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1. Nomenclature 

The following nomenclature is used in this thesis. 

𝑎 Speed of sound [𝑚 𝑠⁄ ] 

𝐴 Cross-sectional area [𝑚2] 

𝑐 Velocity [𝑚 𝑠⁄ ] 

𝐶 Coefficient of Discharge [1] 

𝑐𝑝 Constant pressure specific heat [𝐽 𝑘𝑔 𝐾⁄ ] 

𝑑, 𝐷 Diameter of duct/pipe/hole [𝑚] 

𝑒, 𝐸 Orifice plate thickness [𝑚] 

𝑓 Coefficient of friction [1] 

ℎ Specific enthalpy [𝐽 𝑘𝑔⁄ ] 

𝑘 Turbulence kinetic energy [𝐽 𝑘𝑔⁄ ] 

𝑙𝑠 Orifice depth [𝑚] 

𝑙1, 𝑙2 Pressure tap spacing [𝑚] 

𝑀 Mach number [1] 

𝑚̇, , 𝑞𝑚 Mass flow rate [𝑘𝑔 𝑠⁄ ] 

𝑝 Pressure [𝑃𝑎] 

𝑞(𝜆) Aerodynamic function of mass flow [1] 

𝑟 Specific gas constant [𝐽 𝑘𝑔 𝐾⁄ ] 

𝑅𝑎 Surface roughness [𝜇𝑚] 

𝑅𝑒 Reynolds number [1] 

𝑠 Specific entropy [𝐽 𝑘𝑔 𝐾⁄ ] 

𝑇 Temperature [𝐾] 

𝜈 Specific volume [𝑚3 𝑘𝑔⁄ ] 

𝑥𝑐, 𝑦𝑐 Geometric constant for secondary nozzle [𝑚] 

𝑧(𝜆) Aerodynamic function [1] 

𝛼 Orifice plate bevel angle [°] 

𝛽 Orifice to pipe diameter ratio [1] 

Γ Entrainment ratio [1] 
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𝜀 Expansibility factor/ dissipation [1] 

𝜂 Efficiency [1] 

𝜃 Included half angle of secondary nozzle [°] 

Θ21 Ratio of secondary and primary total temperatures [1] 

𝜅 Isentropic exponent [1] 

𝜆 Laval number [1] 

𝜇𝜏 Friction velocity [𝑚 𝑠⁄ ] 

𝜌 Density [𝑘𝑔 𝑚3⁄ ] 

𝜏𝑤 Wall shear stress [Pa] 

𝜓 Flow coefficient [1] 

𝜔 Specific dissipation rate [1 𝑠⁄ ] 

 

Subscripts 

( )0 Stagnation conditions  

( )1,2,3,4,𝑒𝑡𝑐 Static condition at section 1, 2, 3, 4, etc.  

( )01,02,03,04,𝑒𝑡𝑐 Stagnation condition at section 1, 2, 3, 4, etc.  

( )𝑐𝑟 Critical conditions  

( )𝐷 Diffuser   

( )𝐸 Ejector, primary nozzle exit  

( )𝑁 Nozzle  

( )𝑚𝑎𝑥 Maximum condition  

( )𝑚𝑖𝑛 Minimum condition  

 

Superscripts 

( )′ Primary stream  

( )′′ Secondary stream  
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2. Introduction 

Supersonic ejectors are mechanical devices which are used in various industries for 

compression, transport, vacuum, and other purposes. Although it has been used for quite a long 

time, researchers still has a lot of work in their hands in accurately defining ejector 

characteristics, especially the mixing phenomenon occurring at the mixing chamber due to its 

complexity. Various factors must be taken into account such as wall friction, viscous effects of 

two streams mixing together, shockwaves occurring in the mixing chamber, and other losses. In 

this regard, designing and constructing a test rig for supersonic ejector is an important 

contribution to the research of these devices. Being able to change necessary parts as quickly and 

conveniently as possible brings an opportunity to increase the research capacity of the 

department. 

This thesis focuses on the design and construction of a test rig for the purpose of supersonic 

ejectors. It will look at the various techniques that can be employed in measuring pressure and 

mass flow. The current design will use metallic materials which are opaque but adjustments to 

accommodate optical measuring will be proposed. The test rig shall be verified by analytical and 

numerical solutions. 
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3. Review of Related Literature 

3.1 Supersonic ejector 

A supersonic ejector is a mechanical device which uses a high pressure fluid to entrain 

another low-pressure fluid. It is used in various applications such as in refrigeration, vacuum 

technology, material transport, mixing of two streams, ventilation and air conditioning, and 

others. Although it can be found in different applications, the principle of operations is still the 

same in each case. Research involving ejectors, its different types, applications, and different 

approaches in analysis and characterizing its performance has been summarized in a review done 

by Sun and Earnes [1]. The principle of operation of a typical ejector is characterized by a high-

pressure fluid transferring part of its energy to a low-pressure fluid and the resulting mixture is 

discharged at a pressure that lies between the primary fluid pressure and the suction pressure. 

The efficiency and performance of the ejector is based on the ability of the two inlet streams to 

mix and exchange energy. Figure 1a shows a typical ejector setup.  

The high-pressure primary fluid accelerates to supersonic speed by passing through a 

convergent-divergent nozzle, converting pressure energy to kinetic energy, thus, producing a 

high velocity jet. At the end of the nozzle, the primary air is already at a pressure p′1, which is 

much lower than that of the secondary air. This causes the entrainment of the secondary air into 

the mixing chamber. The secondary stream is typically drawn from the atmosphere; therefore, its 

stagnation pressure is equivalent to atmospheric pressure. At section 1, as shown in Figure 1b, 

both streams should start to mix and have a mean static pressure equivalent to p1. In the mixing 

chamber, the primary and secondary streams combine. During the mixing of these two streams, 
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some part of the kinetic energy of the primary stream is transferred to the secondary stream, 

 

Figure 1. Typical ejector set-up. a) structure scheme, b) pressure variation along the ejector. 

causing the secondary stream to increase its velocity. The other part of the kinetic energy of the 

primary stream is converted to pressure energy, increasing the pressure of the flow along the 

mixing chamber.  And finally, a part of the kinetic energy of the mixed flow of the two streams 

is dissipated and converted into heat energy due to friction on the walls and viscous mixing. This 

process ideally ends at the end of the mixing chamber length where the two streams are assumed 

to be completely mixed and with the resulting static pressure of 𝑝3. At the end of the mixing 

chamber, a subsonic diffuser may be located which facilitates a re-compression process of the 

resulting stream to reach the back-pressure at the diffuser outlet, 𝑝4. Figure 2 shows us the 

enthalpy-entropy diagram of the process in the supersonic ejector. In this diagram, we show an 

idealized isentropic case, not showing losses in the nozzles and diffuser. However, the increase 

in entropy in the mixing chamber, between sections 2 and 3, is shown as Δ𝑠𝑚. This demonstrates 

that the mixing is assumed to be an irreversible adiabatic process. 
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Figure 2. Enthalpy-Entropy diagram of the process in a supersonic ejector. 

The main advantage of using supersonic ejector is the simplicity of the mechanical design, 

which involves no moving parts. This makes it relatively easy to install, operate, and maintain. 

However, one major drawback is the low efficiency. This is a huge opportunity for research and 

development to investigate ways to optimize the design and increase the efficiency of the ejector. 

3.1.1 One-dimensional analysis of supersonic ejectors 

Several researches have focused in the one dimensional analysis of supersonic ejectors. 

Keenan and Neumann [2] proposed a method of analysis of a simple air ejector with no subsonic 

diffuser after the mixing chamber. The simple air ejector is constructed as an axisymmetric 

ejector where the primary nozzle is at the same axis as the secondary inlet and the mixing 

chamber, as shown in Figure 1. The ejector is designed such that the mixing of the primary and 

secondary streams occurs in the constant cross-sectional area of the mixing chamber. They 
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calculated the performance of an ejector using one-dimensional continuity, momentum, and 

energy equations. The results of the simplified analysis were consistent and had a good 

comparison with the experimental results. Further into their research, Keenan et.al. [3] have 

identified two types of mixing: the constant-pressure and the constant-area mixing which is 

illustrated in Figure 3. They proposed an analysis considering both types of mixing occurring in 

the mixing chamber. Although the analytical solution proposed did not consider losses in the 

nozzles and diffusers and losses due to friction along the constant area mixing chamber, and it 

disregarded the fact that certain geometry of the constant-pressure mixing chamber is required 

for an actual constant-pressure mixing to occur, they have found a relatively good agreement 

between analytical and experimental results. 

 

Figure 3. a) Constant-pressure mixing, b) Constant-area mixing 
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Dutton and Mikkelsen [5] investigated a constant area supersonic-supersonic ejector. They 

conducted a one-dimensional theoretical analysis of the constant area section and assumed 

inviscid mixing in the interaction region of the two streams. Comparing to the experimental 

results, they have found that such theoretical approach overpredicts the maximum compression 

ratios by as much as 15-22% higher. This error may be attributed to the simplicity of the 

approach employed to a very complex mixing phenomenon occurring in real life. The theoretical 

approach did not take into account mixing of the primary and secondary stream, boundary layer 

growth and separation, and shock wave/boundary layer/mixing layer interactions. They also 

found that the ejector is at high risk of flow separation of the secondary stream at the point of 

flow merging of the primary and secondary streams. 

In the paper published by Kracik and Dvorak [6], they outlined a one-dimensional analytical 

method for predicting the flow in a supersonic ejector. Although the case discussed is attempted 

for application on an ejector with twelve supersonic annular primary nozzles, the basic isentropic 

equations are valid to an axisymmetric ejector with one primary nozzle placed in the axis of the 

mixing chamber. Losses in the primary and secondary nozzles were taken into account by 

obtaining a coefficient from the numerical solution. It was recommended to further study the 

friction and other losses due to mixing to have a better agreement between the analytical results 

and the experimental data. 

