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Abstract
HyperLTL model checking is an approach to verifying a system against a given hyper-
property, which is able to relate multiple executions of a system. The algorithmic approach
based on automata which relies on standard 𝜔-automata operations is well established. The
aim of this work is to outperform the complete state-of-the-art HyperLTL model checker
AutoHyper by employing more efficient partial automata operations, in particular com-
plementation and inclusion. The implementation of HyperLTL model checking in a novel
modular-based complementation tool Kofola resulted in a significant enhancement in
performance compared to the reference tool. Finally, our approach to language inclusion
checking shows a notable improvement in terms of the generated state space. As a com-
monly used automata operation, it could potentially contribute to the advancement of other
areas of verification.

Abstrakt
HyperLTL model checking je technika pre overenie systému voči danej hypervlastnosti vy-
jadrenej logikou HyperLTL, ktorá dokáže prepojiť viaceré spustenia systému. Hoci bol
vytvorený algoritmický prístup založený na automatoch, spolieha sa na štandardné op-
erácie 𝜔-automatov. Cieľom tejto práce je prekonať kompletný state-of-the-art HyperLTL
model checker AutoHyper využitím efektívnejších čiastkových operácií nad automatmi,
najmä komplementácie a inklúzie. Implementácia HyperLTL model checkingu v modulárne
založenom nástroji pre komplementáciu, Kofola, viedla k výraznému zvýšeniu výkonu
v porovnaní s referenčným nástrojom. Napokon, náš prístup ku kontrole jazykovej inklúzie
vykazuje výrazné zmenšenie generovaného stavového priestoru. Keďže ide o bežne použí-
vanú operáciu nad automatmi, náš prístup by potenciálne mohol prispieť k pokroku aj
v iných oblastiach verifikácie.

Keywords
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guage emptiness
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Rozšírený abstrakt
V oblasti hardvérových a softvérových systémov je formálna verifikácia procesom doka-
zovania alebo vyvrátenia správnosti systému vzhľadom na danú vlastnosť. Dosahuje sa
to pomocou formálnych metód, ktoré poskytujú matematický základ pre špecifikáciu vlast-
ností a modelovanie správania systému. HyperLTL model checking (MC) je potom technika,
ktorá umožňuje overenie systému voči danej hypervlastnosti vyjadrenej logikou HyperLTL,
ktorá sa vzťahuje na viaceré spustenia systému. Hoci bol vytvorený algoritmický prístup
založený na automatoch (ABV), spolieha sa na štandardné operácie 𝜔-automatov. Každá
formula vyjadrená pomocou HyperLTL obsahuje kvantifikátory nad rôznymi spusteniami
systému. Vo všeobecnosti môže ísť o ľubovoľnú sekvenciu existenčných a univerzálnych
kvantifikátorov. V ABV sa však výskyt univerzálnych kvantifikátorov prevádza na exis-
tenčný pomocou zákona dvojitej negácie. To v skratke znamená, že vždy keď dôjde k al-
ternácii kvantifikátorov (t. j. existenčný na univerzálny alebo naopak), je do konštrukcie
vnesená požiadavka na komplementáciu 𝜔-automatov. Ako je dobre známe, ide o drahú
operáciu, s asymptoticky exponenciálnou stavovou explóziou. Pri riešení HyperLTL MC
existuje špeciálny prípad (vyskytujúci sa pomerne často), kedy môže byť výhodnejšie zisťo-
vať jazykovú inklúziu medzi takýmito automatmi, čo okrem komplementácie využíva aj
algoritmus pre rozhodnutie prázdnosti jazyka.

Cieľom tejto práce je prekonať kompletný (teda teoreticky dokáže vyriešiť ľubovoľnú
úlohu pre HyperLTL model checking) state-of-the-art nástroj pre HyperLTL model check-
ing, a to využitím efektívnejších čiastkových operácií nad automatmi, hlavne spomínanej
komplementácie a inklúzie. S využitím modulárneho nástroja na komplementáciu Büchiho
automatov (intuitívne, s podmienkou nekonečne veľakrát dosiahnuť akceptačný stav) Ko-
fola [26] sme referenčný nástroj AutoHyper [4] dokázali v rýchlosti riešenia prekonať
na väčšine testovacích prípadov. K efektívnej existujúcej komplementačnej procedúre bol
v tejto práci pridaný vylepšený algoritmus pre zisťovanie prázdnosti jazyka zovšeobecnených
Büchiho automatov (automaty so zložitejšou akceptačnou podmienkou), ktoré dokopy tvo-
ria zlepšený algoritmus pre zisťovanie inklúzie. Konkrétne optimalizuje známy algoritmus
pre test prázdnosti od autorov Gaiser a Schwoon [25]. Okrem optimalizácií pre skoré odhale-
nie neprázdnosti jazyka boli navrhnuté a implementované aj techniky pre orezanie stavového
priestoru, ak je jazyk automatu prázdny. Pôvodný algoritmus v takomto prípade generoval
stavový priestor celý. Konkrétne ide o identifikovanie tzv. subsumpcií, teda relácii medzi
stavmi, ktoré takéto orezávanie (aj v prípade neprázdnosti) stavového priestoru umožňujú
na základe ich štruktúry, bez znalosti zatiaľ nepreskúmaných častí automatu. Pričom štruk-
túra stavov je daná práve komplementačnou procedúrou nástroja Kofola. Dôvodom pre
snaženie o minimalizáciu skúmaného stavového priestoru je fakt, že zložitosť inklúzie je
priamo závislá na zložitosti komplementácie, teda stavový priestor tiež môže exponenciálne
narásť.

Navrhnuté vylepšenia boli spolu s procedúrou pre HyperLTL model checking implemen-
tované v spomínanom nástroji Kofola, ktorý je implementovaný v jazyku C++ a postavený
nad knižnicou Spot [21]. Okrem testovania samotného model checkingu sme sa zamerali
aj na testovanie navrhnutého prístupu k inklúzii. Tu sme boli schopní častokrát orezať
stavový priestor aj na polovicu, v extrémnych prípadoch sme dokonca nevygenerovali ži-
adny stav. Testovanie voči nástroju Spot ukázalo, že v tejto metrike ho často porážame,
veľakrát vďaka technikám predstaveným touto prácou. Nakoniec sme otestovali aj rýchlosť
tejto procedúry s ostatnými aktuálnymi nástrojmi, kde sme takmer vo všetkých prípadoch
konštatovali víťazstvo, a to aj napriek tomu, že tento údaj pre nás nebol primárnym cieľom.
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Chapter 1

Introduction

In the domain of hardware and software systems, formal verification is the process of prov-
ing or disproving the correctness of a system with respect to a given property. This is
achieved through the use of formal methods which provide a mathematical basis for spec-
ifying properties and modeling system behavior. Formal languages, automata theory, and
logics are some of the most important formal methods used in verification tasks [2, 22].
Model checking [2] is an automated verification method that systematically checks whether
a property holds in the modeled system or not. The main advantage of this approach is
the ability to provide a counterexample in case the property does not hold.

Hyperproperties were defined by Clarkson and Schneider in 2008 [10] as a set of trace
properties. They point out properties that cannot be formulated as properties of a single
execution. In contrast to the properties of a single execution trace, which is satisfied by
a trace, a hyperproperty is satisfied by a set of traces. Robustness [16], path planning [28],
generalized non-interference [34], etc. are examples of such properties. HyperLTL [9] is then
an extension of linear temporal logic (LTL) that serves as a formal base to express a class
of linear hyperproperties. An approach often referred to as Automata-Based Verification
(ABV) [23], has been established to perform model checking. Automata-Based Verification
in HyperLTL model checking relies on utilizing automata over infinite words, 𝜔-automata.
Although the ABV approach is decidable [23], it suffers from common 𝜔-automata prob-
lems. The automata operations it consists of are the costliest ones. Namely, it includes
complementation, automata product, and inclusion checking.

In this thesis, we first settle the common theoretic notions regarding automata theory.
We then move on to the definition of HyperLTL and provide an example of verifying a simple
system against a simple property, based on the formal definition of the semantics of this
logic. Automata-Based Verification is then explained, along with a brief example of how
this check can be done algorithmically. Then we briefly describe the complementation tool
Kofola [26], which we use for the HyperLTL model checking. Subsequently, we formally
describe the approaches used in our implementation of the language inclusion procedure
(as an important part of the ABV), mainly based on subsumption relations [8] that imply
language inclusion between pairs of states, taking advantage of the specifics implied by the
use of Kofola. We can divide the approaches into two main categories, those that help
report counterexamples earlier than constructed, and those that prune the state space even
if no counterexample exists. Finally, an experimental evaluation comparing the state-of-
the-art tools is provided for both HyperLTL model checking and inclusion checking.
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Chapter 2

Preliminaries

We need to define the necessary theory and notation for the reader to understand the
subsequent chapters. Firstly, we define fundamental terms in automata theory relevant to
this thesis. Then we focus on the concepts regarding omega automata. Lastly, we delve
into the definition of Linear-Time Temporal Logic (henceforth referred to as LTL) and its
extension HyperLTL.

2.1 Automata
An alphabet is a finite, nonempty set of symbols denoted by Σ. We call 𝑥 a (finite) string
over Σ if and only if 𝑥 = 𝑥1𝑥2 . . . 𝑥𝑛 where each 𝑥𝑖 ∈ Σ for 1 ≤ 𝑖 ≤ 𝑛. The empty string is
denoted by 𝜀. The set of all finite strings over Σ is represented by Σ*. A language over Σ
is defined as a set 𝐿 ⊆ Σ*.

A finite automaton is a five-tuple 𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) where 𝑄 is a finite set of states,
Σ is an alphabet, 𝛿 : 𝑄 × Σ → 2𝑄 is a transition function, 𝐼 ⊆ 𝑄 is a set of initial states,
and 𝐹 ⊆ 𝑄 is a set of accepting states. We say that the automaton 𝐴 accepts a string
𝑥1𝑥2 . . . 𝑥𝑛 over Σ when there exists a sequence 𝑞0𝑥1𝑞1𝑥2 . . . 𝑥𝑛𝑞𝑛 such that 𝑞0 ∈ 𝐼, 𝑞𝑛 ∈ 𝐹
and 𝑞𝑖+1 ∈ 𝛿(𝑞𝑖, 𝑥𝑖+1) for all 0 ≤ 𝑖 < 𝑛. The set of all strings accepted by 𝐴 is called
the language of the automaton 𝐴, denoted by 𝐿(𝐴). Consider a state 𝑞𝑛 ∈ 𝑄; if there
is no sequence 𝑞0𝑥1𝑞1𝑥2 . . . 𝑥𝑛𝑞𝑛 such that 𝑥𝑖+1 ∈ Σ, 𝑞0 ∈ 𝐼, and 𝑞𝑖+1 ∈ 𝛿(𝑞𝑖, 𝑥𝑖+1) for all
0 ≤ 𝑖 < 𝑛, we say that 𝑞𝑛 is unreachable.

A language 𝐿 is called a regular language if there exists a finite automaton 𝐴 such that
𝐿 = 𝐿(𝐴). Regular languages can also be described by regular expressions. In fact, for
each regular expression, there exists an equivalent finite automaton and vice versa. Regular
expressions are composed according to the following rules [22]:

• 𝜀 and ∅ are regular expressions:
𝐿(𝜀) = {𝜀} and 𝐿(∅) = ∅,

• 𝑎 is a regular expression if 𝑎 ∈ Σ:
𝐿(𝑎) = {𝑎},

• if 𝑟 and 𝑠 are both regular expressions, 𝑟 + 𝑠 is also a regular expression:
𝐿(𝑟 + 𝑠) = 𝐿(𝑟) ∪ 𝐿(𝑠),

• if 𝑟 and 𝑠 are both regular expressions, 𝑟.𝑠 is also a regular expression:
𝐿(𝑟.𝑠) = {𝑥𝑦 | 𝑥 ∈ 𝐿(𝑟) ∧ 𝑦 ∈ 𝐿(𝑠)},
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Figure 2.1: A directed graph representing a finite automaton 𝐴 =
({0, 1, 2}, {𝑎, 𝑏}, {(0, 𝑎, {0, 1}), (0, 𝑏, {0, 1}), (1, 𝑎, {2}), (1, 𝑏, {1})}, {0}, {1}) recognizing
the language 𝐿(𝐴) = (𝑎 + 𝑏)+. States are (in this case) represented as rectangles with
rounded corners, transitions as arrows, the initial state has an incoming arrow, and an
accepting state is marked with a double border.

