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ABSTRACT
This doctoral thesis is focused on analyses and assessment of the quality of the frequency
and time-frequency transform of the data and the formulation of recommendations for
working with such methods. When using these methods, the question arises of how to
evaluate which components of the spectrogram are statistically significant and which are
not. In this thesis, we analyze the properties of standard statistical significance tests.
We discuss their advantages and disadvantages taking into account the heteroskedastic
character of data. Based on our experiments we propose two types of improved testing
methods that reduce the negatives standard tests. The final step is creating a framework
for data filtering using our proposed methods.

KEYWORDS
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sive process, significance testing, co-movement filtering

ABSTRAKT
Přeložená dizertační práce se zabývá analýzou a posouzením kvality odhadu frekvenční
a časově-frekvenční transformace dat a formulaci doporučení pro práci s metodami. Při
použití těchto metod vyvstává otázka, jak vyhodnotit, které složky spektrogramu jsou
statisticky významné a které nikoli. V této práci analyzujeme vlastnosti standardních
testů statistické významnosti. Diskutujeme o jejich výhodách a nevýhodách s ohledem
na heteroskedastický charakter dat. Na základě našich experimentů jsou v práci navrženy
dva typy testovacích metod, které snižují negativní aspekty standardních testů. Práce
jen zakončena vytvořením rámce pro filtrování dat pomocí námi navržených metod.
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spektrogram, časově frekvenční analýza, vlnková transformace, Fourierova transformace,
autoregresivní proces, testování významnosti, filtrování společného pohybu
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INTRODUCTION

Introduction
The need to analyze the data can be found across a variety of scientific disciplines.
Despite the diversity of disciplines, it is a common goal to obtain the maximum
information from data analysis to help solve the tasks set. Concerning the scientific
area, such data are given as observations in the form of time series of input signals.
The standard analytical instruments are given in the time or frequency domain.
Linking of both approaches giving us a more compact view can be done via time-
frequency techniques. The combination of time and frequency tools provides a more
efficient means of data analysis, allowing us a deep look into the signal structure.

The graphical representation of time-frequency analysis is a spectrogram. Its es-
timation can be done via several parametric or nonparametric methods. The most
used are short-time Fourier transform, estimation via the time-frequency varying
autoregressive process, and wavelet transform. While the periodogram is the classic
estimator for stationary signals, multiple windows or short-time Fourier transfor-
mation can be useful for non-stationary signals. The time-frequency varying au-
toregressive process is a simplification of the general autoregressive moving average
model. The signals can be corrupted by noise which can affect the precision of
instantaneous frequency; therefore is good to investigate several types of analyses
methods to reach the required precision.

The key aspect of time-frequency analysis is the precision of the estimated spec-
trogram. For further processing and filtering of data, it is appropriate to specify
which components of the spectrogram are statistically significant and which are not.
There are several test methods for this purpose. One of the most used methods is
based on the identified distribution of background noise, and several requirements
need to be met for its appropriate usage. Other methods work with the use of ge-
ometric and topological changes or simulations of background noise. The obtained
selection of significant regions can then be used for further description and filter-
ing of the data, taking into account the objectives of the analysis, either in time,
frequency, or time-frequency domain.

Considering the current progress in the field and the gap in current research, this
work is focused on describing the framework of analysis from the use of individual
methods, through statistical significance testing of their results, and finally filtering
of data based on these significance tests. We can divide this thesis into several
parts. The first part deals with the description and the usage of basic methods for
time-frequency analysis. The second part deals with the description of commonly
used significance test methods and the definition of their weaknesses. In the third
part, methods are proposed that eliminate these weaknesses. In the last part, these
proposed methods are used to filter the required data components.

1



CHAPTER 1. STATE OF THE ART

1 State of the Art
The need to describe and analyze the input signal for further use occurs across
all scientific disciplines, from technical to social sciences. In terms of approach,
we can define the analysis in the time domain (TD), frequency domain (FD), and
time-frequency domain (TFD). Fundamental analysis can be performed in the time
domain. Such an analysis deals with the changes in a signal over a span of time,
i.e. variation of the amplitude of the signal with time. In contrast, the frequency
domain describes the behavior of the signal across a given frequency band concerning
a range of frequencies and can include information on phase shift. It is possible to
use time-domain techniques or frequency domain techniques separately; however,
their ability to capture the frequency behavior of the analyzed time series with
respect to the time is somewhat limited. The combination of time and frequency
tools provides a more efficient means of statistical analysis, reflecting the fact that
the time-frequency analysis of input signal is an instrument that has been used in
interdisciplinary analysis for a long time.

Time-frequency (TF) techniques are an instrumental approach, reflecting both
the time and frequency behavior of input time series. These approaches predomi-
nates in the last decade in many fields of science. It is a useful instrument in natural
sciences [1–4], engineering [5, 6], biology or medicine [7–9] or social and economic
sciences.

The time-frequency representation of the signal can be estimated via several
approaches. The most common method is Short Time Fourier Transform (STFT).
The periodogram or its modification, such as the multiple window method using
Slepian sequences [9] can also be used. We can also use estimation via the time-
frequency varying Autoregressive Process (TFAR) [10], wavelet analysis (CWT)
[11,12] or alternatively Modified empirical mode decomposition method [13]. While
the periodogram belongs to the group of the classic estimator for stationary signals,
multiple windows or STFT can be a valuable instrument for non-stationary signals
[9,14–16]. As Jiang and Mahadevan [17] wrote, the advantage of the wavelet analysis
is that it can capture the features of non-stationarity signal due to the simultaneous
time-frequency decomposition of inputs. The TFAR process is a simplification of
the general AutoRegressive Moving Average (ARMA) model.

Among the advantages of Fourier transform and its derivatives, we can include
low computational complexity and a wide range of software and hardware imple-
mentations with a selection of optimal parameters that provide satisfactory results.
AR process used for estimation of signal spectrum representation provides fair re-
sults, especially in very short signals when STFT tends to fail. For longer signals,
it provides good results [18]. In such cases, the variance of insignificant cyclical

2
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components that usually take the character of noise has a lower level than in the
case of STFT. This advantage can be useful when we investigate thresholding such
as in [19]. The time-varying representation of the AR process provides a more com-
plex view compared to a simple spectrum estimate in the frequency domain only. It
has time and frequency resolution corresponding to the size of the window and the
size of window overlap, which must be selected. In such a way, it is similar to the
STFT method. Unfortunately, the disadvantage of the method is its accuracy which
strongly depends on the selection of optimal lag order. Therefore, it is good to inves-
tigate various optimization criteria for its optimal selection. Another disadvantage
is that there are not many existing implementations; most are only on a software
level. Continuous wavelet transform is a relatively new method compared to Fourier
transform. As pointed out in [20] or [17], the wavelets have several advantages. It
is applicable to non-stationary data. It also has the ability to uncover the latent
process with changing cyclical patterns. Such features are typical for an economic
time series. Additionally, the wavelet analysis has very good time resolution, and
there is no need to optimize the parameters. There is only discussion about the
mother wavelet and the scale selection.

The need to validate the estimated model arises with the application of TF
methods on real values with respect to the application area (engineering, medicine,
etc.). This leads to the significance testing [21, 22]. The fundamental work in this
field can be found in Torrence and Compo [23]. This paper presents the comparison
of the windowed Fourier transform to the wavelets. The authors also focus on
the relationship between wavelet scale and Fourier frequency and the choice of an
appropriate wavelet basis function. The proposed statistical significance test is given
for wavelet power spectra and is based on theoretical derivation for white and red
noise processes.

Motivated by the work of Torrence and Compo [23], Ge [24] proposes significance
testing of wavelet power and wavelet power spectrum. He derived the sampling
distributions for the power spectrum of a Gaussian White Noise (GWN). And also for
the wavelet power of GWN. He proved that the results given by [23] are numerically
accurate when if the sampling period factor is incorporated. Ge [25] uses the same
methodological approach for wavelet cross-spectrum and linear coherence. However,
one of the disadvantages of this test is that it takes into account the variance of the
entire signal. In specific cases where the data exhibit highly variable volatility, the
variance of the whole signal may not be sufficiently descriptive. The question is then
how this affects the accuracy of the test and how to interpret the results.

A similar approach to Torrence and Campo can be found in the work of Schulte
et al. [21]. They use geometric and topological methods for assigning contiguous
significance regions of significant wavelet coefficient with respect to selected noise
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models with application to climatic data. Also, James and Fleming [22] use the
Torrence and Compo approach to identify significant spatial scales of pattern and
spatial boundaries in geo-science.

Model validation of structural dynamics example is proposed by Jiang and Ma-
hadevan [17]. They investigate simulation-based predictions of structural response
on the virtually generated data. The authors use testing with the help of Monte
Carlo simulations to infer whether the model prediction and experimental observa-
tion represent two coherent processes. Wang et al. [26] present another point of view
by introducing the general sequential Monte Carlo method to estimate the probabil-
ity density function and to optimize wavelet transform for extracting bearing fault
features.

Given the above methods, we found that the literature insufficiently describes
several areas. One of these areas is the effect of the character of the data on the
significance testing of time-frequency methods. This character can manifest itself
through structural changes in the data that lead to changes in volatility. This
raises the question of how to interpret the results of standard tests in this case. A
related insufficiently described area is how TFA can be used to provide additional
information that will contribute to subsequent signal analysis.

Most standard methods have been designed to work with technical data. The
physical nature of these types of data is usually known; their description is available,
their behavior and their content are known, and there is knowledge of what their
deterministic components may look like. However, there are scientific areas where
factors, that are often unpredictable, may affect or change the character of the data.
This problem is typical, for example, for economic data, where due to various events
(economic shocks, crises, pandemics, etc.) diverse structural changes may arise, such
as in trend, volatility, growth, etc.

Given the above observations, this work will focus on the analysis of economic,
technical, and simulated data.
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2 Dissertation Objectives
This dissertation thesis deals with analyses and assessment of the quality of the fre-
quency and time-frequency transform and with the formulation of recommendations
for working with such methods. We take into account how much a priori information
will help to obtain maximum information about the data.

We researched literature and resources and evaluated current progress and gaps
in this field. We found out that the literature does not deal with the influence of the
data character on the significance testing of the time-frequency methods. Most of
the literature focuses on the technical area, where the application of methods and
interpretation of results is facilitated by knowledge or information about the data
character. In some cases, such as the selected photonic Doppler velocimetry data
set, these are rather experimental data, therefore, a priori information may be more
general.

The different types of data in terms of nature are economic data, which are less
informative in terms of technical analysis. The process and mechanism of this data
generation are influenced by factors such as unexpected events, economic shocks,
psychological factors, etc., which are difficult to predict and simulate. This may ap-
pear as structural changes in the data, to which standard methods may not respond
correctly in all cases. For the TFD application and subsequent testing, the question
then arises as to how data with structural changes can be analyzed to obtain rele-
vant results. The third type of data is simulated data used to verify standard and
designed methods.

We focus on the issue of statistical testing of data mentioned above in order
to verify the standard methods and to propose methods for cases where the data
volatility is changing in time. Based on these we defined the following objectives of
the thesis.

Objective I. Is it possible to use and combine different characteristics of indi-
vidual TFA methods to obtain relevant spectrogram?
In Chapter 6 we propose an approach to incorporate advantages
and suppress disadvantages of individual methods in order to bring
out significant components and suppress noise.

Objective II. How can we modify standard tests to eliminate/reduce their disad-
vantages and shortcomings in case of data with changing volatility?
In Chapters 8 and 9 we use knowledge gained in Chapter 7 to pro-
pose SAB and LAB testing approach and recommendation for their
usage in such case.

5
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Objective III. How can we use these modified test methods for subsequent data
filtering?
In some cases, it is useful to work selected spectral components
represented in the time domain. Especially in the case of evalua-
tion of time-series co-movement. Therefore, in Chapters 10 and 11
we propose co-movement filtering as an instrument for obtaining
co-movement indicator. In its construction and application, the
expertise gained from Objective II. is used.

6



CHAPTER 3. METHODOLOGICAL BACKGROUND

3 Methodological Background
This chapter is divided in four sections which provide methodical background of
well known methods used in following chapters. The first section introduces basic
tools for time-frequency analysis. The second provides background for co-movement
measures, the third describes the singular value decomposition, and the last section
contains selected aspects of kernel smoothing.

3.1 Time-Frequency Analysis (TFA)
As mentioned in Chapter 1 the time-frequency techniques are nowadays common
instrument for analysis of different input signals or time series. Wide range of its
usage can be found across different scientific disciplines. Estimating signal spectro-
grams can be done via several parametric or non-parametric methods. The most
commonly used non-parametric methods are Fourier transform and its derivatives,
wavelet transform or multiple window method. One of the most used parametric
methods is the autoregressive process. All these approaches are shortly described in
following subchapters.

3.1.1 Fourier Transform (FT)

One of the most common methods used for spectrum estimation is the Fourier
transform (FT) and its modifications. Given the character of input signals used in
this work, the focus is on discrete-time representation. If the input signal 𝑠(𝑛) has
an infinite length, then the discrete-time Fourier transform (DTFT) is used [10].

𝑆DTFT(𝑓) =
∞∑︁

𝑛=−∞
𝑠(𝑛)e−j2𝜋𝑓𝑛. (3.1)

If an input signal 𝑠(𝑛) is a discrete time series of 𝑁 elements, then the discrete
Fourier transform (DFT) is used. It can be defined as [27]

𝑆DFT(𝑓) =
𝑁−1∑︁
𝑛=0

𝑠(𝑛)e−j2𝜋𝑓𝑛/𝑁 . (3.2)

The transform form frequency domain back to time domain is called an inverse
discrete Fourier transform and can be defined as [27]

𝑠(𝑛) = 1
𝑁

𝑁−1∑︁
𝑛=0

𝑆DFT(𝑓)ej2𝜋𝑓𝑛/𝑁 . (3.3)

7
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A slight modification of this method is short time Fourier transform. In this
modification a sliding observation window is used. The individual spectrum esti-
mations are then sorted in time and can be plotted as spectrogram. The usual
mathematical definition of the STFT is [27]

𝑆STFT(𝑚, 𝑓) =
𝑁−1∑︁
𝑛=0

𝑠(𝑛)𝑔(𝑛−𝑚)e−j2𝜋𝑓𝑛/𝑁 (3.4)

where 𝑠(𝑛) is the input signal, 𝑔(𝑛) is the window function. The window function
is symmetric discrete signal with unit norm ||𝑔|| = 1. Commonly used types of win-
dows are Rectangle, Hamming, Gaussian, Hanning, etc. (for details see [27]). The
magnitude squared of resulting spectrogram 𝑆STFT(𝑚, 𝑓) is called power spectral
density.

3.1.2 Wavelet Transform (WT)

Continuous wavelet transform (CWT) is usually defined as the integral of a signal
with respect to the wavelet function. It can be described as integral of analyzed
signal with base function (mother wavelet) [27]:

𝑆CWT(𝑎, 𝜏) =
∫︀∞

−∞ 𝑠(𝑢) 1√
𝑎
𝜓*
(︁
𝑢−𝜏
𝑎

)︁
d𝑢, 𝑎 > 0, 𝜏 ∈ 𝑅 (3.5)

where the ”*” denotes complex conjugation, 𝑠(𝑛) is the time series, 𝜓*
(︁
𝑢−𝜏
𝑎

)︁
is a

scaled version of the mother wavelet, 𝜏 denotes the time shift, and 𝑎 denotes the
scale (or frequency). We can also define WT of a discrete time series 𝑠(𝑛) as the
convolution of 𝑠(𝑛) with a scaled and translated version of the wavelet function 𝜓(·)
[23]

𝑆CWT(𝑎, 𝜏) =
𝑁−1∑︁
𝑛=0

𝑠(𝑛)𝜓*
(︂
𝑛− 𝜏

𝑎

)︂
𝛿𝑛 (3.6)

where 𝛿𝑛 is the time step, 𝑎 is the wavelet scale and 𝜏 is the time shift.
To be the invertible transform, basis (mother wavelets) functions must be mutu-

ally orthogonal, have zero mean value and limited to finite time interval [27]. That
is

𝑖)
∫︀∞

−∞ 𝜓
(︁
𝑛−𝜏
𝑎

)︁
d𝑛 = 0,

𝑖𝑖)
∫︀∞

−∞ 𝜓𝜓*
(︁
𝑛−𝜏
𝑎

)︁
d𝑛 = 1,

𝑖𝑖𝑖) 0 < 𝐶𝜓 =
∫︀∞

0
|Ψ(𝜔)|2
𝜔

; Ψ(𝜔) =
∫︀∞

−∞ 𝜓
(︁
𝑛−𝜏
𝑎

)︁
e−j𝜔𝑛d𝑛

(3.7)

where Ψ(𝜔) is the Fourier transform of 𝜓(𝜔). To satisfy assumptions for the time-
frequency analysis, waves must be compact in time as well as in the frequency
representation. There are several types of mother wavelets which can be used (e.g.
Gaussian, Haar, Daubechies, Morlet etc.) (for details see [27]). One of the most
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commonly used is the complex Morlet wavelet and can be defined as product of a
complex sine wave and a Gaussian window[28]:

𝜓(𝑛) = exp
(︃

−𝑛2

2𝜎2

)︃
exp(j𝜔0𝑛) (3.8)

where 𝜎 is Gaussian window width in time and 𝜔0 is the central frequency of the
wavelet. The complex Morlet wavelet is a substantially complex exponential mod-
ulated by a Gaussian envelope.

In order to recalculate the pseudo-frequency, corresponding to the scale 𝑎, the
following equation can be used [25].

𝜔(𝜏) = 𝜔0

𝑎(𝜏) (3.9)

where 𝜔 = 2𝜋𝑓 and 𝜏 is the time shift.
For an orthogonal wavelet and under certain admissibility conditions (see (3.7)),

we can define its inverse form, i.e. inverse continuous wavelet transform (ICWT),
as

𝑠(𝑛) = 𝐼𝐶𝑊𝑇{𝑆CWT(𝑎, 𝜏)} = 1
𝐶𝜓

∫︀∞
∞
∫︀∞

−∞ 𝑆CWT(𝑎, 𝜏) 1√
𝑎
𝜓*
(︁
𝑛−𝜏
𝑎

)︁
d𝜏 𝑑𝑎

𝑎2 (3.10)

where 𝐶𝜓 < ∞ comes from the admissibility condition [29].

3.1.3 Autoregressive (AR) Process

A different approach in comparison with the methods mentioned above is the TFAR
process. This method uses a parametric approach and creates a model generating an
input signal. The analyzed signal 𝑠(𝑛) is then regarded as the output of a linear filter
influenced by white noise 𝜖 with variance 𝜎2

w. The autoregressive process AR(𝑝) of
the order 𝑝 for an input signal 𝑠(𝑛) can be described by model given by the equation

𝑠(𝑛) = 𝑐+
𝑝∑︁
𝑖=1

𝑎𝑖𝑠(𝑛− 𝑖) + 𝜖(𝑛) (3.11)

where 𝑎𝑖, 𝑖 = 1, . . . 𝑝 are the parameters of autoregressive model of the order 𝑝, 𝑐 is
the constant and 𝑤(𝑛) is the white noise.

The output spectrum can be described as [10]

𝑆AR(𝑓) = |𝐻 (𝑓)|2 𝜎2
w (3.12)

where 𝐻 (𝑓) is a linear time variant filter. Several methods for estimating AR model
parameters can be used. The most common are the Burg method (BU), Yule-Walker
method (YW), unconstrained least-squares method (LS) [10]:

9



CHAPTER 3. METHODOLOGICAL BACKGROUND

𝑆BU
AR(𝑓) =

̂︀𝐸p

|1 +∑︀𝑝
𝑘=1 ̂︁𝑎p(𝑘)e−j2𝜋𝑓𝑘|2

𝑆YW
AR (𝑓) =

̂︀𝜎2
wp

|1 +∑︀𝑝
𝑘=1 ̂︁𝑎p(𝑘)e−j2𝜋𝑓𝑘|2

𝑆LS
AR(𝑓) =

̂︀𝐸LS
p

|1 +∑︀𝑝
𝑘=1 ̂︁𝑎p(𝑘)e−j2𝜋𝑓𝑘|2

(3.13)

where ̂︁𝑎p(𝑘) are estimates of the AR parameters, 𝑝 is the lag order, ̂︀𝐸p is the total
least-squares error, ̂︀𝜎2

wp is the estimate minimum mean-square value for the 𝑝th order
predictor and ̂︀𝐸LS

p is the residual least squares error.
For the AR process, appropriate selection of lag order 𝑝 is an important as-

pect. Selecting a low level order leads to excessive smoothing of the spectrum.
Furthermore, if the level of 𝑝 is selected too high, a non-significant spectral coeffi-
cient can be arises as high peak. Several information criteria can be used to ensure
optimal selection. Most commonly used are Akaike information criterion (AIC),
Minimum description length (MDL), Hannan-Quinn information criterion (HQC)
and Bayesian information criterion (BIC) [10], [30]:

𝐴𝐼𝐶(𝑝) = ln ̂︀𝜎2
wp + 2𝑝

𝑁
, (3.14)

𝑀𝐷𝐿(𝑝) = 𝑁 ln ̂︀𝜎2
wp + 𝑝 ln𝑁, (3.15)

𝐵𝐼𝐶(𝑝) = ln ̂︀𝜎2
wp + 𝑝

𝑁
ln𝑁, (3.16)

𝐻𝑄𝐶(𝑝) = ln ̂︀𝜎2
wp + 2 𝑝

𝑁
ln(ln𝑁) (3.17)

where ̂︀𝜎2
wp is estimated variance of linear prediction error, 𝑝 is the order and 𝑁 is

length of the signal. The order is selected as optimal when information criterion
reaches minimum.

The AR process as described above provides the result only in the frequency
domain. To obtain results in time-frequency domain (spectrogram) similar approach
to STFT can be used, i.e. sliding observation window. Window functions commonly
used in STFT can also be applied. We will denote this method as TFAR.

10
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3.2 Co-Movement Measures
To evaluate similarity between two signals several co-movement measures are com-
monly used. The widely used methods in the TF domain are cross-spectrum and co-
herence [31]. For the two time series 𝑥(𝑛) and 𝑦(𝑛), 𝑛 = 1, . . . , 𝑁, the cross-spectrum
coefficients measure the local covariance of these two variables in respective time and
frequency/scale and can be defined as

𝐶𝑆𝑥𝑦(𝑓, 𝑛) = 𝑆𝑥(𝑓, 𝑛)𝑆𝑦(𝑓, 𝑛)* (3.18)

where 𝑆𝑥(𝑓, 𝑛), 𝑆𝑦(𝑓, 𝑛) are the time-frequency representations of signal 𝑥 resp 𝑦.
The symbol ”*” denotes complex conjugation [20, 23]. If these representations are
in complex numbers (depends on used method) the resulting cross-spectrum is also
complex. Then we can define its square absolute value, i.e. power cross-spectrum
(PCS) [23], as

|𝑃𝐶𝑆𝑥𝑦(𝑓, 𝑛)|2 = |𝑆𝑥(𝑓, 𝑛)|2|𝑆𝑦(𝑓, 𝑛)*|2. (3.19)

The phase part (quadrature spectrum) is then defined as [17]

Φ𝑥𝑦 = tan−1 [ℑ(𝐶𝑆𝑥𝑦(𝑓, 𝑛))/ℜ(𝐶𝑆𝑥𝑦(𝑓, 𝑛))] (3.20)

where symbols ℑ and ℜ denote imaginary part and real part of cross-spectrum
𝐶𝑆𝑥𝑦(𝑓, 𝑛). In case of two identical signal the cross-spectrum is equal to one. If the
input signals differs greatly, their cross-spectrum is approaching to zero.

Another possibility for measuring co-movement in the TF domain is coherence
𝐶𝑂𝐻𝑥𝑦(𝑓, 𝑛) of two time series. It can be defined as the PCS normalized to the
squared module of the time-frequency representations of the analyzed signals [17].

𝐶𝑂𝐻𝑥𝑦(𝑓, 𝑛) = 𝐶𝑆𝑥𝑦(𝑓, 𝑛)√︁
|𝑆𝑥(𝑓, 𝑛)|2

√︁
|𝑆𝑦(𝑓, 𝑛)|2

. (3.21)

This function is modified as follows when WT representations of signals are used
as input: [17, 31]

𝐶𝑂𝐻𝑥𝑦(𝑓, 𝑛) = 𝐶𝑆𝑥𝑦(𝑓, 𝑛)𝑄√︁
𝑄|𝑆𝑥(𝑓, 𝑛)|2

√︁
𝑄|𝑆𝑦(𝑓, 𝑛)|2

(3.22)

where 𝑄 is a smoothing operator defined as

𝑄(𝑆) = 𝑄scale(𝑄time(𝑆(𝑓, 𝑛))) (3.23)

where 𝑄scale denotes smoothing along the wavelet scale axis and 𝑄time smoothing in
time.

In an analogous manner, as for CWT or STFT (equations (3.10),(3.3)), we can
calculate an inverse transform for co-movement measure, such as PCS or coherence.
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3.3 Kernel Smoothing
Kernel analysis have been established as effective techniques and unified framework
for pattern discovery. They are used to solve a non-linear problem by using a linear
classifier. Let (𝑥𝑖, 𝑌𝑖), 𝑖 = 1, . . . , 𝑁 be a sequence of observations (𝑥, 𝑌 ), where in
general 𝑥 ∈ 𝑅, 𝑥𝑖 ∈ [0, 1] is a design point and 𝑌 is an observation. In our case
𝑌 can represent frequency value of significant spectral coefficient obtained from
spectrogram and 𝑥 is transformed equidistantly in [0; 1] in correspondence to the
time of values in 𝑌 . The dependency of value 𝑌 on 𝑥 for fixed design regression
model (𝑥 are not randomly chosen) can be described in following form

𝑌𝑖 = 𝑚(𝑥𝑖) + 𝜖𝑖, 𝑖 = 1, · · · , 𝑁, (3.24)

where 𝑚 is an unknown regression function, and let conditions 𝐸(𝜖𝑖) = 0 𝑖 =
1, . . . , 𝑁, 𝐷(𝜖𝑖) = 𝜎2 > 0 𝑖 = 1, . . . , 𝑁 hold [32].

Kernel function 𝐾 of smoothness 𝜇, order (𝜈, 𝑘) and 𝐾 ∈ 𝒮𝜇
𝜈,𝑘 must satisfy

following conditions [33, 34]:

𝑖) 𝐾(−𝑗) = 𝐾(𝑗) = 0, 𝑗 = 0, . . . , 𝜇− 1

𝑖𝑖)
∫︀ 1

−1 𝑥
𝑗𝐾(𝑥)𝑑𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 0 ≤ 𝑗 < 𝑘, 𝑗 ̸= 𝜈

(−1)𝜈𝜈! 𝑗 = 𝜈

𝛽𝑘 ̸= 0 𝑗 = 𝑘

.

