
Faku l tä t A n g e w a n d t e I n f o r m a t i k (Facu l t y of C o m p u t e r
S c i en ce)

Mas t e r Ar t i f i c ia l I n te l l i gence and Da ta S c i en ce

T o p i c

"A C o m p a r i s i o n of G N N s and LSTMs for P ro cess M in ing A p p l i c a t i o n s "

'E in Ve rg l e i c h v o n G N N und LSTM fur P r o c e s s - M i n i n g - A n w e n d u n g e n "

M a s t e r ' s t h e s i s i n f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e
o f :

Mas t e r of S c i e n c e

at

Deggendo r f Ins t i t u te of T e c h n o l o g y

S u b m i t t e d by: F irst s upe r v i s o r :

S u r n a m e , g i v en n a m e : K h a d k a , A a y a m Mr. M a r k u s E ider

Ma t r i cu l a t i on n u m b e r : 1 2 2 0 1 2 6 7

P lace , da t e : Deggendo r f , 0 1 . 2 6 . 2 0 2 4

D E G G E N D O R F
I N S T I T U T E o f

T E C H N O L O G Y

Declaration of Authorship

Name of student: Aayam Khadka

Name of superv isor: Mr. Markus Eider

Thesis topic:

A Comparison of GNNs and LSTMs for Process Mining Applications.

1. I hereby declare that the thesis has been written in compl iance with Sect ion 35 (7) RaPO
(State Examinat ion Regulat ions in Bavar i aBayRS 2210-4-1-4-1-WFK) is my own work, has
not been submit ted for any other degree at any other univers i ty or inst i tut ion, does not
contain or use any sources or resources other than those referenced, and that all direct and
paraphrased quotes have been duly cited as such.

Deggendorf, 01 .26 .2024

(Date) (Signature of student)

Table of Contents

1 Introduction 1

1.1 Preamble 1

1.2 Research Question 1

1.3 Methodology 2

1.3.1 Data preprocessing 2

1.3.2 Feature Encoding 2

1.3.3 Training procedure 3

1.3.4 Evaluation 3

1.4 Thesis Structure 4

2 Background 5

2.1 Data 5

2.2 Process M i n i n g 6

2.2.1 Types of Process M i n i n g 7

2.2.2 Event Log 9

2 . 3 L S T M 11

2.3.1 R N N 11

2.3.2 Long Short-Term Memory Networks 12

2.4 G N N 13

2.4.1 Overview of Graph as a Data 13

1 | P a g e

2.4.2 Graphical Neural Networks 14

2.4.3 Types of G N N Output Tasks 16

2.4.4 G r a p h Convolutional Networks (GCNs) 17

2.4.5 Directly Follows Graph 19

3 Related Work 20

3.1 Business Process Management 20

3.2 Deep Learning i n Predictive Process Monitor ing 21

3.3 Deep Learning Methods in Process M i n i n g 21

3.4 Usage of L S T M s i n Process Discovery 22

3.5 G N N s i n Process M i n i n g Applications 25

3.6 Related work on the K I G A dataset 26

4 Concept 28

4.1.1 K I G A Dataset 28

4.1.2 Data Preprocessing 31

4.2 G C N 32

4.2.1 Feature Encoding 32

4.2.2 Training Procedure 38

4 . 3 L S T M 39

4.3.1 Model architecture and training 40

4.3.2 Mult i - task training and advantages 41

5 Implementation 42

2 I P a g e

5.1 G C N 42

5.1.1 Event Prediction 42

5.1.2 Time Prediction 43

5 . 2 L S T M 43

5.2.1 Hyperparameter Tuning 43

6 Evaluation and Discussion 44

6.1 Model evaluation 45

6.1.1 G C N 45

6.1.2 L S T M 45

6.2 Next A c t i v i t y and T ime Prediction 46

6.2.1 G C N 46

6.2.2 L S T M 47

6.2.3 Comparision and K e y Findings 48

7 Conclusion 55

7.1 Limitations and Outlook 55

Bibliography 1

3 I P a g e

4 j P a g e

1 Introduction

1.1 Preamble

A business organization executes multiple processes every day to accomplish its goals
such as customer satisfaction, higher profit, and productivity. The proper execution
of these processes relies on the effective, efficient, and transparent execution of
processes and it directly correlates to the organization's operation. The better the
execution, the better the flow of operations i n an organization. Whi le these processes
are executed by different departments within an organization, there arise
inconsistencies, discrepancies, and redundancies that affect the profitability and
efficiency of the organization. Profitabil ity may be affected by factors such as evolving
business goals, the need for faster transfer of information, and an increase in
competitors. Due to the constantly evolving process models and operations, the
process models are increasingly leaning towards more complexity and variability.
These affect the operation of an organization. To mitigate these, companies use
information management systems such as Enterprise Resource Planning (E R P) ,
Supply Chain Management (S C M) , and Relationship Management System (C R M)
which collect large numbers of event log data. The event log data is used in process
mining to derive process graphs that provide insights and analytical information
about the process execution. This information is valuable in identifying variations
and assisting in monitoring which improves the process flow by resulting in the
efficient and profitable operation of business processes in an organization.

The research is motivated by the aims and objectives of the K I G A project emphasizing
the importance of artificial intelligence-supported predictive business process mining
applications. High-level processes such as Order to Cash, and Purchase to Pay event log
data may contain redundancy, and irregularities that are crucial therefore the research
aims to provide valuable insights into the effectiveness of deep learning methods in
process mining and additionally support the K I G A project in applying predictive
techniques to event log data.

1.2 Research Q u e s t i o n

The focus of the research question is on the comparative analysis of two models, G C N
and multi-task L S T M regarding event log data. The study aims to evaluate the
implementation of these models in future event prediction and time prediction. The key
aspects include:

1 j P a g e

Model Performance and Evaluation

The research question evaluates the performance of G C N models and multi-task L S T M
networks in accurately predicting both events and related timestamps of both the test
data set and the K I G A dataset. Furthermore, it highlights the comparative nature of
the study on the performance of these two models. It aims to contrast and compare the
performance of these models to realize their potential in predictive business process
mining applications.

Performance Metrics

The performance metrics include accuracy for the event prediction whereas M A E Mean
Average Error for the time prediction. At the same time, it further emphasizes the
computational efficiency of both models as well.

1.3 M e t h o d o l o g y

1.3.1 Data preprocessing

The data provided for the K I G A project is real life process event log data from a

business organization. This gives a possibility that the data requires thorough

inspection and preprocessing of any inconsistent, and redundant data. The most likely

case is that the events are recorded multiple times for different timestamp records, i n

this case, only the last recorded event wi l l be kept as event is not considered as

completed unt i l last event is recorded. Additionally, any null values or missing values

are checked and maintained.

1.3.2 Feature Encoding

To keep the comparison of both models justifiable, it is important that both model use

similar features from the data. Al though they differ in their model architecture and

learning procedure, the input feature vectors can be kept similar. Therefore, to capture

timestamp values comprehensively, 4 temporal dependencies are considered which are:

T ime since the previous event in the case, T ime since the start of the case, Time since

2 I P a g e

midnight (of the day), Day of the week. For event, the unique events are one-hot

encoded to get numerical representation.

1.3.3 Training procedure

1.3.3.1 G C N

The G C N captures the graphical information of the dataset through each iteration.

Initially, it is required to represent data into graphical representation, therefore,

Directly Follows Graph is used. This gives information about the nodes and edges and

their relationship by representation of weights which is then captured using adjacency

matrix. The weight vectors for events i n cases are then iteratively updated in the G C N

layer using adjacency matrix and input features.

1.3.3.2 L S T M

For multi-task L S T M , preprocessing, cross-validation set, and input features arc kept

the same. However, the multi-task L S T M model w i l l be able to learn event parameters

and timestamp parameter through single model.

1.3.4 Evaluation

The evaluation and comparison are carried out using overall accuracy and mean

absolute error of the predicted results as well as metrics for different prehx length of

events and time values. Results for different prefix length gives detailed look into how

model performance are affected by the number of prefix lengths in event and

timestamp. It gives information about the effect of length of event or timestamp i n

predictive performance. A l l in al l , the overall metric as well as results for different

values or length of prefix sequence are considered.

3 | P a g e

1.4 Thesis Structure

Chapter 2: Background. This chapter presents the background information on the
major topics within the thesis. These topics contain Process M i n i n g , G N N s , and
L S T M s .

Chapter 3: Related Work. This chapter presents the related work on implementing
deep learning methods, G N N s , L S T M s , and K I G A data i n event and time
prediction.

Chapter 4: Methodology. This chapter describes the data, and preprocessing steps,
and explains the methods used in training the G C N and L S T M models for event
prediction and time prediction.

Chapter 5: Implementation. This chapter explains i n detail about the training
procedure for G C N and L S T M models in event and time prediction.

Chapter 6: Evaluation and Discussion. This chapter explains the results of the
approach and presents its evaluation based on the research question. A discussion
on the limitations, and improvements is conducted and a pathway for future work
is provided.

Chapter 7: Conclusion and Outlook. This chapter concludes the research and
summarizes the complete approach.

4 | P a g e

Background

This chapter includes information and description of background information regarding

dataset, topics of process mining and overview of the G N N and L S T M model

architecture.

1 D a t a

A s mentioned, the datasets used in the experiment consist of event log data of Order-
to-Cash and purchase-to-pay processes. The dataset is extracted from a real-life event
log of the mentioned processes of a business organization.

• Order to Cash
This process is one of the fundamental business processes that include
information about the receipt of Customer Orders to Receive the payment for
the delivered goods or services. In general, it represents how a company
receives, manages, and completes the order placed by the customer. It includes
the cycle of events after the order placed by the customer to the payment of
the order and hence the conversion of the order to cash [1]. A common step
i n Order-to-Cash contains Order Placement, Order Processing, Inventory
Check, Shipping, Invoice, Payment, and Order Completion.

The benefits of using the 0 2 C process include improved cash flow, customer
satisfaction, reduced order processing costs, visibil ity into sales performance,
compliance and risk management, faster order fulfillment, and inventory
management.

