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1 Introduction 

1.1 Preamble 

A business organization executes multiple processes every day to accomplish its goals 
such as customer satisfaction, higher profit, and productivity. The proper execution 
of these processes relies on the effective, efficient, and transparent execution of 
processes and it directly correlates to the organization's operation. The better the 
execution, the better the flow of operations i n an organization. Whi le these processes 
are executed by different departments within an organization, there arise 
inconsistencies, discrepancies, and redundancies that affect the profitability and 
efficiency of the organization. Profitabil ity may be affected by factors such as evolving 
business goals, the need for faster transfer of information, and an increase in 
competitors. Due to the constantly evolving process models and operations, the 
process models are increasingly leaning towards more complexity and variability. 
These affect the operation of an organization. To mitigate these, companies use 
information management systems such as Enterprise Resource Planning ( E R P ) , 
Supply Chain Management ( S C M ) , and Relationship Management System ( C R M ) 
which collect large numbers of event log data. The event log data is used in process 
mining to derive process graphs that provide insights and analytical information 
about the process execution. This information is valuable in identifying variations 
and assisting in monitoring which improves the process flow by resulting in the 
efficient and profitable operation of business processes in an organization. 

The research is motivated by the aims and objectives of the K I G A project emphasizing 
the importance of artificial intelligence-supported predictive business process mining 
applications. High-level processes such as Order to Cash, and Purchase to Pay event log 
data may contain redundancy, and irregularities that are crucial therefore the research 
aims to provide valuable insights into the effectiveness of deep learning methods in 
process mining and additionally support the K I G A project in applying predictive 
techniques to event log data. 

1.2 Research Q u e s t i o n 

The focus of the research question is on the comparative analysis of two models, G C N 
and multi-task L S T M regarding event log data. The study aims to evaluate the 
implementation of these models in future event prediction and time prediction. The key 
aspects include: 
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Model Performance and Evaluation 

The research question evaluates the performance of G C N models and multi-task L S T M 
networks in accurately predicting both events and related timestamps of both the test 
data set and the K I G A dataset. Furthermore, it highlights the comparative nature of 
the study on the performance of these two models. It aims to contrast and compare the 
performance of these models to realize their potential in predictive business process 
mining applications. 

Performance Metrics 

The performance metrics include accuracy for the event prediction whereas M A E Mean 
Average Error for the time prediction. At the same time, it further emphasizes the 
computational efficiency of both models as well. 

1.3 M e t h o d o l o g y 

1.3.1 Data preprocessing 

The data provided for the K I G A project is real life process event log data from a 

business organization. This gives a possibility that the data requires thorough 

inspection and preprocessing of any inconsistent, and redundant data. The most likely 

case is that the events are recorded multiple times for different timestamp records, i n 

this case, only the last recorded event wi l l be kept as event is not considered as 

completed unt i l last event is recorded. Additionally, any null values or missing values 

are checked and maintained. 

1.3.2 Feature Encoding 

To keep the comparison of both models justifiable, it is important that both model use 

similar features from the data. Al though they differ in their model architecture and 

learning procedure, the input feature vectors can be kept similar. Therefore, to capture 

timestamp values comprehensively, 4 temporal dependencies are considered which are: 

T ime since the previous event in the case, T ime since the start of the case, Time since 
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midnight (of the day), Day of the week. For event, the unique events are one-hot 

encoded to get numerical representation. 

1.3.3 Training procedure 

1.3.3.1 G C N 

The G C N captures the graphical information of the dataset through each iteration. 

Initially, it is required to represent data into graphical representation, therefore, 

Directly Follows Graph is used. This gives information about the nodes and edges and 

their relationship by representation of weights which is then captured using adjacency 

matrix. The weight vectors for events i n cases are then iteratively updated in the G C N 

layer using adjacency matrix and input features. 

1.3.3.2 L S T M 

For multi-task L S T M , preprocessing, cross-validation set, and input features arc kept 

the same. However, the multi-task L S T M model w i l l be able to learn event parameters 

and timestamp parameter through single model. 

1.3.4 Evaluation 

The evaluation and comparison are carried out using overall accuracy and mean 

absolute error of the predicted results as well as metrics for different prehx length of 

events and time values. Results for different prefix length gives detailed look into how 

model performance are affected by the number of prefix lengths in event and 

timestamp. It gives information about the effect of length of event or timestamp i n 

predictive performance. A l l in al l , the overall metric as well as results for different 

values or length of prefix sequence are considered. 
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1.4 Thesis Structure 

Chapter 2: Background. This chapter presents the background information on the 
major topics within the thesis. These topics contain Process M i n i n g , G N N s , and 
L S T M s . 

Chapter 3: Related Work. This chapter presents the related work on implementing 
deep learning methods, G N N s , L S T M s , and K I G A data i n event and time 
prediction. 

Chapter 4: Methodology. This chapter describes the data, and preprocessing steps, 
and explains the methods used in training the G C N and L S T M models for event 
prediction and time prediction. 

Chapter 5: Implementation. This chapter explains i n detail about the training 
procedure for G C N and L S T M models in event and time prediction. 

Chapter 6: Evaluation and Discussion. This chapter explains the results of the 
approach and presents its evaluation based on the research question. A discussion 
on the limitations, and improvements is conducted and a pathway for future work 
is provided. 

Chapter 7: Conclusion and Outlook. This chapter concludes the research and 
summarizes the complete approach. 
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Background 

This chapter includes information and description of background information regarding 

dataset, topics of process mining and overview of the G N N and L S T M model 

architecture. 

1 D a t a 

A s mentioned, the datasets used in the experiment consist of event log data of Order-
to-Cash and purchase-to-pay processes. The dataset is extracted from a real-life event 
log of the mentioned processes of a business organization. 

• Order to Cash 
This process is one of the fundamental business processes that include 
information about the receipt of Customer Orders to Receive the payment for 
the delivered goods or services. In general, it represents how a company 
receives, manages, and completes the order placed by the customer. It includes 
the cycle of events after the order placed by the customer to the payment of 
the order and hence the conversion of the order to cash [1]. A common step 
i n Order-to-Cash contains Order Placement, Order Processing, Inventory 
Check, Shipping, Invoice, Payment, and Order Completion. 

The benefits of using the 0 2 C process include improved cash flow, customer 
satisfaction, reduced order processing costs, visibil ity into sales performance, 
compliance and risk management, faster order fulfillment, and inventory 
management. 

• Purchase to Pay 
Purchase to Pay (P2P) also known as Purchase to Pay is another fundamental 
business process that organizations follow to buy goods and services from 
external vendors. These goods and services i n turn are converted to finished 
products and provided to customers. It represents the cycle of events from 
identifying the need for goods or raw materials to payment and record keeping. 
The events in Purchase-to-Pay include Purchase order, Supplier selection, 
Order Receipt, Invoice Verification, Approval , Payment, and Reporting or 
Record Keeping. 
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The usage of the P 2 P process provides organizations wi th the benefit of cost 
savings, vendor relationship management, efficient procurement cycle time, 
transparency, decision making, invoice processing, and risk management [2]. 

2.2 Process M i n i n g 

Process M i n i n g , a subfield of B P M emerged to assist in process discovery, and 
modeling and improve workflows using process information in the event log. This 
helps organizations improve efficiency, reduce operational costs, and improve the 
overall quality of services. It assists in B P M life cycle activities by reducing the need 
for manual processing of the business processes. This allows organizations to improve 
process flow, re-modeling, and re-engineering of process models which provides 
organizations with factual representation of their processes to achieve the needed 
outcomes. 

Process M i n i n g techniques can be both forward-looking and backward-looking. [2] 
Backward-looking is related to techniques related to finding the root causes of 
bottlenecks and discrepancies in a process whereas forward-looking is related to the 
prediction of future events or prediction of time differences i n future events i n a case. 

In essence, Process M i n i n g answers the following questions. 

• What are the processes that are followed? 
• How does the actual process execution differ from the executed process? 
• What are the deterrents i n the process? 
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Figure 1: Overview of Process Mining showing cycle of process mining showing the complete 
cycle from extracting event logs, building models, analyzing, interpreting, and making 

decisions [2]. 

2.2.1 Types of Process M i n i n g 

Process M i n i n g may consist of different objectives. Depending on the goal and 
objectives, different types of process mining are used. Some of the most common 
types are: 

Process discovery. This represents different techniques and measures to discover a 
process model based on the event log data. For example, the usage of Directly Follows 
Graph (2.4.5) where the nodes and vertices are represented as events and relations 
respectively. However, the model is prone to overfitting and underfitting during the 
representation. Therefore, different algorithms are proposed based on diverse tasks. 
In particular, process discovery algorithms take an event log as input and produce a 
process model that needs to possess several integral attributes of an optimal process 
model [3]. More commonly, these attributes are represented as: 

• Recall . The discovered model should be able to show the behavior as shown 
by the event log. 