• if 𝑟 is a regular expression, then 𝑟* is also a regular expression:
𝐿(𝑟*) = {𝑥1 . . . 𝑥𝑛 | 𝑛 ∈ N and 𝑥𝑖 ∈ 𝐿(𝑟) for all 0 ≤ 𝑖 ≤ 𝑛},

• if 𝑟 is a regular expression, then 𝑟+ is also a regular expression:
𝐿(𝑟+) = {𝑥1 . . . 𝑥𝑛 | 𝑛 ∈ N and 𝑥𝑖 ∈ 𝐿(𝑟) for all 1 ≤ 𝑖 ≤ 𝑛}.

Refer to Figure 2.1 for a graphical representation of a finite automaton and the language
it recognizes, expressed by a regular expression.

2.2 Büchi automata
Let Σ be an alphabet. Then Σ𝜔 is the set of all infinite words (𝜔-words) over Σ. An
𝜔-language is a subset of Σ𝜔. Consider an 𝜔-word 𝑋 over Σ. 𝑋(𝑖), for 𝑖 ∈ N, represents the
𝑖 -th symbol of 𝑋 starting from 0. The substring of 𝑋 from 𝑖 to 𝑗 inclusive will be denoted
as 𝑋(𝑖, 𝑗) = 𝑋(𝑖) . . . 𝑋(𝑗). Automata operating over 𝜔-words are called 𝜔-automata.

A state-based Büchi automaton (BA) is an 𝜔-automaton defined as a five-tuple 𝐴 =
(𝑄,Σ, 𝛿, 𝐼, 𝐹 ), where

• 𝑄 is a finite set of states,

• Σ is an alphabet,

• 𝛿 ⊆ 𝑄× Σ×𝑄 is a set of transitions,

• 𝐼 ⊆ 𝑄 denotes the set of initial states, and

• 𝐹 ⊆ 𝑄 is a set of accepting states.

If needed, 𝛿 can be treated as a transition function 𝛿 : 𝑄 × Σ → 2𝑄. We say that 𝐴 is
deterministic if and only if |𝛿(𝑞, 𝑎) | ≤ 1 for all 𝑞 ∈ 𝑄, 𝑎 ∈ Σ; if |𝛿(𝑞, 𝑎) | ≥ 1 the automaton
𝐴 is complete. Figure 2.2 provides an example of an automaton that is neither deterministic
nor complete.

For convenience, we often use a transition-based Büchi automaton, as it may provide
a more compact representation. To maintain uniformity in further definitions of different
types of 𝜔-automata, we define it as a special type of a non-deterministic transition-
based Emerson-Lei automaton (TELA) over Σ. It is represented by the tuple 𝐴𝐸𝐿 =
(𝑄, 𝛿, 𝐼,Γ, 𝑝, 𝐴𝑐𝑐), where 𝑄 is a finite set of states, 𝛿 ⊆ 𝑄 × Σ × 𝑄 is a set of transitions,
𝐼 ⊆ 𝑄 is the set of initial states, Γ = {0, . . . , 𝑘 − 1} is a set of 𝑘 ∈ 𝑁+ colors, 𝑝 : 𝛿 → 2Γ

4
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(b) 𝐿(𝐴𝑡𝑏𝑎) = (𝑎+ 𝑏)*.(𝑏)𝜔

Figure 2.2: Examples of state-based (a) and transition-based (b) Büchi automata.

is a coloring function of transitions, and 𝐴𝑐𝑐 is any acceptance condition generated by the
following grammar:

𝛼 ::= Inf (𝑐) | Fin(𝑐) | (𝛼 ∧ 𝛼) | (𝛼 ∨ 𝛼)

such that 𝑐 ∈ Γ. We refer to it as a transition-based Büchi automaton when Γ = { 0 }
and 𝐴𝑐𝑐 = Inf ( 0 ), denoting it as 𝐴𝑡𝑏𝑎 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ), where 𝐹 = 𝑝−1( 0 ) (the set of all
accepting transitions) [26].

2.2.1 Run

Let 𝑥 ∈ Σ𝜔. A run 𝑟 of 𝐴 on 𝑥 is an 𝜔-word over the alphabet of states 𝑄, such that
𝑟(0) = 𝑞𝑖𝑛 and 𝑟(𝑖+1) ∈ 𝛿(𝑟(𝑖), 𝑥(𝑖)) for all 𝑖 ≥ 0. Consider the state-based Büchi automaton
𝐴 = (𝑄,Σ, 𝛿, {𝑞𝑖𝑛}, 𝐹 ) and let 𝑆inf(𝑟) be the set of all states that occur infinitely often in
the run 𝑟. The run 𝑟 is accepting if and only if 𝑆inf(𝑟) ∩ 𝐹 ̸= ∅ [1]. Similarly, for the
transition-based case, let 𝑇inf(𝑟) be the set of all transitions that occur infinitely often in
the run 𝑟. The run 𝑟 is accepting iff 𝑇inf(𝑟) ∩ 𝐹 ̸= ∅.

2.2.2 Language of Büchi automaton

A Büchi automaton 𝐴 accepts an infinite word 𝛼 if there is an accepting run 𝑟 of 𝐴 on 𝛼.
The language recognized by 𝐴 is defined as follows: 𝐿(𝐴) = {𝛼 ∈ Σ𝜔 | 𝐴 accepts 𝛼}. The
complementary language is defined as 𝐿(𝐴) = {𝛼 ∈ Σ𝜔 | 𝐴 does not accept 𝛼}.

Let 𝑅 be a regular expression with 𝜀 ̸∈ 𝐿(𝑅), then 𝑅𝜔 is called the infinite concatenation.
𝐿(𝑅𝜔) = 𝐿(𝑅)𝜔, where 𝐿(𝑅)𝜔 = {𝑥0𝑥1 . . . | 𝑥𝑖 ∈ 𝐿(𝑅) for all 𝑖 ∈ N}. A language 𝐿 is 𝜔-
regular if 𝐿 =

⋃︀𝑛
𝑖=1𝑅𝑖𝑆

𝜔
𝑖 , where 𝑅𝑖 and 𝑆𝑖 are regular languages. Such languages are

precisely those recognized by Büchi automata. When it comes to closure properties, 𝜔-
regular languages are closed under union, intersection, and complement. [22, 38]

2.2.3 Strongly connected component

A non-empty set of states 𝐶 ⊆ 𝑄 is a maximal strongly connected component (SCC) if for
each 𝑝, 𝑞 ∈ 𝐶, 𝑞 is reachable in 𝐶 from 𝑝 and 𝑝 is reachable in 𝐶 from 𝑞, and 𝐶 is a maximal
set with these properties [26]. A strongly connected component is called trivial if it consists
only of one state with no self-loops. In the further text, SCC always refers to the maximal
strongly connected component.

2.3 Complementation of Büchi automata
Complementation of Büchi automata is a crucial task, integral to termination analysis,
model checking procedures, etc. For a given Büchi automaton 𝐴, complementation is the
process of obtaining a Büchi automaton 𝐴𝑐 such that 𝐿(𝐴𝑐) = 𝐿(𝐴).
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The complement of a deterministic BA has at most 2𝑛 states. However, non-determinism
enhances the expressiveness of BAs [22]. Consequently, there exist nondeterministic Büchi
automata for which no deterministic equivalent exists (e.g., 𝐿 = (𝑎+𝑏)*𝑏𝜔 can only be recog-
nized by a nondeterministic BA). Non-determinism is a factor that makes complementation
difficult.

The worst-case state explosion resulting from the general complementation procedures
is 𝑂((0.76𝑛)𝑛) [1]. Several main general complementation approaches are identified:

• determinization-based [36],

• slice-based [29],

• rank-based [31],

• Ramsey-based [7], and

• subset-tuple construction [1].

Additionally, there are algorithms that leverage the structure of the input automaton,
applying specialized complementation procedures to enhance the bounds on state explosion.
An overview and a brief description of the structure of special automata types is listed
below [27, 26].

• Deterministic BA: defined above, complement size is at most 2𝑛.

• Semi-deterministic BA: consists of an initial part without accepting states/transitions
and a deterministic part containing accepting states/transitions. The transitions from
initial to deterministic part are one-way only. The size of the complement is 𝑂(4𝑛)
as a result of the NCSB construction [6].

• Inherently weak BA: within each SCC, all cycles are accepting, or all cycles are
rejecting. The size of the complement is 𝑂(3𝑛) as a result of the Miyano-Hayashi
construction [35].

• Elevator BA: each SCC is deterministic or inherently weak. Complement size is
𝑂(4𝑛) [26].

2.4 Generalized Büchi automata
A transition-based Generalized Büchi automaton (TGBA) can be defined as the transition-
based Emerson-Lei automaton 𝐴𝑇𝐺𝐵𝐴 = (𝑄, 𝛿, 𝐼,Γ, 𝑝, 𝐴𝑐𝑐) over Σ such that Γ = {0, . . . , 𝑘−
1} and 𝐴𝑐𝑐 = Inf (0)∧ . . .∧ Inf (𝑘− 1) [20]. An example of a TGBA is shown in Figure 2.3.

2.5 Intersection of Büchi automata
Consider (TG)BAs 𝐴 = (𝑄𝑎, 𝛿𝑎, 𝐼𝑎,Γ𝑎, 𝑝𝑎, 𝐴𝑐𝑐𝑎) and 𝐵 = (𝑄𝑏, 𝛿𝑏, 𝐼𝑏,Γ𝑏, 𝑝𝑏, 𝐴𝑐𝑐𝑏) over the
same alphabet Σ, and without loss of generality, we assume 𝑄𝑎 ∩𝑄𝑏 = ∅ and Γ𝑎 ∩ Γ𝑏 = ∅.
Then the automaton 𝑃 = (𝑄′, 𝛿′, 𝐼 ′,Γ′, 𝑝′, 𝐴𝑐𝑐′) over Σ that recognizes the intersection of
their languages 𝐿(𝑃 ) = 𝐿(𝐴) ∩ 𝐿(𝐵) can be defined as follows:

• 𝑄′ = 𝑄𝑎 ×𝑄𝑏,

6



0 1 2

3 4

1
𝑎, 𝑏

2
𝑎, 𝑏

𝑏

𝑎

2
0
𝑎, 𝑏

𝑎, 𝑏

1
𝑎, 𝑏

0 𝑏

Figure 2.3: Example of TGBA 𝐴 over Σ = {𝑎, 𝑏} with 𝐴𝑐𝑐 = Inf (0) ∧ Inf (1) ∧ Inf (2) and
𝐿(𝐴) = Σ𝜔.

• 𝛿′((𝑞𝑎1 , 𝑞𝑏1), 𝑎) = 𝛿𝑎(𝑞𝑎1 , 𝑎)× 𝛿𝑏(𝑞𝑏1 , 𝑎), for 𝑎 ∈ Σ,

• 𝐼 ′ = 𝐼𝑎 × 𝐼𝑏,

• Γ′ = Γ𝑎 ∪ Γ𝑏,

• 𝑝′((𝑞𝑎1 , 𝑞𝑏1)
𝑎→ (𝑞𝑎2 , 𝑞𝑏2)) = 𝑝𝑎(𝑞𝑎1

𝑎→ 𝑞𝑎2) ∪ 𝑝𝑏(𝑞𝑏1
𝑎→ 𝑞𝑏2), and

• 𝐴𝑐𝑐′ = 𝐴𝑐𝑐𝑎 ∧𝐴𝑐𝑐𝑏.

Refer to Figure 2.4 for a demonstration of the construction of the product (states are the
product of the original automata states).

Theorem 1. For TGBA 𝑃 it holds that 𝐿(𝑃 ) = 𝐿(𝐴) ∩ 𝐿(𝐵).

2.6 Language emptiness
Consider an automaton 𝐴. The language emptiness problem is the task of deciding whether
𝐿(𝐴) = ∅ holds. For automata over infinite words (𝜔-automata) it boils down to checking
the existence of a lasso that satisfies the respective acceptance condition.

2.7 Language inclusion
Consider automata 𝐴 and𝐵. The language inclusion problem is the task of deciding whether
𝐿(𝐴) ⊆ 𝐿(𝐵) holds. The theoretically optimal solution is to decide the following problem
𝐿(𝐴) ∩ 𝐿(𝐵)

?
= ∅. This entails complementation, subsequent intersection, and finally an

emptiness check of the resulting automaton. In practice, we can avoid constructing the
entire product automaton. More specifically, to check if the resulting automaton is empty,
we can use techniques that significantly restrict the generated state space.

2.8 HyperLTL
We fix a finite set of atomic propositions 𝐴𝑃 . A trace over 𝐴𝑃 is a map 𝑡 : N→ 2𝐴𝑃 , which
can be expressed as a sequence 𝑡(0)𝑡(1) . . . The set of all traces over 𝐴𝑃 is then denoted as
(2𝐴𝑃 )𝜔.

