
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

CHART BUILDER FOR ANSIBLE
AUTOMATION ANALYTICS
VIZUALIZACE DAT PRO ANSIBLE AUTOMATION ANALYTICS

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR LEVENTE BERKY
AUTOR PRÁCE

SUPERVISOR doc. Mgr. ADAM ROGALEWICZ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

B r n o U n i v e r s i t y o f T e c h n o l o g y
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2020/2021

Master's Thesis Specification |||||||||||||||||||||||||
24178

Student: Berky Levente, Be.
Programme: Information Technology
Field of Bioinformatics and Biocomputing
study:
Title: Chart Builder Ansible Automation Analytics
Category: Information Systems
Assignment:

1. Study the Open API definition and the Ansible Automation Analytics (AAA) tool with a special
attention on client-server communication API.

2. Propose a way of processing a data from client-server communication of AAA tool. The
intention is a data visualization (by various type of chars) with a subsequent automated
processing of the visualized data.

3. Design a plugin into the client part of AAA, which allows one to visualize data from client-
server communication for a user as well as for a machine processing. A user can customize
the visualization using various filters and aggregations.

4. Implement the proposed plugin.
5. Validate the plugin from point 5 using unit tests and demonstrate that your solution can be

used as an anomaly detection for a computation cluster managed by AAA.
6. Discuss possible improvements and future directions of your solution.

Recommended literature:

Ansible Automation Analytics project: https://www.ansible.com/products/automation-
analytics

Open API documentation: https://swagger.io/specification/

Requirements for the semestral defence:
• Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor:
Head of Department:
Beginning of work:
Submission deadline:
Approval date:

Rogalewicz Adam, doc. Mgr., Ph.D.
Hanáček Petr, doc. Dr. Ing.
November 1,2020
May 19,2021
November 11, 2020

Master's Thesis Specification/24178/2020/xberky02 Page 1/1

https://www.ansible.com/products/automation-
https://swagger.io/specification/
https://www.fit.vut.cz/study/theses/

Abstract
This thesis focuses on creating a web component to render charts from a structured data
format (schema for short), and creating an user facing interface for edit ing and creating the
schema for the Ans ib le Au tomat ion Ana ly t i cs . The thesis explores the current implemen
tat ion of the Ans ib le Au tomat ion Ana ly t ics and the corresponding A P I , researches similar
charting libraries and describes the fundamentals of used technologies. The pract ical part
describes the requirements for the component and describes the development and the im
plementation of the plugin. Furthermore, the thesis describes the process of testing and
the future development plans of the plugin.

Abstrakt
Tato p r á c e se zaměřu je na vy tvo řen í webové komponenty k vykres lení grafů ze struktur-
ovanýho d a t o v ý h o f o r m á t u (dále jen schéma) a v y t v o ř e n í už iva te l ského r o z h r a n í pro editaci
s c h é m a t u pro Ans ib le Au tomat ion Ana ly t i cs . P r á c e z k o u m á a k t u á l n í implementaci Ansible
Automat ion Ana ly t ics a odpovída j íc í A P I . Dá le z k o u m á v h o d n é knihovny pro vykres lování
grafů a popisuje zák l ady p o u ž i t ý c h technologi í . P r a k t i c k á čás t popisuje p o ž a d a v k y na kom
ponentu a popisuje vývoj a implementaci pluginu. Dá le p r á c e popisuje proces t e s tován í
a p l á n y b u d o u c í h o vývoje pluginu.

Keywords
web, web component, web applicat ion, data visualizat ion, chart rendering, React frame
work, Ans ib le Au tomat ion Ana ly t ics

Klíčová slova
web, web komponenty, web aplikace, vizualizace dat, vykres lování grafu, React framework,
Ansible Au tomat ion Ana ly t ics

Reference
B E R K Y , Levente. Chart Builder for Ansible Automation Analytics. Brno , 2021. Master 's
thesis. B rno Univers i ty of Technology, Facul ty of Information Technology. Supervisor doc.
M g r . A D A M Rogalewicz, P h . D .

Rozšířený abstrakt
Tato p r á c e se zabývá tvorbou webové komponenty pro v y t v á ř e n í grafů ze s t r u k t u r o v a n é h o
d a t o v é h o f o r m á t u (dá l jen schéma) a pro p o s k y t n u t í webového U X pro editaci s c h é m a t u .
Komponenta byla v y t v o ř e n a pro project Ans i lb le Au tomat ion Analy t ics (dá l jen A A A) ,
k t e r ý je vyví jen spo lečnos t í RedHat .

Nejprve bylo z a p o t ř e b í stanovit technologie, k t e r é budou př i vývoj i využi ty . Nejznámějš í
je framework React, k t e r ý je p o u ž í v á n i v A A A a podporuje v y t v á ř e n í komponent. Pro to je
ne j j ednodušš í na integraci do A A A , a proto tato p r á c e bude využ íva t tento framework. Dá le
využ ívá TypeScr ip t pro statickou kontrolu t y p ů , k t e r ý z j ednodušu je m a n u á l n í vy tvo řen í
s c h é m a t u . TypeScr ip t je J avaSc r ip tová n á s t a v b a kompi lovaná do JavaScriptu. V ý h o d o u
je, že zavádí typy do JavaScriptu a u p o z o r n í na typovou n e s p r á v n o s t př i kompilaci , což
zvyšuje kval i tu k ó d u a u s n a d ň u j e ladění .

P ř e d vývo jem byly p r o z k o u m á n y A A A a A A A Appl i ca t ion Programming Interface
(A A A A P I) . A A A A P I použ ívá O p e n A P I standard a poskytuje data pro A A A . Tato p ráce
využ ívá data z tohoto A P I . Největš í d ů r a z b y l kladen na fo rmát dat, na k t e r é m á v l iv
seskupován í dat podle času nebo podle j iných p a r a m e t r ů . Dá le byly p ř e z k o u m á n y parame
t ry pro k a ž d ý koncový bod A P I . A P I rovněž poskytuje koncové body pro val idní na s t aven í
d a t o v ý c h koncových b o d ů .

P ř e d vývo jem byly dá le p r o z k o u m á n y dalš í aplikace pro vizual izaci dat: Grafana a
Char t log a byly stanoveny p o ž a d o v a n é funkce pro stavbu grafů. T y t o aplikace pro v y t v á ř e n í
grafů by mě ly bý t schopny vy tvo ř i t skupované , sk l ádané , výsečový, čárové, s loupcové,
bodové a p lošné grafy, p ř i čemž d a t o v ý fo rmát bude l imitovat v ý b ě r grafů. F o r m u l á ř pro ed
itaci by nemě l nechat už iva te le vybrat neva l idní konfiguraci nebo konfigurace k t e r é nedávaj í
smysl.

P ro vykres len í s a m o t n ý c h grafů byly p r o z k o u m á n y knihovny k t e r é vy tváře j í grafy. D ů r a z
by l kladen na jednoduchost použ i t í , p o s k y t n u t é funkce a č innos t vývojových t ý m ů . Nakonec
by l v y b r á n V i c t o r y Charts kvůl i m o d u l a r i t ě k o m p o n e n t ů , pohotovosti t ý m u a ve lkémy
v ý b ě r u funkčnost i .

V i c t o r y Char ts poskytuje komponenty bez stylingu. Jel ikož se p r á c e integruje do A A A
musel bý t v y t v o ř e n a s tyl kompa t ib i l i n í s A A A . Dá le byla v y u ž i t a knihovna Patternfly
Charts , k t e r á je tenkou vrstvou nad V i c t o r y Char ts a nastavuje style komponenty aniž
by l imi toval anebo změn i l jejich funkcionalitu.

P ř e d s a m o t n ý m vývo jem bylo t ř e b a nastavit vývojové p ros t ř ed í . P ro vývoj b y l použ i t
verzovací n á s t r o j git, k t e r ý je hos tován na G i t H u b p l a t fo rmě . Komponenta je d i s t r i b u o v á n a
jako knihovna p o m o c í N P M pod j m é n e m 'react-data-explorer'. Scematic-release je použ íván
pro aktual izaci d a n é verze a N P M knihovny po z m ě n á c h v kódu . Dá le p r á c e obsahuje demo
aplikaci , k t e r á je h o s t o v á n a loká lně p o m o c í n á s t r o j e webpack. Demo aplikace se využ ívá
na vývoj a jako ukázkový kód.

Výs ledná knihovna obsahuje t ř i h lavn í komponenty. P r v n í a nejdůleži tě jš í komponenta
je schopna ze s c h é m a t u vy tvo ř i t grafy. S c h é m a je l imi továno na zák l adn í d a t o v é typy, k te ré
jsou ser ia l izovate lné . Tato l imitace je d á n a t í m , že s c h é m a bude u k l á d á n o i v d a t a b á z i .
To z n a m e n á že když je p o t ř e b a u k l á d a t funkci v s c h é m a t u , pak se uk láda j í jen j m é n a
funkcí, a s a m o t n é funkce jsou p ř e d á n y jako dalš í parametr komponenty. S c h é m a je p lochá
struktura, aby sa dalo zpracovat a editovat snadně j i . Komponenta o b d r ž í data z A P I
a transformuje je tak aby se dala použ íva t v grafech. Komponenta je schopna vy tvo ř i t
p o ž a d o v a n é grafy: skup inový graf, s k l á d a n ý graf, výsečové grafy nebo j e d n o d u c h é grafy.
Dá le se ve s c h é m a t u d á p ř i způsob i t k a ž d á čás t grafu. Komponenta podporuje popisky
d v ě m a r ů z n ý m i způsoby : b u d jako popisek k j e d n o t l i v ý m d a t o v ý m b o d ů m , nebo jako

popisek ke v š e m b o d ů m na svislé ose. Grafy p o d p o r u j í r ů z n é udá los t i , n a p ř í k l a d k l iknu t í
na u r č i t o u čás t grafu. Komponenta t a k é poskytuje j e d n o d u c h ý z p ů s o b pro p ř i d á n í legend
ke g ra fům vče tně interaktivity, k t e r á u m o ž ň u j e schování j edno t l i vých d a t o v ý c h sérií .

D r u h á komponenta nab íz í fo rmulář pro editaci s c h é m a t u . Dů lež i tou čás t í fo rmuláře by l
požadavek , aby se už iva te l za ž á d n ý c h okolnos t í nedostal do n e p l a t n é konfigurace. F o r m u l á ř
proto získává m o ž n o s t i pro n ě k t e r é parametry z A P I a na jejích zák l adě v k a ž d é konfig
uraci zabezpeč í s p r á v n o s t . Možnos t i pro n ě k t e r é parametry z A P I j e š t ě nejsou d o s t u p n é
(nap ř ík l ad typy grafů) . Uživate lské r o z h r a n í editoru se s k l á d á ze dvou čás t í : v y t v o ř e n é h o
grafu a fo rmuláře . Uživa te l po n a s t a v e n í hodnoty ve formulář i rovnou uv id í z m ě n y v grafu.

T ř e t í komponentou je panel grafů k t e r á použ ívá dř íve p o p s a n é dvě komponenty a p ř idává
dvě t l a č í t k a pro o t ev řen í a zavřen í editoru. K a ž d á komponenta sa d á použ íva t s a m o s t a t n ě .

Un i t testy byly provedeny p o m o c í knihoven Jest, fetch-mock a react-testing-library.
T y t o n á s t r o j e u m o ž n i l y modelovat odpověd i z A P I a testovat v y r e n d r o v a n é grafy p o m o c í
s n a p s h o t ů . Un i t testy byly provedeny h l av n ě na k o m p o n e n t ě , k t e r á v y t v á ř í grafy. Vývoj
dalš ích dvou komponent dá le pokraču je .

Tento dalš í vývoj zahrnuje n á v r h y a implementace vy lepšeného A P I pro grafy, U X
n á v r h pro formulář pro panel grafů. B ě h e m vývoje se v k n ih o v n ě Patternfly Charts naš ly
dva problémy, a bylo navrhnuto její vylepšení . V budoucnosti se tato p r á c e bude dále
vyví je t tak, aby se daly zpracovat i d a t o v é streamy pro živé data. K n i h o v n a bude dále
rozš í řena o podporu 3D grafů a p lně in tegrován do A A A .

Chart Bui lder for Ansible Automat ion Analyt ics

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the au
thor under the supervision of Rogalewicz A d a m , doc. Mgr . , P h . D . The supplementary
information was provided by Ing. Ben Thomasson. I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

Levente Be rky
M a y 12, 2021

Acknowledgements
I wish to express my thanks to my supervisor Rogalewicz A d a m , doc. Mgr . , P h . D . and
Ing. Ben Thomasson who helped to create a more professional work. I also want to express
my gratitude to K i a L a m , the Ansible Au tomat ion Ana ly t ics team and R e d Hat for their
professional technical help and suggestions while programming the component.

Contents

1 Introduction 3

2 Ut i l ized tools 4
2.1 Theory Basis 4
2.2 Glossary 5
2.3 React 6

2.3.1 State, props and Events 6
2.3.2 J S X 6
2.3.3 Rendering 6
2.3.4 Components 6

2.4 TypeScr ip t 7
2.4.1 Basic types 7
2.4.2 Interfaces 8
2.4.3 Functions 9
2.4.4 Unions and Intersection Types 10
2.4.5 Classes 10
2.4.6 Generics 10
2.4.7 Enumerations 11

3 R e d Hat Ansible Automat ion Plat form 12
3.1 R E S T A P I and O p e n A P I 12

3.1.1 O p e n A P I Format and Structure 12
3.1.2 O p e n A P I Object 14

3.2 Automat ion Analy t ics 14
3.2.1 Ans ib le Au tomat ion Ana ly t ics A P I 16

4 Charts 19
4.1 Char t ing L ib ra ry 19

4.1.1 Type of charts 19
4.1.2 Required features 21
4.1.3 Ex i s t i ng charting Libraries 21

4.2 Char t Dashboard 24
4.2.1 Ex i s t i ng Char t Dashboards 25
4.2.2 Required features 27

5 Design and Implementation 28
5.1 Ut i l i zed libraries 28
5.2 D a t a Dr iven Char t Rendering 28

1

5.2.1 Features, l imitat ions 29
5.2.2 The interface 3 1

5.2.3 D a t a fetching from the A P I 36
5.2.4 Char t creation 39
5.2.5 Top level elements 41
5.2.6 A n o m a l y Detect ion 42

5.3 Char t Ed i to r 42
5.3.1 Features and l imitat ions 43
5.3.2 Interface 44
5.3.3 D a t a format from the A P I 44
5.3.4 Implementation 45

5.4 D a t a Dr iven Dashboard 46
5.5 Development Setup 46

6 Testing 4 8

6.1 Libraries 48

6.2 Testing the l ibrary 49

7 Future development 51

8 Conclusion 5 2

Bibl iography 53

2

Chapter 1

Introduction

In the last decade, the W o r l d W i d e Web has become a remarkably huge system for storing
information. People use it a l l around the world daily. The browser is the main gateway to
the web and it has become more and more sophisticated over t ime. The web is used for
creating documents, playing games, watching videos, or running different programs on far
away and powerful computers. Thus, the data which is collected from the web increases
exponentially.