• Precision. The model should not deviate from the actual behavior observed in 
the event log. 

• Generalization. The discovered model should generalize the behavior and 
avoid overfitting. 
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Simplicity. The model should be able to represent the behavior wi th an overly 
complex model. This is related to Occam's Razor which states "One should 
not increase, beyond what is necessary, the number of entities required to 
explain anything". 

"able to replay event log" 

r e p l a y f i t n e s s 
"Occam's razor" 

g e n e r a l i z a t i o n 
"not overfitting the log" 

s i m p l i c i t y 

p r e c i s i o n 
not underfittlng the log" 

Figure 2: Attributes of process discovery that are important for creating process models. [3]. 

Conformance Checking. This represents the comparison of the extracted model 
wi th the actual data i n the event log. The goal of conformance checking is to 
represent the degree of agreement or disagreement between the process model and 
the information contained in the event log [2]. The techniques used in the 
conformance check provide information about the discovered behavior of the process 
and the modeled process. 

M o d e l enhancement. It involves the techniques used to improve the process model 
using the information about the actual process contained i n an event log. Extract ion 
of information from event logs may reveal bottlenecks, discrepancies, and deviations 
of the process model from the actual process. This extracted information is used to 
analyze and optimize the process model in order to correctly align it wi th the actual 
process execution. It reveals transparency and brings out factual insights from event 
logs helping to eliminate bottlenecks and cleaning of redundant events and activities 
[2]. A s a result, the model is more refined because of the improvement i n accuracy 
and efficiency. 

Predictive Process M i n i n g . This type of Process M i n i n g relates to the predictive 
nature of the model. Whi le previous types are referred to as backward-looking, 
predictive process mining represents the forward-looking aspect of process mining. 
Sudden changes in process, performance issues, and bottlenecks may occur which can 
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be mitigated by using predictive analysis from predictive process mining. The 
resulting predictive analysis in combination wi th machine learning techniques allows 
forecasts about the likely behavior of the process. This allows the organizations to 
take precautionary measures, provide informed decisions, and ensure an efficient flow 
of process execution. 

Figure 3: Common types of process mining, i) discovery; ii) conformance; in) enhancement [4] 

2.2.2 Event Log 

A n event i n an event log refers to an instance of the case/process, a task, or a point 
i n time. It contains multiple attributes such activity, timestamp, resource, 
and customer. The most common attributes include case, activity, and timestamp 
where a case refers to a process instance, activity to the operation or task, and 
timestamp to the instance when the case is instantiated. It gathers information about 
the type of activity performed, the responsible entity, and the moment of event 
execution [2]. Typically, cases are identified using an identifier ID that represents a 
unique number for each case where events belonging to the same case are grouped 
by the case identifier. There are three possible types of event logs [4]: 

1. ReaHife logs. It contains processes recorded from reaHife day-to-day 
organizational activities. 

2. Synthetic logs. It contains processes produced from real-life process model. 
3. Art i f i c ia l logs. It contains process information automatically extracted from a 

non-real-life process model and is manually created to resemble real events. 
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Case ID Timestamp Activity Resource 

001 02-11-2023 Register request Pete 

001 02-11-2023 Check ticket John 

001 02-11-2023 Make decision Michael 

001 02-11-2023 Accept request Har i 

002 02-11-2023 Register request Har i 

002 02-11-2023 Make decision Marcel 

002 02-11-2023 Pay compensation E l y r i a 

Table 1: Example of an event log. 

Table 1 shows a typical form of an event log. Here, each row denotes an event that has 
occurred whereas each column denotes the attributes of that certain event. A s 
mentioned before the case identifier groups the activities that are related to the same 
case. Formally, given that al l possible activities A are shown including the set of all 
possible case identifiers C and the set of timestamps T , it can be defined as: 

Definition 1: Event. A n event e is a tuple where e = (c, a, t) 6 C X A X T, that 
represents the number of activity a for the case c at timestamp t. Moreover, the 
complete set of possible events is known as the event universe denoted by £ = C x 
A x T. 

Definition 2: Trace. If A ' denotes al l the non-empty finite sequences of activities 
from A. a E A' is called a trace when a represents a sequence of activity of the 
process model. 

Definition 3: Event stream. Given an event set £, S denotes an event stream 
such that those events are initiated one after the other. It is an indefinite stream of 
events such that two consecutive events may be associated wi th different cases i n 
the timeline. 
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3 L S T M 

3.1 R N N 

Neural networks consist of several networks composed of interconnected layers of 
neurons that can learn patterns and behavior of the input data. R N N s particularly 
contain recurrent connections wi th hidden states distributed over time that allow the 
network to preserve past information. A t each time step, the input and previous output 
are considered to obtain a new output which again is fed into the next time step as 
shown in Figure 4. A s a result, this allows R N N s to learn long-term dependencies in a 
sequence of data and preserve information about prior information [5]. 

Figure 4- Simple Recurrent Neural Network Architecture showing detailed architecture and process of 
information transfer [6]. 

The mathematical equation for a simple recurrent cell is given as follows: 

ht = (Whht-± + Wxxt + b), 

Vt = ht> 

where xt,ht, and yt states the input, past recurrent information, and output of the cell 
at time t respectively. Wh and Wx denote the weights and b is the bias. This allows the 
model architecture to keep information about the context while making a prediction, 
e.g., next-word prediction i n a sentence or classification tasks. However, the amount of 
information that a simple R N N model can capture is l imited due to the problem of 
vanishing gradients. A s past information gets longer, vanishing gradients arise when 
error signals during backpropagation either blow up or vanish [6]. 
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2.3.2 Long Short-Term Memory Networks 

Long short-term memory ( L S T M ) is an advanced variation of R N N that has been 
developed to tackle the problem of vanishing or exploding gradients of traditional 
recurrent neural networks. It contains special L S T M cells as hidden units that are able 
to retain information and was developed by Hochreiter and Schmidhuber i n 1997 [7]. 
Thereafter, the proposed architecture has been modified and improved multiple times 
and is considered among the successful recurrent neural network models [6]. 

Figure 5: LSTM cell showing its gates [4J-

L S T M cells are also called memory blocks and contain three gates that control the cell 
state. Information from input data is updated or removed from cells by these three 
gates. These three gates include: 

• The Input gate (i) which takes input at the current time step and hidden state 
of the previous time step to update the cell states and obtain output. 

• The Forget gate (/) which also takes input at the current time step and hidden 
state of the previous time step but controls the discarding of previous 
information concerning the upcoming input information. 

• The Output Gate (o) which considers the input and last hidden states to 
determine the output. 

Combined, the formula for the cell operations can be described as: 

ft= <r(Wf. [ht-llXt] + bf) 

it = °(Wi • [ht-i.x^ + bi) 

Ct = tanh(Wc . [ht_v xt] + bc) 
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Ct= ft * Q _ ! + it * Ct 

ot = a(W0 . [ht_v xt] + b0) 

ht = ot* tanh (Q) 

Taking previous hidden states ht_1 and current input xt as current input, it is passed 
through forget ft, which calculates the output for the forget gate. Ct computes a new 
eligible candidate which is passed for Ct to output a new cell state. it uses ht_1 and xt 

to calculate the output of the input gate. ot computes the output for the output gate 
and ht computes the new hidden state. 

Here, W and b represent weight and bias respectively. The activation functions applied 

i n the cell are sigmoid (a) expressed as and tanh as — — . The weights and 
\ / l+e x (ex+e x) 

biases i n the network are iteratively updated to minimize the loss of the of the input 
and output pairs during training. Epoch is the iteration through the dataset that 
denotes the amount of forward and backward pass through the network. The parameter 
of the optimization algorithm is crucial in updating the weights wi th optimal values 
[7]-

2.4 G N N 

2.4.1 Overview of Graph Data 

Graph data is a type of structured data that represents information using nodes and 
edges. Graphs are implemented in various tasks relating to node classification, l ink 
prediction, and clustering. The key features i n a graph arc nodes (vertices), and edges 
that connect the nodes. Edges between the nodes represent the relationship between 
the nodes. Nodes are also known as entities or objects. The edges are either directed, 
undirected, weighted, or unweighted depending on the type of relationship between the 
nodes/entities. The feature vectors are associated with nodes that capture the value. 
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1 edge 
vertex 

Figure 6: Graph showing nodes/vertices and edges. 

Typically, a graph can be represented as G = (V, E), where V denotes the set of vertices 
and E denotes edges between two vertices. The edges between node i and j are 
represented by etj e E. Primari ly, graphs can be categorized by several types [8]. 

• Directed and Undirected G r a p h . A directed graph contains edges that 
are connected and directed from one node to another. A n undirected graph 
represents the symmetric relationship between the edges as there is no 
direction. Directed graphs typically provide more information than 
undirected graphs. 

• Homogenous and Heterogeneous G r a p h that has the same type of 
nodes and multiple types of nodes, respectively. 

