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ABSTRACT 
This doctoral thesis is focused on analyses and assessment of the quality of the frequency 
and time-frequency transform of the data and the formulation of recommendations for 
working with such methods. When using these methods, the question arises of how to 
evaluate which components of the spectrogram are statistically significant and which are 
not. In this thesis, we analyze the properties of standard statistical significance tests. 
We discuss their advantages and disadvantages taking into account the heteroskedastic 
character of data. Based on our experiments we propose two types of improved testing 
methods that reduce the negatives standard tests. The final step is creating a framework 
for data filtering using our proposed methods. 

KEYWORDS 
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sive process, significance testing, co-movement filtering 

ABSTRAKT 
Přeložená dizertační práce se zabývá analýzou a posouzením kvality odhadu frekvenční 
a časově-frekvenční transformace dat a formulaci doporučení pro práci s metodami. Při 
použití těchto metod vyvstává otázka, jak vyhodnotit, které složky spektrogramu jsou 
statisticky významné a které nikoli. V této práci analyzujeme vlastnosti standardních 
testů statistické významnosti. Diskutujeme o jejich výhodách a nevýhodách s ohledem 
na heteroskedastický charakter dat. Na základě našich experimentů jsou v práci navrženy 
dva typy testovacích metod, které snižují negativní aspekty standardních testů. Práce 
jen zakončena vytvořením rámce pro filtrování dat pomocí námi navržených metod. 
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INTRODUCTION 

Introduction 
The need to analyze the data can be found across a variety of scientific disciplines. 
Despite the diversity of disciplines, it is a common goal to obtain the maximum 
information from data analysis to help solve the tasks set. Concerning the scientific 
area, such data are given as observations in the form of time series of input signals. 
The standard analytical instruments are given in the time or frequency domain. 
Linking of both approaches giving us a more compact view can be done via time-
frequency techniques. The combination of time and frequency tools provides a more 
efficient means of data analysis, allowing us a deep look into the signal structure. 

The graphical representation of time-frequency analysis is a spectrogram. Its es­
timation can be done via several parametric or nonparametric methods. The most 
used are short-time Fourier transform, estimation via the time-frequency varying 
autoregressive process, and wavelet transform. While the periodogram is the classic 
estimator for stationary signals, multiple windows or short-time Fourier transfor­
mation can be useful for non-stationary signals. The time-frequency varying au­
toregressive process is a simplification of the general autoregressive moving average 
model. The signals can be corrupted by noise which can affect the precision of 
instantaneous frequency; therefore is good to investigate several types of analyses 
methods to reach the required precision. 

The key aspect of time-frequency analysis is the precision of the estimated spec­
trogram. For further processing and filtering of data, it is appropriate to specify 
which components of the spectrogram are statistically significant and which are not. 
There are several test methods for this purpose. One of the most used methods is 
based on the identified distribution of background noise, and several requirements 
need to be met for its appropriate usage. Other methods work with the use of ge­
ometric and topological changes or simulations of background noise. The obtained 
selection of significant regions can then be used for further description and filter­
ing of the data, taking into account the objectives of the analysis, either in time, 
frequency, or time-frequency domain. 

Considering the current progress in the field and the gap in current research, this 
work is focused on describing the framework of analysis from the use of individual 
methods, through statistical significance testing of their results, and finally filtering 
of data based on these significance tests. We can divide this thesis into several 
parts. The first part deals with the description and the usage of basic methods for 
time-frequency analysis. The second part deals with the description of commonly 
used significance test methods and the definition of their weaknesses. In the third 
part, methods are proposed that eliminate these weaknesses. In the last part, these 
proposed methods are used to filter the required data components. 

1 



CHAPTER 1. STATE OF THE ART 

1 State of the Art 
The need to describe and analyze the input signal for further use occurs across 
all scientific disciplines, from technical to social sciences. In terms of approach, 
we can define the analysis in the time domain (TD), frequency domain (FD), and 
time-frequency domain (TFD). Fundamental analysis can be performed in the time 
domain. Such an analysis deals with the changes in a signal over a span of time, 
i.e. variation of the amplitude of the signal with time. In contrast, the frequency 
domain describes the behavior of the signal across a given frequency band concerning 
a range of frequencies and can include information on phase shift. It is possible to 
use time-domain techniques or frequency domain techniques separately; however, 
their ability to capture the frequency behavior of the analyzed time series with 
respect to the time is somewhat limited. The combination of time and frequency 
tools provides a more efficient means of statistical analysis, reflecting the fact that 
the time-frequency analysis of input signal is an instrument that has been used in 
interdisciplinary analysis for a long time. 

Time-frequency (TF) techniques are an instrumental approach, reflecting both 
the time and frequency behavior of input time series. These approaches predomi­
nates in the last decade in many fields of science. It is a useful instrument in natural 
sciences [1-4], engineering [5,6], biology or medicine [7-9] or social and economic 
sciences. 

The time-frequency representation of the signal can be estimated via several 
approaches. The most common method is Short Time Fourier Transform (STFT). 
The periodogram or its modification, such as the multiple window method using 
Slepian sequences [9] can also be used. We can also use estimation via the time-
frequency varying Autoregressive Process (TEAR) [10], wavelet analysis (CWT) 
[11,12] or alternatively Modified empirical mode decomposition method [13]. While 
the periodogram belongs to the group of the classic estimator for stationary signals, 
multiple windows or STFT can be a valuable instrument for non-stationary signals 
[9,14-16]. As Jiang and Mahadevan [17] wrote, the advantage of the wavelet analysis 
is that it can capture the features of non-stationarity signal due to the simultaneous 
time-frequency decomposition of inputs. The T E A R process is a simplification of 
the general AutoRegressive Moving Average (ARMA) model. 

Among the advantages of Fourier transform and its derivatives, we can include 
low computational complexity and a wide range of software and hardware imple­
mentations with a selection of optimal parameters that provide satisfactory results. 
A R process used for estimation of signal spectrum representation provides fair re­
sults, especially in very short signals when STFT tends to fail. For longer signals, 
it provides good results [18]. In such cases, the variance of insignificant cyclical 

2 



CHAPTER 1. STATE OF THE ART 

components that usually take the character of noise has a lower level than in the 
case of STFT. This advantage can be useful when we investigate thresholding such 
as in [19]. The time-varying representation of the A R process provides a more com­
plex view compared to a simple spectrum estimate in the frequency domain only. It 
has time and frequency resolution corresponding to the size of the window and the 
size of window overlap, which must be selected. In such a way, it is similar to the 
STFT method. Unfortunately, the disadvantage of the method is its accuracy which 
strongly depends on the selection of optimal lag order. Therefore, it is good to inves­
tigate various optimization criteria for its optimal selection. Another disadvantage 
is that there are not many existing implementations; most are only on a software 
level. Continuous wavelet transform is a relatively new method compared to Fourier 
transform. As pointed out in [20] or [17], the wavelets have several advantages. It 
is applicable to non-stationary data. It also has the ability to uncover the latent 
process with changing cyclical patterns. Such features are typical for an economic 
time series. Additionally, the wavelet analysis has very good time resolution, and 
there is no need to optimize the parameters. There is only discussion about the 
mother wavelet and the scale selection. 

The need to validate the estimated model arises with the application of T F 
methods on real values with respect to the application area (engineering, medicine, 
etc.). This leads to the significance testing [21,22]. The fundamental work in this 
field can be found in Torrence and Compo [23]. This paper presents the comparison 
of the windowed Fourier transform to the wavelets. The authors also focus on 
the relationship between wavelet scale and Fourier frequency and the choice of an 
appropriate wavelet basis function. The proposed statistical significance test is given 
for wavelet power spectra and is based on theoretical derivation for white and red 
noise processes. 

Motivated by the work of Torrence and Compo [23], Ge [24] proposes significance 
testing of wavelet power and wavelet power spectrum. He derived the sampling 
distributions for the power spectrum of a Gaussian White Noise (GWN). And also for 
the wavelet power of G W N . He proved that the results given by [23] are numerically 
accurate when if the sampling period factor is incorporated. Ge [25] uses the same 
methodological approach for wavelet cross-spectrum and linear coherence. However, 
one of the disadvantages of this test is that it takes into account the variance of the 
entire signal. In specific cases where the data exhibit highly variable volatility, the 
variance of the whole signal may not be sufficiently descriptive. The question is then 
how this affects the accuracy of the test and how to interpret the results. 

A similar approach to Torrence and Campo can be found in the work of Schulte 
et al. [21]. They use geometric and topological methods for assigning contiguous 
significance regions of significant wavelet coefficient with respect to selected noise 

3 
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models with application to climatic data. Also, James and Fleming [22] use the 
Torrence and Compo approach to identify significant spatial scales of pattern and 
spatial boundaries in geo-science. 

Model validation of structural dynamics example is proposed by Jiang and Ma-
hadevan [17]. They investigate simulation-based predictions of structural response 
on the virtually generated data. The authors use testing with the help of Monte 
Carlo simulations to infer whether the model prediction and experimental observa­
tion represent two coherent processes. Wang et al. [26] present another point of view 
by introducing the general sequential Monte Carlo method to estimate the probabil­
ity density function and to optimize wavelet transform for extracting bearing fault 
features. 

Given the above methods, we found that the literature insufficiently describes 
several areas. One of these areas is the effect of the character of the data on the 
significance testing of time-frequency methods. This character can manifest itself 
through structural changes in the data that lead to changes in volatility. This 
raises the question of how to interpret the results of standard tests in this case. A 
related insufficiently described area is how TEA can be used to provide additional 
information that will contribute to subsequent signal analysis. 

Most standard methods have been designed to work with technical data. The 
physical nature of these types of data is usually known; their description is available, 
their behavior and their content are known, and there is knowledge of what their 
deterministic components may look like. However, there are scientific areas where 
factors, that are often unpredictable, may affect or change the character of the data. 
This problem is typical, for example, for economic data, where due to various events 
(economic shocks, crises, pandemics, etc.) diverse structural changes may arise, such 
as in trend, volatility, growth, etc. 

Given the above observations, this work will focus on the analysis of economic, 
technical, and simulated data. 

4 



CHAPTER 2. DISSERTATION OBJECTIVES 

2 Dissertation Objectives 
This dissertation thesis deals with analyses and assessment of the quality of the fre­
quency and time-frequency transform and with the formulation of recommendations 
for working with such methods. We take into account how much a priori information 
will help to obtain maximum information about the data. 

We researched literature and resources and evaluated current progress and gaps 
in this field. We found out that the literature does not deal with the influence of the 
data character on the significance testing of the time-frequency methods. Most of 
the literature focuses on the technical area, where the application of methods and 
interpretation of results is facilitated by knowledge or information about the data 
character. In some cases, such as the selected photonic Doppler velocimetry data 
set, these are rather experimental data, therefore, a priori information may be more 
general. 

The different types of data in terms of nature are economic data, which are less 
informative in terms of technical analysis. The process and mechanism of this data 
generation are influenced by factors such as unexpected events, economic shocks, 
psychological factors, etc., which are difficult to predict and simulate. This may ap­
pear as structural changes in the data, to which standard methods may not respond 
correctly in all cases. For the T F D application and subsequent testing, the question 
then arises as to how data with structural changes can be analyzed to obtain rele­
vant results. The third type of data is simulated data used to verify standard and 
designed methods. 

We focus on the issue of statistical testing of data mentioned above in order 
to verify the standard methods and to propose methods for cases where the data 
volatility is changing in time. Based on these we defined the following objectives of 
the thesis. 

Objective I. Is it possible to use and combine different characteristics of indi­
vidual TFA methods to obtain relevant spectrogram1? 
In Chapter 6 we propose an approach to incorporate advantages 
and suppress disadvantages of individual methods in order to bring 
out significant components and suppress noise. 

Objective II. How can we modify standard tests to eliminate/reduce their disad­
vantages and shortcomings in case of data with changing volatility? 
In Chapters 8 and 9 we use knowledge gained in Chapter 7 to pro­
pose SAB and L A B testing approach and recommendation for their 
usage in such case. 
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Objective III. How can we use these modified test methods for subsequent data 
filtering? 
In some cases, it is useful to work selected spectral components 
represented in the time domain. Especially in the case of evalua­
tion of time-series co-movement. Therefore, in Chapters 10 and 11 
we propose co-movement filtering as an instrument for obtaining 
co-movement indicator. In its construction and application, the 
expertise gained from Objective II. is used. 

G 



CHAPTER 3. METHODOLOGICAL BACKGROUND 

3 Methodological Background 
This chapter is divided in four sections which provide methodical background of 
well known methods used in following chapters. The first section introduces basic 
tools for time-frequency analysis. The second provides background for co-movement 
measures, the third describes the singular value decomposition, and the last section 
contains selected aspects of kernel smoothing. 

3.1 T ime-Frequency Analysis ( T F A ) 

As mentioned in Chapter 1 the time-frequency techniques are nowadays common 
instrument for analysis of different input signals or time series. Wide range of its 
usage can be found across different scientific disciplines. Estimating signal spectro­
grams can be done via several parametric or non-parametric methods. The most 
commonly used non-parametric methods are Fourier transform and its derivatives, 
wavelet transform or multiple window method. One of the most used parametric 
methods is the autoregressive process. A l l these approaches are shortly described in 
following subchapters. 

3.1.1 Fourier Transform (FT) 

One of the most common methods used for spectrum estimation is the Fourier 
transform (FT) and its modifications. Given the character of input signals used in 
this work, the focus is on discrete-time representation. If the input signal s(n) has 
an infinite length, then the discrete-time Fourier transform (DTFT) is used [10]. 

oo 
S D T F T ( / ) = E s{n)e~^n. (3.1) 

n=—oo 

If an input signal s(n) is a discrete time series of N elements, then the discrete 
Fourier transform (DFT) is used. It can be defined as [27] 

N-l 
SoMf) = E s(n)e-^N. (3.2) 

n=0 

The transform form frequency domain back to time domain is called an inverse 
discrete Fourier transform and can be defined as [27] 

1 N-l 
*(") = T ? E S»FT(f)^fn/N• (3-3) 

J V n=0 

7 



CHAPTER 3. METHODOLOGICAL BACKGROUND 

A slight modification of this method is short time Fourier transform. In this 
modification a sliding observation window is used. The individual spectrum esti­
mations are then sorted in time and can be plotted as spectrogram. The usual 
mathematical definition of the STFT is [27] 

N-l 

S S T F T K /) = £ <nUn - m)e-^n'N (3.4) 

n=0 

where s(n) is the input signal, g{n) is the window function. The window function 
is symmetric discrete signal with unit norm ||<?|| = 1. Commonly used types of win­
dows are Rectangle, Hamming, Gaussian, Hanning, etc. (for details see [27]). The 
magnitude squared of resulting spectrogram <SSTFT("T., / ) is called power spectral 
density. 

3.1.2 Wavelet Transform (WT) 

Continuous wavelet transform (CWT) is usually defined as the integral of a signal 
with respect to the wavelet function. It can be described as integral of analyzed 
signal with base function (mother wavelet) [27]: 

ScwT(a,r) = JZoS(u)^r du,a > 0,r e R (3.5) 

where the "*" denotes complex conjugation, s(n) is the time series, ip* ( M ^ z ) is a 
scaled version of the mother wavelet, r denotes the time shift, and a denotes the 
scale (or frequency). We can also define W T of a discrete time series s(n) as the 
convolution of s(n) with a scaled and translated version of the wavelet function 
[23] 

7 V _ 1 fn-T\ 
ScwT(a,T) = £ s(n)4>* [ ) $n (3-6) 

n=o \ a / 

where Sn is the time step, a is the wavelet scale and r is the time shift. 
To be the invertible transform, basis (mother wavelets) functions must be mutu­

ally orthogonal, have zero mean value and limited to finite time interval [27]. That 
is 

0 n > ( ^ ) d n = 0, 

O) /_0 0

0 0 ^ * ( ! T Z ) d n = l , (3.7) 

Hi) 0 < ^ = / 0

o o ^ ; v l / ( a ; ) = r o o ^ ( ^ ) e - ^ d n 

where ty(u) is the Fourier transform of ip{oS). To satisfy assumptions for the time-
frequency analysis, waves must be compact in time as well as in the frequency 
representation. There are several types of mother wavelets which can be used (e.g. 
Gaussian, Haar, Daubechies, Morlet etc.) (for details see [27]). One of the most 

8 
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commonly used is the complex Morlet wavelet and can be defined as product of a 
complex sine wave and a Gaussian window[28]: 

ip(n) = exp [l^j expQwbn) (3.8) 

where a is Gaussian window width in time and OOQ is the central frequency of the 
wavelet. The complex Morlet wavelet is a substantially complex exponential mod­
ulated by a Gaussian envelope. 

In order to recalculate the pseudo-frequency, corresponding to the scale a, the 
following equation can be used [25]. 

W ( r ) = ^ (3.9, 

where u = 2-rrf and r is the time shift. 
For an orthogonal wavelet and under certain admissibility conditions (see (3.7)), 

we can define its inverse form, i.e. inverse continuous wavelet transform (ICWT), 
as 

s(n) = ICWT{SCWT(a,r)} = ^ C / _ 0 B

0 0 W a ^ ) ^ d r $ (3.10) 

where < oo comes from the admissibility condition [29]. 

3.1.3 Autoregressive (AR) Process 

A different approach in comparison with the methods mentioned above is the T E A R 
process. This method uses a parametric approach and creates a model generating an 
input signal. The analyzed signal s(n) is then regarded as the output of a linear filter 
influenced by white noise e with variance a\. The autoregressive process AR(p) of 
the order p for an input signal s(n) can be described by model given by the equation 

p 
s(n) — c + ajs{n — i) + e(n) (3-H) 

i=i 

where aiy i — 1,.. .p are the parameters of autoregressive model of the order p, c is 
the constant and w(n) is the white noise. 

The output spectrum can be described as [10] 

SAM) = \H (f)\2 a2

w (3.12) 

where H (/) is a linear time variant filter. Several methods for estimating A R model 
parameters can be used. The most common are the Burg method (BU), Yule-Walker 
method (YW), unconstrained least-squares method (LS) [10]: 
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where a (̂fc) are estimates of the A R parameters, p is the lag order, Ep is the total 
least-squares error, is the estimate minimum mean-square value for the pth order 
predictor and E^s is the residual least squares error. 

For the A R process, appropriate selection of lag order p is an important as­
pect. Selecting a low level order leads to excessive smoothing of the spectrum. 
Furthermore, if the level of p is selected too high, a non-significant spectral coeffi­
cient can be arises as high peak. Several information criteria can be used to ensure 
optimal selection. Most commonly used are Akaike information criterion (AIC), 
Minimum description length (MDL), Hannan-Quinn information criterion (HQC) 
and Bayesian information criterion (BIC) [10], [30]: 

AIC(p) = \naip + ^ , (3.14) 

MDL(p) = Nlnalp + plnN, (3.15) 

BIC(p) = \nalp + ^\nN, (3.16) 

HQCip) = In a 2 + 2 ^ ln(lnTV) (3.17) 

where a^L is estimated variance of linear prediction error, p is the order and N is 
length of the signal. The order is selected as optimal when information criterion 
reaches minimum. 

The A R process as described above provides the result only in the frequency 
domain. To obtain results in time-frequency domain (spectrogram) similar approach 
to STFT can be used, i.e. sliding observation window. Window functions commonly 
used in STFT can also be applied. We will denote this method as TEAR. 

10 
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3.2 C o - M o v e m e n t Measures 

To evaluate similarity between two signals several co-movement measures are com­
monly used. The widely used methods in the T F domain are cross-spectrum and co­
herence [31]. For the two time series x(n) and y(n), n = 1,..., N, the cross-spectrum 
coefficients measure the local covariance of these two variables in respective time and 
frequency/scale and can be defined as 

CSxy(f,n) = Sx(f,n)Sy(f,n)* (3.18) 

where Sx(f,n),Sy(f,n) are the time-frequency representations of signal x resp y. 
The symbol "*" denotes complex conjugation [20,23]. If these representations are 
in complex numbers (depends on used method) the resulting cross-spectrum is also 
complex. Then we can define its square absolute value, i.e. power cross-spectrum 
(PCS) [23], as 

\PCSxy(f,n)\2 = \Sx(f,n)\2\Sy(f,n)*\2. (3.19) 

The phase part (quadrature spectrum) is then defined as [17] 

$>xy = tan" 1 [Z(CSxy(f, n))/M(CSxy(f, n))] (3.20) 

where symbols 9 and 3? denote imaginary part and real part of cross-spectrum 
CSxy(f, n). In case of two identical signal the cross-spectrum is equal to one. If the 
input signals differs greatly, their cross-spectrum is approaching to zero. 

Another possibility for measuring co-movement in the T F domain is coherence 
COHxy(f,n) of two time series. It can be defined as the PCS normalized to the 
squared module of the time-frequency representations of the analyzed signals [17]. 

COHxy(f,n) = CS*y(M (3.21) 
y/\Sx(f,n)\2y/\Sv(f,n)\* 

This function is modified as follows when W T representations of signals are used 
as input: [17,31] 

COHxy(f, n) = CS*v(MQ ( 3 2 2 ) 

y/Q\S*(f,n)\2y/Q\Sv(f,n)\* 
where Q is a smoothing operator defined as 

Q(S) = Qscale(Qtime(S(/, w))) (3.23) 

where Q s c aie denotes smoothing along the wavelet scale axis and Qtime smoothing in 
time. 

In an analogous manner, as for C W T or STFT (equations (3.10),(3.3)), we can 
calculate an inverse transform for co-movement measure, such as PCS or coherence. 

11 
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3.3 Kernel S m o o t h i n g 

Kernel analysis have been established as effective techniques and unified framework 
for pattern discovery. They are used to solve a non-linear problem by using a linear 
classifier. Let (XJ, Y$), % — 1,..., N be a sequence of observations (x, Y), where in 
general x G R,Xi G [0,1] is a design point and Y is an observation. In our case 
Y can represent frequency value of significant spectral coefficient obtained from 
spectrogram and x is transformed equidistantly in [0; 1] in correspondence to the 
time of values in Y. The dependency of value Y on x for fixed design regression 
model (x are not randomly chosen) can be described in following form 

Yi = m(xi) + 6j, i = l,---,N, (3.24) 

where m is an unknown regression function, and let conditions E(EJ) = 0 % — 
1,..., N, D(€i) = a2 > 0 i = 1,..., N hold [32]. 

Kernel function K of smoothness /x, order (u,k) and K G S„k must satisfy 
following conditions [33,34]: 

i) nr(-j) = #(3) = o, j = o , . . . , /x - i 

f 0 0<j<k,j^v (3.25) 

ii) xjK(x)dx = I (-l)"v\ j = u 

{ Pk^ 0 j = fc 

where are non-negative integers and 0 < v < k, \i > 1. 
The general formula for a kernel estimator can be expressed by the form 

n 
m{x) = Y,Wi{x,h)Yi, (3.26) 

i=i 

where /i) are weight functions depending on h,i,x and K. Bandwidth h = 
h(n) is a positive constant and K is a kernel. Denote Kh(-) = j^K (^j^j. According 
to the weighted function we can distinguish several estimators. One of the most 
commonly used is Nadaraya-Watson (NW) estimator [32]: 

A / i \ Sj=i Kh{Xi x)Yi . 
m [ X - k ) = E t , * » ( * . - « ) ' ( 3 ' 2 7 ) 

where S™ = 1 Kh(xi — x) ^ 0. If S™ = 1 Kh(xi — x) — 0, than we can define m(x, /i) = 0. 

12 
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3.4 Singular Value Decompos i t ion 

The singular value decomposition (SVD) is useful instrument in solving least-square 
problems via the process of orthogonal decomposition of rectangular matrix. The 
method follow two steps, the decomposition and the reconstruction [10], [35]. 

The first step of SVD is to make trajectory matrix from the input time series 
x(n),n = 1,... N without any missing values. The trajectory matrix T with K x L 
dimension and takes the form 

T 

Xi 

X-2 

X2 

x3 

y %K %K+1 • • • ĴV J 

The window L such that 2 < L < N/2 to embedded initial time series x = 
(xi, x2, • • •, XN) is defined by user. In this way we map time series s into the lagged 
sub-vectors Tj = (XJ, xi+i,..., xI+L-i)', % = 1, 2 , . . . , K, where K = N — L + 1. 
Consequently we apply on the trajectory matrix T singular value decomposition to 
obtain trajectory matrices Tj, % = 1,..., L . From an eigenvalue analysis of TT' we 
collect the eigenvalues Ai > . . . > AT where r = rank(TT') and the corresponding 
left and right singular vectors, respectively denoted as C/j and Vi such that T K X L = 

UKXKDKXLVIXLI where U is orthonormal matrix, D is the diagonal matrix of the 
order L and V is a square orthonormal matrix [35]. We can write 

XL 

XL+l 

XN 

(3.28) 

T = T1+T2 + . . . + T r 

= [/i V

/ ATy 1

/ + . . . [ / r V

/ A ( r / 

= Ei=i Uisf\[V(. 

(3.29) 

In the second step of SVD we are focused on reconstruction. The first task 
is selection of M leading components of decomposed time series and exclude the 
reminding (r — M) associated to the noise [35]. That is 

M 
T = J2Ul\J\iV; + e (3.30) 

i=l 

where the first summands corresponds to the time series and e denotes an error 
term. 
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4 Optimization of AR Parameters 
As we already mentioned in Chapter 3.1.3, the results of A R process considerably 
depends on model parameters. To obtain the best possible spectral representation 
it is crucial to select optimal method for estimation of A R coefficients with regard 
to the nature of input time signal. In this chapter we apply simulations to evaluate 
precision of spectral estimation of selected methods for A R coefficients estimation. 
Therefore, on the basis of simulation, we analyze the behavior of Yule-Walker, Burg 
and least-squares method. Furthermore, in the case of A R process, next key factor 
is the choice of an optimal lag order on which the accuracy strongly depends. There­
fore, it is good to investigate various optimization criteria for its optimal selection 
[10]. We examine the advantages and disadvantages of these estimation methods 
and selection of appropriate lag order and formulate recommendation for its usage. 