• Purchase to Pay
Purchase to Pay (P2P) also known as Purchase to Pay is another fundamental
business process that organizations follow to buy goods and services from
external vendors. These goods and services i n turn are converted to finished
products and provided to customers. It represents the cycle of events from
identifying the need for goods or raw materials to payment and record keeping.
The events in Purchase-to-Pay include Purchase order, Supplier selection,
Order Receipt, Invoice Verification, Approval , Payment, and Reporting or
Record Keeping.

5 | P a g e

The usage of the P 2 P process provides organizations wi th the benefit of cost
savings, vendor relationship management, efficient procurement cycle time,
transparency, decision making, invoice processing, and risk management [2].

2.2 Process M i n i n g

Process M i n i n g , a subfield of B P M emerged to assist in process discovery, and
modeling and improve workflows using process information in the event log. This
helps organizations improve efficiency, reduce operational costs, and improve the
overall quality of services. It assists in B P M life cycle activities by reducing the need
for manual processing of the business processes. This allows organizations to improve
process flow, re-modeling, and re-engineering of process models which provides
organizations with factual representation of their processes to achieve the needed
outcomes.

Process M i n i n g techniques can be both forward-looking and backward-looking. [2]
Backward-looking is related to techniques related to finding the root causes of
bottlenecks and discrepancies in a process whereas forward-looking is related to the
prediction of future events or prediction of time differences i n future events i n a case.

In essence, Process M i n i n g answers the following questions.

• What are the processes that are followed?
• How does the actual process execution differ from the executed process?
• What are the deterrents i n the process?

6 | P a g e

Figure 1: Overview of Process Mining showing cycle of process mining showing the complete
cycle from extracting event logs, building models, analyzing, interpreting, and making

decisions [2].

2.2.1 Types of Process M i n i n g

Process M i n i n g may consist of different objectives. Depending on the goal and
objectives, different types of process mining are used. Some of the most common
types are:

Process discovery. This represents different techniques and measures to discover a
process model based on the event log data. For example, the usage of Directly Follows
Graph (2.4.5) where the nodes and vertices are represented as events and relations
respectively. However, the model is prone to overfitting and underfitting during the
representation. Therefore, different algorithms are proposed based on diverse tasks.
In particular, process discovery algorithms take an event log as input and produce a
process model that needs to possess several integral attributes of an optimal process
model [3]. More commonly, these attributes are represented as:

• Recall . The discovered model should be able to show the behavior as shown
by the event log.

• Precision. The model should not deviate from the actual behavior observed in
the event log.

• Generalization. The discovered model should generalize the behavior and
avoid overfitting.

7 | P a g e

Simplicity. The model should be able to represent the behavior wi th an overly
complex model. This is related to Occam's Razor which states "One should
not increase, beyond what is necessary, the number of entities required to
explain anything".

"able to replay event log"

r e p l a y f i t n e s s
"Occam's razor"

g e n e r a l i z a t i o n
"not overfitting the log"

s i m p l i c i t y

p r e c i s i o n
not underfittlng the log"

Figure 2: Attributes of process discovery that are important for creating process models. [3].

Conformance Checking. This represents the comparison of the extracted model
wi th the actual data i n the event log. The goal of conformance checking is to
represent the degree of agreement or disagreement between the process model and
the information contained in the event log [2]. The techniques used in the
conformance check provide information about the discovered behavior of the process
and the modeled process.

M o d e l enhancement. It involves the techniques used to improve the process model
using the information about the actual process contained i n an event log. Extract ion
of information from event logs may reveal bottlenecks, discrepancies, and deviations
of the process model from the actual process. This extracted information is used to
analyze and optimize the process model in order to correctly align it wi th the actual
process execution. It reveals transparency and brings out factual insights from event
logs helping to eliminate bottlenecks and cleaning of redundant events and activities
[2]. A s a result, the model is more refined because of the improvement i n accuracy
and efficiency.

Predictive Process M i n i n g . This type of Process M i n i n g relates to the predictive
nature of the model. Whi le previous types are referred to as backward-looking,
predictive process mining represents the forward-looking aspect of process mining.
Sudden changes in process, performance issues, and bottlenecks may occur which can

8 | P a g e

be mitigated by using predictive analysis from predictive process mining. The
resulting predictive analysis in combination wi th machine learning techniques allows
forecasts about the likely behavior of the process. This allows the organizations to
take precautionary measures, provide informed decisions, and ensure an efficient flow
of process execution.

Figure 3: Common types of process mining, i) discovery; ii) conformance; in) enhancement [4]

2.2.2 Event Log

A n event i n an event log refers to an instance of the case/process, a task, or a point
i n time. It contains multiple attributes such activity, timestamp, resource,
and customer. The most common attributes include case, activity, and timestamp
where a case refers to a process instance, activity to the operation or task, and
timestamp to the instance when the case is instantiated. It gathers information about
the type of activity performed, the responsible entity, and the moment of event
execution [2]. Typically, cases are identified using an identifier ID that represents a
unique number for each case where events belonging to the same case are grouped
by the case identifier. There are three possible types of event logs [4]:

1. ReaHife logs. It contains processes recorded from reaHife day-to-day
organizational activities.

2. Synthetic logs. It contains processes produced from real-life process model.
3. Art i f i c ia l logs. It contains process information automatically extracted from a

non-real-life process model and is manually created to resemble real events.

9 | P a g e

Case ID Timestamp Activity Resource

001 02-11-2023 Register request Pete

001 02-11-2023 Check ticket John

001 02-11-2023 Make decision Michael

001 02-11-2023 Accept request Har i

002 02-11-2023 Register request Har i

002 02-11-2023 Make decision Marcel

002 02-11-2023 Pay compensation E l y r i a

Table 1: Example of an event log.

Table 1 shows a typical form of an event log. Here, each row denotes an event that has
occurred whereas each column denotes the attributes of that certain event. A s
mentioned before the case identifier groups the activities that are related to the same
case. Formally, given that al l possible activities A are shown including the set of all
possible case identifiers C and the set of timestamps T , it can be defined as:

Definition 1: Event. A n event e is a tuple where e = (c, a, t) 6 C X A X T, that
represents the number of activity a for the case c at timestamp t. Moreover, the
complete set of possible events is known as the event universe denoted by £ = C x
A x T.

Definition 2: Trace. If A ' denotes al l the non-empty finite sequences of activities
from A. a E A' is called a trace when a represents a sequence of activity of the
process model.

Definition 3: Event stream. Given an event set £, S denotes an event stream
such that those events are initiated one after the other. It is an indefinite stream of
events such that two consecutive events may be associated wi th different cases i n
the timeline.

10 I P a g e

3 L S T M

3.1 R N N

Neural networks consist of several networks composed of interconnected layers of
neurons that can learn patterns and behavior of the input data. R N N s particularly
contain recurrent connections wi th hidden states distributed over time that allow the
network to preserve past information. A t each time step, the input and previous output
are considered to obtain a new output which again is fed into the next time step as
shown in Figure 4. A s a result, this allows R N N s to learn long-term dependencies in a
sequence of data and preserve information about prior information [5].

Figure 4- Simple Recurrent Neural Network Architecture showing detailed architecture and process of
information transfer [6].

The mathematical equation for a simple recurrent cell is given as follows:

ht = (Whht-± + Wxxt + b),

Vt = ht>

where xt,ht, and yt states the input, past recurrent information, and output of the cell
at time t respectively. Wh and Wx denote the weights and b is the bias. This allows the
model architecture to keep information about the context while making a prediction,
e.g., next-word prediction i n a sentence or classification tasks. However, the amount of
information that a simple R N N model can capture is l imited due to the problem of
vanishing gradients. A s past information gets longer, vanishing gradients arise when
error signals during backpropagation either blow up or vanish [6].

11 | P a g e

2.3.2 Long Short-Term Memory Networks

Long short-term memory (L S T M) is an advanced variation of R N N that has been
developed to tackle the problem of vanishing or exploding gradients of traditional
recurrent neural networks. It contains special L S T M cells as hidden units that are able
to retain information and was developed by Hochreiter and Schmidhuber i n 1997 [7].
Thereafter, the proposed architecture has been modified and improved multiple times
and is considered among the successful recurrent neural network models [6].

Figure 5: LSTM cell showing its gates [4J-

L S T M cells are also called memory blocks and contain three gates that control the cell
state. Information from input data is updated or removed from cells by these three
gates. These three gates include:

• The Input gate (i) which takes input at the current time step and hidden state
of the previous time step to update the cell states and obtain output.

• The Forget gate (/) which also takes input at the current time step and hidden
state of the previous time step but controls the discarding of previous
information concerning the upcoming input information.

• The Output Gate (o) which considers the input and last hidden states to
determine the output.

Combined, the formula for the cell operations can be described as:

ft= <r(Wf. [ht-llXt] + bf)

it = °(Wi • [ht-i.x^ + bi)

Ct = tanh(Wc . [ht_v xt] + bc)

12 I P a g e

Ct= ft * Q _ ! + it * Ct

ot = a(W0 . [ht_v xt] + b0)

ht = ot* tanh (Q)

Taking previous hidden states ht_1 and current input xt as current input, it is passed
through forget ft, which calculates the output for the forget gate. Ct computes a new
eligible candidate which is passed for Ct to output a new cell state. it uses ht_1 and xt

to calculate the output of the input gate. ot computes the output for the output gate
and ht computes the new hidden state.

Here, W and b represent weight and bias respectively. The activation functions applied

i n the cell are sigmoid (a) expressed as and tanh as — — . The weights and
\ / l+e x (ex+e x)

biases i n the network are iteratively updated to minimize the loss of the of the input
and output pairs during training. Epoch is the iteration through the dataset that
denotes the amount of forward and backward pass through the network. The parameter
of the optimization algorithm is crucial in updating the weights wi th optimal values
[7]-

2.4 G N N

2.4.1 Overview of Graph Data

Graph data is a type of structured data that represents information using nodes and
edges. Graphs are implemented in various tasks relating to node classification, l ink
prediction, and clustering. The key features i n a graph arc nodes (vertices), and edges
that connect the nodes. Edges between the nodes represent the relationship between
the nodes. Nodes are also known as entities or objects. The edges are either directed,
undirected, weighted, or unweighted depending on the type of relationship between the
nodes/entities. The feature vectors are associated with nodes that capture the value.