• Static/Dynamic Graphs have input features of the graph that vary with 
time. This graph contains time information which needs to be carefully 
considered in these types of graphs. 

2.4.2 Graphical Neural Networks 

Graphical Neural Networks (GNNs) are deep learning techniques that are able to 
operate on graph data. Generally, G N N s differentiate themselves i n their ability to 
generate representations of nodes and their relationship represented by edges. The 
fundamental idea of G N N is to generate representations of nodes, their structure, and 
feature information by iterative passing of messages between the nodes and updating 
the feature vector representation [9]. Unlike, C N N that operates on Euclidean data 
such as images (2D), or L S T M operates on sequential and time-series data, G N N 
focuses on the non-Euclidean domain of data where the nodes are not arranged i n space 
such as an image [10]. It is particularly used in tasks such as node classification, node 
and edge prediction, graph regression, classification, and clustering. Graphs can be 
irregularly shaped and unordered. Nodes in a graph can have variable size and can 
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have variable numbers of neighboring nodes making networks such as C N N difficult to 
complete the task of convolutions. Therefore, G N N s are better suited for graph data. 

Skip 

CůnnfH I k " 

Sampling 
Opei"itrjr 

Cony/Recurrent 
Operator 

Pooling 
Operator 

Input 

GNN GNN GNN GNN 

layer Laver 

Output 
Node 
Embedding 

Edg,e 
Embedding 

Graph 

Embedding 

Loss Function 

Training Setting 
• Supervised 
* Semi-supervised 
* Unsupervised 

THt 

1. Find graph structure. 

2. Specify graph typeanc! scale, 

4- Build model using computational modules, 3. Design loss function. 

Figure 7: Pipeline of GNN architecture [11]. 

The pipeline for building G N N s typically consists of the following steps: 

• Finding the structure of the graph data 
In this ini t ia l stage, the dataset is analyzed to find the structure of the graph 
data and its scale. Non-structured data such as process mining datascts arc 
transformed into a graph using tools such as pm4py which is able to create 
graphs such as Business Process Model and Notat ion ( B P M N ) , Directly Follow 
Graphs ( D F G ) , Process Tree Graphs, and Petr i Net. 

Identifying the graph type 
A s mentioned earlier, there are different types of graph data. It is an important 
part of the G N N pipeline to identify the type of graph. Different types of a 
graph provide different information and it is a crucial part of the G N N pipeline 
to consider the additional information provided by each type i n the 
architecture after creating the graph data from the dataset. 
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Directed graph G(V,E) Undirected graph G(V,E) Knowledge graph G(V,E) Weighted graph G(V,E) 

E F G 
»1 v2 V3 v* v2 vA v2 1>3 »>4 »1 »2 ^3 

»1 0 0 1 1 0 1 »1 0 1 0 1 v$ 0 0.4 0 0.4 

1 0 0 1 " 2 1 0 1 1 " 2 0 0 0 1 v2 
0.4 0 D 3 0.1 

(1 : 0 0 1 0 1 1) 1 0 1 V3 0 0.1 1.' I) > 

V 4 0 0 1 0 t>4 1 1 1 0 t>4 0 0 0 0 V 4 0.4 0.1 Ob 0 

Figure 8: Types of graphs with respective adjacency matrix. 

In Figure 8, The knowledge graph (C) represents a directed heterogeneous 
graph that has two different types of nodes that carry directed information. 
The weighted graph (D) has a value associated wi th its edges. The adjacency 
matrix (E-H) gives information about the relationship of a node to other 
nodes in the graph. The value of the edge between nodes is 1 if and only if 
there is an edge connecting the nodes or else 0. 

• Specification of output task and bui ld model. 
The next step is to specify the type of output task to be conducted. Depending 
on the learning task to be conducted, there are three types of tasks: Node 
level, Edge level, and Graph level which w i l l be explained i n section 2.3.3. 

2.4.3 Types of G N N Output Tasks 

• Node level prediction 
Node-level predictions are tasks related to nodes such as node classification, 
node regression, node clustering, node embedding, etc. Node classification 
tasks assign a label or category to each node i n the graph, Node regression 
predicts a continuous value or property, Node clustering groups nodes into 
clusters based on the attribute, and node embedding relates to learning a low-
dimensional vector representation for each node. 
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• Edge level prediction 
Edges carry information about the relationship between nodes. Edge-level 
predictions are tasks such as edge classification and link prediction i n which 
the model classifies an edge/relation type or predicts the occurrence of an edge 
between the nodes of the given graph. A neural network or similarity function 
is generally used to evaluate the presence or classification of an edge based on 
the encoded information of any two nodes. 

• Graph level prediction 
In this task, the G N N is used to extract features of the entire graph data. The 
representation from the extraction is further used i n tasks related to making 
predictions and classification of entire graphs using Aggregation, Graph 
Pooling, and Graph classification or Regression techniques. 

Regarding the type of graph data to be used i n the task, the tasks are further 
represented in different types relating to the training environments: 

• Supervised setting where data is labeled and available for training. 

• Semi-supervised setting where a small number of nodes are labeled with 
many unlabeled nodes. The training phase requires the model to predict the 
labels of unlabeled nodes or provide new unlabeled nodes for inference, 
depending on the training requirement. It is mostly used in edge and node 
classification tasks. 

• Unsupervised setting where only unlabeled data are provided to the model 
to extract features and patterns from the provided graph data. Tasks related 
to clustering of graph data are unsupervised tasks of graph data. 

2.4.4 Graph Convolutional Networks (GCNs) 

Graph Convolutional Networks (GCNs) are one of the most applied G N N architectures 
i n applications based on graph data. It takes graph data as an input to make 
predictions based on full graphs or nodes. It is similar to a Convolutional Neural 
Network such that C N N uses a spatial cluster of pixels to represent a cluster of vectors 
whereas G C N uses a cluster of nodes and its surrounding nodes [10]. 
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The key idea of G C N is to learn the information from input data using graph 
convolutions by using linear transformation on al l neighboring nodes followed by a 
nonlinear activation function and then updating the feature representation of each node 
wi th information from all the nodes and edges. It collects feature information from all 
the nodes and their neighbors iteratively through broadcasting followed by aggregation. 
The aggregated information is init ial ly transformed linearly which is then passed to a 
non-linear activation function such as R e L U to get non-linear representations [12]. The 
non-linear transformation is used to capture meaningful and comprehensive 
representations from the graph data. They are further used in the update function 
which consists of some information about the global representation of the graph [13]. 

The G C N s are differentiated by two distinct approaches: The Spatial approach and the 
Spectral approach. The spatial approach operates directly on nodes and edges of the 
given graph data and the Spectral approach utilizes graph theory and graph 
transformation i n order to represent a graph. The spectral approach depends on the 
non-recursive architecture and borrows the idea of R G N N s for message passing [9]. 

Hidden layer Hidden layer 

Figure 9: The Graph Convolutions Network architecture [12]. 

Mathematically, In the hidden layer, the convolution operation is denoted as: 

GCN(X,A,W) = a^D^AXW) 
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where X represents the node feature matrix, A is the adjacency matrix of the graph 
representing connectivity of nodes, D is the degree, W is the weight matrix, and a is 
the activation function such as R e L U i n the above figure. A degree matrix is a diagonal 
matrix which stores the degree of each vertex which numerically corresponds to the 
number of edges that the node is attached to. 

In the given equation, the product D_1A represents an attempt to normalize the 
adjacency matrix. However, as matrix multiplication is non-commutative, an 
alternative symmetric normalization is preferred, changing the G C N layer's operation 
to: 

GCN(X,A,W) = aip-WAD-WXW) 

2.4.5 Directly Follows Graph 

Process discovery is one of the crucial parts of process mining, ft allows the discovery 
of process models using various tools. Some of the tools include Petr i nets, B P M N 
models, and process trees that are able to construct complex maps but lack simplicity. 
For simpler business processes overgeneralization and simplicity are needed. One such 
tool used in generalized visualization of the process models in process mining is the 
Directly Follows Graph ( D F G ) [14]. 

Figure 10: DFG of process related to refund requests, [self created 
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In Figure 10, The D F G captures the information about the relation between events i n 
the event log. The "directly follows" operation between two events is shown if and only 
if there is a case instance in which the source event is followed by the target event. In 
the graph, the vertices represent the unique activities that are i n the event log and the 
directed edges exist if there is a directly follows relation between the events/vertices. 
The number above the edges represents the "directly follows" relation denoted as 
weight. 

2.4.5.1 P M 4 P y 

P M 4 P y is an open-source Python library used in process discovery to analyze and 
generate graphs. It is compatible wi th most other Python libraries such as pandas, 
N u m P y , SciPy, and sci-kit-learn and works wi th Comma-Separated Values (.csv), 
pandas data frame as well as X E S format. X E S is an X M L - b a s c d standard format used 
for storing event logs and is primari ly used in process mining. Some of the key features 
include: 

3 Related W o r k 

This chapter describes various types of implementations of deep learning methods i n 

Business Process Management, Predictive Process Monitor ing, Process M i n i n g and 

further sheds light into applied approaches i n G N N and L S T M for event and time 

prediction using literature reviews. 