4.1 Exper iments and Results 

To evaluate performances of A R methods, the autoregressive process of order 20 
was created. Selection of the order was done with regard to desired complexity 
of signal. The requirements were several spectral peaks with diverse amplitude 
and diverse frequency spacing. Therefore we chose level of 20 which provides this 
sufficient complexity with reasonable computational requirements. A R coefficients 
were arbitrary selected to create signal with sufficient complexity and are presented 
in Table 4.1. Ideal spectral representation of the signal (using (3.13)) is shown in 
Fig.4.1. 

a0 1 ai -1.04 a 2 0.78 a 3 -0.88 a4 0.45 
a 5 0.35 a 6 

0.34 07 -0.04 a 8 -0.40 a 9 -0.10 

aio 0.04 an 0.36 au 0.38 a i 3 -0.32 ai4 -0.35 
-0.11 CllQ -0.08 a l 7 0.26 0.15 «20 -0.09 

«21 -0.31 

Tab. 4.1: A R coefficients. 

In next step we created signal in time domain using these coefficients. Signals 
of two length were produced to assess the impact of signal lengths. Based on A R 
order of 20, we chose length of short signal to be 50 samples and length of long 
signal to be 500 samples. For each signal length multiple realization in time domain 
were created using equation 3.11 with a\ — 1. Number of realizations was set to 
N = 10,100,1000. In each simulation least-squares, Burg and Yule-Walker method 
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50 

40 

- 2 0 0.05 0.1 0.15 0.2 0.3 0.35 0.4 0.45 0.5 
Frequency (Hz) 

Fig. 4.1: Ideal spectral representation of simulated signal. 

was applied to obtain estimated coefficients. Using equation (3.13) we obtained 
corresponding spectral estimation. To asses performance of both methods in the 
case of selecting non optimal lag order, the computation was done on selected range 
of order. The range was 1 to 30 in the case of short signal and 1 to 300 in the case 
of long signal. 

To objectively measure quality of each method the mean square error (MSE) 
was calculated using ideal and estimated spectrum representation for each process. 
This was done according following formula [10]. 

where Yi is the value of theoretical spectral coefficient and Yi is its estimated coun­
terpart. The lower the resulting number is the more accurate is the estimation. 

Table 4.2 shows values of M S E in dB for selected methods. Lag order was 
set to optimum, i.e. 20 (this order was chosen while creating the original signal). 
The results suggest that with increasing number of simulations precision of spectral 
estimation also increases. In general, results of all methods are significantly better 
for the signal of longer length. The M S E is smaller for Yule-Walker method in all 
considered cases. Least-squares and Burg method show similar values in the case of 
the long signal. For the short signal Burg method provides better results. 

Figure 4.2 (a) and (b) shows theoretical and estimated spectrum of short signal 
for 10 and 1000 simulations. Lag order was set to optimal value of 20. The frequency 
of x-axis is relative to sampling frequency (value of 0.5 in figures corresponds to 0.5 
sampling frequency). We can see that the larger number of simulation leads to more 
precise estimation. Neither of examined methods was able to adequately describe 
rapid changes of spectral peaks for measuring on 10 simulations. In case of 1000 
simulations least-squares method tends to be more accurate in the case of describing 
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10 simulations 100 simulations 1000 simulations 
signal length short long short long short long 

Yule-Walker 27.35 7.60 23.79 5.91 22.95 5.77 
Burg 45.89 13.76 42.41 12.03 39.32 11.73 
Least-squares 50.20 13.54 48.68 11.91 45.15 11.65 

Tab. 4.2: Values of M S E in dB. 

0.2 0.3 
Frequency (Hz) 

1 
i \ I 
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(a) 10 simulations (b) 1000 simulations 

Fig. 4.2: Theoretical and estimated spectrum of short signal, optimal lag. 

amplitude of spectral peaks. However other two methods provide spectral line with 
greater smoothness. We can also see that the Burg method tends to be more accurate 
in capturing the shape of the graph than the Yule-Walker method. 

In Figure 4.3 (a) and (b) theoretical and estimated spectrum of long signal for 10 
and 1000 simulations and optimal lag order is shown. Larger number of simulations 
also leads to more precise estimation and smoothness of the graph but in is not as 
significant as in the case above. Least-squares and Burg method show almost the 
same results and tend to be more precise in the capturing the shape of the graph 
than Yule-Walker method. However all methods were able to capture all significant 
spectral peaks. 

In Figure 4.4 (a) and (b) we can see influence of the lag order on the precision 
of spectrum estimation. For signal of the length 1000, the minimum of AIC and of 
all methods (lowest error) corresponds to the order of original A R process, i.e. 20. 
We can see that the trend decrease rapidly to optimal lag order, after that the error 
tends to increase. In case of the short signal, the minimum lays on lower value that 
the optimal order. The trend also decreases rapidly to the lag order of 5. In case of 
Yule-Walker method the decrease continues, however error of Burg and least-squares 
method increase exponentially. 
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Fig. 4.3: Theoretical and estimated spectrum of long signal. 

Lag order (-) 
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Lag order (-) 

(a) short signal (b) long signal 

Fig. 4.4: M S E and AIC of estimated spectrum for 1000 simulations, optimal lag. 

4.2 Chapter Conclusion 

To sum up our findings, we can state that Yule-Walker method proved to be more 
efficient when applied on a signal of the longer duration. On the other hand, Burg 
and least-squares method offers better peak detection for the short signal. Fur­
thermore, the results showed that the performance of used methods also strongly 
depends on used lag order. Yule-Walker method performs best in scenarios, when 
higher lag orders are allowed. Burg and least-squares method is more suited in the 
cases, when we aim for lower lag orders. 
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5 Impacts of Input Data Character 
In this chapter, the performance of individual T F A methods compared using differ­
ent types of input data is proposed. Data from different disciplines show different 
characteristics, and therefore, the appropriate setting must be investigated. We take 
into account economic, technical, and simulated data. The parameters of the techni­
cal data are extensively described in the literature, this is due, among other things, 
to the fact that most of these data are known for their physical nature and accurate 
description of the background noise. The subsequent analysis is then simpler, which 
is reflected in the literature. In technical data, background noise (GWN, red noise, 
etc.) can be considered the rest after the removal of periodic components, whereas, 
in the case of economic data, the situation is not the same. 

Economic data can be influenced by factors that are often unpredictable and may 
affect or change the character of the data. This can manifest as structural changes 
in the data, thus the question arises of how to analyze such data to obtain relevant 
results. Moreover in the case of economic data, their structure is more complicated. 
Usually, it contains structural trend-breaks, outliers, cyclical components of close 
frequencies which can occur or diminish in different time sub-periods (not during 
the whole time), or nested cycles with different frequency limited in time [36-39]. 
Moreover, the nature of economic indicators play an important role and can influence 
the character of the frequency structure, e.g. business cycles, financial cycles etc. 
Then, it is quite difficult to simulate the universal behavior of the economic series 
and its noising with a generalized artificial signal. Based on these differences, we 
offer instructions on how to approach selected T F A methods, taking into account 
the character of the data. 

5.1 S imula ted Da ta 
As a representative of data composed of several cyclical components and background 
noise can be clearly described, we have created an artificial signal. The length was 
2000 samples. In the time domain, this signal consists of four sine waves of four 
different frequencies. The following equation describes the created signal. 

4 
s(t) = $ > ( * ) sin^TT/it) (5.1) 

i=l 

where /$ is the frequency of an individual wave (namely 50, 100, 250 and 300 Hz), 
t is the time in the range 0-2 seconds, bi is its amplitude and it is defined as 

18 



CHAPTER 5. IMPACTS OF INPUT DATA CHARACTER 

3 3 
7 

t e (0,0.6) s, 

t e (1.0,1.7) s, 

elsewhere, 

t e (0.3,1.4) s, 

elsewhere, (5.2) 

t G (0.70,0.72) s, 

elsewhere, 

t G (1.0,1.8) U (1.9,2.0) s, 

elsewhere. 

As shown in Fig. 5.1 the resulting signal consists of several simple ones. We chose 
this approach to test ability of selected methods to identify following moments: 

• Very short signal (on frequency 250 Hz) 
• Short break of signal (on frequency 300 Hz) 
• Longer break of signal (on frequency 50 Hz) 
• Two close signals (on frequency 50 and 100 Hz) 
Ideal spectral representation along with time representation of the resulting sig­

nal is shown in Fig. 5.1 (note that for illustration, the signal is shown without noise). 
For better simulation of actual conditions, white Gaussian noise was added. The 
signal to noise ratio (SNR) was set to 15dB. Several methods were used to estimate 
the spectrogram of the simulated data, namely the estimation via A R and STFT 
and C W T . The simulated signal was divided into equidistant blocks of a length of 
96 values. 

100 200 300 
Frequency [Hz] 

(a) Ideal spectrum (b) Time representation 

Fig. 5.1: Simulated signal. 
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a) b) c) d) 

Frequency [Hz] Frequency [Hz] Frequency THzl Frequency [Hzl 

Fig. 5.2: Comparison of information criteria a) AIC, b) M D L , c) HQC, d) BIC. 

5.1.1 Application 

For estimating A R coefficients in T E A R method, due to a large number of data 
points, the Yule-Walker method was chosen [10]. In order to optimize A R lag order, 
several information criteria were considered. We chose four different information 
criteria, namely AIC, M D L , HQC and BIC (see eq. (3.14)-(3.16)). The optimal lag 
length corresponding to the chosen criteria was estimated separately for each data 
block; therefore, the resulting lag length varies. The best results were achieved for 
AIC, as shown in Fig. 5.2. 

In case of C W T , we used a complex Morlet wavelet as the mother wavelet using 
a scale parameter with a maximum value a = 64. The graphical representation of 
the wavelet spectrogram was modified to be comparable with the results of the other 
methods. The frequency axis was recalculated to a logarithmic scale. The resulting 
estimates are presented in Fig. 5.3. 

5.1.2 Summary 

When comparing the ideal spectrum (Fig. 5.1a) with the results of the spectrogram 
using the T E A R (Fig.5.3a), we can identify all long term components. Identifying 
the short term component 63 using formula (5.2) is possible but not so clear. The 
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estimate of the spectrogram via STFT (Fig. 5.3b) provides similar results as with 
A R in all simulated components. A l l these three methods mentioned above were 
unable to recognize rapid time changes in signal components denoted as 61 and 64 
in formula (5.2). The results of the wavelet spectrogram (Fig. 5.3c) show its ability 
to identify all components, including rapid time changes; however, the precision 
of identification depends on the optimization of the scale parameter, the choice of 
wavelet type, and graphical 3D representation. 

To sum up, the achieved results show a good ability to identify simulated compo­
nents for the A R process and wavelet analysis. In comparison to all other methods, 
i.e. C W T and STFT, the A R spectrogram shows smooth results with the best 
frequency resolution but cannot capture rapid time changes. The wavelet analysis 
does not provide such good frequency resolution, but only this method was able to 
identify rapid time changes. 

5.2 Economic Da ta 

Economic data or economic statistics are data (quantitative measures) describing 
an actual economy, past or present. These are typically found in the time-series 
form, covering more than one time period or in cross-sectional data in one time 
period. For time-series data, reported measurements can be hourly (e.g. for stock 
markets), daily, monthly, quarterly, or annually. Estimates such as averages are 
often subjected to seasonal adjustment to remove weekly or seasonal-periodicity 
elements, for example, holiday-period sales and seasonal unemployment. 

In this chapter, we use a gross domestic product (GDP) to represent economic 
data with not clearly descriptive background noise. The motivation was to show 
the influence of economic data on the T F estimate, and GDP was chosen as a 
suitable significant macroeconomic indicator. As it is common in econometric anal­
yses of such data, we use seasonally adjusted quarterly data of GDP, volume index 
in O E C D reference year 2005 [40] of the United States (US) and United Kingdom 
(UK) in 1956/01-2014/04, Korea in 1970/02-2014/02. A l l variables are in first-order 
difference of natural logarithms (FODLOG). 

5.2.1 Application 

After transformation (into F O D L O G values), the data was analyzed using C W T . 
We investigated the impact of scale value and type of wave. In the first step, 
scale setting was established on 64, 128, and 256 values which are commonly used. 
Concerning sample size, data structure, and anticipated events, we took the optimal 
scale of 128. We used three mother wavelets from the group of waves, namely Morlet, 

21 



CHAPTER 5. IMPACTS OF INPUT DATA CHARACTER 

complex Morlet, and Daubechies. Morlet wavelet was chosen as it is commonly used 
for this type of application. Complex Morlet wavelet is based on standard Morlet 
with the advantage of providing complex results, making it possible to obtain phase 
part (quadrature) of the spectrum. Evaluation of this part of the spectrum will 
be subjected to further research. Daubechies wavelet of order five was chosen as it 
is the second commonly used and can assess lower frequencies and business cycles. 
The results of time-frequency wavelet representations of cospectra for USA, U K , 
and Korea are given in Fig 5.4. 

In the case of cospectra estimate via T E A R process, we used Burg approach 
for coefficient estimates on 20 samples with 50% overlay and Hann window. The 
optimal value of the lag order was based on AIC criteria. For better illustration, 
frequencies were recalculated to show business cycles in years using f — -f- This 
recalculation was done with respect to sampling frequency (4 samples per year). 
Minimal observable business cycles correspond to 0.5 of / s and is 0.5 year. 

5.2.2 Summary 

Comparison of results can be done in the following direction. The first is a compari­
son among chosen mother wavelet; the second is among data. Focusing on cospectra 
for complex Morlet waves, we can identify the co-moving areas across a range of pe­
riods (i.e. 1/frequencies) from very long cycles (till 8 years), across business cycles 
(8 to 1.5 years) to short cycles (1.5 years and less). In some cases (USA-UK, USA-
Korea), the most significant co-movement can be found around 5 years long period, 
while in another case (UK-Korea), the most significant co-movement can be found 
for very long periods, see Fig. 5.4. In the case of the Morlet mother wave, the 
results of U S A - U K show the most significant co-movement for a very long period 
(more than 20 years). We can also find some co-movement among 2.5 and 9 years 
which is not so significant in this case. The co-movement for UK-Korea is signif­
icant among 2.5-20 years and in case of USA-Korea there is a range of significant 
periods starting at 2.5 years and including very long periods (more than 20 years). 
Application of Daubechies mother wave produces similar results to Morlet mother 
wave, but there is no such significant co-movement for shorter periods, i.e. for pe­
riods range 2.5 to 20. The complex Morlet wave gives a possibility to study phase 
shift, which is impossible with the usage of Morlet or Daubechies wave. Apply­
ing Morlet and Daubeschie to our data revealed rather longer cycles. Therefore, 
the authors suggest removing such components via advanced filtering method using 
Baxter-King or Christiano-Fitzgerald band-pass filter [41] to get better visibility of 
other co-movement periodicities. A specification of range can easily establish the 
frequency range that we want to remove before using a proper band-pass filter. 
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Fig. 5.4: C W T cospectrum (x-axis represent time in years and y-axis represent time 
cycles in years). 

Figure 5.5 shows results for co-movement measuring via cospectrum for A R pro­
cess. For all countries, we can identify strong significant co-movement in a wide 
range of frequencies, predominately in long periods. Opposite to wavelet analysis, 
we can also see significant co-movement in rapid changing periods (shorter than 2.5 
years). Unfortunately, with respect to the sample size, the better time resolution is 
impossible. This confirms the fact given in [42] which recommends for A R approach 
rather than monthly data or higher frequency data (weekly, daily etc.). We can 
admit that in such case the A R method will confirm results from wavelet analysis 
much better than in quarterly data. 

The wavelet approach to co-movement measures shows a good ability to capture 
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Fig. 5.5: A R cospectrum (x-axis represent time in years and y-axis represent time 
cycles in years). 
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rapid changes in time. However, its ability to identify the length of business cycles 
strongly depends on mother wavelet selection. Our results suggest that complex 
Morlet wavelet was able to capture short business cycles better and for this, we rec­
ommend its usage for data where long cycles are not present. The second possibility 
is to remove the permanent component via a band-pass filter with respect to the aim 
of the consequent analysis. Another property of this wavelet is its ability to provide 
complex output, making phase spectrum evaluation possible. Daubechies wavelet 
provided good results for long business cycles. However, short business cycles can be 
shown as less significant. In the case of co-movement measured via the A R process, 
our results confirm better frequency resolution, but in the case of a small sample 
size (which our quarterly data are), the time resolution is not as good as for higher 
frequency data. Therefore, we suggest using these methods for time series where 
monthly data are available and when frequency/business cycles resolution is more 
critical than time resolution. 

5.3 Engineer ing Da ta 

Another selected data type was Photonic Doppler Velocimetry Data (PDV) data. 
Their parameters are based on physical nature, their structure thus differs from 
economic data and the background noise is descriptive. For applying the selected 
methods of TEA, we used recorded data of an aluminum metal plate acceleration 
by detonation products of brisant high explosive. The data was obtained using 
P D V [43], [44]. Used setup is shown in Fig. 5.6(a). A fiber laser with wavelength 
Ao of 1550 nm was used to feed a 3-port circulator. Light from the circulator 
travels towards the probe (collimator or bare fiber end), where it partially exits and 
partially reflects back. The light that exits the probe reflects from the surface of a 
measured object and reenters the probe. If the object is in motion, the frequency of 
reflected light is changed by Doppler shift /<j. This frequency is then combined with 
the non-Doppler-shifted frequency of the laser source fa. The resulting signal with 
frequency /b equal to the Doppler-shift is captured by the detector and visualized by 
the oscilloscope. For a more detailed description of PDV, see [45] [46]. In the case of 
our measurement, no amplifier was used between the detector and the oscilloscope. 
Detailed schematic of measured object can be seen in Fig. 5.6(b) [43]. To recalculate 
Doppler-shift to the velocity of the moving target v following formula (5.3) can be 
used. Light from the circulator travels towards the probe (collimator or bare fiber 
end), where it partially exits and partially reflects back. The portion of the light 
that exits the probe travels towards the measured surface, reflects back, and enters 
the probe. If the target moves, the light has a Doppler-shifted frequency ). The 
back-reflected part is non-Doppler-shifted and has a frequency of the laser source 
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fo- The two different frequencies combine and create beats with frequency /& equal 
to the difference between the shifted and non-Doppler-shifted one. The beat signal 
is captured by the detector and visualized by the oscilloscope. 

(5.3) 

where Ao is the wavelength of the non-Doppler-shifted light (the laser wavelength), 
/b is the Doppler-shift and v is the resulting velocity. 

Two signals obtained using P D V were selected. Both with a sampling rate of 
25Gs/s and length of 20[xs giving us 500k samples. The maximum available fre­
quency that our data contained was limited by the bandwidth of the used oscillo­
scope, which was 4GHz. Time representation of both signals is shown in Fig.5.7. 
The red arrow denotes when the A l plate accelerated by the detonation destroyed 
P D V fiber probe (level of signal rapidly falls). After this moment, the optic fiber is 
compromised, and the measured signal contains basically unusable noise. 

fiber laser 

circulator ( 

D e t e c t o r 

O s c i l l o s c o p e 

co l imator 

measu red object 

PDV fiber probe 

AI flyer plate 

charge A-IX-1 

detonator 

booster Semtex 1A 

polystyrene support 

(a) PDV schematic (b) Test setup schematic 

Fig. 5.6: Scheme for data acquisition (Source: [43]). 

5.3.1 Application 

To make the process of description of the trend of significant spectral coefficient more 
manageable we divided the algorithm into several steps. After the data acquisition 
the procedure was done in following steps: 

• Preliminary analysis of data, selection of region of interest using STFT 

• Application of STFT, T E A R and wavelet transform 
The first step was a selection of the part of the signal containing the required 

information. The range of considered signals was defined as follows. The beginning 
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Fig. 5.7: Time representation of signal A and B. 

of this time range was taken as the start of the shock wave in the A l plate. The end 
was done by the destruction of optic fiber (rapid fall of signal). The exact time of 
destruction is easily visible even in simple time representation. Unfortunately, the 
exact location of the start of the shock wave is difficult to identify/determine based 
only on the time representation precisely. However, we can perform a preliminary 
T F A of the signal. Therefore based on this TFA, we can select the appropriate 
sample range. For this aim, the STFT method is sufficient (low computational 
requirements, easy implementation), Hann window with length of 5000 samples 
with an overlap of 2000 samples was used. 

We can see the demonstration of preliminary STFT analysis results in Fig. 5.8 
where a circle highlights the area of interest. The results look quite similar for both 
signals (A and B); therefore, we present only for signal A . Based on the detailed 
analysis, we select signal A samples in the range of 5.00 to 6.80 |xs, which corresponds 
to 45k samples, for signal B in the range of 5.00 to 6.88 [xs which corresponds to 47k 
samples. To have access to a low-frequency slope, we avoid any filtering of data. 

5.3.2 Summary 

We applied STFT, but this application was made on the preselected range described 
above. The establishment of parameters was motivated by the intention to keep a 
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balance between time and frequency resolution. Therefore we used a window length 
of 1024 samples with an overlap of 900 samples. Due to wide overlap, the Hann 
filtering window was used to suppress the influence of earlier signal samples. Results 
are presented on the Fig. 5.9 a) and b). 

In the next step, we obtained time-frequency representation using the A R pro­
cess. Application of this method was also done on the preselected range described 
above. Motivation for parameter selection was the same as for STFT; therefore, 
we choose a window length of 1024 samples with an overlap of 900 samples and a 
Hann filtering window. Considering the sample size of signal and size of the window, 
we choose the Yule-Walker method for A R coefficients to estimate which is more 
suitable for long signals [47]. Selection of lag order was done separately for each 
window (i.e. 1024 samples). To determine optimal lag order, we used the Akaike 
information criterion, which provides good results in the case of a similar signal. 
Results are presented on the Fig. 5.9 c) and d). 

The lastly applied method was wavelet analysis. The aim was to get more in­
formation via better time resolution. Therefore, we used a complex Morlet wavelet 
and scale 1:512. Results are presented on the Fig. 5.9 e) and f). As shown in 
Fig. 5.9 STFT and A R provide fair results. In the case of C W T , significant spectral 
components are less visible, making their identification slightly more difficult. Nev­
ertheless, one advantage is a more detailed resolution of the time axis. This allows 
us to be more precise in determining the time of the beginning of the shock wave in 
the A L plate. 
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Fig. 5.9: Spectrogram estimation of both signals (x—axis: time, y—axis: frequencies, 
z—axis: spectral values). 

5.4 Chapter Conclusion 

Based on obtained results, we can see that in the case o economic data with a 
specific structure with several cyclical components (not necessarily based on sinus 
function), wavelets can perform better than STFT. This can be traced to the fact 
that the main advantages of wavelets are: the applicability on stationary and non-
stationary time series; the flexibility of choice of mother wavelet with respect to the 
character of inputs; the ability to uncover unique, complicated patterns over time 
and a good time resolution. However, when using technical data (where the basis 
function is primarily a sine), the STFT provides sufficiently good results, and there 
is no need to choose a suitable mother wavelet and a suitable range of scales. 
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6 Enhanced TF Representation 
To highlight important spectral components we propose combination of several T F 
methods. In each method background noise is depict with different characteristics. 
However significant spectral components should be captured in most cases. Based 
on such assumption we should be able to suppress the noise and highlight required 
components by using their combination. The procedure of this method is shown 
in Fig. 6.1. This procedure can be perceived as an alternative to significance tests, 
which we will discuss in Chapter 7. As mentioned in Chapter 5 the characteristics 
of input data must be taken into account. Therefore, we will show the application 
on different types of data; i.e. economics and engineering. 

PRE-FILTERING 

k l 
Ü 

ENHANCED SPECTROGRAM, 
SIGNIFICANCE TESTS 

Fig. 6.1: Enhanced modelling of T F spectrograms. 

6.1 Comb ina t ion o f T F methods 

To obtain the best possible T F representation we combined results from the C W T , 
T F A R and STFT approach. Since the main focus was on the amplitude part of the 
spectra we have omitted phase part of complex spectra «SCWT a n d *SSTFT- In case of 
focus on amplitude and phase components whole signal can be used for subsequent 
processing. 

Firstly we align time axis (time resolution) of spectral representations SQWT, 

STFAR and 5STFT SO each spectrum would correspond to one another. A l l three 
vectors representing resolution in time have linearly increasing trend so for the time 
axis alignment the only requirement was to adjust starting and ending point for each 
method. We omitted first and last 15 columns of S C W T , we denoted this remaining 
matrix as S ' C W T . By doing this we ensured corresponding time axis for all three 
methods. 