7



𝑝 𝑞

𝑎, 𝑏

𝑎, 𝑏

0
𝑏

(a) 𝐿(𝐴) = (𝑎+ 𝑏)*.(𝑏)𝜔

𝑟 𝑠

𝑏
𝑎

1
𝑏

𝑎

(b) 𝐿(𝐵) = 𝑏*.(𝑎+.𝑏+)𝜔

{𝑝, 𝑟}

{𝑝, 𝑠}

{𝑞, 𝑠} {𝑞, 𝑟}
𝑎

𝑎

𝑏

𝑏

1𝑏

𝑎

𝑎

1
𝑏

0
𝑏

0 𝑏

(c) The resulting automaton with 𝐴𝑐𝑐 = Inf (0)∧ Inf (1) recognizes the language
𝐿(𝑃 ) = 𝐿(𝐴) ∩ 𝐿(𝐵) = ∅.

Figure 2.4: Example of product construction, in accordance to definition in Section 2.5,
used to obtain an automaton that recognizes the intersection of languages.

Linear-time temporal logic (LTL) can be seen as a logic describing dynamic worlds, i.e.
it is a modal logic. To do so, temporal operators are defined to express changes in time.
LTL formulas are generated by the following grammar [23]:

𝜙 ::= 𝑎 | ¬𝜙 | 𝜙 ∧ 𝜙 | X𝜙 | 𝜙U𝜙

where 𝑎 ∈ 𝐴𝑃 is an atomic proposition, ¬ and ∧ are standard Boolean operators (other
commonly used Boolean operators can be defined in the usual way) and X,U are temporal
operators next and until respectively.

Suppose a trace 𝑡 and an LTL formula 𝜙. By notation 𝑡, 𝑖 |= 𝜙 we express that the trace
𝑡 at a position 𝑖 ∈ N satisfies the formula 𝜙. See the following definition [23]:

𝑡, 𝑖 |= 𝑎 iff 𝑎 ∈ 𝑡(𝑖),
𝑡, 𝑖 |= ¬𝜙 iff 𝑡, 𝑖 ̸|= 𝜙,

𝑡, 𝑖 |= 𝜙1 ∧ 𝜙2 iff 𝑡, 𝑖 |= 𝜙1 and 𝑡, 𝑖 |= 𝜙2,

𝑡, 𝑖 |= 𝑋𝜙 iff 𝑡, 𝑖+ 1 |= 𝜙,

𝑡, 𝑖 |= 𝜙1𝑈𝜙2 iff ∃𝑘 ≥ 𝑖 : 𝑡, 𝑘 |= 𝜙2 and ∀𝑖 ≤ 𝑗 < 𝑘 : 𝑡, 𝑗 |= 𝜙1.

The trace 𝑡 satisfies 𝜑, denoted as 𝑡 |= 𝜑, if 𝑡, 0 |= 𝜑.
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(a) 𝑋𝜙. (b) 𝜙1𝑈𝜙2.

Figure 2.5: Visualization of next (a) and until (b) operators. The states for which the
corresponding operator holds are colored.

Intuitively, 𝑋𝜙 means that 𝜙 is satisfied at the next position and 𝜙1𝑈𝜙2 says that at
some point (position) 𝜙2 is satisfied, but until that moment 𝜙1 holds. One can also come
across other derived temporal operators (syntactic sugar), such as:

• eventually: F𝜙
def⇐⇒ 𝑡𝑟𝑢𝑒U𝜙,

• globally: G𝜙
def⇐⇒ ¬F¬𝜙,

• weak until: 𝜙W𝜓
def⇐⇒ (𝜙U𝜓) ∨G𝜙, and

• release: 𝜙R𝜓 def⇐⇒ ¬(¬𝜙U¬𝜓).

For a better understanding of the next and until temporal operators, see the visualization
in Figure 2.5.

However, LTL can only be used for reasoning about a single path. HyperLTL extends
LTL formulas with quantification over traces to explicitly express the relations of executions
and their properties. HyperLTL formulas are generated by the following grammar [23, 9]:

𝜑 ::= ∃𝜋.𝜑 | ∀𝜋.𝜑 | 𝜓

𝜓 ::= 𝑎𝜋 | ¬𝜓 | 𝜓 ∧ 𝜓 | X𝜓 | 𝜓U𝜓

where 𝑎 ∈ 𝐴𝑃 , 𝜋 ∈ 𝒱 is a trace variable with 𝒱 being the infinite supply of trace variables.
The body of the HyperLTL formula 𝜓 is essentially an LTL formula. A HyperLTL formula
is considered closed if each occurrence of the trace variable is bound by a quantifier [9],
refer to Figure 2.6 for an illustration.

2.8.1 Semantics

To define the semantics of HyperLTL we need to introduce a trace assignment Π: 𝒱 →
(2𝐴𝑃 )𝜔 for mapping trace variables to actual traces (of the system). If we want to map
some trace variable 𝜋 ∈ 𝒱 to a particular trace 𝑡 using our mapping Π, we denote updating
Π so that Π(𝜋) = 𝑡 as Π[𝜋 → 𝑡]. For the satisfaction of a closed HyperLTL formula 𝜑 over
Π and a set of traces 𝑇 at a position 𝑖 ∈ N, we use the notation 𝑇,Π, 𝑖 |= 𝜑, defined as
follows [23]:
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Figure 2.6: Formula 𝜙 is closed, while formula 𝜓 is not closed.

𝑇,Π, 𝑖 |= 𝑎𝜋 iff 𝑎 ∈ Π(𝜋)(𝑖) (1)
𝑇,Π, 𝑖 |= ¬𝜓 iff 𝑇,Π, 𝑖 ̸|= 𝜓 (2)
𝑇,Π, 𝑖 |= 𝜓1 ∧ 𝜓2 iff 𝑇,Π, 𝑖 |= 𝜓1 and 𝑇,Π, 𝑖 |= 𝜓2 (3)
𝑇,Π, 𝑖 |= 𝑋𝜓 iff 𝑇,Π, 𝑖+ 1 |= 𝜓 (4)
𝑇,Π, 𝑖 |= 𝜓1𝑈𝜓2 iff ∃𝑘 ≥ 𝑖 : 𝑇,Π, 𝑖 |= 𝜓2 and ∀𝑖 ≤ 𝑗 < 𝑘 : 𝑇,Π, 𝑗 |= 𝜓1 (5)
𝑇,Π, 𝑖 |= ∃𝜋 : 𝜑 iff ∃𝑡 ∈ 𝑇 : 𝑇,Π[𝜋 → 𝑡], 𝑖 |= 𝜑 (6)
𝑇,Π, 𝑖 |= ∀𝜋 : 𝜑 iff ∀𝑡 ∈ 𝑇 : 𝑇,Π[𝜋 → 𝑡], 𝑖 |= 𝜑 (7)

Similarly to LTL, we say that a set of traces 𝑇 satisfies the property 𝜑 (written as 𝑇 |= 𝜑)
if 𝑇,Π∅, 0 |= 𝜑, where Π∅ denotes a mapping with the empty domain.

2.8.2 Kripke structure

Modeling the traces (behavior) of a specific system can be achieved through the use of
a Kripke structure (sometimes referred to as a transition system) [5, 23]. A Kripke structure
is a tuple 𝒦 = (𝑆, 𝑠0, 𝛿, 𝐴𝑃,𝐿) with the items of the following meaning:

• 𝑆 is a finite set of states,

• 𝑠0 is the initial state,

• 𝛿 is a transition function 𝛿 : 𝑆 → 2𝑆 ,

• 𝐴𝑃 is the set of atomic propositions, and

• 𝐿 is a labeling function 𝐿 : 𝑆 → 2𝐴𝑃 .

When dealing with properties that imply infinite traces, it is necessary for all states 𝑠 ∈ 𝑆
to have |𝛿(𝑠) | ≥ 1. An infinite sequence 𝑠0𝑠1 . . . ∈ 𝑆𝜔 is a path of a Kripke structure, with
𝑠0 being the initial state and 𝑠𝑖+1 ∈ 𝛿(𝑠𝑖) for each 𝑖 ∈ N. A trace corresponding to a path
𝑠0𝑠1 . . . is an infinite sequence of labels 𝑙0𝑙1 . . ., where each 𝑙𝑖 = 𝐿(𝑠𝑖). We use 𝑇𝑟(𝒦, 𝑠) to
represent the set of all traces whose corresponding paths start in the state 𝑠 of a Kripke
structure 𝒦. Given the set of traces, we can establish the satisfaction of Kripke structure 𝒦
with respect to the HyperLTL formula 𝜙 as 𝒦 |= 𝜙 if and only if 𝑇𝑟(𝒦, 𝑠0) |= 𝜙.
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structure 𝒦.

(b) The only two traces starting at the initial
state.

Figure 2.7: Kripke structure and traces starting at the initial state.

2.8.3 Example

To be more illustrative and to gain some intuition over HyperLTL and its semantics, we
provide a simple example. Consider the following HyperLTL formula (expressing a made
up hyperproperty):

𝜙 = ∀𝜋1∃𝜋2 : 𝑎𝜋1U𝑏𝜋2 ,

informally, read as for each trace 𝜋1 there exists a trace 𝜋2 such that 𝑎 holds on the trace
𝜋1 until 𝑏 holds on the trace 𝜋2. Also, consider the following Kripke structure 𝒦 (depicted
in Figure 2.7a):

• 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5},

• 𝑠0 is the initial state,

• 𝛿 = {(𝑠0, {𝑠1}), (𝑠1, {𝑠2, 𝑠4}), (𝑠2, {𝑠3}), (𝑠3, {𝑠2}), (𝑠4, {𝑠5}), (𝑠5, {𝑠2})},

• 𝐴𝑃 = {𝑎, 𝑏}, and

• 𝐿 = {(𝑠0, {𝑎}), (𝑠1, {𝑎}), (𝑠2, {𝑎}), (𝑠3, {𝑎, 𝑏}), (𝑠4, {𝑏}), (𝑠5, {𝑎})}.

Because 𝒦 is structurally simple, we observe that it contains only two distinct paths starting
from the initial state: 𝑠0𝑠1(𝑠2𝑠3)

𝜔 and 𝑠0𝑠1𝑠4𝑠5(𝑠2𝑠3)
𝜔. That means 𝑇𝑟(𝒦, 𝑠0) contains

traces 𝑡1 = {𝑎}{𝑎}({𝑎}{𝑎, 𝑏})𝜔 and 𝑡2 = {𝑎}{𝑎}{𝑏}{𝑎}({𝑎}{𝑎, 𝑏})𝜔 (Figure 2.7b shows
traces 𝑡1 and 𝑡2, respectively). In order to decide whether 𝑇𝑟(𝒦, 𝑠0) |= 𝜙 holds, we need to
inspect every possible assignment to the path variable 𝜋1 from our formula.
Let 𝜋1 be 𝑡1. Clearly, when we assign 𝜋2 trace 𝑡2, formula 𝑎𝜋1U𝑏𝜋2 holds. Starting from
position 0, 𝑎 holds throughout the entire trace 𝑡1, therefore it is true that 𝑎 holds until
position 2, where 𝑏 holds on the trace 𝑡2.
Let 𝜋1 be 𝑡2. By assigning 𝜋2 the trace 𝑡2 again, the formula 𝑎𝜋1U𝑏𝜋2 becomes true.
Starting from position 0, 𝑎 holds until position 2, where 𝑏 holds on the trace 𝑡2.

The previous was an intuitive approach, so let us now apply systematically the rules
from Section 2.8.1. Considering 𝑇 = 𝑇𝑟(𝒦, 𝑠0), we can rephrase our problem to check if
𝑇 |= 𝜙 holds, that is, if 𝑇,Π∅, 0 |= 𝜙. After applying Rule 7 with 𝑡 = 𝑡1, we proceed to
rule 6 with 𝑡 = 𝑡2. This results in Π = {(𝜋1, 𝑡1), (𝜋2, 𝑡2)}. Next, we examine the quantifier-
free formula 𝑎𝜋1U𝑏𝜋2 using Rule 5, selecting 𝑘 = 2 (𝑖 = 0 from the problem definition).
Now we need to verify ∀𝑖 ≤ 𝑗 < 𝑘 : 𝑇,Π, 𝑗 |= 𝑎𝜋1 using Rule 1. For all 𝑗 ∈ {0, 1}, we
have 𝑎 ∈ Π(𝜋1)(𝑗), implying that 𝑇,Π, 𝑗 |= 𝑎𝜋𝑗 holds. Similarly, for 𝑘 = 2 and Rule 1 we
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confirm that 𝑏 ∈ Π(𝜋2)(𝑘), and consequently 𝑇,Π, 𝑗 |= 𝑏𝜋𝑘
holds. To complete the proof

that 𝑇 |= 𝜙, Rule 7 would be applied with 𝑡 = 𝑡2 following a similar procedure.
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Chapter 3

HyperLTL model checking

Model checking serves as an automated verification method. Various properties of system
behavior, such as mutual exclusion and accessibility, require verification. To compare a sys-
tem and its specification, automata over infinite words are often employed. For properties
related to a single execution of the system, the established approach is the language inclu-
sion check. To be more precise, let the system 𝑆 be represented by the 𝜔-automaton 𝐴𝑆 and
the specification 𝜙 by the 𝜔-automaton 𝐴𝜙 (typically obtained through the LTL-to-NBA
conversion [14]). Finally, the inclusion check 𝐿(𝐴𝑆) ⊆ 𝐿(𝐴𝜙) is performed.