3.1 Business Process M a n a g e m e n t 

Business Process Management ( B P M ) consists of a group of activities and techniques 
that manage and improve processes wi th in an organization. It is considered a cycle of 
activities running i n phases. In B P M , the cycle of activities contains process 
identihcation, discovery, improvement, monitoring, and controlling based on the data 
collected. Traditional data-driven approaches are considered as process discovery, 
analysis, and improvement whereas modern data-driven approaches are i n lifecycle 
phases such as process monitoring [2]. In the latter, data are applied i n real-time to 
forecast process behavior, performance, and outcomes. The significance of predictive 
process monitoring is ever-growing. It is driven by the need for organizations to 
mitigate performance issues and process efficiency [3]. 

Predictive process monitoring itself is a branch of B P M and Process M i n i n g that 
leverages data-driven methodologies and predictive information to forecast future 

20 I P a g e 



behavior and outcomes. Predicting remaining cycle time, sequence of process activities, 
process outcomes and prioritization of processes are part of predictive process 
monitoring that helps organizations adapt to evolving business goals, efficient flow of 
operational activities, and resource allocation [15]. 

3.2 Deep L e a r n i n g i n P r e d i c t i v e Process M o n i t o r i n g 

Deep learning is a neural network-based system that builds upon multiple layers of 
artificial neurons. The hierarchal structure of artificial neurons enables the layers to 
learn complex features and removes the need for the custom setting of feature 
parameters. In recent years, business process discovery methods have passed through 
a transformation because of an increasing number of deep learning approaches. This is 
led by the realization of organizations on the importance of process monitoring i n run 
time [16]. Neural network architectures such as Graphical Convolutional Neural 
Networks ( G C N ) , Convolutional Neural Networks ( C N N ) , Recurrent Neural Networks 
( R N N ) , and Long Short-Term Memory ( L S T M s ) have transpired as valuable tools in 
predictive process mining [12]. R N N s especially L S T M s have been applied to predict 
events, time of completion, and resources because of their ability to retain information 
on long sequences of events. 

3.3 Deep L e a r n i n g M e t h o d s i n Process M i n i n g 

Deep learning methods have been increasingly used i n process prediction tasks because 
of their ability to complete a wide range of tasks. The type of deep learning method 
depends on the use case such as the prediction of time-related attributes, activity-
related attributes, or resource-based attributes which are explained i n more detail in 
upcoming sections. 

In terms of neural networks applied i n the process, the common architectures can be 
represented by three different approaches which are Feed forward networks ( F F N N ) , 
Convolutional Neural Networks ( C N N s ) , Recurrent Neural Networks ( R N N s ) , L S T M s 
and G N N s [17]. The machine learning tasks i n Process M i n i n g could be categorized 
into multiple areas: Process Analysis , Anomaly Detection, Data Handling, User 
analysis, Resource Management, Clustering, and Classification [18]. 

Due to its simplicity and ability to extract related information from data wi th frequent 
occurrences of similar attributes, F F N N is mostly implemented in simple use cases and 
as a baseline metric. Nolle et al . implemented an F F N N for anomaly detection task 
that can distinguish between normal and anomalous traces of activities occurring in an 
event log. The focus is made on the ability of F F N N to detect anomalies early in the 
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event log since the occurrence of anomaly is more distinguishable from more frequent 
traces [19]. 

Theis et al . [20] introduced a novel approach for predicting the next event. The 
implementation applies Petr i Net process models i n combination with F F N N for the 
prediction task. The output from the Petr i Nets decay functions is used to tra in the 
model which can store time-related information from the event log to predict the next 
event. It shows its potential in applications related to various real-world events. 

D i Mauro et al . [21] presented a deep neural network model based on convolutional 
neural networks for next activity prediction. They propose an inception architecture 
similar to computer vision that has been modified for sequential data use cases. They 
showcase the advantage of C N N s i n sequential data in comparison to L S T M s in terms 
of both accuracy and computing efficiency. 

Pasquadibisceglie et al . proposed a C N N approach to predict the completion of a trace. 
The end of a trace i n the event data log is denoted by " E N D " which is the target 
variable to be predicted. They propose 2D image-like data structures to model trace 
data of event logs showing their ability to predict more accurately on frequent 
activities. The model shows that it can achieve better accuracy on the Helpdesk dataset 
compared to B P I C 1 2 [22]. 

3.4 Usage of L S T M s i n Process Discovery 

The use of L S T M s i n machine learning tasks is particularly in sequential data as it 
addresses the vanishing gradient problem. It is one of the most popular approaches 
taken i n process prediction tasks [4] [17]. 

Tax et al . [23] approach implemented the L S T M approach with multi-task learning 
that can predict the next event and its time stamp. They proposed three types of 
architecture single-task layers, shared multitask layer and hybrid multitask layer. The 
architecture that was able to get better results was the multi-task layers, particularly 
hybrid multitask architecture. The multi-task and hybrid architecture differ i n the 
ini t ia l L S T M layers that take both activity and timestamp information which are then 
passed to further individual layers. B y using one hot encoding, the separate layers 
compute the prediction output for the next activity and timestamp separately. The 
models are able to predict the continuation of the case t i l l the end and the remaining 
cycle time of the running cases. However, the L S T M model does not perform well when 
predicting longer sequences of event log. 
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Similarly, K h a n et al . implemented a multi-task model for next activity prediction, 
time to event, and suffix prediction. The implementation focuses on a specific type of 
network known as Memory Augmented neural networks ( M A N N ) . A Differential Neural 
Computer ( D N C ) is implemented which is a type of M A N N that uses a memory 
module. It comprises two controllers (separate L S T M layers) for encoding and 
decoding that are linked by a Memory Module. Dur ing encoding, the input sequence 
is fed into the encoder which is used by the memory module to update its information 
about the process states. The state of the encoder and memory combined are passed 
into the decoder controller which is used to predict by the decoding controller. The 
approach shows a competitive performance wi th fewer parameters compared to G R U , 
F F N N , and L S T M including the approach by Tax et al . 

Evermann et al . proposed an L S T M network to predict the next event of a case from 
an event log. Unlike Tax et al . , they take motivation from Natural Language Processing 
techniques for input rather than one hot encoding. In this approach, they take 
embeddings as input to complete the prediction task where the event logs are 
considered as text, traces as sentences, and events in a trace as words. The model 
consists of R N N architecture with a single hidden L S T M layer. In prediction, it faces 
the same issues as Tax et al . where the model predicts overly long sequences of the 
same activity when a longer sequence of event logs is given. 

L i n et al . [24] implemented an RNN-based modulated model for multi-task prediction 
of event sequences. They implement L S T M networks for encoding decoding and a 
modulator that can combine information from attributes and encodings to output 
weight vectors. This weight vector is fed into the decoding L S T M layer to get the 
prediction of the next event where individual layers are used for each task. The model 
called M M - P r e d achieves accurate predictions for the next event and its attributes 
showing results that it can effectively capture event information and its attributes. 

Camargo et al . [25] introduced L S T M architecture with embedding vectors as input to 
predict event traces, timestamps, and role-associated event roles allowing iterative 
prediction of the entire trace. The approach includes pre-processing, L S T M model, and 
post-processing. The embedding technique uses n-grams wi th fixed size to scale and 
extract fixed-sized n-grams from each event log trace which is taken as an input. The 
resulting prediction through the L S T M layer is post-processed using a random selection 
of the next event based on L S T M probabilities. This post-processing technique makes 
use of arg-max and random selection. 
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Study Year M o d e l Prediction 

Nolle et al. 2016 F F N N Trace Class 

Theis et al 2019 F F N N Next Event 

Pasquadibisceglie 2019 C N N Next Event 

Tax et al. 

K h a n et al. 

Evermann et 
al. 

2017 

2018 

L i n et al. 2019 

L S T M 

L S T M 

L S T M 

L S T M 

Next Event 
T ime 

Qt 

Next Event 
Time 

Trace class 
Next Event 

Next Event 
I 

Table 2: Comparison of Process Prediction methods. 
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3.5 G N N s in Process M i n i n g Applications 

"The Graph Neural Network M o d e l " ( G N N ) capable of interpreting data i n the graph 
domain was first introduced by Scarselli et al . in 2008. Since then, it has been widely 
used i n several fields particularly demonstrating outstanding performance in vertex 
classification, l ink prediction, and recommender systems. The state-of-the-art G N N s 
can be categorized into different types: Convolutional G N N s ( G C N ) , Recurrent G N N s 
( R C N N ) , Graph Autoencoders, and Spatial-temporal G N N s . 