(3.25)

where 𝜈,𝑘 are non-negative integers and 0 ≤ 𝜈 < 𝑘, 𝜇 ≥ 1.
The general formula for a kernel estimator can be expressed by the form

�̂�(𝑥) =
𝑛∑︁
𝑖=1

𝑊𝑖(𝑥, ℎ)𝑌𝑖, (3.26)

where 𝑊𝑖(𝑥, ℎ) are weight functions depending on ℎ, 𝑖, 𝑥 and 𝐾. Bandwidth ℎ =
ℎ(𝑛) is a positive constant and 𝐾 is a kernel. Denote 𝐾ℎ(·) = 1

ℎ
𝐾
(︁

·
ℎ

)︁
. According

to the weighted function we can distinguish several estimators. One of the most
commonly used is Nadaraya-Watson (NW) estimator [32]:

�̂�(𝑥, ℎ) =
∑︀𝑛
𝑖=1 𝐾ℎ(𝑥𝑖 − 𝑥)𝑌𝑖∑︀𝑛
𝑖=1 𝐾ℎ(𝑥𝑖 − 𝑥) . (3.27)

where ∑︀𝑛
𝑖=1 𝐾ℎ(𝑥𝑖 −𝑥) ̸= 0. If ∑︀𝑛

𝑖=1 𝐾ℎ(𝑥𝑖 −𝑥) = 0, than we can define �̂�(𝑥, ℎ) = 0.
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3.4 Singular Value Decomposition
The singular value decomposition (SVD) is useful instrument in solving least-square
problems via the process of orthogonal decomposition of rectangular matrix. The
method follow two steps, the decomposition and the reconstruction [10], [35].

The first step of SVD is to make trajectory matrix from the input time series
𝑥(𝑛), 𝑛 = 1, . . . 𝑁 without any missing values. The trajectory matrix 𝑇 with 𝐾 ×𝐿

dimension and takes the form

𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 𝑥2 . . . 𝑥𝐿

𝑥2 𝑥3 . . . 𝑥𝐿+1
... ... . . . ...
𝑥𝐾 𝑥𝐾+1 . . . 𝑥𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.28)

The window 𝐿 such that 2 < 𝐿 < 𝑁/2 to embedded initial time series x =
(𝑥1, 𝑥2, . . . , 𝑥𝑁) is defined by user. In this way we map time series s into the lagged
sub-vectors 𝑇𝑖 = (𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑖+𝐿−1)′, 𝑖 = 1, 2, . . . , 𝐾, where 𝐾 = 𝑁 − 𝐿 + 1.
Consequently we apply on the trajectory matrix 𝑇 singular value decomposition to
obtain trajectory matrices 𝑇𝑖, 𝑖 = 1, . . . , 𝐿. From an eigenvalue analysis of 𝑇𝑇 ′ we
collect the eigenvalues 𝜆1 ≥ . . . ≥ 𝜆𝑇 where 𝑟 = rank(𝑇𝑇 ′) and the corresponding
left and right singular vectors, respectively denoted as 𝑈𝑖 and 𝑉𝑖 such that 𝑇𝐾×𝐿 =
𝑈𝐾×𝐾𝐷𝐾×𝐿𝑉

′
𝐿×𝐿, where 𝑈 is orthonormal matrix, 𝐷 is the diagonal matrix of the

order 𝐿 and 𝑉 is a square orthonormal matrix [35]. We can write

𝑇 = 𝑇1 + 𝑇2 + . . .+ 𝑇𝑟

= 𝑈1
√
𝜆1𝑉

′
1 + . . . 𝑈𝑟

√
𝜆𝑟𝑉

′
𝑟

= ∑︀𝑟
𝑖=1 𝑈𝑖

√
𝜆1𝑉

′
𝑖 .

(3.29)

In the second step of SVD we are focused on reconstruction. The first task
is selection of 𝑀 leading components of decomposed time series and exclude the
reminding (𝑟 −𝑀) associated to the noise [35]. That is

𝑇 =
𝑀∑︁
𝑖=1

𝑈𝑖
√︁
𝜆1𝑉

′
𝑖 + 𝜖 (3.30)

where the first summands corresponds to the time series and 𝜖 denotes an error
term.
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CHAPTER 4. OPTIMIZATION OF AR PARAMETERS

4 Optimization of AR Parameters
As we already mentioned in Chapter 3.1.3, the results of AR process considerably
depends on model parameters. To obtain the best possible spectral representation
it is crucial to select optimal method for estimation of AR coefficients with regard
to the nature of input time signal. In this chapter we apply simulations to evaluate
precision of spectral estimation of selected methods for AR coefficients estimation.
Therefore, on the basis of simulation, we analyze the behavior of Yule-Walker, Burg
and least-squares method. Furthermore, in the case of AR process, next key factor
is the choice of an optimal lag order on which the accuracy strongly depends. There-
fore, it is good to investigate various optimization criteria for its optimal selection
[10]. We examine the advantages and disadvantages of these estimation methods
and selection of appropriate lag order and formulate recommendation for its usage.

4.1 Experiments and Results
To evaluate performances of AR methods, the autoregressive process of order 20
was created. Selection of the order was done with regard to desired complexity
of signal. The requirements were several spectral peaks with diverse amplitude
and diverse frequency spacing. Therefore we chose level of 20 which provides this
sufficient complexity with reasonable computational requirements. AR coefficients
were arbitrary selected to create signal with sufficient complexity and are presented
in Table 4.1. Ideal spectral representation of the signal (using (3.13)) is shown in
Fig.4.1.

𝑎0 1 𝑎1 –1.04 𝑎2 0.78 𝑎3 –0.88 𝑎4 0.45
𝑎5 0.35 𝑎6 0.34 𝑎7 –0.04 𝑎8 –0.40 𝑎9 –0.10
𝑎10 0.04 𝑎11 0.36 𝑎12 0.38 𝑎13 –0.32 𝑎14 –0.35
𝑎15 –0.11 𝑎16 –0.08 𝑎17 0.26 𝑎18 0.15 𝑎20 –0.09
𝑎21 –0.31

Tab. 4.1: AR coefficients.

In next step we created signal in time domain using these coefficients. Signals
of two length were produced to assess the impact of signal lengths. Based on AR
order of 20, we chose length of short signal to be 50 samples and length of long
signal to be 500 samples. For each signal length multiple realization in time domain
were created using equation 3.11 with 𝜎2

w = 1. Number of realizations was set to
𝑁 = 10, 100, 1000. In each simulation least-squares, Burg and Yule-Walker method
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Fig. 4.1: Ideal spectral representation of simulated signal.

was applied to obtain estimated coefficients. Using equation (3.13) we obtained
corresponding spectral estimation. To asses performance of both methods in the
case of selecting non optimal lag order, the computation was done on selected range
of order. The range was 1 to 30 in the case of short signal and 1 to 300 in the case
of long signal.

To objectively measure quality of each method the mean square error (MSE)
was calculated using ideal and estimated spectrum representation for each process.
This was done according following formula [10].

𝑀𝑆𝐸 = 1
𝑛

𝑛∑︁
𝑖=1

(︁
𝑌𝑖 −̂︁𝑌𝑖)︁2

(4.1)

where 𝑌𝑖 is the value of theoretical spectral coefficient and ̂︁𝑌𝑖 is its estimated coun-
terpart. The lower the resulting number is the more accurate is the estimation.

Table 4.2 shows values of MSE in dB for selected methods. Lag order was
set to optimum, i.e. 20 (this order was chosen while creating the original signal).
The results suggest that with increasing number of simulations precision of spectral
estimation also increases. In general, results of all methods are significantly better
for the signal of longer length. The MSE is smaller for Yule-Walker method in all
considered cases. Least-squares and Burg method show similar values in the case of
the long signal. For the short signal Burg method provides better results.

Figure 4.2 (a) and (b) shows theoretical and estimated spectrum of short signal
for 10 and 1000 simulations. Lag order was set to optimal value of 20. The frequency
of x-axis is relative to sampling frequency (value of 0.5 in figures corresponds to 0.5
sampling frequency). We can see that the larger number of simulation leads to more
precise estimation. Neither of examined methods was able to adequately describe
rapid changes of spectral peaks for measuring on 10 simulations. In case of 1000
simulations least-squares method tends to be more accurate in the case of describing
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10 simulations 100 simulations 1000 simulations
signal length short long short long short long
Yule-Walker 27.35 7.60 23.79 5.91 22.95 5.77
Burg 45.89 13.76 42.41 12.03 39.32 11.73
Least-squares 50.20 13.54 48.68 11.91 45.15 11.65

Tab. 4.2: Values of MSE in dB.
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Fig. 4.2: Theoretical and estimated spectrum of short signal, optimal lag.

amplitude of spectral peaks. However other two methods provide spectral line with
greater smoothness. We can also see that the Burg method tends to be more accurate
in capturing the shape of the graph than the Yule-Walker method.

In Figure 4.3 (a) and (b) theoretical and estimated spectrum of long signal for 10
and 1000 simulations and optimal lag order is shown. Larger number of simulations
also leads to more precise estimation and smoothness of the graph but in is not as
significant as in the case above. Least-squares and Burg method show almost the
same results and tend to be more precise in the capturing the shape of the graph
than Yule-Walker method. However all methods were able to capture all significant
spectral peaks.

In Figure 4.4 (a) and (b) we can see influence of the lag order on the precision
of spectrum estimation. For signal of the length 1000, the minimum of AIC and of
all methods (lowest error) corresponds to the order of original AR process, i.e. 20.
We can see that the trend decrease rapidly to optimal lag order, after that the error
tends to increase. In case of the short signal, the minimum lays on lower value that
the optimal order. The trend also decreases rapidly to the lag order of 5. In case of
Yule-Walker method the decrease continues, however error of Burg and least-squares
method increase exponentially.
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Fig. 4.3: Theoretical and estimated spectrum of long signal.
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Fig. 4.4: MSE and AIC of estimated spectrum for 1000 simulations, optimal lag.

4.2 Chapter Conclusion
To sum up our findings, we can state that Yule-Walker method proved to be more
efficient when applied on a signal of the longer duration. On the other hand, Burg
and least-squares method offers better peak detection for the short signal. Fur-
thermore, the results showed that the performance of used methods also strongly
depends on used lag order. Yule-Walker method performs best in scenarios, when
higher lag orders are allowed. Burg and least-squares method is more suited in the
cases, when we aim for lower lag orders.
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5 Impacts of Input Data Character
In this chapter, the performance of individual TFA methods compared using differ-
ent types of input data is proposed. Data from different disciplines show different
characteristics, and therefore, the appropriate setting must be investigated. We take
into account economic, technical, and simulated data. The parameters of the techni-
cal data are extensively described in the literature, this is due, among other things,
to the fact that most of these data are known for their physical nature and accurate
description of the background noise. The subsequent analysis is then simpler, which
is reflected in the literature. In technical data, background noise (GWN, red noise,
etc.) can be considered the rest after the removal of periodic components, whereas,
in the case of economic data, the situation is not the same.

Economic data can be influenced by factors that are often unpredictable and may
affect or change the character of the data. This can manifest as structural changes
in the data, thus the question arises of how to analyze such data to obtain relevant
results. Moreover in the case of economic data, their structure is more complicated.
Usually, it contains structural trend-breaks, outliers, cyclical components of close
frequencies which can occur or diminish in different time sub-periods (not during
the whole time), or nested cycles with different frequency limited in time [36–39].
Moreover, the nature of economic indicators play an important role and can influence
the character of the frequency structure, e.g. business cycles, financial cycles etc.
Then, it is quite difficult to simulate the universal behavior of the economic series
and its noising with a generalized artificial signal. Based on these differences, we
offer instructions on how to approach selected TFA methods, taking into account
the character of the data.

5.1 Simulated Data
As a representative of data composed of several cyclical components and background
noise can be clearly described, we have created an artificial signal. The length was
2000 samples. In the time domain, this signal consists of four sine waves of four
different frequencies. The following equation describes the created signal.

𝑠(𝑡) =
4∑︁
𝑖=1

𝑏𝑖(𝑡) sin(2𝜋𝑓𝑖𝑡) (5.1)

where 𝑓𝑖 is the frequency of an individual wave (namely 50, 100, 250 and 300 Hz),
𝑡 is the time in the range 0–2 seconds, 𝑏𝑖 is its amplitude and it is defined as
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𝑏1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 𝑡 ∈ ⟨0, 0.6⟩ s,
40
7 𝑡− 33

7 𝑡 ∈ ⟨1.0, 1.7⟩ s,
0 elsewhere,

𝑏2 =
⎧⎨⎩ 1 𝑡 ∈ ⟨0.3, 1.4⟩ s,

0 elsewhere,

𝑏3 =
⎧⎨⎩ 1 𝑡 ∈ ⟨0.70, 0.72⟩ s,

0 elsewhere,

𝑏4 =
⎧⎨⎩ 1 𝑡 ∈ ⟨1.0, 1.8⟩ ∪ ⟨1.9, 2.0⟩ s,

0 elsewhere.

(5.2)

As shown in Fig. 5.1 the resulting signal consists of several simple ones. We chose
this approach to test ability of selected methods to identify following moments:

• Very short signal (on frequency 250 Hz)
• Short break of signal (on frequency 300 Hz)
• Longer break of signal (on frequency 50 Hz)
• Two close signals (on frequency 50 and 100 Hz)
Ideal spectral representation along with time representation of the resulting sig-

nal is shown in Fig. 5.1(note that for illustration, the signal is shown without noise).
For better simulation of actual conditions, white Gaussian noise was added. The
signal to noise ratio (SNR) was set to 15dB. Several methods were used to estimate
the spectrogram of the simulated data, namely the estimation via AR and STFT
and CWT. The simulated signal was divided into equidistant blocks of a length of
96 values.
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Fig. 5.1: Simulated signal.
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Fig. 5.2: Comparison of information criteria a) AIC, b) MDL, c) HQC, d) BIC.

Fig. 5.3: TFA using a) TFAR, b) STFT, c) CWT.

5.1.1 Application

For estimating AR coefficients in TFAR method, due to a large number of data
points, the Yule-Walker method was chosen [10]. In order to optimize AR lag order,
several information criteria were considered. We chose four different information
criteria, namely AIC, MDL, HQC and BIC (see eq. (3.14)–(3.16)). The optimal lag
length corresponding to the chosen criteria was estimated separately for each data
block; therefore, the resulting lag length varies. The best results were achieved for
AIC, as shown in Fig. 5.2.

In case of CWT, we used a complex Morlet wavelet as the mother wavelet using
a scale parameter with a maximum value 𝑎 = 64. The graphical representation of
the wavelet spectrogram was modified to be comparable with the results of the other
methods. The frequency axis was recalculated to a logarithmic scale. The resulting
estimates are presented in Fig. 5.3.

5.1.2 Summary

When comparing the ideal spectrum (Fig. 5.1a) with the results of the spectrogram
using the TFAR (Fig.5.3a), we can identify all long term components. Identifying
the short term component 𝑏3 using formula (5.2) is possible but not so clear. The
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estimate of the spectrogram via STFT (Fig. 5.3b) provides similar results as with
AR in all simulated components. All these three methods mentioned above were
unable to recognize rapid time changes in signal components denoted as 𝑏1 and 𝑏4

in formula (5.2). The results of the wavelet spectrogram (Fig. 5.3c) show its ability
to identify all components, including rapid time changes; however, the precision
of identification depends on the optimization of the scale parameter, the choice of
wavelet type, and graphical 3D representation.

To sum up, the achieved results show a good ability to identify simulated compo-
nents for the AR process and wavelet analysis. In comparison to all other methods,
i.e. CWT and STFT, the AR spectrogram shows smooth results with the best
frequency resolution but cannot capture rapid time changes. The wavelet analysis
does not provide such good frequency resolution, but only this method was able to
identify rapid time changes.

5.2 Economic Data
Economic data or economic statistics are data (quantitative measures) describing
an actual economy, past or present. These are typically found in the time-series
form, covering more than one time period or in cross-sectional data in one time
period. For time-series data, reported measurements can be hourly (e.g. for stock
markets), daily, monthly, quarterly, or annually. Estimates such as averages are
often subjected to seasonal adjustment to remove weekly or seasonal-periodicity
elements, for example, holiday-period sales and seasonal unemployment.

In this chapter, we use a gross domestic product (GDP) to represent economic
data with not clearly descriptive background noise. The motivation was to show
the influence of economic data on the TF estimate, and GDP was chosen as a
suitable significant macroeconomic indicator. As it is common in econometric anal-
yses of such data, we use seasonally adjusted quarterly data of GDP, volume index
in OECD reference year 2005 [40] of the United States (US) and United Kingdom
(UK) in 1956/01-2014/04, Korea in 1970/02-2014/02. All variables are in first-order
difference of natural logarithms (FODLOG).

5.2.1 Application

After transformation (into FODLOG values), the data was analyzed using CWT.
We investigated the impact of scale value and type of wave. In the first step,
scale setting was established on 64, 128, and 256 values which are commonly used.
Concerning sample size, data structure, and anticipated events, we took the optimal
scale of 128. We used three mother wavelets from the group of waves, namely Morlet,
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complex Morlet, and Daubechies. Morlet wavelet was chosen as it is commonly used
for this type of application. Complex Morlet wavelet is based on standard Morlet
with the advantage of providing complex results, making it possible to obtain phase
part (quadrature) of the spectrum. Evaluation of this part of the spectrum will
be subjected to further research. Daubechies wavelet of order five was chosen as it
is the second commonly used and can assess lower frequencies and business cycles.
The results of time-frequency wavelet representations of cospectra for USA, UK,
and Korea are given in Fig 5.4.

In the case of cospectra estimate via TFAR process, we used Burg approach
for coefficient estimates on 20 samples with 50% overlay and Hann window. The
optimal value of the lag order was based on AIC criteria. For better illustration,
frequencies were recalculated to show business cycles in years using 𝑓 = 1

𝑇
. This

recalculation was done with respect to sampling frequency (4 samples per year).
Minimal observable business cycles correspond to 0.5 of 𝑓s and is 0.5 year.

5.2.2 Summary

Comparison of results can be done in the following direction. The first is a compari-
son among chosen mother wavelet; the second is among data. Focusing on cospectra
for complex Morlet waves, we can identify the co-moving areas across a range of pe-
riods (i.e. 1/frequencies) from very long cycles (till 8 years), across business cycles
(8 to 1.5 years) to short cycles (1.5 years and less). In some cases (USA-UK, USA-
Korea), the most significant co-movement can be found around 5 years long period,
while in another case (UK-Korea), the most significant co-movement can be found
for very long periods, see Fig. 5.4. In the case of the Morlet mother wave, the
results of USA-UK show the most significant co-movement for a very long period
(more than 20 years). We can also find some co-movement among 2.5 and 9 years
which is not so significant in this case. The co-movement for UK-Korea is signif-
icant among 2.5-20 years and in case of USA-Korea there is a range of significant
periods starting at 2.5 years and including very long periods (more than 20 years).
Application of Daubechies mother wave produces similar results to Morlet mother
wave, but there is no such significant co-movement for shorter periods, i.e. for pe-
riods range 2.5 to 20. The complex Morlet wave gives a possibility to study phase
shift, which is impossible with the usage of Morlet or Daubechies wave. Apply-
ing Morlet and Daubeschie to our data revealed rather longer cycles. Therefore,
the authors suggest removing such components via advanced filtering method using
Baxter-King or Christiano-Fitzgerald band-pass filter [41] to get better visibility of
other co-movement periodicities. A specification of range can easily establish the
frequency range that we want to remove before using a proper band-pass filter.

22



CHAPTER 5. IMPACTS OF INPUT DATA CHARACTER

Fig. 5.4: CWT cospectrum (x-axis represent time in years and y-axis represent time
cycles in years).

Figure 5.5 shows results for co-movement measuring via cospectrum for AR pro-
cess. For all countries, we can identify strong significant co-movement in a wide
range of frequencies, predominately in long periods. Opposite to wavelet analysis,
we can also see significant co-movement in rapid changing periods (shorter than 2.5
years). Unfortunately, with respect to the sample size, the better time resolution is
impossible. This confirms the fact given in [42] which recommends for AR approach
rather than monthly data or higher frequency data (weekly, daily etc.). We can
admit that in such case the AR method will confirm results from wavelet analysis
much better than in quarterly data.

The wavelet approach to co-movement measures shows a good ability to capture

Fig. 5.5: AR cospectrum (x-axis represent time in years and y-axis represent time
cycles in years).
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rapid changes in time. However, its ability to identify the length of business cycles
strongly depends on mother wavelet selection. Our results suggest that complex
Morlet wavelet was able to capture short business cycles better and for this, we rec-
ommend its usage for data where long cycles are not present. The second possibility
is to remove the permanent component via a band-pass filter with respect to the aim
of the consequent analysis. Another property of this wavelet is its ability to provide
complex output, making phase spectrum evaluation possible. Daubechies wavelet
provided good results for long business cycles. However, short business cycles can be
shown as less significant. In the case of co-movement measured via the AR process,
our results confirm better frequency resolution, but in the case of a small sample
size (which our quarterly data are), the time resolution is not as good as for higher
frequency data. Therefore, we suggest using these methods for time series where
monthly data are available and when frequency/business cycles resolution is more
critical than time resolution.

5.3 Engineering Data
Another selected data type was Photonic Doppler Velocimetry Data (PDV) data.
Their parameters are based on physical nature, their structure thus differs from
economic data and the background noise is descriptive. For applying the selected
methods of TFA, we used recorded data of an aluminum metal plate acceleration
by detonation products of brisant high explosive. The data was obtained using
PDV [43], [44]. Used setup is shown in Fig. 5.6(a). A fiber laser with wavelength
𝜆0 of 1550 nm was used to feed a 3-port circulator. Light from the circulator
travels towards the probe (collimator or bare fiber end), where it partially exits and
partially reflects back. The light that exits the probe reflects from the surface of a
measured object and reenters the probe. If the object is in motion, the frequency of
reflected light is changed by Doppler shift 𝑓d. This frequency is then combined with
the non-Doppler-shifted frequency of the laser source 𝑓0. The resulting signal with
frequency 𝑓b equal to the Doppler-shift is captured by the detector and visualized by
the oscilloscope. For a more detailed description of PDV, see [45] [46]. In the case of
our measurement, no amplifier was used between the detector and the oscilloscope.
Detailed schematic of measured object can be seen in Fig. 5.6(b) [43]. To recalculate
Doppler-shift to the velocity of the moving target 𝑣 following formula (5.3) can be
used. Light from the circulator travels towards the probe (collimator or bare fiber
end), where it partially exits and partially reflects back. The portion of the light
that exits the probe travels towards the measured surface, reflects back, and enters
the probe. If the target moves, the light has a Doppler-shifted frequency ). The
back-reflected part is non-Doppler-shifted and has a frequency of the laser source
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𝑓0. The two different frequencies combine and create beats with frequency 𝑓𝑏 equal
to the difference between the shifted and non-Doppler-shifted one. The beat signal
is captured by the detector and visualized by the oscilloscope.

𝑣 =
(︃
𝜆0

2

)︃
𝑓b (5.3)

where 𝜆0 is the wavelength of the non-Doppler-shifted light (the laser wavelength),
𝑓b is the Doppler-shift and 𝑣 is the resulting velocity.

Two signals obtained using PDV were selected. Both with a sampling rate of
25Gs/s and length of 20µs giving us 500k samples. The maximum available fre-
quency that our data contained was limited by the bandwidth of the used oscillo-
scope, which was 4GHz. Time representation of both signals is shown in Fig.5.7.
The red arrow denotes when the Al plate accelerated by the detonation destroyed
PDV fiber probe (level of signal rapidly falls). After this moment, the optic fiber is
compromised, and the measured signal contains basically unusable noise.

(a) PDV schematic (b) Test setup schematic

Fig. 5.6: Scheme for data acquisition (Source:[43]).

5.3.1 Application

To make the process of description of the trend of significant spectral coefficient more
manageable we divided the algorithm into several steps. After the data acquisition
the procedure was done in following steps:

• Preliminary analysis of data, selection of region of interest using STFT
• Application of STFT, TFAR and wavelet transform
The first step was a selection of the part of the signal containing the required

information. The range of considered signals was defined as follows. The beginning
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Fig. 5.7: Time representation of signal A and B.

of this time range was taken as the start of the shock wave in the Al plate. The end
was done by the destruction of optic fiber (rapid fall of signal). The exact time of
destruction is easily visible even in simple time representation. Unfortunately, the
exact location of the start of the shock wave is difficult to identify/determine based
only on the time representation precisely. However, we can perform a preliminary
TFA of the signal. Therefore based on this TFA, we can select the appropriate
sample range. For this aim, the STFT method is sufficient (low computational
requirements, easy implementation), Hann window with length of 5000 samples
with an overlap of 2000 samples was used.

We can see the demonstration of preliminary STFT analysis results in Fig. 5.8
where a circle highlights the area of interest. The results look quite similar for both
signals (A and B); therefore, we present only for signal A. Based on the detailed
analysis, we select signal A samples in the range of 5.00 to 6.80 µs, which corresponds
to 45k samples, for signal B in the range of 5.00 to 6.88 µs which corresponds to 47k
samples. To have access to a low-frequency slope, we avoid any filtering of data.

5.3.2 Summary

We applied STFT, but this application was made on the preselected range described
above. The establishment of parameters was motivated by the intention to keep a
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Fig. 5.8: Preliminary spectral estimation of signal A.

balance between time and frequency resolution. Therefore we used a window length
of 1024 samples with an overlap of 900 samples. Due to wide overlap, the Hann
filtering window was used to suppress the influence of earlier signal samples. Results
are presented on the Fig. 5.9 a) and b).

In the next step, we obtained time-frequency representation using the AR pro-
cess. Application of this method was also done on the preselected range described
above. Motivation for parameter selection was the same as for STFT; therefore,
we choose a window length of 1024 samples with an overlap of 900 samples and a
Hann filtering window. Considering the sample size of signal and size of the window,
we choose the Yule-Walker method for AR coefficients to estimate which is more
suitable for long signals [47]. Selection of lag order was done separately for each
window (i.e. 1024 samples). To determine optimal lag order, we used the Akaike
information criterion, which provides good results in the case of a similar signal.
Results are presented on the Fig. 5.9 c) and d).

The lastly applied method was wavelet analysis. The aim was to get more in-
formation via better time resolution. Therefore, we used a complex Morlet wavelet
and scale 1:512. Results are presented on the Fig. 5.9 e) and f). As shown in
Fig. 5.9 STFT and AR provide fair results. In the case of CWT, significant spectral
components are less visible, making their identification slightly more difficult. Nev-
ertheless, one advantage is a more detailed resolution of the time axis. This allows
us to be more precise in determining the time of the beginning of the shock wave in
the AL plate.
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(a) STFT signal A (b) TFAR signal A (c) CWT signal A

(d) STFT signal B (e) TFAR signal B (f) CWT signal B

Fig. 5.9: Spectrogram estimation of both signals (𝑥−axis: time, 𝑦−axis: frequencies,
𝑧−axis: spectral values).