Secondly we needed to align the frequency/scale axis of •S'CWT; <STFAR and 5STFT-

The frequency range of STFAR and SSTFT was cropped to correspond the range of 
S ' C W T which was 1 year to 10 years cycles. Resulting frequency/business cycles 
vectors / T F A R and / S T F T had a linearly increasing trend however trend of / C W T was 

29 



CHAPTER 6. ENHANCED TF REPRESENTATION 

non linear. To obtain corresponding vectors we matched each point of / C W T with 

one value of / T F A R / / S T F T with 1.4% tolerance: 

I/CWT — / S T F T | < 0.014 max(/cwT! / S T F T 

| / C W T - / T F A R | < 0.014 
max(/cwTi / T F A R 

(6.1) 

With this step we have gained adjusted T F matrices STFAR and SSTFT making 
all three methods aligned. For the methods combination we selected simple multi­
plication. We used combination of C W T and T F A R (SCWT.TFAR) and combination 
of C W T , T F A R and STFT (S C WT,AR,STFT) : 

S, CWT,TFAR 

CWT,TFAR,STFT 

'- 'CWT'-'TFAR; 

Q' Q' Q' 
^CWT'- 'TFAR'- 'STFT • 

(6.2) 

6.2 App l i ca t ion on Economic Da ta 

6.2.1 Data Describtion 

As a representative of economic data with not clearly descriptive background noise, 
we use seasonally adjusted quarterly data of GDP. We selected volume index in 
O E C D reference year 2010 [40] of the United Kingdom (UK) in 1956/01-2016/03 
and Group of 7 (G7) in 1961/02-2016/03. A l l variables are in F O D L O G (Fig. 6.2). 
G7 countries are: Canada, France, Germany, Italy, Japan, the United Kingdom, 
and the United States. 

<? & nS> nS> 

(a) UK (b) G7 

Fig. 6.2: G D P of U K and G7 in time domain. 

Our analyses consists from several steps. In the first, we analyse data using 
C W T . We set scales to correspond range of 1 year to 10 years, with 257 individual 
scales. As mother wavelet we selected complex Morlet with center frequency /b = 
1.5. The complex Morlet wavelet is based on standard Morlet with the advantage 
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of providing complex results making it possible to obtain phase part (quadrature) 
of spectrum. In case of T F estimation via T F A R process we used Burg approach 
for coefficient estimates on 30 samples with 29 samples overlay and Hann window. 
Optimal value of lag order was based on AIC criteria. Parameters of STFT were 
set to correspond T F A R settings (30 samples, 29 samples overlay, Hann window) to 
simplify the process of combination of methods. 

The data and results for U K and G7 are presented graphically in Fig. 6.2a-b, in 
Fig. 6.3a-f and Fig. 6.4a-d. There are four types of figures. Namely time represen­
tation of G D P for U K and G7 (Fig. 6.2a-b), T F transform via C W T (Fig. 6.3a-b), 
T F transform via A R (Fig. 6.3c-d), transformation via STFT (Fig. 6.3e-f) and ad­
justment of C W T picture with the help of A R (Fig. 6.4a-b) and with the help of 
T F A R + S T F T (Fig. 6.4c-d). 

(a) CWT UK 

(c) TFAR UK 

(e) STFT UK 

(b) CWT G7 
•7.5 -7 -6.5 -6 -5.5 -5 -4.5 

(d) TFAR G7 
0.02 0.04 0.06 0.08 

(f) STFT G7 

Fig. 6.3: Spectrum of G D P of U K and G7. 
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Fig. 6.4: Adjustment of T F methods. 

6.2.2 Results 
Focusing on time representation given in Fig. 6.2a-b we can conclude following. In 
the time representation of the United Kingdom data we can see two sub-periods 
with different volatility. Between 1956-1988 and 1989-2015. There are also visible 
several moments with higher/lower level of the data, i.e. structural breaks (1958, 
1964, 1968, 1973, 1979 and 2008) given by events in U K economy such as oil crises, 
financial crisis. In case of G7 there is similar problem with volatility, but it is not 
such visible as in U K . In contrast with U K , the G7 data has slowing decreasing 
trend with higher volatility between 1961-1988. Thereafter (1989-2015) the data 
character looks similar to the U K case. In G7 we can see similar structural breaks 
(1973, 1979 and 2008). 

After a short analyses of time representation of the data we apply T F approaches. 
Firstly we modelled C W T (Fig. 6.3a-b), consequently T F A R (Fig. 6.3c-d) and 
STFT (Fig. 6.3e-f). As we expected C W T provides results with very good time 
resolution. We can see several important areas across time and frequency. Focusing 
on T F A R representation the results are not so clear from time perspective as C W T , 
but they give us better information from frequency perspective similarly as STFT. 
Therefore, we decided to do adjustment of C W T picture with the help of T F A R and 
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T F A R + S T F T according to the calculation (eq. 6.1,6.2) described in Combination 
of T F methods. 

The results of adjustments can be seen in the Fig. 6.4a-d. Focusing on U K situa­
tion and in comparison with enhanced figure (Fig. 6.4a) with C W T figure (Fig. 6.3a) 
we see sharper picture with suppressed noise. Therefore, we can easily identify the 
most important events in U K data from time and frequency perspectives. We can 
found three most important even in U K . The first is between 1960-1988 and can 
be distinguished into two subperiods; 1960-1972 and 1973-1988. These results cor­
responds with time domain description. In addition to the time domain we find 
that such event have reaction in the approximately 4 years (in the first subperiod 
1960-1972) and around 5 years (in the second subperiod 1972-1988) cycles. The sec­
ond important area arise between years 1973-1976 and has the impact on economic 
reaction in short cycles about length proximately 1.5 year showing quick reaction. 
The last important area is between 2007-2010 covering business cycle frequencies 
(from 4 to 2 year frequencies) and compare to the previous one it seems that it has 
not such impact in U K as previous events. To be sure with such conclusion and for 
cross validation we add additional adjustment of three T F approaches leading into 
the Fig. 6.4c. The result confirm results from the adjustment of C W T and T E A R 
and that events between 1970-1976 have stronger impact on U K economy. 

When we focus on the results for G7, we can find some similarities as well as 
dissimilarities. Again, we can see (Fig. 6.4h) that the most important area is between 
1970-1974 in 4 years cycles and 1974-1981 in 5 years cycles consisting one period 
1970-1982. The second important area is between 2007-2010 (financial crisis) which 
cover the range of business cycles, i.e. 1.5-5 years cycles. After adding the second 
adjustment for cross validation of obtained results presented in the Fig. 6.4d we 
see conformity in important area identification. Also in this case for sureness and 
cross validation we added adjustment of T F approaches leading into the Fig. 6.4d. 
The result confirm results from the adjustment of C W T and T F A R and that events 
between 1970-1976 have stronger impact on G7 economy than financial crisis in 
2007-2009. 

Comparing results from economy point of view, we can see, that in U K oil crisis 
has bigger impact than financial crisis, while from the perspectives of G7 countries 
impact of financial crisis was stronger. Obtained results can be used for consequent 
macro or micro-econometric analysis to search for dependencies or relations with 
other economic aspects. Or it can motivates researcher in next steps which could 
be decomposition analysis on specific component of corresponding frequency which 
can be used in analysis of bilateral causalities. 
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6.3 App l i ca t ion on Engineer ing Da ta 

6.3.1 Data Describtion 

Another selected data type was Photonic Doppler Velocimetry Data (PDV) data. 
Their parameters are based on physical nature and their structure is thus different 
from economic data. As input data we took STFT, T E A R and wavelet spectral 
representation of the data from Fig. 5.9. Equations (6.1) and (6.2) were then used. 
Because the main focus was on the amplitude part of the spectra we used only the 
amplitude part of STFT and wavelets. 

6.3.2 Results 

Resulting modified spectrogram is in Fig. 6.5. We can see that the scatter of 
background noise is smoothed and the data signal is more clearly visible. Even 
on this type of input data, it was confirmed that the method can highlight the 
required components in the spectrogram and therefore provides required advantages 
for further processing. 

2066.41 
1876.81 
1687.21 
1497.61 
1308.11 
III8.5I 
928.9 [ 
739.3 
549.8 
360.2 
170.6 I 

0 
6.2 6.4 6.6 

(a) signal A (b) signal B 

Fig. 6.5: Enhanced P D V data (x—axis: time, y—axis: frequencies). 

6.3.3 Post-processing 

The next step was focused on kernel estimate of the trend of significant spectra 
peaks. Identification of such trend allows better determination of materials proper­
ties at very rapid load than simple maxims connection. We firstly created vectors 
containing the position of detected peaks. With respect to the frequency value we 
took the highest spectrogram value ± A to specify close surrounding area. According 
to empirical results we established ± A = 7.5%. Using this thresholding we speci­
fied a mask which contained the region of our interest (region of required signal). 
By implementing this step we gained a vector of peak positions suitable for kernel 
analysis [32]. 
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To support decision beneficial to kernel estimate we investigated two paramet­
ric and one non-parametric model. Namely the deterministic polynomial model 
(Fig. 6.6c,d), stochastic A R model (Fig. 6.6a,b) and non-parametric N W kernel 
estimate (Fig. 6.6e,f). 

Polynomial model for the dependent value y and an qth degree is defined as: 

where (3Q, (3\,... are unknown polynomial coefficients and x is an independent vari­
able. We investigated degree of polynomial q = 2 — 30 and Vandermonde matrix was 
used to obtain polynomial coefficients [48]. A R model was calculated using (3.11). 
We investigated lag order p = 1 — 20; optimal orders were selected using AIC cri­
terion. N W kernel estimate was done using (3.24)-(3.26) for a kernel of the order 
v — 0; k — 2, smoothness \x = 2 and bandwidth h = 0.02 (see Chapter 3.3) [32,49]. 
Values were optimized via the generalized cross-validation method [50]. 

In Table 6.1 you can see the evaluation of model fit via M S E (4.1) and coefficient 
of determination R2 for parameters with best fit. R2 was is computed as: [51] 

where Yi is the value of observed spectral coefficient, Yi is its estimated counterpart 
and Y is the mean of the observed data. The higher the resulting number is the 
more accurate is the estimation. 

In both signals, Fig. 6.6, we can identify the same shape of the curve. Comparing 
them, we can see a rising edge of the curve at the start of signal B. This shape of 
curve path corresponds with expectations of material behavior during explosion. It 
is missing in signal A and is probably caused and influenced by the explosive event. 
Therefore, the start of signal A was identified after this part. In both signal cases 
we can identify a three-level decrease with osculation followed by its increase. The 
general tendency has a similar parabolic shape in both signals. 

A detailed analysis of Fig. 6.6 reveals the following facts. Signal A: the graphical 
representation reveals a short time decrease followed by a short time increase and 
stagnation of the signal at a higher level. The second and third part copies this 
tendency, but both parts are moved to the lower level having a stair shape. The 
last part takes a parabolic shape with the second half of the signals. In the case of 
signal B we can identify three similar parts of decrease. Generally, the dynamics 
of the curve is smaller. The final part of the curve for signal B, taking a parabolic 
shape, is similar to the curve for signal A . 

The comparison of estimated curve shapes (Fig. 6.6) and measured quality values 
(Tab. 6.1) reveal, that for signal A the best approach is the N W estimate while for 

V = ßo + ßix + ß2x2 + ß3xs + ••• + ßqxq (6.3) 

(6.4) 
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Fig. 6.6: Modelling of the curve fit. 

Model Parameters M S E R2 

Signal A 

Polynomial q = 8 5.35 0.87 

AR(p) p = 6 2.75 0.93 

N W v = 0, k = 2, /x = 2, h = 0.02 1.87 0.95 

Signal B 

Polynomial q=ll 11.58 0.86 

AR(p) p = 3 2.27 0.94 

N W v = 0, k = 2, /x = 2, h = 0.02 5.84 0.93 

Tab. 6.1: Evaluation of the model fit via M S E and R2. 
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signal B it seems to be the A R process. However, A R appears problematic when 
focusing on capturing the rising edge because in such a case it was not captured. This 
is caused by a loss of data in the initial part of the signal - area of omission depends on 
lag order of the A R process corresponding to the signal character. Another problem 
with A R is in the case of missing points (non equidistant); the approximation of the 
resultant curve looks under-smoothed. For this reason, we prefer the N W estimate 
(Fig. 6.6e and f as the best even when it has a little bit worse measured quality 
values for signal B, because the rising edge was clearly captured. The worst curve 
fit estimation was achieved via the polynomial model (Fig. 6.6c and d). As the 
results show, in such an approach, the estimated fit is over-smoothed. Also, its 
ability to describe a rising edge is worse compared to the N W estimate. To sum up, 
the kernel estimate provides the best curve shape estimate for such data. 

6.4 Chapter Conclusion 

If we review results, by combining several T F approaches we were successful in 
background noise suppression. Consequently, events of interest became more visible 
and their identification in time, as well as in frequency was easier. A n example of 
the possible use of this identification is the trend detection in a spectrogram. This 
approach can also be taken as a supplement to the significance testing with the 
investigation of background noise description, which will be described in Chapter 7. 
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7 Standard Significance Tests 
Time-frequency transform can give reasonable results of both perspectives, time 
and frequency, in one moment. In some branches such as engineering, the physical 
nature of inputs is obvious and gives valuable information. We can assume the 
existence of several harmonic components corresponding to the specific frequency 
during all times of given input. Unfortunately, in other scientific disciplines, such 
as economy or sociology it may not be so simple. Applications of T F analyses have 
been so far limited by the fact that it was impossible to draw any implications on the 
statistical significance. Thus, significance testing of obtained results is welcomed. 
The original contribution in the spectrogram testing was provided by Torrence and 
Compo [23], followed by Ge [24,52]. Both provided a framework for testing individual 
spectrograms as well as testing of co-movement representation. We denote them 
both as standard testing approach (STA). 

The basic work discussing significance testing T F representation is by Torrence and 
Compo [23]. Their paper aimed to answer the question how one can distinguish 
statistically significant results from those due to pure randomness. Authors present 
comparison of wavelets to the windowed Fourier transform and propose tests for 
wavelet power spectra developed by deriving theoretical wavelet spectra for white 
and red noise processes. Ge [24], motivated by the Torrence and Compo (TC98) [23] 
work, derived the sampling distributions of the wavelet power and power spectrum 
of a (GWN) in a rigorous statistical framework. He proved that the results given 
by [23] are numerically accurate when adjusted by a factor of the sampling period. 
Similar approach to TC98 can be found in the work of Schulte et al. [53] or James 
and Fleming [22]. As an alternative approach we can use combination of several T F 
methods to suppress the noise and highlight required components of T F transform 
as presented in Chapter 6. 

Thus, according to TC98 [23] and Ge [25] we can do following. The distribution 
for the Fourier power spectrum is 

where TV is the number of points, <SSTFT(^, / ) is given by (3.4), a2 is the variance 
of time series s{n). Such testing statistic is distributed as chi-squared distribution 
X2 with two degree of freedom x 2(2)- The corresponding distribution for the local 

7.1 STA on Indiv idual Spect rograms 
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wavelet power spectrum with usage Morlet wavelet is 

ISCWTMI 2 1 2 ( 2 ) ( 7 _ 2 ) a2 2" 

at each time n and scales a, S C W T ^ T ) is given by (3.6) The 1/2 factor removes 
degree of freedom factor from the x2 distribution. If the wavelets are real, the dis­
tribution on the right-hand side would be chi-squared with one degree of freedom 
X 2 ( l ) . The value of Pk is the mean spectrum at the Fourier frequency k that corre­
sponds to the wavelet scales a. In case of gaussian white noise background spectrum 
this is equal to one [23,25]. 

After finding the appropriate background spectrum and choosing a particular 
confidence for x2 for 95% (a = 5% risk) we can construct confidence contour line for 
each scale. Thus, if the peak in the wavelet power spectrum is significantly above 
the background spectrum (in our case GWN), than we can assume the peak is true 
feature with a certain percentage confidence. 

7.1.1 STA on Individual Spectrograms Application 

To determine the characteristics of STA and select optimal parameters of the chosen 
method we have created a deterministic signal (Fig. 7.1a). By doing this we obtained 
a signal with the known properties allowing us to asses the quality of method perfor­
mance. The signal was constructed to include frequency sweep: exponential at the 
beginning, linear afterwards and containing a drop to zero at the end. In contrast to 
test signal used in [24], we aimed to create a signal of a higher complexity compared 
to the simple signal with just one harmonic component. Time representation of the 
signal can be seen in Fig. 7.1a and its spectral estimation via C W T and STFT in 
Fig. 7.1b,c. 

Before applying the methods described in the methodology part we firstly cor­
rupted the synthetic signal Fig. 7.1a. We added the G W N to the signal; the SNR 
was set to the moderate level of 3dB. The type of noise and its level was selected to 
correspond with Ge [24]. Consequently we estimated time- frequency representation 
via C W T and STFT. For estimating STFT, we used Hann window [54], for C W T 
estimation we used Morlet wavelet with central wavelet frequency fo = 0.8125 (this 
selection was motivated by wide use of this wavelet in economic applications). The 
resulting figures for noised signal can be seen in Fig. 7.2a,b. 

In the following step, we identify significant components of estimated spectra. 
To determine significant components we proceed according to (7.1) and (7.2). Due 
to the character of the noise, which was additive G W N , we were able to use the 
simplification of Pk = 1 (for details see [25]). The level of risk a was set to the two 
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Time [s] 

(b) Estimation using CWT 
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(c) Estimation using STFT 

Fig. 7.1: Signal without G W N . 

D.2 0.4 D.B O.a 1 1.2 1.1 1.6 1 

Fig. 7.2: Spectral estimation of noised signal and its significance testing. 
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Fig. 7.3: Normalized power spectrum in three time slices points and corresponding 
5% and 15% signigicance level. 

levels a = 5 and 15%. As Ge [24] wrote, in such cases the significance level can 
empirically be relaxed to 15% or even higher depending on the particular problem. 

The resulting figures for estimated spectra for both risk levels are given in 
Fig. 7.2c-f. The figures show only the identified significant component without 
the real value. 

To demonstrate the method, we took three time instants t = 0.2,0.9 and 1.8 s. 
Fig 7.3 shows the C W T and STFT spectra in these time points together with the 
corresponding significance levels of 5% and 15%. The frequencies of values that are 
placed above the line for the selected a are identified as significant. 

7.1.2 Simulations of Background Noise Levels 

To verify the accuracy and suitability of Torrence and Compo tests, we used simu­
lations based on the background spectrum construction. These simulations are used 
to identify our own critical values on the basis of repeated random sampling to iden­
tify empirical distribution. We generated 50000 G W N repetitions with the length 
of 2000 points with variance level corresponding to the signal variance. For each se­
quence, the C W T and STFT spectrum was calculated. After the STFT calculation, 
we took the values for each frequency from all iterations, gaining vectors of 50000 
values. After that we separately calculated 95% quantile of empirical distribution 
for each vector (shown as asterisk in Fig7.3 b). We can see that the obtained values 
approximately match Torrence and Compo tests. Not to complicate things for C W T 
with cone of influence [25] we selected a time point in middle of C W T spectrogram 
(t = Is). The reason is that the character of G W N does not affect the accuracy of 
the result. For the time point t — Is , we took the values for all scales (frequencies). 
By doing this for all 50000 iterations, we gained vectors containing 50000 values for 
each scale (frequency). After that we separately calculated 95% quantile of empirical 
distribution for each vector (shown as asterisks in Fig7.3 a). We can see that this 
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significance level is not constant and that its level decreases with frequency, which 
in return enables for higher spectral components to be identified as significant. 

Using a synthetic signal, we analyzed the behavior of testing procedure for the es­
timated spectrogram with respect to the G W N background. We employed Torrence 
and Compo significance tests based on x2 distribution and verified their accuracy 
and suitability for more complex signal using simulations of background noise lev­
els. The results suggest that in the case of STFT it is sufficient to use Torrence and 
Compo tests even for a more complex signal. In the case of C W T simulations of 
background noise levels, the results differ from Torrence and Compo. Therefore, we 
recommend using the Torrence and Compo method for less complex signals. 

7.2 STA on Co-movemen t 

As mentioned in Chapter 3.2, co-movement measures are used to evaluate similarity 
between two inputs (signals or time series). In case of cross-spectrum analysis the 
output data is three-dimensional and resembles spectrogram. Therefore, it is advis­
able to use some form of testing as described above. The general formula for the 
significance testing of the power wavelet cross-spectrum (PWCS) was firstly pro­
posed by TC98 [23]. They derived white- and red- noise wavelet power spectra and 
used them further to establish a null hypothesis for the significance test of a peak in 
the wavelet power spectrum and cross-spectrum. This work was consequently im­
proved by Ge [25,55] who also proposed formulas derived specifically for the G W N 
series. 

As TC98 [23] and Ge [25,55] wrote, for two independent G W N series x(n) and 
y(n) with variances (J2.,(J2 and wavelet spectrogram Sx(a,r), Sy(a,r), we can cal­
culate the PWCS \Sxy(a, r ) | 2 , which is the product of two x2~ distributed random 
variables. As pointed out by Wells et al. [56] and TC98, the distribution of the square 
absolute value of the normally distributed variable is x 2(2). In the case when both 
power wavelet spectra are based on two independent GWNs, the x2~distribution are 
both with 2 degrees of freedom and the non-centrality parameters are zero [25,55,56]. 
That is, as proved Ge [25,55] since 

l S A < l - T ) [ 2

 X

2 (2) , ^ # # ~ X 2 ( 2 ) , (7.3) 

their product is 

al/2 * * " a2

y/2 

\S*M\*\SVm\* 

In (7.4), W2 (based on Wells et al. [56]) denotes the probability distribution with 
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the probability density function 

f(z) = 0.5KQ(z (7.5) 

where K0(z1^2) is a modified Bessel function of order zero for the complex wavelets [56]. 
The significance level Z(l — a) for the risk a can be deduced from 1 — a percentile 
of the W2 distribution [23,25]. 

After rearranging the terms we obtain 

7.2.1 STA on Co-movement Application 

To determine the characteristics of STA for co-movement we selected real economic 
data rather than their simulation, because such real data contain structural breaks 
and reactions on economic even. In case of its simulation some of unpredictable 
factor can be suppressed, which is not welcomed. Our approach consists from several 
steps. In the first step we estimate WCS and wavelet power cross spectrum (using 
(3.19)). In the second step we identify significant regions according to [23] approach 
(7.6). In the third step we used simulations of background noise levels to identify 
empirical critical values. The simulations were done according the Chapter 7.1.2 
with 1000 iterations. At the end we compare both results (according to STA and 
simulations of background noise levels) and formulate recommendations. 

For the demonstration of discussed approach we use data described in Chap­
ter 5.2 (Fig. 7.4a-c). The motivation for data selection were: i) sufficient data 
range (it is desirable to have detailed time resolution); ii) in case of U K and G7 we 
expect co-movement, because U K is a member of G7 and thus support validation 
of purposed method; iii) in case of Korea we expect lower level of co-movement 
with G7, because Korea is not the member of G7. Additionally, with respect to 
the Brexit we were interested into analysis before such even having character of 
structural break which will affect the data. 

For C W T estimation we used complex Morlet wavelet with central wavelet fre­
quency fo = 1.5 as the mother wavelet. We set scales corresponding to the range 
from 2 years to 40 years cycles, with 334 individual scales. The power WCS were 
calculated according to the formula (3.19). The resulting figures for the data can 
be seen in Fig. 7.5a-c. In case of simulations of background noise levels we firstly 
generate two independent G W N series with a2 corresponding to the background 
noise. Then, we estimate its CWTs and consequently power WCSs with 334 indi­
vidual scales (corresponding to the data setting). Consequently, we generate 1.000 

Sxy(a,r)\2 1 
(7.6) 
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repetitions with the length of 1.000 points. To avoid complications with cone of 
influence in C W T we selected a time point in middle of WCS spectrogram. For each 
frequency (scale) from all iterations we save the obtained values. After that, we cal­
culated 95% quantile of empirical distribution separately for each vector (scale). By 
this simulation we were able to obtain critical values for each corresponding scale. 
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Fig. 7.4: Time series representation. 

The results of co-movements are presented in Fig. 7.5a-c below. The y-axis was 
re-calculated from frequency to the cycles per year for the better interpretation of 
an economic inputs. Thus, given the quarterly character of the data, we denote 
the sampling frequency / s to be 4 samples per year. The red curve in the figures 
defines significant area identify via the simulations of background noise levels, the 
yellow dashed curve defines significant area according to [23]. Focusing on the results 
of co-movement (Fig. 7.5a-c) with respect to the identification of significant area 
via [23] we can state following. A l l figures show existence of co-movement between 
countries which matches our assumptions. That is, the UK-G7 (Fig. 7.5a) has higher 
level of co-movement caused by being U K in G7. The Korea and G7 (Fig. 7.5b) 
has less areas with co-movement, but generally both UK-G7 and Korea-G7 has 
co-movement in the time of oil crisis 1970-1982 and in the time of financial crisis 
2001-2010. Such strong co-movement of Korea with G7 is also visible in Fig. 7.5c. 
A l l these significant co-movement (dashed curves in the Fig. 7.5a-c) were identified 
for long cycles, i.e. 10 years length cycles and longer. These results were confirmed 
by simulations of background noise levels. Focusing on same figures (Fig. 7.5a-c), 
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Year 

(c) Korea-UK 

Fig. 7.5: Co-movement between countries, x-axis: the time, y-axis: the frequency 
measured in the cycles per year and z-axis: the power WCS. 

but on significant areas identified by the simulations of background noise levels, we 
can see an additional areas in all measured co-movements. That is, the additional 
co-movement between UK-G7 (Fig. 7.5a) in the time of oil crisis 1968-1982, but for 
shorter cycles, i.e. for the cycles of the approximately 2-4 years. Such additional 
co-moved area reflects the faster response in the country economy to the oil crisis, 
such as small and medium-sized enterprises, loans, investments etc. In the case 
of the co-movement between Korea-G7 (Fig. 7.5b) we can see also additional co-
movement in the period 1974-1982 but for cycles of the length 4-6 years. Similarly, 
between Korea-UK (Fig. 7.5c) there is also the additional co-movement in the period 
1972-1980 for cycles of the length 4-6 years. Here, the results again confirm our 
expectation of direct interconnection of U K and G7 and the weaker interconnection 
of Korea and G7. In all the cases results confirm the globalization of the economies 
and the stronger impact of the oil crisis on the world economy then the financial 
crisis. 