A similar solution is discussed by Dvorak in his textbook [7]. For an axisymmetric ejector 

configuration as shown in Figure 3b, a one-dimensional analysis is performed and the end result 

is obtaining the entrainment ratio of a given ejector. The entrainment ratio, Γ, is defined as the 

ratio of the mass flow rates of the primary (𝑚′̇ ) and secondary (𝑚′′̇ ) streams at the respective 

inlets. 
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Γ =
𝑚′̇

𝑚′′̇
 (2.1) 

Several important assumptions have been made in order to simplify the analytical solution. 

The flow was considered to be steady and one-dimensional. It was assumed that no heat transfer 

occurs between the flow and the walls bounding it, making the case adiabatic. The primary and 

secondary streams of air was considered to be identical and to behave as an ideal gas, therefore, 

values of 𝜅 and 𝑐𝑝 were considered to be constant and equal for the two inlets and the outlet 

stream. The stagnation conditions (pressure and temperature) were assumed to be constant at the 

primary inlet, secondary inlet, and the outlet of the mixing chamber and diffuser. Isentropic 

relations were used for calculations, and occurrence of shock waves was not considered. 

3.1.2 Numerical Analysis 

The first attempt into computational fluid dynamics (CFD) by ejector researchers was made 

by Hedges and Hill when they developed a finite-difference scheme to model the flow process 

inside an ejector. The development of solution schemes in CFD has been becoming easier due to 

reduction of computer cost relating to advancements in technology. Although time required 

setting up the correct mesh and the specialist knowledge required to set-up solutions is still a big 

drawback since convergence is quite difficult to achieve especially for cases with supersonic 

flow.[1] 

In the paper by Bartosiewicz et.al.[4], the performances of six well-known turbulence 

models (k-ε, Realizable k-ε, RNG-k-ε, k-ω, k-ω-SST, and Reynolds stress model (RSM)) were 

evaluated for the study of supersonic ejectors. The validation focused on the shock location, 

shock strength, and the average pressure recovery prediction. The results of the numerical 

simulations were validated using axial pressure measurements with a capillary probe. Laser 
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tomography pictures were used to evaluate the non-mixing length. The results showed that the k-

ω-SST model agrees best with experiments. 

The same turbulence model is verified in the study conducted by Kolar and Dvorak[9] by 

comparing numerical results with experimental Schlieren color pictures and pressure 

measurements using pneumatic transducers. In their study, they utilized the Reynolds Averaged 

Navier-Stokes equation for the supersonic flow involving high Reynolds number. The study 

discussed in detail the turbulence model and analytically obtained model constants, which will be 

used later on to improve the accuracy. It has also detailed the boundary conditions and solver 

settings made using ANSYS Fluent. 

3.1.3 Experimental Setup 

In the paper of Keenan, et.al. [3], the experimental set-up of a test ejector is described and 

can be seen in Figure 4. Primary air is supplied from a compressor through a large receiver, 

which reduces fluctuations in the flow and a strainer to filter-out solid or liquid particles carried 

in the air flow. The high pressure primary air then passes through a length of straight pipe to 

further reduce disturbances in the stream before it enters the primary nozzle. There is a provision 

for the primary nozzle position to be adjusted, which is attached to the outside wall of the 

secondary chamber. The secondary air enters the mixing chamber through a pipe with 

straightening vanes, which has a control valve and a sharp edge orifice to measure secondary air 

mass flow. 
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Figure 4. Diagram of test apparatus by Keenan et al. 

Dutton, et al. [5], constructed a similar experimental apparatus where they tested five ejector 

configurations with varying Mach numbers and primary-to-secondary area ratios. The mixing 

chamber was designed such that mixing length can be varied for different tests. 

3.2 Pressure measurement methods 

Pressure measurement in fluid flow is essential in investigating flow properties. It may be 

required in order to determine several different flow parameters such as the thermodynamic 

properties, forces applied on a body due to the pressure distribution in the surface of the body, 

dynamic pressure and flow velocity, and others. By definition, pressure is a scalar quantity 

representing the molecular activity in a given fluid. This molecular activity is considered to be 

non-directional. Thus, pressure measurement must be done by a measuring device which is 

stationary relative to the flow. In fluid dynamics, we can classify pressure measured into two 

types: total or stagnation and static.[12] 
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Pressure is commonly measured both at the walls and in the freestream using different types 

of measurement devices shown in Figure 5 connected to a transducer of suitable sensitivity and 

range.[12] For the purpose of our study, we shall focus on pressure measurements using wall 

tapping since this is more suitable for the application. 

 

Figure 5. Static pressure measurement methods. a) Wall tapping b) Static probe. 

Figure 5 shows us two possible methods of determining static pressure. First is by wall 

tapping, and second by a static tube. For the purposes of this study, we shall focus on the details 

of pressure measurement by wall tapping. 

3.2.1 Pressure measurement by wall tapping 

Wall tapping is a simple method of obtaining pressure at the wall, 𝑝𝑤𝑎𝑙𝑙, of bounded flow. 

Although, care must be taken especially for more complicated flows like in the case of 

supersonic flows. The presence of the tapping affects the wall-bounded flow such that the 

streamlines are deflected into the hole and a system of eddies, also called cavity vortices, occurs 

within the orifice cavity. As a result, the recorded pressure at the wall is higher than the actual 

pressure value at the wall. Figure 5a shows us the typical geometry of a wall tapping.[13]  
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The restriction in the geometry of the wall tapping may be dictated by manufacturing 

capabilities or response time constraints. Some complication arises when the tapping diameter is 

larger than the boundary-layer thickness which may cause some changes in the flow field such as 

cavity vortices mentioned above, and thus, causes inaccuracies in the measurement.  The finite 

size of tapping that can be conveniently manufactured may be large enough to affect some 

amount of error in the measured pressure, such that 

𝑝𝑤𝑚 = 𝑝𝑤 + Δ𝑝𝑤 , (2.17) 

where  𝑝𝑤𝑚 is the pressure measured at the wall, 𝑝𝑤 is the actual pressure on the wall, and Δ𝑝𝑤 

is the error in the measured pressure. Performing a dimensional analysis, it is shown that, for a 

pressure tapping of given geometry in a zero-pressure-gradient flow, or in the case where the 

diameter of the pressure tap is much smaller compared to the scale of pressure variation along 

the wall, the non-dimensionalized Δ𝑝 with respect to the wall shear stress 𝜏𝑤 is a function of the 

condition of the wall-bounded flow (laminar or turbulent) and of the following variables: 

𝜋 =
Δ𝑝

𝜏𝑤
= 𝑓 (

𝑑𝑠𝑢𝜏

𝜐
,
𝑑𝑠

𝐷
, 𝑀,

𝑙𝑠

𝑑𝑠
,
𝑑𝑐

𝑑𝑠
,

𝜖

𝑑𝑠
) , (2.18) 

where 𝑑𝑠 is the tapping diameter, 𝑢𝜏 = √𝜏𝑤 𝜌⁄  is the friction velocity, 𝐷 is the flow lengthscale 

or the pipe diameter, 𝑀 is the Mach number, 𝑙𝑠 is the depth of the orifice, 𝑑𝑐 is the diameter of 

the cavity behind the orifice connecting to the pressure sensor, 𝜖 is the root-mean-square height 

of the burrs on the edge of the tapping orifice, 𝜌 is the fluid density, and 𝜐is the kinematic 

viscosity. The actual pressure on the wall is, therefore, given by 

𝑝𝑤 = 𝑝𝑚𝑤 − 𝜋𝜏𝑤. (2.19) 

The complexity of the flow occurring near the pressure tapping means that analytical and 

numerical solutions currently available for the pressure error are only valid for very low 
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Reynolds number and /or two-dimensional geometries. From experiments conducted, majority of 

the data obtained are for turbulent flow over the orifice, and the comparisons of experiments 

show a quantifiable scatter between results. This can be observed in the results of the 

investigation on static pressure correction in high Reynolds number fully developed turbulent 

flow in pipes conducted by McKeon and Smits[13]. In the results, they have concluded that 

further studies and flow visualization may still be needed to clearly specify the dependence of 

the static pressure correction on the ratio of the pressure tap diameter and the pipe diameter. This 

may be due to the complicated nature of the experiments where the pressure error is the same 

order as the experimental uncertainty which also makes the quantification of the pressure error 

difficult.  

3.3 Mass flow measurement methods 

3.3.1 Pressure Differential Flow Meters 

Flow meter techniques used for measuring mass flow rate in bounded flow are usually based 

on pressure difference measured across some change in the flow cross section area. These 

devices include orifice plates, venture tubes, and nozzles. These three devices work on the same 

principle and are only differentiated by the specific purpose or requirement of usage. For the 

purpose of this study, we will dive into more detail of the orifice plate, its principle and 

construction.  

3.3.1.1 Orifice plates 

This flow measuring device is implemented by obstructing the flow with a plate containing a 

round hole in the middle. The pressure difference between the upstream and downstream side of 

the plates is measured and the Bernoulli principle is employed to calculate the resulting mass 
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flow. The solution using the Bernoulli principle is only valid when the flow is subsonic. The 

solution assumes that the flow if incompressible and laminar. These assumptions are not all valid 

in real life, therefore losses due to flow turbulence are accounted for by the flow coefficient, 𝐶𝑓. 

