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BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
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A PŘÍBUZNÝCH NÁSTROJÍCH
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Abstrakt
Softwarová verifikace se postupně stává čím dál tím více důležitou součástí vývoje. Jejím
cílem je zajištění kvality výstupního produktu. Navzdory tomuto ale problém psaní dobrých
nástrojů pro statickou analýzu často spočívá v nedostatku dobrého front-endu překladače.
Tato práce se pokouší analyzovat a zdokumentovat existující nástroj, zvaný Sparse, aby byli
vědečtí pracovnící vyzbrojeni stabilním řešením, které jim umožní vyvíjet jejich analyzátory.
V neposlední řadě je taky diskutovaný projekt Mygcc a jeho nový přístup k integraci se
stávajícími překladači.

Abstract
Software verification is steadily becoming important for software developers and companies
to ensure software quality. However, the problem of writing a good static code analysis
tool often stems from the lack of a good compiler front-end. To solve this problem, we try
to analyse and document an existing tool called Sparse to empower software verification
researchers with a ready, stable solution for their projects. Additionally, we also talk about
Mygcc and it’s new approach to integrate with existing compilers.
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Chapter 1

Introduction

In formal verification, static source code analysis refers to the methodology of analyzing
software by converting the software’s source code into an abstract representation that is
suitable for manipulation by various analysis methods. These methods can deduce various
properties about the program in question.

In this work, we are going to take a look at two tools: Sparse and Mygcc. We will
study their capabilities and usefulness for the purpose of static code analysis. In the case of
Sparse, we will also study it’s compiler front-end that parses C source code and transforms
it into a syntax tree. The front-end (as Sparse itself) is heavily undocumented, which is
why we try to summarize its usage in a concise manner to help other people with writing
a static source code analysis tool (or any other application needing a compiler front-end).
The Mygcc tool is an attempt to incorporate static code analysis methods into the gcc
compiler. While the project is, for now, still not successful and widely adopted, we will
show why its potential success could have a profound impact on all software developers.

In the following chapters, we will introduce the Sparse tool that is used to find defects in
the Linux kernel. We will also describe the Sparse library – a compiler front-end supporting
standard ISO C and many GNU C extensions. It is the library that has many interesting
capabilities and empowers the tool itself. After Sparse, we will describe Mygcc and its
intriguing method that enables it to do very powerful code analysis. Even if not perfect
and sound, it is very elegant, fast and easy to incorporate into existing compilers. We
will then describe our own contribution and experience we gained by using these tools and
learning about them.
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Chapter 2

Sparse

Sparse is a semantic parser for C source files written by Linus Torvalds in 2003. It is
a lightweight library implementing a compiler front-end capable of parsing most of the
ANSI C, with support for many extensions used by the GCC (Gnu Compiler Collection)
C compiler. Linus also implemented a simple client program called “check” that serves as
a back-end and uses the library to tokenize, preprocess and parse a C file and print out
warnings issued by the library. Additionally, it also makes few checks of its own. Due to the
name “check” being too generic, Linus later decided to rename it to “Sparse”. Linux kernel
community started to use the Sparse tool for static analysis of the kernel code, especially
since Sparse was able to notice mixing of user-space and kernel-space pointers, which is
strictly related to kernel programming. Sparse is, however, also capable of more generic
checks, like stricter type checking and pairing of synchronization functions [2, 4, 11].

The Sparse tool itself is one of many back-ends that use the Sparse library. These also
include other tools for various purposes: visualization of C code by a graph, transformations
into XML, etc. It is also possible to add a code generating back-end, which would result in
a full-fledged compiler. In the following sections, we will take a more detailed look at how
to use the Sparse tool to check the source code for errors and how the library can be used
to construct a back-end.

Sparse can be downloaded from its homepage1. The Sparse project uses Git as its
version control system. The latest development version of Sparse can be obtained using
Git:

$ git clone git://git.kernel.org/pub/scm/devel/sparse/sparse.git

2.1 Using the Sparse Checker

This section will show what checks can be performed by the Sparse Checker. Whenever we
say “Sparse” in this section, we are referring to the back-end, unless stated otherwise.

2.1.1 Invocation

Sparse is invoked with a list of filenames and options to turn on/off various warnings. A
warning can be turned on by passing a command line option in the form -Wwarning name .
To disable a warning, an option in the form -Wno-warning name must be passed. We can

1http://www.kernel.org/pub/software/devel/sparse/
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-Dname [=value ] Define name as a macro expanding to value (defaults to 1)
-E Stop after the preprocessing phase
-Idir Add dir to the list of directories Sparse will search for header files
-include file Include file in the beginning of every processed file

Table 2.1: Some gcc-like Sparse options

also use the -Wall option to turn on all the warnings, except for those that are explicitly
silenced by a -Wno option. For a complete list of warning options, see [12].

To better integrate with the Linux kernel build environment, which uses gcc, Sparse
by default ignores command line options it does not know. Furthermore, it supports some
gcc options that affect the preprocessing phase of compilation. Some of these are listed in
Table 2.1.

Example

If we wanted to check a file named foo.c for all warnings, except for warnings about non-
static variables and functions that have no previous declaration, we would execute Sparse
as follows:

$ sparse -Wall -Wno-decl foo.c

If we also wanted to make sure that a C preprocessor directive #include looks for files
in a non-standard directory, say, /home/foo/include, and define a macro HAVE CONFIG, we
would invoke Sparse like this:

$ sparse -Wall -Wno-decl -I/home/foo/include -DHAVE_CONFIG foo.c

2.1.2 Verifying Kernel Sources

Since the primary intentions behind creating Sparse were to find bugs in the kernel source
code2, it is very well integrated into the kernel build environment.

Linux is mostly built using GNU Make and Sparse is directly incorporated into its
Makefile structure. Sparse checks the files at the build time. To build the Linux kernel,
one would normally configure it using make xconfig and then executing make. However,
if we also wanted to use Sparse to check files along the way, we would turn on the checking
by adding C=level as an argument to make, where level is either 1 or 2. In case it is 1,
make will only execute Sparse for files that are about to be compiled. If the level is set
to 2, make will check every file, even if it already was compiled before. We can also tell
make what binary it should use for checking, by adding CHECK=/path/to/binary to the
command line. To pass additional flags to Sparse, add CF=sparse flags .

When building the kernel with checking turned on, make will run the compiler on each
file with appropriate command line arguments, which can be unique for each file. After the
(successful) compilation, the same flags are passed to the checker. Hence, Sparse must be
able to either use the passed flags or ignore them. Some of the preprocessor flags supported
by Sparse are shown in Table 2.1. Without these flags, Sparse would fail to correctly parse
the input files due to missing header files.

2Available at http://www.kernel.org/
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Example

To compile and check the whole kernel tree with our own Sparse binary without warnings
about mixing pointers with different address spaces, we could invoke Sparse as follows:

$ make C=2 CHECK=/home/foo/bin/sparse CF="-Wno-address-space"

2.1.3 Code Annotations

In order to use the more advanced tests Sparse has to offer, it is required that the tested
source code contains Sparse-specific annotations. For this, Sparse uses the GNU C specific
attribute specifiers.

An attribute specifier allows a developer to attach characteristics to declarations to allow
the compiler to perform optimizations and better error checking [5]. It is used in the form
attribute ((attribute-list )). The attribute-list is a list of attributes separated by

commas, and can possibly be empty. An attribute is an identifier optionally followed by a
sequence of arguments enclosed in a pair of parentheses. Multiple attribute specifiers can
appear as part of a declaration, adding the characteristics to the declarator [8, p. 299–302].

For example, in code Listing 2.1, we are declaring variable foo and specifying that
gcc should not emit a warning in case it will not be used. Function bar is declared as
non-returning.

1 int a t t r i b u t e ( ( unused ) ) foo ;
2 void bar (char ∗msg) a t t r i b u t e ( ( noreturn ) ) ;

Listing 2.1: Example use of attribute

Sparse makes use of this syntax and defines a few of its own attributes. A problem with
this approach is that not all compilers support the attribute extension and even gcc
does not know about attributes used by Sparse. This means that gcc, or any other compiler,
would not be able to compile such a code. To solve this problem, Sparse automatically
defines macro CHECKER , which can be used by the programmer to conditionally compile
his code, as shown in code Listing 2.2.