The comparison and the verification of the accuracy and suitability of STA ap­
proach via the simulations of background noise levels is presented on Fig. 7.7. For 
the illustration of the significance level we firstly preselect the three time slices of 
the WCS (for example of UK-G7 (Fig. 7.6)). Selected time slices are denoted by 
the numbers 1-3 and corresponds to the time 1976, 1998 and 2006. The figure 
(Fig. 7.7) demonstrates power WCS curves and the significance level identified by 
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Fig. 7.6: Selection of slices in co-
movement (1: 1976, 2: 1998, 3: 2006). 
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Fig. 7.7: Comparison of STA and sim­
ulations of background noise signifi­
cance level. 

STA (dashed-dotted line) and by the simulations of background noise levels (stars). 
We can see that the simulations of background noise significance level is not a con­
stant, resp. it is decreasing with the frequency. Thus, the simulations of background 
noise levels enables the additional power WCS components to be significant. The 
difference between significant level of STA and the simulations of background noise 
levels is most likely caused by the heteroscedastic character of an input data, when 
in the time period of commoved series are the sub-periods with the different vari­
ances (you can see Fig. 7.5). A n additional source of the difference between the 
significance level could be the scale range selection. 

Using real data we analysed the behaviour of testing approach for the estimated 
wavelet power cross spectrum with respect to the G W N background. We use two 
approaches, namely the statistical significance according STA, and the identifica­
tion of critical value using simulations of background noise levels. While STA uses 
comparison with constant critical value identified via the modified Bessel function 
of order zero corresponding to the risk, the simulations of background noise levels 
identify critical value on the basis of repeated random sampling to identify empirical 
distribution. 

7.3 Invest igat ion o f Background Noise 

In this sub chapter we focus on evaluation of background noise for determination of 
significance level for spectrum/spectrogram estimate. We investigate input signal 
which is viewed as composition of several cyclical components occurring in differ­
ent time sub-period (not in whole time). Moreover, we admit that after removing 
estimated periodic components the rest of such signal does not have to be G W N . 
Therefore, we investigate identification of significant level on the basis of empiri­
cal distribution and noise analysis and its comparison with the results for G W N 
background. 
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We consider several types of input data. The first type is engineering data 
such as measurement of some noisy signal or deterministic technical data. The 
basic characteristics of such group of signals are composite of various harmonics 
corresponding to the different frequency which can be visible during all time of the 
signal. The second fact is, that after removing such periodic component the resultant 
noise is in expected form, for example white noise, red noise etc. Thus, simulation 
of such kind of signal can bring research in the case of changing the noise variance 
or changing frequency in signal during time. But the background spectrum will be 
still in pre-define form, in our case G W N . 

In practice, across different disciplines, there are signals or time series for which 
exact definition of its character is not so clear as in technical signals. As an example 
we can take economic time series, which have structural breaks. Such data can be 
viewed as a composition of several cyclical components which can occur in different 
time sub-period (not in whole time). The nature of an economic indicator play 
an important role and can influence the character of nested cycles. In such way 
the background noise is usually taken as a weakly stationary series and is obtained 
in dependence on analytical approaches (filtering, regression, decomposition etc.). 
Then, it can not be excluded that noise will absorb other components and therefore 
may no longer have the character of G W N . In such situation it is appropriate to 
verify the nature of the noise component, even if such data. And further, to compare 
whether identification of critical values using noise analysis is at the same level as 
in the case of G W N . 

From the reason written above we use data described in Chapter 5.2. Given the 
quarterly character of the data, we can denote sampling frequency / s = 4 samples 
per year. 

We proceed in following steps. Firstly, we decompose input time series via sin­
gular vector decomposition (SVD) [35] into 12 component denoted as P C 1-12 and 
estimate corresponding frequency. Consequently, we divide components into two 
groups: i) components corresponding to the trend and cyclical component, ii) com­
ponents corresponding to the noise. 

Secondly, we consist noise by summation of components from second group (see 
[10]) and we estimate histogram. Thereafter, we fit it by predefine group of distri­
butions, namely Gaussian, Student, Gamma and Rician distribution. We select the 
best fitting distribution. 

Thirdly, we generated 10.000 replications of noise of fitted distribution to obtain 
95% quantile and we establish confidence level. 
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Fig. 7.8: SVD decomposition (full data sample). 

7.3.1 Full Data Sample 

In the first step of analysis we performed SVD (details in Chapter 3.4). We de­
composed full data sample into 12 principle components (PC 1-12). We used the 
F O D L O G GDP data as input for eq. (3.28). We used the resultant trajectory 
matrix to obtain the orthogonal matrix, the diagonal matrix and the square or-
thonormal matrix. Using these as input for eq. (3.29) we got individual principle 
components. Results can be seen in Fig. 7.8. The choice of 12 components was mo­
tivated by [57] based on the cyclical components of the input signal whose recurring 
movements range from 6 to 32 quarters. To support the decision which components 
will be added as the noise component during reconstruction step, we used estimates 
of spectra. Thus, following knowledge from [57] we found, that P C 1-5 have the 
spectral peaks in the business cycle frequency while the others have not. 

Spectra of each principle component can be seen in the Fig. 7.8, components 
with frequency greater than 0.17/ s (vertical red lines in spectrograms) represents 
business cycles bellow 6 quarters and can be considered as a noise. With respect to 
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the heteroscedastic character of input data and estimated spectra for P C 9 and P C 10 
we can not exclude that the noise will not be corrupted by some of the component. 
This fact, however, leads us to verify the nature of the noise component, i.e. to 
examine Gaussian distribution of the noise. 

In the second step, for the noise component obtained using reconstruction of 
P C 6-12 (using eq. (3.30)) denoted as "noise:6-12" we estimates histogram. We also 
tests whether the"noise:6-12"has Gaussian distributed or not by goodness of fit test 
and by the Jarque-Berra test [51]. Both tests showed that the data are not Gaus­
sian distributed. In such case we can not use G W N as the background spectrum 
for T F significance testing. Therefore, we are going to identify own critical values 
with the help of simulations of background noise levels. Thus, estimated histogram 
of"noise:6-12"was fitted by pre-define distributions, namely Student, Gamma and 
Rician distribution. As we can see in the Fig. 7.9a the best fit was achieved for Stu­
dent distribution with 3 degree of freedom. The consensus with Student distribution 
was confirmed by goodness of fit and by the Jarque-Berra test. 

-0.015 -0 .01 -0 .005 0 0.005 0.01 0.015 0.02 

(a) Full data sample 

-noise:sub-part 1 
-Normal 
• Student 

0.02 0.03 -0.006 -0.004 -0.002 0.002 0.004 

Fk 

(b) Sub-part 1 (c) Sub-part 2 

7.9: Histogram of the noise with fitted distributions. 

In the last step, we generated 10.000 replications of noise with Student's t-
distribution with 3 degrees of freedom to identify own critical values and compare 
it with the x2(2) critical value [24]. This was based on the finding that the noise 
components have character of Student distribution with 3 degree of freedom. The 
result of simulations of background noise levels in comparison to x2(2) for STFT is 
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given in the Fig. 7.11a and for C W T in Fig. 7.11b. To give example of simulations of 
background noise levels we constructed spectral estimation of the time series using 
C W T and STFT approach. In case of STFT Hann window of 30 samples with 29 
samples overlap was used. In case of C W T complex Morlet wavelet with central 
frequency of 1.5 was used. Resulting spectrograms are shown in Fig. 7.10. Three 
selected time slices are shown as lines A , B and C. Using equations (7.1) and (7.2) 
we recalculate all frequency values in each STFT and C W T slice (Fig. 7.11a,b). 

Fig. 7.10: Spectrograms with slices identification. 

(b) CWT 

Fig. 7.11: Noise simulations for "noise:6-12" for full sample size. 
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We can see, that significance level for 5% as well as 15% for STFT are moreover 
the same. For C W T the results of noise simulations are a little bit higher at low 
frequency range and slowly decrease to the x 2(2) levels. In both figures significant 
components can be found above critical levels in dependence to the a. Such results 
(significant component) can be used for consequent analysis based on data character. 
In our case consequent economic analysis of significant components. 

7.3.2 Sub-Periods 

To be sure with our findings above and with respect to heteroscedastic character of 
the data (the variance is not the same during observing period) we made the same 
analysis on the data divided into two sub-parts. We can see two sub-parts; the first 
is in 1956/1-1988/2 denoted as sub-part 1 with variance a\ = 1.46-10 - 4. The second 
is 1988/3-2016/3 denoted as sub-part 2 with of = 3.53 • 10 - 5 . The total variance of 
the full data sample is a2 = 9.54 • 10 - 5 . 

Similarly to analysis on full sample size we made SVD on both parts. Obtained 
noises (noise:sub-part 1, noise:sub-part 2) were tested whether they are Gaussian or 
not. While the goodness of fit test confirmed the Gaussian character for both noises, 
the Jarque-Berra indicated Gaussian distribution only the noise for the second sub-
sample. Therefore, we fitted histograms (see Fig. 7.9b and c) similarly as the full 
data sample. Again, the Student distribution with 7 degree of freedom fitted the 
best. The consensus was confirmed by goodness of fit and by the Jarque-Berra test. 
Consequently, on the basis of noise simulations we identified own critical values 
and compared them with x 2(2) critical value [24]. Out analysis confirmed that 
significance level for 5% as well as 15% for STFT are moreover same. The noise 
critical values for both sub-parts were a slightly higher than full data set (Fig. 7.12a). 
For C W T the noise simulation results follow slowly decreasing trend (Fig. 7.12b). 

We investigated identification of significant level for empirical distribution using 
noise simulations and its comparison with the values for G W N background. Based 
on analyses above we suggest the following. Firstly, if the data are heteroscedastic, 
we recommend their division into sub-parts according to their variances. After 
identification of important components using SVD, we recommend testing of the 
reconstructed noise character. If we do not have information about the type of 
background noise or if we may expect that it is not G W N , we recommend fit noise 
distribution. Consequently we recommend identification of own critical values on 
noise simulation basis. By this way we can identify own critical value and perform 
relevant testing. 
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7.4 Chapter Conclusion 

Based on obtained results we see that a problem can arise if the data contains seg­
ments with different volatility (i.e, heteroscedastic data). A n experiment conducted 
on economic data (expressly GDP), which shows such a character due to structural 
shocks, confirmed that this can be a problem. Therefore, this fact should be taken 
into account during subsequent testing. As a result of disregarding this, the interpre­
tation of the obtained results could be inaccurate or misleading (thus introducing 
errors in subsequent analyzes). In the next chapters, we offer a solution to this 
problem by proposing an adaptive method of testing. 
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8 Segmentation Based Testing 
As stated in Chapter 1 in some data types, e.g. economic, heteroscedastic behavior 
occurs, i.e. that data variance is changing in time. We can expect that the STA can 
be sensitive to this fact, because of the assumption of constant variance over time. 
Therefore, based on STA, we propose the significance test of the T F co-movement on 
the segmentation bases. After the segmentation of the background noise according 
to the levels of variance in both input signals, we use the STA approach in each 
segment with the corresponding variance. As the results show, the segmentation 
allows us to identify significant co-movement with respect to the local variance, 
which can reveal additional significant co-movement areas. In the following text, we 
denote this method as segmentation adaptive based testing (SAB). 

8.1 S A B Me thodo logy 

The idea of a segmentation adaptive based testing is based on the fact, that time 
series x or/and y may be heteroscedastic. That is, the variance of the time series is 
not fix, but changing during the time period. One of the cases may be a quick/step 
change of variance. Then, we can split the time range of the time series into the 
sub-periods according to its variance level. The case when the variance change is 
smooth is presented in the Chapter 9 

Assume that both time series x, y are heteroscedastic. Then, we are able to iden­
tify the moments (variance breaks) after which the variance arise or decrease. It can 
be done by expert estimate or by statistical testing [51]. Comparing sub-periods of 
both series we can establish the segments (SG) of the time reflecting heteroscedas-
ticity in x and y. Consequently, we can identify critical value for significance testing 
in each segment by STA [25,55]. A n algorithm for segmentation adaptive based 
testing follow these steps: 

1. Identification of sub-periods in the time series x,y according to their variance 
levels 

2. Splitting the whole time period into the segments for all levels of variance 

3. Estimation of PWCS 

4. Calculation of the significant level of PWCS with respect to the variance in 
the segment 

Very important aspect of PWCS testing is an interpretation of the results which 
can be influenced by the methodology of testing. That is, the determination of the 
reference time period in relation to the results are evaluated. This can often be 
seen in the economics, where the events have the leads/lags effect. Thus, we have 

•-)3 



CHAPTER 8. SEGMENTATION BASED TESTING 

0 200 400 600 800 1000 0 200 400 600 800 1000 
Time Time 

(c) Variance A: 6 sub-periods (d) Variance B: 6 sub-periods 

Fig. 8.1: Signal A and B and their variance. The red line denotes variance of full 
dataset. 

to state, if we are interested in evaluation of economic even with respect to the 
whole time period or with respect to its lead/lag influence.As already stated, this is 
a typical problem of economic data and therefore they will be used to demonstrate 
the SAB method. 

8.2 S A B App l i ca t ion 

8.2.1 Simulated Data 

For the testing of the segmentation algorithm we created two artificial signals of 
the length of 1000 samples and sampling frequency / s = 1000 Hz. The time domain 
representation of the signal consist of 4 and 5 sine waves respectively each of different 
frequency. Thus the total number of segments for both series is 6. Ideal spectral 
representation along with time representation of resulting signal is shown in Fig. 8.1. 
For better simulation of real conditions, G W N was added. The signal to noise ratio 
was set to 12 dB. 

For C W T estimation of simulated signals we used complex Morlet wavelet with 
the central wavelet frequency / 0 = 1.5 as the mother wavelet. We set the scales 
corresponding to the range from 0.01/ s to 0.5/ s, with 490 individual scales. The 
PWCS is calculated according to eq. (3.19). 
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Firstly, we test estimated PWCS (eq. (3.19)) via STA (eq. (7.6)) with fix 
variances for all data set, i.e. a 2 = 2.35, a 2 = 1.73 (Fig. 8.2a). With knowledge of 
the number of segments, we do SAB testing on six segments (SG-6), as shown in 
Fig. 8.1. For preliminary analysis of the case when the number of segments needs 
to be determined, Matlab function findchangepts was used. Changes in standard 
deviation with minimum residual error improvement of 10 was used as criteria for 
this function. Minimal length of segment was set to 15 samples. A more detailed 
analysis of selection of optimal segments number can be found in the following 
subchapter. 

Consequently, in each segment, we provide STA with corresponding variance in 
segment (Fig. 8.2). 

Comparing the test results for estimated PWCS via STA and SAB testing (Fig. 
8.2) with ideal cross-spectrum (Fig. 8.2b) we can see that SAB approach propose 
more precise results. For the frequency fc = 0.4/ s and fc = 0.25/ s the SAB testing 
captured better the simulated significant co-movement compare to the STA testing. 
We also investigated case when the number of segments was 10. The results of 
PWCS show same significant areas as in case of 4 segments. 

8.2.2 Real Data 

For the real application we use seasonally adjusted monthly data of industrial pro­
duction index (IPI) of USA and India in 2001/M1-2017/M6 as the selected Asia 
Pacific countries. The IPI as a monthly indicator is widely used for assessing both 
the current state and the short-term outlook for GDP. One of the main reasons 
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why the IPI is considered to be a good proxy for GDP is that the value added by 
industrial production represented a substantial share of GDP and therefor display 
strong co-movements with GDP [58]. The motivation for IPI data selection are: i) 
sufficient sampling frequency (monthly) leading to sufficient sample size (with re­
spect to the application); ii) heteroscedasticity of the data series; iii) expectation of 
co-movement between series (financial crisis in 2008). The GDP data used in the 
previous chapters do not always meet these conditions and therefore the IPI is used. 
A l l variables were transformed into F O D L O G . 

Focusing on the real data we firstly identify sub-periods according to the time 
series volatility. We assume that if the data are not heteroscedastic (i.e. are ho-
moscedastic), then the STA and SAB testing will propose the same results. The 
number of segments was also checked via Matlab function, as for simulated data. 
We split both time series into 4, 6 and 10 segments (SG-4,6,10). The input time 
series and determination of sub-periods are presented in Fig. 8.3. We can see that 
data of India are heteroscedastic; the data of USA has problem with significantly 
higher volatility between time 2008-2010. When we compare identified sub-periods 
with the time of economic events in each country, we can take six segments (SG-6) 
as an optimum number of segments. In spite of this, we also make the calculations 
for four (SG-4) and ten (SG-10) segments. 

For C W T estimation we used complex Morlet wavelet with central wavelet fre­
quency fo = 1.5. We set scales corresponding to the range from 0.5 years to 5 years 
cycles, with 381 individual scales. The PWCS were calculated according to (3.19). 

A n estimation of the PWCS in Fig. 8.4a) was tested by STA testing and com­
pared with results after SAB testing (Fig.8.4b-d). Comparing this results we can 
see several differences. Via SAB testing: i) we identify additional significant area 
in very short cycles 0.5-0.63 years in 2002-2003; ii) the co-movement in very short 
cycles 0.6-0.7 years has longer duration (2013-2015) then in STA testing (2014); iii) 
the co-movement in cycles of the length approximatelly 2 yeras is not significant in 
2008-2009, because of the dominance of longer cycles (approx 3-5 years). Therefore, 
from interpretation point of view we can state following. The STA testing reveal, 
that the financial crisis in 2008-2009 in USA has strong impact on both economies. 
By measuring the co-movement of both series (USA and India) in the time period 
2001-2017 this event was the most important influencing factor which predominantly 
influenced mutual behaviour of both countries in long and middle-term cycles. Fo­
cusing on reaction of the country and interpreting the co-movement with respect to 
this reaction, i.e. the IPI volatility of the country as the consequence of economic 
event, we can found also significant co-movement in very short cycles in two sub-
periods. This result is confirmed by proxy of PWCS segmentation adaptive based 
testing for the different number of segments. 
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Fig. 8.3: IPI signals and their variance. The red line denotes variance of full dataset. 
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Fig. 8.4: PWCS of the IPI: STA testing and SAB. The red line denotes ideal PWCS. 

8.3 S A B Segments Op t im iza t i on 

The previous chapter shows that determining the number of segments with respect 
to local variation is essential for the correct use of the SAB method. Therefore 
in this section, we present the theoretical background for the identification of an 
optimum number of segments for the SAB approach of significance testing of the 
co-movement. The number of segments is set with the help of the heteroscedasticity 
test and the test for comparing variances in the time series segments. 

8.3.1 SAB Optimization Methodology 

Let us suppose that both time series x(t) and y(t) are heteroscedastic in the time 
range t = 1,... ,T. Thus, for each series, we are able to identify moments when 
the data volatility increases or decreases. Consequently, we can determine the cor­
responding time segments via the identified moments. In some cases it is easy to 
identify the moments by an expert estimate. In the cases when the assessment of 
these structural moments in the graphical form of the data presentation is not clear, 
we can confirm the expected moments via the use of heteroscedasticity test [59]. 
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Let us focus on each series separately. Assume that we applied test of the equality 
of variances on the time series x(t) and we identified n moments of volatility changes 
at 1% significance level, or n + k at 5% significance level, or n + k + I at 10% 
significance level. Now, we split the time range into n + k + l segments according to 
all identified time moments for 1% significance level. In each segment we calculate 
the variance and we compare the identified variances on the basis of standard F-test 
(test of equality of variances) in j and j + 1 segment, j — 1,... ,n + k + I — 1. Let 
the null hypothesis hold for the variances in the j and j + 1 segment 

• HQ : a] = cr | + 1 (joining of segments), if S2 /'S2

j+1 e CI 
where 5 | is the sample variance in j - t h segment, CI = ( F Q / 2 ( i / i —1, vi~ 1), Fi-a/2(y\ — 
l , i / 2 — l) is the confidence interval determined by the quantiles of F-distribution with 
v\ degree of freedom in segment j, degree of freedom in segment j +1 and the risk 
a is in the pre-defined difference of approx. max. 1%. Then, the variances are taken 
as equal and we connect both segments into one. The minimum measurements in 
each segment are set to 40 values. As a result we obtain SGoptjX number of segments, 
n < SGopt,x < n + k +1. After applying the same algorithm on the time series y(t) 
we obtain SGopt,y number of segments. 

In the second step, for both time series, we sort the ascending identified moments 
by time and we focus on the comparison of identified volatility levels between both 
time series with respect to the identified sub-segments. The resultant SGopt number 
of segments split the time range into the SGopt sub-segments. If the time series are 
not heteroscedastic, then we use the whole time range for each series, i.e. SGopt = 1. 

8.3.2 Real Data 

The data set for an empirical analysis consists of the seasonally adjusted monthly 
data of (IPI) from the O E C D database for G8 countries (i.e. Canada, Franc, Ger­
many, Italy, Japan, the United Kingdom (UK) and the United States (US)) in the 
range January 1993 - December 2017 [60]. We examine co-movements between the 
growth cycles of the US and all others G8 countries. The data have been transformed 
to F O D L O G values (Fig. 8.5 right column). 

8.3.3 Settings of the Methods 

For the PWCS estimation, we used the complex Morlet wavelet with the central 
wavelet frequency fc = 1.5 as the mother wavelet. We set scales corresponding to the 
range from 0.5 year to 10-year cycles, with 257 individual wavelet scales. Table 8.1 
presents the selection of optimum number of segments (SGoptjX) for each country 
according to the approach described in the methodology and the total number of 
segments (SGopt) for SAB testing for the particular pairs (the US and a country). 
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Segments for each country Total number of segments 

S G opt SGopt 

Canada 6 Canada&US 7 

France 6 France&US 9 

Germany 4 Germany &US 7 

Italy 4 Italy&US 7 

Japan 4 Japan&US 7 

Russia 4 Russia&US 7 

U K 6 U K & U S 9 

US 4 

Tab. 8.1: Optimal number of segments. 

8.3.4 Results 

The empirical analysis consists of several steps. In the first step we apply the het-
eroscedasticity test on the time series. After the confirmation of heteroscedasticity 
we proceed with the identification of optimum number of segments and correspond­
ing time moments for each time series. Then, we split the time range into segments 
according to the optimum number of segments for the pairs of the time series, i.e. 
for the US and a G8 country (see Sec. 8.3.3). In the second step, we estimate PWCS 
and apply SAB testing for the particular pairs. In the third step, as a supplement, 
we identify significant co-movement via STA approach. 

The results of co-movements are presented in Fig. 8.5 below. We use the following 
description in all the figures: x-axis represents the time, y-axis represents frequency 
measured in the cycles per year and z-axis represents the PWCS. The figures show 
a two-dimensional projection of three-dimensional charts. The intensity of each 
contour represents the relative importance of the different periodicities and time. 
The y-axis was re-calculated from frequency to the cycles per year to enable better 
interpretation of economic inputs. Thus, given the monthly character of the data, 
we denote the sampling frequency / s to be 12 samples per year. The red curve 
in the figures defines the significant area identified via STA approach, the yellow 
dashed curve defines the significant area according to SAB testing. In the case 
of Canada & US (Fig. 8.5), Italy & US and Russia & US (Fig. 8.5) both testing 
approaches (STA and SAB) identify similar significant areas of co-movement. In the 
case of Canada and Italy we can say that the 2008 crisis was not the only important 
structural change during the analyzed time contrary to Germany or Japan. In the 
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case of Russia we can see that the 2008 crisis was also an important structural break. 
Further, in the period 1994-2000 there was a different structural change causing a 
higher volatility level in this period leading to the extension (1997-2004) of the 
co-movement area with the US in the cycle of the length 1.5-5 years. In the case 
of France & US (Fig. 8.5) and U K & US (Fig. 8.5) the SAB approach reveals an 
additional significant area before the 2008 crisis in the cycles of the length of approx. 
2.5 years. Specifically, in the case of France in 1994-2004 and in the case of U K in 
1995-2001. 

In the case of Germany & US (Fig. 8.5) and Japan & US (Fig. 8.5) we can see 
that the significant area, identified via SAB testing compared to the STA, does not 
cover the cycles of a shorter length during the 2008 crisis. That is, in the case 
of Germany and Japan, the significant co-movement with the US occurs around 
the 2008 crisis in the cycles of the length 1.5-5 years. In both these countries we 
can state that the 2008 crisis was the most important structural break during the 
analyzed time. 

Using real data we assess the co-movements between the US and G8 countries 
with regard to the impact of the structural change of the financial crisis in 2008. 
The financial crisis caused a structural break in many economics, which led to the 
change in volatility level in the economic indicators. We found at least three levels 
of volatility during the given time range in all analyzed time series. Therefore, 
in the consequent co-movement analysis via PWCS we propose the SAB testing 
which takes into account the local volatility of the time series. We set the optimum 
number of segments for co-moved time series and identify significant co-movement 
areas. The results confirm the globalization of the economies and the impact of the 
2008 financial crisis on the world economy. In some countries we reveal additional 
co-movement areas (France, the UK) or the extension of co-movement areas into 
a longer time period or into an additional cycle length (Japan, Russia). In other 
countries (Germany, Japan and Italy) we also find that the co-movement in the 2008 
crisis was only in the business cycle frequencies, i.e. between the cycles of the length 
of 1.5-5 years. The most energy of the PWCS, i.e. the most important co-movement 
between US and G8 countries, was identified in the business cycle frequencies. The 
achieved results can be used for further analyses, e.g. to look for interconnections 
between countries co-movement and bilateral trade, in order to reveal additional 
information about the globalization and interconnections of economies. 
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Time 

5 France & US with mask STA & SAB 

0.561 

0.631 

0.711 

I 0.831 

| 1 

o 1.251 

1 67J 

2.5 

///////////// 

v10- p 

7 

3 

2 

Germany & US with mask STA & SAB 

10 Variance of Germany, sg = 4 

///////////// 

Variance of Italy, sg = 4 

///////////// 

0.561 

0.631 

_0.711 

I t 
O 1.25 J 

1.671 

2.5 

///////////// 
Time 

Italy & US with mask STA & SAB 

1.6 
1.4 

& & & & & & & & ^ * * 
>$ ^ $> $> rp r£> <fl 

^ s,̂  ^ ^ ^ ^ s^' Sĵ ' ^ ^ ^ 
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Fig. 8.5: Co-movement between countries, IPI of each country and variance of their 
segments. 