Sommers et al . [26] adopted the idea of using G C N s i n supervised learning for process 
discovery. The implementation focused on the improvement of the supervised learning 
process when using event log data wi th neural networks. A n ML-based approach that 
is able to translate event logs into Petr i nets is improved using G C N s . The M L model 
trained on synthetically generated pairs of input event logs and output process models 
is improved using G C N s . After the implementation, the model is able to translate 
previously unseen synthetic and real-life event logs into structured models comparable 
to state-of-the-art techniques. The outcome showed improvement i n generating process 
model using G C N s and its potential in enhancing process discovery techniques. 

Similarly, Phi l ipp et al . [27] presented the usage of G C N s to analyze the control flow 
graphs in process mining. The adjacency matrix is created using activity relationships 
of the entire event log. In terms of input, the adjacency matrix and additionally the 
feature matrix are used by combining a layer-wise propagation technique. The G C N 
model is compared to F F N N . The G C N outperforms the F F N N in the regression task. 

Further, Wcinzicr l investigated the usage of Graph Sequence Neural Networks 
( G G N N s ) in the next activity prediction. G G N N s are designed for sequential graphs 
and implement a gated recurrent unit ( G R U ) . The author implements three different 
representation of event log as graphs and investigates the best-performing 
representation which is further compared to other D L techniques. The result shows 
that representing events as nodes and using a prefix-based adjacency matrix is able to 
achieve better results. 

Maneiro et al . [13] developed a new approach named Recurrent Graph Convolutional 
Process Predictor that utilizes G C N s and R N N s to leverage both the structural 
information available in process models and the temporal information available in event 
logs. The petri net model is init ial ly mined from an event log which is then converted 
and represented as an adjacency matrix similar to the approach in the G C N approach 
used in this thesis originally by Sorathiya [28] which is described i n more detail in 
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section 3.4. Additionally, the information from attributes of the event log is transformed 
into feature matrices which are fed into the L S T M network. Leveraging both structural 
and temporal information, the stacked G C N and L S T M combined model performs 
consistently well and achieves better predictive accuracy compared to Tax et al . , K h a n 
et a l . , H i n k a et al . , Camarago et a l . , and Evermann et al . 

Venugopal et al . implemented four different variants of G N N , particularly G C N , and a 
Mult i -Layer Perceptron ( M L P ) for predicting the next event and timestamp. They 
evaluated the performance at different process stages denoted by quartiles of the 
number of events similar to the approach by Sorathiya [28]. The M L P achieved better 
results in most cases whereas G C N with Laplacian Weighted adjacency matrix achieved 
the least M A E i n time prediction. The performance is compared wi th state-of-the-art 
methods. However, the comparisons are found to be challenging because of differences 
i n train-test split ratios and training procedures. 

M a n y of the methods reviewed show different techniques to translate event logs into 
an adjacency matrix for the G N N with the help of a process model. The reviews give 
a better understanding of the use of process modeling to get comprehensive information 
from the event log and show how predictive tasks are performed wi th different 
combinations of process modeling and G N N s . 

3.6 R e l a t e d work on the K I G A dataset 

The K I G A dataset contains an event log for the 0 2 C process and the P 2 P process. A n 
implementation of G C N by Sorathiya [28] in event and time prediction has previously 
been applied to the K I G A dataset which is thoroughly studied and used for comparison 
wi th multitask L S T M methods in this thesis. 

Sorathiya [28] applied methods similar to Tax et al . [23] i n data preprocessing and an 
approach similar to Venugopal et al . [12] in feature generation and G C N model 
implementation. The preprocessing used CaselD, Act iv i tyName, and Timestamp data. 
Particularly, for vector representation of timestamp data, for each row of data, four 
variations of data were used: time since the case's most recent event, time since the 
case began, time since midnight, and the day of the week of the event. These four 
attributes are used for feature generation for each row of timestamp data. This method 
is further updated to include caselD information i n the feature representation by a 
similar approach to Venugopal et al . [12]. 

For graph representation of event logs, an approach similar to Somaro et al and 
Manrairo et al is taken but instead of Petr i nets, a more simpler and efficient process 
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modeling technique, D F G is taken. The adjacency matrix is created using weighted 
values from the D F G and normalized then it is fed into the G C N . The model contained 
a G C N layer, 2 dropout layers, and 3 fully connected layers. A n F F N N model is also 
implemented as a baseline metric to retrieve more information on the performance of 
G C N implementation. For measurement, accuracy was considered for event prediction 
and M A E (in days) for timestamp prediction. Furthermore, Classification metrics are 
used for further performance measures. 

The result showed that M L P can achieve better overall accuracy in event prediction 
and lesser M A E i n time prediction. The author makes notice of class imbalance in the 
event logs and suggests different procedures to handle it. 
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Concept 

This chapter explains i n detail about the dataset provided, data preprocessing 

techniques applied, feature encoding, model architecture and training procedure. 

1.1 K I G A Dataset 

The K I G A dataset is the dataset that is required to be experimented with and 
implemented i n this thesis. It is extracted from real-life business organizations' 
event logs and contains event logs relating to both 0 2 C and P2P. The following 
Table 3 shows the attributes and their values of the K I G A dataset. 

Attr ibute Order to Cash (02C) Purchase to Pay (P2P) 

Unique cases 87,850 126,378 

Unique events 20 22 

Longest sequence of 
events 

9 14 

Events per case (mean) 3.692 4.332 

Mean case duration 
(days) 

180 98 

Number of rows before 
preprocessing 

509,257 1,633,071 

Number of rows after 
preprocessing 

324,364 547,542 

Table 3 : Overview of KIGA dataset with their key attributes. 
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Mumber of Activity ID/Events in 02C event log 
30000-

70000 -

Activity 

Figure 11: Bar plot showing unique activities and their quantity in the 02C event log. 

Purchase order 96933 
Purchase requisition 77501 

Invoice receipt 70901 
Fl Invoice 70734 

Goods receipt 67293 
Fl Outgoing payment 50973 

Purchase order approval 27549 
Purchase requisition approval 17501 

Invoice verification release 16343 
Quantity change 13249 

Fl Clearing 11763 
Price change 9890 

Service entry sheet 4199 
Payment block 2897 

Payment release 2484 
Fl Debit memo 2451 

Goods receipt (reversed) 2052 
Invoice verification block 1532 

Down payment 523 
Payment terms change 327 

Incoterms change 306 
Consumption {Subcontracting) 76 

Table 4-' Table showing activity and its frequency in the 02C dataset. 
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Number of Activity ID/Events in P2P event log 
looooo A 

BOOOO -

Activity 

Figure 12: Bar plot showing unique activities and their quantity in the P2P event log. 

Delivery 79481 
Order 68319 

Invoice 66191 
Incoming payment 44672 

Delivery release 22313 
Order without charge 17136 

Clearing 15075 
Billing release 3351 
Credit memo 1942 

Credit memo request 1116 
Returns 1034 

Returns delivery 393 
Billing block 781 
Cancellation 633 

Debit memo request 387 
Debit memo 353 

Delivery block 342 
Invoice reversal 297 

Credit memo reversal 28 
Cancellation reversal 15 

Table 5: Table showing activity and its frequency in the P2P dataset. 
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Figure 11 and 12 shows the distribution of unique events in the K I G A dataset and 

Table 4 and 5 gives quantity of those events. This provides some context i n the 

distribution of the data and how it may affect model training during implementation. 

4.1.2 Data Preprocessing 

4.1.2.1 Data Cleaning 

Data preprocessing and preparation is one of the fundamental parts of training a 
machine learning model. Business processes often contain raw event log data that are 
unprocessed and redundant. Generally, any case in a business process is expected to 
have a single instance of an event and may not contain the same event more than once. 
For example, i n 0 2 C when a customer makes an order, that case is expected to have 
a single event "Order Created". 

In the K I G A dataset, in case there is a redundant activity logged a case, only the last 
activity and its corresponding timestamp are considered similar to Venugopal et al . 
[12]. Table 3 shows the number of rows before and after processing redundant activity 
for both datasets. A redundant number of the same event represents human error and 
inefficiency in business processes, which is not the case most of the time i n an 
organization as they are closely monitored. 

4.1.2.2 Capturing Temporal Dependencies 

The time-related patterns in the process are extracted by capturing the temporal 
dependencies of each timestamp related to an event. The temporal dependencies are a 
set of time-based features computed from the timestamp data. Each activity in a row 
has time related feature of dimension 4. 

Feature Description 

T l T ime since the previous event in the case. 

T 2 T ime since the start of the case. 

T 3 T ime since midnight (of the day) 

T 4 Day of the week for the event. 
Table 6: Features for capturing timestamp information [12]. 