The flow coefficient is an experimentally found value which is normally available in reference 

books. The value of the flow coefficient depends on the orifice and pipe diameters, and the 

flow’s Reynolds number. Figure 6 shows a schematic of an orifice plate based on the ISO 5167 

standard.[15] 

 

Figure 6. Orifice plate geometry based on ISO 5167 
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The mass flow rate, 𝑞𝑚, is given by 

𝑞𝑚 =
𝐶

√1 − 𝛽4
𝜀

𝜋

4
𝑑2√2Δ𝑝𝜌1  , (2.20) 

where 𝐶 is the coefficient of discharge which is dependent on the Reynolds number, 𝑅𝑒, and is 

given by the equation 

C = 0.5961 + 0.0261𝛽2 − 0.216𝛽8 + 0.000521 (
106𝛽

𝑅𝑒𝐷
)

0.7

+ (0.0188 + .00063𝐴)𝛽3.5 (
106

𝑅𝑒𝐷
)

0.3

+ (0.043 + .080𝑒−10𝐿1 − 0.123𝑒−7𝐿1)(1 − 0.11𝐴)
𝛽4

1 − 𝛽4

− 0.031(𝑀′
2 − 0.8𝑀′

2
1.1)𝛽1.3   , 

(2.21) 

where 𝐷 < 71.12 mm, an additional term which is specified below shall be included to equation 

(2.21) 

+0.011(0.75 − 𝛽) (2.8 −
𝐷

25.4
), 

where 𝑅𝑒𝐷 is the Reynolds number calculated with respect to the pipe diameter 𝐷, 𝐿1 is the non-

dimensional length of the distance of the upstream tapping equivalent to 𝑙1 𝐷⁄ , 𝐿2 is the non-

dimensional length of the distance of the downstream tapping equivalent to 𝑙2 𝐷⁄ , which is also 

consequently dependent on 𝑞𝑚, 𝛽 is the diameter ratio 𝑑 𝐷⁄ , 𝑑 is the orifice hole diameter, Δ𝑝 is 

the measured pressure difference between the upstream and downstream side of the orifice, 𝜌1 is 

the density of the fluid being measured at the upstream side,  𝜀 is the expansibility factor  given 

by 
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𝜀 = 1 − (0.351 + 0.256𝛽4 + 0.93𝛽8) [1 − (
𝑝2

𝑝1
)

1
𝜅

]. (2.22) 

Note that the above equation is only applicable for values of 𝑝2 𝑝1⁄ ≥ 0.75. 

The advantage of using orifice plates to measure mass flow is its simplicity. However, main 

disadvantage is the relatively large pressure loss experienced when the flow passes through the 

plate. This loss is not recoverable; therefore, care should be taken so that it will be applied to 

applications where the pressure loss generated shall not influence the behavior of the flow being 

investigated.   

3.3.1.2 Design standards based on ISO 5167-2 2003 

The design guidelines have been described in high detail in the ISO 5167-2 2003. The 

standard includes guidelines for geometry, material, quality, inspection, and installation.  

3.3.1.2.1 Orifice Plate 

The standard orifice plate, as shown in Figure 6, is a circular plate with a concentric hole 

placed inside a pipe. The centerline of the pipe must coincide with the centerline of the plate. 

The upstream and downstream faces of the plate shall always be flat and parallel. Special 

attention should be done in designing and installing the plate such that the buckling and elastic 

deformation of the plate, caused by a certain magnitude of the differential pressure across the 

plate or any other forces, external or otherwise, shall not cause the flatness to exceed the limits 

set in the standard. This limit shall be discussed more in detail in the next sections. 
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3.3.1.2.1.1 Flatness and surface quality 

We can identify the plate with its two surfaces: upstream face labelled as A, and downstream 

face labelled as B, as shown in Figure X. When possible, a distinctive mark to differentiate these 

two surfaces is recommended. 

The upstream face A of the plate shall be flat when installed in the pipe with zero 

differential pressure across it. Measuring the flatness can be done with the plate removed from 

the pipe provided it can be proven that the method of mounting in the pipe does not, in any way, 

distort the plate. The flatness criterion that should be fulfilled is the measure of the maximum 

gap between the plate and a straight edge of length D laid across any diameter of the plate. This 

is demonstrated by Figure X. The gap, which is labelled “5” in figure X, should be less than 

0.005(𝐷 − 𝑑) 2⁄ . Alternatively, the maximum slope of the tangent line of the curvature of the 

plate should be less than 0.5% when the plate is uninstalled, and less than 1.0% under working 

conditions. 

 

Figure 7. Orifice plate flatness measurement based on ISO 5167. 1) outside diameter of the orifice plate, 2) inside 

diameter of pipe, 3) straight edge, 4) orifice, 5) flatness deviation measured at the edge of orifice. 

Surface quality criterion of upstream face A of the orifice plate shall satisfy 𝑅𝑎 < 10−4𝑑 

within a circle boundary with diameter not less than pipe diameter 𝐷, with center located at the 
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center of the orifice plate. Note that the roughness of the upstream face A of the orifice plate 

shall not, in all cases, affect the edge sharpness measurement of the orifice hole. In the event that 

the face does not satisfy the specified surface quality criterion during normal operation, it is 

recommended to re-polish or clean the surface within the diameter of at least 𝐷. 

On the downstream face B, it is required to ensure that it is flat and parallel with the 

upstream face A. It is, however, unnecessary to manufacture the downstream face B in the same 

surface roughness quality as the upstream face A. Ultimately, the surface criteria for this side of 

the plate is not very strict that visual inspection is enough unless plate will be used to measure 

reversed flow as well. 

3.3.1.2.1.2 Thickness 𝑬 and 𝒆 

The thickness criterion for 𝑒 shall be 0.005𝐷 < 𝑒 < 0.02𝐷 with a difference between 𝑒 

values measured at any two points within the plate not exceeding 0.001𝐷. The thickness of the 

plate 𝐸 shall be 𝑒 < 𝐸 < 0.05𝐷. For pipe diameters with size 50mm ≤ 𝐷 ≤ 64mm, orifice 

plate thickness E of up to 3.2 mm is acceptable. Also, do not forget to consider deflection 

requirements as stated in the last section. 

For pipe diameters 𝐷 ≥ 200 mm, the difference of measured 𝐸 between two points within 

the plate shall not be greater than 0.001𝐷. For pipe diameters 𝐷 < 200 mm, the difference of 

measured E between two points within the plate shall not be greater than 0.2 mm. 
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3.3.1.2.1.3 Angle of bevel 𝜶 

The downstream side of the orifice plate shall be beveled in the case when the thickness 𝐸 of 

the plate exceeds the thickness 𝑒 of the orifice. The angle of the bevel 𝛼 shall be equal to 

45° ± 15°. 

3.3.1.2.1.4 Orifice edge quality 

The upstream edge labeled G in Figure X shall be sharp and square. Edge radius shall not be 

greater than 0.0004𝑑 for the edge to be considered as sharp. For orifice with diameter 𝑑 ≥ 25 

mm, the edge radius requirement can be satisfied by visual inspection. However, in the case 

when 𝑑 < 25 mm, visual inspection is not sufficient. In any case, if there is doubt as to whether 

the edge sharpness requirement is met, measuring the edge radius is recommended. The 

upstream edge G should also be kept clear of wire-edges or burrs. 

For the edge to be considered square, the angle between the orifice bore and the upstream 

face of the orifice plate should be 90° ± 0.3°. The orifice bore is the surface between edges G 

and H.  

Strict requirements of the edge and surface quality are employed for this part of the orifice 

plate since it is in direct contact with the flow and we want to minimize external effects of non-

conformity to the flow. However, the downstream edges H and I are within the separated flow 

region. Therefore, these edges do not have the same strict requirements as the upstream edges 

and surfaces. 
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3.3.1.2.1.5 Orifice diameter 𝒅 

The lower limit for the diameter 𝑑 shall be, in all cases, greater than 12.5 mm. The diameter 

ratio, 𝛽 = 𝑑 𝐷⁄ , shall always be 0.10 ≤ 𝛽 ≤ 0.75.  

Measurements should be taken as the mean of at least four sampling diameters at 

approximately equal angles to each other. The orifice shall be cylindrical, such that, the 

maximum deviation from the mean diameter shall not exceed 0.05% of the mean diameter. As 

mentioned above, the surface quality of the cylindrical orifice bore shall not, in any way, affect 

the edge sharpness measurement of upstream edge G. 

3.3.1.2.1.6 Bidirectional plate 

Orifice plates can be designed such that, it can be also used to measure reversed flow. If so, 

certain requirements shall be fulfilled. Firstly, the plate shall not be beveled. Second, the two 

faces of the orifice plate shall comply to the surface and edge quality requirements of the 

upstream surface A and edge G, as mentioned previously. Third, the plate thickness 𝐸 shall be 

equal to the orifice thickness 𝑒 and so, it may be necessary to limit the differential pressure 

across the plate to prevent plate distortion. And lastly, for orifice plates with 𝐷 and 𝐷 2⁄  

tappings, which will be discussed in the next section, measurements of pressure should still 

follow the upstream and downstream direction flow. Therefore, there should be 𝐷 and 𝐷 2⁄  

pressure taps available on both sides of the orifice, and measurements will be taken depending on 

the direction of the flow. 
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3.3.1.2.1.7 Material 

The plate may be manufactured from any type of material as long as the material will be 

suitable as to be able to satisfy all criterion stated above during normal operating conditions. 

3.3.1.2.2 Pressure Tapping 

For each orifice plate installed in a pipe, there should be at least one pressure tapping located 

at the upstream side of the orifice, and another one located at the downstream side. In the case of 

multiple tapping in one side of the orifice, the tapping shall be offset by 30° from each other. 