However, when dealing with hyperproperties (expressing relations between multiple sys-
tem executions), the task becomes more challenging. When comparing hyperproperties to
properties expressed by LTL and aiming to represent them through 𝜔-automata, we must
also consider the presence of quantifiers and trace variables in the HyperLTL formulas.
Quantifiers, more specifically each quantifier alternation, then cause the need for (possibly
more) complementations of 𝜔-automata, making the whole procedure difficult.

Recall the example in Section 2.8.3, where we actually performed model checking in
a brute-force manner. Our goal is to perform such checks algorithmically. This is feasible
because, similar to single-execution properties, it ultimately involves a language emptiness
check, which is decidable.

In this chapter, we first introduce Automata-based Verification (ABV) [24, 4, 23], as one
of the approaches for algorithmic verification of hyperproperties, followed by an illustrative
explanatory example. Subsequently, we briefly describe AutoHyper [4], a tool that im-
plements a slightly modified version of this algorithm. It will be used as a reference when
comparing our implementation against the state-of-the-art push button HyperLTL model
checker.

3.1 Automata-based algorithm
Consider a Kripke structure 𝒦 = (𝑆, 𝑠0, 𝛿𝒦, 𝐴𝑃, 𝐿) and a closed HyperLTL formula 𝜙. The
task is to check whether 𝒦 |= 𝜙. The idea behind the automata-based model-checking is to
construct a Büchi automaton that is equivalent to the LTL part (body) of the formula 𝜙.
Then we iteratively eliminate trace quantifiers, starting with the innermost one. By doing
so, an automaton is acquired that combines the system 𝒦 and formula 𝜙. To conclude
𝒦 |= 𝜙 or 𝒦 ̸|= 𝜙, we need to decide whether the language of the resulting automaton is
empty or not.
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HyperLTL formula 𝜙 = 𝑄1𝜋1 . . . 𝑄𝑛𝜋𝑛 · 𝜓 System modeled by 𝒦

BA := Convert 𝜓 to BA

Take and remove the innermost
sequence of the same type quantifiers

Sequence of existential quantifiers

BA := BA×𝒦

Outermost sequence

BA := BA

BA := BA×𝒦

BA := BA

𝐴𝑛
𝒦 ⊆ BA

No more quantifiers

Emptiness check of BA

SATUNSAT

UNSAT

SAT

+

− +

−

+

−

Figure 3.1: The scheme summarizes the steps of the ABV and automata operations it
employs. Colors indicate the focus on optimizing specific operations, with red frames indi-
cating a greater focus and orange frames indicating a lower focus.

Here, the algorithm is explained in greater detail. Let 𝜙 = 𝑄1𝜋1𝑄2𝜋2 . . . 𝑄𝑛𝜋𝑛 : 𝜙
*,

with 𝜙* denoting the quantifier-free subformula of 𝜙 and 𝑄𝑖 ∈ {∃,∀} for all 1 ≤ 𝑖 ≤ 𝑛.
Firstly, a (non-deterministic) Büchi automaton 𝐴𝜙* equivalent to the LTL body 𝜙* is
constructed. This is accomplished by the standard Tableau construction that creates an
automaton accepting exactly 𝜔-words satisfying 𝜙* [14]. This automaton’s alphabet is
Σ𝜙* = (2𝐴𝑃 )𝑛, one set of atomic propositions for each trace quantifier. The next step
is to inductively eliminate the trace quantifiers. Suppose the following subformula of 𝜙,
𝜓 = 𝑄𝑘𝜋𝑘 : 𝜙𝑘. We can safely make an assumption that automaton 𝐴𝑘 = (𝑄,Σ, 𝛿, 𝑞𝑖𝑛, 𝐹 )
for 𝜙𝑘 is already constructed (automaton 𝐴𝜙* being the base case). Since 𝑄𝑘 is the 𝑘-
th quantifier, the alphabet of the automaton 𝐴𝑘 is Σ = (2𝐴𝑃 )𝑘. Now, if 𝑄𝑘 = ∃, we
can perform existential projection, which is intuitively the product of 𝐴𝑘 and the Kripke
structure 𝒦 = (𝑆, 𝑠0, 𝛿, 𝐴𝑃,𝐿), necessary to associate the specification with the behavior.
Formally, we construct an automaton 𝐴𝑘−1 = (𝑄 × 𝑆,Σ′

, 𝛿
′
, (𝑞𝑖𝑛, 𝑠0), 𝐹 × 𝑆) where Σ

′
=

(2𝐴𝑃 )𝑘−1 and:

𝛿
′
((𝑞, 𝑠), (𝑙1, . . . , 𝑙𝑘−1)) = {(𝑟, 𝑠′) | (𝑠, 𝑠′) ∈ 𝛿𝒦 and 𝑟 ∈ 𝛿(𝑞, (𝑙1, . . . , 𝑙𝑘−1, 𝐿(𝑠)))} (3.1)
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𝑠0,
{𝑎}

𝑠1,
{𝑎}

𝑠2,
∅

(a) Kripke structure 𝒦.

𝑞0 𝑞1

𝑞2

(𝑎𝜋1 + ¬𝑎𝜋1 , 𝑏𝜋2)
(𝑎𝜋1 + ¬𝑎𝜋1 , 𝑏𝜋2)

(𝑎𝜋1 ,¬𝑏𝜋2)

(¬𝑎𝜋1 ,¬𝑏𝜋2)

(𝑎𝜋1 + ¬𝑎𝜋1 , 𝑏𝜋2 + ¬𝑏𝜋2)

(¬𝑎𝜋1 ,¬𝑏𝜋2) (𝑎𝜋1 ,¬𝑏𝜋2)

(b) NBA 𝐴 for G(𝑎𝜋1
→ F¬𝑎𝜋1

) ∨ F𝑏𝜋2
, adjusted from [30].

Figure 3.2: A simple Kripke structure to describe system behavior and an NBA representing
the LTL body of the HyperLTL formula G(𝑎𝜋1 → F¬𝑎𝜋1) ∨ F𝑏𝜋2 . To avoid cumbersome
notation, sets are given as sums. For example, transition labeled with (𝑎𝜋1 + ¬𝑎𝜋1 , 𝑏𝜋2)
denotes (𝑎𝜋1 ∨ ¬𝑎𝜋1) ∧ 𝑏𝜋2 .

where (𝑙1, . . . , 𝑙𝑘−1) and (𝑙1, . . . , 𝑙𝑘−1, 𝐿(𝑠)) are letters of automata 𝐴𝑘−1 and 𝐴𝑘 respectively
(making it Σ′ = (2𝐴𝑃 )𝑘−1 for 𝐴𝑘−1). An intuitive explanation of this definition is that we
read along both the automaton and Kripke structure, choosing only transitions that are
acceptable with respect to the current state of the system (Kripke structure). However, we
omitted the case where 𝑄𝑘 = ∀. This is transformed to the previous scenario using the law
of double negation, i.e. ¬¬∀𝜋𝑘𝜙𝑘 = ∀𝜋𝑘𝜙𝑘, which we can rewrite as ¬¬∀𝜋𝑘𝜙𝑘 = ¬∃𝜋𝑘¬𝜙𝑘.
Here, the negations raise the need for the complementation procedure of Büchi automata.

After each quantifier is eliminated as described above, we end up with an automaton
over the single-letter alphabet Σ = (2𝐴𝑃 )0 = {()}. Now we just have to perform an
emptiness check on this automaton, which means that 𝒦 |= 𝜙 if and only if the language
of the automaton is non-empty.

Consider the Kripke structure 𝒦 and the HyperLTL formula 𝜙 from the algorithm
description. If the following holds: 𝑇𝑟(𝒦, 𝑠0),Π[𝜋1 → 𝑡1, . . . 𝜋𝑛 → 𝑡𝑛], 0 |= 𝜙 if and only if
(𝑠00 . . . 𝑠

0
𝑛)(𝑠

1
0 . . . 𝑠

1
𝑛) . . . ∈ 𝐿(𝐴), where 𝑡𝑖 = 𝑠0𝑖 𝑠

1
𝑖 . . . for all traces, we say that automaton 𝐴

is 𝒦-equivalent to the formula 𝜙. Each step of the above algorithm produced a 𝒦-equivalent
automaton to certain subformula via combining the automaton with 𝒦. [24, 4]

One can modify the algorithm, for example, by negating the original formula and finding
the nonexistence, so the automaton with the empty language means satisfaction of the
formula (in other words, finding the counter-example to prove nonsatisfaction). For a more
schematic overview, see Figure 3.1.

3.1.1 Example

To demonstrate the algorithm, consider the HyperLTL formula ∀𝜋1∃𝜋2 : G(𝑎𝜋1 → F¬𝑎𝜋1)∨
F𝑏𝜋2 and a system modeled by the Kripke structure 𝒦 = (𝑆, 𝑠0, 𝛿, 𝐴𝑃,𝐿) (Figure 3.2a).
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𝑞0, 𝑠0

𝑞0, 𝑠1

𝑞1, 𝑠1

𝑞1, 𝑠2 𝑞0, 𝑠2

(¬𝑎𝜋1)

(𝑎𝜋1)

(¬𝑎𝜋1)

(¬𝑎𝜋1)

(¬𝑎𝜋1)(𝑎𝜋1)

(𝑎𝜋1)

(¬𝑎𝜋1)

(𝑎𝜋1)

(¬𝑎𝜋1)

Figure 3.3: NBA 𝐴* as the result of the existential projection of 𝒦 onto 𝐴.

A nondeterministic Büchi automaton 𝐴 = (𝑄,Σ, 𝛿, {𝑞𝑖𝑛}, 𝐹 ) representing the LTL body of
our formula may look like the one in Figure 3.2b.

The transitions of𝐴 consist of tuples of size 2, where the first component is the set of𝐴𝑃 s
of trace 𝜋1 and the second one is the set of 𝐴𝑃 s of trace 𝜋2. Since the innermost quantifier
is existential, we can now perform the existential projection and build an automaton 𝐴𝜋2 =
(𝑄𝜋2 ,Σ𝜋2 , 𝛿𝜋2 , 𝐼𝜋2 , 𝐹𝜋2). To avoid creating unreachable states, we start with the initial
states of 𝒦 and 𝐴 and gradually find the successors of each state. According to Section 3.1,
the new initial state(s) originate from the product of the initial states of 𝒦 and 𝐴. Since
we have only one initial state in each of them, the new initial state is 𝐼𝜋2 = {(𝑞0, 𝑠0)}, and
we have (𝑞0, 𝑠0) ∈ 𝐹𝜋2 since 𝑞0 ∈ 𝐹 . By applying Eq. 3.1 to find its successors, we obtain
the following:

• (𝑞1, 𝑠1) ∈ 𝛿𝜋2((𝑞0, 𝑠0), (𝑎𝜋1)) because 𝑠1 is the successor of 𝑠0 in 𝒦, and
𝑞1 ∈ 𝛿(𝑞0, (𝑎𝜋1 ,¬𝑏𝜋2)) where 𝐿(𝑠0) = {𝑎} (indicating that ¬𝑏 also holds in that state).

• (𝑞0, 𝑠1) ∈ 𝛿𝜋2((𝑞0, 𝑠0), (¬𝑎𝜋1)), same as before, 𝑠1 is the successor of 𝑠0 in 𝒦, and
𝑞0 ∈ 𝛿(𝑞0, (¬𝑎𝜋1 ,¬𝑏𝜋2)) where 𝐿(𝑠0) = {𝑎}. Moreover, (𝑞0, 𝑠1) ∈ 𝐹𝜋2 due to 𝑞0 ∈ 𝐹 .

• For example (𝑞2, 𝑠1) is not a successor of (𝑞0, 𝑠0) because ¬𝑏 holds in 𝑠0, whereas the
transition in 𝐴 from 𝑞0 to 𝑞2 requires 𝑏.