31 J P a g e 



These features are used to capture time-related correlations within each particular case. 
It is used to effectively capture time-related information from the data i n detail. The 
feature T l describes the time difference between the current event and the previous 
event in a case. T 2 describes the time difference between the current event and the 
first event i n the case which is also the start of the case whereas T 3 is the time difference 
since the start of that day, i.e., midnight and T4 denotes the day of the week. 

4.2 G C N 

4.2.1 Feature Encoding 

The variant of the G C N model implementation consists of a Laplacian matrix of the 
Binary Adjacency matrix. The Binary Adjacency M a t r i x is implemented because of its 
simplicity and computing efficiency i n processing information about nodes and edges. 
It helps to provide clear and concise representation of the graph. The Laplacian matrix 
provides information about the frequency of relation between nodes and edges which 
is explained i n detail on Section 4.2.1.2. 

Figure 13 below shows the model architecture for the G C N model. The adjacency 
matrix in the first layer corresponds to the Laplacian transformation of the Binary 
adjacency matrix of the dataset. The step-by-step method of generating an adjacency 
matrix and input vectors is explained below. 

Arj jacencyiY iatnx : 

[num_notlů£ x numnodK] 
Input vector: 

(riLm_nocfea tc nurn_featLirea) 
weights: 

(numj-samrsB x l) 

Kfmfl : 
pu i ror Jes x 25-5] 

Acihratiari: 
tanh (event) J 
ReLu ftlme) 

V J 

Kernel 
(256 *256) 
Acthratiori: 

tanh (event) i 

RfrLu (Time) 

Kernel 
(256 * rl) 

Activation: 
sottmax (event] i 

linear (tlmej ^ 

Figure 13: Model architecture for the implemented variant of GCN. 'n' in the final layer 
represents the number of classes for event prediction and n = 1 for time prediction [28]. 

The Laplacian matrix has a dimension of 'num nodes x num nodes'. The number of 
nodes denotes the number of unique activities i n the 'directly follows graph' ( D F G ) of 
the given dataset. From Table 3, it can be deduced that the node value is 20 for the 
0 2 C dataset and 22 for the P 2 P dataset. The number of features corresponds to the 
temporal dependencies of the timestamp value for each row of data. Since temporal 
dependency has dimension 4, the num_features value is 4. This results in an input 
vector of size 20 x 4 for 0 2 C and 22 x 4 for P2P. The weights are 4 X 1 for both 
datasets. 
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4.2.1.1 Generating D F G 
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Figure 15: Directly Follows Graph visualization using PM4Py for the P2P dataset. 
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A s mentioned in 2.3.5, the graph representation of the dataset and its corresponding 
weights and values are extracted using D F G because of its simplicity and performance. 
The P M 4 P y tool mentioned in 2.3.5.1 is used to generate the D F G and extract weights 
corresponding to the nodes. A Directly-Follows Graph for an Event Log L is denoted: 

G(L) = (AL, i-> L,ALstart,ALend) 

where AL is the set of activities i n L wi th ALstart and ALend denoting the set of start 
and end activities, respectively. •-> L denotes the directly follows operation. 

Figures 14 and 15 above show the D F G visualization of the 0 2 C and P 2 P datasets 
wi th their weights i n relation to nodes. Here, the number of nodes / unique events is 
20 for 0 2 C and 22 for P2P. The visualization also shows the complexity of the case 
and activity relationship i n both datasets. 

4.2.1.2 Extract ing Matrices from Process graph 

The adjacency matrix represents the connecting nodes and the weight/frequency of the 
directly followed relationship between them. The frequency shows the number of times 
an event is followed by another event in the dataset. Initially, a raw weighted adjacency 
matrix of number of nodes x number of nodes wi th values corresponding to the edge 
value is extracted. This matrix is then represented as a binary adjacency matrix which 
converts al l the values to either 0,1 where 0 represents no relationship between the 
nodes i n the graph and 1 represents a relationship between nodes. 

A s described in Equation i n Section 2.3.4, D is the diagonal matrix that stores the 
degree of each node which numerically corresponds to the number of edges that the 
node is attached to. A is the adjacency matrix extracted from D F G . However, the G C N 
variant implemented uses Laplacian transformation of adjacency matrix which requires 
the equation to be updated. The process is explained i n detail i n the following section. 
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Create DFG using pm4py library 

Step 1 

Get raw weighted adjacency matr ix -> R 

Step 2 

Get binary adjacency matrix -> A 

Step 3 

Get degree matr ix from raw weighted adjacency matr ix -> D 

Step 5 

i 

Get Laplacian matrix -> D-A 

Step 6 

k 
Get symmetr ical ly normalized adjacency matrix -> D A -1/2.A.D A -1/2 

Figure 16: Flowchart showing detail of calculating the Laplacian matrix of binary adjacency matrix 
that is implemented [12]. 

The above figure shows the flowchart of getting the final adjacency matrix for the G C N 
variant used in the experiment. The final adjacency matrix is known as the Laplacian 
transformation of the binary adjacency matrix of the given dataset. This matrix is used 
for al l computations involved with in the Graph Convolutional layer. 
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Therefore, the final G C N equation is then denoted by: 

GCN(X, A, W) = o(D~2(D - A)D~1/2XW) 

Using the methods described in Figure 16, both 0 2 C and P 2 P datasets are used to 
extract the necessary matrix for the G C N prediction task. The matrix below shows the 
Laplacian transformation of the Binary adjacency matrix of the 0 2 C dataset. 

/ 1.00 
-0.0925 

-0.0925 
1.00 

0 
-0.0801 

. -0.0962 -0 .0801 -0.0833 
V-0.0962, -0 .0801 -0.0833 

0 
0 

0 
0 

-0.0962 
-0.0801 \ 

-0.0870 1.0000 
-0.0870 -0.0833 

-0.0833 . 
1.0000/ 

A s detailed in Figure 13, The dimension of the matrix above is number of nodes x 
number of nodes which is 20 x 20. The matrix is then multiplied wi th input vector X 
which is a 20 x 4 represented as a number of nodes x 4 and weights W which is a 4 x 
1 matrix. In case of the P 2 P dataset, the transformed adjacency matrix has a dimension 
of 22 x 22, input matrix X has 22 x 4, and W has a 22 x 1 dimension. 

4.2.1.3 Input vector 

For input vector X , the temporal dependencies i n section 4.1.3.2 are taken into 
consideration to get complete information about an event. The number of nodes 
depends on the number of unique activities i n a dataset. Each activity is assigned a 
unique number that corresponds to the row in the X i.e., 20x4. Each row has a 20x4 
matrix which corresponds to the activity ID in the particular row. For example, if a 
row has activity ID 5 wi th timestamp data, the 20 x 4 input matrix stores information 
on the 5 t h row index whereas other rows have null values. This is necessary to facilitate 
the matrix multiplication in the G C N layer. 

The activities are separated according to the Case ID assigned which enables the 
calculation of temporal dependencies that depend on the case. This method of 
representation gives each row i n the 0 2 C dataset a 20 x 4 matrix and each row in the 
P 2 P matrix a 22 x 4 matrix. The preprocessing procedure i n section 4.1.3 ensures that 
each case does not contain redundant activities and considers only the latest executed 
activity. 
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4.2.1.4 Weight M a t r i x 

The weight matrix W is the learnable parameters that are trained and updated during 
backpropagation and gradient descent while running the training procedure. It has the 
dimension of number of features x 1 i.e. 4 x 1 . 

4.2.2 Training Procedure 

Using the encoding procedure described above, the traces of events can be transformed 
into an encoded sequence of events for each case ID. The encodings are then used to 
fit in the G C N layer in the model. The adjacency matrix captures the graphical 
information of the dataset and combines it wi th encoding to train the model. 
Furthermore, the method of extracting the adjacency matrix can be varied i n order to 
apply the desired training procedure in terms of speed and memory. Figure 13 shows 
the complete architecture of the layers implemented for training. Particularly, the 
model sequentially includes an ini t ia l G C N layer and three fully connected layers. The 
Dropout is present between G C N and the hrst fully connected layer and before the last 
fully connected layer. 

4.2.2.1 Split of dataset 

The dataset is divided into three splits Train, Validation, and Test data. The training 
and validation data contain 2/3 of the dataset whereas the test data contain 1/3 of the 
dataset. Furthermore, the validation data contains 20% of 2/3 of the dataset. The 
sequential order of rows/events has been preserved during the splitting. This ensures 
the events are ordered as the traces of events for each case. 

4.2.2.2 Event Prediction Model 

The event prediction model follows the same architecture. The hrst two fully connected 
layers after the G C N layer use tanh activation for event prediction whereas the last 
fully connected layer uses the SoftMax activation function to estimate the probability 
for each target value as implemented by Sorathiya [28] i n previous work. Cross Entropy 
loss is used during training to calculate the loss after the SoftMax activation. The 
update of weights is carried out using the rule of A d a m optimizer through 
backpropagation and gradient descent. 