1 #ifde f CHECKER
2 # define u s e r a t t r i b u t e ( ( noderef , addre s s space ( 1 ) ) )
3 #else
4 # define u s e r
5 #endif

Listing 2.2: Conditionally use attributes if we are compiled by Sparse

Macro user is now safe to be used with any compiler, but Sparse will recognize the
attributes and will be able to use them. Most of the annotations used in the Linux kernel
are conditionally defined in a similar manner. We will introduce more annotations as we
move along. They are all taken from the kernel source code3

3include/linux/compiler.h

5



Address Space Checking

The address space attribute is especially useful in the context of kernel programming, as
there is a need to make sure that kernel functions will not accidentally access user space
memory. Definition of a code annotation that uses address space attribute can be seen in
code Listing 2.2. Address space is denoted by a number, which is by default 0. If we try to
mix pointers of different address spaces as seen in the code Listing 2.3, Sparse will emit a
warning on line number 3.

1 char ∗ f oo ;
2 char u s e r ∗bar ;
3 foo = bar ;

Listing 2.3: Erroneous mixing of address spaces

Protection Against Dereference

The reader might have also noticed the noderef attribute in the definition of user. An
example of a bad dereference that Sparse will complain about can be seen in the code
Listing 2.4. Both cases (line number 3 and 4) will be caught by Sparse. Note, however,
that this is not the same as pointer mixing in code Listing 2.3, since we wanted to access
the value pointed to by bar.

1 char f oo ;
2 char u s e r ∗bar ;
3 foo = ∗bar ;
4 foo = bar [ 0 ] ;

Listing 2.4: Forbidden dereference of a pointer declared with noderef attribute

Stronger Type Checking

C is relatively weakly typed, which can be source of many programming errors. Kernel
code uses annotations (as seen in code listing 2.5) to enable stronger type checking using
Sparse.

1 #ifde f CHECKER
2 # define n o c a s t a t t r i b u t e ( ( nocast ) ) )
3 # define b i t w i s e a t t r i b u t e ( ( b i t w i s e ) )
4 # define f o r c e a t t r i b u t e ( ( f o r c e ) )
5 #else
6 # define n o c a s t
7 # define b i t w i s e
8 # define f o r c e
9 #endif

Listing 2.5: Annotations for stronger type checking
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Using the nocast attribute in the type declaration will make sure that an implicit
conversion to another type will be caught by Sparse. In this case, warnings from Sparse
can easily be silenced by an explicit cast into the target type.

One typical coding error in the kernel code could be that the programmer would pass
arguments to a function in a wrong order. If an allocation function takes a size argument
and a set of flags, swapping these could lead to hard-to-find bugs [3]. Due to weak typing,
a compiler will implicitly cast the value to the appropriate type and will not treat this as
a bug.

Let us consider this set of bit flags and function alloc:

#define FLAG A 0x1U
#define FLAG B 0x2U

void ∗ a l l o c ( s i z e t s i z e , unsigned int f l a g s ) ;

A programmer intending to allocate 128 bytes with both bit flags turned on could acciden-
tally invoke the function like this:

void ∗ptr = a l l o c (FLAG A | FLAG B, 1 2 8 ) ;

This is obviously wrong, but the compiler will not complain. We can instead declare alloc
like this:

void ∗ a l l o c ( s i z e t s i z e , unsigned int n o c a s t f l a g s ) ;

Now, passing 128 as a second argument will trigger a warning, because a signed value needs
to be implicitly cast into an unsigned value.

Even though this is very useful, it would be much more safer to use the bitwise attribute
instead. Usage of a type with this attribute is heavily restricted by Sparse. It will only
allow bitwise operations and any cast will need to use the force attribute. We demonstrate
its usage in code Listing 2.6.

1 typedef unsigned int b i t w i s e f l a g s t ;
2 #define FLAG A ( ( f o r c e f l a g s t )0 x1 )
3 #define FLAG B ( ( f o r c e f l a g s t )0 x2 )
4 void ∗ a l l o c ( s i z e t s i z e , f l a g s t f l a g s ) ;
5
6 /∗ Bad ∗/
7 a l l o c (128 , 0x2 ) ;
8 a l l o c (128 , ( f l a g s t )0 x2 ) ;
9 a l l o c (128 , FLAG A + FLAG B) ;

10
11 /∗ Good ∗/
12 a l l o c (128 , 0 ) ;
13 a l l o c (128 , FLAG B) ;
14 a l l o c (128 , FLAG A | FLAG B) ;

Listing 2.6: Usage of the bitwise attribute for stronger type enforcement

First, we will use typedef to create a new type, and add bitwise annotation (line 1).
We will then define a set of flags by force-casting integer values to flags t (lines 2–3). It
will be very hard to unintentionally misuse the second argument of alloc. Without using
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the force attribute again, an acceptable argument can only be 0 (which is special) or a
result of bitwise operations on flags defined by us (FLAG A and FLAG B).

Context Checking

Another very useful thing that Sparse can do is the tracking of static “code context”
information [10]. A context has a name and a value, which can be changed as Sparse
analyses the generated control flow graph. We can then put constraints on a function and
specify values that the context must contain on entry and exit. If Sparse determines that
there is a possible code path that would cause the context to be unbalanced, it will emit a
warning. This of course is easily fooled, but should be sufficient in most cases [10]. The most
useful use of these capabilities is pairing functions used for synchronization, e.g. making
sure that if we call lock(), we don’t forget to call unlock().

To change the value of a context, we will use the context (name, value ) statement,
which will increment the value of context name by value. To put a constraint on a function,
we will add attribute context(name,in,out ) specifying that context name must have
the entering value in and exiting value out. Annotations for use by the synchronization
functions, as used in the Linux kernel, are shown in code Listing 2.7.

1 #ifde f CHECKER
2 # define a c q u i r e s ( x ) a t t r i b u t e ( ( context (x , 0 , 1 ) ) )
3 # define r e l e a s e s ( x ) a t t r i b u t e ( ( context (x , 1 , 0 ) ) )
4 # define a c q u i r e ( x ) c o n t e x t (x , 1 )
5 # define r e l e a s e ( x ) c o n t e x t (x ,−1)
6 #else
7 # define a c q u i r e s ( x )
8 # define r e l e a s e s ( x )
9 # define a c q u i r e ( x ) ( void )0

10 # define r e l e a s e ( x ) ( void )0
11 #endif

Listing 2.7: Annotations for context validation

If the functions we want to annotate are called do lock and do unlock, we can define
macros lock and unlock like this:

#define l o ck ( x ) do { a c q u i r e ( x ) ; do lock ( x ) ; } while (0 )
#define unlock ( x ) do { r e l e a s e ( x ) ; do unlock ( x ) ; } while (0 )

Notice that in both cases we enclosed two statements in a do { } while (0) loop. This
is a common C programming idiom to ensure that the resulting macro is safe to be used in
one-line cycles that don’t use braces. When Sparse is doing data-flow analysis, it will use
the context statement to raise the context value. At the end of a function where this
is used, the context must be zero, unless the function itself is marked with the context
attribute.

Let us consider a C data structure named object. Every time we need to manipulate
this object, we are required to call function start operation that will initialize it and
acquire a lock. Then, after we are done with the object, we need to call the end operation
function to clean it up and release the lock. Code for these functions can be seen in code
Listing 2.8.

8



1 struct ob j e c t {
2 l o c k t l ock ;
3 /∗ Other members ∗/
4 } ;
5
6 stat ic void s t a r t o p e r a t i o n ( struct ob j e c t ∗ obj )
7 a c q u i r e s ( obj−>l o ck )
8 {
9 lock ( obj−>l o ck ) ;

10 }
11 stat ic void end operat ion ( struct ob j e c t ∗ obj )
12 r e l e a s e s ( obj−>l o ck )
13 {
14 unlock ( obj−>l o ck ) ;
15 }

Listing 2.8: Annotation of functions acquiring and releasing a lock

With these annotations, Sparse will make sure that every use of start operation()
will be paired with exactly one stop operation(), otherwise it will emit a warning.

2.1.4 Built-in Functions

Sparse provides two extra built-in functions that are especially useful to help avoid danger-
ous usage of C macros. If a C macro does not use its argument exactly once, it is dangerous
since passed expression with side effects will be evaluated more than once (or not at all).
Sparse can be used to protect from these kinds of errors by providing a predicate function
builtin safe p(expr ) which will evaluate to 0 at compile time if expr might cause a

side effect, and to 1 otherwise. An unsafe expression can, for example, be a++, fun(), etc.
To warn the programmer, we can use the builtin warning([cond,] message ) func-

tion, where cond is an optional value determinable at compile time and message is a string.
If cond is missing or evaluates to non-zero, message is printed by Sparse. An example C
macro protected against unsafe usage is in the code listing 2.9.