A s more and more data is collected, it is increasingly important to understand how this
data is represented to the user on those web pages. Presenting a huge amount of data to the
user v ia graphs and charts is one of the most efficient and used forms. We can find charts
everywhere on the web, from flight prices to displaying which pages people tend to spend
the most amount of t ime. Because of this, charts are a crucial part of the user experience.

This work focuses on creating a chart dashboard plugin for a R e d Hat Insights for
R e d Hat Ans ib le Au tomat ion P la t fo rm system (referred to as Au tomat ion Ana ly t i c s for
simplici ty) and a user friendly chart editor. The chart ing l ibrary w i l l provide the charts
for the dashboard. The dashboard w i l l allow users to display a huge amount of data by
visualising it i n different types of charts. The plugin w i l l allow the user to select, aggregate,
and then display the data in various charts. After the in i t i a l setup, the dashboard w i l l
allow the users to have a l l of their important information displayed at glance in the form
of charts.

It is important to be able to test the generated charts. Testing generated vector images
is not a t r iv i a l task. Therefore, this work w i l l develop a charting l ibrary which allows the
developers to automate processing the generated charts w i th ease. This functionality is
crucial for wr i t ing unit tests and for test driven development.

The thesis first describes the tools used and the background theory for web development.
Next , Au tomat ion Ana ly t ics and the Au tomat ion Ana ly t ics A P I w i l l be discussed. The
following chapter introduces the chart, and describes the research done on the charting
libraries and the chart dashboards.

The last three chapters describes the implementat ion of the plugin, including the unit
tests and the future development.

3

Chapter 2

Utilized tools

This chapter aims to introduce the tools used and the technologies required to understand
the program. The chapter w i l l not describe the JavaScript programming language or any
of its revision.

2.1 Theory Basis

In 1991, the Hypertext Transfer P ro toco l (H T T P) foundation of the W o r l d W i d e Web
(W W W) was introduced. Not long after, the Hyper text M a r k u p Language (H T M L) was
introduced. H T M L elements are the bui ld ing blocks of a structured document. These
elements and their nesting allowed the creation of the first static pages. W i t h the introduc
t ion of Cascading Style Sheets (CSS) , the abi l i ty to style the web pages has been extended.
However, the pages were s t i l l static and served rather representing a document rather than
offering any interactions wi th the user.

In 1995, Netscape, the dominat ing browser at the t ime, developed M o c h a script. Th is
language, after a few changes, is currently known as JavaScript. JavaScript is a prototype
based, object oriented, interpreted scripting language. These three technologies together:
H T M L , C S S , and JavaScript are the core technologies of W o r l d W i d e Web content engi
neering.

JavaScript was in i t ia l ly designed to write short scripts and sometimes behaved differ
ently than the programmer would anticipate. Over time, it became the most used language:
however, it also has the reputation of being the worst programming language i n existence.

1 l e t = 1;
2 i + »1» = »11»;
3 i - "1" = 0;
4 [] + [] = ""
5 [] + { } = " [o b j e c t O b j e c t] "

Lis t ing 2.1: Counter intuit ive JavaScript example

JavaScript has no integer type. A l l numeric values are double precision floating points
(represented as numbers). Th is can cause unexpected behaviors when comparing two num
bers. A l so , the type N a N (which is not a number) is represented as a number. The loose
typing also can cause problems. Just to name a few: concatenating two empty arrays re
sults in an empty string. Accessing an empty array element does not throw an error but
returns „undef ined" . The operator + and the operator - results i n different types of values

4

when used w i t h integer and string l ist ing 2.1. JavaScript as C or Java uses semicolons to
divide lines. Not using a semicolon at the end of the line is not a problem, however, as it
fills them in . B u t in doing so, this can cause subtle bugs i n the code.

JavaScript is highly dependent on global variables. Implied global variables are the most
problematic of them a l l . W h e n JavaScript doesn't find a name for a variable assignment,
it impl ic i t ly creates a new global variable. Th is makes it especially hard to detect typos in
the code. The language does not makes debugging code any easier w i th silently failing.

The last problem, which is becoming more and more relevant, is the asynchronous
programming. JavaScript 's callback functions are messy and hard to track. The scopes of
the functions are difficult to figure out. There are some new structures to solve this issue
(such as the Promise), however, they are not perfect solutions.

A s mentioned above, sometimes unexpected and counter intuit ive behaviour allows the
programmers to abuse the language. Therefore, libraries wr i t ten i n JavaScript often go
against good practices. Programmers abuse the language to write workarounds for various
problems. These workarounds are immensely complex and cumbersome to understand.

These problems were not so apparent before 2009. After introducing Node.js, a server
side JavaScript framework, and mult iple client side user interface bui ld ing frameworks, it
was used to manipulate smaller changes on the page and provided min ima l interactions
wi th the site. These days, it is not a surprise when the whole page is wri t ten in JavaScript.
H T M L and C S S have more and more become a part of the JavaScript program, rather than
the JavaScript scripts being an extension to the H T M L page.

W h e n looking at maintainabil i ty, a good code structure is necessary. JavaScript is a
typeless language, i n that you don't have to specify what type of information w i l l be stored
in a variable ahead of t ime. Therefore, the developer has to understand the code very well.
Most of the libraries are thoroughly documented but the code itself is poorly commented.
The code should be well commented and structured in this project to be easily maintainable
later on.

To help solve the maintainabi l i ty problems, there are superset languages for JavaScript.
The superset language means that the language compiles to JavaScript w i th addi t ional
features. One of the most popular of these languages is TypeScr ip t [18] from Microsoft.
TypeScr ip t provides type checking, interfaces, and much more. O n compile, it can check
the code structure and create warnings i f it is not the expected one. For example, the class
member order can be defined or you could define warnings about logging and non-typed
variables. The comments can be made as obligatory as needed. It is true that defining the
comment section does not mean the code is properly commented, but at least it inspires
developers to do i t . A s a result, anyone working w i t h the code has to follow these rules,
and they stay consistent and readable for the other developers.

2.2 Glossary

This section provides a glossary of terms and abbreviations to assist i n the reading and
understanding of this thesis topic.

1. H T M L D O M - (referenced s imply as D O M) is a standard object model and program
ming inter-face for H T M L . It defines:

(a) The H T M L elements as objects

(b) The properties of a l l H T M L elements

5

(c) The methods to access a l l H T M L elements

(d) The events for a l l H T M L elements

2. JavaScript - is a client side script ing language which is able to manipulate the D O M .

3. J S O N file - stores data i n JavaScript object notation.

4. C S S - describes how H T M L elements are to be displayed on screen, paper, or i n other
media. They consist of rules. These rules can be stored i n separate C S S files.

2.3 React

React[12] is a JavaScript framework for bui ld ing user interfaces and is developed by Face-
book Inc. This framework is declarative and component based. React also has an effective
re-rendering method.

2.3.1 State, props and Events

The state variable contains the components data. The difference between the props and
the states is that the props are passed to the component and they should not change it.
Unl ike the state variable, which represents the state of the component, and the component
can change its own state, depending on a user's input or other events. A s data follows a
waterfall model to synchronize the data between the components, the closest ancestor has
to be found. This ancestor should store the data in question and it then becomes the „only
source of t ruth" .

Event handlers help to modify the data stored in the chi ld components in a one way
binding model and are passed to the chi ld component. W h e n the chi ld component's data is
changed, the passed event handler is called, which should modify the state which is passed
to the chi ld as prop in the parent component.

2.3.2 JSX

J S X is a syntax extension for JavaScript and looks like H T M L but accepts JavaScript
code. J S X elements are compiled to JavaScript expressions and objects. It is cheaper than
creating D O M elements; therefore, i n React, a l l modifications are made on J S X elements
and React takes care of the synchronization wi th the D O M .

2.3.3 Rendering

It is necessary to specify at least one root element to render React content. The element
rendering is done w i t h a render function i n which it is necessary to specify the J S X element
(what to render) and the D O M element (where to render the defined element). W h e n
updat ing an element, React updates only what is necessary in the D O M . Condi t iona l ren
dering is done w i t h the help of JavaScript conditions, using if - then - else blocks. M a k i n g
it easier to decide which elements to render and which to not.

2.3.4 Components

There are two types of components: functional and class components. In the latest versions
of the React framework, functional components are pushed as the preferred style. B o t h

G

functional and class components have the same capability. The difference is in the code style.
W h i l e the class components use class methods and variables, the functional components use
hooks.

Hooks are basically functions, returning variables and other functions to modifying
them. The basic hooks supplied by the React framework are useState and useEffect. useS-
tate is for storing and modifying the component's state. useEffect is for hooking into the
component's life cycle event and firing functions on changes.

The user has the abi l i ty to write their own hook functions, since it is a function. The
user defined hooks can use other hooks as well, a l lowing them to bundle more complicated
logic into one function. W h i c h results i n quite elegant solutions.

2.4 TypeScript

A s mentioned in section 2.1, JavaScript , like other languages, has its own quirks and odd
ities. Since JavaScript was designed for quick uses and then grew into a full fledged pro
gramming language, there are many of these oddities.

A s an example, we could show the ' = = ' operator, which compares without type check,
and throws some very interesting but mostly counter intuit ive results. Most other languages
would throw an error when t ry ing to compare different types, whether at runtime or at
compile time.

TypeScr ip t [18] is t ry ing to fix some of these problems wi th JavaScript by introducing
types and static checking to JavaScript . A t times, TypeScr ip t can feel l imi t ing for the
programmer; however, it is a superset to JavaScript . Meaning that it can do anything that
JavaScript can do. Typescript never changes the runtime behaviour of JavaScript code.

The next few sections w i l l introduce a few crucial parts of the TypeScr ip t language.
They w i l l describe the basic types, classes, and functions. They should also provide enough
insight to understand the succeeding chapters.

2.4.1 Basic types

JavaScript [16], since E C M A S c r i p t 6, has had the abi l i ty to declare variables in four different
ways. The variables can be declared without a keyword before the variable, or w i t h one
of the following three keywords: var, let, const. W h e n a variable is declared without any
keyword or w i th the var keyword, the variable becomes a global variable, no matter where
it was declared. The var keyword allows users to declare a variable without an in i t i a l value.

The let and const keywords l imi t the scope of the variable to the current scope. They
also allow the of shadowing variables from other scopes, instead of rewri t ing them. In
addit ion, the const keyword requires the variable to be ini t ia l ized w i th a value and prevents
changes to this variable. However, it does not prevents the mutat ion of the variable.

The basic types i n Typescript correspond to the basic types i n JavaScript, w i th an
addi t ion of the enumeration type. The basic types are: boolean, number, string and array.
They a l l work as expected. Boolean accepts true or false values. Number accepts any
integer or float value, be it positive or negative. St r ing accepts literals. For the array, the
programmer has to decide what type of variables it w i l l hold and it w i l l only accept that
type. The basic variable examples are shown i n the l is t ing 2.2.

1 l e t a : boolean = f a l s e ;
2 l e t b : number = 42;
3 l e t c : s t r i n g = " I am a s t r i n g "

7

4 l e t d: Array<number> = [1, 2, 3] ;
5 l e t d2: number [] = [1, 2, 3] ;

Lis t ing 2.2: Basic types i n TypeScr ip t

There is a more interesting type called tuple. It is basically a fixed sized array where
each entry can be of a different type. Enumerations does not exist in pla in JavaScript . The
way TypeScr ip t adds them is s imilar ly to a map. Every name maps to a value (impl ic i t ly
to a unique number in that enumeration type).

There are two addi t ional keywords: unknown and any. The type unknown comes in
handy when the type becomes dynamic context, like user input . The any allows any type
to be assigned to the variable, which is the default i n pla in JavaScript; however, using it is
not recommended.

The void keyword is the opposite of any. It signals that there is no type at a l l , and
nothing should be returned. The types null and undefined are subtypes of a l l other types.
Not really usable by themselves.

A n d last, but not least, there is the object keyword. Object represents non primit ive
types. General ly there is no need to use the object keyword, since the interface takes care
most of the non pr imit ive types.

2.4.2 Interfaces

TypeScr ip t focuses on the shapes that the values have. This is called sometimes „ s t ruc tu r a l
subtyping". This role is filled by interfaces i n TypeScr ip t . They are a tool for defining
contracts inside the code as well as contracts external to the code.

1 i n t e r f a c e PropType {
2 r e q u i r e d V a l u e : s t r i n g ;
3 o p t i o n a l V a l u e ? : number;
4 r e a d o n l y v a l u e : number;
5 [key: s t r i n g] : any;
6 >

Lis t ing 2.3: Interface example i n TypeScr ipt

L i s t ing 2.3 shows a basic interface definition. It defines an object w i th one required key,
one optional key, and allows users to add any other key. This interface can be used i n the
same ways as the types.

The interface also has a property labelled readonly. Th is keyword works s imilar ly as
the keyword const for variables. It allows the property to be ini t ia l ized when the object is
first created. Every other modification to this property would result i n a compiler error.

There is a way to prevent arrays from mutat ing, too. It is achieved by creating the
array wi th the help of Readonly Array <type>, where the type is a val id type or interface.
Since this project does not use classes, this part w i l l not cover the interfaces for classes.

Las t ly is the indexables. It models a map where the keys can be numbers or strings.
This allows for the mapping of values to these indexes. In one map it is impossible to mix
keys wi th numbers and strings. The l is t ing 2.4 shows an example of the indexable type.

1 i n t e r f a c e IndexableType {
2 [index: number]: s t r i n g ;
3 >

Lis t ing 2.4: Indexable interface example in TypeScr ipt

8

2.4.3 Functions

Functions are the fundamental bui ld ing blocks i n JavaScript . They bu i ld up abstractions
and hide information. O n top of that, React is pushing to replace a l l their classes w i th
functions; therefore, the functions are used instead of classes and namespaces most of the
t ime as well.

The TypeScr ip t documentation focuses on the two approaches of the functions used
in JavaScript . However, w i th E C M A S c r i p t 6[16], a modification of the second approach
overtook most of the use cases. The examples and description provided here w i l l focus
mainly on the arrow functions.

1 // Without t y p e s
2 const funcName = (param) => {
3 return param > 0;
4 }

5 // With t y p e s
6 const funcName = (param: number): boolean => {
7 return param > 0;
8
9

}

10 //Shorthand w i t h t y p e s
11 const funcName = (param: number): boolean => param > 0;

L i s t ing 2.5: A r r o w function example

Lis t ing 2.5 demonstrates a t r i v i a l arrow function. In the typed examples, it is shown
that every parameter has defined its type (one param is the type of number) and the return
value of the function (boolean i n this case).