13 | P a g e

1 edge
vertex

Figure 6: Graph showing nodes/vertices and edges.

Typically, a graph can be represented as G = (V, E), where V denotes the set of vertices
and E denotes edges between two vertices. The edges between node i and j are
represented by etj e E. Primari ly, graphs can be categorized by several types [8].

• Directed and Undirected G r a p h . A directed graph contains edges that
are connected and directed from one node to another. A n undirected graph
represents the symmetric relationship between the edges as there is no
direction. Directed graphs typically provide more information than
undirected graphs.

• Homogenous and Heterogeneous G r a p h that has the same type of
nodes and multiple types of nodes, respectively.

• Static/Dynamic Graphs have input features of the graph that vary with
time. This graph contains time information which needs to be carefully
considered in these types of graphs.

2.4.2 Graphical Neural Networks

Graphical Neural Networks (GNNs) are deep learning techniques that are able to
operate on graph data. Generally, G N N s differentiate themselves i n their ability to
generate representations of nodes and their relationship represented by edges. The
fundamental idea of G N N is to generate representations of nodes, their structure, and
feature information by iterative passing of messages between the nodes and updating
the feature vector representation [9]. Unlike, C N N that operates on Euclidean data
such as images (2D), or L S T M operates on sequential and time-series data, G N N
focuses on the non-Euclidean domain of data where the nodes are not arranged i n space
such as an image [10]. It is particularly used in tasks such as node classification, node
and edge prediction, graph regression, classification, and clustering. Graphs can be
irregularly shaped and unordered. Nodes in a graph can have variable size and can

14 | P a g e

have variable numbers of neighboring nodes making networks such as C N N difficult to
complete the task of convolutions. Therefore, G N N s are better suited for graph data.

Skip

CůnnfH I k "

Sampling
Opei"itrjr

Cony/Recurrent
Operator

Pooling
Operator

Input

GNN GNN GNN GNN

layer Laver

Output
Node
Embedding

Edg,e
Embedding

Graph

Embedding

Loss Function

Training Setting
• Supervised
* Semi-supervised
* Unsupervised

THt

1. Find graph structure.

2. Specify graph typeanc! scale,

4- Build model using computational modules, 3. Design loss function.

Figure 7: Pipeline of GNN architecture [11].

The pipeline for building G N N s typically consists of the following steps:

• Finding the structure of the graph data
In this ini t ia l stage, the dataset is analyzed to find the structure of the graph
data and its scale. Non-structured data such as process mining datascts arc
transformed into a graph using tools such as pm4py which is able to create
graphs such as Business Process Model and Notat ion (B P M N) , Directly Follow
Graphs (D F G) , Process Tree Graphs, and Petr i Net.

Identifying the graph type
A s mentioned earlier, there are different types of graph data. It is an important
part of the G N N pipeline to identify the type of graph. Different types of a
graph provide different information and it is a crucial part of the G N N pipeline
to consider the additional information provided by each type i n the
architecture after creating the graph data from the dataset.

15 J P a g e

Directed graph G(V,E) Undirected graph G(V,E) Knowledge graph G(V,E) Weighted graph G(V,E)

E F G
»1 v2 V3 v* v2 vA v2 1>3 »>4 »1 »2 ^3

»1 0 0 1 1 0 1 »1 0 1 0 1 v$ 0 0.4 0 0.4

1 0 0 1 " 2 1 0 1 1 " 2 0 0 0 1 v2
0.4 0 D 3 0.1

(1 : 0 0 1 0 1 1) 1 0 1 V3 0 0.1 1.' I) >

V 4 0 0 1 0 t>4 1 1 1 0 t>4 0 0 0 0 V 4 0.4 0.1 Ob 0

Figure 8: Types of graphs with respective adjacency matrix.

In Figure 8, The knowledge graph (C) represents a directed heterogeneous
graph that has two different types of nodes that carry directed information.
The weighted graph (D) has a value associated wi th its edges. The adjacency
matrix (E-H) gives information about the relationship of a node to other
nodes in the graph. The value of the edge between nodes is 1 if and only if
there is an edge connecting the nodes or else 0.

• Specification of output task and bui ld model.
The next step is to specify the type of output task to be conducted. Depending
on the learning task to be conducted, there are three types of tasks: Node
level, Edge level, and Graph level which w i l l be explained i n section 2.3.3.

2.4.3 Types of G N N Output Tasks

• Node level prediction
Node-level predictions are tasks related to nodes such as node classification,
node regression, node clustering, node embedding, etc. Node classification
tasks assign a label or category to each node i n the graph, Node regression
predicts a continuous value or property, Node clustering groups nodes into
clusters based on the attribute, and node embedding relates to learning a low-
dimensional vector representation for each node.

16 J P a g e

• Edge level prediction
Edges carry information about the relationship between nodes. Edge-level
predictions are tasks such as edge classification and link prediction i n which
the model classifies an edge/relation type or predicts the occurrence of an edge
between the nodes of the given graph. A neural network or similarity function
is generally used to evaluate the presence or classification of an edge based on
the encoded information of any two nodes.

• Graph level prediction
In this task, the G N N is used to extract features of the entire graph data. The
representation from the extraction is further used i n tasks related to making
predictions and classification of entire graphs using Aggregation, Graph
Pooling, and Graph classification or Regression techniques.

Regarding the type of graph data to be used i n the task, the tasks are further
represented in different types relating to the training environments:

• Supervised setting where data is labeled and available for training.

• Semi-supervised setting where a small number of nodes are labeled with
many unlabeled nodes. The training phase requires the model to predict the
labels of unlabeled nodes or provide new unlabeled nodes for inference,
depending on the training requirement. It is mostly used in edge and node
classification tasks.

• Unsupervised setting where only unlabeled data are provided to the model
to extract features and patterns from the provided graph data. Tasks related
to clustering of graph data are unsupervised tasks of graph data.

2.4.4 Graph Convolutional Networks (GCNs)

Graph Convolutional Networks (GCNs) are one of the most applied G N N architectures
i n applications based on graph data. It takes graph data as an input to make
predictions based on full graphs or nodes. It is similar to a Convolutional Neural
Network such that C N N uses a spatial cluster of pixels to represent a cluster of vectors
whereas G C N uses a cluster of nodes and its surrounding nodes [10].

17 | P a g e

The key idea of G C N is to learn the information from input data using graph
convolutions by using linear transformation on al l neighboring nodes followed by a
nonlinear activation function and then updating the feature representation of each node
wi th information from all the nodes and edges. It collects feature information from all
the nodes and their neighbors iteratively through broadcasting followed by aggregation.
The aggregated information is init ial ly transformed linearly which is then passed to a
non-linear activation function such as R e L U to get non-linear representations [12]. The
non-linear transformation is used to capture meaningful and comprehensive
representations from the graph data. They are further used in the update function
which consists of some information about the global representation of the graph [13].

The G C N s are differentiated by two distinct approaches: The Spatial approach and the
Spectral approach. The spatial approach operates directly on nodes and edges of the
given graph data and the Spectral approach utilizes graph theory and graph
transformation i n order to represent a graph. The spectral approach depends on the
non-recursive architecture and borrows the idea of R G N N s for message passing [9].

Hidden layer Hidden layer

Figure 9: The Graph Convolutions Network architecture [12].

Mathematically, In the hidden layer, the convolution operation is denoted as:

GCN(X,A,W) = a^D^AXW)

18 I P a g e

where X represents the node feature matrix, A is the adjacency matrix of the graph
representing connectivity of nodes, D is the degree, W is the weight matrix, and a is
the activation function such as R e L U i n the above figure. A degree matrix is a diagonal
matrix which stores the degree of each vertex which numerically corresponds to the
number of edges that the node is attached to.

In the given equation, the product D_1A represents an attempt to normalize the
adjacency matrix. However, as matrix multiplication is non-commutative, an
alternative symmetric normalization is preferred, changing the G C N layer's operation
to:

GCN(X,A,W) = aip-WAD-WXW)

2.4.5 Directly Follows Graph

Process discovery is one of the crucial parts of process mining, ft allows the discovery
of process models using various tools. Some of the tools include Petr i nets, B P M N
models, and process trees that are able to construct complex maps but lack simplicity.
For simpler business processes overgeneralization and simplicity are needed. One such
tool used in generalized visualization of the process models in process mining is the
Directly Follows Graph (D F G) [14].

Figure 10: DFG of process related to refund requests, [self created

19 | P a g e

In Figure 10, The D F G captures the information about the relation between events i n
the event log. The "directly follows" operation between two events is shown if and only
if there is a case instance in which the source event is followed by the target event. In
the graph, the vertices represent the unique activities that are i n the event log and the
directed edges exist if there is a directly follows relation between the events/vertices.
The number above the edges represents the "directly follows" relation denoted as
weight.

2.4.5.1 P M 4 P y

P M 4 P y is an open-source Python library used in process discovery to analyze and
generate graphs. It is compatible wi th most other Python libraries such as pandas,
N u m P y , SciPy, and sci-kit-learn and works wi th Comma-Separated Values (.csv),
pandas data frame as well as X E S format. X E S is an X M L - b a s c d standard format used
for storing event logs and is primari ly used in process mining. Some of the key features
include:

3 Related W o r k

This chapter describes various types of implementations of deep learning methods i n

Business Process Management, Predictive Process Monitor ing, Process M i n i n g and

further sheds light into applied approaches i n G N N and L S T M for event and time

prediction using literature reviews.

3.1 Business Process M a n a g e m e n t

Business Process Management (B P M) consists of a group of activities and techniques
that manage and improve processes wi th in an organization. It is considered a cycle of
activities running i n phases. In B P M , the cycle of activities contains process
identihcation, discovery, improvement, monitoring, and controlling based on the data
collected. Traditional data-driven approaches are considered as process discovery,
analysis, and improvement whereas modern data-driven approaches are i n lifecycle
phases such as process monitoring [2]. In the latter, data are applied i n real-time to
forecast process behavior, performance, and outcomes. The significance of predictive
process monitoring is ever-growing. It is driven by the need for organizations to
mitigate performance issues and process efficiency [3].