1 #define MACRO( a ) do { \
2 b u i l t i n w a r n i n g ( ! b u i l t i n s a f e p ( a ) , \
3 ”Macro used in an unsa fe way” ) ; \
4 fun1 ( a ) ; \
5 fun2 ( a ) ; \
6 } while (0 )

Listing 2.9: Using builtin safe p to make a C macro safer

2.2 The Sparse Library

This section will talk about using the Sparse compiler front-end to construct various tools
and back-ends. Whenever we say “Sparse” within this section, we are referring to the
library, unless stated otherwise.
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The library can be used for various purposes and will be useful to anyone who needs a
C compiler front-end for his application. List of possible uses of Sparse include building a
C compiler, or an analysis tool that searches for coding faults.

It is designed to be fast and easy to use, as demonstrated by the code Listing 2.10,
taken from [9]. This code will initialize Sparse by arguments that were passed to it on the
command line, see Section 2.1.1 for the list of possible options. It will then call function
action() passing it all global symbols that were found. Of these, we will of course mostly
be interested in functions.

An interesting fact is that as of this writing, the Sparse Checker itself is only 300 lines
long, while the library is, in contrast, almost hundred times larger. This is brought on by
the fact that the library does all the work, while Sparse itself only implements the context
checks (described in 2.1.3). This means that every back-end can take the advantage of
checks provided by Sparse.

1 #include <spar s e / l i b . h>
2
3 void ac t i on ( struct s y m b o l l i s t ∗syms )
4 {
5 /∗ Analyze symbol l i s t ∗/
6 }
7
8 int main ( int argc , char ∗argv [ ] )
9 {

10 struct s t r i n g l i s t ∗ f i l e l i s t = NULL;
11 char ∗ f i l e ;
12
13 ac t i on ( s p a r s e i n i t i a l i z e ( argc , argv , f i l e l i s t ) ) ;
14 FOR EACH PTR NOTAG( f i l e l i s t , f i l e ) {
15 ac t i on ( spar s e ( f i l e ) ) ;
16 } END FOR EACH PTR NOTAG( f i l e ) ;
17 return 0 ;
18 }

Listing 2.10: Basic usage of Sparse

In this section, we will introduce various functions and data structures used by Sparse
and the client application for manipulation of the generated syntax tree and linearized
byte-code. Among these functions are some that are general enough to be used outside
of Sparse. First, we will take look at pointer lists. After that, we will quickly introduce
functions used by both Sparse and the client program to issue warning and error messages
to the user. After that, we will move on to discussing the structure of the syntax tree and
linearized byte-code. These two sections are most important for us, as they represent the
final output that Sparse produces for us.

Although we are trying to present as much information as possible, reader trying to
write his own back-end will probably not be able to do it without reading at least some of
the Sparse code. Our goal is to merely help the reader to quickly understand and learn the
internals of Sparse. The fact that Sparse is an open-source project with active developers
means that it can quickly change and this paper might potentially become obsolete. The
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developers of Sparse do not even use data-encapsulation and do not maintain a stable
Application Programming Interface.

We should also note that when discussing data structures, we often omit some of their
members. These members are often only of interest to internal Sparse functions that make
optimizations to the linearized byte-code, or are unimportant to us for other reasons. How-
ever, an interested reader is encouraged to read the source code. Written by skilled kernel
programmers, Sparse can also serve as a valuable source of inspiration for beginning com-
piler writers and programmers.

2.2.1 Pointer Lists

Sparse uses singly-linked lists of pointers and provides some useful functions to manipulate
them. Sparse functions often return multiple pointers in lists, which the caller then must
use, so a basic grasp of these functions is necessary. A list data structure for each pointer
type must be created separately, which helps to make the usage of lists more type-safer.
However, because of this, basic functions such as head and tail must be separately created
by the programmer himself (unless he wants to use a lot of explicit casts later).

Creating a List

Before using a pointer list, we first have to declare it with the DECLARE PTR LIST(list name,
type ) macro, where list name is the name of the list and type is the type of the pointers
stored in the list. For example, in the code listing 2.11 we created a new list type with
pointers to struct foo.

1 struct f oo { int a ; } ;
2 DECLARE PTR LIST( f o o l i s t , struct f oo ) ;

Listing 2.11: Declaration of a new pointer list

A new empty list is created by defining a pointer to struct foo list and initializing
it to NULL. A pointer ptr can then be added to a list using the add ptr list(list ptr,
ptr ) function, where list ptr is a pointer to a list. Since a list is a pointer itself, this is
really a double pointer.

A basic usage of a list can be seen in the code Listing 2.12. On line 1, we create a
new foo list named “list”. To create a new foo data structure, we are using function
new foo(val ) which will dynamically allocate it and initializes its member a to val. We
use the new foo functions to create two new foo data structures and add them to the list
(lines 3–4).

1 struct f o o l i s t ∗ l i s t = NULL;
2
3 a d d p t r l i s t (& l i s t , new foo ( 1 ) ) ;
4 a d d p t r l i s t (& l i s t , new foo ( 2 ) ) ;

Listing 2.12: Adding pointers to a list

Note that there is a convention to name lists in the datatype list format, where
datatype is the name of the data structures that we are holding. We will introduce these
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lists without any further explanation, the reader is expected to be aware of this convention.

Traversing a list

The most often used operation on a list is traversal. A list can be traversed either from its
first element to the last one or in reverse. For this, Sparse provides a pair of preprocessor
macros. An opening macro will take a list and a pointer as an argument. The pointer
must be of the same type as pointers in the list. The opening macro is then followed
by a compound statement (enclosed in curly brackets) which contains code executed in
each iteration. The pointer that we passed at the beginning will now point to the current
element. After the compound statement, we must insert a closing macro, which has the
same name as the opening one, but is prefixed by END and takes the pointer we were using
in the compound statement as the only argument.

To traverse the list from the first element to the last, we can use the FOR EACH PTR
macro, pairing it with FOR EACH PTR END macro. To traverse the list from the last element
to the first, use FOR EACH PTR REVERSE instead and end with FOR EACH PTR REVERSE END.
An example is shown in code Listing 2.13. If we consider the previous code in Listing 2.12,
the piece of code in Listing 2.13 will print out numbers 1 and 2.

1 struct f oo ∗ptr ;
2 FOR EACH PTR( l i s t , ptr ) {
3 p r i n t f ( ”%d\n” , ptr−>a ) ;
4 } END FOR EACH PTR( ptr ) ;

Listing 2.13: Traversing a list

Note that while the continue statement will work as excepted, the break statement
will not (it will in fact behave in the same way as continue). The desired functionality,
however, can be achieved through the use of goto.

Other List Operations

Other operations that we often need is to find out if a list is empty and get its first
and last element. A macro that will tell us if list is empty is ptr list empty(list ).
This is a very simple operation, since an empty list is one that equals to NULL, hence the
ptr list empty(list ) macro simply expands into (list == NULL). Nevertheless, the
code is more readable and safer for future changes if we use it.

To get the first element from a list, we can use the first ptr list(list ) function.
The problem, however, is that this function takes a struct ptr list * argument and
returns void *. This requires us to cast our list into struct ptr list * and then cast
the returned void pointer into the pointer type that we want. That is very tedious and
doing it every time we need to do this operation is not comfortable, and can even lead to
programming errors. The best practice for this case is to write a simple in-line wrapper
function around first ptr list(). Since it will be in-lined, compiler will optimize it in
such a way that it will incur no additional performance cost. This approach is also more
type-safe, since the function will always require the list it was made for and the compiler
will warn the programmer if he tries to use the function with an incorrect list.

To get the last element from a list, we can use function last ptr list(list ) which
uses the exact same syntax as first ptr list. We can see an example usage of these three
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functions in code Listing 2.14.