5.4 Chapter Conclusion
Based on obtained results, we can see that in the case o economic data with a
specific structure with several cyclical components (not necessarily based on sinus
function), wavelets can perform better than STFT. This can be traced to the fact
that the main advantages of wavelets are: the applicability on stationary and non-
stationary time series; the flexibility of choice of mother wavelet with respect to the
character of inputs; the ability to uncover unique, complicated patterns over time
and a good time resolution. However, when using technical data (where the basis
function is primarily a sine), the STFT provides sufficiently good results, and there
is no need to choose a suitable mother wavelet and a suitable range of scales.
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6 Enhanced TF Representation
To highlight important spectral components we propose combination of several TF
methods. In each method background noise is depict with different characteristics.
However significant spectral components should be captured in most cases. Based
on such assumption we should be able to suppress the noise and highlight required
components by using their combination. The procedure of this method is shown
in Fig. 6.1. This procedure can be perceived as an alternative to significance tests,
which we will discuss in Chapter 7. As mentioned in Chapter 5 the characteristics
of input data must be taken into account. Therefore, we will show the application
on different types of data; i.e. economics and engineering.

Fig. 6.1: Enhanced modelling of TF spectrograms.

6.1 Combination of TF methods
To obtain the best possible TF representation we combined results from the CWT,
TFAR and STFT approach. Since the main focus was on the amplitude part of the
spectra we have omitted phase part of complex spectra 𝑆CWT and 𝑆STFT. In case of
focus on amplitude and phase components whole signal can be used for subsequent
processing.

Firstly we align time axis (time resolution) of spectral representations 𝑆CWT,
𝑆TFAR and 𝑆STFT so each spectrum would correspond to one another. All three
vectors representing resolution in time have linearly increasing trend so for the time
axis alignment the only requirement was to adjust starting and ending point for each
method. We omitted first and last 15 columns of 𝑆CWT, we denoted this remaining
matrix as 𝑆 ′

CWT. By doing this we ensured corresponding time axis for all three
methods.

Secondly we needed to align the frequency/scale axis of 𝑆 ′
CWT, 𝑆TFAR and 𝑆STFT.

The frequency range of 𝑆TFAR and 𝑆STFT was cropped to correspond the range of
𝑆

′
CWT which was 1 year to 10 years cycles. Resulting frequency/business cycles

vectors 𝑓TFAR and 𝑓STFT had a linearly increasing trend however trend of 𝑓CWT was
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non linear. To obtain corresponding vectors we matched each point of 𝑓CWT with
one value of 𝑓TFAR/𝑓STFT with 1.4% tolerance:

|𝑓CWT − 𝑓STFT| ≤ 0.014
⃒⃒⃒
max(𝑓CWT; 𝑓STFT)

⃒⃒⃒
,

|𝑓CWT − 𝑓TFAR| ≤ 0.014
⃒⃒⃒
max(𝑓CWT; 𝑓TFAR)

⃒⃒⃒
.

(6.1)

With this step we have gained adjusted TF matrices 𝑆 ′
TFAR and 𝑆

′
STFT making

all three methods aligned. For the methods combination we selected simple multi-
plication. We used combination of CWT and TFAR (𝑆CWT,TFAR) and combination
of CWT, TFAR and STFT (𝑆CWT,AR,STFT):

𝑆CWT,TFAR = 𝑆
′
CWT𝑆

′
TFAR,

𝑆CWT,TFAR,STFT = 𝑆
′
CWT𝑆

′
TFAR𝑆

′
STFT.

(6.2)

6.2 Application on Economic Data

6.2.1 Data Describtion

As a representative of economic data with not clearly descriptive background noise,
we use seasonally adjusted quarterly data of GDP. We selected volume index in
OECD reference year 2010 [40] of the United Kingdom (UK) in 1956/01-2016/03
and Group of 7 (G7) in 1961/02-2016/03. All variables are in FODLOG (Fig. 6.2).
G7 countries are: Canada, France, Germany, Italy, Japan, the United Kingdom,
and the United States.

(a) UK
,

(b) G7

Fig. 6.2: GDP of UK and G7 in time domain.

Our analyses consists from several steps. In the first, we analyse data using
CWT. We set scales to correspond range of 1 year to 10 years, with 257 individual
scales. As mother wavelet we selected complex Morlet with center frequency 𝑓b =
1.5. The complex Morlet wavelet is based on standard Morlet with the advantage
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of providing complex results making it possible to obtain phase part (quadrature)
of spectrum. In case of TF estimation via TFAR process we used Burg approach
for coefficient estimates on 30 samples with 29 samples overlay and Hann window.
Optimal value of lag order was based on AIC criteria. Parameters of STFT were
set to correspond TFAR settings (30 samples, 29 samples overlay, Hann window) to
simplify the process of combination of methods.

The data and results for UK and G7 are presented graphically in Fig. 6.2a-b, in
Fig. 6.3a-f and Fig. 6.4a-d. There are four types of figures. Namely time represen-
tation of GDP for UK and G7 (Fig. 6.2a-b), TF transform via CWT (Fig. 6.3a-b),
TF transform via AR (Fig. 6.3c-d), transformation via STFT (Fig. 6.3e-f) and ad-
justment of CWT picture with the help of AR (Fig. 6.4a-b) and with the help of
TFAR+STFT (Fig. 6.4c-d).

(a) CWT UK (b) CWT G7

(c) TFAR UK (d) TFAR G7

(e) STFT UK (f) STFT G7

Fig. 6.3: Spectrum of GDP of UK and G7.
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(a) Enhanced UK (b) Enhanced G7

(c) Enhanced UK (d) Enhanced G7

Fig. 6.4: Adjustment of TF methods.

6.2.2 Results

Focusing on time representation given in Fig. 6.2a-b we can conclude following. In
the time representation of the United Kingdom data we can see two sub-periods
with different volatility. Between 1956-1988 and 1989-2015. There are also visible
several moments with higher/lower level of the data, i.e. structural breaks (1958,
1964, 1968, 1973, 1979 and 2008) given by events in UK economy such as oil crises,
financial crisis. In case of G7 there is similar problem with volatility, but it is not
such visible as in UK. In contrast with UK, the G7 data has slowing decreasing
trend with higher volatility between 1961-1988. Thereafter (1989-2015) the data
character looks similar to the UK case. In G7 we can see similar structural breaks
(1973, 1979 and 2008).

After a short analyses of time representation of the data we apply TF approaches.
Firstly we modelled CWT (Fig. 6.3a–b), consequently TFAR (Fig. 6.3c–d) and
STFT (Fig. 6.3e–f). As we expected CWT provides results with very good time
resolution. We can see several important areas across time and frequency. Focusing
on TFAR representation the results are not so clear from time perspective as CWT,
but they give us better information from frequency perspective similarly as STFT.
Therefore, we decided to do adjustment of CWT picture with the help of TFAR and
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TFAR+STFT according to the calculation (eq. 6.1,6.2) described in Combination
of TF methods.

The results of adjustments can be seen in the Fig. 6.4a–d. Focusing on UK situa-
tion and in comparison with enhanced figure (Fig. 6.4a) with CWT figure (Fig. 6.3a)
we see sharper picture with suppressed noise. Therefore, we can easily identify the
most important events in UK data from time and frequency perspectives. We can
found three most important even in UK. The first is between 1960–1988 and can
be distinguished into two subperiods; 1960–1972 and 1973–1988. These results cor-
responds with time domain description. In addition to the time domain we find
that such event have reaction in the approximately 4 years (in the first subperiod
1960–1972) and around 5 years (in the second subperiod 1972–1988) cycles. The sec-
ond important area arise between years 1973–1976 and has the impact on economic
reaction in short cycles about length proximately 1.5 year showing quick reaction.
The last important area is between 2007-2010 covering business cycle frequencies
(from 4 to 2 year frequencies) and compare to the previous one it seems that it has
not such impact in UK as previous events. To be sure with such conclusion and for
cross validation we add additional adjustment of three TF approaches leading into
the Fig. 6.4c. The result confirm results from the adjustment of CWT and TFAR
and that events between 1970–1976 have stronger impact on UK economy.

When we focus on the results for G7, we can find some similarities as well as
dissimilarities. Again, we can see (Fig. 6.4h) that the most important area is between
1970–1974 in 4 years cycles and 1974-1981 in 5 years cycles consisting one period
1970–1982. The second important area is between 2007–2010 (financial crisis) which
cover the range of business cycles, i.e. 1.5-5 years cycles. After adding the second
adjustment for cross validation of obtained results presented in the Fig. 6.4d we
see conformity in important area identification. Also in this case for sureness and
cross validation we added adjustment of TF approaches leading into the Fig. 6.4d.
The result confirm results from the adjustment of CWT and TFAR and that events
between 1970-1976 have stronger impact on G7 economy than financial crisis in
2007–2009.

Comparing results from economy point of view, we can see, that in UK oil crisis
has bigger impact than financial crisis, while from the perspectives of G7 countries
impact of financial crisis was stronger. Obtained results can be used for consequent
macro or micro-econometric analysis to search for dependencies or relations with
other economic aspects. Or it can motivates researcher in next steps which could
be decomposition analysis on specific component of corresponding frequency which
can be used in analysis of bilateral causalities.
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6.3 Application on Engineering Data

6.3.1 Data Describtion

Another selected data type was Photonic Doppler Velocimetry Data (PDV) data.
Their parameters are based on physical nature and their structure is thus different
from economic data. As input data we took STFT, TFAR and wavelet spectral
representation of the data from Fig. 5.9. Equations (6.1) and (6.2) were then used.
Because the main focus was on the amplitude part of the spectra we used only the
amplitude part of STFT and wavelets.

6.3.2 Results

Resulting modified spectrogram is in Fig. 6.5. We can see that the scatter of
background noise is smoothed and the data signal is more clearly visible. Even
on this type of input data, it was confirmed that the method can highlight the
required components in the spectrogram and therefore provides required advantages
for further processing.

(a) signal A (b) signal B

Fig. 6.5: Enhanced PDV data (𝑥−axis: time, 𝑦−axis: frequencies).

6.3.3 Post-processing

The next step was focused on kernel estimate of the trend of significant spectra
peaks. Identification of such trend allows better determination of materials proper-
ties at very rapid load than simple maxims connection. We firstly created vectors
containing the position of detected peaks. With respect to the frequency value we
took the highest spectrogram value ±Δ to specify close surrounding area. According
to empirical results we established ±Δ = 7.5%. Using this thresholding we speci-
fied a mask which contained the region of our interest (region of required signal).
By implementing this step we gained a vector of peak positions suitable for kernel
analysis[32].
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To support decision beneficial to kernel estimate we investigated two paramet-
ric and one non-parametric model. Namely the deterministic polynomial model
(Fig. 6.6c,d), stochastic AR model (Fig. 6.6a,b) and non-parametric NW kernel
estimate (Fig. 6.6e,f).

Polynomial model for the dependent value 𝑦 and an 𝑞th degree is defined as:

𝑦 = 𝛽0 + 𝛽1𝑥+ 𝛽2𝑥
2 + 𝛽3𝑥

3 + · · · + 𝛽𝑞𝑥
𝑞 (6.3)

where 𝛽0, 𝛽1, . . . are unknown polynomial coefficients and 𝑥 is an independent vari-
able. We investigated degree of polynomial 𝑞 = 2−30 and Vandermonde matrix was
used to obtain polynomial coefficients [48]. AR model was calculated using (3.11).
We investigated lag order 𝑝 = 1 − 20; optimal orders were selected using AIC cri-
terion. NW kernel estimate was done using (3.24)–(3.26) for a kernel of the order
𝜈 = 0; 𝑘 = 2, smoothness 𝜇 = 2 and bandwidth ℎ = 0.02 (see Chapter 3.3) [32, 49].
Values were optimized via the generalized cross-validation method [50].

In Table 6.1 you can see the evaluation of model fit via MSE (4.1) and coefficient
of determination 𝑅2 for parameters with best fit. 𝑅2 was is computed as: [51]

𝑅2 = 1 −
∑︀𝑛
𝑖=1

(︁
𝑌𝑖 −̂︁𝑌𝑖)︁2

∑︀𝑛
𝑖=1

(︁
𝑌𝑖 − 𝑌

)︁2 (6.4)

where 𝑌𝑖 is the value of observed spectral coefficient, ̂︁𝑌𝑖 is its estimated counterpart
and 𝑌 is the mean of the observed data. The higher the resulting number is the
more accurate is the estimation.

In both signals, Fig. 6.6, we can identify the same shape of the curve. Comparing
them, we can see a rising edge of the curve at the start of signal B. This shape of
curve path corresponds with expectations of material behavior during explosion. It
is missing in signal A and is probably caused and influenced by the explosive event.
Therefore, the start of signal A was identified after this part. In both signal cases
we can identify a three-level decrease with osculation followed by its increase. The
general tendency has a similar parabolic shape in both signals.

A detailed analysis of Fig. 6.6 reveals the following facts. Signal A: the graphical
representation reveals a short time decrease followed by a short time increase and
stagnation of the signal at a higher level. The second and third part copies this
tendency, but both parts are moved to the lower level having a stair shape. The
last part takes a parabolic shape with the second half of the signals. In the case of
signal B we can identify three similar parts of decrease. Generally, the dynamics
of the curve is smaller. The final part of the curve for signal B, taking a parabolic
shape, is similar to the curve for signal A.

The comparison of estimated curve shapes (Fig. 6.6) and measured quality values
(Tab. 6.1) reveal, that for signal A the best approach is the NW estimate while for
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(a) Signal A: AR estimate 𝑝 = 6
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(b) Signal B: AR estimate 𝑝 = 3

5   5.36 5.72 6.08 6.44 6.8 
Time (us)

170.6 

360.2 

549.8 

739.3 

928.9 

1118.5

1308.1

1497.6

V
el

oc
ity

 (
m

/s
)

Trend estimate
Data points

MSE = 5.35

R2 = 0.87

(c) Signal A: Polynomial est. 𝑞 = 8
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(d) Signal B: Polynomial est. 𝑞 = 11
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(e) Signal A: NW estimate
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(f) Signal B: NW estimate

Fig. 6.6: Modelling of the curve fit.

Model Parameters MSE 𝑅2

Signal A
Polynomial 𝑞 = 8 5.35 0.87
AR(p) 𝑝 = 6 2.75 0.93
NW 𝜈 = 0, 𝑘 = 2, 𝜇 = 2, ℎ = 0.02 1.87 0.95

Signal B
Polynomial 𝑞 = 11 11.58 0.86
AR(p) 𝑝 = 3 2.27 0.94
NW 𝜈 = 0, 𝑘 = 2, 𝜇 = 2, ℎ = 0.02 5.84 0.93

Tab. 6.1: Evaluation of the model fit via MSE and 𝑅2.
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signal B it seems to be the AR process. However, AR appears problematic when
focusing on capturing the rising edge because in such a case it was not captured. This
is caused by a loss of data in the initial part of the signal - area of omission depends on
lag order of the AR process corresponding to the signal character. Another problem
with AR is in the case of missing points (non equidistant); the approximation of the
resultant curve looks under-smoothed. For this reason, we prefer the NW estimate
(Fig. 6.6e and f as the best even when it has a little bit worse measured quality
values for signal B, because the rising edge was clearly captured. The worst curve
fit estimation was achieved via the polynomial model (Fig. 6.6c and d). As the
results show, in such an approach, the estimated fit is over-smoothed. Also, its
ability to describe a rising edge is worse compared to the NW estimate. To sum up,
the kernel estimate provides the best curve shape estimate for such data.

6.4 Chapter Conclusion
If we review results, by combining several TF approaches we were successful in
background noise suppression. Consequently, events of interest became more visible
and their identification in time, as well as in frequency was easier. An example of
the possible use of this identification is the trend detection in a spectrogram. This
approach can also be taken as a supplement to the significance testing with the
investigation of background noise description, which will be described in Chapter 7.
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7 Standard Significance Tests
Time-frequency transform can give reasonable results of both perspectives, time
and frequency, in one moment. In some branches such as engineering, the physical
nature of inputs is obvious and gives valuable information. We can assume the
existence of several harmonic components corresponding to the specific frequency
during all times of given input. Unfortunately, in other scientific disciplines, such
as economy or sociology it may not be so simple. Applications of TF analyses have
been so far limited by the fact that it was impossible to draw any implications on the
statistical significance. Thus, significance testing of obtained results is welcomed.
The original contribution in the spectrogram testing was provided by Torrence and
Compo [23], followed by Ge [24,52]. Both provided a framework for testing individual
spectrograms as well as testing of co-movement representation. We denote them
both as standard testing approach (STA).

7.1 STA on Individual Spectrograms
The basic work discussing significance testing TF representation is by Torrence and
Compo [23]. Their paper aimed to answer the question how one can distinguish
statistically significant results from those due to pure randomness. Authors present
comparison of wavelets to the windowed Fourier transform and propose tests for
wavelet power spectra developed by deriving theoretical wavelet spectra for white
and red noise processes. Ge [24], motivated by the Torrence and Compo (TC98) [23]
work, derived the sampling distributions of the wavelet power and power spectrum
of a (GWN) in a rigorous statistical framework. He proved that the results given
by [23] are numerically accurate when adjusted by a factor of the sampling period.
Similar approach to TC98 can be found in the work of Schulte et al. [53] or James
and Fleming [22]. As an alternative approach we can use combination of several TF
methods to suppress the noise and highlight required components of TF transform
as presented in Chapter 6.

Thus, according to TC98 [23] and Ge [25] we can do following. The distribution
for the Fourier power spectrum is

𝑁 |𝑆STFT(𝑚, 𝑓)|2
2𝜎2 ∼ 1

2𝑃𝑘𝜒
2(2) (7.1)

where 𝑁 is the number of points, 𝑆STFT(𝑚, 𝑓) is given by (3.4), 𝜎2 is the variance
of time series 𝑠(𝑛). Such testing statistic is distributed as chi-squared distribution
𝜒2 with two degree of freedom 𝜒2(2). The corresponding distribution for the local
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wavelet power spectrum with usage Morlet wavelet is

|𝑆CWT(𝑎, 𝜏)|2
𝜎2 ∼ 1

2𝑃𝑘𝜒
2(2) (7.2)

at each time 𝑛 and scales 𝑎, 𝑆CWT(𝑎, 𝜏) is given by (3.6) The 1/2 factor removes
degree of freedom factor from the 𝜒2 distribution. If the wavelets are real, the dis-
tribution on the right-hand side would be chi-squared with one degree of freedom
𝜒2(1). The value of 𝑃𝑘 is the mean spectrum at the Fourier frequency 𝑘 that corre-
sponds to the wavelet scales 𝑎. In case of gaussian white noise background spectrum
this is equal to one [23,25].

After finding the appropriate background spectrum and choosing a particular
confidence for 𝜒2 for 95% (𝛼 = 5% risk) we can construct confidence contour line for
each scale. Thus, if the peak in the wavelet power spectrum is significantly above
the background spectrum (in our case GWN), than we can assume the peak is true
feature with a certain percentage confidence.

7.1.1 STA on Individual Spectrograms Application

To determine the characteristics of STA and select optimal parameters of the chosen
method we have created a deterministic signal (Fig. 7.1a). By doing this we obtained
a signal with the known properties allowing us to asses the quality of method perfor-
mance. The signal was constructed to include frequency sweep: exponential at the
beginning, linear afterwards and containing a drop to zero at the end. In contrast to
test signal used in [24], we aimed to create a signal of a higher complexity compared
to the simple signal with just one harmonic component. Time representation of the
signal can be seen in Fig. 7.1a and its spectral estimation via CWT and STFT in
Fig. 7.1b,c.

Before applying the methods described in the methodology part we firstly cor-
rupted the synthetic signal Fig. 7.1a. We added the GWN to the signal; the SNR
was set to the moderate level of 3dB. The type of noise and its level was selected to
correspond with Ge [24]. Consequently we estimated time- frequency representation
via CWT and STFT. For estimating STFT, we used Hann window [54], for CWT
estimation we used Morlet wavelet with central wavelet frequency 𝑓0 = 0.8125 (this
selection was motivated by wide use of this wavelet in economic applications). The
resulting figures for noised signal can be seen in Fig. 7.2a,b.

In the following step, we identify significant components of estimated spectra.
To determine significant components we proceed according to (7.1) and (7.2). Due
to the character of the noise, which was additive GWN, we were able to use the
simplification of 𝑃𝑘 = 1 (for details see [25]). The level of risk 𝛼 was set to the two
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(a) Time representation

(b) Estimation using CWT (c) Estimation using STFT

Fig. 7.1: Signal without GWN.

(a) CWT spectrum of noised signal (b) STFT spectrum of noised signal

(c) Significant components of CWT for
𝛼 = 0.05

(d) Significant components of STFT for
𝛼 = 0.05

(e) Significant components of CWT for
𝛼 = 0.15

(f) Significant components of STFT for
𝛼 = 0.15

Fig. 7.2: Spectral estimation of noised signal and its significance testing.
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(a) CWT power spectrum (b) STFT power spectrum

Fig. 7.3: Normalized power spectrum in three time slices points and corresponding
5% and 15% signigicance level.

levels 𝛼 = 5 and 15%. As Ge [24] wrote, in such cases the significance level can
empirically be relaxed to 15% or even higher depending on the particular problem.

The resulting figures for estimated spectra for both risk levels are given in
Fig. 7.2c–f. The figures show only the identified significant component without
the real value.

To demonstrate the method, we took three time instants 𝑡 = 0.2, 0.9 and 1.8 s.
Fig 7.3 shows the CWT and STFT spectra in these time points together with the
corresponding significance levels of 5% and 15%. The frequencies of values that are
placed above the line for the selected 𝛼 are identified as significant.

7.1.2 Simulations of Background Noise Levels

To verify the accuracy and suitability of Torrence and Compo tests, we used simu-
lations based on the background spectrum construction. These simulations are used
to identify our own critical values on the basis of repeated random sampling to iden-
tify empirical distribution. We generated 50000 GWN repetitions with the length
of 2000 points with variance level corresponding to the signal variance. For each se-
quence, the CWT and STFT spectrum was calculated. After the STFT calculation,
we took the values for each frequency from all iterations, gaining vectors of 50000
values. After that we separately calculated 95% quantile of empirical distribution
for each vector (shown as asterisk in Fig7.3 b). We can see that the obtained values
approximately match Torrence and Compo tests. Not to complicate things for CWT
with cone of influence [25] we selected a time point in middle of CWT spectrogram
(𝑡 = 1s). The reason is that the character of GWN does not affect the accuracy of
the result. For the time point 𝑡 = 1s , we took the values for all scales (frequencies).
By doing this for all 50000 iterations, we gained vectors containing 50000 values for
each scale (frequency). After that we separately calculated 95% quantile of empirical
distribution for each vector (shown as asterisks in Fig7.3 a). We can see that this
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significance level is not constant and that its level decreases with frequency, which
in return enables for higher spectral components to be identified as significant.

Using a synthetic signal, we analyzed the behavior of testing procedure for the es-
timated spectrogram with respect to the GWN background. We employed Torrence
and Compo significance tests based on 𝜒2 distribution and verified their accuracy
and suitability for more complex signal using simulations of background noise lev-
els. The results suggest that in the case of STFT it is sufficient to use Torrence and
Compo tests even for a more complex signal. In the case of CWT simulations of
background noise levels, the results differ from Torrence and Compo. Therefore, we
recommend using the Torrence and Compo method for less complex signals.

7.2 STA on Co-movement
As mentioned in Chapter 3.2, co-movement measures are used to evaluate similarity
between two inputs (signals or time series). In case of cross-spectrum analysis the
output data is three-dimensional and resembles spectrogram. Therefore, it is advis-
able to use some form of testing as described above. The general formula for the
significance testing of the power wavelet cross-spectrum (PWCS) was firstly pro-
posed by TC98 [23]. They derived white- and red- noise wavelet power spectra and
used them further to establish a null hypothesis for the significance test of a peak in
the wavelet power spectrum and cross-spectrum. This work was consequently im-
proved by Ge [25,55] who also proposed formulas derived specifically for the GWN
series.

As TC98 [23] and Ge [25, 55] wrote, for two independent GWN series 𝑥(𝑛) and
𝑦(𝑛) with variances 𝜎2

𝑥, 𝜎
2
𝑦 and wavelet spectrogram 𝑆𝑥(𝑎, 𝜏), 𝑆𝑦(𝑎, 𝜏), we can cal-

culate the PWCS |𝑆𝑥𝑦(𝑎, 𝜏)|2, which is the product of two 𝜒2− distributed random
variables. As pointed out by Wells et al. [56] and TC98, the distribution of the square
absolute value of the normally distributed variable is 𝜒2(2). In the case when both
power wavelet spectra are based on two independent GWNs, the 𝜒2−distribution are
both with 2 degrees of freedom and the non-centrality parameters are zero [25,55,56].
That is, as proved Ge [25,55] since

|𝑆𝑥(𝑎, 𝜏)|2
𝜎2
𝑥/2

∼ 𝜒2(2), |𝑆𝑦(𝑎, 𝜏)|2
𝜎2
𝑦/2

∼ 𝜒2(2), (7.3)

their product is
|𝑆𝑥(𝑎, 𝜏)|2
𝜎2
𝑥/2

|𝑆𝑦(𝑎, 𝜏)|2
𝜎2
𝑦/2

∼ 𝑊2. (7.4)

In (7.4), 𝑊2 (based on Wells et al. [56]) denotes the probability distribution with
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the probability density function

𝑓(𝑧) = 0.5𝐾0(𝑧1/2), (7.5)

where𝐾0(𝑧1/2) is a modified Bessel function of order zero for the complex wavelets [56].
The significance level 𝑍(1 − 𝛼) for the risk 𝛼 can be deduced from 1 − 𝛼 percentile
of the 𝑊2 distribution [23,25].

After rearranging the terms we obtain

|𝑆𝑥𝑦(𝑎, 𝜏)|2
𝜎2
𝑥𝜎

2
𝑦

∼ 1
4𝑊2. (7.6)

7.2.1 STA on Co-movement Application

To determine the characteristics of STA for co-movement we selected real economic
data rather than their simulation, because such real data contain structural breaks
and reactions on economic even. In case of its simulation some of unpredictable
factor can be suppressed, which is not welcomed. Our approach consists from several
steps. In the first step we estimate WCS and wavelet power cross spectrum (using
(3.19)). In the second step we identify significant regions according to [23] approach
(7.6). In the third step we used simulations of background noise levels to identify
empirical critical values. The simulations were done according the Chapter 7.1.2
with 1000 iterations. At the end we compare both results (according to STA and
simulations of background noise levels) and formulate recommendations.

For the demonstration of discussed approach we use data described in Chap-
ter 5.2 (Fig. 7.4a–c). The motivation for data selection were: i) sufficient data
range (it is desirable to have detailed time resolution); ii) in case of UK and G7 we
expect co-movement, because UK is a member of G7 and thus support validation
of purposed method; iii) in case of Korea we expect lower level of co-movement
with G7, because Korea is not the member of G7. Additionally, with respect to
the Brexit we were interested into analysis before such even having character of
structural break which will affect the data.

For CWT estimation we used complex Morlet wavelet with central wavelet fre-
quency 𝑓0 = 1.5 as the mother wavelet. We set scales corresponding to the range
from 2 years to 40 years cycles, with 334 individual scales. The power WCS were
calculated according to the formula (3.19). The resulting figures for the data can
be seen in Fig. 7.5a-c. In case of simulations of background noise levels we firstly
generate two independent GWN series with 𝜎2 corresponding to the background
noise. Then, we estimate its CWTs and consequently power WCSs with 334 indi-
vidual scales (corresponding to the data setting). Consequently, we generate 1.000
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repetitions with the length of 1.000 points. To avoid complications with cone of
influence in CWT we selected a time point in middle of WCS spectrogram. For each
frequency (scale) from all iterations we save the obtained values. After that, we cal-
culated 95% quantile of empirical distribution separately for each vector (scale). By
this simulation we were able to obtain critical values for each corresponding scale.
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Fig. 7.4: Time series representation.