Predictive process monitoring itself is a branch of B P M and Process M i n i n g that
leverages data-driven methodologies and predictive information to forecast future

20 I P a g e

behavior and outcomes. Predicting remaining cycle time, sequence of process activities,
process outcomes and prioritization of processes are part of predictive process
monitoring that helps organizations adapt to evolving business goals, efficient flow of
operational activities, and resource allocation [15].

3.2 Deep L e a r n i n g i n P r e d i c t i v e Process M o n i t o r i n g

Deep learning is a neural network-based system that builds upon multiple layers of
artificial neurons. The hierarchal structure of artificial neurons enables the layers to
learn complex features and removes the need for the custom setting of feature
parameters. In recent years, business process discovery methods have passed through
a transformation because of an increasing number of deep learning approaches. This is
led by the realization of organizations on the importance of process monitoring i n run
time [16]. Neural network architectures such as Graphical Convolutional Neural
Networks (G C N) , Convolutional Neural Networks (C N N) , Recurrent Neural Networks
(R N N) , and Long Short-Term Memory (L S T M s) have transpired as valuable tools in
predictive process mining [12]. R N N s especially L S T M s have been applied to predict
events, time of completion, and resources because of their ability to retain information
on long sequences of events.

3.3 Deep L e a r n i n g M e t h o d s i n Process M i n i n g

Deep learning methods have been increasingly used i n process prediction tasks because
of their ability to complete a wide range of tasks. The type of deep learning method
depends on the use case such as the prediction of time-related attributes, activity-
related attributes, or resource-based attributes which are explained i n more detail in
upcoming sections.

In terms of neural networks applied i n the process, the common architectures can be
represented by three different approaches which are Feed forward networks (F F N N) ,
Convolutional Neural Networks (C N N s) , Recurrent Neural Networks (R N N s) , L S T M s
and G N N s [17]. The machine learning tasks i n Process M i n i n g could be categorized
into multiple areas: Process Analysis , Anomaly Detection, Data Handling, User
analysis, Resource Management, Clustering, and Classification [18].

Due to its simplicity and ability to extract related information from data wi th frequent
occurrences of similar attributes, F F N N is mostly implemented in simple use cases and
as a baseline metric. Nolle et al . implemented an F F N N for anomaly detection task
that can distinguish between normal and anomalous traces of activities occurring in an
event log. The focus is made on the ability of F F N N to detect anomalies early in the

21 I P a g e

event log since the occurrence of anomaly is more distinguishable from more frequent
traces [19].

Theis et al . [20] introduced a novel approach for predicting the next event. The
implementation applies Petr i Net process models i n combination with F F N N for the
prediction task. The output from the Petr i Nets decay functions is used to tra in the
model which can store time-related information from the event log to predict the next
event. It shows its potential in applications related to various real-world events.

D i Mauro et al . [21] presented a deep neural network model based on convolutional
neural networks for next activity prediction. They propose an inception architecture
similar to computer vision that has been modified for sequential data use cases. They
showcase the advantage of C N N s i n sequential data in comparison to L S T M s in terms
of both accuracy and computing efficiency.

Pasquadibisceglie et al . proposed a C N N approach to predict the completion of a trace.
The end of a trace i n the event data log is denoted by " E N D " which is the target
variable to be predicted. They propose 2D image-like data structures to model trace
data of event logs showing their ability to predict more accurately on frequent
activities. The model shows that it can achieve better accuracy on the Helpdesk dataset
compared to B P I C 1 2 [22].

3.4 Usage of L S T M s i n Process Discovery

The use of L S T M s i n machine learning tasks is particularly in sequential data as it
addresses the vanishing gradient problem. It is one of the most popular approaches
taken i n process prediction tasks [4] [17].

Tax et al . [23] approach implemented the L S T M approach with multi-task learning
that can predict the next event and its time stamp. They proposed three types of
architecture single-task layers, shared multitask layer and hybrid multitask layer. The
architecture that was able to get better results was the multi-task layers, particularly
hybrid multitask architecture. The multi-task and hybrid architecture differ i n the
ini t ia l L S T M layers that take both activity and timestamp information which are then
passed to further individual layers. B y using one hot encoding, the separate layers
compute the prediction output for the next activity and timestamp separately. The
models are able to predict the continuation of the case t i l l the end and the remaining
cycle time of the running cases. However, the L S T M model does not perform well when
predicting longer sequences of event log.

22 | P a g e

Similarly, K h a n et al . implemented a multi-task model for next activity prediction,
time to event, and suffix prediction. The implementation focuses on a specific type of
network known as Memory Augmented neural networks (M A N N) . A Differential Neural
Computer (D N C) is implemented which is a type of M A N N that uses a memory
module. It comprises two controllers (separate L S T M layers) for encoding and
decoding that are linked by a Memory Module. Dur ing encoding, the input sequence
is fed into the encoder which is used by the memory module to update its information
about the process states. The state of the encoder and memory combined are passed
into the decoder controller which is used to predict by the decoding controller. The
approach shows a competitive performance wi th fewer parameters compared to G R U ,
F F N N , and L S T M including the approach by Tax et al .

Evermann et al . proposed an L S T M network to predict the next event of a case from
an event log. Unlike Tax et al . , they take motivation from Natural Language Processing
techniques for input rather than one hot encoding. In this approach, they take
embeddings as input to complete the prediction task where the event logs are
considered as text, traces as sentences, and events in a trace as words. The model
consists of R N N architecture with a single hidden L S T M layer. In prediction, it faces
the same issues as Tax et al . where the model predicts overly long sequences of the
same activity when a longer sequence of event logs is given.

L i n et al . [24] implemented an RNN-based modulated model for multi-task prediction
of event sequences. They implement L S T M networks for encoding decoding and a
modulator that can combine information from attributes and encodings to output
weight vectors. This weight vector is fed into the decoding L S T M layer to get the
prediction of the next event where individual layers are used for each task. The model
called M M - P r e d achieves accurate predictions for the next event and its attributes
showing results that it can effectively capture event information and its attributes.

Camargo et al . [25] introduced L S T M architecture with embedding vectors as input to
predict event traces, timestamps, and role-associated event roles allowing iterative
prediction of the entire trace. The approach includes pre-processing, L S T M model, and
post-processing. The embedding technique uses n-grams wi th fixed size to scale and
extract fixed-sized n-grams from each event log trace which is taken as an input. The
resulting prediction through the L S T M layer is post-processed using a random selection
of the next event based on L S T M probabilities. This post-processing technique makes
use of arg-max and random selection.

23 | P a g e

Study Year M o d e l Prediction

Nolle et al. 2016 F F N N Trace Class

Theis et al 2019 F F N N Next Event

Pasquadibisceglie 2019 C N N Next Event

Tax et al.

K h a n et al.

Evermann et
al.

2017

2018

L i n et al. 2019

L S T M

L S T M

L S T M

L S T M

Next Event
T ime

Qt

Next Event
Time

Trace class
Next Event

Next Event
I

Table 2: Comparison of Process Prediction methods.

24 I P a g e

3.5 G N N s in Process M i n i n g Applications

"The Graph Neural Network M o d e l " (G N N) capable of interpreting data i n the graph
domain was first introduced by Scarselli et al . in 2008. Since then, it has been widely
used i n several fields particularly demonstrating outstanding performance in vertex
classification, l ink prediction, and recommender systems. The state-of-the-art G N N s
can be categorized into different types: Convolutional G N N s (G C N) , Recurrent G N N s
(R C N N) , Graph Autoencoders, and Spatial-temporal G N N s .

Sommers et al . [26] adopted the idea of using G C N s i n supervised learning for process
discovery. The implementation focused on the improvement of the supervised learning
process when using event log data wi th neural networks. A n ML-based approach that
is able to translate event logs into Petr i nets is improved using G C N s . The M L model
trained on synthetically generated pairs of input event logs and output process models
is improved using G C N s . After the implementation, the model is able to translate
previously unseen synthetic and real-life event logs into structured models comparable
to state-of-the-art techniques. The outcome showed improvement i n generating process
model using G C N s and its potential in enhancing process discovery techniques.

Similarly, Phi l ipp et al . [27] presented the usage of G C N s to analyze the control flow
graphs in process mining. The adjacency matrix is created using activity relationships
of the entire event log. In terms of input, the adjacency matrix and additionally the
feature matrix are used by combining a layer-wise propagation technique. The G C N
model is compared to F F N N . The G C N outperforms the F F N N in the regression task.

Further, Wcinzicr l investigated the usage of Graph Sequence Neural Networks
(G G N N s) in the next activity prediction. G G N N s are designed for sequential graphs
and implement a gated recurrent unit (G R U) . The author implements three different
representation of event log as graphs and investigates the best-performing
representation which is further compared to other D L techniques. The result shows
that representing events as nodes and using a prefix-based adjacency matrix is able to
achieve better results.

Maneiro et al . [13] developed a new approach named Recurrent Graph Convolutional
Process Predictor that utilizes G C N s and R N N s to leverage both the structural
information available in process models and the temporal information available in event
logs. The petri net model is init ial ly mined from an event log which is then converted
and represented as an adjacency matrix similar to the approach in the G C N approach
used in this thesis originally by Sorathiya [28] which is described i n more detail in

25 | P a g e

section 3.4. Additionally, the information from attributes of the event log is transformed
into feature matrices which are fed into the L S T M network. Leveraging both structural
and temporal information, the stacked G C N and L S T M combined model performs
consistently well and achieves better predictive accuracy compared to Tax et al . , K h a n
et a l . , H i n k a et al . , Camarago et a l . , and Evermann et al .

Venugopal et al . implemented four different variants of G N N , particularly G C N , and a
Mult i -Layer Perceptron (M L P) for predicting the next event and timestamp. They
evaluated the performance at different process stages denoted by quartiles of the
number of events similar to the approach by Sorathiya [28]. The M L P achieved better
results in most cases whereas G C N with Laplacian Weighted adjacency matrix achieved
the least M A E i n time prediction. The performance is compared wi th state-of-the-art
methods. However, the comparisons are found to be challenging because of differences
i n train-test split ratios and training procedures.