63 



CHAPTER 8. SEGMENTATION BASED TESTING 

8.4 Chapter Conclusion 

This chapter was focused on the significance testing of the T F co-movement on the 
segmentation bases. We investigate the case when the input data are heteroscedas-
tic. Firstly we propose segmentation of the data according to its levels of variance 
and we offer a method for optimal segmentation. Secondly, we propose testing of 
significance of power wavelet cross-spectrum with respect to the corresponding vari­
ance in each segment via STA test. The demonstration was done on simulated and 
economic data (i.e. IPI). The comparison of the results shows that segmentation can 
reveal additional significant co-movement areas in heteroscedastic data. Moreover, 
it confirms, that in the case of different volatility levels of inputs, the STA test­
ing needs more careful interpretation and SAB can provide more complex results. 
Therefore, we recommend using the SAB method in case of in the case of significant 
or visible volatility in the data, which allowed segmentation accordingly. 
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9 A Local-Adaptive-Based Testing 
In this chapter, we focus on the case where data volatility changes continuously (not 
quick/step change as in the previous chapter). For this purpose, real economic data 
that shows just this behavior were selected. 

This chapter is based on following published journal paper: 

POMĚNKOVÁ, J.; KLEJMOVÁ, E.; KUČEROVÁ, Z. "Cyclically in Lending 
Activity of Euro Area in pre- and post- 2008 Crisis: A Local-Adaptive-Based Testing 
of Wavelets". Baltic Journal of Economics, 2019, vol. 19, no. 1, p. 155-175. 
DOI: 10.1080/1406099X.2019.1596466 

Abstract The paper deals with the identification of time-frequency regions describ­
ing cyclically of bank loans before, during and after the 2008 crisis via wavelets. 
We bring new methods and findings about the short and medium cycles of loans 
provided to corporates and households in the Euro Area in 2000-2017 using season­
ally unadjusted monthly data. We have recognized an impact of the crisis on data 
volatility which further influences the type of significance testing of wavelet spec­
trograms. To avoid this influence we propose: (1) an adaptive spectrogram testing 
based on Torrence and Compo approach and (2) robustness analysis via enhanced 
spectrogram modelling tested by simulations of background noise levels. Both cross­
checked approaches prove the sensitivity of standard wavelet tests on data volatility. 
The results confirm the usability of the new approaches and show that the crisis in 
2008 influenced the cyclical behavior of both categories of economic sectors, but in 
a different way. 

9.1 In t roduc t ion 

The banking sector plays a special role in the monetary transmission mechanism 
and produces waves of cyclical behavior with a strong propagation in the real eco­
nomic sector. In [61] the idea that economic booms improve the borrowers' balance 
sheets and net worth and support the lending activities of banks and thus spend­
ing, investment and as such the output of the growing economy is discussed. On 
the other hand, recessions bring the opposite transmission with a negative impact 
on the economy in distress. Discussions about fluctuations in lending activity and 
factors causing these fluctuations have been quite frequent since the financial crisis 
of 2007 and 2008 during which the world economy faced a drastic drop in the lend­
ing activity, particularly in the case of large loans (most of which are syndicated 
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loans). The drop was caused by a worsened access of banks to deposit financing, as 
documented in [62]. 

It is a well-known fact that banks tend to behave pro-cyclically and reinforce 
the credit and economic cycle, i.e. they lose their credit underwriting practices 
and massively provide loans in the period of economic growth and severely tie the 
practices and limit their lending activities just before and in crisis times. The 
extreme case when banks limit providing loans is called a credit crunch. Also, in 
times of globally integrated financial markets, a negative economic shock can be very 
quickly transmitted to other countries and may produce negative spill-over effects 
and a financial crisis in the world economy. Therefore, the analysis, identification 
and recognition of cyclical behavior and changes in lending activity in the economy 
are in the forefront of economic research and policy makers can thus adjust policy 
measures not only to economic cycles but also to credit cycles. This can reveal how 
quick and flexible short-, medium- and long-term reactions of banks and economic 
sectors to a shock in the economy can be. In our paper, we do not study factors 
influencing the behavior of banks (i.e. supply and demand factors). We focus on 
the development of methods which could give us an information about the time and 
the frequency behavior of the selected economic time series representing the volume 
of loans provided to basic economic sectors. 

In this context, such fluctuations in lending activity can be generally defined as 
credit cycles, or more generally as financial cycles. However, financial cycles have not 
been satisfactorily defined and identified in empirical research so far. In [63] is stated 
that it is possible to describe the financial cycle using quantity (the volume of credit) 
and price (residential property prices, equity prices, risk premia etc.) variables. 
According to [64], the character of a financial cycle has changed since the early 
1980s and was caused particularly by financial liberalization and less strict monetary 
policy after leaving Keynesian stop-go macroeconomic policy. While financial cycles 
have an impact on economic cycles ([65]), traditional macroeconomic policy is not 
able to address them. 

As pointed out in [66], 'economic time series are an aggregation of components 
operating on different frequencies'. In [67] is proved that as for the financial cycle, 
'there is not consensus in the literature on which variables to include in the analysis'. 
Further, as documented in [68] wavelets allow to 'distinguish the case that a series 
is the sum of several cycles at different frequencies from the case that the series 
is characterized by structural changes'. The T F modelling allows the investigation 
of the spectral character of time series with respect to time. In this way, we can 
analyze how various cyclical components, i.e. long, medium and short cycles, as 
well as seasonal component (a very short cycles), of a particular time series evolve 
through the time [20]. 
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The early methodology of financial cycle analyses contains filtering and decom­
position methods from the simplest to more advanced, turning point analysis, and 
the combination of both. Consequent approaches include frequency domain meth­
ods for an identification of hidden cyclical components. One group of researchers 
who used the early methods states that financial cycles are longer than business 
cycles ([64,65,69]). Talks about 5-20 years with a cross-country median around 
15 years. Contrary to this group of researchers, another group proved that in a 
certain small group of countries (Germany, the Czech Republic, Hungary or the 
Netherlands), there are shorter financial cycles which are close to the business cycle 
frequencies ([67,70,71]). The third group of researchers make their findings more 
general ([67,71,72]) as they see the variation of the financial cycles' length at the 
country level which reflects heterogeneity between countries. In [72] is pointed out 
that financial cycles tend to differ from the business cycle counterparts, and that 
the identified length of financial cycles differs according to the definition of financial 
cycles which is given by the used methodology. 

The last current group of scientists provide more complex results related to 
cyclical properties of time series by investigating the issues by early methods as 
well as by the use of wavelets. In [73] the financial cycle length is measured using 
quarterly data via wavelets in the case of developed and emerging economies. Their 
results show that in developed countries financial cycles are longer than business 
cycles. In [74] the power wavelet spectrum (PWCS) is used to estimate three types 
of time series, i.e. three types of quarterly data, and identifies several cyclical regions 
across all frequency range. Similarly, in [71] the PWCS is used on several type 
of quarterly data for European countries and also identify a wide range of time-
frequency regions differing across countries and indicators. Their findings, using 
wavelets, confirm the statements of [66,68], and the conclusion of [72]. 

Applications of T F analyses, where wavelets belong, have been so far limited by 
the fact that it was impossible to draw any implications on the statistical significance. 
The original contribution in the spectrogram testing (STA) was provided by Torrence 
and Compo [23], followed by Ge [24,52]. The STA assumes the fixed variance during 
all-time range of data. We use a modified form of this test considering that the 
variance in time series may vary for a certain sub-period, even for a short duration. 
Then strong events, such as the 2008 crisis, may cause a change in the data volatility. 
This may suppress the significance of other events which have a lower level of the 
data volatility and thus may suppress the importance of other cyclically behavior in 
a specified time range. If there are no changes in the data variance, both (standard 
and modified) forms of the test produce the same results. 

The paper deals with the identification of the time-frequency regions describing 
cyclical behavior of the bank loans with a special attention to the pre-, post- and 
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2008 crisis. The paper focuses on evaluating how the specific shock, i.e. the financial 
crisis in 2007 and 2008, could affects the cyclical behavior of given indicators. We 
found an important impact of the crisis on data volatility which may further influence 
the significance of wavelet spectrograms estimates. Therefore, keeping in mind this 
volatility influence, we propose: (i) testing of wavelet spectrogram via standard STA 
test and its robustness check via simulations of background noise levels; (ii) testing 
of wavelet spectrogram via modified form of STA called local-adaptive-based testing; 
and (iii) robustness analysis of wavelet testing via enhanced spectrogram modelling 
also tested by the simulations of background noise levels. We show that Continuous 
Wavelet Transform (CWT), i.e. wavelet spectrogram, compared to the Short-Term 
Fourier Transform (STFT), i.e. STFT spectrogram, is much more influenced by 
the data volatility during the standard STA testing. To demonstrate the newly 
proposed method, we use the monthly data of bank loans provided to corporates 
and households in the Euro Area in 2000-2017. 

Presented paper investigates an application of proposed methods only on unad­
justed monthly data. Therefore, the results obtained via presented methodology is 
interpreted from the cyclical point of view where the seasonal component (i.e. very 
short cycles) is taken part of cyclical behavior. 

While many authors focus on the medium and long cycles of selected price-
and volume-based measures of financial or credit cycles and use quarterly data, 
we bring new methods and findings about the short and medium cycles of loans 
provided to corporates and households in the Euro Area in 2000-2017. By using 
seasonally unadjusted monthly data, we were able to identify time-frequency regions 
for higher frequencies. Moreover, we distinguish between the sector of corporates 
and households as the lending activity is motivated by different factors. The call for 
new modelling strategies and adequate reactions of macroeconomic policies to the 
changes of financial cycles is described in [63]. In [75] the role of empirical research 
for the purpose of describing the features of financial cycles and designing macro-
prudential policies is emphasized. In this way, we propose a method of identifying 
mostly short and medium lending cycles of corporates and households, which is 
quite important for prompt reactions of policy makers and proper implementation 
of economic policies. 

We aim to answer, by applying the cross-checked approaches (i-iii) described 
above, the following economic questions: Did the shock, represented by the financial 
crisis of 2007 and 2008, influence the cyclical behavior of lending activity in the Euro 
Area and if so in which lengths of the cycles (i.e. in which frequencies) were the 
reactions the strongest? Was the character of the cyclical behavior different before, 
during and after the crisis? Are there any differences in the character of cyclically 
in the two analyzed sectors? Does our approach bring new possibilities for modelling 
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strategies of policy makers? The results confirm the usability of the newly proposed 
approaches in our case (the research was conducted only on seasonally unadjusted 
data), particularly in the short cycles and show that the crisis in 2008 had an 
important impact on the cyclical behavior of corporates and households, but in a 
different way. Moreover, the most remarkable influence of the crisis on the cyclically 
was identified in the case of households. 

9.2 L i te ra ture Review 

Evolution of methodological approaches analysing credit and financial cycles and 
its characteristics reflects evolution of business cycle analysis. As many authors 
agree [71, 72, 74], the body of the literature for financial cycle analysis remains 
nascent. The methodological approaches started with i) time domain analysis of 
turning points identification [65] and was followed by ii) detrending via frequency-
based filtering [64,69]. Several authors use more sophisticated models such as un­
observed component models [71] or structural models [67,70]. The next step was 
iii) application of frequency domain methods which allows identification of spectral 
components, i.e. periodicities hidden in the data. Currently, iv) the time-frequency 
methods especially wavelets [68,71,74], which combine both time and frequency 
point of view and allow describe the cyclical behavior of data with respect to the 
time, are at the forefront of methodological approaches. 

The approach of turning points identification, mostly based on Bry-Boschan or 
similar algorithm, describe the cyclical character of the data via calculation the 
distance between two peaks (local maxima) of an unobserved time series suffering 
from the fact that the data may consist of several cyclical components, i.e. hidden 
periodic component. This insufficiency was partially solved by applying detrending 
methods such as frequency-based filters (high-pass or band-pass filters) [64] which 
allow selection of pre-defined frequency range from the data, or multivariate model-
based filters [67,71]. Some authors [64,67,72] combine both filtering and dating 
approaches to improve achieved results and bring more robust conclusions. In [70] 
the alternative methods are used, i.e. combination of Bayesian model and singular 
decomposition followed by Fourier spectral analysis. A n extension of methodology 
about the frequency domain methods allows identification of spectral components, 
i.e. periodicities hidden in the data. Both approaches (detrending/filtering and dat­
ing) fight the problems with moreover statistical character based on assumptions for 
dating methods application (sensitivity for trend extraction), or expected frequency 
range for the financial cycles filtering (no consensus for frequency range of financial 
cycles), or application of filtering methods themselves (ideal filter approximation, 
edge effect problem [64,67,70-72]. And even the frequency techniques highlight the 
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cyclical behavior of data, they unfortunately were not able to describe the temporal 
character of identified cyclical behavior. 

A n alternative approach is the time-frequency methods especially wavelets, which 
become current state method for the financial cycles analysis. The well-known T F 
methods include STFT [14], or T F A R [76]. While turning point approaches require 
pre-specified rules or mathematical apparatus to identify local extrema of time se­
ries, and even the frequency domain techniques have no prior assumptions for the 
financial cycles frequency range, their combination does not bring information of the 
time localization of the frequency which is easily proposed by the wavelets [74]. As 
written in [66], contrary to the time representation of time series, the wavelets map 
the original time series as a function of time and frequency revealing, how each peri­
odic component of the time series changes over time. As we can study in [77-79], the 
wavelet analysis allows decomposition of even non-stationary economic time series 
into the different frequencies which after summation constitute the original series. 
Via this approach we can assess the relative importance of a different frequency com­
ponent trough time and how such relationship changes over time, which make from 
wavelets a very useful tool for analyzing financial cycles. As many researchers agree, 
the main advantages of wavelets are applicability on non-stationary time series, 
flexible settings of parameters reflecting data character, ability to uncover unique 
complicated patterns over time and good time resolution [20,36,39,66,78,80,81]. 
Therefore, it is worth to investigate their use in financial cycle analysis. 

9.3 Me thodo logy 

We use C W T , T F A R , STFT [10] for the T F modelling of input time series. Since 
these techniques are well known, we will not provide their description. For the sig­
nificance testing of the T F transform, we use the standard test (STA) according 
to [23,24,52]. Additionally, we propose the local-adaptive-based testing (LAB) for 
the cases when the variance in the time domain may vary over the time. For the 
robustness check of C W T results we use simulations of background noise levels (as 
described in Chapter 7.1.2). For the cross-check of C W T tested by STA and by sim­
ulations of background noise levels, and C W T tested by adaptive L A B approach we 
propose robustness enhanced spectrogram modelling also tested by the simulations 
of background noise levels. 

9.3.1 Local-Adaptive-Based (LAB) Testing 

Both testing statistics presented in (7.1) and (7.2) are formed as the power value 
of the spectrogram of a noise signal normalized by the signal variance in the time 
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Fig. 9.1: L A B testing diagram. 

domain. In the case of an input signal with strongly localized fluctuations of the 
signal strength, the total variance may not sufficiently describe the character of 
the data. It is, therefore, not surprising that events, such as the 2008 crisis, may 
have a strong impact causing a suppression of other events. To avoid this problem, 
we propose an adaptive form of STA testing named a local-adaptive-based testing 
(LAB). In the case when the data does not have such problem, the STA and L A B 
testing produce same results. 

The L A B testing is based on the evaluation of significance via STA in each time n 
with respect to the sliding window /. Let us have the time series s(n),n = 1,..., N 
and set up the time window length /, / is an odd number. The vector of local 
variances a2 — 1,..., N of the same length as the time series s(n) is calculated on 
the sliding window I with the sliding one step ahead (Fig. 9.1). In the border regions, 
edge effect may occur, because there is a limited number of observations available 
for the calculations. In these cases we use the first and the last / observations of the 
s(n) for border variances a\ calculation. In the middle region we use 1 observations 
of the s(n). Then we use (7.1) and (7.2) for thresholds calculation. 

The localization allows us to assess the spectral components with reference to 
its surrounding events. The range/scope of these events is selected by the length 
1 of the sliding window. To set an appropriate time window length, we must take 
into account the requirement for at least 35 points (approx. 3 years). To maintain 
sufficient adaptability to rapid signal fluctuations, we set the window length to / = 49 
(i.e. approx. 4 years window). 
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9.3.2 An Enhanced Spectrogram Modelling 

For the significance testing on the basis of STA, we have to know the background 
noise character. When analyzing economic indicators, we can assume that the back­
ground noise is G W N . In some cases (application of pre-filtering, heteroscedasticity 
in the data etc.) this assumption need not to be satisfied. To avoid such a case, we 
alternatively suggest the combination of several T F approaches and in the follow­
ing we call the resultant T F transform "enhanced". The enhanced transform is the 
display of the C W T , T F A R and STFT spectrograms of one time series in one chart 
to obtain the best possible T F representation. We investigate mainly the amplitude 
part of the spectra. The phase part of complex spectra SQWT and SSTFT is not 
investigated. 

Firstly, we align the time axis of all obtained spectra SQWT, STFAR and SSTFT to 
match each other. Since the trend of all three time vectors is linearly increasing, it 
is sufficient to adjust the starting and ending point for each method. We omit the 
first and last 15 columns of S C W T , we denote the remaining matrix as S ' C W T . Hereby 
we ensure the correspondence of the time axes for all three methods. Secondly, we 
align the frequency/scale axis of S ' C W T , STFAR and SSTFT- The frequency range of 
STFAR and SSTFT is cropped to correspond with the range of S ' C W T , which was 6-
192 months (0.5-16 years) cycles. The resulting frequency cycles vectors / T F A R and 
/ S T F T have a linearly increasing trend, however, the trend of / C W T is non-linear. To 
obtain the corresponding vectors we match each point of / C W T with one value of 
/ T F A R and / S T F T with 1.4% tolerance: 

I/CWT - / T F A R | < 0.014max(/cwT; / T F A R ) , 
(9-1) 

I/CWT — /STFTI < 0.014max(/ C W T ; /STFT) -

With this step, we obtain the adjusted T F matrices S T F A R and S g T F T by mak­
ing all three methods aligned. The combination of methods is done by a simple 
multiplication and is called the "enhanced T F picture" 

S T F < S C W T S T F A R S S T F T . (9.2) 

9.4 App l i ca t ion 

9.4.1 Data 

In order to identify the cyclical behavior of financial data, we use the seasonally 
unadjusted real monthly data of bank loans provided to corporates (Corporates) and 
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households (Households) in the Euro Area in 2000/M1-2017/M05 [82]. A l l variables 
are in first-order difference of natural logarithms (FODLOG). To be more precise, 
we focus on the credit cycle as we use the level of provided credit as one possible 
approach of how to measure the financial cycle, i.e. we use a quantity-based measure 
and not a price-based measure of the cycle. As proved by relevant empirical studies, 
the chosen methodology is applicable to our date range (see [20,36,67,68,73,80,81]. 
From the first overview of an input time series in Fig. 9.2a-b, we can see that the 
time series of Households and Corporates contain a long-term trend which goes 
through visible expansion and recession phases. In both cases, we can see several 
structural breaks. 

In our analyses we use seasonally unadjusted data, because the aim of the paper 
is focused on the cyclical behavior of financial data (lending activities) where the 
seasonal component is taken as part of cyclical behavior. The information about 
cyclical character containing seasonal behavior is valuable, because the analysis of 
unadjusted data: (i) better reflects the real behavior of subjects (households and 
corporates) which can be influenced by seasonality; (ii) it can bring more valuable 
information to policy makers than adjusted data: they can react better to pre­
vent disruptions of the economic cycle because of seasonality or they can reduce its 
possible negative effect. The use of adjusted time series may lead to losing some 
information, which could reduce the efficiency of monetary policy and limit the 
achievement of the objectives. 

There are also methodological aspects [83] to use unadjusted data: (i) the sea­
sonal component is not independent from the cyclical component and can change 
in time; (ii) 'the evaluation of the seasonal component provided by an adjustment 
method is hampered by the fact that the true seasonal component remains a theoret­
ical and imprecise concept, never liable to direct observation'; (iii) 'the objectives of 
seasonal adjustment appear multiple and implicit. Is it to obtain the best estimate 
of the trend-cycle component, the best estimate of the seasonal component itself? 
Each objective will generate its own quality criteria'; (iv) 'the expected content of a 
quality report usually differs according to the user'. That is, the different adjusting 
method can produce different adjusted time series which can adjust more or less 
than a seasonal component and that seasonal and other cyclical components can 
interact. 

Generally, in the case of monthly data we can expect that the seasonal component 
will range in frequencies up to 12 months. With respect to the ability of wavelets 
to model the time-frequency behavior of the time series, we can consider that the 
wavelet spectrogram in the range of 2-12 month length cycles (in our paper short-
run cycles) can contains in the case of seasonally unadjusted time series seasonal 
and some cyclical component. Our complementary analysis confirm an interaction 
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Fig. 9.2: Input data for Euro area. 

of both cyclical components in the frequency range 6-12 month in our figures and 
that the seasonal component changes during time. This fact will be kept on mind 
during interpretation of the results. 

Therefore, because we aim to identify the time-frequency regions describing 
mainly short- and medium-term cyclically of bank loans before, during and af­
ter the financial crisis in 2008 and with respect to the ability of wavelets to model 
time-frequency character of the data it is worth to leave from economic as well as 
methodology point of view seasonal effect in the data. 

9.4.2 Settings of TF Methods 
In the case of the T F estimation via the T F A R , we use the Burg approach for 
coefficient estimates on 40 samples with 39 samples overlay, and the Hann window. 
The optimal value of the lag order is based on AIC criteria. The parameters of the 
STFT are set to correspond to the T F A R settings (40 samples, 39 samples overlay, 
Hann window) to simplify the process of the methods combination. 

For the C W T transform calculation, we set the scales corresponding to the range 
of half a year to 16 years, with 388 individual scales. We select the complex Morlet 
wavelet with the center frequency /b = 1.5. That is, for the time vector with 
N = 209 samples t = 2000/M1 - 2017/M5, we set the vector of the period T to be 
equidistantly distributed between maximal ( T m a x ) and minimal (T m i n ) length of the 
period T m a x = 16 years (192 months), T m i n = 0.5 years (6 months) corresponding to 
the vector of frequency / with minimum and maximum of: 

/min = 1 /T m a x = 0.0625 year"1, / m a x = 1/T m i n = 2 year"1. (9.3) 

For the number of scales 388, we can set the vector of scales s 

•s -j. j <smin ~T T~ 9, <smax — — 288, (9.4) 
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for /b = 1.5 and St = l / / s = 1/12 (for monthly data). 
In the case of the T F estimation via the TEAR, we use the Burg approach for 

coefficient estimates on 40 samples with 39 samples overlay, and the Hann window. 
The optimal value of the lag order is based on AIC criteria. The parameters of the 
STFT are set to correspond to the T E A R settings (40 samples, 39 samples overlay, 
Hann window) to simplify the process of the combined methods. 

9.5 Empir ical Results 

After the preliminary analysis, we follow these steps: (i) we perform the C W T 
and STFT modelling of each series to obtain the spectrograms; we use the signifi­
cance testing via STA. For the robustness check of the results, we apply simulations 
of background noise levels, according to the Chapter 7.1.2, with 1000 iterations; 
(ii) we perform adaptive L A B testing of the wavelet spectrograms; (iii) we do the 
cross-check of the (i)-(ii) results via enhanced spectrogram transform tested for its 
robustness by simulations of background noise levels; (iv) we compare and discuss 
the achieved results. 

Although the T F method, especially the C W T , allows the modelling of a non-
stationary time series, we decide to transform all input time series via the first order 
difference (FOD), because it can easily remove the long-term trend. Moreover, it is 
not possible to do the standard logarithmic transform before F O D L O G for scattering 
reduction of the data, i.e. we can expect the persistence of a long-term component 
in C W T as an edge effect. Additionally, we check the results for both series, with 
and without a long-term trend. In accordance with the graphical processing and 
to insure a better visibility of detected areas, we decide to use detrended data via 
FOD. The long-term trend (i.e. cycles from 48 to 192 months) in T F transform of 
all indicators was present during all time. To make the orientation in the description 
of the results easier, we are going to divide the cyclical behavior into three basic 
regions: the short-run cycles (SR-C) of duration <12 months, the short cycles 
(S-C) of duration 12-20 months and the medium cycles (M-C) of duration 20-48 
months. Denote that the wavelet spectrogram in the short-run cycles in our paper 
can contains seasonal and some cyclical component. 

9.5.1 CWT and STFT Spectrograms Tested by STA 

In our empirical analysis, we focus on the C W T modelling mainly due to its wide 
range of economic applications and its popularity among economists. Further, the 
C W T has a better time resolution compared to the STFT and the T E A R [20,81,84] 
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Fig. 9.3: C W T and STFT spectrogram tested by STA. The yellow/red (dotted 
line) curves in all figures indicate a significant area found by STA/simulations of 
background noise levels. 

which is important for economic applications in general. To confirm the C W T re­
sults, we use the STFT method which estimates the spectrogram in the moving time 
window, therefore, it can differ in low frequencies (due to the window used). Both 
C T W and STFT transforms are tested by standard STA test. For the robustness 
of the results both transforms (CWT and STFT) are also tested by simulations of 
background noise levels. 