1 const funcName = (param: number, o p t i o n a l ? : s t r i n g) : s t r i n g => {
2
3 >
4
5 // I n t e r f a c e f o r the p r e v i o u s f u n c t i o n
6 i n t e r f a c e FuncType {
7 (param: number, o p t i o n a l ? : s t r i n g) : s t r i n g ;
8 >

Lis t ing 2.6: A r r o w function wi th opt ional argument example

The l is t ing 2.6 shows a function wi th an optional parameter. To declare the interface
for that function, we use an identical declaration. After an optional parameter no other
required parameters can follow. If the function can have more parameters passed to i t , it
can be captured wi th ...rest: type[J, where the rest is the name of the array where we can
access the parameters and the type is an existing type or interface.

In JavaScript , this is a variable that is set when a function is called. Because it is set
automatically, the user always has to understand the context in which the current function
is executed. In TypeScr ip t , arrow functions allow us to b ind the this variable to the place
where it was declared - not to the context where it is used. Furthermore, the this type can
be set i n functions. Th is way the compiler can check i f the variable has the correct type and
warn about i t . Note that setting the this variable to void i n functions makes it unusable.

Overwri t ing the function is done wi th mult iple declarations. The compiler selects the
first matching functions, so declarations should go from specific to more generic.

9

2.4.4 Unions and Intersection Types

Intersection and union types are one of the ways i n which a user is allowed to compose
types. For example, a parameter can either be a number or a string. The union type can
help by defining the type wi th a / character, as in : string / number. If two interface are
used i n a union, it is possible to access members of the interface which are common to a l l
types i n the union.

However, when using the union i n a switch statement where the exact type can be
derived, the other fields become accessible as well . T h i s is par t icular ly useful for state
management and automation. It is called the discr iminat ing unions.

To make the code more future proof, the compiler can be set to check for a strict nul l
return. This makes sure we covered a l l cases of a union i n a certain switch block. W h e n
there is no need to cover a l l the options, the default case should be used.

Intersection[18] types are closely related to union types, but they are used very dif
ferently. A n intersection type combines mult iple types into one. This allows the adding
together of existing types to get a single type that has a l l the features. For example, Person
& Serializable & Loggable is a type comprised of Person and Serializable and Loggable.
Tha t means an object of this type w i l l have a l l members of a l l three types.

2.4.5 Classes

Typescript allows us to use an object oriented approach to classes where classes are inher
i t ing functionally and objects are buil t up from classes. The inheritance is done w i t h the
extends keyword and cal l ing the parent method is done wi th super, like w i th Java.

Classes have private, protected, and public instances. W h e n nothing is expl ic i t ly de
fined, instances are public by default. O f course, the readonly opt ion works here too. W h e n
using readonly, the variables have to be set in the constructor.

TypeScr ip t supports getters and setters. The assigning and retrieving values schematics
are the same wi th these functions, only there is a function where some advanced rules can
be defined. These functions are created w i t h the keywords get and set. W h e n extending
an abstract class, the chi ld class must declare those abstract functions which do not have
definitions.

2.4.6 Generics

Generics allow users to write a function wi th not one data type, but w i th a variety of data
types. For this, there is a ' type variable' which works on types rather than variables. Once
set, the type variable can be used as another data type. The type in the function argument
can be set both expl ic i t ly and impl ic i t ly . Type variables can hold every k ind of type which
is available for normal variables.

The type variable works s imilar ly to functions i n the generic interface. W h e n creating
an interface, the type is passed. In classes, the type variable cannot be used to create static
members, otherwise it works like an interface.

If there is a need to constraint a type variable, we can extend an interface or class. This
ensures that properties defined i n the interface w i l l be available in the type and it w i l l be
checked on compilat ion. Further constraints can be placed between two type variables. A s
an example, the ' K ' type variable has to be the 'key of T ' type variable. This ensures that
whatever the ' T ' w i l l be, the ' K ' w i l l contain a key from it . The only restrictions are that
generics are not available for enumerations and namespaces.

10

2.4.7 Enumerations

Enumerations can be numeric, a string, or heterogeneous, but the last one is not recom
mended. The numeric value of an element is ini t ia l ized wi th 0 when it comes first and
it increments by one if it comes after an ini t ia l ized value. They can be set to be com
puted members, but after a computed member a constant value has to be set. The string
enumerations have to be expl ic i t ly ini t ia l ized.

TypeScr ip t provides reverse mapping to each enumeration, but i f it is not desired then
a constant enumeration can be used. Another property of constant enumeration is that it
cannot have computed member. In ambient enumerations, a special case, the members are
always considered as computed, but we do not have to define them at ini t ia l izat ion, just
later.

11

Chapter 3

Red Hat Ansible Automation
Platform

This chapter introduces the R e d Hat Ansible Au tomat ion Pla t form. The chapter also
describes, i n short, a l l the technologies which are important to understand the A P I which
is used i n the Au tomat ion Ana ly t ics client-server communicat ion. A t the end of the chapter,
the Au tomat ion Ana ly t ics A P I is described i n detail .

3.1 R E S T A P I and OpenAPI

A R E S T A P I [7] is a web service which uses the R E S T (Representational Transfer State)
architecture to handle a request. Appl ica t ions on the W o r l d W i d e Web that use the R E S T
A P I are called R E S T f u l applications. R E S T A P I s use H T T P (Hypertext Transfer Protocol)
to process data requests. There are four types of request:

1. G E T - to retrieve a resource from a database

2. P O S T - to create a resource

3. P U T - to update a resource

4. D E L E T E - to remove a resource

The O p e n A P I Specification defines a standard, language-agnostic interface to R E S T f u l
A P I s which allows both humans and computers to discover and understand the capabilities
of the service without access to source code, documentation, or through network traffic
inspection. W h e n properly defined, a consumer can understand and interact w i th the
remote service wi th a min ima l amount of implementat ion logic [23].

3.1.1 OpenAPI Format and Structure

A n O p e n A P I document is itself a J S O N (JavaScript Object Notat ion) object which can also
be represented i n a Y A M L („ Y A M L A i n ' t M a r k u p Language") format. A l l field names are
case sensitive, except when otherwise stated. The schema contains fixed fields which have
a declared name and patterned fields which are declared w i t h the help of regex (regular
expression) patterns.

The O p e n A P I document can be divided into mult iple parts. W h e n it is not a single file,
the other parts of the document must be referenced i n the $ref object.

12

The O p e n A P I Specification (O A S) supports a l l pr imit ive data types, which are sup
ported by the J S O N Schema Specification [25]. Namely: boolean, object, array, number,
and string. The O p e n A P I Specification adds a format property to the pr imit ive types. The
format property may be any required format not specified i n the O p e n A P I Specification. A s
an example: if the field type is a „ n u m b e r " , but this number is a double precision floating
number, the „format" property can hold the keyword „double" to make it explici t . Some
of the defined formats i n O p e n A P I are byte, binary, date, date-time, and password.

A very basic example of the O p e n A P I document is showed i n l is t ing 3.1.

1 openapi: "3.0.0"
2 i n f o :
3 v e r s i o n : 1.0.0
4 t i t l e : Swagger P e t s t o r e
5 l i c e n s e :
6 name: MIT
7 s e r v e r s :
8 - u r l : h t t p : / / p e t s t o r e . s w a g g e r . i o / v l
9 paths:
10 / p e t s :
11 g e t :
12 summary: L i s t a l l p e t s
13 o p e r a t i o n l d : l i s t P e t s
14 parameters:
15 - name: l i m i t
16 i n : query
17 d e s c r i p t i o n : How many items t o return at one time (max 100)
18 r e q u i r e d : false
19 schema:
20 t y p e : i n t e g e r
21 format: i n t 3 2
22 responses:
23 200:
24 d e s c r i p t i o n : An paged a r r a y of p e t s
25 headers:
26 x-next:
27 d e s c r i p t i o n : A l i n k t o the next page of responses
28 schema:
29 t y p e : s t r i n g
30 c o n t e n t :
31 a p p l i c a t i o n / j s o n :
32 schema: $ r e f : "#/components/schemas/Pets"
33 d e f a u l t :
34 d e s c r i p t i o n : unexpected e r r o r
35 c o n t e n t :
36 a p p l i c a t i o n / j s o n :
37 schema: $ r e f : "#/components/schemas/Error"

Lis t ing 3.1: O p e n A P I example document

13

http://petstore.swagger.io/vl

3.1.2 OpenAPI Object

The O p e n A P I object is the root document object of the O p e n A P I document. It can contain
several fields. The required fields are:

1. openapi - str ing representing the used O p e n A P I semantic version number

2. info - an object providing the metadata of the document

3. paths - an object containing a l l the paths and operations for the A P I

There are other opt ional fields which are not listed here. Furthermore, the O p e n A P I
object can be extended wi th extensions that are described i n the O p e n A P I Specification.

3.2 Automation Analytics

Automat ion Analy t ics , also referred to as R e d Hat Insights for R e d Hat Ans ib le Au toma
t ion Pla t form, is an online service provided wi th in the Au tomat ion Pla t form. [20]. The
Automat ion P la t form allows for easily managing cloud infrastructures, including: systems,
hosts, instances, v i r tua l machines, containers, or devices. Au tomat ion Ana ly t i c s can be
used to analyze, aggregate, and report on data for the Au tomat ion P la t form deployments
running i n the user's infrastructure.

Au tomat ion Ana ly t ics is a web applicat ion. Therefore, it runs i n a l l four major browsers
wi th JavaScript enabled. W i t h the release of the version 1.1.0, the Au tomat ion Ana ly t
ics applicat ion can be divided into 4 bigger parts: v isual dashboard for clusters and for
organizations, health notifications, automation calculator, and the job explorer.

A u t o m a t i o n Analy t ics i ousters

h 1 1 i .
i l l i i i i l l i i i i i i n i i i i i i i n i i i i i i

Figure 3.1: V i s u a l dashboard screen i n A A A

Figure 3.1 shows the visual dashboard screen. The main parts of the dashboard are
the filter and the chart, which changes when filtered. The bar chart shows the failed and
successful job count by date through a l l clusters. If one specific cluster is selected i n the

14

Figure 3.2: V i s u a l dashboard for organisations screen i n A A A

filter, the chart changes to a line chart w i th mult iple lines. E a c h line represents successful
or failed jobs.

Figure 3.2 shows the visual dashboard for organizations screen. This part shows the
user different statistics across their organizations. The data is represented in pie charts and
a special grouped bar chart.

A u t o m a t i o n Analy t ics i jobsexsiorer

fell* O—1**. .* ,* S M . . y l™,u, X D„H L_»,fap 1 Cfean all lilter.

Typ«

, „ c o - c , , , . - ^ . a . i . S „ . 0 Successful

> 0 Successful

0 Successful

, ,„„-„,, , . .-=„„,.„,, . OS,„,P,sr ,1

O Successful » .»70

o

Figure 3.3: Job Explorer screen in A A A

Figure 3.3 shows the job explorer screen. This part of the appl icat ion allows for the
filtering of clusters i n real-time, or through historical data, to see where specific jobs are
failing or which job logs need further debugging. The queried data is displayed in a table.

15

The goal of this work is to allow the the data represented currently i n the table to also be
represented chart dashboard.

Red Hat

Figure 3.4: Au tomat ion Calcula tor screen i n A A A

Figure 3.4 shows the automation calculator screen. This screen gives an understanding
of what automation success looks like, how much time and money is saved by automating,
and converts automation job costs into real-world currency.

The health notification screen displays different kinds of information about clusters.
These notifications could be a warning about expir ing clusters, a service outage, or too
many pending jobs.

3.2.1 Ansible Automation Analytics API

The Au tomat ion P la t form A P I specification is not publ ic ly available yet. The A P I is buil t
on the Open A P I specification and currently offers thirteen endpoints. Some endpoints
have both a P O S T and a G E T request, bit they are the always the same. To simplify
things, when both G E T and P O S T requests are available, only the P O S T endpoints w i l l
be described here.

The first endpoint is the /authorized endpoint. It takes no parameters and returns an
error message i f the client is not authorized to use the A P I . If the user is authorized, it
returns an empty response and the status code 200 O K .

The other endpoints can be divided into two groups. The endpoints which return data
and the endpoints which return the val id options for their respective endpoints. A l l the
endpoints have the same query and request body parameters; however, the field values may
be different. T h e option endpoints always provide the val id values for their parameters
as well as for their corresponding endpoint for data. A n example of one set of endpoints
is job_explorer, which returns data, and job_explorer_options, its corresponding options
endpoint.

The endpoints can have two query parameters: the limit and the offset. These two
parameters allow the user to paginate in the data. The m a x i m u m l imi t is 25. The other
parameters the endpoint accepts are passed i n the request body. Such parameters are the:

16

org_id, inventory_id, template_id, quick_date_range, start_date, end_date, job_type,
status, attributes, include_others, group_by, group_by__time and granularity. W i t h the
help of these parameters it is possible to filter the data, or change the grouping of the data
in the endpoints for data, and they may change the val id options returned from the options
endpoint.

Format of the returned data from the option endpoints

The options endpoint returns an object where the keys are the attributes, which can be
passed to the request body. E a c h of these keys holds an array of objects, which are the
options themselves. The option object consists of two attributes: the key and the value.
The key holds the value, which the A P I accepts as a value i n the request, while the value
is the user friendly representation of the key. Such an example is shown i n l is t ing 3.2.

1 {
2 "group_by" : [
3 {
4 " k e y " : " c l u s t e r " ,
5 " v a l u e " : " C l u s t e r "
6 } ,
7
8
9 " q u i c k _ d a t e _ r a n g e " : [

10 {
11 " k e y " : " l a s t _ 6 2 _ d a y s " ,
12 " v a l u e " : "Pas t 62 days"
13 } ,
14
15 {
16 " k e y " : "cus tom" ,
17 " v a l u e " : "Custom"
18 }
19] ,
20 " s t a t u s " : [
21 {
22 " k e y " : "new",
23 " v a l u e " : "New"
24 >,
25 {
26 " k e y " : " p e n d i n g " ,
27 " v a l u e " : "Pend ing"
28 >,
29
30] ,
31 I . . .
32 >

Lis t ing 3.2: Example of the returned data from the options endpoint

17

Format of the returned data from the endpoints for data

The object returned by the endpoints contains four attributes. The response_type attribute
is a string describing what is returned. The links at tr ibute contains pagination links to the
first page, last page, next page, and previous page. The meta key contains an object w i th
addi t ional information to the data, such as the count of the returned elements, and the
counts for each groups when the data is grouped.

The fourth attr ibute can be the dates at tr ibute when the data is grouped by t ime or
the items at tr ibute when the data is not grouped. The dates contains an array of objects
which has two attributes - date, which represents the value by which the data is grouped,
and the items array.

The items array contains objects which are the entries i n the data. Each of these objects
always have an id, name, and the attributes which were specified i n the request body under
the attributes parameter. A n example of the returned data is shown i n l is t ing 3.3.