The results of co-movements are presented in Fig. 7.5a–c below. The y-axis was
re-calculated from frequency to the cycles per year for the better interpretation of
an economic inputs. Thus, given the quarterly character of the data, we denote
the sampling frequency 𝑓s to be 4 samples per year. The red curve in the figures
defines significant area identify via the simulations of background noise levels, the
yellow dashed curve defines significant area according to [23]. Focusing on the results
of co-movement (Fig. 7.5a–c) with respect to the identification of significant area
via [23] we can state following. All figures show existence of co-movement between
countries which matches our assumptions. That is, the UK-G7 (Fig. 7.5a) has higher
level of co-movement caused by being UK in G7. The Korea and G7 (Fig. 7.5b)
has less areas with co-movement, but generally both UK-G7 and Korea-G7 has
co-movement in the time of oil crisis 1970-1982 and in the time of financial crisis
2001–2010. Such strong co-movement of Korea with G7 is also visible in Fig. 7.5c.
All these significant co-movement (dashed curves in the Fig. 7.5a–c) were identified
for long cycles, i.e. 10 years length cycles and longer. These results were confirmed
by simulations of background noise levels. Focusing on same figures (Fig. 7.5a–c),
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(a) UK–G7 (b) Korea–G7

(c) Korea–UK

Fig. 7.5: Co-movement between countries, x-axis: the time, y-axis: the frequency
measured in the cycles per year and z-axis: the power WCS.

but on significant areas identified by the simulations of background noise levels, we
can see an additional areas in all measured co-movements. That is, the additional
co-movement between UK-G7 (Fig. 7.5a) in the time of oil crisis 1968-1982, but for
shorter cycles, i.e. for the cycles of the approximately 2–4 years. Such additional
co-moved area reflects the faster response in the country economy to the oil crisis,
such as small and medium-sized enterprises, loans, investments etc. In the case
of the co-movement between Korea-G7 (Fig. 7.5b) we can see also additional co-
movement in the period 1974-1982 but for cycles of the length 4–6 years. Similarly,
between Korea-UK (Fig. 7.5c) there is also the additional co-movement in the period
1972–1980 for cycles of the length 4–6 years. Here, the results again confirm our
expectation of direct interconnection of UK and G7 and the weaker interconnection
of Korea and G7. In all the cases results confirm the globalization of the economies
and the stronger impact of the oil crisis on the world economy then the financial
crisis.

The comparison and the verification of the accuracy and suitability of STA ap-
proach via the simulations of background noise levels is presented on Fig. 7.7. For
the illustration of the significance level we firstly preselect the three time slices of
the WCS (for example of UK-G7 (Fig. 7.6)). Selected time slices are denoted by
the numbers 1–3 and corresponds to the time 1976, 1998 and 2006. The figure
(Fig. 7.7) demonstrates power WCS curves and the significance level identified by
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Fig. 7.6: Selection of slices in co-
movement (1: 1976, 2: 1998, 3: 2006).

Fig. 7.7: Comparison of STA and sim-
ulations of background noise signifi-
cance level.

STA (dashed-dotted line) and by the simulations of background noise levels (stars).
We can see that the simulations of background noise significance level is not a con-
stant, resp. it is decreasing with the frequency. Thus, the simulations of background
noise levels enables the additional power WCS components to be significant. The
difference between significant level of STA and the simulations of background noise
levels is most likely caused by the heteroscedastic character of an input data, when
in the time period of commoved series are the sub-periods with the different vari-
ances (you can see Fig. 7.5). An additional source of the difference between the
significance level could be the scale range selection.

Using real data we analysed the behaviour of testing approach for the estimated
wavelet power cross spectrum with respect to the GWN background. We use two
approaches, namely the statistical significance according STA, and the identifica-
tion of critical value using simulations of background noise levels. While STA uses
comparison with constant critical value identified via the modified Bessel function
of order zero corresponding to the risk, the simulations of background noise levels
identify critical value on the basis of repeated random sampling to identify empirical
distribution.

7.3 Investigation of Background Noise
In this sub chapter we focus on evaluation of background noise for determination of
significance level for spectrum/spectrogram estimate. We investigate input signal
which is viewed as composition of several cyclical components occurring in differ-
ent time sub-period (not in whole time). Moreover, we admit that after removing
estimated periodic components the rest of such signal does not have to be GWN.
Therefore, we investigate identification of significant level on the basis of empiri-
cal distribution and noise analysis and its comparison with the results for GWN
background.
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We consider several types of input data. The first type is engineering data
such as measurement of some noisy signal or deterministic technical data. The
basic characteristics of such group of signals are composite of various harmonics
corresponding to the different frequency which can be visible during all time of the
signal. The second fact is, that after removing such periodic component the resultant
noise is in expected form, for example white noise, red noise etc. Thus, simulation
of such kind of signal can bring research in the case of changing the noise variance
or changing frequency in signal during time. But the background spectrum will be
still in pre-define form, in our case GWN.

In practice, across different disciplines, there are signals or time series for which
exact definition of its character is not so clear as in technical signals. As an example
we can take economic time series, which have structural breaks. Such data can be
viewed as a composition of several cyclical components which can occur in different
time sub-period (not in whole time). The nature of an economic indicator play
an important role and can influence the character of nested cycles. In such way
the background noise is usually taken as a weakly stationary series and is obtained
in dependence on analytical approaches (filtering, regression, decomposition etc.).
Then, it can not be excluded that noise will absorb other components and therefore
may no longer have the character of GWN. In such situation it is appropriate to
verify the nature of the noise component, even if such data. And further, to compare
whether identification of critical values using noise analysis is at the same level as
in the case of GWN.

From the reason written above we use data described in Chapter 5.2. Given the
quarterly character of the data, we can denote sampling frequency 𝑓s = 4 samples
per year.

We proceed in following steps. Firstly, we decompose input time series via sin-
gular vector decomposition (SVD) [35] into 12 component denoted as PC 1–12 and
estimate corresponding frequency. Consequently, we divide components into two
groups: i) components corresponding to the trend and cyclical component, ii) com-
ponents corresponding to the noise.

Secondly, we consist noise by summation of components from second group (see
[10]) and we estimate histogram. Thereafter, we fit it by predefine group of distri-
butions, namely Gaussian, Student, Gamma and Rician distribution. We select the
best fitting distribution.

Thirdly, we generated 10.000 replications of noise of fitted distribution to obtain
95% quantile and we establish confidence level.
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(a) Time (b) Spectrum

Fig. 7.8: SVD decomposition (full data sample).

7.3.1 Full Data Sample

In the first step of analysis we performed SVD (details in Chapter 3.4). We de-
composed full data sample into 12 principle components (PC 1–12). We used the
FODLOG GDP data as input for eq. (3.28). We used the resultant trajectory
matrix to obtain the orthogonal matrix, the diagonal matrix and the square or-
thonormal matrix. Using these as input for eq. (3.29) we got individual principle
components. Results can be seen in Fig. 7.8. The choice of 12 components was mo-
tivated by [57] based on the cyclical components of the input signal whose recurring
movements range from 6 to 32 quarters. To support the decision which components
will be added as the noise component during reconstruction step, we used estimates
of spectra. Thus, following knowledge from [57] we found, that PC 1–5 have the
spectral peaks in the business cycle frequency while the others have not.

Spectra of each principle component can be seen in the Fig. 7.8, components
with frequency greater than 0.17𝑓s (vertical red lines in spectrograms) represents
business cycles bellow 6 quarters and can be considered as a noise. With respect to
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the heteroscedastic character of input data and estimated spectra for PC 9 and PC 10
we can not exclude that the noise will not be corrupted by some of the component.
This fact, however, leads us to verify the nature of the noise component, i.e. to
examine Gaussian distribution of the noise.

In the second step, for the noise component obtained using reconstruction of
PC 6-12 (using eq. (3.30)) denoted as "noise:6-12" we estimates histogram. We also
tests whether the"noise:6-12"has Gaussian distributed or not by goodness of fit test
and by the Jarque-Berra test [51]. Both tests showed that the data are not Gaus-
sian distributed. In such case we can not use GWN as the background spectrum
for TF significance testing. Therefore, we are going to identify own critical values
with the help of simulations of background noise levels. Thus, estimated histogram
of"noise:6-12"was fitted by pre-define distributions, namely Student, Gamma and
Rician distribution. As we can see in the Fig. 7.9a the best fit was achieved for Stu-
dent distribution with 3 degree of freedom. The consensus with Student distribution
was confirmed by goodness of fit and by the Jarque-Berra test.

(a) Full data sample

(b) Sub-part 1 (c) Sub-part 2

Fig. 7.9: Histogram of the noise with fitted distributions.

In the last step, we generated 10.000 replications of noise with Student’s t-
distribution with 3 degrees of freedom to identify own critical values and compare
it with the 𝜒2(2) critical value [24]. This was based on the finding that the noise
components have character of Student distribution with 3 degree of freedom. The
result of simulations of background noise levels in comparison to 𝜒2(2) for STFT is
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given in the Fig. 7.11a and for CWT in Fig. 7.11b. To give example of simulations of
background noise levels we constructed spectral estimation of the time series using
CWT and STFT approach. In case of STFT Hann window of 30 samples with 29
samples overlap was used. In case of CWT complex Morlet wavelet with central
frequency of 1.5 was used. Resulting spectrograms are shown in Fig. 7.10. Three
selected time slices are shown as lines A, B and C. Using equations (7.1) and (7.2)
we recalculate all frequency values in each STFT and CWT slice (Fig. 7.11a,b).

(a) STFT (b) CWT

Fig. 7.10: Spectrograms with slices identification.

(a) STFT

(b) CWT

Fig. 7.11: Noise simulations for ”noise:6-12” for full sample size.
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We can see, that significance level for 5% as well as 15% for STFT are moreover
the same. For CWT the results of noise simulations are a little bit higher at low
frequency range and slowly decrease to the 𝜒2(2) levels. In both figures significant
components can be found above critical levels in dependence to the 𝛼. Such results
(significant component) can be used for consequent analysis based on data character.
In our case consequent economic analysis of significant components.

7.3.2 Sub-Periods

To be sure with our findings above and with respect to heteroscedastic character of
the data (the variance is not the same during observing period) we made the same
analysis on the data divided into two sub-parts. We can see two sub-parts; the first
is in 1956/1-1988/2 denoted as sub-part 1 with variance 𝜎2

1 = 1.46·10−4. The second
is 1988/3-2016/3 denoted as sub-part 2 with 𝜎2

2 = 3.53 · 10−5. The total variance of
the full data sample is 𝜎2 = 9.54 · 10−5.

Similarly to analysis on full sample size we made SVD on both parts. Obtained
noises (noise:sub-part 1, noise:sub-part 2) were tested whether they are Gaussian or
not. While the goodness of fit test confirmed the Gaussian character for both noises,
the Jarque-Berra indicated Gaussian distribution only the noise for the second sub-
sample. Therefore, we fitted histograms (see Fig. 7.9b and c) similarly as the full
data sample. Again, the Student distribution with 7 degree of freedom fitted the
best. The consensus was confirmed by goodness of fit and by the Jarque-Berra test.
Consequently, on the basis of noise simulations we identified own critical values
and compared them with 𝜒2(2) critical value [24]. Out analysis confirmed that
significance level for 5% as well as 15% for STFT are moreover same. The noise
critical values for both sub-parts were a slightly higher than full data set (Fig. 7.12a).
For CWT the noise simulation results follow slowly decreasing trend (Fig. 7.12b).

We investigated identification of significant level for empirical distribution using
noise simulations and its comparison with the values for GWN background. Based
on analyses above we suggest the following. Firstly, if the data are heteroscedastic,
we recommend their division into sub-parts according to their variances. After
identification of important components using SVD, we recommend testing of the
reconstructed noise character. If we do not have information about the type of
background noise or if we may expect that it is not GWN, we recommend fit noise
distribution. Consequently we recommend identification of own critical values on
noise simulation basis. By this way we can identify own critical value and perform
relevant testing.
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(a) STFT (b) CWT

Fig. 7.12: Noise simulations for noise:sub-parts 1 and 2 of data.

7.4 Chapter Conclusion
Based on obtained results we see that a problem can arise if the data contains seg-
ments with different volatility (i.e, heteroscedastic data). An experiment conducted
on economic data (expressly GDP), which shows such a character due to structural
shocks, confirmed that this can be a problem. Therefore, this fact should be taken
into account during subsequent testing. As a result of disregarding this, the interpre-
tation of the obtained results could be inaccurate or misleading (thus introducing
errors in subsequent analyzes). In the next chapters, we offer a solution to this
problem by proposing an adaptive method of testing.
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8 Segmentation Based Testing
As stated in Chapter 1 in some data types, e.g. economic, heteroscedastic behavior
occurs, i.e. that data variance is changing in time. We can expect that the STA can
be sensitive to this fact, because of the assumption of constant variance over time.
Therefore, based on STA, we propose the significance test of the TF co-movement on
the segmentation bases. After the segmentation of the background noise according
to the levels of variance in both input signals, we use the STA approach in each
segment with the corresponding variance. As the results show, the segmentation
allows us to identify significant co-movement with respect to the local variance,
which can reveal additional significant co-movement areas. In the following text, we
denote this method as segmentation adaptive based testing (SAB).

8.1 SAB Methodology
The idea of a segmentation adaptive based testing is based on the fact, that time
series 𝑥 or/and 𝑦 may be heteroscedastic. That is, the variance of the time series is
not fix, but changing during the time period. One of the cases may be a quick/step
change of variance. Then, we can split the time range of the time series into the
sub-periods according to its variance level. The case when the variance change is
smooth is presented in the Chapter 9

Assume that both time series 𝑥, 𝑦 are heteroscedastic. Then, we are able to iden-
tify the moments (variance breaks) after which the variance arise or decrease. It can
be done by expert estimate or by statistical testing [51]. Comparing sub-periods of
both series we can establish the segments (SG) of the time reflecting heteroscedas-
ticity in 𝑥 and 𝑦. Consequently, we can identify critical value for significance testing
in each segment by STA [25, 55]. An algorithm for segmentation adaptive based
testing follow these steps:

1. Identification of sub-periods in the time series 𝑥, 𝑦 according to their variance
levels

2. Splitting the whole time period into the segments for all levels of variance
3. Estimation of PWCS
4. Calculation of the significant level of PWCS with respect to the variance in

the segment
Very important aspect of PWCS testing is an interpretation of the results which

can be influenced by the methodology of testing. That is, the determination of the
reference time period in relation to the results are evaluated. This can often be
seen in the economics, where the events have the leads/lags effect. Thus, we have
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Fig. 8.1: Signal A and B and their variance. The red line denotes variance of full
dataset.

to state, if we are interested in evaluation of economic even with respect to the
whole time period or with respect to its lead/lag influence.As already stated, this is
a typical problem of economic data and therefore they will be used to demonstrate
the SAB method.

8.2 SAB Application

8.2.1 Simulated Data

For the testing of the segmentation algorithm we created two artificial signals of
the length of 1000 samples and sampling frequency 𝑓s = 1000 Hz. The time domain
representation of the signal consist of 4 and 5 sine waves respectively each of different
frequency. Thus the total number of segments for both series is 6. Ideal spectral
representation along with time representation of resulting signal is shown in Fig. 8.1.
For better simulation of real conditions, GWN was added. The signal to noise ratio
was set to 12 dB.

For CWT estimation of simulated signals we used complex Morlet wavelet with
the central wavelet frequency 𝑓0 = 1.5 as the mother wavelet. We set the scales
corresponding to the range from 0.01𝑓s to 0.5𝑓s, with 490 individual scales. The
PWCS is calculated according to eq. (3.19).
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(a) Standard testing (b) Segmentation adaptive based testing

Fig. 8.2: PWCS of simulated signals. The red line denotes ideal PWCS.

Firstly, we test estimated PWCS (eq. (3.19)) via STA (eq. (7.6)) with fix
variances for all data set, i.e. 𝜎2

𝑥 = 2.35, 𝜎2
𝑦 = 1.73 (Fig. 8.2a). With knowledge of

the number of segments, we do SAB testing on six segments (SG-6), as shown in
Fig. 8.1. For preliminary analysis of the case when the number of segments needs
to be determined, Matlab function findchangepts was used. Changes in standard
deviation with minimum residual error improvement of 10 was used as criteria for
this function. Minimal length of segment was set to 15 samples. A more detailed
analysis of selection of optimal segments number can be found in the following
subchapter.

Consequently, in each segment, we provide STA with corresponding variance in
segment (Fig. 8.2).

Comparing the test results for estimated PWCS via STA and SAB testing (Fig.
8.2) with ideal cross-spectrum (Fig. 8.2b) we can see that SAB approach propose
more precise results. For the frequency 𝑓c = 0.4𝑓s and 𝑓c = 0.25𝑓s the SAB testing
captured better the simulated significant co-movement compare to the STA testing.
We also investigated case when the number of segments was 10. The results of
PWCS show same significant areas as in case of 4 segments.

8.2.2 Real Data

For the real application we use seasonally adjusted monthly data of industrial pro-
duction index (IPI) of USA and India in 2001/M1-2017/M6 as the selected Asia
Pacific countries. The IPI as a monthly indicator is widely used for assessing both
the current state and the short-term outlook for GDP. One of the main reasons
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why the IPI is considered to be a good proxy for GDP is that the value added by
industrial production represented a substantial share of GDP and therefor display
strong co-movements with GDP [58]. The motivation for IPI data selection are: i)
sufficient sampling frequency (monthly) leading to sufficient sample size (with re-
spect to the application); ii) heteroscedasticity of the data series; iii) expectation of
co-movement between series (financial crisis in 2008). The GDP data used in the
previous chapters do not always meet these conditions and therefore the IPI is used.
All variables were transformed into FODLOG.

Focusing on the real data we firstly identify sub-periods according to the time
series volatility. We assume that if the data are not heteroscedastic (i.e. are ho-
moscedastic), then the STA and SAB testing will propose the same results. The
number of segments was also checked via Matlab function, as for simulated data.
We split both time series into 4, 6 and 10 segments (SG-4,6,10). The input time
series and determination of sub-periods are presented in Fig. 8.3. We can see that
data of India are heteroscedastic; the data of USA has problem with significantly
higher volatility between time 2008–2010. When we compare identified sub-periods
with the time of economic events in each country, we can take six segments (SG-6)
as an optimum number of segments. In spite of this, we also make the calculations
for four (SG-4) and ten (SG-10) segments.

For CWT estimation we used complex Morlet wavelet with central wavelet fre-
quency 𝑓0 = 1.5. We set scales corresponding to the range from 0.5 years to 5 years
cycles, with 381 individual scales. The PWCS were calculated according to (3.19).

An estimation of the PWCS in Fig. 8.4a) was tested by STA testing and com-
pared with results after SAB testing (Fig.8.4b–d). Comparing this results we can
see several differences. Via SAB testing: i) we identify additional significant area
in very short cycles 0.5-0.63 years in 2002-2003; ii) the co-movement in very short
cycles 0.6-0.7 years has longer duration (2013–2015) then in STA testing (2014); iii)
the co-movement in cycles of the length approximatelly 2 yeras is not significant in
2008–2009, because of the dominance of longer cycles (approx 3-5 years). Therefore,
from interpretation point of view we can state following. The STA testing reveal,
that the financial crisis in 2008–2009 in USA has strong impact on both economies.
By measuring the co-movement of both series (USA and India) in the time period
2001-2017 this event was the most important influencing factor which predominantly
influenced mutual behaviour of both countries in long and middle-term cycles. Fo-
cusing on reaction of the country and interpreting the co-movement with respect to
this reaction, i.e. the IPI volatility of the country as the consequence of economic
event, we can found also significant co-movement in very short cycles in two sub-
periods. This result is confirmed by proxy of PWCS segmentation adaptive based
testing for the different number of segments.
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(c) USA: 4 sub-periods
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(d) INDIA: 4 sub-periods
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(e) USA: 6 sub-periods
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(f) INDIA: 6 sub-periods
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(g) USA: 10 sub-periods
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(h) INDIA:10 sub-periods

Fig. 8.3: IPI signals and their variance. The red line denotes variance of full dataset.
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(a) Standard testing (b) SAB: 4 sub-periods

(c) SAB: 6 sub-periods (d) SAB: 10 sub-periods

Fig. 8.4: PWCS of the IPI: STA testing and SAB. The red line denotes ideal PWCS.

8.3 SAB Segments Optimization
The previous chapter shows that determining the number of segments with respect
to local variation is essential for the correct use of the SAB method. Therefore
in this section, we present the theoretical background for the identification of an
optimum number of segments for the SAB approach of significance testing of the
co-movement. The number of segments is set with the help of the heteroscedasticity
test and the test for comparing variances in the time series segments.

8.3.1 SAB Optimization Methodology

Let us suppose that both time series 𝑥(𝑡) and 𝑦(𝑡) are heteroscedastic in the time
range 𝑡 = 1, . . . , 𝑇 . Thus, for each series, we are able to identify moments when
the data volatility increases or decreases. Consequently, we can determine the cor-
responding time segments via the identified moments. In some cases it is easy to
identify the moments by an expert estimate. In the cases when the assessment of
these structural moments in the graphical form of the data presentation is not clear,
we can confirm the expected moments via the use of heteroscedasticity test [59].
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Let us focus on each series separately. Assume that we applied test of the equality
of variances on the time series 𝑥(𝑡) and we identified 𝑛 moments of volatility changes
at 1% significance level, or 𝑛 + 𝑘 at 5% significance level, or 𝑛 + 𝑘 + 𝑙 at 10%
significance level. Now, we split the time range into 𝑛+ 𝑘+ 𝑙 segments according to
all identified time moments for 1% significance level. In each segment we calculate
the variance and we compare the identified variances on the basis of standard F-test
(test of equality of variances) in 𝑗 and 𝑗 + 1 segment, 𝑗 = 1, . . . , 𝑛+ 𝑘 + 𝑙 − 1. Let
the null hypothesis hold for the variances in the 𝑗 and 𝑗 + 1 segment

• 𝐻0 : 𝜎2
𝑗 = 𝜎2

𝑗+1 (joining of segments), if 𝑆2
𝑗 /𝑆

2
𝑗+1 ∈ 𝐶𝐼

where 𝑆2
𝑗 is the sample variance in 𝑗-th segment, 𝐶𝐼 = (𝐹𝛼/2(𝜈1−1, 𝜈2−1), 𝐹1−𝛼/2(𝜈1−

1, 𝜈2−1) is the confidence interval determined by the quantiles of F-distribution with
𝜈1 degree of freedom in segment 𝑗, 𝜈2 degree of freedom in segment 𝑗+1 and the risk
𝛼 is in the pre-defined difference of approx. max. 1%. Then, the variances are taken
as equal and we connect both segments into one. The minimum measurements in
each segment are set to 40 values. As a result we obtain 𝑆𝐺opt,𝑥 number of segments,
𝑛 ≤ 𝑆𝐺opt,𝑥 ≤ 𝑛+ 𝑘 + 𝑙. After applying the same algorithm on the time series 𝑦(𝑡)
we obtain 𝑆𝐺opt,𝑦 number of segments.

In the second step, for both time series, we sort the ascending identified moments
by time and we focus on the comparison of identified volatility levels between both
time series with respect to the identified sub-segments. The resultant 𝑆𝐺opt number
of segments split the time range into the 𝑆𝐺opt sub-segments. If the time series are
not heteroscedastic, then we use the whole time range for each series, i.e. 𝑆𝐺opt = 1.

8.3.2 Real Data

The data set for an empirical analysis consists of the seasonally adjusted monthly
data of (IPI) from the OECD database for G8 countries (i.e. Canada, Franc, Ger-
many, Italy, Japan, the United Kingdom (UK) and the United States (US)) in the
range January 1993 – December 2017 [60]. We examine co-movements between the
growth cycles of the US and all others G8 countries. The data have been transformed
to FODLOG values (Fig. 8.5 right column).

8.3.3 Settings of the Methods

For the PWCS estimation, we used the complex Morlet wavelet with the central
wavelet frequency 𝑓c = 1.5 as the mother wavelet. We set scales corresponding to the
range from 0.5 year to 10-year cycles, with 257 individual wavelet scales. Table 8.1
presents the selection of optimum number of segments (𝑆𝐺opt,𝑥) for each country
according to the approach described in the methodology and the total number of
segments (𝑆𝐺opt) for SAB testing for the particular pairs (the US and a country).
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Segments for each country Total number of segments

𝑆𝐺opt,𝑥 𝑆𝐺opt

Canada 6 Canada&US 7
France 6 France&US 9

Germany 4 Germany&US 7
Italy 4 Italy&US 7
Japan 4 Japan&US 7
Russia 4 Russia&US 7

UK 6 UK&US 9
US 4

Tab. 8.1: Optimal number of segments.

8.3.4 Results

The empirical analysis consists of several steps. In the first step we apply the het-
eroscedasticity test on the time series. After the confirmation of heteroscedasticity
we proceed with the identification of optimum number of segments and correspond-
ing time moments for each time series. Then, we split the time range into segments
according to the optimum number of segments for the pairs of the time series, i.e.
for the US and a G8 country (see Sec. 8.3.3). In the second step, we estimate PWCS
and apply SAB testing for the particular pairs. In the third step, as a supplement,
we identify significant co-movement via STA approach.

The results of co-movements are presented in Fig. 8.5 below. We use the following
description in all the figures: x-axis represents the time, y-axis represents frequency
measured in the cycles per year and z-axis represents the PWCS. The figures show
a two-dimensional projection of three-dimensional charts. The intensity of each
contour represents the relative importance of the different periodicities and time.
The y-axis was re-calculated from frequency to the cycles per year to enable better
interpretation of economic inputs. Thus, given the monthly character of the data,
we denote the sampling frequency 𝑓s to be 12 samples per year. The red curve
in the figures defines the significant area identified via STA approach, the yellow
dashed curve defines the significant area according to SAB testing. In the case
of Canada & US (Fig. 8.5), Italy & US and Russia & US (Fig. 8.5) both testing
approaches (STA and SAB) identify similar significant areas of co-movement. In the
case of Canada and Italy we can say that the 2008 crisis was not the only important
structural change during the analyzed time contrary to Germany or Japan. In the
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case of Russia we can see that the 2008 crisis was also an important structural break.
Further, in the period 1994–2000 there was a different structural change causing a
higher volatility level in this period leading to the extension (1997–2004) of the
co-movement area with the US in the cycle of the length 1.5–5 years. In the case
of France & US (Fig. 8.5) and UK & US (Fig. 8.5) the SAB approach reveals an
additional significant area before the 2008 crisis in the cycles of the length of approx.
2.5 years. Specifically, in the case of France in 1994–2004 and in the case of UK in
1995–2001.

In the case of Germany & US (Fig. 8.5) and Japan & US (Fig. 8.5) we can see
that the significant area, identified via SAB testing compared to the STA, does not
cover the cycles of a shorter length during the 2008 crisis. That is, in the case
of Germany and Japan, the significant co-movement with the US occurs around
the 2008 crisis in the cycles of the length 1.5–5 years. In both these countries we
can state that the 2008 crisis was the most important structural break during the
analyzed time.