M a n y of the methods reviewed show different techniques to translate event logs into
an adjacency matrix for the G N N with the help of a process model. The reviews give
a better understanding of the use of process modeling to get comprehensive information
from the event log and show how predictive tasks are performed wi th different
combinations of process modeling and G N N s .

3.6 R e l a t e d work on the K I G A dataset

The K I G A dataset contains an event log for the 0 2 C process and the P 2 P process. A n
implementation of G C N by Sorathiya [28] in event and time prediction has previously
been applied to the K I G A dataset which is thoroughly studied and used for comparison
wi th multitask L S T M methods in this thesis.

Sorathiya [28] applied methods similar to Tax et al . [23] i n data preprocessing and an
approach similar to Venugopal et al . [12] in feature generation and G C N model
implementation. The preprocessing used CaselD, Act iv i tyName, and Timestamp data.
Particularly, for vector representation of timestamp data, for each row of data, four
variations of data were used: time since the case's most recent event, time since the
case began, time since midnight, and the day of the week of the event. These four
attributes are used for feature generation for each row of timestamp data. This method
is further updated to include caselD information i n the feature representation by a
similar approach to Venugopal et al . [12].

For graph representation of event logs, an approach similar to Somaro et al and
Manrairo et al is taken but instead of Petr i nets, a more simpler and efficient process

26 | P a g e

modeling technique, D F G is taken. The adjacency matrix is created using weighted
values from the D F G and normalized then it is fed into the G C N . The model contained
a G C N layer, 2 dropout layers, and 3 fully connected layers. A n F F N N model is also
implemented as a baseline metric to retrieve more information on the performance of
G C N implementation. For measurement, accuracy was considered for event prediction
and M A E (in days) for timestamp prediction. Furthermore, Classification metrics are
used for further performance measures.

The result showed that M L P can achieve better overall accuracy in event prediction
and lesser M A E i n time prediction. The author makes notice of class imbalance in the
event logs and suggests different procedures to handle it.

27 | P a g e

Concept

This chapter explains i n detail about the dataset provided, data preprocessing

techniques applied, feature encoding, model architecture and training procedure.

1.1 K I G A Dataset

The K I G A dataset is the dataset that is required to be experimented with and
implemented i n this thesis. It is extracted from real-life business organizations'
event logs and contains event logs relating to both 0 2 C and P2P. The following
Table 3 shows the attributes and their values of the K I G A dataset.

Attr ibute Order to Cash (02C) Purchase to Pay (P2P)

Unique cases 87,850 126,378

Unique events 20 22

Longest sequence of
events

9 14

Events per case (mean) 3.692 4.332

Mean case duration
(days)

180 98

Number of rows before
preprocessing

509,257 1,633,071

Number of rows after
preprocessing

324,364 547,542

Table 3 : Overview of KIGA dataset with their key attributes.

28 | P a g e

Mumber of Activity ID/Events in 02C event log
30000-

70000 -

Activity

Figure 11: Bar plot showing unique activities and their quantity in the 02C event log.

Purchase order 96933
Purchase requisition 77501

Invoice receipt 70901
Fl Invoice 70734

Goods receipt 67293
Fl Outgoing payment 50973

Purchase order approval 27549
Purchase requisition approval 17501

Invoice verification release 16343
Quantity change 13249

Fl Clearing 11763
Price change 9890

Service entry sheet 4199
Payment block 2897

Payment release 2484
Fl Debit memo 2451

Goods receipt (reversed) 2052
Invoice verification block 1532

Down payment 523
Payment terms change 327

Incoterms change 306
Consumption {Subcontracting) 76

Table 4-' Table showing activity and its frequency in the 02C dataset.

29 I P a g e

Number of Activity ID/Events in P2P event log
looooo A

BOOOO -

Activity

Figure 12: Bar plot showing unique activities and their quantity in the P2P event log.

Delivery 79481
Order 68319

Invoice 66191
Incoming payment 44672

Delivery release 22313
Order without charge 17136

Clearing 15075
Billing release 3351
Credit memo 1942

Credit memo request 1116
Returns 1034

Returns delivery 393
Billing block 781
Cancellation 633

Debit memo request 387
Debit memo 353

Delivery block 342
Invoice reversal 297

Credit memo reversal 28
Cancellation reversal 15

Table 5: Table showing activity and its frequency in the P2P dataset.

30 I P a g e

Figure 11 and 12 shows the distribution of unique events in the K I G A dataset and

Table 4 and 5 gives quantity of those events. This provides some context i n the

distribution of the data and how it may affect model training during implementation.

4.1.2 Data Preprocessing

4.1.2.1 Data Cleaning

Data preprocessing and preparation is one of the fundamental parts of training a
machine learning model. Business processes often contain raw event log data that are
unprocessed and redundant. Generally, any case in a business process is expected to
have a single instance of an event and may not contain the same event more than once.
For example, i n 0 2 C when a customer makes an order, that case is expected to have
a single event "Order Created".

In the K I G A dataset, in case there is a redundant activity logged a case, only the last
activity and its corresponding timestamp are considered similar to Venugopal et al .
[12]. Table 3 shows the number of rows before and after processing redundant activity
for both datasets. A redundant number of the same event represents human error and
inefficiency in business processes, which is not the case most of the time i n an
organization as they are closely monitored.

4.1.2.2 Capturing Temporal Dependencies

The time-related patterns in the process are extracted by capturing the temporal
dependencies of each timestamp related to an event. The temporal dependencies are a
set of time-based features computed from the timestamp data. Each activity in a row
has time related feature of dimension 4.

Feature Description

T l T ime since the previous event in the case.

T 2 T ime since the start of the case.

T 3 T ime since midnight (of the day)

T 4 Day of the week for the event.
Table 6: Features for capturing timestamp information [12].

31 J P a g e

These features are used to capture time-related correlations within each particular case.
It is used to effectively capture time-related information from the data i n detail. The
feature T l describes the time difference between the current event and the previous
event in a case. T 2 describes the time difference between the current event and the
first event i n the case which is also the start of the case whereas T 3 is the time difference
since the start of that day, i.e., midnight and T4 denotes the day of the week.

4.2 G C N

4.2.1 Feature Encoding

The variant of the G C N model implementation consists of a Laplacian matrix of the
Binary Adjacency matrix. The Binary Adjacency M a t r i x is implemented because of its
simplicity and computing efficiency i n processing information about nodes and edges.
It helps to provide clear and concise representation of the graph. The Laplacian matrix
provides information about the frequency of relation between nodes and edges which
is explained i n detail on Section 4.2.1.2.

Figure 13 below shows the model architecture for the G C N model. The adjacency
matrix in the first layer corresponds to the Laplacian transformation of the Binary
adjacency matrix of the dataset. The step-by-step method of generating an adjacency
matrix and input vectors is explained below.

Arj jacencyiY iatnx :

[num_notlů£ x numnodK]
Input vector:

(riLm_nocfea tc nurn_featLirea)
weights:

(numj-samrsB x l)

Kfmfl :
pu i ror Jes x 25-5]

Acihratiari:
tanh (event) J
ReLu ftlme)

V J

Kernel
(256 *256)
Acthratiori:

tanh (event) i

RfrLu (Time)

Kernel
(256 * rl)

Activation:
sottmax (event] i

linear (tlmej ^

Figure 13: Model architecture for the implemented variant of GCN. 'n' in the final layer
represents the number of classes for event prediction and n = 1 for time prediction [28].

The Laplacian matrix has a dimension of 'num nodes x num nodes'. The number of
nodes denotes the number of unique activities i n the 'directly follows graph' (D F G) of
the given dataset. From Table 3, it can be deduced that the node value is 20 for the
0 2 C dataset and 22 for the P 2 P dataset. The number of features corresponds to the
temporal dependencies of the timestamp value for each row of data. Since temporal
dependency has dimension 4, the num_features value is 4. This results in an input
vector of size 20 x 4 for 0 2 C and 22 x 4 for P2P. The weights are 4 X 1 for both
datasets.

32 I P a g e

4.2.1.1 Generating D F G

33 | P a g e

Figure 15: Directly Follows Graph visualization using PM4Py for the P2P dataset.

34 I P a

A s mentioned in 2.3.5, the graph representation of the dataset and its corresponding
weights and values are extracted using D F G because of its simplicity and performance.
The P M 4 P y tool mentioned in 2.3.5.1 is used to generate the D F G and extract weights
corresponding to the nodes. A Directly-Follows Graph for an Event Log L is denoted:

G(L) = (AL, i-> L,ALstart,ALend)

where AL is the set of activities i n L wi th ALstart and ALend denoting the set of start
and end activities, respectively. •-> L denotes the directly follows operation.

Figures 14 and 15 above show the D F G visualization of the 0 2 C and P 2 P datasets
wi th their weights i n relation to nodes. Here, the number of nodes / unique events is
20 for 0 2 C and 22 for P2P. The visualization also shows the complexity of the case
and activity relationship i n both datasets.

4.2.1.2 Extract ing Matrices from Process graph

The adjacency matrix represents the connecting nodes and the weight/frequency of the
directly followed relationship between them. The frequency shows the number of times
an event is followed by another event in the dataset. Initially, a raw weighted adjacency
matrix of number of nodes x number of nodes wi th values corresponding to the edge
value is extracted. This matrix is then represented as a binary adjacency matrix which
converts al l the values to either 0,1 where 0 represents no relationship between the
nodes i n the graph and 1 represents a relationship between nodes.

A s described in Equation i n Section 2.3.4, D is the diagonal matrix that stores the
degree of each node which numerically corresponds to the number of edges that the
node is attached to. A is the adjacency matrix extracted from D F G . However, the G C N
variant implemented uses Laplacian transformation of adjacency matrix which requires
the equation to be updated. The process is explained i n detail i n the following section.

35 | P a g e

Create DFG using pm4py library

Step 1

Get raw weighted adjacency matr ix -> R

Step 2

Get binary adjacency matrix -> A

Step 3

Get degree matr ix from raw weighted adjacency matr ix -> D

Step 5

i

Get Laplacian matrix -> D-A

Step 6

k
Get symmetr ical ly normalized adjacency matrix -> D A -1/2.A.D A -1/2

Figure 16: Flowchart showing detail of calculating the Laplacian matrix of binary adjacency matrix
that is implemented [12].