1 {
2 "group_by": [
3 {
4 "key": " c l u s t e r " ,
5 " v a l u e " : " C l u s t e r "
6 } ,
7
8
9 "quick_date_range": [

10 {
11 "key": " l a s t _ 6 2 _ d a y s " ,
12 " v a l u e " : "Past 62 days"
13 } ,
14
15 {
16 "key": "custom",
17 " v a l u e " : "Custom"
18 }
19] ,
20 " s t a t u s " : [
21 {
22 "key": "new",
23 " v a l u e " : "New"
24 >,
25 {
26 "key": "pending",
27 " v a l u e " : "Pending"
28 >,
29
30] ,
31
32 >

Lis t ing 3.3: Example of the returned data from an endpoint for data

18

Chapter 4

Charts

This chapter introduces the charts and charting dashboards. Furthermore, it discusses
the existing solutions, their strengths, and their shortcomings. It also details the required
features of both the chart ing l ibrary and the chart dashboard. A t the end of the chapter,
the reader should have a strong understanding of what the final solution should be capable
of and what differences it has when compared to other chart ing dashboards.

4.1 Charting Library

The charting libraries main task is to tu rn data into charts. These charts usually display
data i n two dimensions. There are different types of charts. The most widely known and
used charts are line charts, pie charts, bar charts, histograms, and their variations. There
are of course a wide range of other chart types, like the radar chart, but they are not
important for understanding the charting libraries [24].

Figure 4.1: L ine chart example

4.1.1 Type of charts

Line charts show continuous data over t ime. They consist of points which are connected,
and of an x-axis and a y-axis. Usually, the x-axis represents the t ime variable. They are
used to show trends and to help wi th predictions. Another usage of the line charts is to
compare mult iple variables over the same time period. Figure 4.1 shows an example of the
line chart.

B a r charts display categorized data i n the form of bars. The x-axis represents the
category, while the y-axis represents the measured value. The wid th and height of the
bars are proport ional to the data they represent. They are ideal for comparing large data
changes over t ime or comparing differences between mult iple categories. Figure 4.2 shows
an example of the bar chart.

19

Figure 4.2: B a r chart example

I I
II II

J "
II

0 3 / 2 4 0 3 / 2 6 0 3 / 2 8 0 3 / 3 0 0 4 / 0 1 0 4 / 0 3 0 4 / 0 5 0 4 / 0 7 0 4 / 0 9 04/11 04/13 04 /15 04 /17 0 4 / 1 9 04 /21

Figure 4.3: Stacked bar chart example

The stacked bar chart is a variant of the bar chart. It can split each bar into multiple
smaller bars on top of one another. The stacked bar chart can display mult iple measured
values of a category. A n example is shown in fig. 4.3.

category 3: 12.50%

category 2: 37.50%

category 1: 50.00%

Figure 4.4: P ie chart example

Pie charts are great at displaying numerical proportions. E a c h slice's size is relative to
the size of a part icular category i n a given group as a whole. Figure 4.1 shows an example
of the pie chart.

The legend is one of the most significant parts of the chart. It shows which colour
represents which category and gives addi t ional information about the displayed data. Th is
information can be an exact value of the measured data or any other calculated measure
ment. A n interactive legend can allow the user to change the displayed data in the chart.

20

4.1.2 Required features

Automat ion Ana ly t ics uses the React framework and the TypeScr ip t superset language.
This fact is taken into consideration when searching for chart ing libraries to be used wi th in
Automat ion Ana ly t i cs . The l ibrary should be easy to use wi th in the React framework.
The typing information is a bonus, as it would allow for static type checking of the used
components from the library. W h e n looking at a charting library, there are addi t ional
criteria to evaluate them by.

The first, most obvious criterion is the capabil i ty of the charting library. Au tomat ion
Analy t ics requires that the charting l ibrary be capable of drawing at least a bar chart, a
line chart, a stacked bar chart, a grouped bar chart, a mult i- l ine chart, and a pie chart.
The labels for each axis and the data should be customizable, and the scales of each axis
should be modifiable.

The l ibrary should have an option to select colour options for the represented data set.
It should also provide per data point colour options, which would allow colouring some
parts of the chart differently from others. The next required functionality is to have an
on-hover help toolbar option wi th an on-click handler for each data point represented.

For future development considerations, a nice feature would be having mult iple charts
under each other w i th the same values on the x-axis while representing different data. Then ,
in these charts, the on-hover option would fire the on-hover effect on both charts. Hav ing
some k ind of „por t a l " functionality is not a hard requirement, rather a welcomed addit ion.

Web pages i n our current era are highly responsive and it is often a requirement that
the page be usable on a range of displays from 4 K monitors to smartphones. Therefore,
it is important that each component of the page is responsive. Mos t of the charts are
just generated images, which are, by definition, not responsive. The l ibrary which handles
resizing charts internally would be favoured.

Obviously, the interface of the l ibrary w i l l play a key role. It is important that the
l ibrary's interface is easy to use and well documented. The interface should be modular
while following good practices for a React applicat ion.

A well-known problem of JavaScript libraries is the dependency tree. The more depen
dencies a l ibrary has, the more active the maintaining team has to be. It can also introduce
a problem when t ry ing to use libraries w i th different versions of the same dependencies.

For cases where a l ibrary does not meet expectations, the l ibrary should be updated
and extended. Because of this, the l ibrary should be open source, actively maintained, and
have a responsible team behind it.

4.1.3 Existing charting Libraries

There are several charting libraries out there. This section analyzes the most popular charts
for the React framework. The populari ty behind them gives a basic level of assurance
that the l ibrary is usable and maintained. The three most popular charting libraries are:
Rechart, Vic tory , and N i v o

Recharts

Rechar ts f l l] is a charting l ibrary buil t on top of D 3 (Data Dr iven Documents) . Recharts
charts are buil t w i t h the help of reusable React components. The charts are composed
S V G elements. The customization is done wi th tweaking component props and passing in
custom components. The l is t ing 4.1 shows a basic example of the chart hierarchy.

21

1 <BarChart width={730} height={250} data={data}>
2 < C a r t e s i a n G r i d strokeDasharray="3 3" />
3 <XAxis dataKey="name" />
4 <YAxis />
5 < T o o l t i p />
6 <Legend />
7 <Bar dataKey="pv" f i l l = " # 8 8 8 4 d 8 " />
8 <Bar dataKey="uv" f i l l = " # 8 2 c a 9 d " />
9 </BarChart>

Lis t ing 4.1: Recharts B a r chart example

The top level component is the responsive container which takes care of the resizing.
Th is component is not required. Then , there are a variety of chart components: area chart,
bar chart, line chart, pie chart, radar chart, scatter chart, funnel chart, and treemap. This
chart component, most importantly, has the data passed to i t . Also , this component can
have some customizations like margins, wid th , and height.

A l l the other customization is done i n the chi ld components. The part of the chart,
the axes, the legend, and toolbar are passed as a chi ld component to the chart component.
For example, to create a grouped bar chart, two bar components have to be passed to the
corresponding chart component. The same applies to the other types of charts, too.

The axis component can have a nested label component for creating and customizing
labels. There is an option for passing a label to the bar and line components too. This
option allows labell ing inside the chart.

The l ibrary also has the abi l i ty to draw different shapes i n the chart. These components
need the coordinates where they should be drawn. There is an option for passing a custom
component to the chart; however, this option is not documented i n more breath.

The l ibrary has 10 dependencies and two peer dependencies. O n their G i t H u b page[14],
there are lots of open issues and they are actively searching for contributors. Th is indicates
that, even though the l ibrary is actively maintained, they do not have enough resources to
keep up w i t h new demands.

The documentation is readable and has mult iple examples. One of its shortcomings
is that there is no existing documentation on the topic of how to create custom wrapper
components.

Vic tory

Victory[9] is a set of modular charting components for React and React Nat ive . The l ibrary
makes it easy to get started without sacrificing flexibility. V i c t o r y styles and behaviors are
fully customizable. The components are highly modular and the l ibrary has no dependen
cies.

22

1 < V i c t o r y C h a r t
2 domainPadding={20}
3 >

4 < V i c t o r y A x i s
5 t i c k V a l u e s = { [l , 2 , 3 , 4]>
6 t i c k F o r m a t = { [" Q u a r t e r 1", "Quarter 2 " , "Quarter 3 " , "Quarter 4"]}
7 />
8 < V i c t o r y A x i s dependentAxis />
9 < V i c t o r y B a r

10 data={data}
11 x="quarter"
12 y="earnings"
13 / >

14 </VictoryChart>
Lis t ing 4.2: V i c t o r y B a r chart example

The l is t ing 4.2 shows the basic concept of the charts. F i r s t , the chart component has
to be defined. It is responsible for the generated S V G image without the elements in i t . It
has different props like padding, margins, or dimensions. The other elements to the S V G
are added wi th in the chi ld component.

The l ibrary supports line, bar, and pie charts, vornoi diagrams, and histograms. A d d i
tionally, it has components for stacking and grouping the charts. Th is allows the combina
t ion of mult iple charts into one. E a c h of the components has its own props for customizing
the look of the S V G element. The components also have options for events and the charts
support animations.

The axis component is the same for both of the axes. The axis component allows the
specification of the domain, t ick values, formatting, and more. If not specified, the default
value for the domain comes from the data passed to the charts.

The l ibrary legend component can be used to display the legend. To move the legend
around, the posit ioning props x and y can be used. The legend functions as a standalone
box, so it can be placed anywhere. The charts also can have labels. W h e n the labels need
to be customized, a label component can be passed to the chart component.

If the components from the l ibrary do not provide enough customization, there is always
an option to write a custom component and use i t . O n one hand, wr i t ing custom compo
nents is not t r iv ia l ; however, on the other hand, it has to render its own S V G elements. A l l
in a l l , it is a great feature.

The GitHub[15] page confirms that it has no dependencies. The l ibrary has a broad
user base, few maintainers, and lots of contributors. It has a larger issue backlog, but most
of them are questions.

Thei r documentat ion provides good examples of usage. The examples are interactive
and the props are explained well.

Nivo

Nivofl] is buil t on top of D 3 (Data Dr iven Documents) and Reactjs. E a c h Nivo chart is a
separate component. These components are highly customizable wi th the help of a variety
of props. N i v o charts do not use component hierarchy for customizing the charts. The
l ist ing 4.3 shows a basic bar chart example.

23

1 const keys = ['hot dogs', 'burgers', 'sandwich', 'kebab', ' f r i e s ' , 'donut']
2 const commonProps = {
3 w i d t h : 900,
4 h e i g h t : 500,
5 margin: { t o p : 60, r i g h t : 80, bottom: 60, l e f t : 80 },
6 dat a : g e n e r a t e C o u n t r i e s D a t a O ,
7 indexBy: 'country',
8 keys,
9 padding: 0.2,

10 l a b e l T e x t C o l o r : ' i n h e r i t : d a r k e r (1 . 4) ' ,
11 l a b e l S k i p W i d t h : 16,
12 l a b e l S k i p H e i g h t : 16,
13 >

14 <Bar {. . . commonProps]- />
Lis t ing 4.3: N i v o B a r chart example

Nivo has mult iple packages. The 'core' package provides the core functionality. Then ,
another package has to be loaded w i t h the exact type of the chart. E a c h chart has a large
amount of props through which the given chart can be customized. There are common
options like width , height, and argins. E a c h chart has a responsive version, too.

The on-hover can be turned on and off from the props. It can display one value or a
range of values. The colour options of the chart support different colour schemas or exact
colours. The props allow four different axis representations on the four sides of the chart.
Each axis can have its own label, scale, and range.

Most of the items have an effect object, in which different event handlers can be set
as on-click or on-hover. The legend has a variety of styl ing options, including dimensions,
position, and padding. Labels can also be displayed inside the chart.

The l ibrary supports a range of animations for the charts and translations between data
sets. W h a t is different i n this l ibrary is that the grouped bar chart and the stacked bar
chart is the same bar chart, but that the group option has to be changed accordingly.

F rom looking at the Nivo repository [13], we can see that it has twelve dependencies
and heavily relies on D 3 . The l ibrary seems to only have one active maintainer and a few
contributors. W h i l e the l ibrary is actively maintained, there is a long backlog of issues
wait ing to be solved.

Thei r documentation is extensive and interactive. Sadly, the l ibrary does not allow
custom components or more i n depth customization.

4.2 Chart Dashboard

A chart dashboard is a page where mult iple charts are displayed. These charts usually
contain data which are in some sense connected. The chart dashboards are great at showing
a huge amount of data to the user. It can be used to visualise the same data in different
types of charts or, on the contrary, visualise different data in the same chart format.

The dashboards allow a broader understanding of the monitored data displayed i n it.
The user then may make assumptions or deduce useful information from the variety of
charts. However, displaying information in a bunch of charts is not enough. This informa
t ion should be curated, useful i n the context, and has to be visualised i n an appropriate type
of chart. Otherwise, the information could be hard to understand or completely misleading.

24

In some cases, these chart dashboards are set up by a group of experts, especially i f
the data is presented to users who are less knowledgeable in the given field. However, in
some cases, the user has enough knowledge of the given field and may want to customize
or change the format and the displayed data in the dashboard. Therefore, the dashboard
needs to be able to accept user input.

These inputs from the user can be a variety of displayed attributes: changes i n the data,
the option to change the chart's type, changing the data source, adding or removing charts,
reorganizing the charts, and much more. These dynamic chart dashboards should expose
these options in the most user-friendly way. Mos t of the use cases for these custom chart
dashboards are ut i l ized by non-programmers, so the user interface should adjust.

The rest of this section analyzes and takes inspirat ion from similar existing solutions.
Thus establishing ideal requirements for the dashboard.

4.2.1 Existing Chart Dashboards

W h e n searching for some k ind of chart dashboard, there are two well known web applications
which have chart dashboards - Char t log and Grafana.

Chart log

Chartlog[5] is an analytics and journal ing platform for active day traders. The software is
browser based. A n account is needed to t ry out Char t log; therefore, a l l the information
provided further is gained from external review [22].

The software does not currently have fully customizable chart dashboards. It provides
different types of charts w i th predefined data-sets. The user has some options to set the
colours of the chart, and change views, which display different charts. Char t log relies heavily
on line charts and multi- l ine charts as the data they display is mostly t ime dependent and
continuous. The software is also using a bar and a box chart. The charts show a smal l hint
window when hovering on the data point in the chart. These hints show the exact value at
that point.

Char t log is a piece of software which relies heavily on graphs but it does not provide
any means to the user to t ru ly customize and bu i ld a chart dashboard.

Grafana

Grafana [17] is a mult i -platform open source analytics and interactive visualizat ion web
applicat ion. It allows the user to connect external data sources from various web services.
Grafana has a huge variety of charts and styles for each chart. The charts are highly
customizable, as is the data they are representing.

The user can create mult iple chart dashboards and save them. The charts can be
reordered on the dashboard as well as resized. It can be done easily by dragging the window
or the corner of the window around. The fig. 4.5 shows an example of the dashboard wi th
five different charts on it.

Hovering on the charts creates a tool t ip window next to the cursor, displaying the exact
values of the data point. The line charts have a coloured area under them and the hover
works even when the cursor is i n this area. Th is makes it less painful to hover over the line
chart.