The completion of the construction for the automaton 𝐴𝜋2 over Σ𝜋2 = {𝑎𝜋1 ,¬𝑎𝜋1} follows
the same process as described above for each new state resulting in automaton in Figure 3.3.
Now that we have eliminated the existential quantifier, a universal quantifier remains in the
formula ∀𝜋1 : 𝜙*. Following the algorithm, we apply double negation, leading to the formula
¬∃𝜋1 : ¬𝜙*. Since we already have the automaton for 𝜙*, the next step is to complement
it. After using Spot [21] to complement 𝐴𝜋2 , we obtain the complement automaton 𝐴𝐶 =
(𝑄𝐶 ,Σ𝐶 , 𝛿𝐶 , 𝑐0, 𝐹𝐶), see Figure 3.4. The next step is to perform existential projection once
again, aiming to eliminate the existential quantifier, but this time with respect to the trace
variable 𝜋1. Employing the same approach as in the initial elimination, we combine 𝐴𝐶
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𝑐4 𝑐3 𝑐5
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(¬𝑎𝜋1)

(𝑎𝜋1)

(𝑎𝜋1)

(¬𝑎𝜋1)

(𝑎𝜋1)(¬𝑎𝜋1)

(𝑎𝜋1)
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(𝑎𝜋1) (𝑎𝜋1)

Figure 3.4: NBA 𝐴𝐶 as the result of the complementation needed to handle the universal
quantifier.

with the Kripke structure 𝒦 starting with the initial states. The resulting automaton of this
process, denoted as 𝐴𝑟, is depicted in Figure 3.5. The fact that the resulting automaton
𝐴𝑟 does not have any accepting states implies that its language is empty. Consequently,
we can interpret it as a nonsatisfaction of the system given the specification. However, we
must address the negation placed in front of the existential quantifier. This negation would
typically entail complementation of 𝐴𝑟. But in this case, it is evident that the complement
of an empty language will not be empty. Therefore, our conclusion is that the system does
satisfy the given specification. In formal terms, 𝒦 |= 𝜙 holds.

3.2 AutoHyper
In their work [4], Finkbeiner et al. introduce the AutoHyper tool as the first complete push
button tool capable of handling model verification of HyperLTL formulas without restric-
tions on the number of quantifier alternations. AutoHyper employs an automata-based
approach introduced above, and they state the following language inclusion property [4]:
Let 𝜙* = ∀𝜋1 . . . ∀𝜋𝑛𝜙 be a HyperLTL formula (𝜙 may include additional trace quanti-
fiers), and let 𝐴𝜙 be an automaton over Σ = (2𝐴𝑃 )𝑛 that is 𝒦-equivalent to 𝜙. Then
𝒦 |= 𝜙* if and only if 𝐿(𝐴𝑛

𝒦) ⊆ 𝐿(𝐴𝜙). Here, 𝐴𝑛
𝒦 is a nondeterministic Büchi automa-

ton over Σ = (2𝐴𝑃 )𝑛, such that for any 𝑛-tuple 𝑡1, 𝑡2, . . . , 𝑡𝑛 of the traces from 𝒦 it holds
that (𝑡1(0), 𝑡2(0) . . . , 𝑡𝑛(0))(𝑡1(1), 𝑡2(1) . . . , 𝑡𝑛(1)) . . . ∈ 𝐿(𝐴𝑛

𝒦). The construction of such an
automaton would follow Algorithm 1.

While the inclusion check, theoretically optimally done via complementation and the
following emptiness check, is no better than the standard automata-based procedure in
the worst case scenario [4], AutoHyper capitalizes on the possibility of terminating much
earlier when 𝒦 ̸|= 𝜙* without constructing the entire complement to prove automaton
(non)emptiness (by finding an accepting lasso).
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𝑐0, 𝑠0 𝑐1, 𝑠1 𝑐4, 𝑠2

𝑐3, 𝑠2

𝑐2, 𝑠1

Figure 3.5: The final existential projection results in the NBA 𝐴𝑟 over a singleton alphabet,
with no accepting states.

Autohyper uses Spot [21] for LTL-to-NBA conversion, complementation, and as the
inclusion checker. In addition to Spot, it offers several other tools to use as inclusion
checkers, namely Rabit [12], Bait [18], or Forklift [17]. However, in terms of successfully
solved instances, Spot stands out as the most successful among them. On the other
hand, there are cases where Spot is outperformed by some of the alternatives, therefore
AutoHyper provides the flexibility to use any of them.

Algorithm 1 N-fold self-composition of a Kripke structure
Input: Kripke structure 𝒦 = (𝑆, 𝑠0, 𝛿, 𝐴𝑃,𝐿), 𝑁 ∈ N+

Output: NBA 𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 )
𝑄← ∅, Σ← (2𝐴𝑃 )𝑁 , 𝛿 ← ∅, 𝐼 ← {(𝑠0)𝑁}, 𝐹 ← ∅
𝑄𝑢𝑒𝑢𝑒 𝑞
𝑞.𝐸𝑛𝑞𝑢𝑒𝑢𝑒(𝐼)
while 𝑞.𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦() do

𝑐𝑢𝑟𝑟𝑒𝑛𝑡← 𝑞.𝐷𝑒𝑞𝑢𝑒𝑢𝑒()
𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑛𝑑← 1 ◁ neutral for conjunction
𝑠𝑢𝑐𝑐𝑠← {∅}𝑁
for each 0 ≤ 𝑖 ≤ 𝑁 do

𝑠𝑡𝑎𝑡𝑒← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡[𝑖]
𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑛𝑑← 𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑛𝑑 ∧ 𝐿(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑢𝑐𝑐𝑠[𝑖]← 𝑔𝑒𝑡_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠_𝑜𝑓(𝑠𝑡𝑎𝑡𝑒)

end for

𝑎𝑙𝑙_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑐𝑜𝑚𝑏← 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑠𝑢𝑐𝑐𝑠,𝑁) ◁ product of 𝑁 same sets of successors
for each 𝑑𝑠𝑡_𝑠𝑡𝑎𝑡𝑒 of 𝑎𝑙𝑙_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑐𝑜𝑚𝑏 do

if 𝑠𝑡𝑎𝑡𝑒 ̸∈ 𝑄 then
𝑞.𝐸𝑛𝑞𝑢𝑒𝑢𝑒(𝑑𝑠𝑡_𝑠𝑡𝑎𝑡𝑒)
𝑄.𝑎𝑑𝑑(𝑑𝑠𝑡_𝑠𝑡𝑎𝑡𝑒)

end if
𝛿.𝑎𝑑𝑑(𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑡𝑟𝑎𝑛𝑠_𝑐𝑜𝑛𝑑, 𝑑𝑠𝑡_𝑠𝑡𝑎𝑡𝑒)

end for
end while
𝐹 ← 𝑄

return (𝑄,Σ, 𝛿, 𝐼, 𝐹 )
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Chapter 4

Subsumption relations

One of the approaches to decide 𝐿(𝐴) ⊆ 𝐿(𝐵) between 𝜔-automata 𝐴 and 𝐵 is to decide
whether the language of an automaton resulting from 𝐿(𝐴) ∩ 𝐿(𝐵) is empty. When con-
structing the product automaton on-the-fly, we can use the information gathered before
and during construction to predict and cut off unnecessary parts or find counterexamples
without explicitly constructing them. This approach extends far beyond the HyperLTL
model checking and thus can be utilized in various problems that include emptiness check.

This chapter introduces the necessary notions regarding simulations on 𝜔-automata.
We then define and combine various relations and theorems for an efficient inclusion check,
specifically when leveraging modular complementation from Kofola [26].

4.1 Simulations
There is a wide range of simulations over 𝜔-automata. Simulations allow us to relate states
not only by whether they accept the same 𝜔-words, but they allow us also to reason about
traces. Simulation can be defined as the game of two players [13], Spoiler and Duplicator.
Consider the following initial configuration of the game. The Spoiler starts in the state
𝑠0 and Duplicator starts in state 𝑑0. In each round of the game, Spoiler chooses 𝑎𝑖 ∈ Σ
and picks a transition such that 𝑠𝑖

𝑎𝑖−→ 𝑠𝑖+1 ∈ 𝛿. Duplicator has to pick the corresponding
transition such that 𝑑𝑖

𝑎𝑖−→ 𝑑𝑖+1 ∈ 𝛿. Assuming the automaton is complete, there are two
infinite traces, 𝜋𝑠 = 𝑠0

𝑎0−→ 𝑠1
𝑎1−→ 𝑠2 . . . and 𝜋𝑑 = 𝑑0

𝑎0−→ 𝑑1
𝑎1−→ 𝑑2 . . . According to the

winning condition for Duplicator, we distinguish the direct (di), delayed (de) and fair (f )
simulation. Let 𝑥 ∈ {𝑑𝑖, 𝑑𝑒, 𝑓}, the Duplicator wins when 𝒞𝑥(𝜋𝑠, 𝜋𝑑) holds [11]:

𝒞𝑑𝑖(𝜋𝑠, 𝜋𝑑)
def⇐⇒ ∀𝑖 ≥ 0: 𝑠𝑖 ∈ 𝐹 =⇒ 𝑑𝑖 ∈ 𝐹, (4.1)

𝒞𝑑𝑒(𝜋𝑠, 𝜋𝑑)
def⇐⇒ ∀𝑖 ≥ 0: 𝑠𝑖 ∈ 𝐹 =⇒ ∃𝑗 ≥ 𝑖 : 𝑑𝑗 ∈ 𝐹, (4.2)

𝒞𝑓 (𝜋𝑠, 𝜋𝑑)
def⇐⇒ 𝜋𝑠 is fair =⇒ 𝜋𝑑 is fair, (4.3)

where an infinite trace is fair if and only if it visits the accepting state(s) infinitely often.
Whenever the winning condition is not met, the winner is Spoiler. To denote that the state
𝑝 is direct simulated by the state 𝑞, we use the notation 𝑝 ⪯𝑑𝑖 𝑞. This definition would be
trivially extended to transition-based automata.
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4.1.1 Early simulations

This section defines early and early+1 simulations as introduced in [8], but for transition-
based Büchi automata.

Definition 1. Consider the Büchi automaton 𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) and the traces 𝜋𝑝 =
𝑝0𝑤0𝑝1𝑤1 . . . and 𝜋𝑟 = 𝑟0𝑤0𝑟1𝑤1 . . . over the same word 𝑤 = 𝑤0𝑤1 . . . ∈ Σ𝜔, where each
𝑝𝑖, 𝑟𝑖 ∈ 𝑄. Trace 𝜋𝑝 is early simulated by 𝜋𝑟, denoted as 𝜋𝑝 ⪯𝑒 𝜋𝑟,if and only if

∀𝑖 < 𝑗 : ((𝑝𝑖
𝑎→ 𝑝𝑖+1 ∈ 𝐹 ∨ 𝑖 = −1) ∧ 𝑝𝑗

𝑎→ 𝑝𝑗+1 ∈ 𝐹 ) =⇒ ∃𝑖 < 𝑘 ≤ 𝑗 : 𝑟𝑘
𝑎→ 𝑟𝑘+1 ∈ 𝐹.

Similarly, trace 𝜋𝑝 is early+1 simulated by 𝜋𝑟, denoted as 𝜋𝑝 ⪯𝑒+1 𝜋𝑟,if and only if

∀𝑖 < 𝑗 : (𝑝𝑖
𝑎→ 𝑝𝑖+1 ∈ 𝐹 ∧ 𝑝𝑗

𝑎→ 𝑝𝑗+1 ∈ 𝐹 ) =⇒ ∃𝑖 < 𝑘 ≤ 𝑗 : 𝑟𝑘
𝑎→ 𝑟𝑘+1 ∈ 𝐹.

For early+1 simulation this means that there is one accepting state in the 𝜋𝑟 for every two
accepting states in the 𝜋𝑝 and early simulation also requires that 𝜋𝑟 visits accepting state
no later than 𝜋𝑝.

To be able to express these relations on the states, [8] provides the following definitions.

Definition 2. Strategy is a function 𝛿𝑠 : 𝑄 × (𝑄 × Σ × 𝑄) → (𝑄 × Σ × 𝑄) such that
𝛿𝑠(𝑟, (𝑝, 𝑎, 𝑝

′)) = (𝑟, 𝑎, 𝑟′) where 𝑟′ ∈ 𝛿(𝑟, 𝑎).

In other words, strategy function chooses a transition from state 𝑟 based on transition
(𝑝, 𝑎, 𝑝′).

Definition 3. Strategy for traces is a function 𝛿𝑡 : 𝑄 × (𝑄 × Σ)𝜔 → (𝑄 × Σ)𝜔 such that
𝛿𝑡(𝑟0, 𝜋𝑝) = 𝑟0𝑤0𝑟1𝑤1 . . . where 𝛿𝑠(𝑟𝑖, (𝑝𝑖, 𝑤𝑖, 𝑝𝑖+1)) = (𝑟𝑖, 𝑤𝑖, 𝑟𝑖+1) holds for all 𝑖 ≥ 0.

It is essentially choosing the successors of 𝑟𝑖 following the trace 𝜋𝑝.