1 stat ic i n l i n e struct f oo ∗ f i r s t f o o ( struct f o o l i s t ∗head )
2 {
3 return f i r s t p t r l i s t ( ( struct p t r l i s t ∗) head ) ;
4 }
5 stat ic i n l i n e struct f oo ∗ l a s t f o o ( struct f o o l i s t ∗head )
6 {
7 return l a s t p t r l i s t ( ( struct p t r l i s t ∗) head ) ;
8 }
9

10 i f ( ! p t r l i s t e m p t y ( l i s t ) ) {
11 p r i n t f ( ”%d\n” , f i r s t f o o ( l i s t ) ) ;
12 p r i n t f ( ”%d\n” , l a s t f o o ( l i s t ) ) ;
13 }

Listing 2.14: Miscelanous pointer list functions

There are some other functions and macros in Sparse for list manipulations that are use-
ful, but less often used. For example, it is possible to modify the pointer while traversing the
list, or concatenate and split lists. We do not discuss all of the list manipulation functions
provided by Sparse here, but a curious reader can take a look at sparse/ptrlist.h.

2.2.2 Initialization of the Parser

Now that we have introduced the basic functions for manipulation of pointer lists, we can
move on to describe functions that are used to initialize Sparse and generate a syntax tree.

Function sparse initialize()

The first function that should be called by a client program is sparse initialize(). The
prototype of this function is in the code Listing 2.15. The argc and argv arguments have
the same semantics as in function main. Thus, argv is an array of strings while argc the
number of argv elements. The third argument is used to pass a pointer to an empty string
list. Declaration of string list, which is sometimes used in Sparse, is also shown in the
code listing. Notice that this is an exception from the list-naming convention. The function
returns a list of symbols that can be used to access the generated syntax tree. We will talk
about them later in Section 2.2.4.

1 DECLARE PTR( s t r i n g l i s t , char ) ;
2
3 struct s y m b o l l i s t ∗
4 s p a r s e i n i t i a l i z e ( int argc , char ∗∗argv ,
5 struct s t r i n g l i s t ∗∗ f i l e l i s t ) ;

Listing 2.15: Prototype of sparse initialize()

Using this function, the back-end developer will save himself from the burden of handling
command line arguments. This is important, because we need to be able to handle some
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pre-processing flags and correctly ignore some gcc flags, to properly integrate with the build
environment, as described in Section 2.1.1.

The function also creates and/or initializes few important objects:

• identifier hash table,

• built-in symbols,

• built-in macro definitions,

• built-in functions.

It also declares the CHECKER macro which is important for the use of code annota-
tions, as described in Section 2.1.3. It will then tokenize and parse files included with the
-include option. The returned symbol list will global symbols found in these files.

Function cosparse()

After Sparse is initialized and we have a list of files, we can feed them to sparse(). The
contents of these files will be parsed and a syntax tree will be generated. The list of global
symbols found will be returned, as with sparse initialize(). The prototype of sparse()
follows:

struct s y m b o l l i s t ∗ spar s e (char ∗ f i l ename ) ;

The sparse() function must be called after sparse initialize(), otherwise it will
not work properly.

2.2.3 Producing Warnings and Errors

During the parsing stage and analysis of the source code, Sparse uses various functions
to present warnings and errors to the user. Most of these warnings and errors directly
relate to the source code that is being processed. The functions are also accessible to the
programmer writing a back-end, since we might write our own checks that are trying to find
bugs. For example, the context checking we described in Section 2.1.3 is implemented in
the Sparse checking tool and not in the library itself, as is the case with most other checks.

Warnings would, however, not be very helpful if they would not identify the file name,
line number and position of the offending construct. Since there are many object types
in the syntax tree (symbol, statement, expression, etc.) that require this information, this
data is concentrated in one data structure – position. All data structures used in the
syntax tree have a position member, conventionally called pos. Members of the position
data structure are listed in Table 2.2. The stream member points to an internal Sparse
representation of input streams, which are identified by integers. A stream can either point
to a file or standard input. We do not need to know much about Sparse streams, but one
useful function is stream name, prototyped in sparse/token.h:

const char ∗ stream name ( int stream ) ;

It will return the name of the stream, which is typically the name of the file. The returned
pointer points to a static buffer, which means that it will be changed after another invocation
of stream name(). Hence, we should use it immediately and not keep it around. Because
of these practices, Sparse is not very thread-safe, but is easier to work with as we do not
have to worry to free allocated memory.
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Type Name Description

unsigned int:14 stream Stream number.
unsigned int:31 line Line number.
unsigned int:1 newline Set to 1 if this is the first token on the line.

Table 2.2: Members of the position data structure

Warning Functions

Both warning and error functions use a classic printf-like format string followed by a
variable number of arguments. First argument is the position data structure. Prototypes
of warning functions is here:

extern void i n f o ( struct pos i t i on , const char ∗ , . . . ) ;
extern void warning ( struct pos i t i on , const char ∗ , . . . ) ;

An example message produced by the warning function:

example.c:10:7: warning: symbol ’a’ was not declared. Should it be static?

Here we can see that the error occurred in file example.c on line number 10 and position
7. If we would use info() instead, the resulting message would be almost the same, except
for the “warning: ” prefix, which would be missing.

These kind of messages should point out dangerous places in the code that might be a
source of errors. In reality, they might still be safe but could have signs of bad programming
practise, like the warning we saw.

Error Functions

If the program encounters a more serious problem that might render the rest of the analysis
unreliable, we need to issue an error and maybe even halt the program. For these kind of
situation, we will use following functions:

extern void s p a r s e e r r o r ( struct pos i t i on , const char ∗ , . . . ) ;
extern void e r r o r d i e ( struct pos i t i on , const char ∗ , . . . ) ;
void d i e ( const char ∗ , . . . ) ;

The first two functions are used in the same way as warning(), but the resulting
message will say “error” instead of “warning”. Additionally, error die() will stop the
program right after printing the error. Function die() can be used to exit after an error
that was not caused by the incorrectness of the analysed source code. This could be an
internal error indicating a bug in Sparse or the client application.

2.2.4 Syntax Tree

As already mentioned, sparse() will provide us with a list of globally defined symbols. To
actually browse through the syntax tree and use it meaningfully, we need to know what
objects it is composed of and how these objects are represented. This section will introduce
syntax tree data structures and various functions that can be used to manipulate them.
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Identifiers

A C identifier is defined as a sequence of letters, digits and the underscore character. It
must not begin with a digit and must not have the same spelling as a keyword [6, p. 21].
An identifier can refer to various things, e.g.: functions, data structures, unions, variables,
etc. [7, p. 195]. In the Sparse library, nn identifier is represented by struct ident, defined
in sparse/token.h. Its members are described in Table 2.3.

Whenever the tokenizer encounters a token beginning with a letter or an underscore,
it will look it up in the identifier hash table. If there is no identifier found, then a new
one is created and added to the hash table. For this reason, Sparse uses the identifier
structure to represent keywords as well. They are simply added to the hash table during
the initialization stage and marked as special (fields reserved and keyword).

Type Name Description

struct symbol * symbols Pointer to symbol data structures that are referred to
by this identifier. The symbols are linked by member
next id in struct symbol.

unsigned char:1 reserved Set to 1 if the identifier is reserved.
unsigned char:1 keyword Set to 1 if the identifier is a keyword.
unsigned char len Lenght of the name string.
char[] name Name of the identifier.

Table 2.3: Members of the ident data structure

A convenience function show ident() can be used to get a textual representation of an
identifier, mostly for debugging purposes. It is provided by sparse/token.h:

const char ∗ show ident ( const struct i dent ∗ ) ;

As with stream name(), show ident() will return a pointer to a static buffer, so it is
necessary to be careful when using it.

Statements

The representation of a statement listed in the table quite straightforward in Sparse. Its
members are listed in Table 2.4. Beside the two members, statement contains a union of
several name-less structs, that are specific for each statement type (see sparse/parse.h
for the complete list) Most of these are very simple.

Let us consider an if statement. It will typically consist of a condition and two state-
ments. One statement is executed when the condition in runtime evaluates to a non-zero
value. The other one is optional, and is executed if the condition does not evaluate to true.
The corresponding Sparse statement will then be of type STMT IF. The if conditional
member will point to the relevant expression data structure and members if true and
if false will point to the two statements.

A compound statement (STMT COMPOUND) is a statement composed of multiple state-
ments enclosed in braces. It can be used anywhere where a statement can [6, p. 262].
The field stmts is a list of pointers to those statements. As a special case, the compound
statement can be the body of a function. If that is the case, the ret field points to a symbol
bound to the return indent. It is used by the linearization routines to serve as a target la-
bel for return statements inside of the block. Another special case is when the compound
statement is created as a result of function inlining. Then, the inline fn member will
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Type Name Description

enum

statement type

type Type of the statement (sparse/parse.h contains the list
of all of them).

struct

position

pos Position of the statement.