The tooltips are also interactive. They display the colour and the name of the measured
value, but cl icking on them hides a l l of the other values from the chart. The top of the

25

Figure 4.5: Grafana Dashboard Example

charts have a dropdown menu which allows addi t ional views of the chart. The first one is
a simple view, which opens the chart on full screen.

The second option is the edit. The edit opt ion opens up a new window, which the
chart is the part of, but which includes many panels and options from which to choose.
Figure 4.6 shows these options. Right under the chart there are three ma in options: query
the data endpoint, transform the dat,a and to set up alerts. The query allows users to select
the endpoint from which the chart w i l l retrieve the data. Addi t ional ly , there are various
parameters which can edit the query, like m a x i m u m value, t ime frame, interval, and so
forth.

Figure 4.6: Grafana E d i t Char t Example

W h e n setting up an endpoint, the query panel shows the options for the series. Here, the
user can select the attributes to display i n the chart, along wi th some predefined functions
which can modify the data structure, so the chart can display it correctly.

The visual customization of the chart can be found i n the right panel. The first chart
customization i tem is the settings, where the t i t le and the description of the chart can be
set. The next menu i tem is the visual izat ion. L is ted under this i tem are a l l of the different
types of charts. The display menu i tem has a l l the customization options for the body of

26

the chart. The graph has the option to display bars and lines i n the same chart. W h e n
lines are enabled, there are addi t ional options to fill the area under the lines, to set the
transparency, and the wid th of the lines. The tool t ip options are l imi ted to show one series
in the tool t ip or a l l of them.

Under the axes menu i tem are options to customize each of the axes. Users are able to
set a unit , scale, m i n i m u m value, m a x i m u m value, and label for each of the axis separately.
The x-axis can be set to display different data type: t ime, series, or a histogram.

The legend can be customized under the legend menu i tem. It offers a visual customiza
t ion of the legend, along wi th the abi l i ty to choose the placement of the legend. The legend
can be displayed under the chart or next to i t . There are options to show addi t ional data
in the legend as the min imum, max imum, and average of the displayed series.

4.2.2 Required features

The chart dashboard should be customizable by the user. Therefore, part of its interface
should allow the user to configure i t . There are two configurable parts - the data source
and the visualisation options.

The data source should be composed of two parts - the source and the parameters.
For each source, there are different sets of allowed parameters and allowed values of these
parameters. The user should not be able to select an inval id configuration. To achieve this,
the user interface should not allow the user to create this configuration.

The visualisation options directly affect the shape of the displayed data. The first
obvious option is to select which type of chart should be used for data visualisation. Then
the user should be able to selects which attributes of the received data should be visualised
and i n which part of the chart.

Depending on the selected data type, the user can get a single series or a multi-series.
The single series data can be viewed by t ime or by some other attr ibute. W h e n the single
series data is grouped by time, then it is expected that the data should be visualised by
time, meaning that t ime w i l l be showed on the x-axis. Then the data can be visualised by
a simple line, bar, or area chart. However, i f mult iple attributes are needed to be visualised
from the data set, the stacked chart can be used. W h e n the single series is grouped by
something else than time, a more appropriate chart to display the data in is the pie chart.
Multi-series data is expected to be grouped by t ime and some other attr ibute. To visualise
multi-series data, a grouped bar chart should be used.

Then the user should be able to select and assign different colours for different attributes.
Another important step i n the customization is setting the labels and the t i t le of the chart.
The t i t le and the labels are crucial to understanding the data displayed in the chart.

The chart dashboard should allow the user to interactively compose his charts. This
would mean that the edited chart is updated every t ime the user changes a value i n the
configuration. The user also should be able to add mult iple charts and be able to remove
or edit added charts.

27

Chapter 5

Design and Implementation

This chapter describes the three main components of this l ibrary as well as the develop
ment setup for the project. For each component, its features and restriction are described
along wi th their interface. This chapter provides a good understanding of the usage of the
components as well as the data structure they need, and the challenges which were solved
during the development.

5.1 Ut i l ized libraries

In the section 4.1.3 the existing charting libraries were analyzed i n depth. Nivo unfortu-
natelly has only one mantainer and a long backlog of issue which can be l imi t ing when
changes are required from the charting library. This leaves open the two other options:
V i c t o r y Char ts and Recharts. T h e y are similar to use and they have very similar function
alities.

The choice of using V i c t o r y Char ts over Recharts is affected by two factors: Rechart
is using D 3 (Data Dr iven Documents) for chart rendering, which is a heavy library, not
optimized for React, leaving the charts hard to test. The other reason is the existence of
the Patternfly Charts , which is a th in layer over the V i c t o r y Charts . Patternfly Char ts is
reexporting the V i c t o r y Charts while giving a default s tyl ing to the charts. T h i s design
mostly aligns wi th the A A A design guide. This makes the resulting chart rendering l ibrary
more lightweight as it does not have to deal w i th designing each of the components.

5.2 Data Driven Chart Rendering

One of the most complicated and most important parts of the project is the abi l i ty to render
a chart from a schema. This component has its own input into the schema of the charts,
along wi th an object containing functions, and generates the described charts.

The section discusses the features and the l imitat ions of the library. It also dives into
the interface of the library, describing the schema and the function object i n more depth.
The data fetching subsection discusses the issues wi th the current data format returned by
the A P I and the parsing of this data. Toward the end, the structure of the components is
described, along wi th the explanation behind each important trade-off and decision.

28

5.2.1 Features, limitations

The chart renderer is capable of rendering the following charts: line chart, bar chart, area
chart, scatter chart, and pie chart. Addi t ional ly , w i t h the exception of the pie chart, the
chart renderer is capable of rendering grouped charts and stacked charts. B o t h the grouped
chart and the stacked chart support grouping and respectively stacking different types of
the chart. The stacked bar chart and stacked line chart examples are shown i n fig. 5.1.

0 2 / 2 8 0 3 / 0 2 0 3 / 0 4 0 3 / 0 6 0 3 / 0 8 0 3 / 1 0 03/12 0 3 / 1 4 0 3 / 1 6 03 /18 0 3 / 2 0 0 3 / 2 2 0 3 / 2 4 0 3 / 2 6 0 3 / 2 8

Date

0 2 / 2 8 0 3 / 0 2 0 3 / 0 4 0 3 / 0 6 0 3 / 0 8 0 3 / 1 0 03/12 03 /14 0 3 / 1 6 0 3 / 1 8 0 3 / 2 0 0 3 / 2 2 0 3 / 2 4 0 3 / 2 6 0 3 / 2 8

Date

Figure 5.1: Stacked bar and stacked line chart

Stacked and grouped charts

Stacking charts where the two charts are using the same single series requires the schema to
expl ici t ly define the charts. Th is means that there is no option to render a variable amount
of charts from a single series. The same l imi ta t ion is applicable for the grouped charts.
Dynamic chart generation is possible when the received data is a multi-series. In this case,
a chart can be rendered for each series from a template. Then, each chart receives one
series from the multi-series and the count of the series matches the count of the rendered
charts in the group. This feature is useful when the user wants to set their custom l imi t
for the A P I ca l l . A n example of a chart generated by the template is shown i n fig. 5.2.

03/16 03/17 03/18 03/19 0 3 / 2 0 03 /21 0 3 / 2 2 0 3 / 2 3

Date

• 3 / 2 4 0 3 / 2 5 0 3 / 2 6 0 3 / 2 7 0 3 / 2 8 0 3 / 2 9

No Name

organization_Q

o rgan i za t i on !

organization_3

27 Others

Figure 5.2: Dynamic grouped bar chart

The following feature is also connected to chart rendering. W h e n rendering a grouped
bar chart, each bar chart has to have its own wid th and the group itself has to have the

29

offset for spacing the charts. The chart renderer is capable of calculat ing both the wid th
and the offset for the bar charts. Since the dynamic rendering is not applicable for the
stacked bar charts, the offset for the bar stacks has to be specified in the schema. If only
one bar chart is being rendered, the chart renderer is capable of setting the offset again.

Legend

The most integral part of the charts is the legend. The chart renderer can create legends
for the charts. F r o m the l imitat ions of the used charting library, the legends can be located
below the chart or on the right side of the chart. In either posit ion, it is possible to orient
the legend horizontally or vertically. The legend then has a colour and a name, which aligns
wi th the chart colors.

o r g a n i z a t i o n s

No Name

o rgan iza t i on j

o r g a n i z a t i o n ^

27 Others

Figure 5.3: P ie chart w i th interactive legend

A really useful feature for the chart renderer is the capabil i ty to render an interactive
legend. B y setting one boolean value to true, the legend becomes interactive and, when
clicked, the chart renderer hides or shows the associated series to the legend entry. Th is is
i l lustrated in the fig. 5.3.

The implementat ion here is l imi t ing . W h i l e having a mutli-series, the chart renderer
toggles a whole series to hide or show a chart. In the pie chart, the legend toggles entries
in the series to hide or show that value i n the chart. However, when using a single series
in mult iple charts, like a stacked chart w i th a single series, there is no deterministic way to
get which attributes should be hidden or shown; therefore, the interactive legend w i l l not
work.

B y default, the Pa t t e rnF ly 4 Char ts comes wi th helper functions to make creating the
interactive legend easier. However, their implementat ion does not work in some cases, like
w i th the pie chart. After some discussions, the Pa t t e rnF ly team w i l l consider changing the
event handling for their helper function. In the meantime, the interactive legend is custom
implemented in the l ibrary using the basic V i c t o r y Char t events functionality.

Hover and click event

W h e n hovering the mouse over a chart entry, the user may want to see addi t ional informa
t ion or more exact values t ied to that point. The chart renderer supports these tooltips in
two different forms.

30

The first format is to display the tool t ip for a single value, when hovering over a specific
point i n the chart. This mode is useful when having lots of charts grouped together. In the
schema, it can be generated automatical ly by specifying the attr ibute name it should display
in the tool t ip, else a custom function can be passed for advanced styl ing and processing.
This function receives a l l the data associated wi th the concrete point i n the chart. A
renderer example of this tool t ip is fig. 5.4.

s 4 0

o 2 0 II
0 2 / 2 8 0 3 / 0 2 0 3 / 0 4 0 3 / 0 6 0 3 / 0 8 0 3 / 1 0 03/12 03 /14 03 /16

Date

03 /18 0 3 / 2 0 0 3 / 2 2 0 3 / 2 4 0 3 / 2 6 0 3 / 2 8

Figure 5.4: Stacked bar chart w i th a single value toolt ip

The other option is to enable the tool t ip for the chart wrapper. The tooltips are s t i l l
defined for each chart, but, when hovering over the chart, the displayed tool t ip contains a l l
the chart tootlips over the x-axis. Th is tool t ip is shown i n the fig. 5.5.

0 2 / 2 8 0 3 / 0 2 0 3 / 0 4 0 3 / 0 6 0 3 / 0 8 0 3 / 1 0 03/12 0 3 / 1 4 03 /16 03 /18 0 3 / 2 0 0 3 / 2 2 0 3 / 2 4 0 3 / 2 6 0 3 / 2 8

Date

Figure 5.5: Stacked line chart w i th a tool t ip

The most important event the chart can have is an on-click event. Th is is useful for
dr i l l ing down into the data entry. M u l t i p l e on-click functions can be defined for the chart
builder. Each chart, defined i n the schema, and can have its own function for handling the
on-click event. These functions receive a l l the data t ied to the entry of the clicked point in
the chart, as well as a l l the data t ied to the on-click event in the browser. This allows the
developers to have full control over what should happen when a click event is fired.

5.2.2 The interface

The interface consist of two objects. T h e first object is the schema of the chart and the
second is an object containing functions. The need of the functions object is t ied to the fact
that the schema w i l l be stored i n a server-side database. This means that, i n the schema,
functions cannot be stored. However, there is a need for passing functions to the chart,
which w i l l be discussed later. One use case for these functions is on-click events or axis
formatting. The chart rendering components take a functions object as it input and these
functions are referenced in the schema by their name and are stored as a string.

This approach also increases the security of the code. Since the schema w i l l be composed
by the end user, the abi l i ty to inject a function into the code would extend the customization

31

capabilities of the component. A t the same time, it would also allow the user to inject and
execute malicious code.

To avoid the security risk just described, the functions object is not exposed to the user.
It is up to the developer to write their custom function and then give the user the abi l i ty to
choose from these functions. This ensures that the only one who can write executable code
is the developer, while keeping the customization on a high level. Th is also means that the
developer does not depend on the l ibrary when new functions are required on their side.

Schema

Using TypeScript[18] has clear advantages when creating an interface. W h e n creating the
schema for the chart, the interface can be defined using the type, interface, and the enum
features from TypeScr ip t . This allows other developers to know exactly what type(s) and
what structure is needed as an input for the chart renderer. This section only describes the
types in the schema which are needed for the chart renderer to function. The structure of
the required data from the A P I is described in section 5.2.3.

The schema is an array of objects. The top level objects describe chart elements. B y
default, there are two types of elements:

• Top level chart elements, like chart wrapper and pie chart. These elements have to
fetch the data, handle resizing, and they have no parent.

• C h i l d chart elements, like grouped chart or simple charts. These elements always have
a parent.

There are three common fields for a l l top level objects i n the schema - id, kind, parent.
The id is an unique i d of that element. Th is i d is used for reference i n the parent field to
indicate the parent-children relationship. The kind property indicates what type of chart
element the object is describing. The kind property can have currently four values:

• wrapper - indicates that the object is a top level chart element without a parent and
also indicates the presence of a new chart.

• group and stack - these indicat ing „middle level" elements. These types usually have
more than one chi ld and they are grouping or stacking them. Thei r parent is always
a wrapper.

• simple - this indicates that the object is describing a simple chart element. Th is
element can render different types of simple charts - one series visualised i n a line,
bar, area, or scatter chart. The simple object's parent can be bo th the wrapper or
the group/stack elements.

A l l elements also have a props field, which is different for each element. This field is
directly passed to the component which is rendered from this object as its props. This allows
the developer to have full control over the component. The prop field is overwritten only
in cases where a prop could break the chart renderer. A basic stacked bar chart example
is shown i n l is t ing 5.1. In the example, the ChartKind and the ChartType are imported
constants from the library.

1 [
2 {

3 i d : 1000,

32

4 k i n d : ChartKind.wrapper,
5 t y p e : ChartTopLevelType.chart,
6 p a r e n t : n u l l ,
7 props: {
8 h e i g h t : 300
9 },

10 x A x i s : {
11 l a b e l : 'Date'
12 },
13 y A x i s : {
14 l a b e l : 'Jobs a c r o s s a l l c l u s t e r s '
15 }.
16 a p i : {...}
17

18 {

19 i d : 1100,
20 k i n d : C h a r t K i n d . s t a c k ,
21 p a r e n t : 1000,
22 props: {}
23

24 {

25 i d : 1002,
26 k i n d : C h a r t K i n d . s i m p l e ,
27 t y p e : ChartType.bar,
28 p a r e n t : 1100,
29 props: {}
30

31 {
32 i d : 1001,
33 k i n d : C h a r t K i n d . s i m p l e ,
34 t y p e : ChartType.bar,
35 p a r e n t : 1100
36 props: {}
37

38]
Lis t ing 5.1: Simple stacked bar chart schema

In the example l is t ing 5.1, the api field is hidden. This object describes the A P I end-
point, which returns the data the chart renderer uses to populate the charts. The interface
is straightforward, it has a url field, which points to the endpoint, and a params field, which
is a key-value object passed directly to the A P I i n the POST request body. The data which
is received from the A P I is converted into a more robust structure, which is described in
the section 5.2.3.