Definition 4. State 𝑝0 is early (early+1) simulated by state 𝑟0, denoted as 𝑝0 ⪯𝑒 𝑟0 (𝑝0 ⪯𝑒+1

𝑟0), if and only if there is a strategy function 𝛿𝑡 such that 𝜋𝑝 ⪯𝑒 𝛿𝑡(𝑟0, 𝜋𝑝) (𝜋𝑝 ⪯𝑒+1 𝛿𝑡(𝑟0, 𝜋𝑝))
holds for each trace 𝜋𝑝 starting in 𝑝0.

The language of a state 𝑝 ∈ 𝑄 from (TG)BA 𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) is defined as 𝐿(𝑝) =
{𝑤 | ∃ an accepting trace from 𝑝 in 𝐴 over 𝑤}. By ⊆𝐿 we denote the relation of language
inclusion of states, 𝑝 ⊆𝐿 𝑞 ⇐⇒ 𝐿(𝑝) ⊆ 𝐿(𝑞) [8].

Proposition 1. For the relations over the states of BA 𝐴 the following holds [8]:

⪯𝑒 ⊆ ⪯𝑒+1 ⊆ ⊆𝐿 .

4.2 Modular Complementation of Büchi Automata
This thesis builds on the tool Kofola [26], which employs a modular-based complementa-
tion approach (note that whenever we talk about modular complementation, it is a reference
to Kofola’s approach). Prior to complementation, the input automaton is divided into
partition blocks (a partition block is a group of strongly connected components, where
a group consists of at least one SCC) based on the structure of the strongly connected
components. An example of partitions can be seen in Figure 4.1a. Then, for each partition
block, the most suitable complementation algorithm is determined. Subsequently, the tool
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(a) Identified partitions of automaton 𝐴𝑒𝑥 (in this case a partition is an SCC). Green and blue frames
each contain an inherently weak accepting component, the orange frame contains a non-accepting
component (does not produce a partial macrostate).
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(b) The outcome of the modular complementation of the automaton 𝐴𝑒𝑥. The blue part of the
macrostates corresponds to the partition containing the blue SCC from 𝐴𝑒𝑥 in (a), and the green
part corresponds to the partition containing the green SCC from 𝐴𝑒𝑥. An instance of the MH
procedure is applied to each of the two. The resulting automaton has the acceptance condition
𝐴𝑐𝑐 = Inf ( 1 )∧ Inf ( 2 ) where Inf ( 1 ) is from MH for the green partition and Inf ( 2 ) is from MH for
the blue partition.

Figure 4.1: Example of modular complementation showing the input automaton and the
resulting automaton.

performs the complementation for each partition block using either synchronous construc-
tion or a postponed construction. The acceptance condition of the complement produced
by Kofola can potentially be more general - a conjuction of partial acceptance conditions
- which is one of the benefits of this approach (it can lead to smaller automata).
Postponed. In the postponed construction, the complementation of each partition block is
performed independently. The result is then obtained using the product construction of the
partial complements of the partition blocks. This approach is appropriate for applications
that require the entire complement, as reductions on the partial results can be applied.
Synchronous. The synchronous construction synchronizes the complementation of each
partition in each step. For example, consider an input automaton consisting of three
SCCs of different types. The states produced by modular complementation are of the
form (𝑁,𝑆1, 𝑆2, 𝑆3), where 𝑁 is the set for tracking all runs and 𝑆𝑖 is the state containing
runs within the 𝑖-th SCC. In each step, the successors of states in 𝑁 are computed and with
respect to them, the successors of each 𝑆1, 𝑆2, and 𝑆3 are computed according to partial
procedures. Creating the whole state of the complement in each step makes it fitting for
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on-the-fly applications (such as inclusion testing) because there are cases where we can
determine the result without the need for constructing the entire complement automaton.
However, compared to the postponed construction, it may suffer from generating useless
states.

4.2.1 Inherently Weak Accepting Components

One of the partial algorithms that Kofola uses is the standard Miyano-Hayashi(MH) com-
plementation procedure [35] for inherently weak Büchi automata. If an SCC is inherently
weak, all its cycles are either accepting or rejecting (for rejecting it means that the SCC
has an empty language). The approach in Kofola therefore assumes only inherently weak
accepting components, whose complementation is not trivial. The task is then to track all
the runs in such an SCC (or a partition) and to determine whether they leave it eventually.
If they leave it infinitely often for a certain 𝜔-word, the complement automaton will accept
such a word. To be precise and coherent with Kofola, consider the input automaton
𝐴 = (𝑄,Σ, 𝛿, 𝐼, 𝐹 ) and pick a partition block 𝑃 of inherently weak accepting SCCs. This
procedure within the modular complementation produces macrostates1 of the form (𝐶,𝐵),
where 𝐶 stands for check and represents runs in 𝑃 and 𝐵 ⊆ 𝐶 stands for breakpoint and
contains the runs that are being inspected whether they leave 𝑃 . Each macrostate has ex-
actly one successor given by the following transition function: 𝛿𝐶(𝑁, (𝐶,𝐵), 𝑎) = (𝐶 ′, 𝐵′),
where 𝑁 denotes all current runs within the automaton 𝐴, 𝐶 ′ = 𝛿(𝑁, 𝑎) ∩ 𝑃 and when
𝛿(𝐵, 𝑎)∩𝐶 ′ = ∅ then 𝐵′ = 𝐶 ′, otherwise 𝐵′ = 𝛿(𝐵, 𝑎)∩𝐶 ′. The transition (𝐶,𝐵)

𝑎→ (𝐶 ′, 𝐵′)
is accepting when 𝛿(𝐵, 𝑎) ∩ 𝐶 ′ = ∅. Details are omitted, the full specification of the algo-
rithm plugged into Kofola can be found in [26]. An example can be seen in Figure 4.1.

We can now delve into the definition of the proposed subsumptions. Suppose macrostates
𝑝 = (𝑁𝑝, 𝐶𝑝, 𝐵𝑝) and 𝑟 = (𝑁𝑟, 𝐶𝑟, 𝐵𝑟) with 𝑁,𝑁 ′ representing the sets of all currently vis-
ited states. Thus, 𝐶 ⊆ 𝑁 and 𝐶 ′ ⊆ 𝑁 ′. Note that the sets 𝑁,𝑁 ′ are always present in the
modular procedure, which implies that we can use them freely. Let us define the following
subsumption relation:

𝑝 ⊑ 𝑟 𝑑𝑒𝑓⇐⇒ 𝑁𝑝 ⊇ 𝑁𝑟 ∧ 𝐶𝑝 ⊇ 𝐶𝑟.

We also define a similar but stronger relation:

𝑝 ⊑𝐵 𝑟
𝑑𝑒𝑓⇐⇒ 𝑁𝑝 ⊇ 𝑁𝑟 ∧ 𝐶𝑝 ⊇ 𝐶𝑟 ∧𝐵𝑝 ⊇ 𝐵𝑟.

Lemma 1. The relation ⊑ is an early+1 simulation:

𝑝 ⊑ 𝑟 =⇒ 𝑝 ⪯𝑒+1 𝑟.

Proof. This proof follows the structure of the proof in [8].
We need to find the suitable strategy 𝛿𝑡(𝑟, 𝜋𝑝) according to Definition 4. As we stated
above, the Miyano-Hayashi complementation procedure produces deterministic transitions.
Therefore, the strategy is implicitly defined by the output’s characteristics. Namely, we
use strategy 𝛿⊑ which for a transition (𝑝, 𝑎, 𝑝′) chooses a transition (𝑟, 𝑎, 𝑟′), with 𝑝′ =
(𝑁𝑝′ , 𝐶𝑝′ , 𝐵𝑝′) and 𝑟′ = (𝑁𝑟′ , 𝐶𝑟′ , 𝐵𝑟′), such that 𝛿𝐶(𝑁𝑟, (𝐶𝑟, 𝐵𝑟), 𝑎) = (𝐶𝑟′ , 𝐵𝑟′). And given
that 𝑁𝑟 ⊆ 𝑁𝑝, also 𝐶𝑟′ ⊆ 𝐶𝑝′ . Putting the strategy in place guarantees 𝑝 ⊑ 𝑟 =⇒ 𝑝′ ⊑ 𝑟′,
the consequence of determinism and completeness is that (𝑟, 𝑎, 𝑟′) exists. It is also evident
that, whenever a state is removed from 𝐵𝑝, it is also removed from 𝐵𝑟 if present.

1By term macrostate we mean a state consisting of more states (typically sets of states of the original
automaton).

22



Now we show that for any two traces 𝜋𝑝 = 𝑝0𝑤0𝑝1𝑤1 . . . and 𝜋𝑟 = 𝛿⊑(𝑟0, 𝜋𝑝) =
𝑟0𝑤0𝑟1𝑤1 . . ., with 𝑝 = 𝑝0 and 𝑟 = 𝑟0, the condition 𝜋𝑝 ⪯𝑒+1 𝜋𝑟 is satisfied. By defini-
tion, it is necessary to prove that ∀𝑖 < 𝑗 : (𝑝𝑖

𝑤𝑖→ 𝑝𝑖+1 ∈ 𝐹𝐶 ∧ 𝑝𝑗
𝑤𝑗→ 𝑝𝑗+1 ∈ 𝐹𝐶) =⇒ ∃𝑖 <

𝑘 ≤ 𝑗 : 𝑟𝑘
𝑤𝑘→ 𝑟𝑘+1 ∈ 𝐹𝐶 , where 𝐹𝐶 is the set of accepting macrostates of 𝐴𝐶 .

Claim 1: For all 𝑖 ≥ 0, if 𝑝𝑖
𝑤𝑖→ 𝑝𝑖+1 ∈ 𝐹𝐶 , then 𝑝𝑖+1 ⊑𝐵 𝑟𝑖+1.

Proof: Suppose that 𝑝𝑖+1 = (𝑁𝑝𝑖+1 , 𝐶𝑝𝑖+1 , 𝐵𝑝𝑖+1) and 𝑟𝑖+1 = (𝑁𝑟𝑖+1 , 𝐶𝑟𝑖+1 , 𝐵𝑟𝑖+1). Since
𝑝𝑖

𝑤𝑖→ 𝑝𝑖+1 is accepting, it holds that (i) 𝐵𝑝𝑖+1 = 𝐶𝑝𝑖+1 , (ii) 𝐶𝑝𝑖+1 ⊇ 𝐶𝑟𝑖+1 since 𝑝𝑖+1 ⊑
𝑟𝑖+1 =⇒ 𝑁𝑝𝑖+1 ⊇ 𝑁𝑟𝑖+1 =⇒ (𝐶𝑝𝑖+1 = 𝑁𝑝𝑖+1 ∩ 𝑃 ) ⊇ (𝐶𝑟𝑖+1 = 𝑁𝑟𝑖+1 ∩ 𝑃 ) and (iii) 𝐶𝑟𝑖+1 ⊇
𝐵𝑟𝑖+1 . From (𝐵𝑝𝑖+1 = 𝐶𝑝𝑖+1) ⊇ 𝐶𝑟𝑖+1 ⊇ 𝐵𝑟𝑖+1 , it follows that 𝐵𝑝𝑖+1 ⊇ 𝐵𝑟𝑖+1 , implying
𝑝𝑖+1 ⊑𝐵 𝑟𝑖+1. ■

Claim 2: If 𝑝𝑖 ⊑𝐵 𝑟𝑖 and 𝑝𝑗
𝑤𝑗→ 𝑝𝑗+1 ∈ 𝐹𝐶 for some 𝑖 < 𝑗, then there exists 𝑖 < 𝑘 ≤ 𝑗 such

that 𝑟𝑘
𝑤𝑘→ 𝑟𝑘+1 ∈ 𝐹𝐶 .

Proof: From 𝑝𝑖 ⊑𝐵 𝑟𝑖 we have 𝐵𝑝𝑖 ⊇ 𝐵𝑟𝑖 and our strategy guarantees that in this case 𝐵𝑟𝑖

will be emptied no later than 𝐵𝑝𝑖 . ■
The two claims imply 𝜋𝑝 ⪯𝑒+1 𝜋𝑟. The conclusion is that our strategy meets the

requirements of Definition 4.

Lemma 2. The relation ⊑𝐵 is an early simulation:

𝑝 ⊑𝐵 𝑟 =⇒ 𝑝 ⪯𝑒 𝑟.