This is to minimize the effect of the flow disturbance of each tapping to the pressure 

measurements obtained by the subsequent pressure taps along the flow. The types of standard 

orifice meter are classified by the location of the pressure tapping: 𝐷 and 𝐷 2⁄ , flange, or corner 

tapping. Limitation of each type is detailed in ISO 5167. For our purpose, we shall use the corner 

tapping with annular slot 

3.3.1.2.2.1 Corner Tapping with annular slot 

Corner taps with annular slot is another type of tapping location. The taps can be located in 

the flange. Figure 8 shows the schematic for this kind of tapping. Table 1 summarizes the design 

requirements for the corner tapping with annular slots. 
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Figure 8. Corner tapping. 

Table 1. Summary of design requirements for corner tapping with annular slot. 

Symbol Description Requirement 

𝑎 Width of annular slot The minimum diameter is determined in practice 

and should be small enough to prevent accidental 

blockage and give satisfactory reaction time. 

For 𝐷 < 100𝑚𝑚, a maximum value of 𝑎 =

2𝑚𝑚 is acceptable for any 𝛽. 

The annular slot shall be continuous over the 

entire perimeter. Otherwise, four openings at 

equal angles apart shall connect the flow to the 

annular chamber. The each opening area is at 

least 12 𝑚𝑚2. 
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𝑏 Internal diameter of carrier 

rings 

It shall be greater than or equal to diameter of the 

pipe 𝐷. Make sure that they do not protrude into 

the pipe, but 𝑏 ≤ 1.04𝐷 is the maximum limit. 

𝑐, 𝑐′ Length of upstream and 

downstream rings 

𝑐, 𝑐′ < 0.5𝐷 

It should also satisfy the following condition 

𝑏 − 𝐷

𝐷
×

𝑐

𝐷
× 100 <

0.1

0.1 + 2.3𝛽4
 

∅𝐷, ∅𝑑 Diameter of pipe, and orifice  

𝑓 Thickness of the slot 𝑓 ≥ 2𝑎 

𝑔, ℎ Dimensions of annular slot 
𝑔ℎ ≥

𝑎𝑓

2
 

∅𝑗 Diameter of pressure tapping 4𝑚𝑚 ≤ 𝑗 ≤ 10𝑚𝑚 

𝑠 Pipe length upstream Refer to Table 3 of reference [15] for complete 

details. 

3.3.1.2.2.2 Tapping conditions 

The pressure tapping hole should be circular with a diameter less than 0.13𝐷 and less than 

13 mm. There is no restriction on the minimum diameter of the pressure tapping, only that it 

should be small enough to prevent accidental blockage and to give satisfactory dynamic 

performance. Upstream and downstream tapping shall have equal diameters. The depth of the 

hole shall be at least 2.5 times the pressure tapping diameter, measured from the inner wall of the 

pipe.  

The hole shall be cylindrical, with its centerline intersecting the pipe centerline within a 

perpendicularity of 3°. The hole shall be circular at break-through point. The edges shall be flush 
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with the surface of the pipe wall and shall be as sharp as possible. This means that no burrs or 

wire edges are allowed. These may be eliminated by rounding the edges, although radius of edge 

rounding must be kept as small as possible. If possible to measure, it shall not exceed 0.10 times 

the tap hole diameter. Conformity to cylindricity, perpendicularity, and edge quality may be 

evaluated through visual inspection. 

The centerlines of the pressure tapping may be located in any axial plane around the 

pipeline. The axes of the upstream and downstream tapping may be located in different axial 

planes, but is normally located on the same axial plane. 
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4. Test Rig Design 

4.1 Design Requirements 

In this section, we identify the design requirements for each part of the test rig. These parts 

are identified as the primary air inlet, primary air chamber, primary air nozzle, secondary air 

inlet, secondary air chamber, secondary air nozzle, mixing chamber, diffuser, and outlet pipe. It 

is also important to discuss the requirements for the pressure and mass flow measurements in the 

various parts of the ejector. In all parts, ease of manufacturing, installation, and adjustment, 

where necessary, is primarily considered. 

4.1.1 Primary air inlet, chamber, and nozzle  

The primary air chamber shall be connected to the compressed air line using a standard 

connection. The compressed air is delivered into a chamber which shall be designed to withstand 

a maximum pressure of 3 MPa without bursting. At the primary air chamber, flow shall be 

conditioned or directed to deliver a uniform flow into the primary nozzle. Material should be 

able to withstand repeated usage, preferably with corrosion and wear resistance properties. In the 

primary air chamber, stagnation pressure shall be measured. The primary initial nozzle geometry 

is adapted from an existing design by [18]. It is intended to use the test rig for testing other 

nozzle geometry. The design shall include a provision for adjusting the horizontal position of the 

primary nozzle with respect to the mixing chamber. This feature shall be easy to operate. Air 

leaks shall be prevented where necessary. 
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4.1.2 Secondary air inlet, chamber, and nozzle 

For the secondary air inlet, measurement of mass flow shall be done. The design shall 

include a provision for measuring the stagnation pressure of the secondary air before entering the 

mixing chamber. The design shall also include a mechanism for causing reduction in pressure at 

the secondary inlet. 

4.1.3 Mixing chamber 

The mixing chamber shall be connected directly to the secondary air chamber. The design 

shall provide access to the flow for static pressure measuring along the length of the chamber. 

The design shall be flexible to allow easy variation in the mixing chamber length. Design should 

also allow room for modifications for future development to allow optical measurement methods 

to be used. 

4.1.4 Diffuser and outlet pipe 

The design shall allow provisions to measure static pressure along the length of the diffuser. 

It shall also allow ease of change of this part to accommodate different possible designs and 

configuration of the diffuser. The design of the outlet pipe shall include a provision to measure 

the total mass flow rate at the outlet. The design shall also provide a mechanism to cause a 

pressure reduction at the outlet of the pipe, or also known as the backpressure. 
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4.2 Proposed design 

Figure 9 illustrates the schematic diagram of the proposed test rig set up. 

 

Figure 9. Proposed supersonic test rig set-up. a) primary air chamber, b) flow conditioner, c) secondary air chamber, d) 

secondary inlet duct, e) primary nozzle, f) secondary nozzle, g) mixing chamber, h) diffuser, i) outlet duct and j) orifice 

for mass flow measurement. 

Compressed air up to 3MPa will be introduced into the primary air chamber, passing 

through a perforated plate acting as flow conditioner. The flow conditioner aims to condition the 

flow such that it will be uniform coming into the primary nozzle. Stagnation pressure of the 

primary air is measured in the primary air chamber. The secondary air is drawn from the 

atmosphere. A perforated plate may be attached at the inlet as a pressure reduction device. 

Secondary mass flow rate is measured using an orifice plate before coming in to the secondary 

air chamber, where the stagnation pressure of the secondary air is measured. The secondary flow 

is then directed into the mixing chamber where it mixes with the primary stream. Static pressure 

is measured along the length of the mixing chamber at given length intervals. The mixed flow 

then proceeds into the diffuser. Mass flow rate of the outlet stream is measured with an orifice 

plate. Finally, the outlet stream is released into the atmosphere. A similar perforated plate as the 
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one employed in the secondary inlet will be used as a back pressure reduction. The position of 

the nozzle can be adjusted by moving the secondary air chamber along the horizontal direction. 

The tables shown below detail the design requirements for each segment of the ejector and 

the proposed solution.  

Table 2 Design requirements and solutions for the primary air inlet, chamber, and nozzle 

Primary air inlet, chamber, and nozzle 

Design Requirements Solution 

1. Connection to the compressed air 

line. 

British Standard Straight Pipe thread G1/2. 

2. Primary air chamber must 

withstand 3 MPa of internal 

pressure without bursting. 

The minimum thickness of the pipe wall to 

withstand bursting is calculated from the equation 

𝑇 =
𝑆𝑓𝑃𝐷𝐼

2𝑆
 where 𝑆𝑓 is the safety factor, 𝑃 is the 

internal pressure in Pascals, 𝐷𝐼 is the pipe internal 

diameter in meters, and 𝑆 is the yield strength of 

pipe material. The internal pipe diameter is chosen 

to be 0.03m. The ultimate strength of free-cutting 

brass is given in the range of 338-469 MPa [17]. 

The minimum thickness of the pipe with a factor of 

safety of 5 is 0.5mm. The design is ensured to not 

have sections thinner than this value. Please refer to 

attached drawings of parts PRT0001, PRT0002, and 

PRT0009 contained in the Appendix. 

3. Provision for flow conditioning of A plate with numerous holes was designed to 
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primary inlet stream. condition the flow of the incoming high pressure 

air. This plate can be detached and replaced by a 

different configuration, if necessary. Please refer to 

attached drawing of part PLATE1.  

4. Measurement of stagnation 

pressure. 

An annular chamber is designed to measure the 

stagnation pressure of the primary air. The chamber 

has four air access holes around the perimeter for 

primary air to enter. It is designed such that the 

flow will ideally be at zero velocity at pressure 

measurement.  

5. Establish a standard connection for 

primary nozzle. 

The initial design is based on the nozzle used in 

[18]. Standard threaded attachment of M14x1 is 

chosen. For specific dimensions, please refer to 

attached drawing of part PRT0012. 

6. Provision for horizontal adjustment 

of primary nozzle position with 

respect to mixing chamber. 

Secondary air chamber (PRT0003) is designed 

such that it will be able to slide along PRT0012, 

which is the holder of the primary nozzle. PRT0003 

is held in place by four set screws. 
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Table 3. Design requirements and solutions for secondary air inlet, chamber, and nozzle. 

Secondary air inlet, chamber, and nozzle 

Design Requirements Solution 

1. Secondary inlet mass flow rate 

should be measured. 

An orifice plate designed based on ISO 5167 

standard is currently available in the laboratory. 