The above figure shows the flowchart of getting the final adjacency matrix for the G C N
variant used in the experiment. The final adjacency matrix is known as the Laplacian
transformation of the binary adjacency matrix of the given dataset. This matrix is used
for al l computations involved with in the Graph Convolutional layer.

36 | P a g e

Therefore, the final G C N equation is then denoted by:

GCN(X, A, W) = o(D~2(D - A)D~1/2XW)

Using the methods described in Figure 16, both 0 2 C and P 2 P datasets are used to
extract the necessary matrix for the G C N prediction task. The matrix below shows the
Laplacian transformation of the Binary adjacency matrix of the 0 2 C dataset.

/ 1.00
-0.0925

-0.0925
1.00

0
-0.0801

. -0.0962 -0 .0801 -0.0833
V-0.0962, -0 .0801 -0.0833

0
0

0
0

-0.0962
-0.0801 \

-0.0870 1.0000
-0.0870 -0.0833

-0.0833 .
1.0000/

A s detailed in Figure 13, The dimension of the matrix above is number of nodes x
number of nodes which is 20 x 20. The matrix is then multiplied wi th input vector X
which is a 20 x 4 represented as a number of nodes x 4 and weights W which is a 4 x
1 matrix. In case of the P 2 P dataset, the transformed adjacency matrix has a dimension
of 22 x 22, input matrix X has 22 x 4, and W has a 22 x 1 dimension.

4.2.1.3 Input vector

For input vector X , the temporal dependencies i n section 4.1.3.2 are taken into
consideration to get complete information about an event. The number of nodes
depends on the number of unique activities i n a dataset. Each activity is assigned a
unique number that corresponds to the row in the X i.e., 20x4. Each row has a 20x4
matrix which corresponds to the activity ID in the particular row. For example, if a
row has activity ID 5 wi th timestamp data, the 20 x 4 input matrix stores information
on the 5 t h row index whereas other rows have null values. This is necessary to facilitate
the matrix multiplication in the G C N layer.

The activities are separated according to the Case ID assigned which enables the
calculation of temporal dependencies that depend on the case. This method of
representation gives each row i n the 0 2 C dataset a 20 x 4 matrix and each row in the
P 2 P matrix a 22 x 4 matrix. The preprocessing procedure i n section 4.1.3 ensures that
each case does not contain redundant activities and considers only the latest executed
activity.

37 | P a g e

4.2.1.4 Weight M a t r i x

The weight matrix W is the learnable parameters that are trained and updated during
backpropagation and gradient descent while running the training procedure. It has the
dimension of number of features x 1 i.e. 4 x 1 .

4.2.2 Training Procedure

Using the encoding procedure described above, the traces of events can be transformed
into an encoded sequence of events for each case ID. The encodings are then used to
fit in the G C N layer in the model. The adjacency matrix captures the graphical
information of the dataset and combines it wi th encoding to train the model.
Furthermore, the method of extracting the adjacency matrix can be varied i n order to
apply the desired training procedure in terms of speed and memory. Figure 13 shows
the complete architecture of the layers implemented for training. Particularly, the
model sequentially includes an ini t ia l G C N layer and three fully connected layers. The
Dropout is present between G C N and the hrst fully connected layer and before the last
fully connected layer.

4.2.2.1 Split of dataset

The dataset is divided into three splits Train, Validation, and Test data. The training
and validation data contain 2/3 of the dataset whereas the test data contain 1/3 of the
dataset. Furthermore, the validation data contains 20% of 2/3 of the dataset. The
sequential order of rows/events has been preserved during the splitting. This ensures
the events are ordered as the traces of events for each case.

4.2.2.2 Event Prediction Model

The event prediction model follows the same architecture. The hrst two fully connected
layers after the G C N layer use tanh activation for event prediction whereas the last
fully connected layer uses the SoftMax activation function to estimate the probability
for each target value as implemented by Sorathiya [28] i n previous work. Cross Entropy
loss is used during training to calculate the loss after the SoftMax activation. The
update of weights is carried out using the rule of A d a m optimizer through
backpropagation and gradient descent.

4.2.2.3 Time Prediction Model

In the time prediction model, the hrst two fully connected layers use R e L U activation
whereas the last fully connected layer uses linear activation function. The L I loss

38 | P a g e

function is used during training to obtain absolute loss value during training. The
weights are then updated using the A d a m optimizer through backpropagation and
gradient descent.

4.3 L S T M

The type of L S T M applied is a multi-task vanilla L S T M that is able to take input
vectors regarding both event and time and perform event prediction and time
prediction through outputs from a single model.

The multi-task L S T M model implements the same preprocessing as G C N as explained
i n section 4.1.3 for comparison. The training, testing, and validation data are split in
the same manner 2/3 train data and 1/3 test data. The features in L S T M also apply
4-dimensional features from temporal dependencies from timestamp values.

Encodings

The input vector X is a 3-dimensional tensor with the shape of several rows/samples x
maximum length of event trace x num features. The L S T M model requires sequential
data to train. To create this, for each row i n the dataset, the events corresponding to
each case are sequentially added to the row for each time step. In case when the end
of the case is reached, the next row in X starts wi th only the hrst event in the case.
This results in the preservation of the sequence of events according to the case i n the
dataset and removes any loss of information regarding the case and its events when
obtaining input data for the model. For example. Figure 15 below shows an illustration
of how the sequence of events is transformed into input and target labels.

Step 1:

Step 2:

Seed sequence of words Predicted word

the

the

man is

Seed sequence of words Predicted word

man is walking

Seed sequence of words Predicted word

Step 3: the man - walking down - I L _ _ I

Seed sequence of words

Step 4: t n e man is walking down the street

Predicted word

Figure 17: Figure showing extraction of a sequence of events and target/predicted values.

39 | P a g e

For each time step, the events and sequence of events are recorded with the target
value as the next event in the sequence. For the next new case, the time step resets,
and a new sequence of events is recorded.

For timestamp prediction, the target timestamp values are scaled by the average time
between events which is a common practice in time-series analysis and predictive
modeling. The scaling contributes to the normalization which helps the model learn
about the pattern and relationship i n time sequences and reduce bias. Therefore, for
each prehx step, the target timestamp is calculated as the difference between the
current and next timestamp/average time between events.

4.3.1 M o d e l architecture and training

Input

LSTM

LSTM

Dense Layer
Softmax

LSTM

Dense Layer

Activity Prediction Time Prediction

Figure 18: Architecture of multi-task LSTM.

A s shown i n Figure 18, The model architecture consists of a single input layer and
three L S T M layers. The input layer of shape maxlen x num features contains
information about each row of the dataset which passes through the first L S T M layer.
The first L S T M layer returns sequences with dropout and batch normalization. The
second and third L S T M layers return single output features and are associated wi th
event prediction and time prediction respectively.

40 I P a g e

For event prediction, SoftMax activation is implemented where the output dimension
is equal to the number of unique activity labels. The output gives a probability of each
of the unique activity labels and the highest probability number is selected as the
predicted value. The softmax function normalizes a vector of real numbers into another
vector of the same dimension, so that al l components are in the interval [0,1], and the
sum of al l components is equal to 1. Hence, the transformed vector can be interpreted
as a probability distribution while keeping the vector's original proportions.

The loss function used is the cross-entropy loss function that gives the difference
between actual one-hot encoded values and prediction values. This difference is then
used to update the weights using backpropagation and gradient descent.

For time prediction, the output is a single scalar output. The loss function is M A E
where the actual values are compared wi th predicted values which is used to update
the weights using backpropagation and gradient descent. The total loss during training
is the sum of activity prediction loss and time prediction loss.

4.3.2 Mult i - task training and advantages

Mult i - task model and training are implemented because of the nature of the task to be
performed and the property of input feature that contains information about both
event and time stamp temporal dependencies. Al though traditionally, a separate L S T M
model for event and time prediction might be regarded as best practice, The input
features and the dependency of event and time-related features in the dataset allow
the implementation of a multi-task L S T M model. Some of the advantages are:

1. Joint learning of representation of both event and time as each event in the dataset
is associated with the 4-dimensional feature of temporal dependencies. This allows
the model to capture features relevant to both prediction tasks [12] .

2. Mult i - task learning may help prevent overfitting because of the requirement to find
and learn from common representation [29].

3. The parameters shared between the tasks might help the model to generalize better
[30].

4. Less needed resources and computationally efficient as multiple tasks can be
achieved using a single model and training procedure [30].

5. Deployment is made much easier because of a single model that can be used to
perform both event and time prediction.

41 | P a g e

5 Implementation

This chapter gives information about the model hyperparameters used to get the best
model for event and time prediction for both models and explains the hyperparameter
tuning process i n multi-task L S T M .

5.1 G C N

5.1.1 Event Prediction

The event prediction model for both 0 2 C and P 2 P datasets was run wi th different
learning rates to get the best value for each dataset. It is necessary to find the learning
rate depending on the dataset used because, for the same model training, the dataset
might have different learning rates that can converge during the learning phase. The
learning rate ranging from 0.1 to 0.00001 was tested.

Hyperparameter Values

Dropout Rate 0.0

Optimization algorithm A d a m

Learning Rate 0.00001, 0.0001, 0.001, 0.1

Number of Runs 10

Epochs 50

Batch size 32
Table 7: Table showing parameters in training event prediction model.

For the event prediction, an accuracy measure is considered. Accuracy is the ratio of
correct prediction to the total number of predictions. The accuracy is given by:

Accuracy
Number of correct predictions

Total number of predictions

During model training, the model with the least validation loss was saved while
running for several epochs. The model training was run for 10 different runs of 10

42 I P a g e

epochs for each learning rate. Overfitting was l imited by using the dropout value of
0.5.

5.1.2 Time Prediction

Similar to event prediction, the model training was run wi th different learning rates to
get the optimum learning rate value resulting i n the least validation loss. Similar ranges
of learning rates were applied.