Proof. The strategy 𝛿⊑ we use is the same as in the proof of Lemma 1. Now we show that
for any two traces 𝜋𝑝 = 𝑝0𝑤0𝑝1𝑤1 . . . and 𝜋𝑟 = 𝛿⊑(𝑟0, 𝜋𝑝) = 𝑟0𝑤0𝑟1𝑤1 . . . it follows that
𝜋𝑝 ⪯𝑒 𝜋𝑟. Similarly as in the proof in [8] we restate Definition 1 of early simulation in the
following conjunction:

∀𝑖 < 𝑗 : (𝑝𝑖
𝑤𝑖→ 𝑝𝑖+1 ∈ 𝐹𝐶 ∧ 𝑝𝑗

𝑤𝑗→ 𝑝𝑗+1 ∈ 𝐹𝐶) =⇒ ∃𝑖 < 𝑘 ≤ 𝑗 : 𝑟𝑘
𝑤𝑘→ 𝑟𝑘+1 ∈ 𝐹𝐶 , (4.4)

𝑝𝑖
𝑤𝑖→ 𝑝𝑖+1 ∈ 𝐹 =⇒ ∃𝑘 ≤ 𝑖 : 𝑟𝑘

𝑤𝑘→ 𝑟𝑘+1 ∈ 𝐹. (4.5)

The condition 4.4 is the same as for the definition of ⊑ and since ⊑𝐵 is stronger, it follows
that 𝑝 ⊑ 𝑟. With strategy 𝛿⊑ being the same as in the proof of Lemma 1, Condition 4.4
is satisfied. Condition 4.5 follows from the second claim in the proof of Lemma 1.

4.2.2 Deterministic Accepting Components

For deterministic accepting components (DACs) Kofola [26] uses an approach based on the
NCSB construction [6] for the complementation of semi-deterministic Büchi automata. In
this section, we will prove that there exists early simulation between states of the particular
partial algorithm used within Kofola.

The most important aspect is again the computation of the successors. So let us briefly
sum up the definition provided in Kofola. As referred in [26], a partial algorithm CSB
uses a set 𝐵 similarly as MH for tracking the runs that eventually leave the SCC, further it
uses a set 𝑆 for storing runs which it guessed will not visit accepting transitions anymore
(safe runs). A set 𝐶 then contains runs that has not yet been decided as safe nor have they
been sampled into 𝐵. To avoid transitions between SCCs of the partition 𝑃 (so that we can
treat all runs as deterministic) 𝛿𝑆𝐶𝐶 is used. Moreover, transition function that only returns
accepting transitions (if present) 𝛿𝐹 is used. We define 𝛿𝐶𝑆𝐵(𝑁, (𝐶, 𝑆,𝐵), 𝑎) = 𝑈 [26] such
that:
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• if 𝛿𝐹 (𝑆, 𝑎) ̸= ∅, then 𝑈 = ∅,

• otherwise:

– 𝑈 includes (𝐶 ′, 𝑆′, 𝐵′), where:
∗ 𝐶 ′ = (𝛿(𝑁, 𝑎) ∩ 𝑃 ) ∖ 𝑆′,
∗ 𝑆′ = 𝛿𝑆𝐶𝐶(𝑆, 𝑎) ∩ 𝑃 ,
∗ 𝐵′ = 𝐶 ′ if 𝛿𝑆𝐶𝐶(𝐵, 𝑎) = ∅, otherwise 𝐵′ = 𝛿𝑆𝐶𝐶(𝐵, 𝑎).

We refer to this type of transition as emptying. The transition (𝐶, 𝑆,𝐵)
𝑎→

(𝐶 ′, 𝑆′, 𝐵′) is accepting if 𝛿𝑆𝐶𝐶(𝐵, 𝑎) = ∅.
– If 𝛿𝑆𝐶𝐶(𝐵, 𝑎) ∩ 𝛿𝐹 (𝐵, 𝑎) = ∅, 𝑈 also contains (𝐶 ′′, 𝑆′′, 𝐶 ′′), where:

∗ 𝐶 ′′ = 𝐶 ′ ∖ 𝑆′′,
∗ 𝑆′′ = 𝑆′ ∪𝐵′.

The transition (𝐶, 𝑆,𝐵)
𝑎→ (𝐶 ′′, 𝑆′′, 𝐶 ′′) is always accepting, and we refer to

this type of transition as safeing.

Now, similarly as for MH macrostates, we define the relation for the CSB macrostates. More
specifically, consider macrostates 𝑝 = (𝑁𝑝, 𝐶𝑝, 𝑆𝑝, 𝐵𝑝) and 𝑟 = (𝑁𝑟, 𝐶𝑟, 𝑆𝑟, 𝐵𝑟); then

𝑝 ⊑𝐶𝑆𝐵 𝑟
𝑑𝑒𝑓⇐⇒ 𝑁𝑝 ⊇ 𝑁𝑟 ∧ 𝑆𝑝 ⊇ 𝑆𝑟 ∧ (𝑆𝑝 ∪𝐵𝑝) ⊇ 𝐵𝑟.

Lemma 3. The relation ⊑𝐶𝑆𝐵 is an early simulation:

𝑝 ⊑𝐶𝑆𝐵 𝑟 =⇒ 𝑝 ⪯𝑒 𝑟.

Proof. First, let us state the following facts:

1. 𝑁 ⊆ 𝑁 ′ =⇒ 𝛿(𝑁, 𝑎) ⊆ 𝛿(𝑁 ′, 𝑎),

2. 𝑆 ∪ 𝐶 = 𝑁 ∩ 𝑃 , and

3. if a run 𝜌 is moved to 𝑆 on an infinite trace, then it stays safe forever or becomes
discontinued.

From each state of the CSB construction, there are at most two successors. We use a strategy
𝛿⊑𝐶𝑆𝐵 that if 𝑝𝑖

𝑎𝑖→ 𝑝𝑖+1 is safeing, we also take safeing transition from 𝑟𝑖 if possible. This
is the only scenario when safeing transition is picked from 𝑟𝑖. In all other cases, emptying
transition is chosen.
Claim 3: If 𝑝𝑖 ⊑𝐶𝑆𝐵 𝑟𝑖 and 𝑝𝑖

𝑎𝑖→ 𝑝𝑖+1 ̸∈ 𝐹𝐶 and 𝑟𝑖
𝑎𝑖→ 𝑟𝑖+1 ̸∈ 𝐹𝐶 , then 𝑝𝑖+1 ⊑𝐶𝑆𝐵 𝑟𝑖+1.

Proof: For 𝑆𝑝𝑖+1 = 𝛿𝑆𝐶𝐶(𝑆𝑝𝑖 , 𝑎) and 𝐵𝑝𝑖+1 = 𝛿𝑆𝐶𝐶(𝐵𝑝𝑖 , 𝑎). For 𝐵𝑟𝑖+1 , we have 𝐵𝑟𝑖+1 =
𝛿𝑆𝐶𝐶(𝐵𝑟𝑖 , 𝑎). From (𝑆𝑝𝑖 ∪ 𝐵𝑝𝑖) ⊇ 𝐵𝑟𝑖 , it holds that (𝑆𝑝𝑖+1 ∪ 𝐵𝑝𝑖+1) = (𝛿𝑆𝐶𝐶(𝑆𝑝𝑖 , 𝑎) ∪
𝛿𝑆𝐶𝐶(𝐵𝑝𝑖 , 𝑎)) ⊇ 𝛿𝑆𝐶𝐶(𝐵𝑟𝑖 , 𝑎) = 𝐵𝑟𝑖+1 and 𝑆𝑝𝑖+1 = 𝛿𝑆𝐶𝐶(𝑆𝑝𝑖 , 𝑎) ⊇ 𝛿𝑆𝐶𝐶(𝑆𝑟𝑖 , 𝑎) = 𝑆𝑟𝑖+1 . ■

Claim 4: If 𝑝𝑖 ⊑𝐶𝑆𝐵 𝑟𝑖 and 𝑝𝑗
𝑎𝑗→ 𝑝𝑗+1 ∈ 𝐹𝐶 , then there is a 𝑘 such that 𝑖 ≤ 𝑘 ≤ 𝑗 and

𝑟𝑘
𝑎𝑘→ 𝑟𝑘+1 ∈ 𝐹𝐶 .

Proof: We split the proof into two cases.

(I) 𝑝𝑗
𝑎𝑗→ 𝑝𝑗+1 ∈ 𝐹𝐶 is emptying.

(I.i) Suppose 𝐵𝑝𝑖 ⊇ 𝐵𝑟𝑖 , then 𝐵𝑟𝑖 becomes empty (and emits an accepting mark) no
later than 𝐵𝑝𝑖 .
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(I.ii) Otherwise, there was no emptying transition up to 𝑟𝑗 , so we use Claim 3. Since
𝑝𝑗

𝑎𝑗→ 𝑝𝑗+1 is emptying, 𝐵𝑝𝑗 becomes empty. Therefore, each run from (𝑆𝑝𝑗 ∪
𝐵𝑝𝑗 ) ⊇ 𝐵𝑟𝑗 is discontinued or safe, which means 𝛿𝑆𝐶𝐶(𝐵𝑟𝑗 , 𝑎) ∩ 𝛿𝐹 (𝐵𝑟𝑗 , 𝑎) =
∅. That proves the existence of the safeing transition from 𝑟𝑗 (which we take
according to our strategy).

(II) 𝑝𝑗
𝑎𝑗→ 𝑝𝑗+1 ∈ 𝐹𝐶 is safeing.

(II.i) Suppose 𝐵𝑝𝑖 ⊇ 𝐵𝑟𝑖 then either 𝐵𝑟𝑖 becomes empty sooner than 𝑝𝑗
𝑎𝑗→ 𝑝𝑗+1 or

𝐵𝑝𝑗 ⊇ 𝐵𝑟𝑗 and 𝑟𝑗
𝑎𝑗→ 𝑟𝑗+1 is also safeing.

(II.ii) Suppose that 𝐵𝑝𝑖 ̸⊇ 𝐵𝑟𝑖 and no emptying transition from 𝑟𝑖 to 𝑟𝑗 (worst case).
Then each run from (𝑆𝑝𝑗 ∪ 𝐵𝑝𝑗 ) ⊇ 𝐵𝑟𝑗 is moved to safe set. Therefore also the
transition 𝑟𝑗

𝑎𝑗→ 𝑟𝑗+1 can be safeing (which is picked by our strategy).

■

Claim 5: If 𝑝 ⊑𝐶𝑆𝐵 𝑟 then for all 𝑖 it holds that 𝑆𝑝𝑖 ⊇ 𝑆𝑟𝑖 .
Proof: This follows from our strategy not picking safeing transition (emptying transition
does not alter set 𝑆) if not necessary. We can only pick safeing transition on 𝜋𝑟 on the
exact same position as present on 𝜋𝑝, for example position 𝑖. Utilizing Claim 3 and emptying
transition not altering set 𝑆, the only alternation happens when safeing transition occur. In
that case, suppose it happens for 𝑝𝑖

𝑎𝑖→ 𝑝𝑖+1 and 𝑟𝑖
𝑎𝑖→ 𝑟𝑖+1. Clearly, it holds that 𝑝𝑖 ⊑𝐶𝑆𝐵 𝑟𝑖

(according to Claim 3). We start with 𝑁𝑝𝑖 ⊇ 𝑁𝑟𝑖 ∧ 𝑆𝑝𝑖 ⊇ 𝑆𝑟𝑖 ∧ (𝑆𝑝𝑖 ∪ 𝐵𝑝𝑖) ⊇ 𝐵𝑟𝑖 . Since
safeing transition moves all runs from set 𝐵 to set 𝑆, all runs from (𝑆𝑝𝑖∪𝐵𝑝𝑖) ⊇ 𝐵𝑟𝑖 become
safe together with 𝑆𝑝𝑖 ⊇ 𝑆𝑟𝑖 , leading to 𝑆𝑝𝑖+1 ⊇ 𝑆𝑟𝑖+1 . ■

Claim 6: If 𝑝 ⊑𝐶𝑆𝐵 𝑟 and 𝑝𝑖
𝑎𝑖→ 𝑝𝑖+1 ∈ 𝐹𝐶 , then 𝑝𝑖+1 ⊑𝐶𝑆𝐵 𝑟𝑖+1.

Proof: Whenever the accepting transition is encountered, we have 𝐶 = 𝐵; additionally from
Fact 2 we have 𝑆 ∪𝐶 = 𝑁 ∩𝑃 . In this particular case, for 𝑝𝑖𝑖+1 it holds that 𝐶𝑝𝑖+1 = 𝐵𝑝𝑖+1

and thus 𝑆𝑝𝑖+1 ∪ 𝐶𝑝𝑖+1 = 𝑆𝑝𝑖+1 ∪ 𝐵𝑝𝑖+1 = 𝑁𝑝𝑖+1 ∩ 𝑃 . From Fact 1 and 𝑝 ⊑𝐶𝑆𝐵 𝑟 we
inductively have 𝑁𝑝𝑖+1 ⊇ 𝑁𝑟𝑖+1 , therefore 𝑁𝑝𝑖+1 ∩ 𝑃 ⊇ 𝑁𝑟𝑖+1 ∩ 𝑃 . From definition, for 𝑟𝑖+1

it certainly holds that 𝑁𝑟𝑖+1 ∩ 𝑃 ⊇ 𝐶𝑟𝑖+1 ⊇ 𝐵𝑟𝑖+1 . Putting everything together, we have
(𝑆𝑝𝑖+1 ∪𝐵𝑝𝑖+1) ⊇ 𝐵𝑟𝑖+1 , and thanks to Claim 5 𝑆𝑝𝑖+1 ⊇ 𝑆𝑟𝑖+1 . ■
The validity of Claims 3, 4 and 6 concludes the proof, together with Claim 5 ensuring
existence of transitions.