4.2.2.3 Time Prediction Model 

In the time prediction model, the hrst two fully connected layers use R e L U activation 
whereas the last fully connected layer uses linear activation function. The L I loss 

38 | P a g e 



function is used during training to obtain absolute loss value during training. The 
weights are then updated using the A d a m optimizer through backpropagation and 
gradient descent. 

4.3 L S T M 

The type of L S T M applied is a multi-task vanilla L S T M that is able to take input 
vectors regarding both event and time and perform event prediction and time 
prediction through outputs from a single model. 

The multi-task L S T M model implements the same preprocessing as G C N as explained 
i n section 4.1.3 for comparison. The training, testing, and validation data are split in 
the same manner 2/3 train data and 1/3 test data. The features in L S T M also apply 
4-dimensional features from temporal dependencies from timestamp values. 

Encodings 

The input vector X is a 3-dimensional tensor with the shape of several rows/samples x 
maximum length of event trace x num features. The L S T M model requires sequential 
data to train. To create this, for each row i n the dataset, the events corresponding to 
each case are sequentially added to the row for each time step. In case when the end 
of the case is reached, the next row in X starts wi th only the hrst event in the case. 
This results in the preservation of the sequence of events according to the case i n the 
dataset and removes any loss of information regarding the case and its events when 
obtaining input data for the model. For example. Figure 15 below shows an illustration 
of how the sequence of events is transformed into input and target labels. 

Step 1: 

Step 2: 

Seed sequence of words Predicted word 

the 

the 

man is 

Seed sequence of words Predicted word 

man is walking 

Seed sequence of words Predicted word 

Step 3: the man - walking down - I L _ _ I 

Seed sequence of words 

Step 4: t n e man is walking down the street 

Predicted word 

Figure 17: Figure showing extraction of a sequence of events and target/predicted values. 
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For each time step, the events and sequence of events are recorded with the target 
value as the next event in the sequence. For the next new case, the time step resets, 
and a new sequence of events is recorded. 

For timestamp prediction, the target timestamp values are scaled by the average time 
between events which is a common practice in time-series analysis and predictive 
modeling. The scaling contributes to the normalization which helps the model learn 
about the pattern and relationship i n time sequences and reduce bias. Therefore, for 
each prehx step, the target timestamp is calculated as the difference between the 
current and next timestamp/average time between events. 

4.3.1 M o d e l architecture and training 

Input 

LSTM 

LSTM 

Dense Layer 
Softmax 

LSTM 

Dense Layer 

Activity Prediction Time Prediction 

Figure 18: Architecture of multi-task LSTM. 

A s shown i n Figure 18, The model architecture consists of a single input layer and 
three L S T M layers. The input layer of shape maxlen x num features contains 
information about each row of the dataset which passes through the first L S T M layer. 
The first L S T M layer returns sequences with dropout and batch normalization. The 
second and third L S T M layers return single output features and are associated wi th 
event prediction and time prediction respectively. 
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For event prediction, SoftMax activation is implemented where the output dimension 
is equal to the number of unique activity labels. The output gives a probability of each 
of the unique activity labels and the highest probability number is selected as the 
predicted value. The softmax function normalizes a vector of real numbers into another 
vector of the same dimension, so that al l components are in the interval [0,1], and the 
sum of al l components is equal to 1. Hence, the transformed vector can be interpreted 
as a probability distribution while keeping the vector's original proportions. 

The loss function used is the cross-entropy loss function that gives the difference 
between actual one-hot encoded values and prediction values. This difference is then 
used to update the weights using backpropagation and gradient descent. 

For time prediction, the output is a single scalar output. The loss function is M A E 
where the actual values are compared wi th predicted values which is used to update 
the weights using backpropagation and gradient descent. The total loss during training 
is the sum of activity prediction loss and time prediction loss. 

4.3.2 Mult i - task training and advantages 

Mult i - task model and training are implemented because of the nature of the task to be 
performed and the property of input feature that contains information about both 
event and time stamp temporal dependencies. Al though traditionally, a separate L S T M 
model for event and time prediction might be regarded as best practice, The input 
features and the dependency of event and time-related features in the dataset allow 
the implementation of a multi-task L S T M model. Some of the advantages are: 

1. Joint learning of representation of both event and time as each event in the dataset 
is associated with the 4-dimensional feature of temporal dependencies. This allows 
the model to capture features relevant to both prediction tasks [12] . 

2. Mult i - task learning may help prevent overfitting because of the requirement to find 
and learn from common representation [29]. 

3. The parameters shared between the tasks might help the model to generalize better 
[30]. 

4. Less needed resources and computationally efficient as multiple tasks can be 
achieved using a single model and training procedure [30]. 

5. Deployment is made much easier because of a single model that can be used to 
perform both event and time prediction. 
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5 Implementation 

This chapter gives information about the model hyperparameters used to get the best 
model for event and time prediction for both models and explains the hyperparameter 
tuning process i n multi-task L S T M . 

5.1 G C N 

5.1.1 Event Prediction 

The event prediction model for both 0 2 C and P 2 P datasets was run wi th different 
learning rates to get the best value for each dataset. It is necessary to find the learning 
rate depending on the dataset used because, for the same model training, the dataset 
might have different learning rates that can converge during the learning phase. The 
learning rate ranging from 0.1 to 0.00001 was tested. 

Hyperparameter Values 

Dropout Rate 0.0 

Optimization algorithm A d a m 

Learning Rate 0.00001, 0.0001, 0.001, 0.1 

Number of Runs 10 

Epochs 50 

Batch size 32 
Table 7: Table showing parameters in training event prediction model. 

For the event prediction, an accuracy measure is considered. Accuracy is the ratio of 
correct prediction to the total number of predictions. The accuracy is given by: 

Accuracy 
Number of correct predictions 

Total number of predictions 

During model training, the model with the least validation loss was saved while 
running for several epochs. The model training was run for 10 different runs of 10 
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epochs for each learning rate. Overfitting was l imited by using the dropout value of 
0.5. 

5.1.2 Time Prediction 

Similar to event prediction, the model training was run wi th different learning rates to 
get the optimum learning rate value resulting i n the least validation loss. Similar ranges 
of learning rates were applied. 

Hyperparameter Values 

Dropout Rate 0.0 

Optimization algorithm A d a m 

Learning Rate 0.00001, 0.0001, 0.001, 0.1 

Number of Runs 10 

Epochs 50 

Batch size 32 
Table 8: Table showing best hyperparameters in training time prediction model. 

For time prediction, the mean absolute error ( M A E ) is applied to measure the 
difference between predicted time and actual time. It is measured in terms of days. 
The M A E is given by: 

n 
MAE = 

i=l 

The model wi th the least validation loss was saved and used on the test set for 
evaluating the results. 

5.2 L S T M 

5.2.1 Hyperparameter Tuning 

During training, hyperparameter tuning is implemented to get the best possible 
combination of hyperparameters for the model. The model wi th the lowest validation 
loss was chosen for the test set evaluation. 
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Hyperparameter Values 

Number of L S T M units 64, 100 

Dropout Rate 0.0, 0.2 

Optimization algorithm A d a m , Nadam 

Learning Rate 0.0001, 0.0002, 0.001, 0.002, 0.01 

Epochs 50 

Batch size maxien value 

Table 9: Hyperparameters implemented during multi-task LSTM model training. 

G r i d search using these parameter values was implemented in order to get the best 
model for 0 2 C and P 2 P separately. The metric used to get the best model was 
validation loss. Being a multi-task model, the validation loss is the sum of both event 
prediction and time prediction losses in each epoch. The hyperparameter tuning allows 
the best model to be chosen wi th the least validation loss and be automatically saved. 
The saved model later is used to derive results on the test set. 

Addit ionally, early stopping is implemented with 20 percent of 2/3 of the dataset as a 
validation set. The patience value is set as 25 which stops the learning process if there 
is no improvement in 25 consecutive epochs. The use of early stopping allows the 
regularization of the model to prevent overhtting and helps to prevent the model from 
learning noise i n the training data 

Evaluation and Discussion 

This chapter provides detail about the parameters and procedure to get the best model, 

model evaluation and later provide insights about the results of event and time 

prediction for both models. 
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6.1 Model evaluation 

6.1.1 G C N 

Event prediction for both 0 2 C and P 2 P was best when training wi th a learning rate 
of 0.0001 and A d a m optimizer and the test set are evaluated on the model. For time 
prediction also both 0 2 C and P 2 P were best when trained on a learning rate of 0.0001. 

Hyperparameter Values 

Number of L S T M units 64 

Dropout Rate 0.0 

Optimization algorithm A d a m 

Learning Rate 0.0001 

Table 10: Table showing the hyper-parameters resulting in best value for both metrics. 