This can be reused and flange with tapping and 

ducts are necessary to be designed and 

manufactured. 

2. Secondary stagnation pressure 

should be measured. 

Similar to the experimental set up of [3] and 

[5], the wall pressure tap is located at the wall 

opposite the incoming secondary air flow. 

3. Provision for pressure reduction at 

secondary inlet. 

A cheap and easy way to regulate the pressure 

at the inlet of the secondary air is by attaching a 

perforated plate into the inlet of the duct. This may 

be designed by referencing the works of Gan and 

Riffat[20] and Malavasi, et al.[21]. A pressure loss 

coefficient given by 𝑘 =
Δ𝑃

1 2⁄ 𝜌𝑐2 is provided which is 

verified through experiments and numerical 

simulation.  
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Table 4. Design requirements and solutions for mixing chamber 

Mixing chamber 

Design Requirements Solution 

1. Static pressure measurement along 

the length of the mixing chamber. 

Reduce possible measurement 

error by minimizing the effect of 

flow disturbance caused by 

successive pressure taps. 

Static pressure wall taps are manufactured into 

the mixing chamber wall. To reduce possible 

measurement error along the wall, the pressure taps 

were placed at radial axes 60° apart. In this way, 

flow disturbance caused by one pressure tap will 

not affect the next pressure tap along the line, but 

would rather get a chance to normalize before 

encountering the next pressure tap. Please refer to 

drawings of parts PRT0017 and PRT0018 for more 

details. 

2. Mixing chamber shall be easy to 

install and design should provide 

for flexibility in the mixing 

chamber length. 

The design of the mixing chamber is modular 

such that, the mixing chamber is a separate part 

from the secondary nozzle and diffuser. The length 

of the mixing chamber can easily by modified by 

taking out or adding additional parts. The geometry 

is simple. More details on design outline may be 

seen in Appendix X. 

3. Design must provide room for 

future development of optical 

measurement. 

The design may be easily be adapted to suit 

transparent material like glass for optical 

measurement. Parts concerned will be parts 

PRT0005, PRT0017, PRT0018, and PRT0020. 
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Table 5. Design requirements and solutions for diffuser and outlet duct 

Diffuser and outlet duct 

Design Requirements Solution 

1. Static pressure measurement along 

the length of the diffuser. Reduce 

possible measurement error by 

minimizing the effect of flow 

disturbance caused by successive 

pressure taps.. 

Static pressure wall taps are manufactured into 

the diffuser wall. To reduce possible measurement 

error along the wall, the pressure taps were placed 

at radial axes 60° apart, similar to the scheme in the 

mixing chamber. Please refer to drawing of part 

PRT0027 for more details. 

2. Diffuser must be easy to assemble 

and provide a possibility to change 

the configuration. 

The diffuser is designed as a separate part from 

the mixing chamber. This makes it easier to 

manufacture and provides the possibility to change 

the design without manufacturing a new mixing 

chamber. Please refer to the drawing of part 

PRT0027 for more details. 

3. Mass flow of the outlet flow shall 

me measured. 

The orifice designed for the mass flow 

measurement of the secondary inlet stream is used. 

Take note that direction of flow is important and 

care must be taken to install the orifice in the 

correct direction. 

4. Provision for back pressure 

reduction at the end of the outlet 

duct. 

The same mechanism for pressure reduction 

employed in the secondary air inlet is used to 

reduce the back pressure. 
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Figure 10. Section view of main part of test rig. 

 

Figure 11. Section view of secondary inlet duct. 

Figure 10 shows the section view of the main part of the test rig composed of the primary 

chamber, secondary chamber, mixing chamber and the diffuser. The primary chamber composed 

of PRT0001, PRT0002, PRT0009, PRT0010 and PLATE1 are permanent parts. The secondary 

chamber labeled PRT0003 with PLATE2, including the secondary inlet duct with orifice mass 

flow measurement, shown in Figure 11, are also permanent parts. Parts PRT0005, PRT0011, 

PRT0012, PRT0017, PRT0018, PRT0020, and PRT0027 are parts that may be customized to suit 

other ejector configuration desired. The mixing chamber section is conveniently held together by 

four M6 stud bolts which allow the variation in the length of the mixing chamber and diffuser 
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parts. PRT0021, which holds the mixing chamber and attaches it to the outlet duct with another 

orifice mass flow measurement, is a permanent part. 

Appendix contains part drawings and assembly drawings. This is important reference for 

future work in the test rig. 

4.3 Recommendation for optical measurements 

The test rig has been designed with a modular approach, such that, the whole mixing 

chamber can be easily uninstalled and replaced. The constant-area section is also modular such 

that adjustments in lengths can easily be done. The converging part of the secondary air chamber 

is a separate part which can be redesigned to suit a transparent material such as glass. 
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5. Analytical Solution 

The analytical solution followed the method proposed by Kracik and Dvorak[6] and 

Dvorak[7] although some modifications were made to account for the losses due to wall friction 

in the constant area mixing chamber. The flow is analyzed in the critical operation regime where 

the flow is assumed to be choked in the secondary nozzle. Figure 12 shows that this regime lies 

along pressures of 𝑝4 ≤ 𝑝𝑐𝑟.  

 

Figure 12. Regimes of operation of a supersonic ejector. 

5.1 One-dimensional analysis 

The analysis done closely follows procedures indicated in the work of Dvorak[7]. Although 

some adjustments are made since we are considering the area of the secondary stream is 

dependent on the location of the primary nozzle located at some distance 𝑥 from the start of the 

constant-area mixing. The three basic conservation equations are considered. First, the continuity 

equation which is expressed as 

𝑐′1𝜌′1𝐴′1 + 𝑐′′1𝜌′′1𝐴′′1 = 𝑐3𝜌3𝐴3 , (5.1) 
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where, 𝐴′1 is the cross-sectional area at the outlet of the primary nozzle, 𝐴′′1 is the cross-

sectional area of the secondary air inlet at the same section as the outlet of the primary nozzle, 

and 𝐴3 is the cross-sectional area of the mixing chamber. The relation between the areas can be 

expressed as 

𝐴′1 =
𝜋𝑑𝐸,𝐼𝑁𝑁𝐸𝑅

2

4
 , 

𝐴′′1 =
𝜋 (𝑑𝑠

2 − 𝑑𝐸,𝑂𝑈𝑇𝐸𝑅

2
)

4
 , 

(5.2) 

𝑑s = 𝑑M + 2[𝑦𝑐 + (𝑥 − 𝑥𝑐) tan 𝜃] ,  

𝐴2 = 𝐴3 ,  

where 𝑥𝑐, 𝑦𝑐, and 𝜃 are quantities based on the geometry of the ejector, as shown in Figure 13. 

For the current design, values are 𝑥𝑐 = 3.5𝑚𝑚, 𝑦𝑐 = 1.22𝑚𝑚, and 𝜃 = 34°. Note that equation 

(5.2) is valid for 𝑥 ≥ 𝑥𝑐. 

 

Figure 13. Ejector geometry. 

Quantities 𝑐 and 𝜌 represents the flow velocity and density, respectively, at the specified 

sections on the ejector. 
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The second equation considered is the momentum conservation equation given by 

𝑚′̇ 𝑐′1 + 𝑝′1𝐴′1 + 𝑚′′̇ 𝑐′′1 + 𝑝′′1𝐴′′1 = (𝑚′̇ + 𝑚′′̇ )𝑐3 + 𝑝3𝐴3 . (5.3) 

And the third is the conservation of energy given by 

𝑚′̇ (𝑐𝑝′𝑇′1 +
𝑐′1

2

2
) + 𝑚′′̇ (𝑐𝑝′′𝑇′′1 +

𝑐′′1
2

2
) = (𝑚′̇ + 𝑚′′̇ ) (𝑐𝑝3𝑇3 +

𝑐3
2

2
) . (5.4) 

Using the assumption stated above regarding the equality of the isobaric heat capacities 

(𝑐𝑝′ = 𝑐𝑝′′ = 𝑐𝑝3) and the heat capacity ratio (𝜅1 = 𝜅2 = 𝜅3) between the primary, secondary, 

and outlet stream, the conservation equations were simplified to express the state of the gas at the 

end of mixing. The total pressure of the outlet stream 𝑝03can be expressed as: 

𝑝03 = 𝑝′0

√(1 + Γ)(1 + ΓΘ21)

1 +
𝑝′0

𝑝′′0
Γ√Θ21

𝑞(𝜆1)
𝑞(𝜆2)

𝑞(𝜆1)

𝑞(𝜆3)
 , (5.5) 

where Γ is the entrainment ratio obtained from equation 2.1, Θ21is the ratio of the static 

temperatures of the primary and secondary stream expressed as  

Θ21 =
𝑇′′0

𝑇′0
 , (5.6) 

and 𝑞(𝜆) is the aerodynamic function of the mass flow rate given by 

𝑞(𝜆) =
𝜌𝑐

(𝜌𝑐)𝑐𝑟
= (1 −

𝜅 − 1

𝜅 + 1
𝜆2)

1
𝜅−1

(
𝜅 + 1

2
)

1
𝜅−1

𝜆 , (5.7) 

where 𝜆 is the dimensionless speed, also known as the Laval number, given by 

𝜆 =
𝑐

𝑐𝑐𝑟
 , (5.8) 
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where 𝑐 and 𝑐𝑐𝑟 represents the flow velocity and the critical flow velocity, respectively, at a 

given cross section.  