Table 2.4: Members of the statement data structure

point to the symbol that represents the in-line function and the args member will point to
a STMT DECLARATION statement, which contains the list of symbols passed to the function.
Such compound statement still uses the ret field for the return statement.

Iteration statements such as for, while and do while are all represented by one
statement type, STMT ITERATOR. This statement contains pointers to symbols representing
continue and break jump targets (members iterator continue and iterator break)
and a list of symbols that are declared in the cycle initial clause (member iterator syms).
This is only applicable to the for cycle. The iterator pre statement refers to the state-
ment that is normally executed before the cycle begins. The iterator pre condition
refers to the expression evaluated on each iteration,. If the pre-condition evaluates to a
zero value, the cycle ends. The cycle body is represented by iterator statement. The
iterator post statement represents the statement executed by the end of each iteration.
Finally, the iterator post condition refers to the cycle condition, evaluated at the end
of each iteration. This condition determines if the cycle should continue. Not all statements
and expressions are required. A missing expression will be treated as if it would always
evaluate to true. This way we can express all three C iteration statements with one com-
mon statement data structure. Figure 2.1 shows these relations in a flowchart. Please note
that a continue statement would jump to the post-statement, whereas the break statement
would jump right in the end.

Expressions

The expression data structure, similarly to statements, contains some common data shared
by all expressions and a union of different data structures that depend on the expression’s
type. The shared members are listed in Table 2.5. Expressions can be classified into several
groups:

• primary : EXPR VALUE, EXPR FVALUE, EXPR STRING, EXPR SYMBOL

• unary : EXPR UNOP, EXPR PREOP, EXPR POSTOP

• type information: EXPR CAST, EXPR SIZEOF, EXPR ALIGNOF

• binary : EXPR BINOP, EXPR COMMA, EXPR COMPARE, EXPR LOGICAL, EXPR ASSIGNMENT

• ternary : EXPR CONDITIONAL, EXPR SELECT

• other : EXPR CALL, EXPR LABEL

Expressions involving operators (unary, binary and EXPR CALL) use the op field to hold
the character that represents the operator. This means that expression expr1 + expr2
will be represented by an expression data structure with type EXPR BINOP, and op ‘+’.
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Figure 2.1: Diagram visualizing the iterator statement

Furthermore, its members left and right will point to the representation of expr1 and
expr2 respectively.

The op member contains the operator character, when the expression involves an op-
eration (if it is one of unary, binary or EXPR CALL). If the expression type is EXPR BINOP
(binary operation), a valid value could be ‘+’, ‘*’, or some other C character literal, for
one-character operators. Some C operators however are longer than one character. To ac-
commodate for this, sparse/token.h defines special token enumeration constants which
can be used. All special token constants are larger than 255 to avoid clashes with one-
character operators. For example, the <= (less or equal) will be represented by SPECIAL LTE.
Some even take up three characters, like >>= (right shift assignment) which is represented
by SPECIAL SHR ASSIGN.

Type Name Description

enum expression type type Expression type (see sparse/expression.h).
int op Operator (see sparse/token.h for all operators).
struct position pos Position of the expression.
struct symbol * ctype Type of the expression.

Table 2.5: Members of the expression data structure

Sparse expression parser also makes some transformations on expressions that are inter-
changeable. Array subscription will be transformed into addition and dereference. Indirect
member selection operation will be transformed into dereference and direct member selec-
tion operation. See Table 2.6.
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From To

expr1[expr2] *(expr1 + expr2)

expr1->member (*expr1).member

Table 2.6: Equivalent transformations done by the expression parser

Figure 2.2: Relation between identifier, symbols and scopes

The ctype field is filled in by constant expression evaluation functions. The expression
parser only fills this in for integer literals. After the parsing is done, sparse() invokes the
evaluate symbol() function:

stat ic struct symbol ∗ eva luate symbol ( struct symbol ∗sym ) ;

The syntax tree is traversed and for every expression that is found, its ctype member is
filled in. For every implied cast there is a new expression created, with different type.

Symbols

Symbols can represent types, variables, functions, labels, and some other things. A C
identifier represented in Sparse is only a string with no semantics. A Sparse Symbol, on
the other hand, is defined by a name and type information.

In C, the same identifier can be used to name different things. This is called overloading,
and the correct resolution is made by looking at the context where the identifier is used [6,
p. 77]. Symbol then belongs into, what is called an overloading class, or name space [6, p.
78]. In Sparse, the term “name space” is preferred. There can also be another symbol with
same name space, but with different scope. In code Listing 2.16, we can see that identifier
foo is used three times and each one is a different symbol. The situation is also illustrated
in Figure 2.2.

1 struct f oo foo ;
2
3 void fun ( void )
4 {
5 int f oo ;
6 }

Listing 2.16: Symbol foo with different name space and scope

To enable correct overloading, the symbol data structure contains information about its
name space and scope, as can be seen in Table 2.7.
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The symbol data structure contains fields used by all symbols and a union of three data
structures. Using these data structures is then only allowed if the symbol belongs to the
right name space. Two of these are used for preprocessor symbols (directives like #define
and macros). However, the directives belong to the file scope, and hence are not included
in the syntax tree generated by sparse(). Also, preprocessor macros are expanded during
the preprocessing stage. The third data structure applies for the other name spaces has its
members listed in Table 2.8. Since we don’t have to worry about preprocessor symbols and
macros, we can treat symbols as if these members were shared.

Type Name Description

enum type type Type of the symbol (see sparse/symbol.h for list of
types)

enum namespace namespace Name space this symbol belongs to (see
sparse/symbol.h for list of name spaces).

struct position pos Where this symbol was declared.
struct ident * ident Identifier with which this symbol is associated.
struct symbol * next id Next symbol that shares the same identifier. The

symbol is unlinked when the scope terminates.
struct scope * scope Scope of this symbol. Only last until the scope is

ended.
void * aux Pointer for auxiliary data, to be used by the

back-end.

Table 2.7: Members of the symbol data structure

Type Name Description

unsigned long offset Offset from the beginning of a data
structure. Only applicable if this symbol is a
member of a data structure.

int bit size Size in bits, -1 if not applicable.
struct expression * array size Expression used to specify array size.

Applicable if the symbol type is SYM ARRAY.
struct ctype ctype Type of the symbol.
struct symbol list * arguments List of function arguments. Applicable if the

symbol type is SYM FN.
struct statement * stmt case statement.
struct symbol list * symbol list List of data structure members. Applicable if

the symbol type is SYM STRUCT or SYM UNION.
struct expression * initializer Initializer expression for declarations, enum

members, or expression used in typeof().
struct entrypoint * ep Entry point to the linearized byte-code. See

Section 2.2.5.

Table 2.8: Additional members of the symbol data structure
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Representation of a C Type

A C type is represented by the ctype data structure, assisted by the symbol data structure.
The list of its members can be seen in Table 2.9. The base type member points to the sym-
bol that represents this type. Symbols for basic built-in types are created by init ctype(),
in file sparse/symbol.c. This function is in turn called by sparse initialize(). The
ctype structure itself then only helps by adding modifiers to the type, since having a symbol
for every modification would be impractical.

The modifiers field is set to a value obtained by doing a bitwise OR with multiple
modifier constants. The constants can be classified as follows:

• storage class specifiers: MOD AUTO, MOD REGISTER, MOD STATIC, MOD EXTERN,

• type qualifiers: MOD CONST, MOD VOLATILE,

• type specifiers: MOD CHAR, MOD SHORT, MOD LONG, MOD LONGLONG,

• function specifier : MOD INLINE.

Type Name Description

unsigned long modifiers Modifiers. List of them is in
sparse/symbol.h.

unsigned long alignment Alignment in bytes.
struct context list * contexts List of contexts (applicable to functions).
unsigned int as Address space, default 0.
struct symbol * base type In case this is not a basic type (e.g. we’re a

struct) point to the symbol that represents the
type.

Table 2.9: Members of the ctype data structure

Scope

Scope of a declaration is an area of a C program in which the declaration is visible [6, p. 75].
The symbol data structure contains a scope field that temporarily points to the scope of
that symbol. The structure representing the scope in Sparse is defined in sparse/scope.h.
List of its members can be seen in 2.10.

Type Name Description

struct token * token Starting token of the scope.
struct symbol list * symbols List of all symbols in this scope.
struct scope * next Next scope.