The axes of the chart are described on the wrapper object as is shown in the l is t ing 5.1.
The x and y axis are defined separately. Each of the axes can have a label, which shows up
as text next to the axis. The axis fields are aligned wi th the V i c t o r y Char t ' s axis props,
w i th one exception. The tickFormat field controls how the axis values should be formatted.

33

In the V i c t o r y Char t library, this prop is a function; i n the schema, it is a function named
as a string and should exist in the functions object passed to the chart renderer.

The tool t ip can be defined on two levels. If the tool t ip should be individual ized for
each chart, then it has to be defined i n the simple chart element. The tooltip field accepts
the type of the tool t ip. Right now, only the default tool t ip is supported, which creates a
tool t ip w i th 'Labe l : value' format. Th is component can be customized by passing options
in the props field. These props are passed directly to the tool t ip component. To further
customize the toolt ip, labelName can be set. This changes the label part of the tool t ip.
The customFnc can be used to generate a custom tool t ip content from the data. W h e n it
is passed, it takes precedence over the default 'Labe l : value' format. T h i s type of tool t ip
for a single chart is shown i n l is t ing 5.2.

1

2 {

3 i d : 2 ,
4 k i n d : C h a r t K i n d . s i m p l e ,
5 t y p e : C h a r t T y p e . l i n e ,
6 p a r e n t : 1 ,
7
8 t o o l t i p : {
9 t y p e : C h a r t T o o l t i p T y p e . d e f a u l t ,

10 props: {...},
11 labelName: 'custom name',
12 customFnc: n u l l
13 >
14 }.
15

Lis t ing 5.2: Schema for a single tool t ip on a line chart

The other type of tool t ip approach is to combine a l l the tooltips over a point on the
x-axis and display a l l the tooltips at once. This tool t ip can be achieved by defining the
tool t ip on the wrapper component. The chart components can s t i l l be customized i n the
same way as before, but they w i l l be rendered under each other i n one tool t ip . The tooltip
field on the wrapper can have a customFnc, which behaves the same as on the single chart
tool t ip . There is one customization option right now and that is the cursor field. If set to
true, the chart renders a horizontal line in the chart, following the mouse, and displays the
tool t ip next to i t . A basic example of the chart tool t ip wi th the enabled cursor opt ion is
demonstrated on l ist ing 5.3.

1 [
2 {

3 i d : 1 ,

4 k i n d : ChartKind.wrapper,
5 t y p e : ChartTopLevelType.chart,
6 p a r e n t : n u l l ,
7

8

t o o l t i p : {
c u r s o r : true

9

10

11

3 4

12 {

13 i d : 2,
14 k i n d : ChartKind.group,
15 p a r e n t : 1 ,
16 props: {}
17

18 {

19 i d : 3,
20 k i n d : C h a r t K i n d . s i m p l e ,
21 t y p e : C h a r t T y p e . l i n e ,
22 p a r e n t : 2,
23 t o o l t i p : {
24 labelName: ' F a i l e d '
25 }.
26

27

28 {

29 i d : 4,
30 k i n d : C h a r t K i n d . s i m p l e ,
31 t y p e : C h a r t T y p e . l i n e ,
32 p a r e n t : 2,
33 t o o l t i p : {
34 labelName: 'Success'
35

36

37

38

39]
Lis t ing 5.3: Schema for the wrapper tool t ip

The legend has to be defined on the wrapper component. The two required fields for
the legend are posit ion and orientation. The posit ion can be bottom or right, while the
orientation can be vertical or horizontal. A n optional field is interactive, which is set to
false by default. W h e n set to true, this makes the chart legend interactive and cl icking on
the legend entry toggles the series i n the chart. A simple example is shown in l is t ing 5.4.

1

2 {

3 i d : 1 ,

4 k i n d : ChartKind.wrapper,
5 t y p e : ChartTopLevelType.chart,
6 p a r e n t : n u l l ,
7

8 legend: {
9 i n t e r a c t i v e : true,

10 o r i e n t a t i o n : C h a r t L e g e n d O r i e n t a t i o n . v e r t i c a l ,
11 p o s i t i o n : C h a r t L e g e n d P o s i t i o n . r i g h t
12 >

13 } ,

35

14 ...
Lis t ing 5.4: Simple legend example

The on-click function is passed to the simple chart as a string, representing a function
name. After that, a function from the passed functions object should have a function wi th
the same name.

Functions

The functions object is much more straightforward than the schema object. The idea is to
have a key for each type of functionality and that these keys hold another object, where
the key is the name of the function and the value associated wi th the key is a JavaScript
function. Th is format is readable for developers, easy to work wi th , and really easy to
extend.

Currently, three types of functions are used i n the chart renderer. The onClick key is
for the functions which can handle on-click events. The axisFormat key contains functions
for formatting the axes, like transforming dates, or converting high and low values to more
readable formats. The fetchFnc key holds a single function. This function is used to
fetch the data from the A P I . This function allows greater control over the data fetching.
Especial ly useful when the applicat ion has to authenticate before the fetch can be made.

1 const f u n c t i o n s = {
2 o n C l i c k : {
3 'doNothing': () => { } ,
4 'myFunction': (data) => { c o n s o l e . l o g (d a t a) ; }
5 },
6 axisFormat: {
7 formatDateAsDays: (i) => (i && i . s p l i t (' - ') [2]) ;
8 },
9 f e t c h F n c : (u r l) => f e t c h (u r l) ;
10 }

Lis t ing 5.5: Example of the functions object for the chart renderer

In the example l is t ing 5.5 four functions are defined, two for the on-click events, one for
formatting the axis, and one for the fetch function. The supplied functions are using the
arrow function format, but any k ind of function can be supplied. If the 'myFunct ion ' is to
be executed when a chart element is clicked, then it must be saved i n the schema under the
string 'myFunct ion ' i n the appropriate field. Then, the chart renderer w i l l search for this
function and cal l it w i th parameters for the on-click event. Since JavaScript has no type
checks, the function can accept fewer parameters than is passed to i t .

The chart renderer component ships wi th a few predefined functions. They can be
imported to the code and then modified, or just passed to the chart renderer.

5.2.3 Data fetching from the API

Developing the A P I is not part of this scope of work and is handled by other people. This
means that the chart builder needs to use the A P I that is made available to make the
component usable for Au tomat ion Analy t ics and accommodate any changes made to the
A P I . The current A P I which supplies the data to the chart renderer is s t i l l missing some
features, which w i l l be further discussed at the end of this section.

3 6

The basic schema of the A P I is described i n Section 3.2.1. To be more readable, the
returned objects from the A P I w i l l be organized by charts.

Single series

The most basic structure is a single series, which can be visualised v i a line, bar, area, and
scatter charts. The object contains an items array. The items array contain objects, such as
where the created_date is usually on the x-axis, and other attributes that can be visualised
on the y-axis of the chart. This also allows for the composit ion of a stacked or a grouped
chart, where we display two attributes in two different charts, i n the series w i th just one
cal l to the A P I . A n example of this type of object returned by the A P I can be found in
l is t ing 5.6.

1 {

2 i t e m s : [
3 {

4 s u c c e s s f u l _ c o u n t : 34 ,
5 f a i l e d _ c o u n t : 34 ,
6 c r e a t e d _ d a t e : "2021-02-23"
7 }. {

8 s u c c e s s f u l _ c o u n t : 60 ,
9 f a i l e d _ c o u n t : 24 ,

10 c r e a t e d _ d a t e : "2021-02-24"
11 }.
12

13]
14 }

The pie

L i s t ing 5.6: The single series object returner by the A A A A P I

chart uses also a single series, but no is date supplied, just the attributes. Th is
means it should be handled differently when rendering; however, from the fetching and
parsing perspective, it is s t i l l the same as the previous single series.

Mult ip le series

The other type of series that the A P I can return is the mult iple series. Th is happens when
the data is grouped by an attribute. Th is k ind of data can be visualised perfectly i n a
grouped bar chart. There is an example in the l is t ing 5.7. It is basically what it says, a
single series nested inside another array. The extra information outside of the series is the
attr ibute by which the data is grouped. In the example, the series are grouped by date
(time).

1 {
2 d a t e s : [

3 {
4 date: "2021-03-11",
5 items: [

6 {

7
8

t o t a l _ c o u n t : 12,
t o t a l _ o r g _ c o u n t : 1,

3 7

9 i d : 1 ,

10 name: " o r g a n i z a t i o n_2"
11 },
12

13]

14 } ,

15

16]

17 >

Lis t ing 5.7: The mul t i series object returner by the A A A A P I

Parsing

The charts require a different format of data than the A P I returns, therefore a l l the data
received from the A P I has to be parsed. Addi t ional ly , there is some extra information
that needs to be stored. This extra information is a hidden field, which is required for the
interactive legend, and a name field, which contains a unique id for the chart that displays
the data. Th is data structure is described i n l is t ing 5.8.

1 {

2 d a t a : [
3 {

4 s e r i e : [
5 {

6 a t t r l : v a l u e 1 ,
7 a t t r 2 : v a l u e 2 ,
8
9

10

11].
12 h i d d e n : f a l s e ,
13 name: ' u n i q u e - s t r i n g - i d e n t i f i e r '
14 }.
15

16]
17 }

Lis t ing 5.8: The internal data structure for the charts

A s it is shown i n l is t ing 5.8, the data is always an array of the series. Th is means that
even i f the A P I returns a single series, it is stored as an element of the data array. This
step unifies the data structure for any data returned from the A P I and enables the data to
be more uniform processed.

Legend

The legend is an integral part for most of the charts. However, the A P I does not returning
the legend entries. Th is means, after parsing the data, the legend entries have to be
derived from the data itself. Th is method of extracting the legend entries from the data is
not bulletproof, but works wi th the current A P I .

38

The process is the following:

• If there is only one series:

— Iterate over a l l the objects i n the series and return the name at tr ibute i n an
array.

• If there are mult iple series:

— Iterate over each series.

— F r o m each, series get the first entry and return its name i n an array.

Future A P I work

The development behind the A P I is s t i l l ongoing and there w i l l be discussions on how to
deal w i th the format for the charts; however, here are some of the proposed features.

• Send the tool t ip w i th the data as an attribute.

• Send the legend wi th the data i n the meta field.

• Create a placeholder when the name at tr ibute is empty in the data.

• A d d a chart flag to the request to make the A P I return the data in a format which
can be supplied to the charts directly.

5.2.4 Chart creation

The chart renderer uses the V i c t o r y Charts l ibrary to create charts. The V i c t o r y Charts
l ibrary is discussed more depth i n section 4.1. The chart renderer should follow the U X
design for the Au tomat ion Ana ly t i cs . Th is could have been done by styling the charts to fit
into the U X explici t ly; however, there is already an existing styl ing for the V i c t o r y Charts
which fits the U X design the Ansib le Au tomat ion P la t form is following, called Pa t t e rnF ly
4 Charts [21].

Pa t t e rnF ly 4 Char ts is a th in layer over the V i c t o r y Charts . The l ibrary reexports the
same components which already exist i n the V i c t o r y Charts , w i th default s tyl ing and, in
some cases, w i th extra configuration, while keeping the V i c t o r y Char t components s t i l l fully
configurable. Us ing the Pa t t e rnF ly 4 Charts instead of the V i c t o r y Charts eliminates the
need for most of the custom styl ing of the components, but also makes the development
more challenging, since now there are two libraries to work wi th .

There are two types of components provided in the Pa t t e rnF ly 4 Charts . The first type
is the single component chart. A n example of this chart type is the pie chart. The basic
usage of the chart is shown i n l ist ing 5.9. It has a data prop, for passing the series, as well
as props for sizing, labels, tooltips, and more.

2
1 <Cha r tP i e

da ta={[

1
3 { x : ' C a t s ' , y : 35 },

{ x : ' D o g s ' , y : 55 >

6
7

5]>
height={230}
l a b e l s = { ({ datum }) => '${da tum.x>: $ { d a t u m . y } ' }

39

8 legendData={[
9 { name: 'Cats: 35' },

10 { name: 'Dogs: 55' }
11] >

12 l e g e n d O r i e n t a t i o n = " v e r t i c a l "
13 l e g e n d P o s i t i o n = " r i g h t "
14 padding={{ bottom: 20, l e f t : 20, r i g h t : 140, t o p : 20 }}
15 width={350}
16 / >

Lis t ing 5.9: P i e chart component example

The other type of charts are the charts w i t h x and y axes, like line, bar, area, or scatter
charts and their stacked or grouped versions. F r o m the basic example shown i n l is t ing 5.10,
it can be seen that this format is more complex. The sizing and labels live i n the top
element chart, while it has axis components as chi ld components as well as the charts it is
displaying. In the example, the chart contains a group component which renders groups
of charts. The groups i n this case are bar charts. The bar charts have the data passed to
them and the series they render.

1 <Chart
2 containerComponent={<ChartVoronoiContainer
3 l a b e l s = { ({ datum }) => '${datum.name}: ${datum.y}'}
4 / »

5 legendData={[
6 { name: 'Cats' },
7 { name: 'Dogs' }
8] >

9 l e g e n d O r i e n t a t i o n = " v e r t i c a l "
10 l e g e n d P o s i t i o n = " r i g h t "
11 height={250}
12 padding={{ bottom: 50, l e f t : 50, r i g h t : 200, t o p : 50 }}
13 width={600}
14 >

15 <ChartAxis />
16 <ChartAxis dependentAxis showGrid />
17 <ChartGroup o f f s e t = { l l } >
18 <ChartBar data={datal} />
19 <ChartBar data={data2} />
20 </ChartGroup>
21 </Chart>

Lis t ing 5.10: Grouped bar chart component composit ion

V i c t o r y Charts does some background calculations from the data, even in the higher
level components. Th is means that the top level Chart component has access to the data
passed to the nested ChartBar chi ld component. In React, this is only possible by passing
down callback functions to the chi ld component. Th is poses a problem when t ry ing to
wrap their components into a custom component. The i r guidance on how to wrap the
components is not working.

40

To overcome the challenge of not being able to wrap the component, but have separated
logic for handling the render for each component, the chart renderer has basic functions
which return already rendered React elements. In this way, there is no extra component
layer on top of the V i c t o r y Charts , but the functions are able to pass custom props to the
Pa t t e rnF ly components and do calculations on their own.

This approach has its own l imitat ions. If there are only functions and no components,
then the React hook cannot be used, making it impossible to watch for data changes or run
asynchronous code. This also causes the whole chart to re-render, not just a sub-component
of the chart when any of the input changes.