Hyperparameter Values

Dropout Rate 0.0

Optimization algorithm A d a m

Learning Rate 0.00001, 0.0001, 0.001, 0.1

Number of Runs 10

Epochs 50

Batch size 32
Table 8: Table showing best hyperparameters in training time prediction model.

For time prediction, the mean absolute error (M A E) is applied to measure the
difference between predicted time and actual time. It is measured in terms of days.
The M A E is given by:

n
MAE =

i=l

The model wi th the least validation loss was saved and used on the test set for
evaluating the results.

5.2 L S T M

5.2.1 Hyperparameter Tuning

During training, hyperparameter tuning is implemented to get the best possible
combination of hyperparameters for the model. The model wi th the lowest validation
loss was chosen for the test set evaluation.

43 | P a g e

Hyperparameter Values

Number of L S T M units 64, 100

Dropout Rate 0.0, 0.2

Optimization algorithm A d a m , Nadam

Learning Rate 0.0001, 0.0002, 0.001, 0.002, 0.01

Epochs 50

Batch size maxien value

Table 9: Hyperparameters implemented during multi-task LSTM model training.

G r i d search using these parameter values was implemented in order to get the best
model for 0 2 C and P 2 P separately. The metric used to get the best model was
validation loss. Being a multi-task model, the validation loss is the sum of both event
prediction and time prediction losses in each epoch. The hyperparameter tuning allows
the best model to be chosen wi th the least validation loss and be automatically saved.
The saved model later is used to derive results on the test set.

Addit ionally, early stopping is implemented with 20 percent of 2/3 of the dataset as a
validation set. The patience value is set as 25 which stops the learning process if there
is no improvement in 25 consecutive epochs. The use of early stopping allows the
regularization of the model to prevent overhtting and helps to prevent the model from
learning noise i n the training data

Evaluation and Discussion

This chapter provides detail about the parameters and procedure to get the best model,

model evaluation and later provide insights about the results of event and time

prediction for both models.

44 I P a g e

6.1 Model evaluation

6.1.1 G C N

Event prediction for both 0 2 C and P 2 P was best when training wi th a learning rate
of 0.0001 and A d a m optimizer and the test set are evaluated on the model. For time
prediction also both 0 2 C and P 2 P were best when trained on a learning rate of 0.0001.

Hyperparameter Values

Number of L S T M units 64

Dropout Rate 0.0

Optimization algorithm A d a m

Learning Rate 0.0001

Table 10: Table showing the hyper-parameters resulting in best value for both metrics.

6.1.2 L S T M

For 0 2 C , the multi-task layer performed best i n terms of validation loss when trained
using hyperparameter values as below:

Hyperparameter Values

Number of L S T M units 64

Dropout Rate 0.0

Optimization algorithm N a d a m

Learning Rate 0.001

Table 11: Table showing the hyperparameters resulting in best value for both metrics.

45 | P a g e

Similarly for the P 2 P dataset, the best performance was achieved using the same
hyperparameters as the 0 2 C model. However, the learning rate of 0.002 resulted similar
score i n terms of validation loss whereas different units and dropout rates resulted in
lower performance.

6.2 N e x t A c t i v i t y a n d T i m e P r e d i c t i o n

First , the results are summarized i n the table for both methods and later the results

are evaluated and discussed using graphs. Furthermore, it explains the result of the

methodology applies i n the thesis.

6.2.1 G C N

The evaluation is carried out for different prefix quartiles of the length of events for

each case in the test set. The quartiles are separated concerning the longest trace in

the dataset.

Dataset Accuracy for Event Prediction Dataset

Quartiles of Events

Dataset

Q l Q2 Q3 Q4 Overall

0 2 C 70.9 64.08 74.94 76.71 68.27

P 2 P 49.78 57.57 82.2 76.92 52.87

Table 12: Experimental results for event prediction on GCN model.

Dataset M A E (days) for T ime Prediction Dataset

Quartiles

Dataset

Q l 3.5 Q2 Q3 Q4 Overall

0 2 C 81.43 16.67 4.643 4.66 51.97

P 2 P 26.63 9.05 2.70 2.65 20.88

Table 13: Experimental results for time prediction on GCN model.
46 | P a g e

This allows for the cases wi th a smaller number of events to be in lower quartiles

whereas cases closer to the longest trace are in higher quartiles. Separating shorter

traces, medium-length traces, and longer traces gives a better understanding of the

predictive performance of models for short, medium, and long traces of events.

6.2.2 L S T M

Dataset Accuracy for Event Prediction

Prefix No .

2 3 4 5 6 7 8 Overall

0 2 C 41.17 67.23 66.72 47.26 56.78 28.00 0 43.88

P 2 P 18.61 28.86 43.47 59.24 77.15 - - 45.48

Table 14experimental results for event prediction on multi-task LSTM model.

Dataset M A E (days) for Time Prediction Dataset

Prefix No.

Dataset

2 3 4 5 6 7 8 Overall

0 2 C 44.71 40.22 40.57 35.49 35.56 18.21 14.67 32.78

P 2 P 46.01 58.16 70.84 54.87 30.24 - - 52.02

Table 15.-Experimental results for time prediction on LSTM model.

47 I P a g e

Similar to G C N model evaluation, for L S T M as well, the evaluation on the test set is

performed on a different number of events denoted by prefix number, giving more

information about the performance on varying lengths of traces. The prefix length can

be associated wi th shorter, medium, and longer traces, and similarly, the performance

is differentiated according to length. This also allows for comparison wi th G C N results

as the quartiles are separated likewise.

6.2.3 Comparision and K e y Findings

6.2.3.1 Event Prediction.

80

75

70

m
5 65
u

Accuracy across prefix quartiles for 02C

60

55

50
01

Accuracy | ilot

02 03 04
Prefix_Steps

Figure 19: Ql contains all prefixes <= 2.25, Ql< Q2 <=Jh5, Q2< Q3 <= 6.75, Q3< Q4
<= 9 for event prediction of 02C on different lengths of prefix events.

48 | P a g e

u

70

60

50

40

Nextstep_activity_eval

u 30

20

10

0

Accuracy | lot

—1 —1

) ;- A i i E
Prefix_Steps

Figure 20: Plot showing performance of LSTM model for event prediction of 02C on different
lengths of prefix events.

From Table 3, it can be known that the average number of events i n both datasets is
approximately 4. This information needs to be taken into context while analyzing the
model performance. Therefore, the majority of cases lie between Q l and Q2 for the
G C N plot whereas the prehx number between 3 to 5 contains the majority of cases.
A l l in a l l , it can be deduced the medium length contains and reflects results for the
majority of data.

O n the 0 2 C dataset, the G C N model performs better than L S T M in terms of overall
accuracy as well as for short, medium, and long traces of events. For short and medium
traces, the accuracy is near 70 percent for L S T M whereas it is between 70.9-74,94
percent for G C N as seen i n Table 11. It can be observed that both models can predict
better on short and medium length of traces and accuracy declines as traces get longer.
The overall accuracy for G C N is 68.27 whereas for L S T M is 43.88.

The performance of G C N for short prefixes is 70.9 percent which is higher than L S T M
model whereas for the medium number of prefixes, both models achieve similar
accuracy. The longer prefixes from 5 to 8 are in less quantity where G C N achieves
better increasing accuracy ranging from 74.94 to 76.71 percent. The L S T M model
however does not perform better on longer traces shown by declining accuracy in the

49 | P a g e

plot.

85

80

75

70
>>

to 65

y 60
<

55

50

45

40

Accuracy across prefix quartiles for P2P
1

t_ A c c u r a c y plot

01 02 03
Prefix_Steps

04

Figure 21:. Ql contains all prefixes <= 3.5, Ql< Q2 <=7, Q2< Q3 <= 10.5, Q3< Q4 <-
14 for accuracy of event prediction of P2P.

80

70

60

>̂ u
2 50
Z J

u

< 40

30

20

Nextstep_act iv i ty_eva l

- A c c u r a c y f) lot

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Pref ix_Steps

Figure 22: Plot showing performance of LSTM for event prediction of P2P dataset on
different traces.

6.0

50 J P a g e

Given that average traces are medium-sized prefixes, similar to 0 2 C , the majority of
cases lie between Q l and Q2 for G C N and 3 to 5 for L S T M plots i n F i g . 21 and 22.
However, the P 2 P dataset contains a larger quantity of data. For shorter prefixes, G C N
achieves 48.78 percent accuracy whereas L S T M achieves 18.61 to 28.86 percent of
accuracy. For medium size prefixes, the G C N achieves 49.78 to 57.57 percent accuracy
and L S T M achieves 28.86 to 59.24 percent accuracy. This shows the performance is
almost similar for both models for the majority of cases i n the dataset. For longer
prefixes, G C N performs better wi th 82 percent in Q3 and 76.82 percent in Q4. The
L S T M for longer prefixes achieves 77 percent.

6.2.3.2 Time prediction

MAE across prefix quart i les for 0 2 C
1 1

- 0 - MAE

*

80

70

60

50

« 40
<
c 30
<u

^ 20

10

0

Q l Q2 Q3 Q4
Prefix Quart i les

Figure 23: Ql contains all prefixes <= 2.25, Ql< Q2 <=4-5, Q2< Q3 <= 6.75, Q3< Q4
<= 9 showing performance of GCN for time prediction of 02C dataset

51 | P a g e

For the Time prediction of the 0 2 C dataset, the L S T M achieves lower M A E for the
majority of cases compared to G C N . G C N model has a higher M A E of 81 in Q l with
decreasing trend i n Q2 and further quartiles whereas, in L S T M , the M A E is 46.01 to
30.24 for small, and medium-size prefixes and very low to less than 20 for longer
prefixes. The drastic change in M A E for longer prefixes might have been influenced as
a result of a smaller number of cases. Additionally, the overall M A E for the L S T M
model is 33 days and 44 for G C N .

52 | P a g e

30

25

O

u5 20
0)

o 15
LT) i J

<

<u

5

0

MAE across prefix quart i les for P2P

MAE

> i

Ql Q2 Q3
Prefix Quart i les

Q4

Figure 25: Plot showing performance of GCN for time prediction of P2P dataset on different
traces. Ql contains all prefixes <= 3.5, Ql< Q2 <=7, Q2< Q3 <= 10.5, Q3< Q4 <=

14.