Table 2.10: Members of the scope data structure

Symbol scoping in Sparse is relatively simple. There are four global pointers to scope
structures: block scope, function scope, file scope and global scope. Each repre-
sents a different scope type. With the use of the next field, the scopes are stacked on
top of each other, and the four pointers serve as starting points. There is always only one
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global and file scope. The file scope is destroyed and created on each sparse() invocation.
Function and block scopes are restarted as well when this happens. Starting and ending of
a function scope will also have the same effect on the block scope as well.

Normally, the scopes are created and destroyed by Sparse, but the global and file scopes
can be used by the programmer. The file scope particularly can be of interest to someone
who also wants to access preprocessing directives and macros, which use the file scope. An
example usage of this can be seen in c2xml.c and ctags.c distributed with Sparse. The
file scope will be destroyed and a new one will be created with each invocation of sparse(),
so any analysis requiring macros has to be done between the calls.

2.2.5 Linearized Byte-code

Sparse also provides a set of functions and data structures for generation of “linearized
byte-code”, which is basically a Control Flow Graph. The byte-code is represented by
entry points, basic blocks, instructions and so-called pseudos.

An entry point contains a list of basic blocks. A basic block consists of series of in-
structions with no branches, except for the last instruction, which is always a branch or a
return. The branch will always target the beginning of a basic block. There is always only
one basic block for each entry point that contains the return instruction [13].

A simple code example in Listing 2.17 when converted to the linearized byte-code will
look as in Figure 2.3. We can see here that BB1 is the first basic block. The seteq
instruction will compare %arg1 with a constant literal 1 and store the result into register
%r2. It will then branch off (instruction br) depending on the result. If the equality holds,
it will jump to BB2, which will simply call function f(1) and unconditionally branch to
BB5. Otherwise, it will jump to BB3 and do another test, and so on. In any case, the
control flow will eventually get to the terminating basic block BB5. After call f(3) is made,
the return instruction will be executed. One could wonder why the registers are numbered
2 and 4 instead of 1 and 2. This is because Sparse uses various optimization techniques
which can optimize whole basic blocks out. This can cause registers to get lost and Sparse
does not make any effort to reuse them. It should be noted that this code does not really
get executed (although a back-end could do that), the byte-code is only used for analysis.

1 void fun ( int arg )
2 {
3 i f ( arg == 1)
4 f ( 1 ) ;
5 else i f ( arg == 2)
6 f ( 2 ) ;
7 f ( 3 ) ;
8 }

Listing 2.17: Simple code used to visualize the linearized byte-code

To linearize a symbol, one would pass it to the linearize symbol() function:

struct ent rypo int ∗ l i n e a r i z e s y m b o l ( struct symbol ∗sym ) ;

The resulting entrypoint structure can then be used to access the basic blocks. If the
symbol is not a function, NULL will be returned. We will now describe the data structures
in a bottom-up manner, starting at pseudos and finishing up by entry points.
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Figure 2.3: Entry point and basic blocks visualizing code 2.17

Pseudo

Pseudo represents a variable and is used as an argument for instructions. As with other
Sparse data structures, pseudo contains members that are shared by all pseudo types and
a union of members that depend on the type. The members are listed in Table 2.11, the list
of union members is in the second part of the table. There is a typedef in sparse/lib.h
that is important to know:

typedef struct pseudo ∗pseudo t ;

Type Name Description

int nr Pseudo number, unique for pseudos of the
same type. Not applicable to pseudos of type
PSEUDO VOID, PSEUDO SYM and PSEUDO VALUE.

enum pseudo type type Pseudo type.
struct pseudo user list * users List of pseudo users.
struct ident * ident Identifier of the symbol this pseudo was

created from.

Depending on type

struct symbol * sym Symbol this pseudo was created from. Only
applicable to pseudos with type PSEUDO SYM.

struct instruction * def Instruction where this pseudo is created.
Applicable to pseudos with types PSEUDO REG,
PSEUDO ARG and PSEUDO PHI.

long long value Value of the pseudo. Only applicable to
pseudos with type PSEUDO VAL.

Table 2.11: Members of the pseudo data structure

A special global pseudo called VOID is used as a return value indicating an invalid pseudo,
similarly as NULL is used by functions returning a pointer. Pseudos that are numbered have
a number that is unique for their type across the entire run-time of the program. Pseudos
of types different than PSEUDO VOID, PSEUDO SYM and PSEUDO VAL

Here is the list of pseudo types used by Sparse:
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• PSEUDO VOID: used for the special VOID pseudo.

• PSEUDO REG: register.

• PSEUDO SYM: symbol.

• PSEUDO VAL: value.

• PSEUDO ARG: function argument.

• PSEUDO PHI: special pseudo for φ functions.

Every instruction that uses a pseudo can be found using the users field, which is a list
of pseudo user data structures (Table 2.12). The pseudo user structure contains a pointer
to the instruction that uses the pseudo and a pointer to pseudo t. Since pseudo t is a
pointer by itself, this is a double pointer and allows us to easily replace the pseudo in the
instruction itself. The code Listing 2.18 demonstrates this.

Type Name Description

struct

instruction *

insn Instruction using the pseudo.

pseudo t * userp Pointer to the address where the pseudo pointer is stored
in the instruction.

Table 2.12: Members of the pseudo user data structure

1 pseudo t o ld ;
2 pseudo t new ;
3 struct pseudo user ∗pu ;
4
5 FOR EACH PTR( old−>users , pu ) {
6 ∗pu−>userp = new ;
7 } END FOR EACH PTR(pu ) ;

Listing 2.18: Replacing pseudo old for pseudo new

Instruction

Sparse uses a relatively high-level instruction set that often corresponds directly to the
C operations [13]. Members of the instruction data structure are listed in Table 2.13.
Most important one is the opcode field which specifies what kind of instruction this is.
Additionally to the fields listed in Table 2.13, instruction contains one big union of data
structures that are each used by different type of instruction. The whole data structure
can be seen in sparse/linearize.h.

Most of the instructions take arguments, make a calculation and store it into the target
pseudo. The jump instructions use the cond field instead of target. It is used to determine
where to jump. The branch instruction (OP BR has two possible basic blocks to jump to.
They are pointed to by bb true and bb false. If one of them is NULL, the branch will
act as an unconditional goto. An other case is the switch instruction (OP SWITCH). It
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Type Name Description

unsigned int:8 opcode Instruction opcode, see cosparse/linearize.h for a
complete list.

unsigned int:24 size Size of instruction operands.
struct basic block * bb Basic block this instruction belongs to.
struct position pos Position. Inherited from the symbol, statement or

expression that was being linearized while the
instruction was created.

struct symbol * type Type of the resulting pseudo.

Depending on opcode

pseudo t target Pseudo getting the result of the instruction.
pseudo t cond Condition for branch and switch instructions

(OP BR and OP SWITCH).

Table 2.13: Members of the instruction data structure

contains a list of the multijmp data structures, which contain a target and an integer range
(Table 2.14). If cond is in range, the jump will be made. If end is less than begin, the
target will be treated as default.

Type Name Description

struct basic block * target Jump target.
int begin Minimum value.
int end Maximum value.

Table 2.14: Members of the multijmp data structure

Other important instructions are phi (OP PHI) and phisrc (OP PHISOURCE). They are
used to implement φ-functions. The phisrc instruction simply takes one argument, phi src
and has target set to a PSEUDO PHI pseudo. It also maintains a list of instructions that use
this phi, phi users. The phi instruction does the reverse thing – it takes a list of phis (field
phi list) and selects the appropriate one and puts it into the target pseudo. The selection
is done by determining where we came from. Recall that the PSEUDO PHI pseudos have
pointers to the instruction they were defined in. An example code Listing 2.19 demonstrates
how phi instructions are created. See Figure 2.4 to see the resulting linearized byte-code.

Basic Block

Basic block is an ordered list of instructions that contains one jump instruction at the end.
It must not contain any other jump instruction. It is not possible to jump at any other
instruction other than the first one in the basic block.

Basic blocks are useful for many optimization techniques, such as finding local common
subexpressions or dead code elimination [1, p. 533–535]. Sparse implements both of these
techniques as part of the code linearization.

The Sparse basic block data structure also contains some other fields used internally
by Sparse optimizations routines. We will not be listing them here as they are not that
important for us.
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1 void f ( int ) ;
2 int g ( void ) ;
3
4 int fun ( int arg )
5 {
6 int i ;
7
8 i f ( arg )
9 i = g ( ) ;

10 else
11 i = g ( ) ;
12 f ( i ) ;
13 }

Listing 2.19: Code to demonstrate phi instructions

Figure 2.4: Basic blocks visualizing code 2.19

Further, a basic block contains a list of parents and children. A parent basic block
contains a jump instruction that might jump to the child basic block.