The total temperature at the end of mixing, 𝑇03, is derived from the conservation of energy, 

and we obtain 

𝑇03 = 𝑇′0

1 + ΓΘ21

Γ + 1
 , (5.9) 

The dimensionless velocity at the end of mixing, 𝜆3, is obtained from the equation  

𝑧(𝜆3) =
𝑧(𝜆1) + Γ√Θ21𝑧(𝜆2)

√(1 + Γ)(1 + ΓΘ21)
 , (5.10) 

where 𝑧(𝜆) is the aerodynamic function given by 

𝑧(𝜆) = 𝜆 +
1

𝜆
 , (5.11) 

When solving for the value of the dimensionless number at the end of mixing using equation 

(2.9), two solutions can be found: one indicates subsonic flow, and the other indicates supersonic 

flow at the end of mixing. It is physically possible to obtain both subsonic and supersonic flows 

at the end of mixing, depending on the initial flow conditions and the dimensions of the ejector. 

Using the relations above, we can completely calculate the values of all significant variables 

for the resulting flow in the supersonic ejector without taking into account losses. The operating 

characteristics of an ejector is determined through the working pressure, Δ𝑝, which is defined as 

the difference between the secondary inlet stagnation pressure and the backpressure, given by 

Δ𝑝 = 𝑝4 − 𝑝′′
0 

, (5.12) 
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and also the mass flow at the secondary inlet, 𝑚′′̇ , or the total mass flow at the outlet, 𝑚̇3. The 

efficiency of the ejector is given by 

𝜂𝐸 =
 𝑚̇2

 𝑚̇1

(
𝑝4

𝑝02
)

𝜅−1
𝜅

− 1

1 − (
𝑝4

𝑝01
)

𝜅−1
𝜅

𝑇02

𝑇01
 . (5.13) 

Dynamic functions for isentropic flow of ideal gas are used to obtain characteristic 

properties of the flow inside an ejector. This is a simplified way since it only depends on the 

Mach number of the flow at the section being investigated. The dynamic functions for 

temperature, pressure, density, cross-section area, and the conversion between Mach number and 

Laval number are given by the following equations, respectively 

𝑇

𝑇0
= [1 +

𝜅 − 1

2
𝑀2]

−1

 , (5.14) 

𝑝

𝑝0
= [1 +

𝜅 − 1

2
𝑀2]

𝜅
1−𝜅

, (5.15) 

𝜌

𝜌0
= [1 +

𝜅 − 1

2
𝑀2]

1
1−𝜅

, (5.16) 

𝐴

𝐴𝑐𝑟
=

𝜓𝑚𝑎𝑥

𝜓
=

1

𝑀
[(

2

𝜅 + 1
) (1 +

𝜅 − 1

2
𝑀2)]

𝜅+1
2(𝜅−1)

, (5.17) 

 

5.2 Losses 

The ejector is divided into four parts, as shown in Figure 1. In the first part, we consider the 

losses occurring in the primary and secondary nozzle. In the second part, losses caused by the 

mixing of two streams shall be neglected. In the third part, the losses due to friction in constant 
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area ducts are considered. And finally, in the fourth part, the losses due to the diffuser are 

accounted.  

5.2.1 Losses in nozzles 

Some losses in the primary and secondary nozzles must be taken into account since the 

initial assumption made is that the process in these nozzles is isentropic.  

 

Figure 14. h-s diagram of expansion in nozzle. 

Figure 14 shows us the h-s diagram for the isentropic and real expansion in nozzles. From 

the diagram, the energy equation can be derived as 

ℎ0 = ℎ1𝑖𝑠 +
𝑐1𝑖𝑠

2

2
= ℎ1 +

𝑐1
2

2
 . (5.18) 

The efficiency of the nozzle is defined as 

𝜂 =
ℎ0 − ℎ1

ℎ0 − ℎ1𝑖𝑠
 . (5.19) 

We consider that the specific heat is constant so equation (5.19) can be transformed into 
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𝜂 =
𝑇0 − 𝑇1

𝑇0 − 𝑇1𝑖𝑠
 . (5.20) 

And finally, using the isentropic relationship between temperature and pressure, we can 

derive an equation for the nozzle efficiency in terms of the stagnation and static pressures. 

𝜂1 =
1 − (

𝑝12

𝑝01
)

𝜅−1
𝜅

1 − (
𝑝12

𝑝01𝑖𝑠
)

𝜅−1
𝜅

 . (5.21) 

Similarly, for the secondary nozzle, the efficiency may be expressed as 

𝜂2 =
1 − (

𝑝12

𝑝02
)

𝜅−1
𝜅

1 − (
𝑝12

𝑝02𝑖𝑠
)

𝜅−1
𝜅

 . (5.22) 

The efficiency of the nozzles for primary and secondary stream is obtained from the 

numerical calculation. The mass-weighted average for the stagnation and static pressures are 

obtained from the result of the numerical simulation to compute the efficiency of the primary and 

secondary nozzles. This is then used to find the corrected stagnation pressure of both streams. 

The following equations are used 

𝑝01 = 𝑝12 {1 − 𝜂1 [1 − (
𝑝12

𝑝01𝑖𝑠
)

𝜅−1
𝜅

]}

𝜅
1−𝜅

, (5.23) 

𝑝02 = 𝑝12 {1 − 𝜂2 [1 − (
𝑝12

𝑝02𝑖𝑠
)

𝜅−1
𝜅

]}

𝜅
1−𝜅

. 

(5.24) 
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5.2.2 Loss in constant-area section 

In this part we take into account the effect of wall friction in the flow of compressible gas in 

constant-area ducts. We shall assume that no heat is transferred to and from the stream, making 

the process adiabatic for short lengths of the duct, as in our case. We also assume one-

dimensional steady flow along the constant area duct, where no external heat exchange and shaft 

work is produced. The change in potential energy due to elevation is negligible compared to the 

effect of friction. 

The energy equation for steady flow is expressed as 

ℎ02 = ℎ +
𝑐2

2
 , (5.25) 

where ℎ and 𝑐 are the enthalpy and velocity of the fluid at any section of the duct, respectively. 

The continuity equation in the control volume between sections 2 and 3 is given by 

𝑐2𝜌2𝐴2 = 𝑐3𝜌3𝐴3 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , (5.26) 

where the quantity on the left side of the equation is equivalent to the equation (5.1) because at 

this point we still assume that the two streams have not started to mix. 

The momentum equation between the sections 2 and 3 is given by 

𝑚̇2𝑐2 + 𝑝2𝐴2 = 𝑚̇3𝑐3 + 𝑝3𝐴3 + 4𝑓
𝑐3

2

2

𝐿

𝐷
𝜌3𝐴3 , (5.27) 

where the term 4𝑓
𝑐3

2

2

𝐿

𝐷
𝜌3𝐴3 represents the effect of wall friction to the flow at the end of the 

mixing chamber. The friction factor 𝑓 is defined by using the Darcy friction factor which is a 
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function of the flow Reynolds number, 𝑅𝑒, and the relative roughness, 𝑅𝑎 𝐷⁄ , where 𝐷 is the 

pipe diameter. The viscosity is computed using the Sutherland’s formula given by 

𝜇 = 𝜇0

𝑇0 + 𝐶

𝑇 + 𝐶
(

𝑇

𝑇0
)

3
2⁄

 , (5.28) 

where, for air, the constants are given as 𝜇0 = 18.27 𝜇𝑃𝑎 ∙ 𝑠, 𝐶 = 120 𝐾, and 𝑇0 = 291.15 𝐾. 

For turbulent flow, which is characterized by Reynolds number between the values 5000 ≤

𝑅𝑒 ≤ 108, and a relative roughness between 10−6 ≤
𝑅𝑎

𝐷
≤ 10−2, the friction factor may be 

computed as 

𝑓 =
0.0625

[ln (
𝑅𝑎

3.7𝐷 +
5.74
𝑅𝑒0.9)]

2 . 
(5.29) 

We can express the right side of equation (5.27) in terms of the critical speed and Laval 

number at section 3.  

𝑚̇3𝑎cr3

𝜅 + 1

2𝜅
[𝜆3 (1 +

4𝑓𝐿

𝐷

𝜅

𝜅 + 1
) +

1

𝜆3
] = 𝑚̇3𝑎cr3

𝜅 + 1

2𝜅
𝑧(𝜆3) . (5.30) 

Combining with equation (5.10), we can obtain 𝜆3 with the effect of wall friction. 

5.2.3 Losses in diffusers 

At the diffuser, we assumed a one-dimensional, steady flow, isentropic compression. In 

reality, some loss is incurred caused by several factors such as viscous dissipation, wall friction, 

etc. Figure 15 shows the ℎ − 𝑠 diagram for the compression in the diffuser, both the isentropic 

and the real case. If we assume that the kinetic energy at end of the diffuser is not completely 

lost, the efficiency may be expressed as 



47 

DESIGN AND VERIFICATION OF A TEST RIG FOR RESEARCH OF SUPERSONIC EJECTORS 

𝜂𝐷 =
Δℎ4 +

𝑐4
2

2
𝑐4

2

2

=
ℎ04 − ℎ4′

ℎ03 − ℎ3
 . (5.31) 

For ideal gas, 𝑐𝑝 is constant. We can now express the efficiency in terms of temperatures 

𝜂𝐷 =
𝑇04 − 𝑇4′

𝑇03 − 𝑇3
=

1 −
𝑇4′

𝑇04

1 −
𝑇3

𝑇03

 , (5.32) 

and using the isentropic relationship between temperature and pressyure, the final form of the 

diffuser efficiency can be expressed as 

𝜂𝐷 =
1 − (

𝑝3

𝑝04
)

𝜅−1
𝜅

1 − (
𝑝3

𝑝03
)

𝜅−1
𝜅

 , (5.33) 

where 𝑝3 = 𝑝4′ based on Figure 15. 

 

Figure 15. h-s diagram of compression in a diffuser with losses. 