6.1.2 L S T M 

For 0 2 C , the multi-task layer performed best i n terms of validation loss when trained 
using hyperparameter values as below: 

Hyperparameter Values 

Number of L S T M units 64 

Dropout Rate 0.0 

Optimization algorithm N a d a m 

Learning Rate 0.001 

Table 11: Table showing the hyperparameters resulting in best value for both metrics. 
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Similarly for the P 2 P dataset, the best performance was achieved using the same 
hyperparameters as the 0 2 C model. However, the learning rate of 0.002 resulted similar 
score i n terms of validation loss whereas different units and dropout rates resulted in 
lower performance. 

6.2 N e x t A c t i v i t y a n d T i m e P r e d i c t i o n 

First , the results are summarized i n the table for both methods and later the results 

are evaluated and discussed using graphs. Furthermore, it explains the result of the 

methodology applies i n the thesis. 

6.2.1 G C N 

The evaluation is carried out for different prefix quartiles of the length of events for 

each case in the test set. The quartiles are separated concerning the longest trace in 

the dataset. 

Dataset Accuracy for Event Prediction Dataset 

Quartiles of Events 

Dataset 

Q l Q2 Q3 Q4 Overall 

0 2 C 70.9 64.08 74.94 76.71 68.27 

P 2 P 49.78 57.57 82.2 76.92 52.87 

Table 12: Experimental results for event prediction on GCN model. 

Dataset M A E (days) for T ime Prediction Dataset 

Quartiles 

Dataset 

Q l 3.5 Q2 Q3 Q4 Overall 

0 2 C 81.43 16.67 4.643 4.66 51.97 

P 2 P 26.63 9.05 2.70 2.65 20.88 

Table 13: Experimental results for time prediction on GCN model. 
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This allows for the cases wi th a smaller number of events to be in lower quartiles 

whereas cases closer to the longest trace are in higher quartiles. Separating shorter 

traces, medium-length traces, and longer traces gives a better understanding of the 

predictive performance of models for short, medium, and long traces of events. 

6.2.2 L S T M 

Dataset Accuracy for Event Prediction 

Prefix No . 

2 3 4 5 6 7 8 Overall 

0 2 C 41.17 67.23 66.72 47.26 56.78 28.00 0 43.88 

P 2 P 18.61 28.86 43.47 59.24 77.15 - - 45.48 

Table 14experimental results for event prediction on multi-task LSTM model. 

Dataset M A E (days) for Time Prediction Dataset 

Prefix No. 

Dataset 

2 3 4 5 6 7 8 Overall 

0 2 C 44.71 40.22 40.57 35.49 35.56 18.21 14.67 32.78 

P 2 P 46.01 58.16 70.84 54.87 30.24 - - 52.02 

Table 15.-Experimental results for time prediction on LSTM model. 
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Similar to G C N model evaluation, for L S T M as well, the evaluation on the test set is 

performed on a different number of events denoted by prefix number, giving more 

information about the performance on varying lengths of traces. The prefix length can 

be associated wi th shorter, medium, and longer traces, and similarly, the performance 

is differentiated according to length. This also allows for comparison wi th G C N results 

as the quartiles are separated likewise. 

6.2.3 Comparision and K e y Findings 

6.2.3.1 Event Prediction. 

80 

75 

70 

m 
5 65 
u 

Accuracy across prefix quartiles for 02C 

60 

55 

50 
01 

Accuracy | ilot 

02 03 04 
Prefix_Steps 

Figure 19: Ql contains all prefixes <= 2.25, Ql< Q2 <=Jh5, Q2< Q3 <= 6.75, Q3< Q4 
<= 9 for event prediction of 02C on different lengths of prefix events. 
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Figure 20: Plot showing performance of LSTM model for event prediction of 02C on different 
lengths of prefix events. 

From Table 3, it can be known that the average number of events i n both datasets is 
approximately 4. This information needs to be taken into context while analyzing the 
model performance. Therefore, the majority of cases lie between Q l and Q2 for the 
G C N plot whereas the prehx number between 3 to 5 contains the majority of cases. 
A l l in a l l , it can be deduced the medium length contains and reflects results for the 
majority of data. 

O n the 0 2 C dataset, the G C N model performs better than L S T M in terms of overall 
accuracy as well as for short, medium, and long traces of events. For short and medium 
traces, the accuracy is near 70 percent for L S T M whereas it is between 70.9-74,94 
percent for G C N as seen i n Table 11. It can be observed that both models can predict 
better on short and medium length of traces and accuracy declines as traces get longer. 
The overall accuracy for G C N is 68.27 whereas for L S T M is 43.88. 

The performance of G C N for short prefixes is 70.9 percent which is higher than L S T M 
model whereas for the medium number of prefixes, both models achieve similar 
accuracy. The longer prefixes from 5 to 8 are in less quantity where G C N achieves 
better increasing accuracy ranging from 74.94 to 76.71 percent. The L S T M model 
however does not perform better on longer traces shown by declining accuracy in the 
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Figure 21:. Ql contains all prefixes <= 3.5, Ql< Q2 <=7, Q2< Q3 <= 10.5, Q3< Q4 <-
14 for accuracy of event prediction of P2P. 
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Figure 22: Plot showing performance of LSTM for event prediction of P2P dataset on 
different traces. 
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Given that average traces are medium-sized prefixes, similar to 0 2 C , the majority of 
cases lie between Q l and Q2 for G C N and 3 to 5 for L S T M plots i n F i g . 21 and 22. 
However, the P 2 P dataset contains a larger quantity of data. For shorter prefixes, G C N 
achieves 48.78 percent accuracy whereas L S T M achieves 18.61 to 28.86 percent of 
accuracy. For medium size prefixes, the G C N achieves 49.78 to 57.57 percent accuracy 
and L S T M achieves 28.86 to 59.24 percent accuracy. This shows the performance is 
almost similar for both models for the majority of cases i n the dataset. For longer 
prefixes, G C N performs better wi th 82 percent in Q3 and 76.82 percent in Q4. The 
L S T M for longer prefixes achieves 77 percent. 

6.2.3.2 Time prediction 

MAE across prefix quart i les for 0 2 C 
1 1 

- 0 - MAE 

* 
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Q l Q2 Q3 Q4 
Prefix Quart i les 

Figure 23: Ql contains all prefixes <= 2.25, Ql< Q2 <=4-5, Q2< Q3 <= 6.75, Q3< Q4 
<= 9 showing performance of GCN for time prediction of 02C dataset 
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For the Time prediction of the 0 2 C dataset, the L S T M achieves lower M A E for the 
majority of cases compared to G C N . G C N model has a higher M A E of 81 in Q l with 
decreasing trend i n Q2 and further quartiles whereas, in L S T M , the M A E is 46.01 to 
30.24 for small, and medium-size prefixes and very low to less than 20 for longer 
prefixes. The drastic change in M A E for longer prefixes might have been influenced as 
a result of a smaller number of cases. Additionally, the overall M A E for the L S T M 
model is 33 days and 44 for G C N . 
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Figure 25: Plot showing performance of GCN for time prediction of P2P dataset on different 
traces. Ql contains all prefixes <= 3.5, Ql< Q2 <=7, Q2< Q3 <= 10.5, Q3< Q4 <= 
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Figure 26: Plot showing performance of LSTM for time prediction of P2P dataset on 
different traces. 
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For the P 2 P dataset, the M A E is much lower for the G C N model across a l l prefix lengths 
compared to the L S T M model. The overall M A E values are 21 days for G C N and 52 days 
for L S T M showing better performance of G C N . 

A comparison between two deep learning models is accomplished using similar approaches 
in terms of usage of dataset preprocessing, extraction of features, and separation of 
training, validation, and test set. B o t h models show viable results given the complexity of 
the dataset, whereby the G C N model shows better performance in event prediction for 
0 2 C and time prediction for P2P. The L S T M model shows better performance i n 0 2 C 
time prediction and similar performance overall i n event prediction for P2P. 
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7 Conclusion 

Process prediction is one of the major challenges in business process mining and predictive 
process monitoring. Timestamp data from E R P systems for 0 2 C and P 2 P processes 
contain valuable information about the process flow and efficiency. The challenge of 
extracting information from real-life event logs using two different types of the deep neural 
networks is proposed in this thesis. Furthermore, this thesis provides a pathway for the 
K I G A project i n further development of deep learning approaches in event and time 
prediction. 

Given the overall performance, it is important to compare the performance relating to the 
prefix length. For consistent performance across different prefixes, the L S T M model can 
be considered especially for event prediction. Also , the type of process to be evaluated 
needs to be considered while choosing a preferred model. 

7.1 L i m i t a t i o n s a n d O u t l o o k 

In addition to viable results shown by both models, some limitations can be addressed to 
improve the approach and results. The event prefix imbalance is one of the factors that 
influence the training of the model. Al though results for varying lengths of prefixes are 
implemented and compared, a dataset wi th more balanced prefixes could provide detailed 
insight into the performance of the model. These factors which could nonetheless be 
implemented i n further iteration of research for the K I G A project. 
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