Entry Point

The entrypoint structure represents an entry point to the linearized byte-code. List of
members is in Table [13].
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Type Name Description

struct position pos Position.
struct entrypoint * ep Entry point this basic block belongs to.
struct

basic block list *

parents List of basic blocks that jump to this basic block.

struct

basic block list *

children List of basic blocks that can be jumped to from
this basic block.

struct

instruction list *

insns List of instructions.

Table 2.15: Members of the basic block data structure

Type Name Description

struct symbol * name Symbol of the linearized function.
struct symbol list * syms List of symbols that are used in the code.
struct pseudo list * accesses List of symbol pseudos that are accessed in

the code.
struct basic block list * bbs List of all basic blocks in the CFG.
struct instruction * entry The first instruction of the graph. This is

usually a special “entrypoint” instruction
that contains the list of function
arguments.

Table 2.16: Members of the entrypoint data structure
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Chapter 3

Mygcc

Mygcc is a patched version of gcc, extended to perform user-defined checks by searching
for patterns in C source code. It uses the unparsed pattern matching technique, a new
approach able to recognize patterns in abstract syntax trees (AST), introduced in [15].

Mygcc was created by Nic Volanschi in 2004 [14]. The author describes his motivation
for writing it in [16]. It was author’s feeling that despite many recent advances in software
checking tools, the usage of these tools in software projects is practically non-existent. As
a solution, the author proposes to integrate the software checker with existing compilers to
allow wide-spread adoption by programmers. This is a problem, since the usual methods
are either hard to implement, or hard to use. The checks must also be very fast, or else
compilation would take too long. To express these user-defined checks, Mygcc uses the
Condate language.

The unparsed pattern matching method is easy to implement and use – the patch for gcc1

is merely 3000 lines long. Most of the time, the use of these checks will not have a substantial
performance overhead on the compilation time [16, p. 2]. After Mygcc, Nic Volanschi also
created the myPatterns library2 which provides the unparsed pattern matching capabilities
applicable to any data structure used in a program (as opposed to just text).

Interestingly, even with this simple approach, Mygcc’s practical capabilities are very
impressive. In [16, § 6], the author uses results of a previous study involving detection of
bugs in the Linux kernel to assess efficiency of Mygcc. The study was conducted on kernel
version 2.4.1, finding and confirming more than 500 bugs using checkers written in the Metal
language. After writing a set of checks in Condate that were supposed to mimic some of
the Metal checkers used in the study and testing them on the same code base, the results
were surprisingly good. Even though the Condate language does not have the expressive
power of Metal, the results of checks for classes of problems addressable by Mygcc were
almost the same.

By extending the compiler with capabilities to make simple user-defined checks, devel-
opers are able to find bugs early in the development process. The integration to an existing
build infrastructure is even easier than with Sparse, which we discussed in Section 2.1.1, on
page 3. Having the checking done in compiler also avoids duplication of compiler front-end
code that does the parsing. Duplication of code almost always implies repetition of bugs
already solved by others. Also, the programmer is more likely to choose to use simple code
checking functionality in his compiler, than searching for a complex code analysis tool, not

1Available at http://gcc.gnu.org/ml/gcc-patches/2007-04/msg00822.html
2Homepage at http://mypatterns.free.fr/index.html
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to mention the need to learn to use it.
In the following sections, we will introduce the concept of unparsed patterns and describe

the Condate language that harnesses these patterns in order to allow the definition of queries
that ask reachability questions about source code. We will then discuss limitations that
are inherent to both the algorithm and the implementation. Finally, we will conclude this
section by discussing the current state of the project and its future. Please note that the
following text is not an original research in any way. It is merely a summary of the work
done in [15, 16].

3.1 Unparsed Patterns

Introduced in [15], the unparsed pattern matching, as the name suggests, is a technique for
matching syntax trees that does not require parsing of the regular expression. Instead, it
unparses the abstract syntax tree, generating its string representation and tries to match it
with the pattern. This technique is language-independent, but we will only use examples
written in C.

Patterns also contain so-called meta-variables. A meta-variable matches any part of the
syntax tree. Named meta-variables must match the same syntax tree either in the scope of
the pattern (local) or across multiple patterns (global). An anonymous meta-variable can
always match any syntax tree.

Recognition of meta-variables in patterns is the only parsing required and is therefore
kept very simple. In patterns Mygcc uses, meta-variables are represented by letters, prefixed
by the “%” character. An uppercase letter represents a global variable, while a lowercase
letter represents a local variable. Anonymous meta-variables are represented by “% ”.

Let us consider a simple pattern “%x = %x + 1”. It will match any incrementation
of an lvalue3 %X, which matches any syntax tree. This means that it will also match an
expression “*(a + 1) = *(a + 1) + 1”, since the AST representations of “*(a + 1)” are
compared here. Not only that, but Mygcc will also match this pattern to “*(a + 1) = 1 +
*(1 + a)”.

In order to use this approach, we must be able to “print” the syntax tree in a consistent
manner. Thus, writing a printer for the syntax tree is required and can be the one obstacle
in implementing this technique in an existing compiler. The source of problems can be the
compiler’s representation of the tree. As an example, the syntax tree representation used
by Sparse could be considered too high-level, since an AST representation of “a = (int)a
+ 1” will not match the pattern we defined. The problem is that the syntax trees don’t
match, because casting “a” to int will yield a different syntax tree. The AST printer has
to account for this and ignore casts, thus leaving us without an option to do any checks
that involve casts.

However, the pattern does not match any incrementation of a variable, since we could
also do that in C by writing “a++”, which will not match our pattern. This also depends
on how the syntax tree is built. If we used Sparse’s linearized byte-code, there would not be
a difference between “a = a + 1” and “a++”. However, using Sparse’s linearized byte-code
is out of the question, since it optimizes the code into such an extent that recognizing other
C constructs is not feasible. We will show a user-level solution to this problem in the next
section. Mygcc uses GIMPLE4, a tree representation in gcc.

3Because only lvalues can be on the left side of an assignment in C.
4http://gcc.gnu.org/wiki/GIMPLE
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3.2 The Condate Language

The patterns are not expressive enough by themselves to be useful for control flow analysis.
For example, they cannot be used to detect locking problems. One pattern by itself cannot
even match an incrementation of a variable, as we saw in the previous section. To be able to
find these problems, we need a framework that would allow us to not only match patterns,
but would also allow us to find path from one pattern to another, optionally fulfilling a
condition about what pattern must not be matched between them.

This is where the Condate language comes in. It was created for Mygcc to formalize
constrained reachability queries using unmatched patterns. These queries are also called
condates. The following grammar5 is used to express condates:

S → from D to D avoid D (3.1)

D → E | E or E (3.2)

Where S is the start symbol, or a “condate”. D is the disjunctive pattern and E is an
unparsed pattern. If at least one pattern E in a disjunctive pattern D matches the source
code, then we say that D matches the source code. In order for condate “from D1 to D2

avoidD3” to match, there must be a path from a match of D1 to match of D2. Additionally,
D3 must not have any matches on the path.

Thus, condates are used to represent control flow graphs (CFGs) of of code with defects.
As an example, a memory leak could be caught by this condate: It will match any CFG in

1 from ”%X=malloc(% )” to ” return ” or ” return % ” avoid ” f r e e (%X)”

Listing 3.1: Condate for finding memory leaks

which malloc() is called and the returned value is not passed to free() before returning
from a function. We can also see the usefulness of global meta-variables. In the context
of the Condate language, a global meta-variable is always visible throughout the condate.
Another useful practice is the use of the disjunctive pattern to match two kinds of returns.
This can be used as well to solve the incrementation problem mentioned in the previous
section. To match incrementation correctly, we would express it as:

from ”%X=%X+1” or ”%X++” or ”++%X”

Notice how we only use the “from” part to match pattern without any path. In reality,
the simple “%x=%x+1” is enough to match even “a++”. As already mentioned, all of this
depends on the representation of the used AST. Simple patterns like this can be useful.
For example, the following pattern will catch possible memory leak in case the realloc()
function will fail and the old pointer gets lost:

from ”%X=r e a l l o c (%X)”

Other useful and simple patterns could be used to detect the usage of deprecated function
interfaces, like the dangerous gets().