Using real data we assess the co-movements between the US and G8 countries
with regard to the impact of the structural change of the financial crisis in 2008.
The financial crisis caused a structural break in many economics, which led to the
change in volatility level in the economic indicators. We found at least three levels
of volatility during the given time range in all analyzed time series. Therefore,
in the consequent co-movement analysis via PWCS we propose the SAB testing
which takes into account the local volatility of the time series. We set the optimum
number of segments for co-moved time series and identify significant co-movement
areas. The results confirm the globalization of the economies and the impact of the
2008 financial crisis on the world economy. In some countries we reveal additional
co-movement areas (France, the UK) or the extension of co-movement areas into
a longer time period or into an additional cycle length (Japan, Russia). In other
countries (Germany, Japan and Italy) we also find that the co-movement in the 2008
crisis was only in the business cycle frequencies, i.e. between the cycles of the length
of 1.5–5 years. The most energy of the PWCS, i.e. the most important co-movement
between US and G8 countries, was identified in the business cycle frequencies. The
achieved results can be used for further analyses, e.g. to look for interconnections
between countries co-movement and bilateral trade, in order to reveal additional
information about the globalization and interconnections of economies.
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Fig. 8.5: Co-movement between countries, IPI of each country and variance of their
segments.
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8.4 Chapter Conclusion
This chapter was focused on the significance testing of the TF co-movement on the
segmentation bases. We investigate the case when the input data are heteroscedas-
tic. Firstly we propose segmentation of the data according to its levels of variance
and we offer a method for optimal segmentation. Secondly, we propose testing of
significance of power wavelet cross-spectrum with respect to the corresponding vari-
ance in each segment via STA test. The demonstration was done on simulated and
economic data (i.e. IPI). The comparison of the results shows that segmentation can
reveal additional significant co-movement areas in heteroscedastic data. Moreover,
it confirms, that in the case of different volatility levels of inputs, the STA test-
ing needs more careful interpretation and SAB can provide more complex results.
Therefore, we recommend using the SAB method in case of in the case of significant
or visible volatility in the data, which allowed segmentation accordingly.
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9 A Local-Adaptive-Based Testing
In this chapter, we focus on the case where data volatility changes continuously (not
quick/step change as in the previous chapter). For this purpose, real economic data
that shows just this behavior were selected.

This chapter is based on following published journal paper:

POMĚNKOVÁ, J.; KLEJMOVÁ, E.; KUČEROVÁ, Z. ”Cyclicality in Lending
Activity of Euro Area in pre- and post- 2008 Crisis: A Local-Adaptive-Based Testing
of Wavelets”. Baltic Journal of Economics, 2019, vol. 19, no. 1, p. 155-175.
DOI: 10.1080/1406099X.2019.1596466

Abstract The paper deals with the identification of time-frequency regions describ-
ing cyclicality of bank loans before, during and after the 2008 crisis via wavelets.
We bring new methods and findings about the short and medium cycles of loans
provided to corporates and households in the Euro Area in 2000–2017 using season-
ally unadjusted monthly data. We have recognized an impact of the crisis on data
volatility which further influences the type of significance testing of wavelet spec-
trograms. To avoid this influence we propose: (1) an adaptive spectrogram testing
based on Torrence and Compo approach and (2) robustness analysis via enhanced
spectrogram modelling tested by simulations of background noise levels. Both cross-
checked approaches prove the sensitivity of standard wavelet tests on data volatility.
The results confirm the usability of the new approaches and show that the crisis in
2008 influenced the cyclical behavior of both categories of economic sectors, but in
a different way.

9.1 Introduction
The banking sector plays a special role in the monetary transmission mechanism
and produces waves of cyclical behavior with a strong propagation in the real eco-
nomic sector. In [61] the idea that economic booms improve the borrowers’ balance
sheets and net worth and support the lending activities of banks and thus spend-
ing, investment and as such the output of the growing economy is discussed. On
the other hand, recessions bring the opposite transmission with a negative impact
on the economy in distress. Discussions about fluctuations in lending activity and
factors causing these fluctuations have been quite frequent since the financial crisis
of 2007 and 2008 during which the world economy faced a drastic drop in the lend-
ing activity, particularly in the case of large loans (most of which are syndicated
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loans). The drop was caused by a worsened access of banks to deposit financing, as
documented in [62].

It is a well-known fact that banks tend to behave pro-cyclically and reinforce
the credit and economic cycle, i.e. they lose their credit underwriting practices
and massively provide loans in the period of economic growth and severely tie the
practices and limit their lending activities just before and in crisis times. The
extreme case when banks limit providing loans is called a credit crunch. Also, in
times of globally integrated financial markets, a negative economic shock can be very
quickly transmitted to other countries and may produce negative spill-over effects
and a financial crisis in the world economy. Therefore, the analysis, identification
and recognition of cyclical behavior and changes in lending activity in the economy
are in the forefront of economic research and policy makers can thus adjust policy
measures not only to economic cycles but also to credit cycles. This can reveal how
quick and flexible short-, medium- and long-term reactions of banks and economic
sectors to a shock in the economy can be. In our paper, we do not study factors
influencing the behavior of banks (i.e. supply and demand factors). We focus on
the development of methods which could give us an information about the time and
the frequency behavior of the selected economic time series representing the volume
of loans provided to basic economic sectors.

In this context, such fluctuations in lending activity can be generally defined as
credit cycles, or more generally as financial cycles. However, financial cycles have not
been satisfactorily defined and identified in empirical research so far. In [63] is stated
that it is possible to describe the financial cycle using quantity (the volume of credit)
and price (residential property prices, equity prices, risk premia etc.) variables.
According to [64], the character of a financial cycle has changed since the early
1980s and was caused particularly by financial liberalization and less strict monetary
policy after leaving Keynesian stop-go macroeconomic policy. While financial cycles
have an impact on economic cycles ([65]), traditional macroeconomic policy is not
able to address them.

As pointed out in [66], ‘economic time series are an aggregation of components
operating on different frequencies’. In [67] is proved that as for the financial cycle,
‘there is not consensus in the literature on which variables to include in the analysis’.
Further, as documented in [68] wavelets allow to ‘distinguish the case that a series
is the sum of several cycles at different frequencies from the case that the series
is characterized by structural changes’. The TF modelling allows the investigation
of the spectral character of time series with respect to time. In this way, we can
analyze how various cyclical components, i.e. long, medium and short cycles, as
well as seasonal component (a very short cycles), of a particular time series evolve
through the time [20].
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The early methodology of financial cycle analyses contains filtering and decom-
position methods from the simplest to more advanced, turning point analysis, and
the combination of both. Consequent approaches include frequency domain meth-
ods for an identification of hidden cyclical components. One group of researchers
who used the early methods states that financial cycles are longer than business
cycles ([64, 65, 69]). Talks about 5–20 years with a cross-country median around
15 years. Contrary to this group of researchers, another group proved that in a
certain small group of countries (Germany, the Czech Republic, Hungary or the
Netherlands), there are shorter financial cycles which are close to the business cycle
frequencies ([67, 70, 71]). The third group of researchers make their findings more
general ([67, 71, 72]) as they see the variation of the financial cycles’ length at the
country level which reflects heterogeneity between countries. In [72] is pointed out
that financial cycles tend to differ from the business cycle counterparts, and that
the identified length of financial cycles differs according to the definition of financial
cycles which is given by the used methodology.

The last current group of scientists provide more complex results related to
cyclical properties of time series by investigating the issues by early methods as
well as by the use of wavelets. In [73] the financial cycle length is measured using
quarterly data via wavelets in the case of developed and emerging economies. Their
results show that in developed countries financial cycles are longer than business
cycles. In [74] the power wavelet spectrum (PWCS) is used to estimate three types
of time series, i.e. three types of quarterly data, and identifies several cyclical regions
across all frequency range. Similarly, in [71] the PWCS is used on several type
of quarterly data for European countries and also identify a wide range of time-
frequency regions differing across countries and indicators. Their findings, using
wavelets, confirm the statements of [66,68], and the conclusion of [72].

Applications of TF analyses, where wavelets belong, have been so far limited by
the fact that it was impossible to draw any implications on the statistical significance.
The original contribution in the spectrogram testing (STA) was provided by Torrence
and Compo [23], followed by Ge [24,52]. The STA assumes the fixed variance during
all-time range of data. We use a modified form of this test considering that the
variance in time series may vary for a certain sub-period, even for a short duration.
Then strong events, such as the 2008 crisis, may cause a change in the data volatility.
This may suppress the significance of other events which have a lower level of the
data volatility and thus may suppress the importance of other cyclicality behavior in
a specified time range. If there are no changes in the data variance, both (standard
and modified) forms of the test produce the same results.

The paper deals with the identification of the time-frequency regions describing
cyclical behavior of the bank loans with a special attention to the pre-, post- and
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2008 crisis. The paper focuses on evaluating how the specific shock, i.e. the financial
crisis in 2007 and 2008, could affects the cyclical behavior of given indicators. We
found an important impact of the crisis on data volatility which may further influence
the significance of wavelet spectrograms estimates. Therefore, keeping in mind this
volatility influence, we propose: (i) testing of wavelet spectrogram via standard STA
test and its robustness check via simulations of background noise levels; (ii) testing
of wavelet spectrogram via modified form of STA called local-adaptive-based testing;
and (iii) robustness analysis of wavelet testing via enhanced spectrogram modelling
also tested by the simulations of background noise levels. We show that Continuous
Wavelet Transform (CWT), i.e. wavelet spectrogram, compared to the Short-Term
Fourier Transform (STFT), i.e. STFT spectrogram, is much more influenced by
the data volatility during the standard STA testing. To demonstrate the newly
proposed method, we use the monthly data of bank loans provided to corporates
and households in the Euro Area in 2000–2017.

Presented paper investigates an application of proposed methods only on unad-
justed monthly data. Therefore, the results obtained via presented methodology is
interpreted from the cyclical point of view where the seasonal component (i.e. very
short cycles) is taken as a part of cyclical behavior.

While many authors focus on the medium and long cycles of selected price-
and volume-based measures of financial or credit cycles and use quarterly data,
we bring new methods and findings about the short and medium cycles of loans
provided to corporates and households in the Euro Area in 2000–2017. By using
seasonally unadjusted monthly data, we were able to identify time-frequency regions
for higher frequencies. Moreover, we distinguish between the sector of corporates
and households as the lending activity is motivated by different factors. The call for
new modelling strategies and adequate reactions of macroeconomic policies to the
changes of financial cycles is described in [63]. In [75] the role of empirical research
for the purpose of describing the features of financial cycles and designing macro-
prudential policies is emphasized. In this way, we propose a method of identifying
mostly short and medium lending cycles of corporates and households, which is
quite important for prompt reactions of policy makers and proper implementation
of economic policies.

We aim to answer, by applying the cross-checked approaches (i–iii) described
above, the following economic questions: Did the shock, represented by the financial
crisis of 2007 and 2008, influence the cyclical behavior of lending activity in the Euro
Area and if so in which lengths of the cycles (i.e. in which frequencies) were the
reactions the strongest? Was the character of the cyclical behavior different before,
during and after the crisis? Are there any differences in the character of cyclicality
in the two analyzed sectors? Does our approach bring new possibilities for modelling
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strategies of policy makers? The results confirm the usability of the newly proposed
approaches in our case (the research was conducted only on seasonally unadjusted
data), particularly in the short cycles and show that the crisis in 2008 had an
important impact on the cyclical behavior of corporates and households, but in a
different way. Moreover, the most remarkable influence of the crisis on the cyclicality
was identified in the case of households.

9.2 Literature Review
Evolution of methodological approaches analysing credit and financial cycles and
its characteristics reflects evolution of business cycle analysis. As many authors
agree [71, 72, 74], the body of the literature for financial cycle analysis remains
nascent. The methodological approaches started with i) time domain analysis of
turning points identification [65] and was followed by ii) detrending via frequency-
based filtering [64, 69]. Several authors use more sophisticated models such as un-
observed component models [71] or structural models [67, 70]. The next step was
iii) application of frequency domain methods which allows identification of spectral
components, i.e. periodicities hidden in the data. Currently, iv) the time-frequency
methods especially wavelets [68, 71, 74], which combine both time and frequency
point of view and allow describe the cyclical behavior of data with respect to the
time, are at the forefront of methodological approaches.

The approach of turning points identification, mostly based on Bry-Boschan or
similar algorithm, describe the cyclical character of the data via calculation the
distance between two peaks (local maxima) of an unobserved time series suffering
from the fact that the data may consist of several cyclical components, i.e. hidden
periodic component. This insufficiency was partially solved by applying detrending
methods such as frequency-based filters (high-pass or band-pass filters) [64] which
allow selection of pre-defined frequency range from the data, or multivariate model-
based filters [67, 71]. Some authors [64, 67, 72] combine both filtering and dating
approaches to improve achieved results and bring more robust conclusions. In [70]
the alternative methods are used, i.e. combination of Bayesian model and singular
decomposition followed by Fourier spectral analysis. An extension of methodology
about the frequency domain methods allows identification of spectral components,
i.e. periodicities hidden in the data. Both approaches (detrending/filtering and dat-
ing) fight the problems with moreover statistical character based on assumptions for
dating methods application (sensitivity for trend extraction), or expected frequency
range for the financial cycles filtering (no consensus for frequency range of financial
cycles), or application of filtering methods themselves (ideal filter approximation,
edge effect problem [64,67,70–72]. And even the frequency techniques highlight the
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cyclical behavior of data, they unfortunately were not able to describe the temporal
character of identified cyclical behavior.

An alternative approach is the time-frequency methods especially wavelets, which
become current state method for the financial cycles analysis. The well-known TF
methods include STFT [14], or TFAR [76]. While turning point approaches require
pre-specified rules or mathematical apparatus to identify local extrema of time se-
ries, and even the frequency domain techniques have no prior assumptions for the
financial cycles frequency range, their combination does not bring information of the
time localization of the frequency which is easily proposed by the wavelets [74]. As
written in [66], contrary to the time representation of time series, the wavelets map
the original time series as a function of time and frequency revealing, how each peri-
odic component of the time series changes over time. As we can study in [77–79], the
wavelet analysis allows decomposition of even non-stationary economic time series
into the different frequencies which after summation constitute the original series.
Via this approach we can assess the relative importance of a different frequency com-
ponent trough time and how such relationship changes over time, which make from
wavelets a very useful tool for analyzing financial cycles. As many researchers agree,
the main advantages of wavelets are applicability on non-stationary time series,
flexible settings of parameters reflecting data character, ability to uncover unique
complicated patterns over time and good time resolution [20, 36, 39, 66, 78, 80, 81].
Therefore, it is worth to investigate their use in financial cycle analysis.

9.3 Methodology
We use CWT, TFAR, STFT [10] for the TF modelling of input time series. Since
these techniques are well known, we will not provide their description. For the sig-
nificance testing of the TF transform, we use the standard test (STA) according
to [23, 24, 52]. Additionally, we propose the local-adaptive-based testing (LAB) for
the cases when the variance in the time domain may vary over the time. For the
robustness check of CWT results we use simulations of background noise levels (as
described in Chapter 7.1.2). For the cross-check of CWT tested by STA and by sim-
ulations of background noise levels, and CWT tested by adaptive LAB approach we
propose robustness enhanced spectrogram modelling also tested by the simulations
of background noise levels.

9.3.1 Local-Adaptive-Based (LAB) Testing

Both testing statistics presented in (7.1) and (7.2) are formed as the power value
of the spectrogram of a noise signal normalized by the signal variance in the time

70



CHAPTER 9. A LOCAL-ADAPTIVE-BASED TESTING

Fig. 9.1: LAB testing diagram.

domain. In the case of an input signal with strongly localized fluctuations of the
signal strength, the total variance may not sufficiently describe the character of
the data. It is, therefore, not surprising that events, such as the 2008 crisis, may
have a strong impact causing a suppression of other events. To avoid this problem,
we propose an adaptive form of STA testing named a local-adaptive-based testing
(LAB). In the case when the data does not have such problem, the STA and LAB
testing produce same results.

The LAB testing is based on the evaluation of significance via STA in each time 𝑛
with respect to the sliding window 𝑙. Let us have the time series 𝑠(𝑛), 𝑛 = 1, . . . , 𝑁
and set up the time window length 𝑙, 𝑙 is an odd number. The vector of local
variances 𝜎2

𝑛 = 1, . . . , 𝑁 of the same length as the time series 𝑠(𝑛) is calculated on
the sliding window 𝑙 with the sliding one step ahead (Fig. 9.1). In the border regions,
edge effect may occur, because there is a limited number of observations available
for the calculations. In these cases we use the first and the last 𝑙 observations of the
𝑠(𝑛) for border variances 𝜎2

𝑛 calculation. In the middle region we use l observations
of the 𝑠(𝑛). Then we use (7.1) and (7.2) for thresholds calculation.

The localization allows us to assess the spectral components with reference to
its surrounding events. The range/scope of these events is selected by the length
l of the sliding window. To set an appropriate time window length, we must take
into account the requirement for at least 35 points (approx. 3 years). To maintain
sufficient adaptability to rapid signal fluctuations, we set the window length to 𝑙 = 49
(i.e. approx. 4 years window).
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9.3.2 An Enhanced Spectrogram Modelling

For the significance testing on the basis of STA, we have to know the background
noise character. When analyzing economic indicators, we can assume that the back-
ground noise is GWN. In some cases (application of pre-filtering, heteroscedasticity
in the data etc.) this assumption need not to be satisfied. To avoid such a case, we
alternatively suggest the combination of several TF approaches and in the follow-
ing we call the resultant TF transform “enhanced”. The enhanced transform is the
display of the CWT, TFAR and STFT spectrograms of one time series in one chart
to obtain the best possible TF representation. We investigate mainly the amplitude
part of the spectra. The phase part of complex spectra 𝑆CWT and 𝑆STFT is not
investigated.

Firstly, we align the time axis of all obtained spectra 𝑆CWT, 𝑆TFAR and 𝑆STFT to
match each other. Since the trend of all three time vectors is linearly increasing, it
is sufficient to adjust the starting and ending point for each method. We omit the
first and last 15 columns of 𝑆CWT, we denote the remaining matrix as 𝑆 ′

CWT. Hereby
we ensure the correspondence of the time axes for all three methods. Secondly, we
align the frequency/scale axis of 𝑆 ′

CWT, 𝑆TFAR and 𝑆STFT. The frequency range of
𝑆TFAR and 𝑆STFT is cropped to correspond with the range of 𝑆 ′

CWT, which was 6–
192 months (0.5–16 years) cycles. The resulting frequency cycles vectors 𝑓TFAR and
𝑓STFT have a linearly increasing trend, however, the trend of 𝑓CWT is non-linear. To
obtain the corresponding vectors we match each point of 𝑓CWT with one value of
𝑓TFAR and 𝑓STFT with 1.4% tolerance:

|𝑓CWT − 𝑓TFAR| ≤ 0.014max(𝑓CWT; 𝑓TFAR),
|𝑓CWT − 𝑓STFT| ≤ 0.014max(𝑓CWT; 𝑓STFT).

(9.1)

With this step, we obtain the adjusted TF matrices 𝑆 ′
TFAR and 𝑆

′
STFT by mak-

ing all three methods aligned. The combination of methods is done by a simple
multiplication and is called the “enhanced TF picture”

𝑆TF ≤ 𝑆
′

CWT𝑆
′

TFAR𝑆
′

STFT. (9.2)

9.4 Application

9.4.1 Data

In order to identify the cyclical behavior of financial data, we use the seasonally
unadjusted real monthly data of bank loans provided to corporates (Corporates) and
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households (Households) in the Euro Area in 2000/M1–2017/M05 [82]. All variables
are in first-order difference of natural logarithms (FODLOG). To be more precise,
we focus on the credit cycle as we use the level of provided credit as one possible
approach of how to measure the financial cycle, i.e. we use a quantity-based measure
and not a price-based measure of the cycle. As proved by relevant empirical studies,
the chosen methodology is applicable to our date range (see [20,36,67,68,73,80,81].
From the first overview of an input time series in Fig. 9.2a–b, we can see that the
time series of Households and Corporates contain a long-term trend which goes
through visible expansion and recession phases. In both cases, we can see several
structural breaks.

In our analyses we use seasonally unadjusted data, because the aim of the paper
is focused on the cyclical behavior of financial data (lending activities) where the
seasonal component is taken as part of cyclical behavior. The information about
cyclical character containing seasonal behavior is valuable, because the analysis of
unadjusted data: (i) better reflects the real behavior of subjects (households and
corporates) which can be influenced by seasonality; (ii) it can bring more valuable
information to policy makers than adjusted data: they can react better to pre-
vent disruptions of the economic cycle because of seasonality or they can reduce its
possible negative effect. The use of adjusted time series may lead to losing some
information, which could reduce the efficiency of monetary policy and limit the
achievement of the objectives.

There are also methodological aspects [83] to use unadjusted data: (i) the sea-
sonal component is not independent from the cyclical component and can change
in time; (ii) ‘the evaluation of the seasonal component provided by an adjustment
method is hampered by the fact that the true seasonal component remains a theoret-
ical and imprecise concept, never liable to direct observation’; (iii) ‘the objectives of
seasonal adjustment appear multiple and implicit. Is it to obtain the best estimate
of the trend-cycle component, the best estimate of the seasonal component itself?
Each objective will generate its own quality criteria’; (iv) ‘the expected content of a
quality report usually differs according to the user’. That is, the different adjusting
method can produce different adjusted time series which can adjust more or less
than a seasonal component and that seasonal and other cyclical components can
interact.

Generally, in the case of monthly data we can expect that the seasonal component
will range in frequencies up to 12 months. With respect to the ability of wavelets
to model the time-frequency behavior of the time series, we can consider that the
wavelet spectrogram in the range of 2–12 month length cycles (in our paper short-
run cycles) can contains in the case of seasonally unadjusted time series seasonal
and some cyclical component. Our complementary analysis confirm an interaction
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Fig. 9.2: Input data for Euro area.

of both cyclical components in the frequency range 6–12 month in our figures and
that the seasonal component changes during time. This fact will be kept on mind
during interpretation of the results.

Therefore, because we aim to identify the time-frequency regions describing
mainly short- and medium-term cyclicality of bank loans before, during and af-
ter the financial crisis in 2008 and with respect to the ability of wavelets to model
time-frequency character of the data it is worth to leave from economic as well as
methodology point of view seasonal effect in the data.

9.4.2 Settings of TF Methods

In the case of the TF estimation via the TFAR, we use the Burg approach for
coefficient estimates on 40 samples with 39 samples overlay, and the Hann window.
The optimal value of the lag order is based on AIC criteria. The parameters of the
STFT are set to correspond to the TFAR settings (40 samples, 39 samples overlay,
Hann window) to simplify the process of the methods combination.

For the CWT transform calculation, we set the scales corresponding to the range
of half a year to 16 years, with 388 individual scales. We select the complex Morlet
wavelet with the center frequency 𝑓b = 1.5. That is, for the time vector with
𝑁 = 209 samples 𝑡 = 2000/M1 − 2017/M5, we set the vector of the period 𝑇 to be
equidistantly distributed between maximal (𝑇max) and minimal (𝑇min) length of the
period 𝑇max = 16 years (192 months), 𝑇min = 0.5 years (6 months) corresponding to
the vector of frequency 𝑓 with minimum and maximum of:

𝑓min = 1/𝑇max = 0.0625 year−1, 𝑓max = 1/𝑇min = 2 year−1. (9.3)

For the number of scales 388, we can set the vector of scales 𝑠

𝑠 = 𝑓b

𝑓𝛿𝑡
; 𝑠min = 𝑓b

𝑓max𝛿𝑡
= 9, 𝑠max = 𝑓b

𝑓min𝛿𝑡
= 288, (9.4)
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for 𝑓b = 1.5 and 𝛿𝑡 = 1/𝑓s = 1/12 (for monthly data).
In the case of the TF estimation via the TFAR, we use the Burg approach for

coefficient estimates on 40 samples with 39 samples overlay, and the Hann window.
The optimal value of the lag order is based on AIC criteria. The parameters of the
STFT are set to correspond to the TFAR settings (40 samples, 39 samples overlay,
Hann window) to simplify the process of the combined methods.

9.5 Empirical Results
After the preliminary analysis, we follow these steps: (i) we perform the CWT
and STFT modelling of each series to obtain the spectrograms; we use the signifi-
cance testing via STA. For the robustness check of the results, we apply simulations
of background noise levels, according to the Chapter 7.1.2, with 1000 iterations;
(ii) we perform adaptive LAB testing of the wavelet spectrograms; (iii) we do the
cross-check of the (i)–(ii) results via enhanced spectrogram transform tested for its
robustness by simulations of background noise levels; (iv) we compare and discuss
the achieved results.

Although the TF method, especially the CWT, allows the modelling of a non-
stationary time series, we decide to transform all input time series via the first order
difference (FOD), because it can easily remove the long-term trend. Moreover, it is
not possible to do the standard logarithmic transform before FODLOG for scattering
reduction of the data, i.e. we can expect the persistence of a long-term component
in CWT as an edge effect. Additionally, we check the results for both series, with
and without a long-term trend. In accordance with the graphical processing and
to insure a better visibility of detected areas, we decide to use detrended data via
FOD. The long-term trend (i.e. cycles from 48 to 192 months) in TF transform of
all indicators was present during all time. To make the orientation in the description
of the results easier, we are going to divide the cyclical behavior into three basic
regions: the short-run cycles (SR–C) of duration <12 months, the short cycles
(S–C) of duration 12–20 months and the medium cycles (M–C) of duration 20–48
months. Denote that the wavelet spectrogram in the short-run cycles in our paper
can contains seasonal and some cyclical component.

9.5.1 CWT and STFT Spectrograms Tested by STA

In our empirical analysis, we focus on the CWT modelling mainly due to its wide
range of economic applications and its popularity among economists. Further, the
CWT has a better time resolution compared to the STFT and the TFAR [20,81,84]
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(a) Corporates CWT (b) Households CWT

(c) Corporates STFT (d) Households STFT

Fig. 9.3: CWT and STFT spectrogram tested by STA. The yellow/red (dotted
line) curves in all figures indicate a significant area found by STA/simulations of
background noise levels.

which is important for economic applications in general. To confirm the CWT re-
sults, we use the STFT method which estimates the spectrogram in the moving time
window, therefore, it can differ in low frequencies (due to the window used). Both
CTW and STFT transforms are tested by standard STA test. For the robustness
of the results both transforms (CWT and STFT) are also tested by simulations of
background noise levels.