Comparing the C W T (Fig. 9.3a, c) and the STFT spectrograms (Fig. 9.3b, d), 
we can find two differences in the significance areas: (i) using the C W T transform, 
we identify a long-term trend component covering cycles of the approximate length 
of 48 months during the time range, while in the case of the STFT it is not present; 
(ii) the significant areas for the C W T and the STFT are different. While for STFT, 
STA and simulations of background noise levels identify similar significant regions, 
in case of C W T , simulations of background noise levels show a wider and also an 
additional of significance. 
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The first difference mentioned above can have several reasons. It can be caused 
be the existence of the edge effect of the C W T transform called the cone of influence 
(COI). As written in [23], the COI is a usual problem for finite-length time series 
and may occur at the beginning and at the end of the spectrogram or the PWS 
representation. The second reason is the nature of the Fourier transform [81]. The 
persistence of a long-term trend component could be also expected with respect to 
the F O D L O G transform, as we mentioned at the beginning of the Results section. 
Such an assumption is partially confirmed by the results of the STFT which is not 
so sensitive to the long-term trend. In other words, if the data contain the long-
term trend component represented by the long cycles (low-frequency component) 
occurring in the time period shorter than the moving window part (which is 40 
samples in our case, i.e. approximately 36 months), the STFT will not identify it. 
Despite the fact that STFT has this limitation, we can identify the existence of the 
long-term trend component in the sub-period of Households and Corporates. Then, 
we can admit the existence of cycles of 30-48 months duration despite the existence 
of the C W T edge effects. 

In the case of the second difference (except the long-term trend component ex­
plained above) we assume that it is caused by STA testing which evaluates the 
significance with respect to the fixed variance calculated in all-time range and does 
not consider the data character, i.e. the volatility of the values. Then, an event 
(such as the 2008 crisis) may suppress the significance of other events. It is also im­
portant to note that for the STFT results, the resultant figures have a shorter time 
axis caused by the STFT methodology. Thus, C W T transform tested by classical 
STA approach can lead to misleading results. Therefore, the STA test seems to be 
insufficiently adaptable to the volatility changes. 

9.5.2 LAB significance testing 

As the next step to adapt to the volatility changes in C W T testing, we proceed 
with an adaptive form of STA testing, i.e. local-adaptive-based testing. Comparing 
Fig. 9.3a,c and Fig. 9.4 and taking into account the adaptive nature of L A B testing, 
we can conclude that the L A B testing of PWS spectrograms generally confirms the 
C W T spectrogram tested by simulations of background noise levels. The differences 
in the significant areas identified via STA and the L A B testing in C W T figures is 
caused by the changing volatility in the data. This fact should imply that STA 
approach may not be able to find all significant regions. That is, the denominator of 
the testing statistic given in (7.2) is a constant value and it is the total variance for 
the time series (i.e. one fixed number). Therefore, in this case we prefer the results 
of the L A B testing of C W T due to its adaptability. 
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Fig. 9.4: Wavelet spectrograms tested by L A B test. 

9.6 Robustness Analysis 

9.6.1 Enhanced Spectrogram Modelling 

As an alternative approach which considers data volatility we propose the enhance­
ment spectrogram modelling (defined in Chapter 6) tested via simulations of back­
ground noise levels. The enhanced transform is the display of the C W T , T E A R and 
STFT spectrograms of one-time series in one chart for obtaining the best possible 
T F representation. Since the C W T has a better time resolution compared to the 
STFT and T F A R (they are better in the frequency resolution) [20,81], we decide 
to use the combination of the T F results via simple multiplication. This method 
is based on a simple idea that important components in the same positions (time 
and frequency) will be strengthened and methodical residues should be suppressed. 
The resultant spectrograms according to (9.1) have been called 'enhanced' and are 
presented in Fig. 9.4a-b. Due to the STFT and T F A R limitations we expect a worse 
ability to capture the long-term trend component. Since the application of STFT 
and T F A R causes the shortening of the sample size, all figures below (Fig. 9.4) are in 
the shorter time range 2001/9-2015/9 compared to the C W T (Fig. 9.3a-d). Further, 
the comparison of C W T and enhanced spectrograms is evaluated in this shortened 
time range. A l l enhanced spectrograms are tested via simulations of background 
noise levels. 

Comparing Fig. 9.3a, c, Fig. 9.4 and 9.5, and taking into account the methodol­
ogy nature of individual approaches, we can conclude that the enhanced approach 
generally confirms the influence of data volatility on the C W T spectrogram testing. 
That is, we confirm that it is important to take into account the data character 
during the T F significance testing. 
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Fig. 9.5: Enhanced T F pictures. 

9.6.2 Comparison of Achieved Results 

Since the results show that the enhanced spectrograms and L A B testing of C W T 
spectrograms generally provide the same results, we will demonstrate the difference 
between STA testing and the L A B testing of C W T spectrograms. The summary of 
the significant regions is shown in Tab. 9.1. 

For Households and Corporates, both testing approaches for the short-run cycles 
have, in general, similar results till 2013. In 2013-2017 there is the difference in case 
of Household, where the L A B approach identify additional cyclically (i.e. seasonal 
or cyclical component). In the short cycles, the L A B testing identified additional 
significant cyclical behavior compared to STA. In the case of medium cycles, the 
L A B testing identified a wider time-region with a significant cyclically. Such simi­
larities are possible because, analyzing Fig. 9.2, we can see that the Households and 
Corporates time series do not show a serious problem with the data volatility. The 
bigger differences occur when comparing both testing approaches. STA was not able 
to reveal any cyclically (i.e. seasonal or cyclical component) in the short-run cycles 
and any cyclically in the short cycles in Households after 2013. In case of Corpo­
rates STA was not able to reveal any cyclically in short term cycles. In the case of 
the medium cycles, the identified areas via STA are smaller. Such a shortcoming of 
STA testing was expected also from the comparison with the STFT results. 

As we stated in the sections above, the significance via STA does not consider 
variation in the data variability and takes a fixed variance for all data samples. 
Therefore, this testing indicates the significant areas of the cyclically with respect 
to the all-time range. This leads to the suppression of other possible significant 
areas by the biggest shocks (the financial crisis). Moreover, the identified areas 
are smaller or are not even identified. On the other hand, using the L A B testing 
uncovers and confirms the existence of previously omitted areas. In this way, we are 
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Test Short-run cycles Short cycles Medium cycles 
(<12 months) (12-20 months) (20-48 months) 
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Tab. 9.1: Significant area of wavelet spectrogram over frequency intervals. 

able to evaluate the cyclical behavior of lending activities in the time window with 
a higher precision. 

Based on the performed analyses and after a detailed examination of the results, 
the methodological findings can be summarized in the following recommendations. 
In the case of constant volatility in the data, STA approach is plausible. We can 
also recommend and use this test if we want to evaluate any event in the time series 
with respect to the all-time range. In cases of increasing or decreasing volatility in 
the data, the overall variance can be affected. In this case, we recommend L A B 
testing, due to its adaptability, or enhanced spectrogram modelling. 

9.7 Discussion 

In this chapter, we have presented and compared the results of three approaches 
(CWT and STFT tested by STA and simulations of background noise levels, L A B 
testing of C W T , enhanced spectrogram modelling) applied to the cyclically descrip­
tion of bank loan activities. We recognized that the volatility in the data influences 
the type of testing and we, therefore, recommend using the L A B testing of C W T or 
enhanced approach. In this section, we discuss interpretations of achieved results in 
the economic context. 

First, the general results given by C W T with the STA testing (Fig. 9.3a-d, 
Tab. 9.1) show that the financial crisis was reflected in both economic sectors, but 
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in a different way. We found the most extensive reaction to the crisis in the behavior 
of Households. The reactions were strong particularly in the years around the crisis 
across all frequencies (from short-run to long cycles), and in the years just before 
and after the crisis in the quick movements represented by the short-run cycles (i.e. 
in seasonal and some cyclical components). In the case of Corporates, the financial 
crisis did not cause any significant reactions during and after the crisis. We can find 
only one reaction, i.e. the disappearance of short-run cyclically. 

Next, due to new approaches, i.e. adaptive L A B testing or enhanced spectro­
gram modelling, we can evaluate the above-mentioned general results with a better 
precision. In the case of Corporates, there is an important area in the short-run cy­
cles which covers seasonal and cyclical components and during the crisis. After the 
crisis, there is no significant area, probably as a result of the credit crunch. The L A B 
testing for Corporates (Fig. 9.5a, Tab. 9.1) reveals the important pre-crisis and crisis 
period 2002-2010 in the short-run frequencies (up to 12 months; i.e. seasonal and 
some cyclical components) and the unique short cyclically (12-20 months). Thus, 
we can see that the reaction of Corporates to the crisis was very limited without 
any strong impact on the post-crisis time. 

At the same time, the situation for Households is different; the financial crisis 
of 2008 can be taken as an important factor having a strong impact on cyclically. 
The new approaches (Fig. 9.4b and 5b, Tab. 9.1) show several important areas: (i) 
the first area can be identified in the time 2000-2016 in the short-run cycles (up to 
12 months; i.e. in the seasonal and some cyclical components); (ii) the second in 
the time 2001-2012, 2014-2015 in the short cycles (12-20 months); (iii) the third 
in the medium cycles in the time 2006-2012. We can see a very strong reaction to 
the crisis, which was reflected across all frequencies around and after the year 2008. 
Before 2008, a significant area lies (similarly as for Corporates) in the short-run 
cycles which covers seasonal and some cyclical components. After the crisis, we 
can find an important area in the short-run and the medium cycles. Therefore, we 
can confirm our previous results that the cyclical movement of loans to Households 
during the financial crisis was the most significant. In the case of both sectors, we 
can also see the medium cycles (12-20 months), but due to the COI (discussed in the 
previous sub-section), we can admit its existence in 2007-2011, i.e. shortly before, 
during and after the crisis. 

Overall, our results can be summarized as follows. The financial crisis of 2007 
and 2008 had a significant impact on the cyclical behavior of both categories of 
economic sectors analyzed in our paper, but in a different way and with a different 
intensity. Moreover, the character of the cyclical behavior was different before and 
after the crisis. In the case of Corporates, we do not see any significant cyclical 
behavior after the crisis. This fact could be caused by a stronger position of large 
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firms which have more financing possibilities than small firms and both banks and 
nonbanks provide short-term financing to large firms rather than smaller firms [85]. 
Small firms are also connected to small banks [86] and this may influence the lending 
activity of small banks as they are more influenced by economic distress and infor­
mation asymmetries compared to large banks [87]. However, the ongoing banking 
consolidation and a reconstruction of internal organization of banks in recent years 
have caused the fact that the bank size is not as important for small business lending 
as before [88]. As such, this sector could be presented as a relatively stable sector 
with the least volatile lending activities. On the contrary, in the case of Households 
sector, the crisis was a very important event causing changes in the volume of lend­
ing activity and thus economic or financial distress may cause huge fluctuations in 
the spending of households which are also substantial for the economic growth of a 
country. This fact is documented in [85] who argue that banks tend to limit lending 
to households while they may rise loans to firms at the same time. However, in [89] 
is stated that it is lending to firms, and not lending to households, that has a posi­
tive impact on economic growth and limits income inequality through the financial 
development, better capital allocation and economic transformation. Therefore, the 
lending activities in the sector of Households showed the most extensive cyclical 
behavior and this sector could be characterized as the sector which was influenced 
by the financial crisis most significantly. In this context, it would be advisable to 
stabilize these fluctuations in lending activities of households using various economic 
policy measures. Many studies confirmed the existence of the cyclical behavior of 
the lending activities (see [61,90-92] and others). However, we bring new findings 
about the short- and medium-term cyclically in these two economic sectors via the 
T F transform. 

9.8 Chapter Conclusion 

This chapter deals with the identification of the time-frequency regions describing 
the cyclically of bank loans activity before, during and after the financial crisis in 
2008. We proposed the local-adaptive-based testing and the so-called enhanced time-
frequency spectrogram modelling and compare them with standard classical testing 
of C W T and STFT spectrogram. The demonstration of the methods was proposed 
only on seasonally unadjusted monthly financial data of bank loans provided to two 
categories of economic sectors in the Euro Area in 2000-2017. We identified areas 
of cyclically in the lending activities and found an important impact of the crisis 
on data volatility which further influenced the type of significance testing of wavelet 
spectrograms. The results confirmed the usability of the newly proposed approaches, 
i.e. L A B testing of C W T spectrogram and enhanced spectrogram modelling, in those 
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case the data have a changing volatility. In the case of constant volatility, the STA 
testing approach of T F transform gave the same results. 

The proposed approaches extend the methodology related to studying short and 
medium cycles as they can be applied also in the case of volatile data. Applying 
the methods, which were conducted only on seasonally unadjusted monthly data, 
enables us to detect a faster reaction to a specific change, which further enables a 
faster response from the economic policy makers. 

From the economic point of view, the results show that the crisis in 2008 had an 
impact on the cyclical behavior of corporates and households, but in a different way. 
The most remarkable influence of the crisis was identified in the households. Here, 
the reaction was relatively strong during and after the crisis. Therefore, we can 
identify Households as a more sensible sector reacting to changes, such as the 2008 
crisis. At the same time, the less dynamics is apparent in Corporates, with severe 
fluctuations mainly in the period before the financial crisis. Therefore, Corporates 
seems to be less affected by the crisis compared to Households and this finding may 
be of high importance for policy makers when formulating and implementing their 
economic policy measures in a period of crisis. 

On the other hand, the cyclically of Corporates was mainly dominated by 
the short-run cycles (which includes seasonal components) and the medium cycles. 
Therefore, Eurozone policy makers should take this information into account. We 
need to point out that the presented research did not distinguish between the sup­
ply and the demand factors of lending activities, i.e. whether the movement was 
caused by banks or by economic agents. In this context, we bring interesting findings 
showing the cyclically in economic sectors of corporates and households. 
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10 Co-movement (Sub-)lndicator 
This chapter is based on following published journal paper: 

POMĚNKOVÁ, J.; KLEJMOVÁ, E.; M A L A C H , T. "Co-movement (Sub-) Indi­
cator as the Measurement of the Synchrony of E A and Visegrád Group Countries". 
Journal of Economics, 2020, vol. 68, no. 3, p. 231-251. 

Abstract The paper deals with the construction of a co-movement indicator suitable 
for assessing the synchrony between countries. The indicator is represented as a time 
series and its construction is based on a reconstruction of a co-spectrum measure 
from the time-frequency to the time domain. We use the statistically significant 
part of the power wavelet co-spectrum for pairs of countries. A n advantage of the 
newly proposed co-movement indicator is no loss of observations (such as in the 
case of correlation) and a possibility to construct sub-indicators which correspond 
to the predefined frequency range, e.g. business cycle frequencies. In such a way 
we can obtain a decomposition of the (total) co-movement indicator (which covers 
the full range of frequencies) into, for example, short-run cycles, medium and long 
business cycles and long-run cycles. The proposed methodology is demonstrated 
on the US and E A monthly data of industrial production index in 1991-2018. A 
further application is performed on the E A and Visegrád Group Countries with 
the same data type and time range. The results confirm the globalization of the 
world economy and a transfer of the 2008 crisis into European countries economies. 
Further, it is shown that the synchrony of the E A and Visegrád Group of Countries 
is the most striking in medium business cycle frequencies covering the cycles of the 
length 1.5-4 years. In the case of Hungary, the synchrony is also visible in the short 
cycles of the length <1.5 years. The obtained co-movement (sub-)indicators can 
be further used in regression analyses for researching the relation with economic 
indicators, such as bilateral trade or investment to reveal additional information 
about interconnections of the countries. 

10.1 In t roduc t ion 

The globalization of economies has been reflected in many areas of the particular 
country economy, and thus is still at the forefront of economic analysts' interest. It 
can be studied in many contexts, i.e. business cycle synchronization between coun­
tries, financial globalization and its effect on monetary policy, emerging markets, 
financial or goods markets, the influence of globalization on social life, etc. The 
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transfer of shocks from the economy of one country to other countries can signifi­
cantly influence the evolution of regional as well as world economy. The crisis in 2008 
which started in the USA, or oil crisis in 1970s are one of the most visible examples. 
In case of the European area we can mention another example which is the adoption 
of Euro currency leading to the Optimum Currency Area (OCA). Specifically, the 
O C A started a huge amount of analyses of business cycle (BC) synchrony in various 
forms. 

The analysis and measuring of globalization was also reflected in the development 
of methodological tools. Standard techniques, such as regression analysis, correla­
tion, co-integration, vector autoregressive modelling, all in its basic or modified form 
are still in usage and can give valuable results [36,93]. However, these methods are 
not flexible enough to provide an in-depth view into the cyclical character of eco­
nomic data and do not capture the cyclical structure as a function of time. In the 
last decade wavelets, especially co-movement wavelet analysis, have become a pop­
ular instrument. This methodology has been known in engineering for a long time, 
but it is quite young in economics. A n increase in its came with the analysis of 
B C synchrony, O C A and the reflection of structural shocks in economies. Wavelets 
can be applied on non-stationary data, they have a very good time-frequency local­
ization, and it is possible to reconstruct the transformed values back into the time 
domain [29]. 

The globalization between China and G7 countries via wavelets was assessed by 
[80]. They proved that the co-movement between the countries differs with respect 
to the frequency in which the co-movement is being evaluated. In [36] the syn­
chrony between China, Japan, the US and other Asia Pacific countries is analyzed 
via wavelet power spectrum and found out that the strength of B C synchroniza­
tion fluctuates across frequencies and over time. Another study in this field [20] 
uses cross wavelet power spectra and wavelet coherence to show that a closer B C 
synchronization can lead to a stable and effective monetary union. In [39] different 
approach is used: the rolling wavelet correlation between the stock markets' index 
returns of the PUGS countries with the U K and Germany at different frequencies. 
Their results show that in low-frequencies the PUGS stock markets are more corre­
lated with Germany, while in high-frequencies with the U K . The interconnection of 
financial globalization and monetary policy effectiveness was studied [94], where is 
empirically quantified that the financial globalization has a net impact on monetary 
policy effectiveness. The relation between the Korean Republic and the European 
Union, which signed the trade agreement in 2010 (EU-Korea FTA) , motivated [95] 
to research the globalization effect between Visegrád countries (V4: the Czech Re­
public, Hungary, Poland and the Slovak Republic) and the Republic of Korea. The 
author identifies the impact of South Korean direct investments on trade. He states 

8-1 



CHAPTER 10. CO-MOVEMENT (SUB-)INDICATOR 

that the EU-Korea F T A agreement is an important step in the process of globaliza­
tion of economies serving the interests of the most competitive economies. Further 
he claims, that V4 countries are passive players and will continue to remain so as 
long as they are highly dependent on the effects brought about by foreign direct 
investments. 

This chapter deals with the description of the synchrony between two time series 
via the construction of a co-movement indicator. The indicator is constructed on 
the basis of time-frequency co-movement measure, i.e. coherence between two time 
series. After the identification of the significant part of the coherence via statistical 
testing, the significant co-moved part of the time series is reconstructed into the 
time domain leading to the time representation of the co-movement indicator. A n 
advantage of this indicator is its time domain representation, which contains infor­
mation about the significant frequency of the co-movement regions. Further, the 
methodology of its construction allows a selection of frequency regions according to 
the researcher's focus, e.g. B C frequencies, or the construction of the corresponding 
sub-indicators. The proposed indicator is demonstrated on the industrial produc­
tion index of the US, E A and Visegrád Group of countries between years 1991-2018. 
The indicator thus enables us to asses how the co-movement between the US and 
E A , E A and V4 countries evolves. 

In the following, we propose the diagram (10.1) and the description of the algorithm 
for the co-movement indicator construction. Let us two time series x(n) and y(n), 
n = 1,..., N. The construction follows these steps: 

Step 1: The estimation of the co-movement measure, i.e. PWCS or coherence, for 
both time series. 

Step 2: The partition of the co-movement measure into regions with the significant 
and insignificant co-movement, i.e. the construction of the mask 

10.2 Me thodo logy 

10.2.1 An Algorithms for the Co-movement Indicator 

where the threshold thr 0.25Z(1 - a) is given by TC98 testing (7.5). 
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Fig. 10.1: Co-movement indicator construction. 

Step 3: Creation of modified PWCS (MPWCS) which contains only the significant 
part of PWCS by applying the mask: 

MPWCS(a,r) = \Sxy(a,T)\2 M(a,r). (10.2) 

Consequently the I C W T is used to transform this product into the time do­
main, i.e. the construction of the time representation of the co-movement indi­
cator. Or, ICWT of the pre-defined frequency region (e.g. B C frequencies) of 
this product into the time domain to construct the time representation of the 
co-movement sub-indicator corresponding to the pre-define frequency region. 

10.3 Da ta Descr ip t ion 

The data set consists of the seasonally adjusted monthly data of IPI from O E C D 
database [40] for the the US, EA19 (EA) and Visegrád Group of countries (V4), 
i.e. the Czech Republic, Hungary, Poland and the Slovak Republic, between years 
1991/M1-2018/M5. 

As we examine T F selective filtering based on co-movement between the growth 
cycles of selected countries, we transform the data to F O D L O G values. For the 
time-series co-movement via PWCS calculation we set the scales corresponding to 
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the range of 1 year to 10 years, with 257 individual scales. We selected the complex 
Morlet with the center frequency /b = 1.5 as the mother wavelet [29]. 

The co-movement indicator was constructed for all frequencies (all scales) leading 
to the time representation of the total co-movement indicator. We also construct 
the time representation of the co-movement sub-indicators corresponding to the 
frequency sub-ranges. The division of the frequencies re-calculated to the length 
of cycles is the following: the short-run cycles (SC) of duration <1.5 years, the 
medium B C of duration 1.5-4 years, the long B C of duration 4-8 years and the 
long-run cycles (LC) of duration >8 years. 

10.4 Results 

The application was done on the data described in the previous part according to 
the algorithm described in the methodology (Section 2.4). First we demonstrate 
the proposed algorithm on the case of co-movement between the US and the E A . 
Secondly, we apply this algorithm on the co-movement of the E A and V4 countries 
and present the resultant time domain figures for the total co-movement indicator 
as well as for the sub-indicators corresponding to the pre-defined frequency regions. 

10.4.1 Demonstration of the Co-movement Indicator 

The proposed algorithm demonstrated on the case of the US and E A co-movement 
follows the steps given in Section 2.4. Firstly, we estimate PWCS (Figure 10.2a)) of 
both countries. Secondly, we construct the mask on the basis of TC98 significance 
testing of PWCS, i.e. we identify significant and insignificant parts of PWCS ac­
cording to the formula (10.1). Then, we multiply the PWCS (normed by variances 
of the US and E A time series) by the mask to obtain time-frequency co-movement 
representation. Thirdly, we calculate the inverse transform of the normed PWCS 
which is an analogy as for C W T (eq. (3.10)), and we obtain the time representation 
of the total co-movement indicator in the time domain (Figure 10.2b). 

Further, for a detailed look into the co-movement indicator behavior, we split the 
masked normed PWCS into the frequency sub-regions according to the description 
given in Section 3.1. Similarly, as in the case of total co-movement indicator, we 
calculate the inverse transform of a frequency sub-region of the masked normed 
PWCS, which leads to the time domain representation of the sub-indicators and 
corresponds to the pre-defined frequency regions (Figure 10.3). 

The first overview of the PWCS (Figure 10.2a) suggests that the most significant 
event in both countries is the global economic crisis in 2008. Therefore, the shape of 
the total co-movement indicator, i.e. the full range of frequencies, is not surprising. 
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Fig. 10.2: Co-movement of the US and E A . 

We can see an increase of the synchrony in 2002-2008, with a peak in 2008, followed 
by a decrease of the synchrony in 2008-2014. The inflexion points determine the 
period 2006-2011 of the concave indicator shape. In this interval we can find the 
most energy of the PWCS and thus the strongest co-movement of both countries. 

When we focus on the sub-indicators in Figure 10.3 in the pre-defined frequency 
sub-ranges, we can see a similarity of the medium B C co-movement indicator shape 
with the total co-movement indicator shape (i.e. the curve corresponding to all 
frequencies in Fig. 10.3). Based on this we conclude that in the B C frequencies 
of the duration 1.5-4 years the economies are the most synchronised. The other 
sub-indicators, i.e. SC, long B C and L C frequencies, contribute to the overall syn­
chronisation less, because in the PWCS there are no other significant areas in the 
frequency and the time (see PWCS, Figure 10.2a)). The long B C sub-indicator 
summed with the medium B C indicator cause the total indicator enlargement, while 
the SC sub-indicator causes the augmentation of the peak in 2008. The L C indicator 
has the lowest contribution to the total co-movement indicator. In both countries, 
the E A and the US, the global crisis in 2008 significantly influenced developments 
in the countries and demonstrated the interdependence, and thus globalization of 
economies. 

10.4.2 Application on the EA and V4 Countries 

Similarly to the demonstrated case, in the case of the E A and Visegrád countries 
we firstly look at the PWCS figures (Figure 10.4a-d). In all four figures we can 
identify the most significant co-movement during the global financial crisis, more 
or less extended across the frequencies, depending on the country. In the case of 
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Fig. 10.4: PWCS of E A and V4 countries. The yellow curves in all figures indicate 
a significant area of PWCS. 
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Fig. 10.5: The total co-movement indicators for V4 and the E A (all frequencies). 

the E A and the Czech Republic, the Slovak Republic and Poland the significant 
co-movement prevails in the L C , long B C and medium BC. In the case of the E A 
and Hungary the significant co-movement is visible in all frequencies in the 2008 
crisis. A l l these facts are reflected in the co-movement indicator as well as in the 
sub-indicators. 