5.2.5 Top level elements

A s described, there are mult iple top level chart elements, like Chart and ChartPie. Thei r
interfaces differ slightly, but there are common props and settings. These top level compo
nents also have to have extra logic for handling the resize event and handling the interactive
legend event.

Responsiveness

To have a responsive chart ing l ibrary usable both on wide screens and on smartphones, it
is necessary to handle the resize event and to adjust the chart to different screen widths.
The chart itself is a picture composed of S V G elements. Th is means that V i c t o r y Char t ' s
responsiveness is the same as a picture. Th is has mult iple problems, but the most notable
is the change of text size in the chart. W h e n scaling the chart down, at some point the text
w i l l get so smal l that it becomes unreadable. W h e n scaling up, the text becomes too big
and unwieldy.

The solution to this scaling is to set the text size dynamically. Fortunately, the Pat
te rnFly 4 Char ts can handle the resize. However, it comes at the cost of out of the box
resizing. Th is means that every chart has to have a width and height defined as a number
in pixels. This also means that i f the chart is meant to be responsive, these numbers have
to be variables, which then have to be recalculated when the resize event is fired.

In React, the solution is to create a wrapper div element around the charts and get its
reference. Then , when the resize event is fired, the wid th of the wrapper d iv element is
read and the wid th of the chart is set to this new value.

Fetching the data from the A P I

Each top element component must handle fetching the data from the A P I and passing down
to the chi ld components to render as a chart. The process is the same i n every chart: set
the loading variable to true, then start fetching the data. After the request is resolved, set
loading to false and set the data to display the error.

A l l of the required information for fetching the data is passed down i n the api field in
each top level schema element. The api object consists of three fields: params, url, and
method. Th is object is then passed to fetchFnc, which is the part of the functions passed
to the component. B y default, the fetchFnc function uses the ' P O S T ' method, if it is not
defined differently i n the method field, and passes the params to the body of the request. If
method is set to ' G E T ' , then a G E T request is fired without sending the parameters. This
is great for local testing wi th mockup data. For more advanced fetching, the user should
create their fetchFnc which works wi th the api object and returns the data.

41

Since the default responsiveness and the data fetching logic are the same for a l l the
top level components, they can be offloaded into another component. Th is component is
called Responsive Container. Th is component creates the required div wrappers for the
chart. It hooks into the resize event and, on change, returns the new wid th to the parent
component. The component also handles the fetching from the A P I . This means that it
renders the chi ld components passed to it (the pie chart and the chart wrapper) only when
the loading is finished. W h e n fetching data from the A P I , errors should also be handled.
The component catches any errors returned from the ca l l to the A P I and displays a simple
error message instead of rendering the chart. Th is container component makes it easier to
add new top level chart types, as well as modifying the existing logic.

5.2.6 Anomaly Detection

In data analysis, anomaly detection is the identification of rare items, events, or observations
which raise suspicions by differing significantly from the majori ty of the data. One of the
easiest methods to detect anomalies i n huge data sets is w i th the help of charts. There are
two options for spott ing an anomaly i n the charts. One is to display the correct data, and
spot i n the chart the deviant values and strange behaviours. The other one is to have some
automated function which highlights the possible anomalies i n the data.

The first use case does not require any special functionality on top of what the chart
renderer is already capable of. The second use case requires the chart renderer to be able
to highlight some values i n a chart. Th is can be done by overlapping a line chart and a
scatter chart, where the scatter chart has null data at the entries which are not anomalies
and the anomaly value at points where the anomaly is detected.

10/31 11/01 11/02 11/03 11/04 11/05 11/06 11/07 11/08 11/09 11/10

Date

Figure 5.6: A n o m a l y detection example

In the chart renderer, the anomaly can be appended to a single series. The Au tomat ion
Analy t ics A P I does not currently support the anomaly detection, so the i n the example,
fig. 5.6, the chart is supplied wi th custom mockup data. Th is data contains the values for
the line chart, and each data entry has an anomaly field, which is a null value i f that entry
is considered an anomaly. The styl ing i n the example is m in ima l and custom, since there
is no U X design available yet for i t .

5.3 Chart Editor

The other main part of the project is the editor, which allows the user to create or edit
charts by cl icking through a form. The usage of this form is similar to the chart renderer.
If the chart needs editing, then the existing chart schema should be passed. Then , the
component needs the endpoints from which to get the option values and, finally, it has

4 2

a callback function, which is called each t ime the schema is changed. F i rs t , this section
discusses the features and l imitat ions of the form. Then , the A P I format w i l l be described,
which is needed for the form to display the options correctly. In the end, the implementat ion
details are described.

5.3.1 Features and limitations

Right now the editor is i n its first i teration. A proper U X design is under way while the
current version version is based on wireframes. The editor features a window w i t h the
currently edited chart and a draw i n window, which can be toggled. This window, when
visible, contains the form elements for edit ing the chart. The form in its current state has
only few options to chose from, but they are the most important options. A n example of
adding a new chart can be seen in fig. 5.7.

Toggle Editor

200

_ 150

§ 1 0 0

50

2021-04-14

Label X

Sources

J o b Explorer

Edit API request Params

View by

Time

Group by

None

Chart Type

Bar chart

At t r ibues

1

X axis label

Label X

Y axis label

Label Y

Apply Set t ings

Figure 5.7: Char t Ed i to r w i th open editor

The sources field allows the user to choose from different endpoints, from which the
data for the chart w i l l be fetched. In a future release, the but ton under it w i l l open another
field which w i l l allow the user to send extra parameters to the endpoint. In the current
version of the Au tomat ion Ana ly t ics A P I , the four endpoints have slightly different settings:
therefore, this extra option may become available i n the next version of the A P I . These two
settings do not change the form of the chart, only the data i n the chart.

The View by field allows the user to chose the attr ibute under which the data is grouped.
This is a crucial opt ion since it can change the chart type. If the data is grouped by time,
the editor allows for the selection of another grouping option (the Group by field) and the
chart type, a simple, stacked or grouped chart. O n the x-axis of this charts, the time is
displayed. However, i f the View by opt ion is set to something other than time, then the
other grouping option is disabled, and the chart type can be only a pie chart.

The Group by opt ion is only enabled if the View by opt ion is set to time. Then the user
can group the data by some other at tr ibute (other than t ime). Th is causes the chart type

4 3

to change to grouped bar chart, since this is the most reasonable option to display this k ind
of data set i n a chart.

Currently, the chart type field is p r imar i ly controlled by the other options. The user
can only select between different charts when the data is grouped by t ime. Then, the user
can select between line, area, and bar charts.

W h e n the chart type is pie chart or grouped bar chart, the at tr ibute options allows one
attr ibute to be selected. This at tr ibute is represented from the data series. However, i n the
stacked charts, mult iple attributes can be selected. E a c h attr ibute is displayed in its own
chart, where the type is determined by the chart type field.

The last two options are text fields for customizing the labels. These options are not
displayed when the chart type is a pie chart, since it has no labels. In the future, addi t ional
customization options may be added, which would allow users to completely change the
look and feel of the charts.

To avoid inval id configurations and unnecessary re-renders in the end of the form, there
is an Apply but ton which makes the displayed chart re-render w i th the new settings.

F rom the features, it is evident that the editor highly l imits the possibilities of the
chart creation. The chart renderer l ibrary can render a much higher variety of charts. The
l imi ta t ion, however, is caused by the fact that the end user may not have the knowledge
to create a meaningful chart from a l l the options; therefore, the editor creates a more
simplified view, where the user is not lost and a l l of the possible combinations of settings
yield a meaningful chart.

5.3.2 Interface

The interface of the component consists of four props. The schema prop provides the default
schema of the chart when editing a chart. However, the schema can contain mult iple charts:
therefore, the id prop specifies which top level element from the schema should be used as
the start ing point for editing the chart. If the id prop is not defined, then the editor creates
a new chart.

The apis prop accepts an array of objects, where each object has the following keys
defined: url, options url, label. The apis prop is used to render the options for the sources
in the form. The url at tr ibute defines the endpoint for the chart data, while the options url
defines the endpoint from where the chard editor gets its options for the form. The label is
the readable name displayed in the select box for the given source.

The last prop is the onSchemaChange callback function. This function is called each
t ime the chart is changed wi th the new value. The new value is created by merging the
new or edited chart w i th the rest of the passed charts i n the schema prop.

5.3.3 Data format from the API

Some of the form options are hard coded, as is the case w i t h chart type. The source comes
from the props. A l l the other form options are populated from the Au tomat ion Ana ly t i c s
A P I . The accepted format is an object having a key attribute, which is the value of the
option, and the value attribute, which is the displayed string for the given option. Then
,to populate the select field, an array of these option is required.

The Au tomat ion Ana ly t ics A P I returns these options i n an another object, where the
the keys in the top level objects are the names for the given attribute. W h e n the same
parameters are passed to the options endpoint and to the endpoint for the data, the options
endpoint only returns val id options for the data endpoint. T h i s makes the verification

4 4

process for correct inputs obsolete. A n example of the data returned by the option endpoint
is i l lustrated i n l is t ing 5.11.

1 {

2 g r a n u l a r i t y : [
3 { k e y : " d a i l y " , v a l u e : " D a i l y " } ,
4 { k e y : " m o n t h l y " , v a l u e : " M o n t h l y " } ,
5

6] ,

7 g roup_by: [
8 { k e y : " c l u s t e r " , v a l u e : " C l u s t e r " } ,
9 { k e y : " o r g " , v a l u e : " O r g a n i z a t i o n " } ,

10

11] ,
12

13 }

Lis t ing 5.11: D a t a returned by the option endpoint

5.3.4 Implementation

There are mult iple challenges when working wi th schema creation and user input l imi ta t ion .
The logic behind it is not too complicated, but the implementation can get unreadable easily.

Chart IDs

The first challenge encountered was ID generation for new elements i n the schema. The
whole schema should be passed to the editor; therefore, for new charts, the highest ID is
found and this number is incremented for each chart element. However, when editing the
chart, the top element I D should not change. The editor is saving the top element ID when
it is ini t ia l ized. If a new chart is created, the editor saves the highest incremented ID in
the chart. Whenever a new top element is created, this I D is assigned to this element. The
editor cannot keep the IDs of the sub elements, because the number of elements depends on
the chart. Therefore, a l l other chart elements, except the top level element, have different
IDs after editing, even i f the chart is returned to its previous state.

Limit ing the form element values

W h e n an input field's value changes, it can cause other input fields to change the type, value,
or options. To make it more readable, each input field is rendered i n its own function, where
the function has to do three things:

• Generate the val id options for the input field.

• Set the value of the input field i f the new options do not contain anymore than the
original value.

• Render the correct type of input field w i th val id options.

To do this, a l l of the functions have access to a l l of the current values of the form. There
is, however, one drawback to this approach. W h e n an input field changes, a re-render is

4 5

fired. This calls the other functions to render the other input fields; however, i f one or
more of the input fields does not have their selected opt ion as a val id option, it sets the
newly selected option. This action fires another re-render. If someone created a circular
dependency, it would be able to cause infinite re-render cycles. However, these errors are
easy to spot, since they break the entire application.

Rendering the correct chart

The chart renderings should reflect the settings from the form. Therefore, the single source
of t ru th is from the form options. W h i l e the form is l imi ted, some options should be filled
automatical ly by default values. Then , the function for generating the form can have its
own decision tree to select the correct elements to return, where each element can use
different options from the form.

This approach is rather l imi t ing when editing a chart. If the chart was not created
wi th the chart editor, there could be loss of information when reading data in , causing, for
example, styling to use the default value. However, the expectation is that only charts are
eligible for edits which were created by the chart editor.

Summary

The single source of t ru th is the form options. W h e n editing the chart the form options
are set from the schema. The form and the chart are always changing, depending on the
current values i n the form. This approach allows the code to be split into mult iple functions
and the data to be edited independently from one another.

5.4 Data Driven Dashboard

The D a t a Dr ive Dashboard component is the most t r i v i a l of a l l . A l so , this component does
not have wireframes yet. Currently, its purpose is to ca l l the chart renderer and pass the
schema to i t . It also features a but ton which creates a new chart w i th the chart editor and
saves the created chart when the editor is closed. The component has four props, which
are, excluding the schema, directly passed down to the chart renderer or the chart editor.
The apis prop contains the sources for the chart editor. The functions prop is passed down
to the chart renderer, too. The schema prop contains the the default schema, while the
onSchemaChange contains a function which is called whenever a new chart is saved or a
chart is edited.

In the future, this component w i l l be responsible for custom buttons for reorganiz
ing, hiding, enabling, adding, and removing the charts, as well as giving context or extra
information to the user about the other two components.

5.5 Development Setup

This section describes the setup of the project. Information on the code and the package
versioning, as well as the plugin which automates the process of publishing the package,
w i l l be provided here. Furthermore, this section describes the testing setup for the l ibrary
and the demo applicat ion setup, which showcases some of the l ibrary 's features.

4 6

Workflow and versioning

Before setting up the programming environment, a git repository is needed. Us ing git helps
to manage changes i n the project over t ime. This project's git repository is hosted on
Gi tHubf lO] . The source code of the project can be found at:
h t tps : / /g i thub.com/brumik/React -data-explorer

Host ing the git repository on G i t H u b can also leverage the Issues feature which allows
other developers to report issues and makes the code more visible for later contributions.

The project is using the N P M package manager[19] for publishing the library. The
package is available at ht tps: / /www.npmjs.com/package/React-data-explorer . To publ ish
the package to the N P M registry, the source code needs to be compiled from source and
the version number should be set i n the package.json file.

To make releases more consistent, more automatic, and emotion-free, the project has set
up the semantic-release[3] plugin. Th is plugin fires when there is a new commit i n the main
branch (formerly master branch). F r o m the commit messages, it determines which version
number should be incremented depending on whether its a bugfix, feature, or breaking
change. It automatical ly compiles the source, runs the tests, and increments the version
number. After a l l of that is done, w i th a help of token, it publishes the new version to the
N P M registry. Us ing a semantic release approach requires discipline from the developers
when creating commit messages to work properly.

Testing

The project is set up such that, before publishing a new version of the library, a l l test have
to pass. For unit testing React components, the most widespread tool is Jest [8]. However,
Jest itself cannot test the D O M (Document Object Mode l) , but rather works wi th the React
D O M wi th React components. To extend the functionality and be able to test the D O M
which is rendered in the browser, the React Testing Library[6] was added to the project.

There are few other libraries used for setting up complete testing environments to deal
w i th CSS (Cascading Style Sheet), icons, and other static assets. In addit ion, since the
project uses TypeScr ip t , the tests need to be able to run on TypeScr ip t . Th is requires
addi t ional plugins like ts-jest and transformation settings to be able to run the tests.

The last important piece of testing was the abi l i ty to test asynchronous fetch requests.
The fetch-mock [2] l ibrary makes it easy to catch requests to different U R L s and return
mocked up data, making the tests deterministic and giving more control over the data.
This l ibrary also returns various kinds of errors i n the response, al lowing us to test for A P I
failures.