Comparing the CWT (Fig. 9.3a, c) and the STFT spectrograms (Fig. 9.3b, d),
we can find two differences in the significance areas: (i) using the CWT transform,
we identify a long-term trend component covering cycles of the approximate length
of 48 months during the time range, while in the case of the STFT it is not present;
(ii) the significant areas for the CWT and the STFT are different. While for STFT,
STA and simulations of background noise levels identify similar significant regions,
in case of CWT, simulations of background noise levels show a wider and also an
additional area of significance.
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The first difference mentioned above can have several reasons. It can be caused
be the existence of the edge effect of the CWT transform called the cone of influence
(COI). As written in [23], the COI is a usual problem for finite-length time series
and may occur at the beginning and at the end of the spectrogram or the PWS
representation. The second reason is the nature of the Fourier transform [81]. The
persistence of a long-term trend component could be also expected with respect to
the FODLOG transform, as we mentioned at the beginning of the Results section.
Such an assumption is partially confirmed by the results of the STFT which is not
so sensitive to the long-term trend. In other words, if the data contain the long-
term trend component represented by the long cycles (low-frequency component)
occurring in the time period shorter than the moving window part (which is 40
samples in our case, i.e. approximately 36 months), the STFT will not identify it.
Despite the fact that STFT has this limitation, we can identify the existence of the
long-term trend component in the sub-period of Households and Corporates. Then,
we can admit the existence of cycles of 30–48 months duration despite the existence
of the CWT edge effects.

In the case of the second difference (except the long-term trend component ex-
plained above) we assume that it is caused by STA testing which evaluates the
significance with respect to the fixed variance calculated in all-time range and does
not consider the data character, i.e. the volatility of the values. Then, an event
(such as the 2008 crisis) may suppress the significance of other events. It is also im-
portant to note that for the STFT results, the resultant figures have a shorter time
axis caused by the STFT methodology. Thus, CWT transform tested by classical
STA approach can lead to misleading results. Therefore, the STA test seems to be
insufficiently adaptable to the volatility changes.

9.5.2 LAB significance testing

As the next step to adapt to the volatility changes in CWT testing, we proceed
with an adaptive form of STA testing, i.e. local-adaptive-based testing. Comparing
Fig. 9.3a,c and Fig. 9.4 and taking into account the adaptive nature of LAB testing,
we can conclude that the LAB testing of PWS spectrograms generally confirms the
CWT spectrogram tested by simulations of background noise levels. The differences
in the significant areas identified via STA and the LAB testing in CWT figures is
caused by the changing volatility in the data. This fact should imply that STA
approach may not be able to find all significant regions. That is, the denominator of
the testing statistic given in (7.2) is a constant value and it is the total variance for
the time series (i.e. one fixed number). Therefore, in this case we prefer the results
of the LAB testing of CWT due to its adaptability.
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(a) Corporates (b) Households

Fig. 9.4: Wavelet spectrograms tested by LAB test.

9.6 Robustness Analysis

9.6.1 Enhanced Spectrogram Modelling

As an alternative approach which considers data volatility we propose the enhance-
ment spectrogram modelling (defined in Chapter 6) tested via simulations of back-
ground noise levels. The enhanced transform is the display of the CWT, TFAR and
STFT spectrograms of one-time series in one chart for obtaining the best possible
TF representation. Since the CWT has a better time resolution compared to the
STFT and TFAR (they are better in the frequency resolution) [20, 81], we decide
to use the combination of the TF results via simple multiplication. This method
is based on a simple idea that important components in the same positions (time
and frequency) will be strengthened and methodical residues should be suppressed.
The resultant spectrograms according to (9.1) have been called ‘enhanced’ and are
presented in Fig. 9.4a–b. Due to the STFT and TFAR limitations we expect a worse
ability to capture the long-term trend component. Since the application of STFT
and TFAR causes the shortening of the sample size, all figures below (Fig. 9.4) are in
the shorter time range 2001/9–2015/9 compared to the CWT (Fig. 9.3a–d). Further,
the comparison of CWT and enhanced spectrograms is evaluated in this shortened
time range. All enhanced spectrograms are tested via simulations of background
noise levels.

Comparing Fig. 9.3a, c, Fig. 9.4 and 9.5, and taking into account the methodol-
ogy nature of individual approaches, we can conclude that the enhanced approach
generally confirms the influence of data volatility on the CWT spectrogram testing.
That is, we confirm that it is important to take into account the data character
during the TF significance testing.
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(a) Corporates (b) Households

Fig. 9.5: Enhanced TF pictures.

9.6.2 Comparison of Achieved Results

Since the results show that the enhanced spectrograms and LAB testing of CWT
spectrograms generally provide the same results, we will demonstrate the difference
between STA testing and the LAB testing of CWT spectrograms. The summary of
the significant regions is shown in Tab. 9.1.

For Households and Corporates, both testing approaches for the short-run cycles
have, in general, similar results till 2013. In 2013–2017 there is the difference in case
of Household, where the LAB approach identify additional cyclicality (i.e. seasonal
or cyclical component). In the short cycles, the LAB testing identified additional
significant cyclical behavior compared to STA. In the case of medium cycles, the
LAB testing identified a wider time-region with a significant cyclicality. Such simi-
larities are possible because, analyzing Fig. 9.2, we can see that the Households and
Corporates time series do not show a serious problem with the data volatility. The
bigger differences occur when comparing both testing approaches. STA was not able
to reveal any cyclicality (i.e. seasonal or cyclical component) in the short-run cycles
and any cyclicality in the short cycles in Households after 2013. In case of Corpo-
rates STA was not able to reveal any cyclicality in short term cycles. In the case of
the medium cycles, the identified areas via STA are smaller. Such a shortcoming of
STA testing was expected also from the comparison with the STFT results.

As we stated in the sections above, the significance via STA does not consider
variation in the data variability and takes a fixed variance for all data samples.
Therefore, this testing indicates the significant areas of the cyclicality with respect
to the all-time range. This leads to the suppression of other possible significant
areas by the biggest shocks (the financial crisis). Moreover, the identified areas
are smaller or are not even identified. On the other hand, using the LAB testing
uncovers and confirms the existence of previously omitted areas. In this way, we are
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Test Short-run cycles Short cycles Medium cycles
(<12 months) (12–20 months) (20–48 months)

C
or

po
ra

te
s STA

2001/Q1–2002/Q3
– 2004/Q3–2015/Q1

2003/Q3–2009/Q1

LAB 2000/Q4–2010/Q1

2002/Q1–2004/Q3

2004/Q3–2015/Q1
2008/Q2–2011/Q1
2012/Q1–2013/Q2
2015/Q2–2016/Q3

H
ou

se
ho

ld
s STA

2000/Q4–2002/Q2

2007/Q1–2012/Q2 2006/Q1–2016/Q3
2004/Q4–2007/Q1
2008/Q2–2013/Q1
2014/Q2–2016/Q1

LAB
2000/Q1–2007/Q3 2001/Q2–2012/Q2

2000/Q1–2017/Q22008/Q2–2013/Q1 2014/Q1–2015/Q2
2014/Q2–2017/Q1

Tab. 9.1: Significant area of wavelet spectrogram over frequency intervals.

able to evaluate the cyclical behavior of lending activities in the time window with
a higher precision.

Based on the performed analyses and after a detailed examination of the results,
the methodological findings can be summarized in the following recommendations.
In the case of constant volatility in the data, STA approach is plausible. We can
also recommend and use this test if we want to evaluate any event in the time series
with respect to the all-time range. In cases of increasing or decreasing volatility in
the data, the overall variance can be affected. In this case, we recommend LAB
testing, due to its adaptability, or enhanced spectrogram modelling.

9.7 Discussion
In this chapter, we have presented and compared the results of three approaches
(CWT and STFT tested by STA and simulations of background noise levels, LAB
testing of CWT, enhanced spectrogram modelling) applied to the cyclicality descrip-
tion of bank loan activities. We recognized that the volatility in the data influences
the type of testing and we, therefore, recommend using the LAB testing of CWT or
enhanced approach. In this section, we discuss interpretations of achieved results in
the economic context.

First, the general results given by CWT with the STA testing (Fig. 9.3a–d,
Tab. 9.1) show that the financial crisis was reflected in both economic sectors, but
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in a different way. We found the most extensive reaction to the crisis in the behavior
of Households. The reactions were strong particularly in the years around the crisis
across all frequencies (from short-run to long cycles), and in the years just before
and after the crisis in the quick movements represented by the short-run cycles (i.e.
in seasonal and some cyclical components). In the case of Corporates, the financial
crisis did not cause any significant reactions during and after the crisis. We can find
only one reaction, i.e. the disappearance of short-run cyclicality.

Next, due to new approaches, i.e. adaptive LAB testing or enhanced spectro-
gram modelling, we can evaluate the above-mentioned general results with a better
precision. In the case of Corporates, there is an important area in the short-run cy-
cles which covers seasonal and cyclical components and during the crisis. After the
crisis, there is no significant area, probably as a result of the credit crunch. The LAB
testing for Corporates (Fig. 9.5a, Tab. 9.1) reveals the important pre-crisis and crisis
period 2002–2010 in the short-run frequencies (up to 12 months; i.e. seasonal and
some cyclical components) and the unique short cyclicality (12–20 months). Thus,
we can see that the reaction of Corporates to the crisis was very limited without
any strong impact on the post-crisis time.

At the same time, the situation for Households is different; the financial crisis
of 2008 can be taken as an important factor having a strong impact on cyclicality.
The new approaches (Fig. 9.4b and 5b, Tab. 9.1) show several important areas: (i)
the first area can be identified in the time 2000–2016 in the short-run cycles (up to
12 months; i.e. in the seasonal and some cyclical components); (ii) the second in
the time 2001–2012, 2014–2015 in the short cycles (12–20 months); (iii) the third
in the medium cycles in the time 2006–2012. We can see a very strong reaction to
the crisis, which was reflected across all frequencies around and after the year 2008.
Before 2008, a significant area lies (similarly as for Corporates) in the short-run
cycles which covers seasonal and some cyclical components. After the crisis, we
can find an important area in the short-run and the medium cycles. Therefore, we
can confirm our previous results that the cyclical movement of loans to Households
during the financial crisis was the most significant. In the case of both sectors, we
can also see the medium cycles (12–20 months), but due to the COI (discussed in the
previous sub-section), we can admit its existence in 2007–2011, i.e. shortly before,
during and after the crisis.

Overall, our results can be summarized as follows. The financial crisis of 2007
and 2008 had a significant impact on the cyclical behavior of both categories of
economic sectors analyzed in our paper, but in a different way and with a different
intensity. Moreover, the character of the cyclical behavior was different before and
after the crisis. In the case of Corporates, we do not see any significant cyclical
behavior after the crisis. This fact could be caused by a stronger position of large
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firms which have more financing possibilities than small firms and both banks and
nonbanks provide short-term financing to large firms rather than smaller firms [85].
Small firms are also connected to small banks [86] and this may influence the lending
activity of small banks as they are more influenced by economic distress and infor-
mation asymmetries compared to large banks [87]. However, the ongoing banking
consolidation and a reconstruction of internal organization of banks in recent years
have caused the fact that the bank size is not as important for small business lending
as before [88]. As such, this sector could be presented as a relatively stable sector
with the least volatile lending activities. On the contrary, in the case of Households
sector, the crisis was a very important event causing changes in the volume of lend-
ing activity and thus economic or financial distress may cause huge fluctuations in
the spending of households which are also substantial for the economic growth of a
country. This fact is documented in [85] who argue that banks tend to limit lending
to households while they may rise loans to firms at the same time. However, in [89]
is stated that it is lending to firms, and not lending to households, that has a posi-
tive impact on economic growth and limits income inequality through the financial
development, better capital allocation and economic transformation. Therefore, the
lending activities in the sector of Households showed the most extensive cyclical
behavior and this sector could be characterized as the sector which was influenced
by the financial crisis most significantly. In this context, it would be advisable to
stabilize these fluctuations in lending activities of households using various economic
policy measures. Many studies confirmed the existence of the cyclical behavior of
the lending activities (see [61, 90–92] and others). However, we bring new findings
about the short- and medium-term cyclicality in these two economic sectors via the
TF transform.

9.8 Chapter Conclusion
This chapter deals with the identification of the time-frequency regions describing
the cyclicality of bank loans activity before, during and after the financial crisis in
2008. We proposed the local-adaptive-based testing and the so-called enhanced time-
frequency spectrogram modelling and compare them with standard classical testing
of CWT and STFT spectrogram. The demonstration of the methods was proposed
only on seasonally unadjusted monthly financial data of bank loans provided to two
categories of economic sectors in the Euro Area in 2000–2017. We identified areas
of cyclicality in the lending activities and found an important impact of the crisis
on data volatility which further influenced the type of significance testing of wavelet
spectrograms. The results confirmed the usability of the newly proposed approaches,
i.e. LAB testing of CWT spectrogram and enhanced spectrogram modelling, in those
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case the data have a changing volatility. In the case of constant volatility, the STA
testing approach of TF transform gave the same results.

The proposed approaches extend the methodology related to studying short and
medium cycles as they can be applied also in the case of volatile data. Applying
the methods, which were conducted only on seasonally unadjusted monthly data,
enables us to detect a faster reaction to a specific change, which further enables a
faster response from the economic policy makers.

From the economic point of view, the results show that the crisis in 2008 had an
impact on the cyclical behavior of corporates and households, but in a different way.
The most remarkable influence of the crisis was identified in the households. Here,
the reaction was relatively strong during and after the crisis. Therefore, we can
identify Households as a more sensible sector reacting to changes, such as the 2008
crisis. At the same time, the less dynamics is apparent in Corporates, with severe
fluctuations mainly in the period before the financial crisis. Therefore, Corporates
seems to be less affected by the crisis compared to Households and this finding may
be of high importance for policy makers when formulating and implementing their
economic policy measures in a period of crisis.

On the other hand, the cyclicality of Corporates was mainly dominated by
the short-run cycles (which includes seasonal components) and the medium cycles.
Therefore, Eurozone policy makers should take this information into account. We
need to point out that the presented research did not distinguish between the sup-
ply and the demand factors of lending activities, i.e. whether the movement was
caused by banks or by economic agents. In this context, we bring interesting findings
showing the cyclicality in economic sectors of corporates and households.
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10 Co-movement (Sub-)Indicator
This chapter is based on following published journal paper:

POMĚNKOVÁ, J.; KLEJMOVÁ, E.; MALACH, T. ”Co-movement (Sub-) Indi-
cator as the Measurement of the Synchrony of EA and Visegrad Group Countries”.
Journal of Economics, 2020, vol. 68, no. 3, p. 231-251.

Abstract The paper deals with the construction of a co-movement indicator suitable
for assessing the synchrony between countries. The indicator is represented as a time
series and its construction is based on a reconstruction of a co-spectrum measure
from the time-frequency to the time domain. We use the statistically significant
part of the power wavelet co-spectrum for pairs of countries. An advantage of the
newly proposed co-movement indicator is no loss of observations (such as in the
case of correlation) and a possibility to construct sub-indicators which correspond
to the predefined frequency range, e.g. business cycle frequencies. In such a way
we can obtain a decomposition of the (total) co-movement indicator (which covers
the full range of frequencies) into, for example, short-run cycles, medium and long
business cycles and long-run cycles. The proposed methodology is demonstrated
on the US and EA monthly data of industrial production index in 1991-2018. A
further application is performed on the EA and Visegrád Group Countries with
the same data type and time range. The results confirm the globalization of the
world economy and a transfer of the 2008 crisis into European countries economies.
Further, it is shown that the synchrony of the EA and Visegrád Group of Countries
is the most striking in medium business cycle frequencies covering the cycles of the
length 1.5-4 years. In the case of Hungary, the synchrony is also visible in the short
cycles of the length <1.5 years. The obtained co-movement (sub-)indicators can
be further used in regression analyses for researching the relation with economic
indicators, such as bilateral trade or investment to reveal additional information
about interconnections of the countries.

10.1 Introduction
The globalization of economies has been reflected in many areas of the particular
country economy, and thus is still at the forefront of economic analysts’ interest. It
can be studied in many contexts, i.e. business cycle synchronization between coun-
tries, financial globalization and its effect on monetary policy, emerging markets,
financial or goods markets, the influence of globalization on social life, etc. The
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transfer of shocks from the economy of one country to other countries can signifi-
cantly influence the evolution of regional as well as world economy. The crisis in 2008
which started in the USA, or oil crisis in 1970s are one of the most visible examples.
In case of the European area we can mention another example which is the adoption
of Euro currency leading to the Optimum Currency Area (OCA). Specifically, the
OCA started a huge amount of analyses of business cycle (BC) synchrony in various
forms.

The analysis and measuring of globalization was also reflected in the development
of methodological tools. Standard techniques, such as regression analysis, correla-
tion, co-integration, vector autoregressive modelling, all in its basic or modified form
are still in usage and can give valuable results [36,93]. However, these methods are
not flexible enough to provide an in-depth view into the cyclical character of eco-
nomic data and do not capture the cyclical structure as a function of time. In the
last decade wavelets, especially co-movement wavelet analysis, have become a pop-
ular instrument. This methodology has been known in engineering for a long time,
but it is quite young in economics. An increase in its came with the analysis of
BC synchrony, OCA and the reflection of structural shocks in economies. Wavelets
can be applied on non-stationary data, they have a very good time-frequency local-
ization, and it is possible to reconstruct the transformed values back into the time
domain [29].

The globalization between China and G7 countries via wavelets was assessed by
[80]. They proved that the co-movement between the countries differs with respect
to the frequency in which the co-movement is being evaluated. In [36] the syn-
chrony between China, Japan, the US and other Asia Pacific countries is analyzed
via wavelet power spectrum and found out that the strength of BC synchroniza-
tion fluctuates across frequencies and over time. Another study in this field [20]
uses cross wavelet power spectra and wavelet coherence to show that a closer BC
synchronization can lead to a stable and effective monetary union. In [39] different
approach is used: the rolling wavelet correlation between the stock markets’ index
returns of the PIIGS countries with the UK and Germany at different frequencies.
Their results show that in low-frequencies the PIIGS stock markets are more corre-
lated with Germany, while in high-frequencies with the UK. The interconnection of
financial globalization and monetary policy effectiveness was studied [94], where is
empirically quantified that the financial globalization has a net impact on monetary
policy effectiveness. The relation between the Korean Republic and the European
Union, which signed the trade agreement in 2010 (EU-Korea FTA), motivated [95]
to research the globalization effect between Visegrád countries (V4: the Czech Re-
public, Hungary, Poland and the Slovak Republic) and the Republic of Korea. The
author identifies the impact of South Korean direct investments on trade. He states
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that the EU-Korea FTA agreement is an important step in the process of globaliza-
tion of economies serving the interests of the most competitive economies. Further
he claims, that V4 countries are passive players and will continue to remain so as
long as they are highly dependent on the effects brought about by foreign direct
investments.

This chapter deals with the description of the synchrony between two time series
via the construction of a co-movement indicator. The indicator is constructed on
the basis of time-frequency co-movement measure, i.e. coherence between two time
series. After the identification of the significant part of the coherence via statistical
testing, the significant co-moved part of the time series is reconstructed into the
time domain leading to the time representation of the co-movement indicator. An
advantage of this indicator is its time domain representation, which contains infor-
mation about the significant frequency of the co-movement regions. Further, the
methodology of its construction allows a selection of frequency regions according to
the researcher’s focus, e.g. BC frequencies, or the construction of the corresponding
sub-indicators. The proposed indicator is demonstrated on the industrial produc-
tion index of the US, EA and Visegrád Group of countries between years 1991-2018.
The indicator thus enables us to asses how the co-movement between the US and
EA, EA and V4 countries evolves.

10.2 Methodology

10.2.1 An Algorithms for the Co-movement Indicator

In the following, we propose the diagram (10.1) and the description of the algorithm
for the co-movement indicator construction. Let us two time series 𝑥(𝑛) and 𝑦(𝑛),
𝑛 = 1, . . . , 𝑁 . The construction follows these steps:
Step 1: The estimation of the co-movement measure, i.e. PWCS or coherence, for

both time series.
Step 2: The partition of the co-movement measure into regions with the significant

and insignificant co-movement, i.e. the construction of the mask

𝑀(𝑎, 𝜏) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, |𝑆𝑥𝑦(𝑎, 𝜏)|2

(𝜎2
𝑥𝜎

2
𝑦)

≥ 0.25𝑍(1 − 𝛼),

0, |𝑆𝑥𝑦(𝑎, 𝜏)|2

(𝜎2
𝑥𝜎

2
𝑦)

< 0.25𝑍(1 − 𝛼)
(10.1)

where the threshold 𝑡ℎ𝑟 = 0.25𝑍(1 − 𝛼) is given by TC98 testing (7.5).

86



CHAPTER 10. CO-MOVEMENT (SUB-)INDICATOR

Sx and Sy

PWCSxy 

Time Series 

x(t) and y(t)

Fig. 10.1: Co-movement indicator construction.

Step 3: Creation of modified PWCS (MPWCS) which contains only the significant
part of PWCS by applying the mask:

𝑀𝑃𝑊𝐶𝑆(𝑎, 𝜏) = |𝑆𝑥𝑦(𝑎, 𝜏)|2 𝑀(𝑎, 𝜏). (10.2)

Consequently the ICWT is used to transform this product into the time do-
main, i.e. the construction of the time representation of the co-movement indi-
cator. Or, ICWT of the pre-defined frequency region (e.g. BC frequencies) of
this product into the time domain to construct the time representation of the
co-movement sub-indicator corresponding to the pre-define frequency region.

10.3 Data Description
The data set consists of the seasonally adjusted monthly data of IPI from OECD
database [40] for the the US, EA19 (EA) and Visegrád Group of countries (V4),
i.e. the Czech Republic, Hungary, Poland and the Slovak Republic, between years
1991/M1-2018/M5.

As we examine TF selective filtering based on co-movement between the growth
cycles of selected countries, we transform the data to FODLOG values. For the
time-series co-movement via PWCS calculation we set the scales corresponding to
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the range of 1 year to 10 years, with 257 individual scales. We selected the complex
Morlet with the center frequency 𝑓b = 1.5 as the mother wavelet [29].

The co-movement indicator was constructed for all frequencies (all scales) leading
to the time representation of the total co-movement indicator. We also construct
the time representation of the co-movement sub-indicators corresponding to the
frequency sub-ranges. The division of the frequencies re-calculated to the length
of cycles is the following: the short-run cycles (SC) of duration <1.5 years, the
medium BC of duration 1.5–4 years, the long BC of duration 4-8 years and the
long-run cycles (LC) of duration >8 years.

10.4 Results
The application was done on the data described in the previous part according to
the algorithm described in the methodology (Section 2.4). First we demonstrate
the proposed algorithm on the case of co-movement between the US and the EA.
Secondly, we apply this algorithm on the co-movement of the EA and V4 countries
and present the resultant time domain figures for the total co-movement indicator
as well as for the sub-indicators corresponding to the pre-defined frequency regions.

10.4.1 Demonstration of the Co-movement Indicator

The proposed algorithm demonstrated on the case of the US and EA co-movement
follows the steps given in Section 2.4. Firstly, we estimate PWCS (Figure 10.2a)) of
both countries. Secondly, we construct the mask on the basis of TC98 significance
testing of PWCS, i.e. we identify significant and insignificant parts of PWCS ac-
cording to the formula (10.1). Then, we multiply the PWCS (normed by variances
of the US and EA time series) by the mask to obtain time-frequency co-movement
representation. Thirdly, we calculate the inverse transform of the normed PWCS
which is an analogy as for CWT (eq. (3.10)), and we obtain the time representation
of the total co-movement indicator in the time domain (Figure 10.2b).

Further, for a detailed look into the co-movement indicator behavior, we split the
masked normed PWCS into the frequency sub-regions according to the description
given in Section 3.1. Similarly, as in the case of total co-movement indicator, we
calculate the inverse transform of a frequency sub-region of the masked normed
PWCS, which leads to the time domain representation of the sub-indicators and
corresponds to the pre-defined frequency regions (Figure 10.3).

The first overview of the PWCS (Figure 10.2a) suggests that the most significant
event in both countries is the global economic crisis in 2008. Therefore, the shape of
the total co-movement indicator, i.e. the full range of frequencies, is not surprising.
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(b) Total co-movement indicator

Fig. 10.2: Co-movement of the US and EA.

We can see an increase of the synchrony in 2002-2008, with a peak in 2008, followed
by a decrease of the synchrony in 2008-2014. The inflexion points determine the
period 2006-2011 of the concave indicator shape. In this interval we can find the
most energy of the PWCS and thus the strongest co-movement of both countries.

When we focus on the sub-indicators in Figure 10.3 in the pre-defined frequency
sub-ranges, we can see a similarity of the medium BC co-movement indicator shape
with the total co-movement indicator shape (i.e. the curve corresponding to all
frequencies in Fig. 10.3). Based on this we conclude that in the BC frequencies
of the duration 1.5-4 years the economies are the most synchronised. The other
sub-indicators, i.e. SC, long BC and LC frequencies, contribute to the overall syn-
chronisation less, because in the PWCS there are no other significant areas in the
frequency and the time (see PWCS, Figure 10.2a)). The long BC sub-indicator
summed with the medium BC indicator cause the total indicator enlargement, while
the SC sub-indicator causes the augmentation of the peak in 2008. The LC indicator
has the lowest contribution to the total co-movement indicator. In both countries,
the EA and the US, the global crisis in 2008 significantly influenced developments
in the countries and demonstrated the interdependence, and thus globalization of
economies.

10.4.2 Application on the EA and V4 Countries

Similarly to the demonstrated case, in the case of the EA and Visegrád countries
we firstly look at the PWCS figures (Figure 10.4a-d). In all four figures we can
identify the most significant co-movement during the global financial crisis, more
or less extended across the frequencies, depending on the country. In the case of
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Fig. 10.3: Co-movement indicator for the US and EA in the frequency regions.

(a) CZ & EA (b) HU & EA

(c) PL & EA (d) SK & EA

Fig. 10.4: PWCS of EA and V4 countries. The yellow curves in all figures indicate
a significant area of PWCS.
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Fig. 10.5: The total co-movement indicators for V4 and the EA (all frequencies).

the EA and the Czech Republic, the Slovak Republic and Poland the significant
co-movement prevails in the LC, long BC and medium BC. In the case of the EA
and Hungary the significant co-movement is visible in all frequencies in the 2008
crisis. All these facts are reflected in the co-movement indicator as well as in the
sub-indicators.

The total co-movement indicators of the EA and all V4 countries for all fre-
quencies is shown in Figure 10.5. We can see a proximity of the co-movement of
the Czech Republic, Poland and the Slovak Republic with the EA during the time
range; in the case of Poland the indicator achieved a little bit lower value of the
peak in the 2008 crisis. In the case of Hungary, the indicator has a similar shape,
except for the shape in the time 2007-2009 when a significantly higher level of peak
was achieved. This fact is explained by the SC co-movement sub-indicator.

Further, we focus on the sub-indicators. In the case of SC co-movement sub-
indicator (Figure 10.6a) we can see a proximity of the Czech Republic and the Slovak
Republic in the shape of the curve. In the case of Poland, the SC sub-indicator does
not contribute much to the overall country co-movement, i.e. the EA and Poland
do not have co-movement in these frequencies. The opposite situation has occurred
for Hungary where the co-movement in the SC plays an important role. As we
can see in the PWCS figure (Figure 10.4), the co-movement with the EA covers all
frequencies during the crisis time, which is reflected in the SC sub-indicator.