3.3 Usage

Since Mygcc is just an extended version of gcc, it is invoked in the same way. Mygcc
provides two additional command line options for specification of condates. We can specify

5We only present a simplified condate grammar for brevity. See [16, § 3.2] for the complete grammar.

30



them directly on the command line or make Mygcc read them from a file. To specify
a condate on the command line, we would invoke Mygcc with -ftree-check=condate ,
where condate is the condate string. We might need to quote the string to prevent it from
being misinterpreted by the shell. If we have condates in a file, we would instead use the
-ftree-checks=file option. When writing condate files, an additional syntax is used to
enable naming of condates and associating warning messages with them. An example of
this is shown in code Listing 3.2.

1 condate increment {
2 from ” f r e e (%X)”
3 to ”∗%X” or ”%X−>% ”
4 avoid ”%X=% ”
5 } warning (” Dere f e r enc ing r e l e a s e d r e s o u r c e s ” ) ;

Listing 3.2: Condate to catch NULL dereference

3.4 Limitations

The design goals of Mygcc were not to make a complex static analysis tool, but instead,
build a simple tool that is easy to use and integrated into the compiler. Two notable
features that Mygcc lacks is alias information and semantic information6.

3.4.1 No Semantic Information

Mygcc does not know about data types. The complete Condate grammar does have the
power to use semantic constraints, but Mygcc does not implement them. The semantic
constraints were meant to use internal gcc predicates. The lack of semantic constraints in
the Mygcc implementation contrasts greatly with the Sparse checker. In Section 2.1.3, we
used the user annotation to mark pointers as belonging to user-space, thus making sure
Sparse would warn if they either got dereferenced or mixed with pointers that use different
address space. With the technique used by Sparse, it is almost impossible to do any of
these mistakes unwillingly. If Mygcc would support semantic constraints, it would perhaps
be able to easily express much of what Sparse can do.

One of the Metal checkers Mygcc tried to reproduce was able to make sure that no
user pointers were dereferenced. Mygcc was only able to use a very limited approach.
The condate used to detect dereference of user-space code in kernel first matched the
copy from user() function. This function uses one parameter that is the user pointer
and copies the user data to a kernel region of the memory. Mygcc matched the user pointer
passed to the copy from user() with a global meta-variable and then tried to match an
AST dereferencing the AST matched by the meta-variable. This solution is obviously far
from ideal.

3.4.2 No Alias Information

Because Mygcc lacks any alias information, it can miss some bugs that involve pointer
aliases. Considering the memory leak finding condate in code Listing 3.1, a false-positive

6Although semantic features are not implemented, they are used in [16, § 3.1.4]
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would be raised for code in Listing 3.3. Since Mygcc is not aware that the code is in fact
equivalent to calling free() on the a pointer, a warning is issued.

1 stat ic void fun ( void ) {
2 struct f oo ∗a , ∗b ;
3 a = mal loc ( s izeof ( struct f oo ) ) ;
4 b = a ;
5 f r e e (b ) ;
6 return ;
7 }

Listing 3.3: A false-positive for the memory leak test

During the comparison of Mygcc with checkers using Metal, two bugs went unnoticed
because of this insufficiency [16, § 6.2.1]. However, these two were just a fraction of all the
bugs that Mygcc was able to find. Considering how small Mygcc is, this seems like only a
minor drawback. We can also conclude that these types of bugs are relatively rare. If this
was not the case, there would be more than two defects of this class found in the Linux
kernel by the Metal checkers.

3.5 Current Status and the Future

As of this writing, the Mygcc patch is not applied upstream. According to [14], it was
rejected for inclusion in gcc because it uses “pretty-printer” to represent AST as a string.
This for some reasons is not acceptable, as the pretty-printer is “possibly evolving” part of
gcc.

For now, Mygcc is available as a separate branch, for anyone interested. Unfortunately,
this is the exactly opposite effect of what the original intentions behind Mygcc were. Instead
of being integrated into a widespread compiler, one needs to download a whole gcc branch
and compile it to be able to try it out. However, the concept of unmatched pattern matching
is still an interesting one. It would be interesting to, for example, use such an algorithm
together with the Sparse library in order to provide a light-weight tool with the same power
that Mygcc provides.

Most importantly, finding a way to incorporate Mygcc into the main gcc branch would
be very beneficial to both open source communities and researchers working in the static
code analysis field. If the checks would become standard gcc features, people would most
likely embrace it fairly quickly. Another preferable outcome would be if the developers of
software libraries started to provide a set of checks that the programmer using the library
could use. Often, there are some rules that the programmer must abide to in order for the
library to work correctly. The only way the developer of the library can “enforce” this rule
is to document it. As programmers do not always read the documentation, this is an easy
source of bugs that could be found and solved by a trivial static code analysis.
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Chapter 4

Conclusion

During the study of Sparse and Mygcc, I conducted several experiments with these tools
in order to assess their capabilities. I also found some bugs, either while reading the
source code or when conducting the tests. The tests are located on the enclosed DVD, see
appendix A. Besides the tests and experiments that are described here, I also attempted
for a very brief time to combine Mygcc and Sparse together, which would help to Mygcc’s
current situation, as a non-merged patch. However, this attempt fell short fairy quickly.
The porting of the code would require some knowledge of gcc’s internal data structures,
which is why I decided, to leave this endeavor for another time.

4.1 Experiments

4.1.1 Sparse

With the Sparse tool, I verified that Sparse is very good at strong type checking and
guarding the pointers from mixing, and user pointers from dereferencing. In comparison
with Mygcc, Sparse does this job much better. However, I also found a bug in Sparse that
could cause it to crash, whenever there is a declaration of a variable by specifying only
“typeof()” as its type. The crash then happened after the lazy type evaluation of the
declared variable (when the variable is used in the code).

When testing Sparse, I have noticed that it is possible to miss a very trivial uninitialized
variable problem. I even discovered that the bug is also relevant to gcc, and that both of
them loose the sight of the uninitialized variable due to optimizations. I have devised a
simple addition to Sparse’s optimization code that will make sure to check if the variable is
initialized before optimizing it out. I have then ran the test on the Linux kernel and found
out (among few false-positives) two real bugs that were not by Sparse, nor by gcc before.

Upon closer inspection of Sparse’s context checking capabilities, I have discovered that
the results are not very reliable. It is possible, however, that this is caused by a recent
revert of very big part of context-related code.

As a way to help programmers to familiarize themselves with the Sparse library and the
structure of the syntax tree, I wrote a simple utility that uses Sparse to parse a C source file
and print out its syntax tree representation. If you are in doubts about the usage of Sparse
data structures, refer to this program. I also tried to comment it as much as possible, where
appropriate, although I believe that when one learns the basics of the syntax tree, he should
be able to orientate fairly quickly by only using the header files provided by Sparse.
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4.1.2 Mygcc

The Condate language parser that was written using Bison uses the fgets() function
without making sure that the file stream is not at the end. For most of the errors that
occur at the end of file, Mygcc will print out an uninitialized buffer, resulting in a garbage
of characters. This can be reproduced for example, by passing file with the only word
“condate” to Mygcc.

I also managed to find Mygcc behaving unexpectedly on numerous occasions, but did
not manage to find a reproducer to the problem, and thus the cause is not known to me.
Since Mygcc’s declared status as an “experimental compiler”, this probably should not be
surprising.

4.2 Documentation

What I consider to be most useful from my work is the documentation of the Sparse library.
I enjoyed reading through it and finding many quirks in the use of the C language that I did
not even know were possible. I think it was a great experience, even though it consumed a
lot of time. I was at first hoping that I could write a bigger back-end that would do a useful
analysis. However, the documentation of the library is practically non-existent, except for
a log of an IRC discussion with the Sparse maintainer, where he says few words about the
data structures on a very high level.

4.3 Future directions

For the future, I would recommend a closer look at algorithms behind Mygcc. I especially
hope that Mygcc, or some incarnation of it, will eventually find a way into gcc, or at least
some other mainstream compiler. I really believe the vision of Mygcc’s creator that using
static code analysis techniques that are not really precise, but are very practical and easy
to deploy, is the way for formal verification to become more popular.
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Appendix A

Contents of the DVD

The DVD contains:

• tex: Directory with tex sources of this technical report.

• src: Source code and patches written during this work.

• tests: Test cases used to test Sparse checker and Mygcc.
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