The total co-movement indicators of the E A and all V4 countries for all fre­
quencies is shown in Figure 10.5. We can see a proximity of the co-movement of 
the Czech Republic, Poland and the Slovak Republic with the E A during the time 
range; in the case of Poland the indicator achieved a little bit lower value of the 
peak in the 2008 crisis. In the case of Hungary, the indicator has a similar shape, 
except for the shape in the time 2007-2009 when a significantly higher level of peak 
was achieved. This fact is explained by the SC co-movement sub-indicator. 

Further, we focus on the sub-indicators. In the case of SC co-movement sub-
indicator (Figure 10.6a) we can see a proximity of the Czech Republic and the Slovak 
Republic in the shape of the curve. In the case of Poland, the SC sub-indicator does 
not contribute much to the overall country co-movement, i.e. the E A and Poland 
do not have co-movement in these frequencies. The opposite situation has occurred 
for Hungary where the co-movement in the SC plays an important role. As we 
can see in the PWCS figure (Figure 10.4), the co-movement with the E A covers all 
frequencies during the crisis time, which is reflected in the SC sub-indicator. 

In the medium B C frequencies, similarly to the US and E A case, the Visegrád 
countries and the E A are the most synchronized and the medium B C co-movement 
sub-indicator (Figure 10.6b) contributes most to the total co-movement indicator 
(with respect to the amplitude of the indicator). Therefore, we can expect a similar 
reaction of countries to the situation in the E A which primarily reflected the situ­
ation in the US. In the case of Hungary we can see a higher position of the peak 

91 



CHAPTER 10. CO-MOVEMENT (SUB-)INDICATOR 

in 2008. The inflexion points of all medium B C co-movement sub-indicators are 
determined by the period 2006-2010. In this interval there is the highest amplitude 
(i.e. the most energy) of the PWCSs. 

The long B C co-movement sub-indicators (Figure 10.6c) between the E A and 
V4 countries have a similar shape for the Czech Republic, Poland and Hungary. 
The co-movement sub-indicator for cycles longer than 8 years (Figure 10.6d), i.e. 
L C sub-indicators, contributes less to the total co-movement indicator in all coun­
tries, and thus to the co-movement of the country and the E A . In the case of the 
Czech Republic (with respect to the indicator amplitude) we can state that the 
long B C sub-indicator has the same contribution to the total indicator as the SC 
sub-indicator. 

10.5 Chapter Conclusion 

This chapter is focused on the description of the synchrony between countries via 
a co-movement (sub-)indicator. The indicator is constructed as the reconstruc­
tion of the significant power wavelet co-spectrum from the time-frequency to the 
time domain. There are two advantages of the indicator: i) contrary to the cor­
relation coefficient, concordance index or other metrics, the co-movement indicator 
is a time series represented in the time domain without any loss of observations; 
ii) the methodology of co-movement indicator allows the construction of the total 
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co-movement indicator as well as the construction of the sub-indicator which corre­
sponds to the predefined frequency range (e.g. B C frequencies). According to the 
aim of interest we can divide PWCS into frequency sub-regions and then construct 
sub-indicators. 

The proposed methodology is demonstrated on the case of the US and E A . We 
found out that both subjects are synchronized mainly in medium business cycle fre­
quencies covering cycles of the length 1.5-4 years. Further, we could see an increase 
of the countries co-movement in the area of ±6 years around the global economic 
crisis 2008. A consequent application is presented on measuring the synchrony be­
tween the E A and Visegrád Group of Countries. Similarly, as in the case between 
the US and E A , the synchrony of E A and Visegrád Group of Countries is the most 
important in medium business cycle frequencies. Only in the case of Hungary we 
additionally identified the same importance of short cycles of the length less then are 
1.5 years for the synchrony. That is, the crisis in Hungary was reflected in a wider 
range of frequencies then are in the Czech Republic, Poland and the Slovak Repub­
lic. The results confirm the fact of globalization of economies and the transfer of 
important shocks, such as the 2008 global economic crisis into European countries. 

The obtained co-movement (sub-)indicators can be further used in regression 
analyses, as presented by [80] or [96] for the research of the relation with economic 
indicators, such as bilateral trade or investment to reveal more information about 
economic interconnections and influencing factors. 
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11 Co-movement Selective Detection Filter 
This chapter is based on following published journal paper: 

P O M E N K O V A , J.; K L E J M O V A , E. "Co-movement Selective Detection Filter 
to identify time series co-movement indicator or to filter out symmetric economic 
shocks". Digital Signal Processing, 2021, vol. 114, p. 1-14. 
DOI: 10.1016/j.dsp.2021.103033 

Abstract The paper deals with designing a mask suitable for a selective filtering 
of data. The design of the mask is performed in the time-frequency domain and 
the selection is based on the co-movement measure of time series. We propose two 
approaches for the mask construction: i) hard thresholding based on x2 testing; ii) 
adaptive based thresholding. The proposed mask can be used for time series filter­
ing in which we obtain either the adjusted time series or the construction of the 
time series containing only the co-moved parts. Further, after computing an inverse 
transform we can obtain time series with/without the co-moved area applicable for 
consequent econometric analyses. The paper provides recommendations concerning 
the selection of a particular approach in a given situation. The proposed methodol­
ogy is demonstrated on the adjustment of industrial production index of Euro Area 
and selected G8 countries about co-movement with the US. 

11.1 In t roduc t ion 

A large number of econometric analysts use filtering when processing data. They are 
usually interested in a decomposition into the long-term trend and oscillations. After 
that, the filtered time series is taken as an input to further econometric analyses. 
Filtering techniques are viewed not only from the perspective of removing the trend 
component, but also from the perspective of identifying trend-breaks, outliers, or its 
removing ability [97,98]. 

For a long time, the filtering of time series prevailed in the time-domain rep­
resented by deterministic [99,100] or stochastic methods [101], or their combina­
tions [102]. The time series processing in the time-domain is simple, but is not able 
to remove a specific frequency range and, in some cases, is inflexible in the long-
term trend modelling. Unfortunately, time domain approaches are weak in capturing 
a cyclical character of the time series and need parameter optimization. Therefore, 
analysts began to use methods in the frequency-domain, i.e. low-, high- or band­
pass filters [31,103,104], or a windowed filter as proposed by [105]. Such approaches 
are more flexible and are widely used in the economic area for the business cycle 
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(BC) analyses [106]. A n alternative point of view is filtering via eigenvalue-based 
decomposition [57,107,108], which allows a decomposition of the time series into 
the number of components. Then, some of the components can be removed and the 
others can be reconstructed into the time domain. The drawback is an arbitrari­
ness of the decision what will be removed. This deficiency can be solved by the T F 
selective filtering [109]. 

The T F methods have come to the forefront of the interest in many scientific 
disciplines; engineering [26,110], geoscience [111,112], biomedical [113]; social sci­
ences, or economics [38,114]. The popular T F techniques are the Short Term Fourier 
transform, the time-frequency autoregressive method or the wavelet transform. As 
Wang et. al [115] wrote, wavelet transform has a good T F localization which en­
ables the focus on any detailed time and frequency domains of input time series. 
The methods can be used for analysing time series, either individual or in the co-
movement. The latter is very popular among economists [20,116,117]. As many 
experts agreed, the main advantages of wavelets are: the use for non-stationary data 
(i.e. we do not have to solve the problem of stationarity and possible autocorrelation 
in data), the ability to uncover unique complicated patterns over time and a good 
time resolution [20,36,39,81,110,118]. The wavelets give a possibility to estimate 
and describe the cyclical structure as a function of time, and they show how the 
different components of a particular time series evolve [20]. We may say that the 
increase of wavelet use among economists was brought by the research in the op­
timum currency area (OCA), by the analysis of the business cycle synchronization 
and by the the globalization of economies [37,93,118,119]. T F methods can also be 
used for thresholding or shrinkage, which are popular as instruments for the image 
and signal de-noising [115,120]. A different approach common in engineering uses 
neural networks [121] or a combination of methods to improve the performance of 
signals [122,123]. 

The use of hard, soft and adaptive threshoding applications in engineering great 
popularity of wavelets among economists motivates us to improve our earlier study 
[84]. This previous research employed the hard threshold for the co-movement-
selective filter which was applied to filtering out symmetric macroeconomic shocks 
from individual time series. There, the hard thresholding was based on the analyst's 
experience, while the current study proposes a more sophisticated approach based 
on statistical testing. We apply the approach according to Torrence and Compo 
(TC98) [23] who were the first to propose algorithms for significance testing of power 
wavelet spectrum, the cross-spectrum and the linear coherence. A n improvement of 
their work was provided by Ge [25,55]. The algorithm presents several assumptions 
to test the significance of the power wavelet cross-spectrum. That is, inputs are two 
independent G W N and thus the power wavelet co-spectrum is the product of two 
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X2—distributed random variables. Further, using the Bessel function, we can test 
whether the power wavelet cross-spectrum coefficients are significant with respect to 
the variance of each time series. Notice that the authors of the mentioned publica­
tions work with a constant variance of input time series. A n alternative approach for 
the testing is using the simulations of background noise levels as proposed in [17,26]. 

11.1.1 Chapter Contribution and Organization 

We have determined that the literature does not deal with the following: firstly, how 
the T F transform of the time series with a transient character and changing volatility 
should be tested for an objective identification of its significant parts; secondly, how 
we can adjust time series about transient parts; thirdly, how we can identify the 
time domain representation (without a loss of data) of time series co-movement (the 
loss of data is a typical problem of e.g. correlation). 

On the basis of the T F analysis and standard testing according to TC98 [23] (for 
the detail description of this approach, see Chapter 7) we propose a novel approach 
useful for applications: 

• a method for mask construction based on the significance testing for co-
movement selective detection filtering. Considering the character of data, we in­
vestigate two approaches for the mask construction: i) via hard thresholding based 
on the x2 testing according to TC98 [23]; ii) via adaptive thresholding considering 
the data character. 

• an approach for identification of two-types of time series: either the time series 
adjusted about the co-moved part, or the time series containing just the co-moved 
part. Both series can be obtained after the co-movement selective filtering and the 
inverse transform in the time domain. 

• an investigation of proposed approaches on simulated and real data. 
• a recommendation for the use of proposed approaches. 
To demonstrate the proposed methodology, we use an industrial production index 

of the the Euro Area (EA) and selected G8 countries, i.e. US, E A , U K , Japan and 
Russia. Based on the existence of globalization of economies in the world, we expect 
the existence of the co-movement. A l l these countries somehow reacted to the US 
sub-prime mortgage crisis in the country cyclical movements of economic activity, 
thus we can observe fluctuations in the country B C , in investment activities or con­
sumer spending etc. Therefore, the proposed methodology is useful for economists, 
especially policy makers, to analyse cyclical movements and the synchronization as 
well as dissimilarities of macroeconomic indicators. The contribution of the method 
is illustrated by removing the symmetric shock from the macroeconomic time series 
in the T F domain with the US as the reference time series. 
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11.2 T h e Wave le t Trans form, Co-movemen t Mea ­

sures and its Test ing 

The algorithm for the co-movement selective filtering presented here is designed for 
the W T because of its advantages, especially very good time resolution and usability 
for non-stationary time series [20,110,124], and for the power wavelet co-spectrum, 
as the co-movement measure [23,31]. It can be modified for the Short Term Fourier 
transform and for different co-movement measures such as coherence [23,25,55]. As 
these methods are well known, we do not describe them in this paper. Instead, we 
focus on the description of testing approaches for the co-movement measure. 

11.3 A n A lgo r i t hm for t he Co-movemen t Select ive 

De tec t ion Fi l ter 

A n algorithm for the co-movement selective detection filter is based on two processes, 
i.e. transformation plus analysis and reconstruction. The transformation process 
consists of the T F modelling (WS and PWCS analyses) and masking. The recon­
struction process inversely transforms time series from the T F to the time domain. 
Figure 11.1 proposes a block diagram describing this algorithm. 

11.3.1 An Algorithm for the Co-movement Selective Detection 
Filter 

The proposed method for the identification of the time series co-movement indicator 
or for filtering out a symmetric behaviour is designed as follows: 

1. Time-frequency transform 
Transform time series x(t) and y(t) using C W T resulting in wavelet spec­
trograms Sx(a,r), Sy(a,r) (eq. (3.6)) and wavelet cross-spectrum Sxy(a,r) 
(eq. (3.18)) respectively. Alternatively, another co-movement measure as co­
herence could be used. 

2. Decision about type of thresholding 
Decide the method for identifying the threshold of wavelet cross-spectrum 
coefficients WCS and find the threshold thr, i.e. decide for the method of the 
mask M design via standard or adaptive thresholding (see Sec. 11.4). 

3. Mask design 
Divide the wavelet cross-spectrum in power form, i.e. PWCS \Sxy(a,r)\2, into 
regions with significant and insignificant co-movement of x(t) and y(t) based 
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Fig. 11.1: Block diagram of co-movement detection filter algorithm.We use the fol­
lowing abbreviations: WS denotes the wavelet spectrogram coeffcient (Sec. 3.6). 
PWCS denotes the power wavelet cross-spectrum (Sec. 3.18), HT denotes Hard-
Threshold Masking (Sec. 11.4.2), SAB denotes Segmentation-Adaptive-Based Mask­
ing (Sec. 11.4.3) and L A B denotes Local-Adaptive-Based Masking (Sec. 11.4.3). 

on the threshold thr. That is, we construct the mask M: 

1 (significant co-movement), \Sxv(a,r)|2 > thr 
M(a,r) = { ' (11.1) 

0 (insignificant co-movement), \Sxy(a,T)\ < thr 

The term "significant co-movement" denotes statistically significant PWCS 
values which will be identified via statistical testing. See Sec. 11.4 for a detailed 
description of this testing. 
The PWCS coefficients are used due to the complex valued cross-spectrum for 
the majority of practically used mother wavelet functions. 

4. Decision about desired application 
Decide what the desired application is. We investigate two cases: i) if the 
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application is to remove the co-moved part from the time series, or ii) the 
inverse task, i.e. keeping the co-moved part of the time series and remove the 
part with distinct cyclical behaviour from the time series. 

5. Masking 
i) Create a modified wavelet spectrogram (MWS) by masking i.e. co-movement 
selective detection filtering (adjusted time-frequency transform) 

MWSx(a, r) = (1 - M(a, r)) * Sx(a, r) . 

Analogously for the time series y(t). 
ii) Create a modified PWCS (MPWCS) by masking, i.e. selecting the distinct 
cyclical behaviour leading to the time-frequency transform of a co-movement 
indicator 

MPWCS(a,r) = \Sxy(a,T)\2 * M ( a , r ) . 

6. Transforming to the time domain 
Transform inversely product of masking from the previous step via inverse 
continuous wavelet transform (ICWT, eq. (3.10)). We can obtain: i) adjusted 
time series in the time domain) 

x a d j (t) = ICWT{MWSx(a,r)}. 

Analogously for the time series y(t), we can get y^it). 
ii) the co-movement indicator represented in the time domain 

xc(t) = ICWT{MPWCS(a,r)}. 

That is, we can construct the time representation of the co-movement in­
dicator. Or, we inversely transform the pre-defined frequency region (e.g. 
a sub-part of M P W C S in B C frequencies) of this product into the time do­
main to construct the time representation of the co-movement sub-indicator 
corresponding to the pre-defined frequency region. 

11.4 Mask Design 

In this section we firstly discuss possible approaches for thresholding and and suggest 
when the method is suitable for use. Furthermore we focus on the description of 
the mask corresponding to the thresholding method, i.e. Step 5 in the algorithm 
described in Chap. 11.3. 
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11.4.1 Mask Design 

Let us consider the PWCS coefficients for the time series x(t) and y(t). Based on 
the TC98 significance testing of PWCS we are going to design the mask. We follow 
two basic approaches. One is based on the hard threshold given by the testing via 
STA leading to the so called hard-threshold (HT) masking. The other is based on 
the adaptive threshold identification leading to two possibilities, i.e. local-adaptive-
based (LAB) threshold and segmentation-adaptive-based (SAB) threshold. This 
adaptivity is in time. In both adaptive cases, we propose an improvement of STA 
in the adaptive form. 

If an analyst focuses on the time series adjustment about the co-moved part, or 
on the construction of the co-movement indicator with respect to the full time range 
in order to identify the most important events in the time series, we recommend the 
use of HT masking, i.e. STA. 

The idea of SAB and L A B testing considers the situation when the variance 
of the time series x or/and y in the T D may vary for some sub-period, even for 
a short duration. In this case, the adaptive masking may be more suitable, because 
there may exist events (such as the financial crisis in 2008) having a higher level of 
amplitude in the co-spectrum, which may suppress the significance of other events. 
These events can be usually visible in the time representation of the data (structural 
breaks, outlier or cause changes in the volatility of the data). 

11.4.2 Hard-Threshold (HT) Masking 

The HT masking is based on STA significant testing which is follows the work of 
Torrence and Compo ([23], pp. 69 and 76) for the special case if the background 
spectra is Gaussian white noise and PWCS is the S2 distribution (see also Ge [25, 
55,56]). As described in Chapter 7, the significance level Z(l — a) for the risk a can 
be deduced from 1 — a percentile of the S2 distribution [23,25]. 

Thus, the mask M (see eq. (11.1)) for the HT approach is given by 

M(a,b) 

0 

\Sxy(a,T)\2 > thr 

;n.2) 

\Sxyifli T~) < thr 

where the threshold thr (given by STA according to TC98) 

1 
thr a 

is a fix scalar number for the risk a for all PWCS coefficients. The value of Z(l — a) 
is calculated by STA (eq. (7.6), (7.5)). 

100 

file:///Sxyifli


CHAPTER 11. CO-MOVEMENT SELECTIVE DETECTION FILTER 

11.4.3 Adaptive-Based Masking 

Segmentation-Adaptive-Based (SAB) Masking 

The SAB testing is suitable if we are able to identify the sub-segments with different 
volatility in the data. Firstly, for each time series x(t) and y(t), we identify the 
moments of the change of the time series variance. It can be done by expert estimate 
(usually in the case if the data are filtered by the long-term component and take 
the form of fluctuation around x-axis) or by statistical testing [125]. Secondly, 
we arrange all moments for both time series in the ascending time-order and we 
split the time range into the segments (SG) reflecting volatility changes in x(t) and 
y(t). Consequently, we identify the critical value for the significance testing in each 
segment by STA. 

The proposed SAB masking method is designed as follows: 
1. Identify the moments of the variance change of the time series x(t),y(t) via 

expert estimate or statistical testing. 
2. Arrange all identified moments for both time series in the ascending order and 

split the time range t — 1,..., n into the segments SGj,j = 1,... J reflecting 
volatility changes in x(t) and y(t). 

3. Estimate the PWCS and split it into the segments PWCSj,j = 1,... J ac­
cording to segments SGj. 

4. Construct the segments of the mask Mj(a,r) corresponding to the segment 
SGj, i.e. calculate Mj(a,r) in each segment SGj according to eq. (11.2) with 
respect to the variances of the time series in j—th segment. That is, 

1 \Sxyj(a,r)\2 > thr-j 

Mj(a,r) = l (11.3) 

0 \Sxyd(a,T)\2 < thrj 

Here, in the SGj segment, the threshold 

is a fixed scalar number, a is a risk, o2

Xj02j are variances for time series x,y 
in the time segment SGj and \Sxyj(a, r)\2 is the corresponding part of PWCS. 
The value of Z(l — a) is calculated by STA test, i.e. eq. (7.6) and (7.5). 
Compared to the HT masking, in the case of SAB masking the threshold 
is the vector thr = (thr\,.. .thrj) adaptively changing with respect to the 
variances in segment. 

5. Construct the mask M(a,b) as the composition of the Mj(a,r),j = 1,..., J 
mask segments, i.e. 

M(a,r) = (Mi(a,T),.. .Mj(a,<r)) (11.4) 
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where the j—th (j — 1,..., J) segment of the mask M(a , r) corresponding to 
the time segment SGj as described in eq. (11.3). 

Local-Adaptive-Based (LAB) Masking 

The L A B testing is suitable if the variability of the data slowly increases or/and 
decreases, once or several times during the time range of the series x or/and y. 
Before starting the L A B algorithm, we have to set the value of / - the length of 
a sliding window. Consequently, we can identify the critical value for a significance 
testing in each segment by STA. 

The proposed SAB masking method is designed as follows: 
1. Select the length / of the sliding window as an odd number. 
2. Estimate the PWCS for the time series x(t),y(t). 
3. Calculate the mask Mt(a, r) in each time t = 1,..., n according to (11.5) with 

the variances as described in (11.6), i.e.: 

1 

Mt(a,r) 

\Sxy,t{a,T)\2 > thrt 

\Sxy,t(a,T)\2 < thrt 

111-5) 

and the threshold 
thrt = a2

xt(j2

ytQ.2hZ{l - a) 

is the fixed scalar number in the t—th sliding window, a is a risk. The value 
of Z(l — a) is calculated by STA test, i.e. (7.6), (7.5). The variance axt is 
calculated as follows 

a. x,t 
1-1 l^i=t 

i + ( Z - l ) / 2 
- ( l - l ) / 2 

' £ £ i = i O r ( i ) - a ; ) 2 t e 1 , . . . ( / - l ) /2 

t e n - ( I - l ) /2 + l , . . . , n 

{x{i)-xf t e (I- l ) /2 + l , . . . , n - ( / - l ) /2 

(11.6) 
where / is the odd number representing the sliding window length, x is the 
mean value of the time series x in the sliding window. The variance a2

t is 
calculated accordingly. Compared to the HT masking, in the case of L A B 
masking the threshold is the vector thr = (thri,.. .thrn) adaptively changing 
with respect to the variances in the sliding window. 

4. Construct the mask M ( a , r ) as the composition of the Mt(a,r),t = 1,... ,n, 
i.e. 

M(a, r) = (M x (a , r ) , . . . , M„(a, r)) (11.7) 

where the t—th (t = 1,..., n) part of the mask M(a, r) is calculated according 
to eq. (11.6). 
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11.5 Exper imenta l Results 

To demonstrate the methods described above we present them both on simulated 
signals and on real economic data. In practice, across various non-technical disci­
plines, there are signals or time series for which the exact description of its character 
is not as clear as in technical signals [110]. While in the case of engineering, signals 
can be simulated as the simplification of the composition of several harmonic com­
ponent, in the case of economic data, their structure is more complicated. Usually, 
it contains structural trend-breaks, outliers, cyclical components of close frequen­
cies which can occur or diminish in different time sub-periods (not during the whole 
time), or nested cycles with different frequency limited in time [36-39]. Moreover, 
the nature of economic indicators play an important role and can influence the char­
acter of the frequency structure, e.g. business cycles, financial cycles etc. Then, it 
is quite difficult to simulate the universal behaviour of the economic series and its 
noising with a generalized artificial signal. 

Therefore, we decided to model an artificial signal as a simplification of basic fea­
tures in economic data. That is, a composition of signals which have co-movement in 
time-limited long-term trend (low frequency component), short time-limited middle-
term co-movement with the high amplitude, middle-term co-movement during the 
whole time period (i.e. cyclical fluctuations in B C frequencies) and short-term trend 
(cyclical fluctuations of high frequency, such as seasonality) in the first half of time-
period. 

The quality of the identification of significant co-movement part in co-spectra 
(i.e. T F components) is evaluated via two metrics [126]. The first one evaluates 
how many T F components were significant and were not identified as significant by 
the test, i.e. relevant parts were not identified: 

FN 
M l = — . (11.8) 

TP v ; 

The second metrics evaluates how many T F components were not significant and 
were identified as significant by test, i.e. irrelevant parts were identified: 

FP 
M2 = . (11.9) 

TN V ; 

Here, TP (True Positives) is the number of correctly identified T F components in co-
spectra; FN is the number of T F components in co-spectra which were significant 
but were not identified as significant; FP (False Positives) is the number of T F 
components in co-spectra which were insignificant but were identified as significant; 
and TN is the number of T F components in co-spectra which were insignificant and 
were identified as insignificant. 
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11.5.1 Simulated Data Description 

For testing purposes, we have created four artificial signals, each of the length 1000 
samples. Figure 11.2a) illustrates their time domain representation with constant 
variance, Figure 11.2b) with segmented variance (changing volatility), each for two 
signals. A l l signals were noised with signal-to-noise (SNR) ratio SNR = 10,3.16,2. 
In the simulation, we tried to approach the behavior of economic time series in the 
field of business cycle and synchrony analysis, therefore we selected SNR =10 and 
3.16 as stated above. 

To be in correspondence with the real data analyses, we use the following settings 
during the analyses of artificial signals. For the PWCS calculated according to the 
eq. (3.19), we set the scales in the range 1-10 years divided into 257 individual scales. 
Further, we use the complex Morlet with the center frequency /b = 1.5 as a mother 
wavelet. The L A B testing is done according to Sec. 11.4.3. The sliding window 
length used in the eq. (11.6) is the same for both signals (A and B) and is set to 
I = 36 samples, which corresponds to 3 years. The SAB testing is done according 
to Sec. 11.4.3. As the scope of this paper is not to investigate the optimal method 
for variance segmentation, the number of SGj segments is set to match the number 
of segments in the artificial signals. Thus, j = 5 for the signal A and j = 6 for the 
signal B. 