In the medium BC frequencies, similarly to the US and EA case, the Visegrád
countries and the EA are the most synchronized and the medium BC co-movement
sub-indicator (Figure 10.6b) contributes most to the total co-movement indicator
(with respect to the amplitude of the indicator). Therefore, we can expect a similar
reaction of countries to the situation in the EA which primarily reflected the situ-
ation in the US. In the case of Hungary we can see a higher position of the peak
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(a) Short-run cycles (SC)
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(b) Medium BC

N
o
v-
1
9
9
1

N
o
v-
1
9
9
3

N
o
v-
1
9
9
5

N
o
v-
1
9
9
7

N
o
v-
1
9
9
9

N
o
v-
2
0
0
1

N
o
v-
2
0
0
3

N
o
v-
2
0
0
5

N
o
v-
2
0
0
7

N
o
v-
2
0
0
9

N
o
v-
2
0
1
1

N
o
v-
2
0
1
3

N
o
v-
2
0
1
5

N
o
v-
2
0
1
7

0

500

1000

1500
CZ

HU

PL

SK

(c) Long BC
N
o
v-
1
9
9
1

N
o
v-
1
9
9
3

N
o
v-
1
9
9
5

N
o
v-
1
9
9
7

N
o
v-
1
9
9
9

N
o
v-
2
0
0
1

N
o
v-
2
0
0
3

N
o
v-
2
0
0
5

N
o
v-
2
0
0
7

N
o
v-
2
0
0
9

N
o
v-
2
0
1
1

N
o
v-
2
0
1
3

N
o
v-
2
0
1
5

N
o
v-
2
0
1
7

50

100

150

200

250
CZ

HU

PL

SK

(d) Long cycles (LC)

Fig. 10.6: Co-movement indicators for the US and EA in the frequency regions.

in 2008. The inflexion points of all medium BC co-movement sub-indicators are
determined by the period 2006-2010. In this interval there is the highest amplitude
(i.e. the most energy) of the PWCSs.

The long BC co-movement sub-indicators (Figure 10.6c) between the EA and
V4 countries have a similar shape for the Czech Republic, Poland and Hungary.
The co-movement sub-indicator for cycles longer than 8 years (Figure 10.6d), i.e.
LC sub-indicators, contributes less to the total co-movement indicator in all coun-
tries, and thus to the co-movement of the country and the EA. In the case of the
Czech Republic (with respect to the indicator amplitude) we can state that the
long BC sub-indicator has the same contribution to the total indicator as the SC
sub-indicator.

10.5 Chapter Conclusion
This chapter is focused on the description of the synchrony between countries via
a co-movement (sub-)indicator. The indicator is constructed as the reconstruc-
tion of the significant power wavelet co-spectrum from the time-frequency to the
time domain. There are two advantages of the indicator: i) contrary to the cor-
relation coefficient, concordance index or other metrics, the co-movement indicator
is a time series represented in the time domain without any loss of observations;
ii) the methodology of co-movement indicator allows the construction of the total
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co-movement indicator as well as the construction of the sub-indicator which corre-
sponds to the predefined frequency range (e.g. BC frequencies). According to the
aim of interest we can divide PWCS into frequency sub-regions and then construct
sub-indicators.

The proposed methodology is demonstrated on the case of the US and EA. We
found out that both subjects are synchronized mainly in medium business cycle fre-
quencies covering cycles of the length 1.5–4 years. Further, we could see an increase
of the countries co-movement in the area of ±6 years around the global economic
crisis 2008. A consequent application is presented on measuring the synchrony be-
tween the EA and Visegrád Group of Countries. Similarly, as in the case between
the US and EA, the synchrony of EA and Visegrád Group of Countries is the most
important in medium business cycle frequencies. Only in the case of Hungary we
additionally identified the same importance of short cycles of the length less then are
1.5 years for the synchrony. That is, the crisis in Hungary was reflected in a wider
range of frequencies then are in the Czech Republic, Poland and the Slovak Repub-
lic. The results confirm the fact of globalization of economies and the transfer of
important shocks, such as the 2008 global economic crisis into European countries.

The obtained co-movement (sub-)indicators can be further used in regression
analyses, as presented by [80] or [96] for the research of the relation with economic
indicators, such as bilateral trade or investment to reveal more information about
economic interconnections and influencing factors.

93



CHAPTER 11. CO-MOVEMENT SELECTIVE DETECTION FILTER

11 Co-movement Selective Detection Filter
This chapter is based on following published journal paper:

POMĚNKOVÁ, J.; KLEJMOVÁ, E. ”Co-movement Selective Detection Filter
to identify time series co-movement indicator or to filter out symmetric economic
shocks”. Digital Signal Processing, 2021, vol. 114, p. 1–14.
DOI: 10.1016/j.dsp.2021.103033

Abstract The paper deals with designing a mask suitable for a selective filtering
of data. The design of the mask is performed in the time-frequency domain and
the selection is based on the co-movement measure of time series. We propose two
approaches for the mask construction: i) hard thresholding based on 𝜒2 testing; ii)
adaptive based thresholding. The proposed mask can be used for time series filter-
ing in which we obtain either the adjusted time series or the construction of the
time series containing only the co-moved parts. Further, after computing an inverse
transform we can obtain time series with/without the co-moved area applicable for
consequent econometric analyses. The paper provides recommendations concerning
the selection of a particular approach in a given situation. The proposed methodol-
ogy is demonstrated on the adjustment of industrial production index of Euro Area
and selected G8 countries about co-movement with the US.

11.1 Introduction
A large number of econometric analysts use filtering when processing data. They are
usually interested in a decomposition into the long-term trend and oscillations. After
that, the filtered time series is taken as an input to further econometric analyses.
Filtering techniques are viewed not only from the perspective of removing the trend
component, but also from the perspective of identifying trend-breaks, outliers, or its
removing ability [97,98].

For a long time, the filtering of time series prevailed in the time-domain rep-
resented by deterministic [99, 100] or stochastic methods [101], or their combina-
tions [102]. The time series processing in the time-domain is simple, but is not able
to remove a specific frequency range and, in some cases, is inflexible in the long-
term trend modelling. Unfortunately, time domain approaches are weak in capturing
a cyclical character of the time series and need parameter optimization. Therefore,
analysts began to use methods in the frequency-domain, i.e. low-, high- or band-
pass filters [31,103,104], or a windowed filter as proposed by [105]. Such approaches
are more flexible and are widely used in the economic area for the business cycle
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(BC) analyses [106]. An alternative point of view is filtering via eigenvalue-based
decomposition [57, 107, 108], which allows a decomposition of the time series into
the number of components. Then, some of the components can be removed and the
others can be reconstructed into the time domain. The drawback is an arbitrari-
ness of the decision what will be removed. This deficiency can be solved by the TF
selective filtering [109].

The TF methods have come to the forefront of the interest in many scientific
disciplines; engineering [26, 110], geoscience [111, 112], biomedical [113]; social sci-
ences, or economics [38,114]. The popular TF techniques are the Short Term Fourier
transform, the time-frequency autoregressive method or the wavelet transform. As
Wang et. al [115] wrote, wavelet transform has a good TF localization which en-
ables the focus on any detailed time and frequency domains of input time series.
The methods can be used for analysing time series, either individual or in the co-
movement. The latter is very popular among economists [20, 116, 117]. As many
experts agreed, the main advantages of wavelets are: the use for non-stationary data
(i.e. we do not have to solve the problem of stationarity and possible autocorrelation
in data), the ability to uncover unique complicated patterns over time and a good
time resolution [20, 36, 39, 81, 110, 118]. The wavelets give a possibility to estimate
and describe the cyclical structure as a function of time, and they show how the
different components of a particular time series evolve [20]. We may say that the
increase of wavelet use among economists was brought by the research in the op-
timum currency area (OCA), by the analysis of the business cycle synchronization
and by the the globalization of economies [37,93,118,119]. TF methods can also be
used for thresholding or shrinkage, which are popular as instruments for the image
and signal de-noising [115, 120]. A different approach common in engineering uses
neural networks [121] or a combination of methods to improve the performance of
signals [122,123].

The use of hard, soft and adaptive threshoding applications in engineering great
popularity of wavelets among economists motivates us to improve our earlier study
[84]. This previous research employed the hard threshold for the co-movement-
selective filter which was applied to filtering out symmetric macroeconomic shocks
from individual time series. There, the hard thresholding was based on the analyst’s
experience, while the current study proposes a more sophisticated approach based
on statistical testing. We apply the approach according to Torrence and Compo
(TC98) [23] who were the first to propose algorithms for significance testing of power
wavelet spectrum, the cross-spectrum and the linear coherence. An improvement of
their work was provided by Ge [25,55]. The algorithm presents several assumptions
to test the significance of the power wavelet cross-spectrum. That is, inputs are two
independent GWN and thus the power wavelet co-spectrum is the product of two
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𝜒2−distributed random variables. Further, using the Bessel function, we can test
whether the power wavelet cross-spectrum coefficients are significant with respect to
the variance of each time series. Notice that the authors of the mentioned publica-
tions work with a constant variance of input time series. An alternative approach for
the testing is using the simulations of background noise levels as proposed in [17,26].

11.1.1 Chapter Contribution and Organization

We have determined that the literature does not deal with the following: firstly, how
the TF transform of the time series with a transient character and changing volatility
should be tested for an objective identification of its significant parts; secondly, how
we can adjust time series about transient parts; thirdly, how we can identify the
time domain representation (without a loss of data) of time series co-movement (the
loss of data is a typical problem of e.g. correlation).

On the basis of the TF analysis and standard testing according to TC98 [23] (for
the detail description of this approach, see Chapter 7) we propose a novel approach
useful for applications:

∙ a method for mask construction based on the significance testing for co-
movement selective detection filtering. Considering the character of data, we in-
vestigate two approaches for the mask construction: i) via hard thresholding based
on the 𝜒2 testing according to TC98 [23]; ii) via adaptive thresholding considering
the data character.

∙ an approach for identification of two-types of time series: either the time series
adjusted about the co-moved part, or the time series containing just the co-moved
part. Both series can be obtained after the co-movement selective filtering and the
inverse transform in the time domain.

∙ an investigation of proposed approaches on simulated and real data.
∙ a recommendation for the use of proposed approaches.
To demonstrate the proposed methodology, we use an industrial production index

of the the Euro Area (EA) and selected G8 countries, i.e. US, EA, UK, Japan and
Russia. Based on the existence of globalization of economies in the world, we expect
the existence of the co-movement. All these countries somehow reacted to the US
sub-prime mortgage crisis in the country cyclical movements of economic activity,
thus we can observe fluctuations in the country BC, in investment activities or con-
sumer spending etc. Therefore, the proposed methodology is useful for economists,
especially policy makers, to analyse cyclical movements and the synchronization as
well as dissimilarities of macroeconomic indicators. The contribution of the method
is illustrated by removing the symmetric shock from the macroeconomic time series
in the TF domain with the US as the reference time series.
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11.2 The Wavelet Transform, Co-movement Mea-
sures and its Testing

The algorithm for the co-movement selective filtering presented here is designed for
the WT because of its advantages, especially very good time resolution and usability
for non-stationary time series [20,110,124], and for the power wavelet co-spectrum,
as the co-movement measure [23,31]. It can be modified for the Short Term Fourier
transform and for different co-movement measures such as coherence [23,25,55]. As
these methods are well known, we do not describe them in this paper. Instead, we
focus on the description of testing approaches for the co-movement measure.

11.3 An Algorithm for the Co-movement Selective
Detection Filter

An algorithm for the co-movement selective detection filter is based on two processes,
i.e. transformation plus analysis and reconstruction. The transformation process
consists of the TF modelling (WS and PWCS analyses) and masking. The recon-
struction process inversely transforms time series from the TF to the time domain.
Figure 11.1 proposes a block diagram describing this algorithm.

11.3.1 An Algorithm for the Co-movement Selective Detection
Filter

The proposed method for the identification of the time series co-movement indicator
or for filtering out a symmetric behaviour is designed as follows:

1. Time-frequency transform
Transform time series 𝑥(𝑡) and 𝑦(𝑡) using CWT resulting in wavelet spec-
trograms 𝑆𝑥(𝑎, 𝜏), 𝑆𝑦(𝑎, 𝜏) (eq. (3.6)) and wavelet cross-spectrum 𝑆𝑥𝑦(𝑎, 𝜏)
(eq. (3.18)) respectively. Alternatively, another co-movement measure as co-
herence could be used.

2. Decision about type of thresholding
Decide the method for identifying the threshold of wavelet cross-spectrum
coefficients WCS and find the threshold 𝑡ℎ𝑟, i.e. decide for the method of the
mask 𝑀 design via standard or adaptive thresholding (see Sec. 11.4).

3. Mask design
Divide the wavelet cross-spectrum in power form, i.e. PWCS |𝑆𝑥𝑦(𝑎, 𝜏)|2, into
regions with significant and insignificant co-movement of 𝑥(𝑡) and 𝑦(𝑡) based
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Fig. 11.1: Block diagram of co-movement detection filter algorithm.We use the fol-
lowing abbreviations: WS denotes the wavelet spectrogram coeffcient (Sec. 3.6),
PWCS denotes the power wavelet cross-spectrum (Sec. 3.18), HT denotes Hard-
Threshold Masking (Sec. 11.4.2), SAB denotes Segmentation-Adaptive-Based Mask-
ing (Sec. 11.4.3) and LAB denotes Local-Adaptive-Based Masking (Sec. 11.4.3).

on the threshold 𝑡ℎ𝑟. That is, we construct the mask 𝑀 :

𝑀(𝑎, 𝜏) =

⎧⎪⎨⎪⎩
1 (significant co-movement), |𝑆𝑥𝑦(𝑎, 𝜏)|2 ≥ 𝑡ℎ𝑟

0 (insignificant co-movement), |𝑆𝑥𝑦(𝑎, 𝜏)|2 < 𝑡ℎ𝑟
(11.1)

The term "significant co-movement" denotes statistically significant PWCS
values which will be identified via statistical testing. See Sec. 11.4 for a detailed
description of this testing.
The PWCS coefficients are used due to the complex valued cross-spectrum for
the majority of practically used mother wavelet functions.

4. Decision about desired application
Decide what the desired application is. We investigate two cases: i) if the
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application is to remove the co-moved part from the time series, or ii) the
inverse task, i.e. keeping the co-moved part of the time series and remove the
part with distinct cyclical behaviour from the time series.

5. Masking
i) Create a modified wavelet spectrogram (MWS) by masking i.e. co-movement
selective detection filtering (adjusted time-frequency transform)

𝑀𝑊𝑆𝑥(𝑎, 𝜏) = (1 −𝑀(𝑎, 𝜏)) * 𝑆𝑥(𝑎, 𝜏).

Analogously for the time series 𝑦(𝑡).
ii) Create a modified PWCS (MPWCS) by masking, i.e. selecting the distinct
cyclical behaviour leading to the time-frequency transform of a co-movement
indicator

𝑀𝑃𝑊𝐶𝑆(𝑎, 𝜏) = |𝑆𝑥𝑦(𝑎, 𝜏)|2 *𝑀(𝑎, 𝜏).

6. Transforming to the time domain
Transform inversely product of masking from the previous step via inverse
continuous wavelet transform (ICWT, eq. (3.10)). We can obtain: i) adjusted
time series in the time domain)

̃︀𝑥adj(𝑡) = 𝐼𝐶𝑊𝑇{𝑀𝑊𝑆𝑥(𝑎, 𝜏)}.

Analogously for the time series 𝑦(𝑡), we can get ̃︀𝑦adj(𝑡).
ii) the co-movement indicator represented in the time domain

̃︀𝑥𝑐(𝑡) = 𝐼𝐶𝑊𝑇{𝑀𝑃𝑊𝐶𝑆(𝑎, 𝜏)}.

That is, we can construct the time representation of the co-movement in-
dicator. Or, we inversely transform the pre-defined frequency region (e.g.
a sub-part of MPWCS in BC frequencies) of this product into the time do-
main to construct the time representation of the co-movement sub-indicator
corresponding to the pre-defined frequency region.

11.4 Mask Design
In this section we firstly discuss possible approaches for thresholding and and suggest
when the method is suitable for use. Furthermore we focus on the description of
the mask corresponding to the thresholding method, i.e. Step 5 in the algorithm
described in Chap. 11.3.
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11.4.1 Mask Design

Let us consider the PWCS coefficients for the time series 𝑥(𝑡) and 𝑦(𝑡). Based on
the TC98 significance testing of PWCS we are going to design the mask. We follow
two basic approaches. One is based on the hard threshold given by the testing via
STA leading to the so called hard-threshold (HT) masking. The other is based on
the adaptive threshold identification leading to two possibilities, i.e. local-adaptive-
based (LAB) threshold and segmentation-adaptive-based (SAB) threshold. This
adaptivity is in time. In both adaptive cases, we propose an improvement of STA
in the adaptive form.

If an analyst focuses on the time series adjustment about the co-moved part, or
on the construction of the co-movement indicator with respect to the full time range
in order to identify the most important events in the time series, we recommend the
use of HT masking, i.e. STA.

The idea of SAB and LAB testing considers the situation when the variance
of the time series 𝑥 or/and 𝑦 in the TD may vary for some sub-period, even for
a short duration. In this case, the adaptive masking may be more suitable, because
there may exist events (such as the financial crisis in 2008) having a higher level of
amplitude in the co-spectrum, which may suppress the significance of other events.
These events can be usually visible in the time representation of the data (structural
breaks, outlier or cause changes in the volatility of the data).

11.4.2 Hard-Threshold (HT) Masking

The HT masking is based on STA significant testing which is follows the work of
Torrence and Compo ([23], pp. 69 and 76) for the special case if the background
spectra is Gaussian white noise and PWCS is the 𝑆2 distribution (see also Ge [25,
55,56]). As described in Chapter 7, the significance level 𝑍(1 −𝛼) for the risk 𝛼 can
be deduced from 1 − 𝛼 percentile of the 𝑆2 distribution [23,25].

Thus, the mask 𝑀 (see eq. (11.1)) for the HT approach is given by

𝑀(𝑎, 𝑏) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 |𝑆𝑥𝑦(𝑎, 𝜏)|2 ≥ 𝑡ℎ𝑟

0 |𝑆𝑥𝑦(𝑎, 𝜏)|2 < 𝑡ℎ𝑟

(11.2)

where the threshold 𝑡ℎ𝑟 (given by STA according to TC98)

𝑡ℎ𝑟 = 1
4𝜎

2
𝑥𝜎

2
𝑦𝑍(1 − 𝛼)

is a fix scalar number for the risk 𝛼 for all PWCS coefficients. The value of 𝑍(1−𝛼)
is calculated by STA (eq. (7.6), (7.5)).
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11.4.3 Adaptive-Based Masking

Segmentation-Adaptive-Based (SAB) Masking

The SAB testing is suitable if we are able to identify the sub-segments with different
volatility in the data. Firstly, for each time series 𝑥(𝑡) and 𝑦(𝑡), we identify the
moments of the change of the time series variance. It can be done by expert estimate
(usually in the case if the data are filtered by the long-term component and take
the form of fluctuation around x-axis) or by statistical testing [125]. Secondly,
we arrange all moments for both time series in the ascending time-order and we
split the time range into the segments (SG) reflecting volatility changes in 𝑥(𝑡) and
𝑦(𝑡). Consequently, we identify the critical value for the significance testing in each
segment by STA.

The proposed SAB masking method is designed as follows:
1. Identify the moments of the variance change of the time series 𝑥(𝑡), 𝑦(𝑡) via

expert estimate or statistical testing.
2. Arrange all identified moments for both time series in the ascending order and

split the time range 𝑡 = 1, . . . , 𝑛 into the segments 𝑆𝐺𝑗, 𝑗 = 1, . . . 𝐽 reflecting
volatility changes in 𝑥(𝑡) and 𝑦(𝑡).

3. Estimate the PWCS and split it into the segments 𝑃𝑊𝐶𝑆𝑗, 𝑗 = 1, . . . 𝐽 ac-
cording to segments 𝑆𝐺𝑗.

4. Construct the segments of the mask 𝑀𝑗(𝑎, 𝜏) corresponding to the segment
𝑆𝐺𝑗, i.e. calculate 𝑀𝑗(𝑎, 𝜏) in each segment 𝑆𝐺𝑗 according to eq. (11.2) with
respect to the variances of the time series in 𝑗−th segment. That is,

𝑀𝑗(𝑎, 𝜏) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 |𝑆𝑥𝑦,𝑗(𝑎, 𝜏)|2 ≥ 𝑡ℎ𝑟𝑗

0 |𝑆𝑥𝑦,𝑗(𝑎, 𝜏)|2 < 𝑡ℎ𝑟𝑗

(11.3)

Here, in the 𝑆𝐺𝑗 segment, the threshold

𝑡ℎ𝑟𝑗 = 𝜎2
𝑥,𝑗𝜎

2
𝑦,𝑗0.25𝑍(1 − 𝛼)

is a fixed scalar number, 𝛼 is a risk, 𝜎2
𝑥,𝑗𝜎

2
𝑦,𝑗 are variances for time series 𝑥, 𝑦

in the time segment 𝑆𝐺𝑗 and |𝑆𝑥𝑦,𝑗(𝑎, 𝜏)|2 is the corresponding part of PWCS.
The value of 𝑍(1 − 𝛼) is calculated by STA test, i.e. eq. (7.6) and (7.5).
Compared to the HT masking, in the case of SAB masking the threshold
is the vector 𝑡ℎ𝑟 = (𝑡ℎ𝑟1, . . . 𝑡ℎ𝑟𝐽) adaptively changing with respect to the
variances in segment.

5. Construct the mask 𝑀(𝑎, 𝑏) as the composition of the 𝑀𝑗(𝑎, 𝜏), 𝑗 = 1, . . . , 𝐽
mask segments, i.e.

𝑀(𝑎, 𝜏) = (𝑀1(𝑎, 𝜏), . . .𝑀𝐽(𝑎, 𝜏)) (11.4)
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where the 𝑗−th (𝑗 = 1, . . . , 𝐽) segment of the mask 𝑀(𝑎, 𝜏) corresponding to
the time segment 𝑆𝐺𝑗 as described in eq. (11.3).

Local-Adaptive-Based (LAB) Masking

The LAB testing is suitable if the variability of the data slowly increases or/and
decreases, once or several times during the time range of the series 𝑥 or/and 𝑦.
Before starting the LAB algorithm, we have to set the value of 𝑙 - the length of
a sliding window. Consequently, we can identify the critical value for a significance
testing in each segment by STA.

The proposed SAB masking method is designed as follows:
1. Select the length 𝑙 of the sliding window as an odd number.
2. Estimate the PWCS for the time series 𝑥(𝑡), 𝑦(𝑡).
3. Calculate the mask 𝑀𝑡(𝑎, 𝜏) in each time 𝑡 = 1, . . . , 𝑛 according to (11.5) with

the variances as described in (11.6), i.e.:

𝑀𝑡(𝑎, 𝜏) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 |𝑆𝑥𝑦,𝑡(𝑎, 𝜏)|2 ≥ 𝑡ℎ𝑟𝑡

0 |𝑆𝑥𝑦,𝑡(𝑎, 𝜏)|2 < 𝑡ℎ𝑟𝑡

(11.5)

and the threshold
𝑡ℎ𝑟𝑡 = 𝜎2

𝑥,𝑡𝜎
2
𝑦,𝑡0.25𝑍(1 − 𝛼)

is the fixed scalar number in the 𝑡−th sliding window, 𝛼 is a risk. The value
of 𝑍(1 − 𝛼) is calculated by STA test, i.e. (7.6), (7.5). The variance 𝜎2

𝑥,𝑡 is
calculated as follows

𝜎2
𝑥,𝑡 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
𝑙−1

∑︀𝑙
𝑖=1 (𝑥(𝑖) − �̄�)2 𝑡 ∈ 1, . . . (𝑙 − 1)/2

𝑡 ∈ 𝑛− (𝑙 − 1)/2 + 1, . . . , 𝑛
1
𝑙−1

∑︀𝑡+(𝑙−1)/2
𝑖=𝑡−(𝑙−1)/2 (𝑥(𝑖) − �̄�)2 𝑡 ∈ (𝑙 − 1)/2 + 1, . . . , 𝑛− (𝑙 − 1)/2

(11.6)
where 𝑙 is the odd number representing the sliding window length, �̄� is the
mean value of the time series 𝑥 in the sliding window. The variance 𝜎2

𝑦,𝑡 is
calculated accordingly. Compared to the HT masking, in the case of LAB
masking the threshold is the vector 𝑡ℎ𝑟 = (𝑡ℎ𝑟1, . . . 𝑡ℎ𝑟𝑛) adaptively changing
with respect to the variances in the sliding window.

4. Construct the mask 𝑀(𝑎, 𝜏) as the composition of the 𝑀𝑡(𝑎, 𝜏), 𝑡 = 1, . . . , 𝑛,
i.e.

𝑀(𝑎, 𝜏) = (𝑀1(𝑎, 𝜏), . . . ,𝑀𝑛(𝑎, 𝜏)) (11.7)
where the 𝑡−th (𝑡 = 1, . . . , 𝑛) part of the mask 𝑀(𝑎, 𝜏) is calculated according
to eq. (11.6).
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11.5 Experimental Results
To demonstrate the methods described above we present them both on simulated
signals and on real economic data. In practice, across various non-technical disci-
plines, there are signals or time series for which the exact description of its character
is not as clear as in technical signals [110]. While in the case of engineering, signals
can be simulated as the simplification of the composition of several harmonic com-
ponent, in the case of economic data, their structure is more complicated. Usually,
it contains structural trend-breaks, outliers, cyclical components of close frequen-
cies which can occur or diminish in different time sub-periods (not during the whole
time), or nested cycles with different frequency limited in time [36–39]. Moreover,
the nature of economic indicators play an important role and can influence the char-
acter of the frequency structure, e.g. business cycles, financial cycles etc. Then, it
is quite difficult to simulate the universal behaviour of the economic series and its
noising with a generalized artificial signal.

Therefore, we decided to model an artificial signal as a simplification of basic fea-
tures in economic data. That is, a composition of signals which have co-movement in
time-limited long-term trend (low frequency component), short time-limited middle-
term co-movement with the high amplitude, middle-term co-movement during the
whole time period (i.e. cyclical fluctuations in BC frequencies) and short-term trend
(cyclical fluctuations of high frequency, such as seasonality) in the first half of time-
period.

The quality of the identification of significant co-movement part in co-spectra
(i.e. TF components) is evaluated via two metrics [126]. The first one evaluates
how many TF components were significant and were not identified as significant by
the test, i.e. relevant parts were not identified:

M1 = 𝐹𝑁

𝑇𝑃
. (11.8)

The second metrics evaluates how many TF components were not significant and
were identified as significant by test, i.e. irrelevant parts were identified:

M2 = 𝐹𝑃

𝑇𝑁
. (11.9)

Here, 𝑇𝑃 (True Positives) is the number of correctly identified TF components in co-
spectra; 𝐹𝑁 is the number of TF components in co-spectra which were significant
but were not identified as significant; 𝐹𝑃 (False Positives) is the number of TF
components in co-spectra which were insignificant but were identified as significant;
and 𝑇𝑁 is the number of TF components in co-spectra which were insignificant and
were identified as insignificant.
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11.5.1 Simulated Data Description

For testing purposes, we have created four artificial signals, each of the length 1000
samples. Figure 11.2a) illustrates their time domain representation with constant
variance, Figure 11.2b) with segmented variance (changing volatility), each for two
signals. All signals were noised with signal-to-noise (SNR) ratio 𝑆𝑁𝑅 = 10, 3.16, 2.
In the simulation, we tried to approach the behavior of economic time series in the
field of business cycle and synchrony analysis, therefore we selected 𝑆𝑁𝑅 = 10 and
3.16 as stated above.