A more in depth explanation of the testing tools is provided i n chapter 6.

D e m o application

The project also has a demo applicat ion to showcase some of the features of the l ibrary and
to allow other developers to see the l ibrary in use. For compil ing the library, as well as the
demo application, and hosting the applicat ion on localhost, the Webpack[4] l ibrary is used.

However, the demo applicat ion uses real data from the Au tomat ion Ana ly t ics A P I .
Since the demo app is not the part of the Au tomat ion Pla t form, the authentication is not
available in the demo app for the A P I . Therefore serving the A P I has to be local too.
Unfortunately, as it currently stands, the Au tomat ion Ana ly t ics back-end repository is not
public and access is restricted to R e d Hat associates.

47

https://github.com/brumik/React-data-explorer
https://www.npmjs.com/package/React-data-explorer

Chapter 6

Testing

This chapter is dedicated to unit testing. Dur ing the development process, testing is one
of the most important parts, because properly tested code means less maintenance time.
Automated tests discover a lot of bugs when the code is modified.

6.1 Libraries

This section introduces the most important libraries used for testing. It provides how they
work independently and describes their capabilities which were used to test the library.

Jest

The Jest testing l ibrary [8] was used for our testing purposes. Th is l ibrary was developed
to easily and effectively test JavaScript code. A unit test can be created by the test or it
functions. These two functions are equivalent to each other. The it keyword fits better,
not only because it is shorter, but because the test should be defined as the it (should
do something", functionQ). This makes the tests more readable. The expect() function
should appear at least once in the function to match values. If a l l of the expect() functions
are passed, then the whole test passes, otherwise the test ends w i t h a failure.

The need of asynchronous testing arises when the lazy loading function must be tested.
Jest provides it in mult iple ways. In the end, the 'asynch' and 'await' keywords were chosen
to wait while the promise became fulfilled, and then tested i f the tree was corresponding to
the correct form.

The Jest testing l ibrary also provides snapshot comparisons. This can be done wi th the
help of expect(containerWithTheRenderedElements).toMatchSnapshot(). O n the first run,
when the snapshot does not yet exist, it gets created i n a separate file for each test suite.
Then , a l l the subsequent test run snapshots are compared to the saved one. If they match,
the test passes. If there is a difference, the test fails. W h e n the snapshot changes because
the implementat ion is changed, there is an option to update the saved snapshot.

A n addi t ional tool of the l ibrary is the abi l i ty to mock functions. B y mocking functions,
it is possible to return controlled or dummy values. A mocked function can addi t ional ly be
tested i n different ways as stored information about the number of calls and the about cal l
arguments.

18

react-testing-library

The snapshots require rendered D O M and the react-testing-library[6] is buil t to supply this.
It provides a render function, which renders a react component into a variable i n the jsdom
format. The jsdom format is the simpler representation of the true DOM, which means it
is missing some advanced functions which are not required for testing.

Addi t ional ly , the react-testing-library provides addi t ion functions for search elements in
the D O M - by text, role, type, and many others. Th is helps when the tests need to verify
if an element is represented i n the rendered component or not.

For interacting w i t h the rendered React component, the react-testing-library provides a
handy fireEvent function. It needs the element as it 's parameter on which the event should
be fired and the event type to use. Th i s allows users to click on elements or use keyboard
inputs for input fields.

W h e n rendering asynchronous React components or components which fetch asyn
chronous data, it is necessary that the element has finished the request before the tests
are run. For this use case, the waitFor asynchronous function can be used. It waits un t i l
the supplied function returns true or fails w i th a timeout.

fetch-mock

The fetch-mock l ibrary provides an easy interface to mock-up fetch calls to different U R L s .
M o c k i n g up A P I requests allows testing without an actual A P I and, furthermore, it gives
full control over the data. Th is makes easier wr i t ing tests, since the exact data is defined
and it is then supplied to the components. The fetch-mock l ibrary is capable of returning
data or different error types w i t h custom messages.

It uses a similar interface to the Jest function mock-ups. It has methods for checking
the number of calls made and cal l parameters. This capabil i ty is extremely useful when the
tests need to verify i f the component is passing the right parameters when fetching from
the A P I .

6.2 Testing the library

The goal of the testing is always to reach the highest coverage possible. However, the
project is made up from two main parts: the chart renderer and the chart editor. The
chart renderer can be considered to be stable, but the rendered elements are not due to big
changes. The chart editor is s t i l l missing a proper U X design and w i l l eventually undergo
a lot of changes. Testing the U I for the chart editor would become obsolete i n no t ime at
a l l . Therefore, the testing focuses mainly on the chart renderer. The final coverage of the
chart renderer is around 92% as shown i n fig. 6.1. Some functionalities, like resizing the
browser window, were not testable by Jest unit tests.

Some functions can be tested as standalone pieces, while other functions are t ied to the
underlying charting library. These functions are tested through the components using the
charting library.

The easiest parts to test are the functions without asynchronous calls. These functions
are followed by the functions which make asynchronous calls to the A P I , like the default
fetch function. A l l of the functions are tested independently - the asynchronous ones wi th
the fetch-mock library.

49

| _

File St Stmts

% Branch j % Funcs j

% Lines j Uncovered Line #s

A l l f i l e s 71.3 J 65.26 56.86 72.91
components | 89.66 66.67 50 86.36 1
DataExplorer.tsx | 89.66 66.67 50 86.36 1

components/Chart | 92.86 87.5 87.5 94.74 1
index.tsx | 92.86 87.5 87.5 94.74 1

conponents/Chart/Connon | 95.74 J 83.33 100 95.18 1
ErrorState.tsx | 100 100 j 100 100 1
ResponsiveContainer.tsx | 97.5 J 75 j 100 97.22 1
getLegendProps.tsx | 93.75 J 87.5 100 92.86 1

conponents/Chart/Renderers | 100 98.57 j 100 100 1
CreatePieChart.tsx | 100 100 100 100 1
CreateHrapper.tsx | 100 96 100 100 1 102
createChart.tsx | 100 100 100 100 1
createGroup.tsx | 100 100 100 100 1
createStack.tsx | 100 J 100 100 j 100 1

100 j

Figure 6.1: Un i t test coverage

A bigger challenge was was the testing of the React components. These are tested
mostly w i t h snapshots. The jsdom format does not support selecting svg image elements
and inspecting them. Therefore, a l l the data is mocked up wi th the fetch-mock function,
allowing different charts to be rendered. The rendered charts are checked manual ly and, i f
they look as they should, a snapshot is created. The chart on-hover functions are currently
impossible to test.

The interactive legend for the chart is tested by interacting wi th the rendered compo
nent. It is done wi th the fireEvent function. Then , the tests wait for to be re-rendered.
W h e n the re-rendering is done, a snapshot is created in the same fashion as the other
snapshots.

In the future, tests w i l l be updated and extended as the charting l ibrary continues to
evolve wi th user feedback, U X design, and unexpected bug fixes.

5 0

Chapter 7

Future development

The l ibrary developed wi th in this thesis is a first version, which is planned to be developed
in the future. The l ibrary is currently being migrated into Asnib le Au tomat ion Analy t ics .
Since it is a bigger system, it takes more time. Future development w i l l be an iterative
process involving other developers and, eventually, the end users too. There is a possibil i ty
that the l ibrary w i l l be used platform-wide on the R e d Hat Ansible Au tomat ion Pla t form.

The l ibrary currently lacks a proper U X design. The U I mocks w i l l be created wi th
the U X team and the Au tomat ion Ana ly t ics developers. It is foreseeable that the l ibrary
w i l l be able to organize the charts into a gr id like pattern and store this information i n the
schema.

The chart renderer w i l l eventually have to work wi th continuous data streams, too. This
is especially important when the user should request to see live data about his /her v i r tua l
machines or servers. Th is feature w i l l require internal opt imizat ion and probably external
optimizations i n the underlying library, too.

Currently, there are two new open discussions wi th the Pa t t e rnF ly 4 Charts team. One
of the discussions is around t ry ing to make the interactive legend more consistent to use
across different chart types. The other one is a possible bug where the Pa t t e rnF ly 4 pie
chart is passing an inval id option to the V i c t o r y chart, which creates warnings when running
the tests. Neither of them is a blocking issue for the created library, but they can make the
code base more simple i f solved.

The exact A P I is s t i l l under discussion for the charts. Soon, the A P I w i l l provide the
legend for each chart i n the meta field. Th is w i l l make parsing the legend obsolete and w i l l
ensure the correctness of the legend for any chart. Furthermore, the A P I w i l l provide an
endpoint where the charts schema can be uploaded and saved i n permanent storage. There
are also ongoing discussions on how to make the returned data format more convenient for
the charts. In the future, the A P I may also allow more options and mul t i grouping, which
could require 3D chart support from the charting library.

5 1

Chapter 8

Conclusion

The goal of this thesis was to design and implement a charting l ibrary in React capable
of rendering charts from a schema, and provide a user interface for creating and editing
the schema for Au tomat ion Ana ly t i cs . The l ibrary was implemented wi th the help of
TypeScr ip t and the React framework, and buil t upon the V i c t o r y charts charting library.

W h e n developing the library, the Au tomat ion Ana ly t ics A P I was taken into consider
ation as well as the feedback for the format of the schema from other developers. W h e n
problems were encountered wi th the underlying libraries, the respective developer teams
were contacted and fixes or features were proposed.

The resulting l ibrary is shipped as an N P M package and it is available through the
N P M registry for public use. The package contains three React components, which can be
used together or as standalone components. The pr imary feature of these components is
the fully customizable and editable chart rendering from schema. The schema only contains
serializable objects, which makes it possible to store the schema i n a database. The user
interface for the chart editor allows for the creation and addi t ion of the following chart
types: simple line, bar, area or scatter chart, stacked charts, grouped bar charts, and pie
charts. The data for the charts and for the options in the chart editor are provided by
the A P I . The chart renderer also makes it possible to visualise and detect anomalies i n the
data.

The charts are unit tested wi th the Jest testing l ibrary and addi t ional plugins, like
react-testing-library and fetch-mock. The unit tests over the more stable chart renderer
reached 92%+ coverage.

A s the component is required by Au tomat ion Analy t ics , the development w i l l continue
after this thesis. The l ibrary w i l l receive a U X design and, w i t h the help of user and
developer feedback, it w i l l be iterated over. The A P I providing the data for the charts w i l l
be improved upon, too, which w i l l mean new features for the chart renderer, like continuous
data stream processing.

52

Bibliography

[1] Nivo [online]. 2020 [cit. 2020-12-16]. Available at: https://nivo.rocks/.

[2] Fetch-mock [online]. 2021 [cit. 2021-04-20]. Available at:
http: / / www.wheresrhys.co.uk/fetch-mock/.

[3] Semantic Release [online]. 2021 [cit. 2021-04-20]. Available at:
https: / / semantic-release.gitbook.io/semantic-release/.

[4] Web-pack [online]. 2021 [cit. 2021-04-20]. Available at: https://webpack.js.org/.

[5] C H A R T L O G , I. Chartlog [online]. 2020 [cit. 2020-12-17]. Available at:
https: //www. chartlog.com/product/dashboard/.

[6] D O D D S , K . C . React Testing Library [online]. 2021 [cit. 2021-04-20]. Available at:
https://testing-library.com/.

[7] E D U C A T I O N , I. C . REST APIs [online]. 2020 [cit. 2020-10-17]. Available at:
https://www. ibm.com/cloud/learn/rest-apis.

[8] F A C E B O O K , I. Jest [online]. 2021 [cit. 2021-04-20]. Available at: https://jestjs.io.

[9] F O R M I D A B L E L A B S , L . Victory [online]. 2020 [cit. 2020-12-16]. Available at:
https: / / f ormidable.com/ open- source/victory/.

[10] G I T H U B , I. GitHub [online]. 2021 [cit. 2021-04-20]. Available at: https://github.com/.

[11] G R O U P , R . Recharts [online]. 2020 [cit. 2020-12-16]. Available at:
http://recharts.org/.

[12] I N C . , F . React, A JavaScript library for building user interfaces [online]. 2020 [cit.
2020-12-09]. Available at: https://reactjs.org/.

[13] I N C . , G . Nivo GitHub Reprository [online]. 2020 [cit. 2020-12-20]. Available at:
https: //github.com/plouc/nivo.

[14] I N C . , G . Recharts GitHub Reprository [online]. 2020 [cit. 2020-12-20]. Available at:
https: //github.com/recharts/recharts.

[15] I N C . , G . Victory GitHub Reprository [online]. 2020 [cit. 2020-12-20]. Available at:
https: //github.com/FormidableLabs/victory.

[16] I N T E R N A T I O N A L , E . Standard ECMA-262 [online]. E c m a International, July 2018 [cit.
2020-12-12]. Available at:
https: //www.ecma- international.org/publications/files/ECMA-ST/Ecma-262.pdf.

53

https://nivo.rocks/
http://www.wheresrhys.co.uk/fetch-mock/
https://webpack.js.org/
http://chartlog.com/product
https://testing-library.com/
https://www
http://ibm.com/
https://jestjs.io
http://ormidable.com/
https://github.com/
http://recharts.org/
https://reactjs.org/
http://www.ecma-
http://international.org/publications/files/ECMA-ST/Ecma-262.pdf

[17] L A B S , G. Grafana [online]. 2020 [cit. 2020-12-17]. Available at: https://grafana.com/.

[18] M I C R O S O F T . TypeScript [online]. 2020 [cit. 2020-12-12]. Available at:
https: //www.typescriptlang.org/.

[19] N P M , I . NPM Library [online]. 2021 [cit. 2021-04-20]. Available at:
https: //www.npm j s.com/.

[20] R E D H A T , I . Ansible Automation Platform [online]. 2020 [cit. 2020-10-20]. Available
at: https://www.ansible. com/products/automation-platform.

[21] R E D H A T , I . Patternfly Charts [online]. 2021 [cit. 2021-03-26]. Available at:
https: / / www.patternfly.org/ v4/charts/about/.

[22] R E V I E W E R S , T . Chartlog Review - Best Day Trading Software for Analytics?
[online]. 2020 [cit. 2020-12-20]. Available at:
https: //www.tradingreviewers.com/chartlog-review/.

[23] S W A G G E R . OpenAPI Specification [online]. 2020 [cit. 2020-10-17]. Available at:
https: / / swagger, io/specification/.

[24] V A L C H E V A , S . Types of Graphs and Charts And Their Uses [online]. 2020 [cit.
2020-11-08]. Available at: http://www.intellspot.com/types-graphs-charts/.

[25] W R I G H T , A. JSON Schema: A Media Type for Describing JSON Documents [online].
2020 [cit. 2020-10-17]. Available at:
https://tools.ietf.org/html/draft-wright-j son-schema-00#section-4.2.

54

https://grafana.com/
http://www.typescriptlang.org/
http://www.npm
https://www.ansible
http://www.patternfly.org/
http://www.tradingreviewers.com/chartlog-review/
http://www.intellspot.com/types-graphs-charts/
https://tools.ietf.org/html/draft-wright-j