For our purposes, the efficiency of the diffuser is obtained from the numerical solution. The 

stagnation and static pressures are obtained by finding the mass-weighted average of these values 
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at the specified cross-section. This is then used to compute for the efficiency of the diffuser. To 

be able to find 𝑝04 equation (5.34) is used. 

𝑝04 = 𝑝3 {1 − 𝜂𝐷 [1 − (
𝑝3

𝑝03
)

𝜅−1
𝜅

]}

𝜅
1−𝜅

. (5.34) 

6. Numerical Solution 

The numerical solution is obtained using ANSYS Fluent. The geometry of the one-fourth 

section of the ejector is created using DesignModeler. A structured mesh is generated using the 

ANSYS Meshing software. The geometry was split into surfaces so a quadrilateral face mesh can 

be applied. The mesh is further refined using edge sizing functions with a bias of finer mesh near 

the walls. Figure 16 shows the mesh created in the primary nozzle and secondary inlet part. The 

quality of the mesh generated is reported in Table 6. 

 

Figure 16. Mesh generated. 
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Table 6. Mesh quality values and criteria. 

Parameter Value Criterion 

Orthogonal quality 0.933 Worst – 0; Best – 1  

Skewness (average) 0.146 Good – 0; Bad – 1 

Aspect ratio (average) 6.03 Good - <5  

The stated criteria in Table 6 are based on good mesh quality suggested in the ANSYS 

Fluent Users Guide [23]. From the above values, we can say that the mesh is not the best. For a 

mesh of this quality, the computational cost will be high as the convergence will be difficult to 

reach. 

The solution used a 2D, steady flow, axisymmetric, density-based solver. The solution 

formulation is Implicit Roe-FDS, and second order upwind discretization is used for the flow, 

turbulent kinetic energy, and specific dissipation rate. The turbulence model used is the k-ω SST 

model on the basis of the studies conducted by [4] and [9]. 

The boundary conditions are stated in Table 7. 

Table 7. Boundary conditions 

Boundary condition Value 

Primary pressure inlet 300 000 Pa 

Secondary pressure inlet 0 Pa 

Outlet pressure/back pressure 0 – 70 000 Pa 

Operating pressure 97 000 Pa 

 The calculation was run for different back pressures to be able to obtain a characteristic 

curve of the ejector efficiency and the relative back pressure against the entrainment ratio. 
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It is very difficult to obtain convergence with cases involving supersonic compressible 

flows, especially one involving turbulence, free shear layers, shockwaves, etc. The convergence 

criteria considered for the results is the mass balance. The error must be less than 0.01% of the 

smallest inlet mass flow. This is represented by the following equation. 

|(𝑚̇′ + 𝑚̇′′) − 𝑚̇3| < 0.0001𝑚̇𝑚𝑖𝑛. (5.30) 
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7. Results and Discussion 

Parts designed for the test rig were successfully manufactured according to drawing 

specifications. Some issues were encountered, but these are easily re-workable. Shown below is 

a photo of the manufactured assembly and the individual components manufactured. Refer to 

Appendix for complete engineering 2D and assembly drawings.  

 

Figure 17. Manufactured assembly 
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Figure 18 shows the ejector characteristic curve obtained using the analytical solution. 

 

Figure 18. Ejector characteristic by analytical solution 

 For the case where no losses were taken into account, the efficiency of the ejector can 

reach a value of 43%. Taking into account the losses, the efficiency becomes significantly lower. 

Choking occurs at entrainment ratio equal to 0.1723. This means that the secondary mass flow is 

choked and further decrease in relative back pressure will only decrease the ejector efficiency. 

 Figure 18 also shows the curve of the relative back pressure 𝑝4 𝑝02⁄ . If we compare it to 

Figure 12, it shows that the critical regime of operation starts at relative back pressure equal to 

2.0962.  
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The results from the numerical solution show contours of Mach number, static pressure 

distribution along ejector wall, turbulence kinetic energy, and dissipation rate. The characteristic 

curve is also shown. 

The simulation was run several times varying the back pressure from 0 to 70 000 Pa. 

However, no convergence was met in the case of zero back pressure. This data has been 

excluded from the analysis. In the case when the back pressure set was equal to 60 000 Pa, the 

solution diverged very quickly resulting from reversed flows at the secondary inlet. This 

indicates that at back pressures above 60 000 Pa approximately, the ejector is operating in the 

reversed flow regime and we can say that it is not functioning as intended. 

The characteristic curve of the ejector generated using numerical results is presented in 

Figure 19. It shows us that maximum entrainment ratio is approximately 0.97 and the critical 

relative backpressure is approximately 1.3. Comparing to the curve generated by analytical 

solution shown in Figure 18, there is a significant difference between the results. It must be noted 

that the analytical solution proposed did not take into account the phenomena of shockwaves and 

choking in the mixing chamber. Therefore, it is expected to see some difference between the 

results. 

Figure 19 also shows the operation regime of the ejector. For relative back pressure less than 

1.3 approximately, the ejector operates at critical regime. It means that both the primary and 

secondary stream are choked and the entrainment ratio is, therefore, not dependent on the value 

of the backpressure. This operation regime is often referred to as “on-design”. For relative back 

pressures greater than 1.3 approximately, the ejector operates in the subcritical regime and the 
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secondary mass flow rate is dependent on the backpressure, assuming that the primary stream is 

choked, which is true in this case. 

 

Figure 19. Characteristic curve of the ejector obtained using numerical results. 

Figure 20 shows the contour of Mach number for back pressure equal to 5000 Pa. A normal 

shock wave can be observed at the exit of the primary nozzle followed by what Matsuo, et al. 

[24] has described as a shock train, which is composed of a combination of oblique and normal 

shock waves. A shock train is a type of boundary layer interaction where the Mach number 

before the shock wave is greater than 1.5. This is true in our case. As the two streams flow along 

the constant area mixing chamber, the pressure of the primary stream is adjusted with the 

secondary stream to attenuate the shocks until they disappear.[4] From Figure 23, we can 

observe that the shock train is shorter for higher back pressures. The difference in backpressure 

does not influence the existence of a normal shock wave and boundary layer separation at the 

end of the primary nozzle. 
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Figure 20. Contour of Mach number for pb=5000 Pa 

The shock wave occurring at the exit of the primary nozzle for all backpressures is strong 

enough to cause a boundary layer separation towards the end of the divergent part of the primary 

nozzle. Boundary layer separation may also indicate that the geometry of the divergent part of 

the primary nozzle is not suitable. Further investigation is necessary to clearly determine the 

cause. 

Figure 21 shows the wall static pressure distribution along the mixing chamber for the 

different back pressures calculated. This clearly illustrates the phenomena of the shock train as 

reflected to the static pressure. At the entrance of the mixing chamber, an oscillating behavior is 

observed. This is in good agreement with the theories in [24]. In the mixing chamber, static 

pressure is recovered through the influence of shockwaves, shear layers and wall friction. A 

similar static pressure oscillation can be observed towards the end of the mixing chamber for 
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flows with back pressure from 5000 to 20000 Pa. Referring to Figure 23a – f, some weak shock 

train can be observed towards the end of the mixing chamber and at the beginning of the diffuser. 

Figure 22 gives us a closer view of the shock waves occurring at the beginning of the 

diffuser. A more defined shock wave occurs at lower backpressures. 

 

Figure 21. Wall static pressure along the mixing chamber. 
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Figure 22. Closer view at Mach number contours with shock wave occurring at the beginning of the diffuser for 

backpressures a) pb=5000, b) pb=10000, c) pb=15000, d) pb=20000. 
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Figure 23. Contour of mach number for different back pressures. a) pb=5000, b) pb=10000, c) pb=15000, d) 

pb=20000, e) pb=25000, f) pb=30000, g) pb=35000, h) pb=50000. 
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8. Conclusion 

This work focused on the design and verification of a test rig for the investigation and 

research of supersonic ejectors. The main design objective is to be able to design a working 

model of the test rig and verify that it is functioning as intended by numerical simulation. The 

test rig is designed such that specific parts are universal and can be reused for testing different 

ejector configurations. The parts have been manufactured and experimental verification is 

recommended to further expand the study. 

The analytical solution initially used a one-dimensional, isentropic, steady state approach as 

adapted from the works [6] and [7]. Losses in the primary nozzle, secondary nozzle, mixing 

chamber, and diffuser were accounted for using data obtained from the numerical simulation. 

Results show that the efficiency of the ejector is significantly increased by the presence of a 

diffuser and is decreased when losses were accounted for. The values for entrainment ratio and 

critical back pressure ratio display significant difference compared to the numerical solution. 

This can be attributed to the limitation of the analytical solution, which lies in the non-inclusion 

of the complex phenomenon of two streams mixing and shock waves occurring in the mixing 

chamber. 

The numerical simulation was conducted using the commercial software ANSYS Fluent 

using default solvers for compressible fluid flow. Mesh quality is relatively poor, making the 

simulations very time consuming. Although convergence in terms of the mass balance was 

achieved, it cannot be confidently concluded that the result of the numeric simulation has a high 

accuracy because of the quality of the mesh. However, the results gave some valuable insight 

into the process occurring inside the ejector. A characteristic curve has been generated. It is 
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recommended to do more simulation for higher relative back pressure intervals to be able to give 

a higher resolution and see more clearly the dependence of the entrainment ratio to the back 

pressure at the sub-critical regime. 
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Assembly and part drawings 
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                                                                           list 1
                                                                           listu1

Stary vykr. Schvalil

Novy vykr. Datum 05-04-2016

NOTES:
1. BREAK ALL SHARP EDGES UNLESS OTHERWISE SPECIFIED.
2. MATERIAL:DURALUMIN
3. DIMENSIONING AND TOLERANCING ACCORDING TO ASME Y14.5

SECTION  A-A



A A

C

C

B

B

1

A

B

2 3

C

D

E

F

A

B

C

D

E

F

4 5 6 7 8

1 2 3 4 5 6 7 8

TU v Liberci

0.3 A

12.6 +0.1
 0

2

30

0.3 A

24 0
-0.2

2

R0.4 MAX
0.5X45°

A8 0.05

16

4
2X 0.3

4

2X M5X0.8

7

2X 4.2
TAP DRILL

2X 118

10

R0.4 MAX

6°

8

0.3

12.7

M5X0.8

7

4.2 
TAP DRILL

118°

8.7

0.3

25.4

M5X0.8

6

4.2
TAP DRILL

118°

7.5

6
8

33.5

60°

60°

52.06

11

Roz. -Polot. Presnos

Tolerovani  c) Mater. Tr. odp

b) C. hm Hr. hm.