To be in correspondence with the real data analyses, we use the following settings
during the analyses of artificial signals. For the PWCS calculated according to the
eq. (3.19), we set the scales in the range 1–10 years divided into 257 individual scales.
Further, we use the complex Morlet with the center frequency 𝑓b = 1.5 as a mother
wavelet. The LAB testing is done according to Sec. 11.4.3. The sliding window
length used in the eq. (11.6) is the same for both signals (A and B) and is set to
𝑙 = 36 samples, which corresponds to 3 years. The SAB testing is done according
to Sec. 11.4.3. As the scope of this paper is not to investigate the optimal method
for variance segmentation, the number of 𝑆𝐺𝑗 segments is set to match the number
of segments in the artificial signals. Thus, 𝑗 = 5 for the signal A and 𝑗 = 6 for the
signal B.

To be able to quantify the accuracy of the proposed SAB and LAB methods, we
have created the so called benchmark figure of ideal PWCS ± 𝑠𝑝𝑟𝑒𝑎𝑑 for co-spectral
components (see Fig. 11.3a. This was done to include energy spread in frequency
for each individual wavelet. The size of the frequency spread is set as ±15% from
the maximum in the center frequency of each individual wavelet. As the result, we
can see a wider co-spectral components represented as yellow blocks in the figures
(e.g. Fig. 11.3a). In the next step, we calculate the metrics M1 and M2 using the
benchmark representation and the masked PWCS. Further, we noise all signals as
mentioned in the first paragraph of this subsection and then estimate PWCS of
signals with constant variance and PWCS of signals with segmented variance.

In the following figures (Figs. 11.3–11.6), the 𝑥-axis represents time, the 𝑦-axis
represents specific periods (cycles in years) and the 𝑧-axis represents the values of
spectrogram. The figures show a two-dimensional projection of three-dimensional
charts. The intensity of each contour represents the relative importance of the
different periodicities and time, i.e. from dark blue (low amplitude) to yellow (high
amplitude) colour. The yellow curve denotes the mask in all figures.
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Fig. 11.2: Behaviour of a variance of simulated signals in the time.

SNR = 10
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 6.44 · 103 12.62 – 5.83 · 104 13.58 –
SAB 6.74 · 103 13.31 −0.60 5.76 · 104 13.42 0.16
LAB 7.12 · 103 13.95 −1.34 5.46 · 104 12.72 0.86

SNR = 3.16
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 1.25 · 104 32.66 – 5.25 · 104 13.94 –
SAB 1.27 · 104 33.10 −0.43 5.21 · 104 13.80 0.14
LAB 1.28 · 104 33.60 −0.94 5.16 · 104 13.66 0.28

SNR = 2
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 1.89 · 104 59.13 – 4.65 · 104 12.15 –
SAB 1.89 · 104 58.81 0.32 4.65 · 104 12.14 0.01
LAB 1.89 · 104 58.93 0.19 4.61 · 104 12.02 0.13

Tab. 11.1: Metrics for constant variance- averages of 1000 simulations.

11.5.2 Results for Constant Variance

Next, we identify the significant co-movement of PWCS via HT, LAB, SAB masking
for 𝑆𝑁𝑅 = 10 (Figs. 11.3b,c,d) and for 𝑆𝑁𝑅 = 3.16 (Figs. 11.4b,c,d). Then
we calculate the metrics 𝐹𝑁,𝐹𝑃,𝑀1,𝑀2,Δ𝑀1,Δ𝑀2 (Tab. 11.1). The metrics
Δ𝑀1,Δ𝑀2 describe how the metrics changed for SAB, LAB with respect to HT.
As we can see in Figs. 11.3, 11.4 and Tab. 11.1, there are no big differences between
the results for HT, SAB and LAB masking when the variance of signals is constant.
That is, the metrics Δ𝑀1,Δ𝑀2 are mostly lower than 1%; in the case of LAB
(𝑆𝑁𝑅 = 10) the metric Δ𝑀1 = −1.34 is a little higher than 1%.
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(a) Ideal case. (b) PWCS HT masking.

(c) PWCS SAB masking. (d) PWCS LAB masking.

Fig. 11.3: PWCS and its estimate for constant variance and 𝑆𝑁𝑅 = 10.

11.5.3 Results for Segmented Variance

As for the signals with segmented variance, we also identify the significant co-
movement of estimated PWCS via HT, LAB, SAB masking for 𝑆𝑁𝑅 = 10
(Figs. 11.5b,c,d) and for 𝑆𝑁𝑅 = 3.16 (Figs. 11.6b,c,d). Then we calculate the
metrics 𝐹𝑁,𝐹𝑃,𝑀1,𝑀2, Δ𝑀1,Δ𝑀2 (Tab. 11.2). Comparing Figs. 11.5b–d with
Fig. 11.5a we can see that HT masking of PWCS was not able to identify well the
frequency component corresponding to frequency 0.25 in the second half of the time.
Moreover, in the case of 0.40, the frequency component PWCS HT masking covered
a wider range of surrounding components than SAB, LAB masking. This fact is
also documented in Tab. 11.2. The metrics Δ𝑀1,Δ𝑀2 describe how the metrics
changed for SAB, LAB with respect to the HT. As we can see, there are differences
between the results for HT, SAB and LAB masking for segmented variance com-
pared to the constant variance. That is, for the 𝑆𝑁𝑅 = 10, the metric Δ𝑀1 is
mostly 11.5% higher; the metric Δ𝑀2 is mostly 3% higher. For the 𝑆𝑁𝑅 = 3.16,
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(a) Ideal case. (b) PWCS HT masking.

(c) PWCS SAB masking. (d) PWCS LAB masking.

Fig. 11.4: PWCS and its estimate for constant variance and 𝑆𝑁𝑅 = 3.16.

the metric Δ𝑀1 is mostly 0.5-1% higher; the metric Δ𝑀2 is again mostly 3% higher.
We can see that the metric Δ𝑀1 is more sensitive to the noise level. An additional
simulation for SNR=2 confirmed the sensitivity of Δ𝑀1 and the slow decrease of
Δ𝑀2. That is, the growing noise level causes the increase of false negative compo-
nents and thus the decrease of the level of improvements measured by Δ𝑀1 in HT,
SAB and LAB. The level of Δ𝑀2 keeps a roughly the same level, which means that
the level of spurious significance given by HT is corrected. Thus we can conclude
that in the case of segmented variance, HT masking can produce worse results and
should be replaced by adaptive masking (SAB, LAB). The graphical comparison is
visualized in Figs. 11.5 and 11.6.

11.5.4 Summary of the Results of Simulations

To summarize the results from the simulation, we can give the following recommen-
dation. Before the significance testing of co-movement measure, an analyst should
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(a) Ideal case. (b) PWCS HT masking.

(c) PWCS SAB masking. (d) PWCS LAB masking.

Fig. 11.5: PWCS and its estimate for changing variance and 𝑆𝑁𝑅 = 10.

SNR = 10
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 9.01 · 103 21.75 – 6.49 · 104 17.80 –
SAB 4.73 · 103 10.24 11.50 5.53 · 104 14.79 3.00
LAB 4.70 · 103 10.15 11.60 5.39 · 104 14.36 3.44

SNR = 3.16
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 1.07 · 104 26.60 – 5.77 · 104 15.54 –
SAB 1.58 · 104 26.23 0.37 4.86 · 104 12.77 2.77
LAB 1.50 · 104 25.85 0.75 4.71 · 104 12.35 3.19

SNR = 2
FN M1 [%] Δ M1 [%] FP M2 [%] Δ M2 [%]

HT 1.49 · 104 41.50 – 4.85 · 104 12.75 –
SAB 1.85 · 104 57.09 −15.58 4.33 · 104 11.23 1.52
LAB 1.85 · 104 56.87 −15.37 4.20 · 104 10.84 1.91

Tab. 11.2: Metrics for changing variance - averages of 1000 simulations.
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(a) Ideal case. (b) PWCS HT masking.

(c) PWCS SAB masking. (d) PWCS LAB masking.

Fig. 11.6: PWCS and its estimate for changing variance and 𝑆𝑁𝑅 = 3.16.

identify the behaviour of the time series volatility. If the time series have a constant
variance, then HT masking is a plausible instrument. If one time series, or both,
indicates a changing variance during the time (heteroscedasticity), then adaptive
masking is a proper way how to obtain relevant information. This recommendation
may be particularly useful for time series for which heteroscedasticity is expected,
as in the case of economic time series.

11.6 Application of the Results

11.6.1 Real Data Description

To demonstrate the proposed methodology we use the seasonally adjusted monthly
data of IPI from the OECD [40] database which are commonly used among econom-
ists for business cycle modelling as the macroeconomic indicator of country economy.
With respect to the globalisation of economies we focused on the EA and selected
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Fig. 11.7: Industrial production index of selected countries (in the levels).

G8 countries [40]: the US, Japan, Russia, and the UK. The sample period starts
with July 1975 and ends in December 2017 for all countries except Russia. In the
case of Russia, the available data are in the range from January 1993 to December
2017. This selection was motivated by the following facts: the US was, for a long
time, the leading world economy causing the crisis in 2008; the EA is taken as
a representative of 19 European economies; The UK was preselected because of
Brexit; Japan is an Asia Pacific representative economy; and Russian is taken as
an East European Asia Country. We examine TF selective filtering based on co-
movement between the growth cycles of the US and the selected countries. The
data were transformed to FODLOG values which represent the growth business
cycles [127] of selected countries.

Figure 11.7 displayes these business cycles (data in levels) in the time domain.
Further, the data are transformed into the growth business cycles (i.e. fluctuation
around a potential product) and are used for the synchrony analysis via wavelets as
usual by economists [20,36,39,81,118].

As a preliminary analysis, assuming the existence of synchrony between the US
and selected countries, we calculate the correlation coefficients of business cycles
of selected countries. The synchronization among countries during the economic
crisis in 2008 is also illustrated in Fig. 11.7. Here we can see the tendency of the
curves to converge especially arround 2008–2009 time window, which is caused by
a structural symmetric economic shock, i.e. the global financial crisis. Comparing
correlation coefficients in the overview given in Tab. 11.3, we can see the influence
of the sample size on levels of the data and on the FOD transform (growth business
cycle). We focused on the difference between the time period around the crisis, i.e.
2002–2014, and the available sample size. As we can see from the FOD transform,
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US Levels FOD transform
1978-2017 1993-2017 2002-2014 1993-2017 2002-2014 2008-2009

Japan 0.7546*** 0.3459*** 0.6255*** 0.1825*** 0.1904** 0.3599**
UK 0.7605*** −0.0365 0.0607 0.1390** 0.1540* 0.2131
EA19 0.9721*** 0.9312*** 0.7268*** 0.2963*** 0.3732*** 0.4090**
Russia 0.6483*** 0.6669*** 0.0781 0.1621** 0.

Note: statistically significant at: ***1%, **5%, *10%

Tab. 11.3: Correlation coefficients between US and selected countries.

the selected countries represent situations with a generally stable correlation during
the crisis time in 12-year window (Japan, EA), with an increase (Russia) as well as
a decrease (UK) in the correlation significance. The table also briefly compares the
correlations for the data without any transform (in the levels).

11.6.2 Settings for Implementation

During the analyses, we use the following settings. For the PWCS calculation, we
set wavelet scales corresponding to the range of 1 year to 10 years divided into 257
individual scales. We select the complex Morlet wavelet with the center frequency
𝑓𝑏 = 1.5 as mother wavelet. For LAB testing we set a sliding window for 3 years,
i.e. 36 samples, with 1 sample step ahead. The choice of Morlet wavelet was
motivated by the fact that it is a widely used wavelet for the co-movement analysis by
economists. For the SAB testing, we will describe the number of segments during the
presentation of particular results. After masking the country wavelet spectrogram,
we use its inverse transform to obtain filtered time series. In such a way, the inverse
transform of the whole wavelet spectrogram works as a band-pass filter with respect
to the scales setting.

11.6.3 Demonstration of the Proposed Mask Construction

For the demonstration of the proposed approaches, we choose the US and EA coun-
tries. We concentrate on the removal of all co-movements with the US from the EA
data. The TF representation re-calculated into the time-scale form is given in the
PWCS figures (Fig. 11.8(a),(b),(c)). After the testing of the obtained PWCS via
STA (Fig. 11.8a)), via SAB (Fig. 11.8b)) and LAB testing (Fig. 11.8c)) we construct
the masks. Then, we partition the TF plane into two regions, with and without sig-
nificant co-movement. In all figures, the border is highlighted as a yellow solid-line
curve. After the EA spectrogram masking, we inversely transform wavelet coeffi-
cients which correspond to the part without a co-movement. The obtained time
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series, for all three masks, are depicted in Fig. 11.9. The dotted black line is the
original time series ̃︀𝑥 (i.e. growth business cycle) obtained via eq. (3.10), the green
line represents the adjustment via HT, the red line represents the adjustment via
LAB, the blue line represents the adjustment via SAB. The same denotation is used
in Figs. 11.10-11.12. To ensure a better visibility of the detected areas, we zoomed
the figure to a shorter time range i.e. 2006–2012 (the shape of the curves are the
same before 2006 and after 2012). In this way we obtain time series adjusted for
significant co-movement parts with the reference (the US) country.

As presented in Fig. 11.8, we identify the mask via three approaches leading
to three adjusted time series. The HT masking produce the mask covering cycles
of the range 5–0.7 years. The most energy of co-spectrum is concentrated in the
cycles 5–1.5 years; thus, the adjustment via the HT masking removes mainly long
and business cycles, as well as part of short and very short cycles, from the original
EA data. As a result, the EA’s time series will reduce the fluctuations in the time
around the crisis. In other words, due to the fact that the mutual movement of
the countries manifested itself in many different periods then the removal of these
components from the time series results in its greater smoothness with respect to
the temporal localization of the co-movement. Next, the HT masking is constructed
as a selection of a co-movement of countries relative to the full time range. Thus, if
a significant event occurs, such as the 2008 crisis (which is reflected by a significantly
higher amplitude in the spectral and co-spectral component) and if we evaluate co-
movement in the whole time range, the significance of other spectral components
will be significantly lower.

If we use the LAB or SAB masking, we evaluate the significance in the win-
dow that adaptively calculates the variance. Thus, it marks the components that
contribute to the overall variance as significant. Because of this, some spectral com-
ponents in other areas are not suppressed, and thus gain in significance. In the case
of the US and EA, the LAB and SAB masking concentrates most of the PWCS
energy into long cycles and shows that the most important co-movement is in long
and business cycles, while the HT masking shows also very short cycles. As the
result of the adaptability, the high-frequency components are not removed from the
EA, which results in a lower volatility reduction in the crisis period.

To validate the results of SAB, LAB masking, we provide simulations of back-
ground noise levels (the red line in Fig. 11.8). We can see the proximity of SAB,
LAB masking with simulations of background noise levels for presented volatile
data. Thus, the difference in the significant region identified via STA testing (i.e.
HT masking) and simulations of background noise levels confirmed the influence of
the volatility on the testing. The detailed description of simulations of background
noise levels can be found in Chapter 7.1.2 and [17,26].
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(a) PWCS of EA: HT masking. (b) PWCS of EA: SAB masking.

(c) PWCS of EA: LAB masking.

Fig. 11.8: Power wavelet co-spectra. The yellow curve denotes the respective mask
and the red curve denotes simulations of background noise levels.

If we assess the EA data, adjusted by the HT masking about the co-movement
with the US, then we can see that the fluctuation in industrial production without
a linking to the US is smaller. Conversely, the local effect of interdependence during
the crisis period (using adaptive masking) results in a greater fall in the index
value than in the long-term time horizon (using HT masking). Furthermore, the
adjustment of the local co-movement in relation to the unadjusted data points to
a larger drop in values, i.e. a larger structural break. Thus, the interdependence
with the US economy led to a deepening of the structural breakdown of the crisis (a
high correlation has given a reason to believe that there will be a significant reaction
and deepening).

11.6.4 Application to Other Countries

In this section we present the results for Japan, the UK and Russia. The goal is
the same as in the previous part, i.e. to filter out the common cycles of the country
with respect to the US. We are going to present only the adjusted time series of
the country indicator in the TD (the WCS and PWCS figures with three types of
masking are available upon request).
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Fig. 11.9: IPI of EA adjusted of co-movement with US.

Fig. 11.10: IPI of Japan adjusted of co-movement with the US.

As for Japan, the adjustment of industrial production index Fig. 11.10 via the
HT masking leads to filtering out the cycles of 1–5 years. As a result, fluctuations
during the 2008 crisis will diminish in the time series. In contrast to the adaptive
masking, we remove a larger spectrum of cyclical components (long, short and very
short cycles), which leads to a greater smoothness of adjusted time series around
the crisis time. As can be seen from the time series graphs (Fig. 11.10), there is
another fall in mid-2010 after the structural break in 2008. However, the adjusted
and original values are at the same level. Japan’s adjustment with the US, in this
structural break in terms of BC synchronism, seems to have no effect. The adaptive
masking in the Japan case shows the most significant co-movement with the US to
be in the BC (1.7–5 years), while the HT masking shows, in addition, co-movement
in the area of very short cycles (1.5–0.7 years). As a result of adaptability, the high
frequency components are not removed from Japan, and further, BC are adjusted
in the pre-crisis period. This results in less volatility during the crisis.

If we assess the adjusted Japan data via the HT masking about the co-movement
with the US, we can see that the fluctuation in industrial production without linking
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Fig. 11.11: IPI of UK adjusted of co-movemen with US.

to the US is smaller. On the contrary, the local effect of interdependence during the
crisis period results in a greater fall in the index value compared to the HT masking.
Furthermore, the adjusting of local co-movement in relation to the un-adjusted data
leads to a larger structural break. Thus, the interdependence with the US economy
leads to the deepening of the structural break. In the case of Japan, the amplitude
of the drop in the crisis time is larger than in the case of the EA.

The adjustment of the United Kingdom industrial production index Fig.11.11
via the HT masking leads to filtering out the cycles of 2–5 years. As a result, the
UK’s time series will reduce fluctuations during the 2008 crisis. If we compare the
adaptive masking with HT masking (Fig. 11.11), we can see a very similar mask.
The PWCS testing shows that the most significant co-movement is in the BC in the
range of 2–5 years. Contrary to Japan and the EA, in the UK PWCS there are not
very short cycles. Therefore, the adjusted time series via all three approaches are
very similar, with primary long- and medium-term cycles adjustments. We conclude
that the co-movement of these economies is rather low, as evidenced by the small
difference in the adjusted values of the time series. Thus, lower interdependence
with the US economy did not cause such a deepening of the structural break as in
the case of the EA and Japan.

The adjustment of the Russia index about the co-movement with the US
(Fig. 11.12) via the HT masking caused filtering out the cycles of 1.5–5 years, mostly
in the period around the crisis, i.e. 2006–2010. As a consequence, the fluctuation
in the crisis time is reduced. In the case of adaptive masking, we can see the most
significant co-movement in the BC, but spread over a wider time period than just
around the crisis. Contrary to the HT masking, we see a larger amount of PWCS
energy in the pre- (2001–2007) and the post- (2009–2014) crisis time. The crisis of
2008 does not occur in the case of adaptive masking for SAB; as for LAB, it can be
seen only in 2–4 year cycles. As a result of the adaptability, a very small number of
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Fig. 11.12: IPI of Russia adjusted of co-movemen with US.

cyclical components are removed from the Russia data. Therefore, the adjusted and
unadjusted values in 2008 are close to each other. On the other hand, in the LAB
masking before and after the crisis period, we can see a smaller drop in values than
the SAB and HT masking. Notice that even with the HT masking, the differences
between the adjusted and unadjusted values are the smallest of all considered coun-
tries. Similarly, as in the case of the UK, we can see lower interdependence with the
US economy, which probably did not cause such a deepening of the structural break
as in the case of the EA and Japan.

In our work, we selected global economies which are synchronised primarily
in global features and therefore indirect economic consequences (i.e. idiosyncratic
shock) specific for the EA were not removed, because they were not synchronised
with the US. From the co-movement analysis, we selected the financial crisis around
2008 as it is the strongest and most visible global shock which was transferred to
the whole world. The adjustment showed that economies such es Euro Area and
Japan are more synchronised with the US than with the United Kingdom and Rus-
sia. Furthermore, larger economies have larger idiosyncratic shocks which can be
an important cause of macroeconomic volatility. To explain the above mentioned
non-removal of certain symmetric economic shocks, our experience reveals ([84])
that the reason can be found in economic consequences of global shocks which can
be transferred into various economic areas and aspects (foreign trade, investigation,
banking sector, saving etc). Consequently, it can be reflected into a wide range of
time series frequencies. As we found out in [84], for example in the case of Visegrad
Countries, small open economies depend mainly on developments in Europe, i.e.
there is a strong connection to some bigger economy (e.g. Germany), and thus the
effect of removing co-movement part is most evident between larger economies such
as the Euro Area countries and the US.
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The information about the removal or non-removal of symmetric economic shocks
is valuable for further economic research, so this question is worth investigating in
a detailed economic context.

11.7 Chapter Conclusion
This chapter presents time-frequency selective filtering for the time series adjustment
based on the time series co-movement measure. We propose a mask which can be
used for selective filtering (adjustment) on statistical basis. The adjustment means
removing common components from time series with respect to the reference time
series. We investigate two approaches, via hard thresholding based on the 𝜒2 testing
and via adaptive thresholding considering the data character. As the result of the
co-movement selective filtering (which includes masking and inverse transform) we
obtain two time series, i.e. the time series adjusted about the co-moved part and the
time series containing just the co-moved part. The adjusted time series can be then
used for consequent econometric analyses. The validation of the proposed method
is done in MATLAB on the application of symmetric shock removal from selected
G8 countries with the US as the reference country.

Considering the type of mask construction, our research leads to the following
recommendations. If an analyst focuses on the time series adjustment about the co-
moved part with respect to the full time range in order to identify the most important
events in the time series, we recommend the use of hard-threshold masking, i.e. STA.
If an analyst is interested in the adjustment of economic event with respect to its
lead/lag influence, especially in the case when this event causes changes in the data
volatility, then the adaptive masking (SAB or LAB) is a valuable instrument. The
choice between the LAB and SAB approaches depends on the evolution of data
volatility.

The presented approaches are able to provide an in-depth analysis of the time se-
ries. This can be done via adjustment for the significant symmetric shocks measured
in the TF domain. In this way, we can investigate the global and regional country
specific cyclical behaviour. It can be also done via investigating the time series
representation of adjusted part as an inverse transform of significant co-movement
regions leading to the construction of a co-movement indicator.

As can be seen in literature, a large number of economic studies uses TF domain,
especially wavelets, for an individual time series analysis as well as for a co-movement
analysis. Thus, the presented approach for the time-frequency selective filtering, or
for the construction of the co-movement indicator, can be applicable and can reveal
additional information about the investigated problem focusing on adjusted time
series.
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Conclusion
The doctoral thesis is focused on the current problems and shortcomings of time-
frequency analysis and subsequent significance testing. The presented literature
review shows current progress and gaps in this field. We found that the literature
does not deal with the influence of the data character, i.e. data volatility, on the
significance testing of the time-frequency methods. To include and encompass this
required data character we selected three types of data. The technical data were
chosen as a signal with known parameters, economic data as a signal where factors
that are often unpredictable may affect or change the character of the data, and
simulated data for verification. Using these types of data we focus on the issue of
statistical testing of selected data in order to verify the standard methods and to
propose methods for cases where the data volatility is changing over time.

Firstly, a brief methodological background of the most widely used TFA methods
and co-movement measures is presented. Based on this, we analyze and assess
selected methods and formulate a recommendation for working with such methods.
We formulate recommendations for AR process optimization. We list the advantages
and disadvantages of selected parametric and non-parametric TF methods taking
into account data character.

Based on the knowledge mentioned above, the Objective I. is answered. We pro-
pose an approach for the enhancement of TF representation leading to background
noise suppression. We denote this approach as ”Enhanced TF representation”. The
core of this method is the combination/multiplication of several TF approaches.
Thus, based on this, we can easily identify important areas in the TF representation.
In specific cases, such as economic data the application of the designed methodology
allows a more straightforward interpretation from time and frequency perspectives.
Moreover, it can also be taken as a supplement to the significance testing or simu-
lations of background noise levels.

Secondly, we propose the evaluation of standard significance tests on synthetic
and real data. Here, we analyze the behavior of the testing procedure for the esti-
mated spectrogram with respect to the GWN background noise. We use both the
statistical significance with respect to the 𝜒2 distribution and the identification of
critical values using simulations of background noise. We examine the advantages
and disadvantages and formulate recommendations for its usage also with respect
to the signal variance. By evaluating the influence of background noise on test ac-
curacy, we find that the standard method may fail in some cases. In the case of an
input signal with strong changes in volatility, such as selected economic data, the
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total variance may not sufficiently describe the character of the data. Taking into
account the gained knowledge, we further focus on economic data that have this
character.

Findings mentioned above help to solve Objective II. We propose two modified
methods of significance testing. We denote them as segmentation adaptive based
(SAB) and local adaptive based (LAB) testing. Both of these methods take into
account the possibility of changing the volatility of input data and adapting to
it. The SAB method proposes segmentation of the data according to its levels of
variance and thus providing better results when the changes in data variance have
step character. The LAB method uses a sliding window and is, therefore, better
when the variance change is gradual. We also confirm that in the case of different
volatility levels in inputs, the significance testing needs a more careful interpretation
of the results.

Thirdly the Objective III. is answered. We examine the possibility of using sig-
nificance tests for subsequent data filtering. We use the statistically significant part
of the power wavelet co-spectrum to construct a co-movement selective detection
filter suitable for assessing the synchrony between two signals. We propose a mask
construction that can be used for selective filtering, i.e. adjustment, on a statistical
basis. The adjustment means removing common components from the time series
with respect to the reference time series. We investigate approaches based on stan-
dard and newly proposed SAB and LAB testing. The advantage of the proposed
co-movement selective detection filter is no loss of observations (such as correla-
tion). Moreover, it is possible to construct sub-indicators that correspond to the
predefined frequency range. In such a way, we can obtain a decomposition of the
(total) co-movement indicator, which covers the full range of frequencies, into the
required range.
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AR Autoregressive Process
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BIC Bayesian Information Criterion
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COI Cone of Influence

CWT Continuous Wavelet Analysis

DFT Discrete Fourier Transform

FODLOG First-Order Difference of Natural Logarithms

FT Fourier Transform

GDP Gross Domestic Product

GWN Gaussian White Noise
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HQC Hannan-Quinn Information Criterion

IPI Industrial Production Index

LAB Local Adaptive Based Testing

MDL Minimum Description Length
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PDV Photonic Doppler Velocimetry

PWCS Power Wavelet Cross-Spectrum

SAB Segmentation Adaptive Based Testing

SNR Signal-to-Noise Ratio

STA Standard Testing Approach
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