Nexts tep_t ime_eva l

Error plot

2 0 2 5 3. 0 3 5 4 0 4 5 5. 0 5. 5 6.0

70

65

6 0

ra 55
Q

• - 50
i_
o

£ 4 5

4 0

35

30

Pref ix_Steps

Figure 26: Plot showing performance of LSTM for time prediction of P2P dataset on
different traces.

53 J P a g e

For the P 2 P dataset, the M A E is much lower for the G C N model across a l l prefix lengths
compared to the L S T M model. The overall M A E values are 21 days for G C N and 52 days
for L S T M showing better performance of G C N .

A comparison between two deep learning models is accomplished using similar approaches
in terms of usage of dataset preprocessing, extraction of features, and separation of
training, validation, and test set. B o t h models show viable results given the complexity of
the dataset, whereby the G C N model shows better performance in event prediction for
0 2 C and time prediction for P2P. The L S T M model shows better performance i n 0 2 C
time prediction and similar performance overall i n event prediction for P2P.

54 | P a g e

7 Conclusion

Process prediction is one of the major challenges in business process mining and predictive
process monitoring. Timestamp data from E R P systems for 0 2 C and P 2 P processes
contain valuable information about the process flow and efficiency. The challenge of
extracting information from real-life event logs using two different types of the deep neural
networks is proposed in this thesis. Furthermore, this thesis provides a pathway for the
K I G A project i n further development of deep learning approaches in event and time
prediction.

Given the overall performance, it is important to compare the performance relating to the
prefix length. For consistent performance across different prefixes, the L S T M model can
be considered especially for event prediction. Also , the type of process to be evaluated
needs to be considered while choosing a preferred model.

7.1 L i m i t a t i o n s a n d O u t l o o k

In addition to viable results shown by both models, some limitations can be addressed to
improve the approach and results. The event prefix imbalance is one of the factors that
influence the training of the model. Al though results for varying lengths of prefixes are
implemented and compared, a dataset wi th more balanced prefixes could provide detailed
insight into the performance of the model. These factors which could nonetheless be
implemented i n further iteration of research for the K I G A project.

55 j P a g e

Bibliography

[1] Procurement Strategy Blogs, " G E P , Intelligence drives innovation," 10 July

2023. [Online]. Available: https://www.gep.com/blog/strategy/order-to-

cash-vs-procure-to-pay.

[2] W . M . P. van der Aalst and J . Carmona, Process M i n i n g Handbook, Aachen:

Springer C h a m , 2022.

[3] A . W i l M . P. van der, Process M i n i n g . Discovery, Conformance and

Enhancement of Business Processes, Heidelberg: Springer Berl in , 2011.

[4] K . M . H A N G A , A Deep Learning Approach to Business Process M i n i n g ,

Birmingham C i t y University, 2023.

[5] N . D . C . Lewis, Deep Time Series Forecasting wi th Python: A n Intuitive

Introduction to Deep Learning for Appl ied Time Scries Modeling,

CreateSpace Independent Publishing Platform, 2016.

[6] Y . Y u , X . Si , C . H u and J . Zhang, " A Review of Recurrent Neural Networks:

L S T M Cells and Network Architectures," Neural Computation, vol . 31, no.

7, pp. 1235-1270, 2019.

[7] S. Hochreiter and J . Schmidhuber, "Long Short-Term Memory," Neural

Comput., vol . I X , no. VII I , p. 1735-1780, 1997.

[8] S. W u , F . Sun, W . Zhang, X . X u and B. C u i , "Graph Neural Networks i n

Recommender Systems: A Survey," ACM Computing Surveys, vol . 55, no.

5, pp. 1-37, 2022.

[9] W . L . Hamil ton, Graph Representation Learning, Springer C h a m , 2020, pp.

1-159.

https://www.gep.com/blog/strategy/order-to-

N . A . Asif, Y . Sarker, R. K . Chakrabortty, M . J . Ryan, M . H . Ahamed, D . K .

Saha, F . R. Badal , S. K . Das, M . F . A l i , S. I. Moyeen, M . R. Islam and Z.

Tasneem, "Graph Neural Network: A Comprehensive Review on Non-

Euclidean Space," IEEE Access, vol . 9, pp. 60588-60606, 2021.

J . Zhou, G . C u i , S. H u , Z. Zhang, C . Yang, Z. L i u , L . Wang, C . L i and M .

Sun, "Graph Neural Networks: {A} Review of Methods and Applications,"

AI Open, vol. 1, p. 57-81, 2020.

I. Venugopal, J . Tollich, M . Fairbank and A . Scherp, " A Comparison of Deep-

Learning Methods for Analysing and Predict ing Business Processes," in

International Joint Conference on Neural Networks (IJCNN), 2021.

E . Rama-Maneiro, J . C . V i d a l and M . Lama, "Embedding Graph

Convolutional Networks i n Recurrent Neural Networks for Predictive

Monitoring," IEEE Transactions on Knowledge and Data Engineering, pp.

1-16, 2023.

S. J . Leemans, E . Poppe and M . T . W y n n , "Directly Follows-Based Process

M i n i n g : Explorat ion & a Case Study," i n 2019 International Conference on

Process Mining (ICPM), Aachen, 2019.

A . Augusto, R. Conforti , M . Dumas, M . L a Rosa, F . Maggi , A . Marrel la , M .

Mecella and A . Soo, "Automated discovery of process models from event

logs: review and benchmark.," IEEE Trans Knowl Data Eng, p. 31(4):686-

705, 2018.

I. Verenich, M . Dumas, L . Rosa, M . Fabrizio and I. Teinemaa, "Survey and

Cross-benchmark Comparison of Remaining Time Predict ion Methods in

Business Process Monitoring," i n ACM Transactions on Intelligent Systems

and Technology 10(4):1-34, 2019.

N . Dominic A , L . Johannes and F . Peter, " A systematic literature review on

state-of-the-art deep learning methods for process prediction," Artificial

Intelligence Review, vol. 55, p. 801-827 , 2022.

M . Pingel, " A systematic literature review on process mining and machine

learning in healthcare," Enschede, 2021.

T . Nolle, A . Seeliger and M . Mühlhäuser, "nsupervised Anomaly Detection in

Noisy Business Process Event Logs Using Denoising Autoencoders," in

Discovery Science, 2016.

J . Theis and H . Darabi , "Decay Replay M i n i n g to Predict Next Process

Events," IEEE Access, vol . 7, p. 119787-119803, 2019.

N . D i Mauro, A . Appice and T . M . A . Basile, "Act ivi ty Prediction of Business

Process Instances wi th Inception C N N Models," in AI*IA 2019 -- Advances

in Artificial Intelligence, C h a m , 2019.

V . Pasquadibisceglie, A . Appice, G . Castellano and D . Malerba, "Using

Convolutional Neural Networks for Predictive Process Analyt ics ," i n 2019

International Conference on Process Mining (ICPM), 2019.

N . Tax, I. Verenich, M . L a Rosa and M . Dumas, "Predictive Business Process

Monitor ing wi th L S T M Neural Networks," International Conference on

Advanced Information Systems Engineering. Springer, p. 1345-1365, 2017.

L . L i n , L . Wen and J . Wang, "Mm-pred: A deep predictive model for mult i -

attribute event sequence.," Proceedings of the 2019 SI AM international

conference on data mining, pp. 118-126, 2019.

M . Camargo, M . Dumas and O . Gonzalez-Rojas, "Learning Accurate L S T M

Models of Business Processes," i n Springer International Publishing, Cham,

2019.

D . Sommers, V . Menkovski and D . Fahland, "Process Discovery Using Graph

Neural Networks," in 2021 3rd International Conference on Process Mining

(ICPM), 2021.

P. a. M . G . R. X . {Phi l ipp, J . Beyerer, S. Robert and J . Beyerer, "Analysis of

Control Flow Graphs Using Graph Convolutional Neural Networks," i n

2019 6th International Conference on Soft Computing & Machine

Intelligence (ISCMI), 2019.

A . Sorathiya, "Implementing Graph based Neural Network models for a

process mining application," Deggendorf, 2023.

A . Joshi, S. K a r i m i , C . Paris and C. R. Maclntyre, "Does Mult i -Task Learning

Always Help? A n Evaluation on Health Informatics Tasks," in Proceedings

of the The 17th Annual Workshop of the Australasian Language Technology

Association, Sydney, 2019.

M . Crawshaw, "Mult i -Task Learning wi th Deep Neural Networks: A Survey,"

2020.

G . Uwe and M . Khaled, " S A P News Center," 02 June 2021. [Online]. Available:

https: //news.sap.com/2021/06/sapphire-now-rise-with-sap-for-modular-

cloud-erp/.

K . Wolfgang, M . Jonas, R. Max imi l ian and S. Johannes, "Machine Learning

i n Business Process Monitoring: A Comparison," Bus Inf Syst Eng, p. 261—

276, 2020.

W . Kratsch, J . Manderscheid, M . Röglinger and J . Seyfried, "Machine learning

i n business process monitoring," Bus Inf Syst Eng., 2020.

A . K h a n , H . Le, K . Do, T . Tran, A . Ghose, H . D a m and R. Sindhgatta,

"Memory-augmented neural networks for predictive process analysis,"

arXiv preprint arXiv:180200938, 2018.

http://sap.com/2021/06/sapphire-now-rise-with-sap-for-modular-

A . Metzger and A . Neubauer, "Considering non-sequential control flows for

process prediction with recurrent neural networks.," Bures T, Angelis L

(eds) 44th Euromicro Conference on Software Engineering and Advanced,

Applications (SEAA 2018)., p. 268-272, 2018.

W . M . V a n der Aalst , M . Pesic and M . Song, "Beyond Process M i n i n g : From

the Past to Present and Future.," International conference on advanced

information systems engineering, pp. 38-52, 2010.

Y . Belghaddar, N . Chahinian, A . Seriai, A . Begdouri, R. A b d o u and C.

Delenne, "Graph Convolutional Networks: Appl icat ion to Database

Completion of Wastewater Networks," Water, vol . 13, no. 12, 2021.

