree where the D N S data are located

ttl_sync_method : method how T T L values w i l l be mapped into L D A P owner entry

B I N D 9 P lug in

plugin : name of the plugin

dns_server_ip : ip address of the D N S server, please note the current implementat ion
allows to manage zones only at localhost

dns_server_port : port number, the port for D N S queries, A X F R / I X F R transfers

listen_on_notify_port : port number, the port where notifications from the D N S server
w i l l be sent

65

Appendix D

FreelPA LDAP Schema

Attr ibutes and object classes related to D N S S E C keys were omitted.

IPA Base OID: 2.16.840.1.113730.3.8

Attributes: 2.16.840.1.113730.3.8.5 - V2 DNS related a t t r i b u t r e s
ObjectClasses: 2.16.840.1.113730.3.8.6 - V2 DNS related objectclasses

dn: cn=schema
attributeTypes: (1.3.6.1.4.1.2428.20.0.0 NAME 'dNSTTL' DESC 'An integer denoting

time to l i v e ' EQUALITY integerMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
attributeTypes: (1.3.6.1.4.1.2428.20.0.1 NAME 'dNSClass' DESC 'The class of a

resource record' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.12 NAME 'pTRRecord' DESC 'domain name
pointer, RFC 1035' EQUALITY caseIgnoreIA5Match SUBSTR
caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.13 NAME 'hlnfoRecord' DESC 'host
information, RFC 1035' EQUALITY caseIgnoreIA5Match SUBSTR
caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.14 NAME 'mlnfoRecord' DESC 'mailbox or mail
l i s t information, RFC 1035' EQUALITY caseIgnoreIA5Match SUBSTR

caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
attributeTypes: (1.3.6.1.4.1.2428.20.1.16 NAME 'tXTRecord' DESC 'text s t r i n g , RFC

1035' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.18 NAME 'aFSDBRecord' DESC 'for AFS Data
Base location, RFC 1183' EQUALITY caseIgnoreIA5Match SUBSTR
caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.24 NAME 'SigRecord' DESC 'Signature, RFC
2535' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.25 NAME 'KeyRecord' DESC 'Key, RFC 2535'
EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.28 NAME 'aAAARecord' DESC 'IPv6 address,
RFC 1886' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.29 NAME 'LocRecord' DESC 'Location, RFC
1876' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)

66

attributeTypes: (1.3.6.1.4.1.2428.20.1.30 NAME 'nXTRecord' DESC 'non-existant, RFC
2535' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.33 NAME 'sRVRecord' DESC 'service location,
RFC 2782' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.35 NAME 'nAPTRRecord' DESC 'Naming
Authority Pointer, RFC 2915' EQUALITY caseIgnoreIA5Match SUBSTR
caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.36 NAME 'kXRecord' DESC 'Key Exchange
Delegation, RFC 2230' EQUALITY caseIgnoreIA5Match SUBSTR
caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.37 NAME 'certRecord' DESC ' c e r t i f i c a t e , RFC
2538' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.38 NAME 'a6Record' DESC 'A6 Record Type,
RFC 2874' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.39 NAME 'dNameRecord' DESC 'Non-Terminal
DNS Name Redirection, RFC 2672' EQUALITY caseIgnoreIA5Match SUBSTR
caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE
)

attributeTypes: (1.3.6.1.4.1.2428.20.1.43 NAME 'dSRecord' DESC 'Delegation Signer,
RFC 3658' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.44 NAME 'sSHFPRecord' DESC 'SSH Key
Fingerprint, draft-ietf-secsh-dns-05.txt' EQUALITY caseIgnoreIA5Match SUBSTR
caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.46 NAME 'rRSIGRecord' DESC 'RRSIG, RFC
3755' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.47 NAME 'nSECRecord' DESC 'NSEC, RFC 3755'
EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.51 NAME 'nSEC3PARAMRecord' DESC 'RFC 5155'
EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributeTypes: (1.3.6.1.4.1.2428.20.1.52 NAME 'TLSARecord' DESC 'DNS-Based
Authentication of Named E n t i t i e s - Transport Layer Security Protocol, RFC
6698' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (1.3.6.1.4.1.2428.20.1.32769 NAME 'DLVRecord' DESC 'DNSSEC
Lookaside Validation, RFC 4431' EQUALITY caseIgnoreIA5Match SUBSTR
caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (0.9.2342.19200300.100.1.26 NAME 'aRecord' EQUALITY
caseIgnoreIA5Match SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (0.9.2342.19200300.100.1.29 NAME 'nSRecord' EQUALITY
caseIgnoreIA5Match SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (0.9.2342.19200300.100.1.31 NAME 'cNAMERecord' EQUALITY
caseIgnoreIA5Match SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributeTypes: (0.9.2342.19200300.100.1.28 NAME 'mXRecord' EQUALITY
caseIgnoreIA5Match SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributeTypes: (0.9.2342.19200300.100.1.27 NAME 'mDRecord' EQUALITY
caseIgnoreIA5Match SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