To be able to quantify the accuracy of the proposed SAB and L A B methods, we 
have created the so called benchmark figure of ideal PWCS ± spread for co-spectral 
components (see Fig. 11.3a. This was done to include energy spread in frequency 
for each individual wavelet. The size of the frequency spread is set as ±15% from 
the maximum in the center frequency of each individual wavelet. As the result, we 
can see a wider co-spectral components represented as yellow blocks in the figures 
(e.g. Fig. 11.3a). In the next step, we calculate the metrics M l and M2 using the 
benchmark representation and the masked PWCS. Further, we noise all signals as 
mentioned in the first paragraph of this subsection and then estimate PWCS of 
signals with constant variance and PWCS of signals with segmented variance. 

In the following figures (Figs. 11.3-11.6), the x-axis represents time, the y-axis 
represents specific periods (cycles in years) and the z-axis represents the values of 
spectrogram. The figures show a two-dimensional projection of three-dimensional 
charts. The intensity of each contour represents the relative importance of the 
different periodicities and time, i.e. from dark blue (low amplitude) to yellow (high 
amplitude) colour. The yellow curve denotes the mask in all figures. 
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Fig. 11.2: Behaviour of a variance of simulated signals in the time. 

S N R = 10 
F N M l [%] A M l [%] F P M 2 [%] A M 2 [%] 

H T 6.44 • 103 12.62 - 5.83 • 104 13.58 -

S A B 6.74 • 103 13.31 -0.60 5.76 • 104 13.42 0.16 
L A B 7.12- 103 13.95 -1.34 5.46 • 104 12.72 0.86 

S N R = 3.16 
F N M l [%] A M l [%] F P M 2 [%] A M 2 [%] 

H T 1.25 • 104 32.66 - 5.25 • 104 13.94 -

S A B 1.27- 104 33.10 -0.43 5.21 • 104 13.80 0.14 
L A B 1.28 • 104 33.60 -0.94 5.16 • 104 13.66 0.28 

S N R = 2 
F N M l [%] A M l [%] F P M 2 [%] A M 2 [%] 

H T 1.89 • 104 59.13 - 4.65 • 104 12.15 -

S A B 1.89 • 104 58.81 0.32 4.65 • 104 12.14 0.01 
L A B 1.89 • 104 58.93 0.19 4.61 • 104 12.02 0.13 

Tab. 11.1: Metrics for constant variance- averages of 1000 simulations. 

11.5.2 Results for Constant Variance 

Next, we identify the significant co-movement of PWCS via HT, L A B , SAB masking 
for SNR = 10 (Figs. 11.3b,c,d) and for SNR = 3.16 (Figs. 11.4b,c,d). Then 
we calculate the metrics FN, FP, Ml, M 2 , A M I , A M 2 (Tab. 11.1). The metrics 
A M I , A M 2 describe how the metrics changed for SAB, L A B with respect to HT. 
As we can see in Figs. 11.3, 11.4 and Tab. 11.1, there are no big differences between 
the results for HT, SAB and L A B masking when the variance of signals is constant. 
That is, the metrics A M I , A M 2 are mostly lower than 1%; in the case of L A B 
(SNR = 10) the metric A M I = -1.34 is a little higher than 1%. 
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11.5.3 Results for Segmented Variance 

As for the signals with segmented variance, we also identify the significant co-
movement of estimated PWCS via HT, L A B , SAB masking for SNR = 10 
(Figs. 11.5b,c,d) and for SNR = 3.16 (Figs. 11.6b,c,d). Then we calculate the 
metrics FN,FP,M1,M2, A M I , A M 2 (Tab. 11.2). Comparing Figs. 11.5b-d with 
Fig. 11.5a we can see that HT masking of PWCS was not able to identify well the 
frequency component corresponding to frequency 0.25 in the second half of the time. 
Moreover, in the case of 0.40, the frequency component PWCS HT masking covered 
a wider range of surrounding components than SAB, L A B masking. This fact is 
also documented in Tab. 11.2. The metrics A M I , A M 2 describe how the metrics 
changed for SAB, L A B with respect to the HT. As we can see, there are differences 
between the results for HT, SAB and L A B masking for segmented variance com­
pared to the constant variance. That is, for the SNR = 10, the metric A M I is 
mostly 11.5% higher; the metric A M 2 is mostly 3% higher. For the SNR = 3.16, 
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(a) Ideal case. 

(c) PWCS SAB masking. 

Fig. 11.4: PWCS and its estimate for 

(b) PWCS HT masking. 

(d) PWCS L A B masking, 

constant variance and SNR = 3.16. 

the metric A M I is mostly 0.5-1% higher; the metric A M 2 is again mostly 3% higher. 
We can see that the metric A M I is more sensitive to the noise level. A n additional 
simulation for SNR=2 confirmed the sensitivity of A M I and the slow decrease of 
A M 2 . That is, the growing noise level causes the increase of false negative compo­
nents and thus the decrease of the level of improvements measured by A M I in HT, 
SAB and L A B . The level of A M 2 keeps a roughly the same level, which means that 
the level of spurious significance given by H T is corrected. Thus we can conclude 
that in the case of segmented variance, H T masking can produce worse results and 
should be replaced by adaptive masking (SAB, L A B ) . The graphical comparison is 
visualized in Figs. 11.5 and 11.6. 

11.5.4 Summary of the Results of Simulations 

To summarize the results from the simulation, we can give the following recommen­
dation. Before the significance testing of co-movement measure, an analyst should 
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S N R = 10 
F N M l [%] A M l [%] F P M 2 [%] A M 2 [%] 

H T 9.01 • 103 21.75 - 6.49 • 104 17.80 -

S A B 4.73 • 103 10.24 11.50 5.53 • 104 14.79 3.00 
L A B 4.70 • 103 10.15 11.60 5.39 • 104 14.36 3.44 

S N R = 3.16 
F N M l [%] A M l [%] F P M 2 [%] A M 2 [%] 

H T 1.07- 104 26.60 - 5.77 • 104 15.54 -

S A B 1.58 • 104 26.23 0.37 4.86 • 104 12.77 2.77 
L A B 1.50 • 104 25.85 0.75 4.71 • 104 12.35 3.19 

S N R = 2 
F N M l [%] A M l [%] F P M 2 [%] A M 2 [%] 

H T 1.49 • 104 41.50 - 4.85 • 104 12.75 -

S A B 1.85 • 104 57.09 -15.58 4.33 • 104 11.23 1.52 
L A B 1.85 • 104 56.87 -15.37 4.20 • 104 10.84 1.91 

Tab. 11.2: Metrics for changing variance - averages of 1000 simulations. 
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(c) PWCS SAB masking. (d) PWCS L A B masking. 

Fig. 11.6: PWCS and its estimate for changing variance and SNR — 3.16. 

identify the behaviour of the time series volatility. If the time series have a constant 
variance, then HT masking is a plausible instrument. If one time series, or both, 
indicates a changing variance during the time (heteroscedasticity), then adaptive 
masking is a proper way how to obtain relevant information. This recommendation 
may be particularly useful for time series for which heteroscedasticity is expected, 
as in the case of economic time series. 

11.6 App l i ca t ion o f t he Results 

11.6.1 Real Data Description 

To demonstrate the proposed methodology we use the seasonally adjusted monthly 
data of IPI from the O E C D [40] database which are commonly used among econom­
ists for business cycle modelling as the macroeconomic indicator of country economy. 
With respect to the globalisation of economies we focused on the E A and selected 
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Fig. 11.7: Industrial production index of selected countries (in the levels). 

G8 countries [40]: the US, Japan, Russia, and the U K . The sample period starts 
with July 1975 and ends in December 2017 for all countries except Russia. In the 
case of Russia, the available data are in the range from January 1993 to December 
2017. This selection was motivated by the following facts: the US was, for a long 
time, the leading world economy causing the crisis in 2008; the E A is taken as 
a representative of 19 European economies; The U K was preselected because of 
Brexit; Japan is an Asia Pacific representative economy; and Russian is taken as 
an East European Asia Country. We examine T F selective filtering based on co-
movement between the growth cycles of the US and the selected countries. The 
data were transformed to F O D L O G values which represent the growth business 
cycles [127] of selected countries. 

Figure 11.7 displayes these business cycles (data in levels) in the time domain. 
Further, the data are transformed into the growth business cycles (i.e. fluctuation 
around a potential product) and are used for the synchrony analysis via wavelets as 
usual by economists [20,36,39,81,118]. 

As a preliminary analysis, assuming the existence of synchrony between the US 
and selected countries, we calculate the correlation coefficients of business cycles 
of selected countries. The synchronization among countries during the economic 
crisis in 2008 is also illustrated in Fig. 11.7. Here we can see the tendency of the 
curves to converge especially arround 2008-2009 time window, which is caused by 
a structural symmetric economic shock, i.e. the global financial crisis. Comparing 
correlation coefficients in the overview given in Tab. 11.3, we can see the influence 
of the sample size on levels of the data and on the FOD transform (growth business 
cycle). We focused on the difference between the time period around the crisis, i.e. 
2002-2014, and the available sample size. As we can see from the FOD transform, 
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US Levels 
1978-2017 1993-2017 2002-2014 

FOD transform 
1993-2017 2002-2014 2008-2009 

Japan 0.7546*** 0.3459*** 0.6255*** 0.1825*** 0.1904** 0.3599** 
UK 0.7605*** -0.0365 0.0607 0.1390** 0.1540* 0.2131 
EA19 0.9721*** 0.9312*** 0.7268*** 0.2963*** 0.3732*** 0.4090** 
Russia 0.6483*** 0.6669*** 0.0781 0.1621** 0. 

Note: statistically significant at: ***!%, **5%, *10% 

Tab. 11.3: Correlation coefficients between US and selected countries. 

the selected countries represent situations with a generally stable correlation during 
the crisis time in 12-year window (Japan, EA) , with an increase (Russia) as well as 
a decrease (UK) in the correlation significance. The table also briefly compares the 
correlations for the data without any transform (in the levels). 

11.6.2 Settings for Implementation 

During the analyses, we use the following settings. For the PWCS calculation, we 
set wavelet scales corresponding to the range of 1 year to 10 years divided into 257 
individual scales. We select the complex Morlet wavelet with the center frequency 
fb — 1.5 as mother wavelet. For L A B testing we set a sliding window for 3 years, 
i.e. 36 samples, with 1 sample step ahead. The choice of Morlet wavelet was 
motivated by the fact that it is a widely used wavelet for the co-movement analysis by 
economists. For the SAB testing, we will describe the number of segments during the 
presentation of particular results. After masking the country wavelet spectrogram, 
we use its inverse transform to obtain filtered time series. In such a way, the inverse 
transform of the whole wavelet spectrogram works as a band-pass filter with respect 
to the scales setting. 

11.6.3 Demonstration of the Proposed Mask Construction 

For the demonstration of the proposed approaches, we choose the US and E A coun­
tries. We concentrate on the removal of all co-movements with the US from the E A 
data. The T F representation re-calculated into the time-scale form is given in the 
PWCS figures (Fig. 11.8(a),(b),(c)). After the testing of the obtained PWCS via 
STA (Fig. 11.8a)), via SAB (Fig. 11.8b)) and L A B testing (Fig. 11.8c)) we construct 
the masks. Then, we partition the T F plane into two regions, with and without sig­
nificant co-movement. In all figures, the border is highlighted as a yellow solid-line 
curve. After the E A spectrogram masking, we inversely transform wavelet coeffi­
cients which correspond to the part without a co-movement. The obtained time 
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series, for all three masks, are depicted in Fig. 11.9. The dotted black line is the 
original time series x (i.e. growth business cycle) obtained via eq. (3.10), the green 
line represents the adjustment via HT, the red line represents the adjustment via 
L A B , the blue line represents the adjustment via SAB. The same denotation is used 
in Figs. 11.10-11.12. To ensure a better visibility of the detected areas, we zoomed 
the figure to a shorter time range i.e. 2006-2012 (the shape of the curves are the 
same before 2006 and after 2012). In this way we obtain time series adjusted for 
significant co-movement parts with the reference (the US) country. 

As presented in Fig. 11.8, we identify the mask via three approaches leading 
to three adjusted time series. The HT masking produce the mask covering cycles 
of the range 5-0.7 years. The most energy of co-spectrum is concentrated in the 
cycles 5-1.5 years; thus, the adjustment via the HT masking removes mainly long 
and business cycles, as well as part of short and very short cycles, from the original 
E A data. As a result, the EA's time series will reduce the fluctuations in the time 
around the crisis. In other words, due to the fact that the mutual movement of 
the countries manifested itself in many different periods then the removal of these 
components from the time series results in its greater smoothness with respect to 
the temporal localization of the co-movement. Next, the HT masking is constructed 
as a selection of a co-movement of countries relative to the full time range. Thus, if 
a significant event occurs, such as the 2008 crisis (which is reflected by a significantly 
higher amplitude in the spectral and co-spectral component) and if we evaluate co-
movement in the whole time range, the significance of other spectral components 
will be significantly lower. 

If we use the L A B or SAB masking, we evaluate the significance in the win­
dow that adaptively calculates the variance. Thus, it marks the components that 
contribute to the overall variance as significant. Because of this, some spectral com­
ponents in other not suppressed, and thus gain in significance. In the case 
of the US and E A , the L A B and SAB masking concentrates most of the PWCS 
energy into long cycles and shows that the most important co-movement is in long 
and business cycles, while the HT masking shows also very short cycles. As the 
result of the adaptability, the high-frequency components are not removed from the 
E A , which results in a lower volatility reduction in the crisis period. 

To validate the results of SAB, L A B masking, we provide simulations of back­
ground noise levels (the red line in Fig. 11.8). We can see the proximity of SAB, 
L A B masking with simulations of background noise levels for presented volatile 
data. Thus, the difference in the significant region identified via STA testing (i.e. 
HT masking) and simulations of background noise levels confirmed the influence of 
the volatility on the testing. The detailed description of simulations of background 
noise levels can be found in Chapter 7.1.2 and [17,26]. 

112 



CHAPTER 11. CO-MOVEMENT SELECTIVE DETECTION FILTER 

0 . 5 6 1 

0.631 

o
 0 7 1 I 

» 0 . 8 3 1 

» 1 I 
L> 

? 1.251 

1 871 

2.5 

5 

(a) PWCS of EA: HT masking. (b) PWCS of EA: SAB masking. 

•f •? t? q? n? n? t? t? n? n? n? t? •?> >? >? n? t? ^^^^^^^^^^^^^ 

(c) PWCS of EA: L A B masking. 

Fig. 11.8: Power wavelet co-spectra. The yellow curve denotes the respective mask 
and the red curve denotes simulations of background noise levels. 

If we assess the E A data, adjusted by the HT masking about the co-movement 
with the US, then we can see that the fluctuation in industrial production without 
a linking to the US is smaller. Conversely, the local effect of interdependence during 
the crisis period (using adaptive masking) results in a greater fall in the index 
value than in the long-term time horizon (using HT masking). Furthermore, the 
adjustment of the local co-movement in relation to the unadjusted data points to 
a larger drop in values, i.e. a larger structural break. Thus, the interdependence 
with the US economy led to a deepening of the structural breakdown of the crisis (a 
high correlation has given a reason to believe that there will be a significant reaction 
and deepening). 

11.6.4 Application to Other Countries 

In this section we present the results for Japan, the U K and Russia. The goal is 
the same as in the previous part, i.e. to filter out the common cycles of the country 
with respect to the US. We are going to present only the adjusted time series of 
the country indicator in the T D (the WCS and PWCS figures with three types of 
masking are available upon request). 
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Fig. 11.10: IPI of Japan adjusted of co-movement with the US. 

As for Japan, the adjustment of industrial production index Fig. 11.10 via the 
HT masking leads to filtering out the cycles of 1-5 years. As a result, fluctuations 
during the 2008 crisis will diminish in the time series. In contrast to the adaptive 
masking, we remove a larger spectrum of cyclical components (long, short and very 
short cycles), which leads to a greater smoothness of adjusted time series around 
the crisis time. As can be seen from the time series graphs (Fig. 11.10), there is 
another fall in mid-2010 after the structural break in 2008. However, the adjusted 
and original values are at the same level. Japan's adjustment with the US, in this 
structural break in terms of B C synchronism, seems to have no effect. The adaptive 
masking in the Japan case shows the most significant co-movement with the US to 
be in the B C (1.7-5 years), while the HT masking shows, in addition, co-movement 
in the area of very short cycles (1.5-0.7 years). As a result of adaptability, the high 
frequency components are not removed from Japan, and further, B C are adjusted 
in the pre-crisis period. This results in less volatility during the crisis. 

If we assess the adjusted Japan data via the HT masking about the co-movement 
with the US, we can see that the fluctuation in industrial production without linking 
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to the US is smaller. On the contrary, the local effect of interdependence during the 
crisis period results in a greater fall in the index value compared to the HT masking. 
Furthermore, the adjusting of local co-movement in relation to the un-adjusted data 
leads to a larger structural break. Thus, the interdependence with the US economy 
leads to the deepening of the structural break. In the case of Japan, the amplitude 
of the drop in the crisis time is larger than in the case of the E A . 

The adjustment of the United Kingdom industrial production index Fig. 11.11 
via the HT masking leads to filtering out the cycles of 2-5 years. As a result, the 
UK's time series will reduce fluctuations during the 2008 crisis. If we compare the 
adaptive masking with HT masking (Fig. 11.11), we can see a very similar mask. 
The PWCS testing shows that the most significant co-movement is in the B C in the 
range of 2-5 years. Contrary to Japan and the E A , in the U K PWCS there are not 
very short cycles. Therefore, the adjusted time series via all three approaches are 
very similar, with primary long- and medium-term cycles adjustments. We conclude 
that the co-movement of these economies is rather low, as evidenced by the small 
difference in the adjusted values of the time series. Thus, lower interdependence 
with the US economy did not cause such a deepening of the structural break as in 
the case of the E A and Japan. 

The adjustment of the Russia index about the co-movement with the US 
(Fig. 11.12) via the HT masking caused filtering out the cycles of 1.5-5 years, mostly 
in the period around the crisis, i.e. 2006-2010. As a consequence, the fluctuation 
in the crisis time is reduced. In the case of adaptive masking, we can see the most 
significant co-movement in the B C , but spread over a wider time period than just 
around the crisis. Contrary to the HT masking, we see a larger amount of PWCS 
energy in the pre- (2001-2007) and the post- (2009-2014) crisis time. The crisis of 
2008 does not occur in the case of adaptive masking for SAB; as for L A B , it can be 
seen only in 2-4 year cycles. As a result of the adaptability, a very small number of 
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Fig. 11.12: IPI of Russia adjusted of co-movemen with US. 

cyclical components are removed from the Russia data. Therefore, the adjusted and 
unadjusted values in 2008 are close to each other. On the other hand, in the L A B 
masking before and after the crisis period, we can see a smaller drop in values than 
the SAB and HT masking. Notice that even with the HT masking, the differences 
between the adjusted and unadjusted values are the smallest of all considered coun­
tries. Similarly, as in the case of the U K , we can see lower interdependence with the 
US economy, which probably did not cause such a deepening of the structural break 
as in the case of the E A and Japan. 

In our work, we selected global economies which are synchronised primarily 
in global features and therefore indirect economic consequences (i.e. idiosyncratic 
shock) specific for the E A were not removed, because they were not synchronised 
with the US. From the co-movement analysis, we selected the financial crisis around 
2008 as it is the strongest and most visible global shock which was transferred to 
the whole world. The adjustment showed that economies such es Euro Area and 
Japan are more synchronised with the US than with the United Kingdom and Rus­
sia. Furthermore, larger economies have larger idiosyncratic shocks which can be 
an important cause of macroeconomic volatility. To explain the above mentioned 
non-removal of certain symmetric economic shocks, our experience reveals ([84]) 
that the reason can be found in economic consequences of global shocks which can 
be transferred into various economic areas and aspects (foreign trade, investigation, 
banking sector, saving etc). Consequently, it can be reflected into a wide range of 
time series frequencies. As we found out in [84], for example in the case of Visegrad 
Countries, small open economies depend mainly on developments in Europe, i.e. 
there is a strong connection to some bigger economy (e.g. Germany), and thus the 
effect of removing co-movement part is most evident between larger economies such 
as the Euro Area countries and the US. 
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The information about the removal or non-removal of symmetric economic shocks 
is valuable for further economic research, so this question is worth investigating in 
a detailed economic context. 

11.7 Chapter Conclusion 

This chapter presents time-frequency selective filtering for the time series adjustment 
based on the time series co-movement measure. We propose a mask which can be 
used for selective filtering (adjustment) on statistical basis. The adjustment means 
removing common components from time series with respect to the reference time 
series. We investigate two approaches, via hard thresholding based on the x2 testing 
and via adaptive thresholding considering the data character. As the result of the 
co-movement selective filtering (which includes masking and inverse transform) we 
obtain two time series, i.e. the time series adjusted about the co-moved part and the 
time series containing just the co-moved part. The adjusted time series can be then 
used for consequent econometric analyses. The validation of the proposed method 
is done in M A T L A B on the application of symmetric shock removal from selected 
G8 countries with the US as the reference country. 

Considering the type of mask construction, our research leads to the following 
recommendations. If an analyst focuses on the time series adjustment about the co-
moved part with respect to the full time range in order to identify the most important 
events in the time series, we recommend the use of hard-threshold masking, i.e. STA. 
If an analyst is interested in the adjustment of economic event with respect to its 
lead/lag influence, especially in the case when this event causes changes in the data 
volatility, then the adaptive masking (SAB or L A B ) is a valuable instrument. The 
choice between the L A B and SAB approaches depends on the evolution of data 
volatility. 

The presented approaches are able to provide an in-depth analysis of the time se­
ries. This can be done via adjustment for the significant symmetric shocks measured 
in the T F domain. In this way, we can investigate the global and regional country 
specific cyclical behaviour. It can be also done via investigating the time series 
representation of adjusted part as an inverse transform of significant co-movement 
regions leading to the construction of a co-movement indicator. 

As can be seen in literature, a large number of economic studies uses T F domain, 
especially wavelets, for an individual time series analysis as well as for a co-movement 
analysis. Thus, the presented approach for the time-frequency selective filtering, or 
for the construction of the co-movement indicator, can be applicable and can reveal 
additional information about the investigated problem focusing on adjusted time 
series. 
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Conclusion 
The doctoral thesis is focused on the current problems and shortcomings of time-
frequency analysis and subsequent significance testing. The presented literature 
review shows current progress and gaps in this field. We found that the literature 
does not deal with the influence of the data character, i.e. data volatility, on the 
significance testing of the time-frequency methods. To include and encompass this 
required data character we selected three types of data. The technical data were 
chosen clS cl SI gnal with known parameters, economic data clS cl SI ernal where factors 
that are often unpredictable may affect or change the character of the data, and 
simulated data for verification. Using these types of data we focus on the issue of 
statistical testing of selected data in order to verify the standard methods and to 
propose methods for cases where the data volatility is changing over time. 

Firstly, a brief methodological background of the most widely used TEA methods 
and co-movement measures is presented. Based on this, we analyze and assess 
selected methods and formulate a recommendation for working with such methods. 
We formulate recommendations for A R process optimization. We list the advantages 
and disadvantages of selected parametric and non-parametric T F methods taking 
into account data character. 

Based on the knowledge mentioned above, the Objective I. is answered. We pro­
pose an approach for the enhancement of T F representation leading to background 
noise suppression. We denote this approach as "Enhanced T F representation". The 
core of this method is the combination/multiplication of several T F approaches. 
Thus, based on this, we can easily identify important areas in the T F representation. 
In specific cases, such as economic data the application of the designed methodology 
allows a more straightforward interpretation from time and frequency perspectives. 
Moreover, it can also be taken as a supplement to the significance testing or simu­
lations of background noise levels. 

Secondly, we propose the evaluation of standard significance tests on synthetic 
and real data. Here, we analyze the behavior of the testing procedure for the esti­
mated spectrogram with respect to the G W N background noise. We use both the 
statistical significance with respect to the x2 distribution and the identification of 
critical values using simulations of background noise. We examine the advantages 
and disadvantages and formulate recommendations for its usage also with respect 
to the signal variance. By evaluating the influence of background noise on test ac­
curacy, we find that the standard method may fail in some cases. In the case of an 
input signal with strong changes in volatility, such as selected economic data, the 
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total variance may not sufficiently describe the character of the data. Taking into 
account the gained knowledge, we further focus on economic data that have this 
character. 

Findings mentioned above help to solve Objective II. We propose two modified 
methods of significance testing. We denote them as segmentation adaptive based 
(SAB) and local adaptive based (LAB) testing. Both of these methods take into 
account the possibility of changing the volatility of input data and adapting to 
it. The SAB method proposes segmentation of the data according to its levels of 
variance and thus providing better results when the changes in data variance have 
step character. The L A B method uses a sliding window and is, therefore, better 
when the variance change is gradual. We also confirm that in the case of different 
volatility levels in inputs, the significance testing needs a more careful interpretation 
of the results. 

Thirdly the Objective III. is answered. We examine the possibility of using sig­
nificance tests for subsequent data filtering. We use the statistically significant part 
of the power wavelet co-spectrum to construct a co-movement selective detection 
filter suitable for assessing the synchrony between two signals. We propose a mask 
construction that can be used for selective filtering, i.e. adjustment, on a statistical 
basis. The adjustment means removing common components from the time series 
with respect to the reference time series. We investigate approaches based on stan­
dard and newly proposed SAB and L A B testing. The advantage of the proposed 
co-movement selective detection filter is no loss of observations (such as correla­
tion). Moreover, it is possible to construct sub-indicators that correspond to the 
predefined frequency range. In such a way, we can obtain a decomposition of the 
(total) co-movement indicator, which covers the full range of frequencies, into the 
required range. 
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