 
 
 
 0.750

a)

Zmena Datum Index Podpisy

Meritko Pozn. Navrhl

Kreslil  A.GUANLAO  
Nazev         PRT0020
 
               

Prezkousel

C. seznamu Technolog

C. sestavy Normaliz. Cis. vykresu
 
 
                                                                           list 1
                                                                           listu1

Stary vykr. Schvalil

Novy vykr. Datum 04-04-2016

NOTES:
1. BREAK ALL SHARP EDGES UNLESS OTHERWISE SPECIFIED.
2. MATERIAL:BRASS
3. DIMENSIONING AND TOLERANCING ACCORDING TO ASME Y14.5

SECTION  A-A

KEEP EDGE
SHARP

KEEP SHARP 
EDGE

SECTION  C-C

SECTION  B-B



A

A

1

A

B

2 3

C

D

E

F

A

B

C

D

E

F

4 5 6 7 8

1 2 3 4 5 6 7 8

TU v Liberci

6-8

120

24+0.2
 0

2X 0.5X454X 6.3

104

Roz. -Polot. Presnos

Tolerovani  c) Mater. Tr. odp

b) C. hm Hr. hm.

 
 
 
 1.000

a)

Zmena Datum Index Podpisy

Meritko Pozn. Navrhl

Kreslil  A. GUANLAO  
Nazev         PRT0021
 
               

Prezkousel

C. seznamu Technolog

C. sestavy Normaliz. Cis. vykresu
 
 
                                                                           list 1
                                                                           listu1

Stary vykr. Schvalil

Novy vykr. Datum 05-04-2016

NOTES:
1. BREAK ALL SHARP EDGES UNLESS OTHERWISE SPECIFIED.
2. MATERIAL:BRASS
3. DIMENSIONING AND TOLERANCING ACCORDING TO ASME Y14.5

SECTION  A-A



A

A

B

B

1

A

B

2 3

C

D

E

F

A

B

C

D

E

F

4 5 6 7 8

1 2 3 4 5 6 7 8

TU v Liberci

20

120

72.1

1

96

4X 6.3

14

93 76.1

0.8

4

30°

8

M5X0.8

8

118°

11

104

Roz. -Polot. Presnos

Tolerovani  c) Mater. Tr. odp

b) C. hm Hr. hm.

 
 
 
 1.000

a)

Zmena Datum Index Podpisy

Meritko Pozn. Navrhl

Kreslil  A. GUANLAO  
Nazev         PRT0024
 
               

Prezkousel

C. seznamu Technolog

C. sestavy Normaliz. Cis. vykresu
 
 
                                                                           list 1
                                                                           listu1

Stary vykr. Schvalil

Novy vykr. Datum 05-04-2016

NOTES:
1. BREAK ALL SHARP EDGES UNLESS OTHERWISE SPECIFIED.
2. MATERIAL:DURALUMIN
3. DIMENSIONING AND TOLERANCING ACCORDING TO ASME Y14.5

SECTION  A-A

SECTION  B-B



A A

B

B

1

A

B

2 3

C

D

E

F

A

B

C

D

E

F

4 5 6 7 8

1 2 3 4 5 6 7 8

TU v Liberci

90

33.5

A16

2

0.3 A

24+0.2
 0

0.3

40

M5X0.8

6

4.2 
TAP DRILL

118°

8

0.3
72

M5X0.8

6.5

4.2 TAP 
DRILL

118°

8
120°

2

0.3 A

24 0
-0.2

R0.4 MAX
0.5X45°

R0.4 MAX
0.5X45°

Roz. -Polot. Presnos

Tolerovani  c) Mater. Tr. odp

b) C. hm Hr. hm.

 
 
 
 1.000

a)

Zmena Datum Index Podpisy

Meritko Pozn. Navrhl

Kreslil  
Nazev         PRT0027
 
               

Prezkousel

C. seznamu Technolog

C. sestavy Normaliz. Cis. vykresu
 
 
                                                                           list 1
                                                                           listu1

Stary vykr. Schvalil

Novy vykr. Datum 14-04-2016

NOTES:
1. BREAK ALL SHARP EDGES UNLESS OTHERWISE SPECIFIED.
2. MATERIAL:BRASS
3. DIMENSIONING AND TOLERANCING ACCORDING TO ASME Y14.5

SECTION  A-A

KEEP EDGE
SHARP

SECTION  B-B



A A

1 2 3 4

A

B

C

D

E

FF

E

D

C

B

A

1 32 4

TU v Liberci

343

Roz. -Polot. Presnos

Tolerovani  c) Mater. Tr. odp

b) C. hm Hr. hm.

 
 
 
 0.333

a)

Zmena Datum Index Podpisy

Meritko Pozn. Navrhl

Kreslil  
Nazev         PRT0028
 
               

Prezkousel

C. seznamu Technolog

C. sestavy Normaliz. Cis. vykresu
 
 
                                                                           list 1
                                                                           listu1

Stary vykr. Schvalil

Novy vykr. Datum 09-05-2016

PIPE STOCK MATERIAL:
76.1X2.0 MM EN 1.4301(AISI304)

SECTION  A-A



AA

1 2 3 4

A

B

C

D

E

FF

E

D

C

B

A

1 32 4

TU v Liberci

5

120

76.1

4X 6.6

104

2
82

88

Roz. -Polot. Presnos

Tolerovani  c) Mater.  AISI301/304 Tr. odp

b) C. hm Hr. hm.

 
 
 
 0.750

a)

Zmena Datum Index Podpisy

Meritko Pozn. Navrhl

Kreslil  
Nazev         PRT0030
 
               

Prezkousel

C. seznamu Technolog

C. sestavy Normaliz. Cis. vykresu
 
 
                                                                           list 1
                                                                           listu1

Stary vykr. Schvalil

Novy vykr. Datum 28-04-2016

SECTION  A-A



1 2 3 4

A

B

C

D

E

FF

E

D

C

B

A

1 32 4

TU v Liberci

1424

72.1

76.1

Roz. -Polot. Presnos

Tolerovani  c) Mater. Tr. odp

b) C. hm Hr. hm.

 
 
 
 0.750

a)

Zmena Datum Index Podpisy

Meritko Pozn. Navrhl

Kreslil  
Nazev         PRT0031
 
               

Prezkousel

C. seznamu Technolog

C. sestavy Normaliz. Cis. vykresu
 
 
                                                                           list 1
                                                                           listu1

Stary vykr. Schvalil

Novy vykr. Datum 09-05-2016

PIPE STOCK MATERIAL:
76.1X2.0 MM EN 1.4301(AISI304)

SECTION  A-A



1 2 3 4

A

B

C

D

E

FF

E

D

C

B

A

1 32 4

TU v Liberci

2+0.075
 0

33.991
33.720

R14

R13

R11

R9

R6.75

0.5 X45°

0.5 X45°

10°

2

10°

10°

10°

10°

10°

10°

10°

Roz. -Polot. Presnos

Tolerovani  c) Mater. Tr. odp

b) C. hm Hr. hm.

 
 
 
 2.000

a)

Zmena Datum Index Podpisy

Meritko Pozn. Navrhl

Kreslil  A. GUANLAO  
Nazev         PLATE1
 
               

Prezkousel

C. seznamu Technolog

C. sestavy Normaliz. Cis. vykresu
 
 
                                                                           list 1
                                                                           listu1

Stary vykr. Schvalil

Novy vykr. Datum 02-03-2016

NOTES:
1. BREAK ALL SHARP EDGES UNLESS OTHERWISE SPECIFIED.
2. ALL CORNER FILLET R0.4 MAX
3. MATERIAL:BRASS
4. DIMENSIONING AND TOLERANCING ACCORDING TO ASME Y14.5

GENERIC TOLERANCE:
XX  0.125
XX.X  0.075
XX.XX  0.050
XX   0.01



1 2 3 4

A

B

C

D

E

FF

E

D

C

B

A

1 32 4

TU v Liberci

2
48.2

17.5 +0.3
 0

R16

8X 10

8X45

2X 0.5X45

Roz. -Polot. Presnos

Tolerovani  c) Mater. Tr. odp

b) C. hm Hr. hm.

 
 
 
 1.000

a)

Zmena Datum Index Podpisy

Meritko Pozn. Navrhl A.GUANLAO

Kreslil  A. GUANLAO  
Nazev         PLATE2
 
               

Prezkousel

C. seznamu Technolog

C. sestavy Normaliz. Cis. vykresu
 
 
                                                                           list 1
                                                                           listu1

Stary vykr. Schvalil

Novy vykr. Datum 28-03-2016

NOTES:
1. BREAK ALL SHARP EDGES UNLESS OTHERWISE SPECIFIED. 
2. MATERIAL:BRASS
3. DIMENSIONING AND TOLERANCING ACCORDING TO ASME Y14.5
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