67

attributeTypes: (2.16.840.1.113730.3.8.5.0 NAME 'idnsName' DESC 'DNS FQDN'
EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.1 NAME 'idnsAllowDynUpdate' DESC 'permit
dynamic updates on t h i s zone' EQUALITY booleanMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.2 NAME 'idnsZoneActive' DESC 'define i f
the zone i s considered i n use' EQUALITY booleanMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.3 NAME 'idnsSOAmName' DESC 'SOA Name'
EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.4 NAME 'idnsSOArName' DESC 'SOA root Name
' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.5 NAME 'idnsSOAserial' DESC 'SOA s e r i a l
number' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.6 NAME 'idnsSOArefresh' DESC 'SOA refresh
value' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.7 NAME 'idnsSOAretry' DESC 'SOA retry
value' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.8 NAME 'idnsSOAexpire' DESC 'SOA expire
value' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.9 NAME 'idnsSOAminimum' DESC 'SOA minimum
value' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.10 NAME 'idnsUpdatePolicy' DESC 'DNS
dynamic updates p o l i c y ' EQUALITY caseIgnoreIA5Match SUBSTR
caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE
X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.11 NAME 'idnsAllowQuery' DESC 'BIND9
allow-query ACL element' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.12 NAME 'idnsAllowTransfer' DESC 'BIND9
allow-transfer ACL element' EQUALITY caseIgnoreIA5Match SYNTAX
1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.13 NAME 'idnsAllowSyncPTR' DESC 'permit
synchronization of PTR records' EQUALITY booleanMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.14 NAME 'idnsForwardPolicy' DESC 'forward
pol i c y : only or f i r s t ' EQUALITY caseIgnoreIA5Match SUBSTR

caseIgnoreIA5SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE
X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.15 NAME 'idnsForwarders' DESC ' l i s t of
forwarders' EQUALITY caseIgnoreIA5Match SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.16 NAME 'idnsZoneRefresh' DESC 'zone
refresh i n t e r v a l ' EQUALITY integerMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE X-ORIGIN 'IPA v2')

68

attributeTypes: (2.16.840.1.113730.3.8.5.17 NAME 'idnsPersistentSearch' DESC '
allow persistent searches' EQUALITY booleanMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE X-ORIGIN 'IPA v2')

attributeTypes: (2.16.840.1.113730.3.8.5.18 NAME 'idnsSecInlineSigning' DESC '
allow i n l i n e DNSSEC signing' EQUALITY booleanMatch SYNTAX
1.3.6.1.4.1.1466.115.121.1.7 SINGLE-VALUE X-ORIGIN 'IPA v4.0')

objectClasses: (2.16.840.1.113730.3.8.6.0 NAME 'idnsRecord' DESC 'dns Record,
usually a host' SUP top STRUCTURAL MUST idnsName MAY (cn $ idnsAllowDynUpdate
$ dNSTTL $ dNSClass $ aRecord $ aAAARecord $ a6Record $ nSRecord $

cNAMERecord $ pTRRecord $ sRVRecord $ tXTRecord $ mXRecord $ mDRecord $
hlnfoRecord $ mlnfoRecord $ aFSDBRecord $ SigRecord $ KeyRecord $ LocRecord $
nXTRecord $ nAPTRRecord $ kXRecord $ certRecord $ dNameRecord $ dSRecord $
sSHFPRecord $ rRSIGRecord $ nSECRecord $ DLVRecord $ TLSARecord))

objectClasses: (2.16.840.1.113730.3.8.6.1 NAME 'idnsZone' DESC 'Zone class' SUP
idnsRecord STRUCTURAL MUST (idnsZoneActive $ idnsSOAmName $ idnsSOArName $
idnsSOAserial $ idnsSOArefresh $ idnsSOAretry $ idnsSOAexpire $ idnsSOAminimum
) MAY (idnsUpdatePolicy $ idnsAllowQuery $ idnsAllowTransfer $

idnsAllowSyncPTR $ idnsForwardPolicy $ idnsForwarders $ idnsSecInlineSigning $
nSEC3PARAMRecord))

objectClasses: (2.16.840.1.113730.3.8.6.2 NAME 'idnsConfigObject' DESC 'DNS global
config options' STRUCTURAL MAY (idnsForwardPolicy $ idnsForwarders $

idnsAllowSyncPTR $ idnsZoneRefresh $ idnsPersistentSearch))
objectClasses: (2.16.840.1.113730.3.8.12.18 NAME 'ipaDNSZone' SUP top AUXILIARY

MUST idnsName MAY managedBy X-ORIGIN 'IPA v3')
objectClasses: (2.16.840.1.113730.3.8.6.3 NAME 'idnsForwardZone' DESC 'Forward

Zone class' SUP top STRUCTURAL MUST (idnsName $ idnsZoneActive) MAY (
idnsForwarders $ idnsForwardPolicy))

69