4.3 Early Simulations for TGBA
Due to the fact that the result of the product construction 𝐴 ∩𝐵 of two (TG)BAs, is also
a TGBA, we need to define early and early+1 simulation for TGBAs.

Definition 5. Consider TGBA 𝐴 with acceptance 𝐴𝑐𝑐 = Inf (0) ∧ . . . ∧ Inf (𝑛). Next,
suppose two traces 𝜋𝑝 = 𝑝0𝑤0𝑝1 . . . and 𝜋𝑞 = 𝑞0𝑤0𝑞1 . . . of the automaton 𝐴. We say that
𝜋𝑝 ⪯𝑒+1 𝜋𝑞 if the following holds:

∀0 ≤ 𝑚 ≤ 𝑛 : ∀𝑖 < 𝑗 : (𝑝𝑖
𝑤𝑖→ 𝑝𝑖+1 ∈ 𝐹𝑚 ∧ 𝑝𝑗

𝑤𝑗→ 𝑝𝑗+1 ∈ 𝐹𝑚) =⇒

=⇒ ∃𝑖 < 𝑘 ≤ 𝑗 : 𝑟𝑘
𝑤𝑘→ 𝑟𝑘+1 ∈ 𝐹𝑚.
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Similarly, for early simulation, 𝜋𝑝 ⪯𝑒 𝜋𝑞 if:

∀0 ≤ 𝑚 ≤ 𝑛 : ∀𝑖 < 𝑗 : ((𝑝𝑖
𝑤𝑖→ 𝑝𝑖+1 ∈ 𝐹𝑚 ∨ 𝑖 = −1) ∧ 𝑝𝑗

𝑤𝑗→ 𝑝𝑗+1 ∈ 𝐹𝑚) =⇒

=⇒ ∃𝑖 < 𝑘 ≤ 𝑗 : 𝑟𝑘
𝑤𝑘→ 𝑟𝑘+1 ∈ 𝐹𝑚.

4.4 Early termination in Kofola
This section provides observations that can be used within Kofola for an efficient inclusion
and emptiness checking.

In this section, we assume a TGBA 𝐴𝑇𝐺𝐵𝐴 = (𝑄, 𝛿, 𝐼,Γ, 𝑝, 𝐴𝑐𝑐) over Σ such that Γ =
{0, . . . , 𝑘 − 1}. The fact that there is a transition 𝑡 such that 𝑝(𝑡) = 𝑖 (i.e., accepting) for
some selected color 0 ≤ 𝑖 ≤ 𝑘 − 1 on the path over 𝑢 from state 𝑝 to state 𝑞, is denoted by
𝑝

𝑢
⇝
∙
𝑞. By 𝐿(𝑝) we denote the set of 𝜔-words accepted from state 𝑝 and 𝐿(𝑝)𝑖, moreover,

adds a restriction to Γ = {𝑖} (intuitively simplifying the acceptance condition of 𝐴𝑇𝐺𝐵𝐴 to
𝐴𝑐𝑐 = Inf (𝑖)).

Firstly, we begin with the observations that help in reporting counterexamples with-
out fully constructing them. Then, additional observations are introduced to reduce the
explored state space (which is particularly useful when inclusion holds).

4.4.1 Early counterexample reporting

The first observation is that whenever we reach the state 𝑞 from the state 𝑝 over some
𝑢 ∈ Σ* such that 𝑝 ⪯𝑒+1 𝑞 and there were at least two accepting transitions between them,
the early+1 simulation ensures infinite generating of accepting transitions from 𝑞, so we
can decide the language of the automaton as nonempty at this moment. For TGBAs, it
means seeing at least two accepting transitions for each color 0 ≤ 𝑖 ≤ 𝑘 − 1.

Theorem 2. If TGBA 𝐴 has 𝐴𝑐𝑐 = Inf (0 ) ∧ . . . ∧ Inf (𝑘 − 1) then it holds that

(∀ 0 ≤ 𝑖 ≤ 𝑘 − 1: 𝑝
𝑢
⇝
∙
⇝
∙
𝑞 ∧ 𝑝 ⪯𝑒+1 𝑞) =⇒ 𝐿(𝑝)𝑖 ̸= ∅.

Lemma 4. (𝑝
𝑢
⇝
∙
⇝
∙
𝑞 ∧ 𝑝 ⪯𝑒+1 𝑞) =⇒ 𝑢𝜔 ∈ 𝐿(𝑝)𝑖

Proof. In this proof we use the notation 𝜋𝑥(𝑢) representing the finite trace from the state
𝑥 when reading 𝑢 ∈ Σ*. We also use 𝜋𝜔𝑥 (𝑢) to denote the infinite trace from state 𝑥 over
𝑢𝜔 ∈ Σ𝜔.
Suppose a finite trace 𝜋𝑝(𝑢) = 𝑝0 → 𝑝1 → . . . → 𝑝𝑖, where 𝑝0 = 𝑝, 𝑝𝑖 = 𝑞, and a finite
trace 𝜋𝑞(𝑢) = 𝑞0 → 𝑞1 → . . . → 𝑞𝑖, where 𝑞0 = 𝑞. The existence of 𝜋𝑞 is given by the fact
that the strategy function exists, from Definition 4. Let us say, that accepting transitions
are 𝑝𝑗 → 𝑝𝑗+1 and 𝑝𝑚 → 𝑝𝑚+1 where 0 ≤ 𝑗 < 𝑚 < 𝑖. Since 𝑝 ⪯𝑒+1 𝑞, the trace 𝜋𝑞 must
see the accepting transition in position 𝑘 such that 𝑗 < 𝑘 ≤ 𝑚. That means that also the
transition 𝑞𝑘 → 𝑞𝑘+1 is accepting. With trace 𝜋𝜔𝑞 (𝑢) = 𝑞0 → 𝑞1 . . .→ 𝑞𝑖 . . . being the suffix
of trace 𝜋𝜔𝑝 (𝑢) = 𝑝0 → 𝑝1 . . . → 𝑞0 → 𝑞1 → . . . → 𝑞𝑖 → . . ., the exact same transition is
accepting on trace 𝜋𝜔𝑝 (𝑢). Now we have that the position of 𝑝𝑗 → 𝑝𝑗+1 on trace 𝜋𝜔𝑝 (𝑢) is 𝑗,
the position of 𝑝𝑚 → 𝑝𝑚+1 on 𝜋𝜔𝑝 (𝑢) is 𝑚, position of 𝑞𝑘 → 𝑞𝑘+1 on 𝜋𝜔𝑝 (𝑢) is 𝑖+ 𝑘 and 𝑘 on
𝜋𝜔𝑞 (𝑢). Clearly, it holds that

𝑗𝜋𝜔
𝑝 (𝑢)

< 𝑘𝜋𝜔
𝑞 (𝑢)
≤ 𝑚𝜋𝜔

𝑝 (𝑢)
< (𝑖+ 𝑘)𝜋𝜔

𝑝 (𝑢)
.
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In other words, for accepting transitions on position 𝑚 and 𝑖+ 𝑘 on trace 𝜋𝜔𝑝 (𝑢) there has
to be some accepting transition 𝑞𝑛 → 𝑞𝑛+1 on 𝜋𝜔𝑞 (𝑢), therefore also 𝑞𝑛 → 𝑞𝑛+1 on position
𝑖+ 𝑛 on 𝜋𝜔𝑝 (𝑢), such that

𝑗𝜋𝜔
𝑝 (𝑢)

< 𝑘𝜋𝜔
𝑞 (𝑢)
≤ 𝑚𝜋𝜔

𝑝 (𝑢)
< 𝑛𝜋𝜔

𝑞 (𝑢)
≤ (𝑖+ 𝑘)𝜋𝜔

𝑝 (𝑢)
< (𝑖+ 𝑛)𝜋𝜔

𝑝 (𝑢)
.

Such generation will continue infinitely, which concludes Lemma 4. Theorem 2 is the direct
consequence of Lemma 4.

The next observation is similar to the one in Theorem 2, but for early simulation it is
sufficient to see only one accepting transition.

Theorem 3. (∀ 0 ≤ 𝑖 ≤ 𝑘 − 1: 𝑝
𝑢
⇝
∙
𝑞 ∧ 𝑝 ⪯𝑒 𝑞) =⇒ 𝐿(𝑝) ̸= ∅

Lemma 5. (𝑝
𝑢
⇝
∙
𝑞 ∧ 𝑝 ⪯𝑒 𝑞) =⇒ 𝑢𝜔 ∈ 𝐿(𝑝)𝑖

Proof. The proof would be carried out in a way similar to the proof of Lemma 4. Intu-
itively, early simulation ensures existence of the accepting transition on the path from 𝑝
to 𝑞 within the trace 𝜋𝑝 implies the accepting transition on the path from 𝑞 within the
trace 𝜋𝑞. That, however, creates a second accepting transition on the trace 𝜋𝑝 without
a corresponding accepting transition on the trace 𝜋𝑞. Early simulation ensures that there
is another accepting transition on 𝜋𝑞, which also implies another accepting transition on
𝜋𝑝. This happens infinitely often, which proves Lemma 5. The validity of Lemma 5 proves
Theorem 5.

Now we would like to extend such an approach to Kofola’s macrostates, making use
of the partial macrostates included in them. Therefore, we have to consider Definition 5
provided for TGBA.

Theorem 4. Consider macrostates 𝑝 = (𝐴𝑝
0, . . . , 𝐴

𝑝
𝑛) and 𝑞 = (𝐴𝑞

0, . . . , 𝐴
𝑞
𝑛) such that

𝐴𝑝
𝑖 ⪯𝑒+1 𝐴𝑞

𝑖 for each 0 ≤ 𝑖 ≤ 𝑛. Then the following holds:

𝑝 ⪯𝑒+1 𝑞.

Lemma 6. There is a strategy function 𝛿𝑡 such that 𝜋𝑝 ⪯𝑒+1 𝛿𝑡(𝑞0, 𝜋𝑝) for each trace 𝜋𝑝
starting in 𝑝0.

Proof. We define the strategy function 𝛿𝑡 with respect to partial strategy functions whose
existence is given by the early+1 relation between partial macrostates. More specifically,
function 𝛿𝑖 for each pair 𝐴𝑝

𝑖 , 𝐴
𝑞
𝑖 . The strategy 𝛿𝑡 is then defined as follows:

𝛿𝑡(𝑞0, 𝜋𝑝) = 𝑞0
𝑤0→ 𝑞1

𝑤1→ . . . ,

such that
𝛿(𝑞𝑖, (𝑝𝑖, 𝑤𝑖, 𝑝𝑖+1)) = 𝑞𝑖

𝑤𝑖→ 𝑞𝑖+1,

where
𝑞𝑖+1 = (𝛿0(𝐴

𝑞𝑖
0 , (𝐴

𝑝𝑖
0 , 𝑤𝑖, 𝐴

𝑝𝑖+1

0 )), . . . , 𝛿𝑛(𝐴
𝑞𝑖
𝑛 , (𝐴

𝑝𝑖
𝑛 , 𝑤𝑖, 𝐴

𝑝𝑖+1
𝑛 ))).

The sequence of 𝑗-th macrostate components, where 0 ≤ 𝑗 ≤ 𝑛, creates a subtrace, for
which the Definition 1 (for early+1 ) holds for 𝐹 = 𝑝−1(𝑗). All 𝑛 such subtraces create
one trace of macrostates. Therefore, for each 0 ≤ 𝑗 ≤ 𝑛 Definition 1 of early+1 simulation
holds, where 𝐹𝑗 = 𝑝−1(𝑗). That is exactly Definition 5. This proves validity of Lemma 6,
which proves Theorem 4.
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621 3 + 4 + 8 3 + 4, 3 + 4

626 3 + 4 + 8 3 + 4, 3 + 4

6 8 ∅, ∅

66 8 ∅, ∅

266 8 ∅, ∅

621 8 ∅, ∅

0 8 ∅, ∅

54 8 ∅, ∅

246 8 ∅, ∅

...

2 𝑎

1
2 𝑏

1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓

1
2 𝑎

1
2 𝑎1

2

𝑎

Figure 4.2: Fragment of the product automaton 𝐴 ∩ 𝐵𝑐𝑜𝑚𝑝𝑙 with 𝐴𝑐𝑐 = Inf ( 1 ) ∧ Inf ( 2 )
demonstrates the effect of an optimization that uses Theorem 3 and Theorem 4, where
𝑝 = (621 | 3 + 4 + 8 | 3 + 4, 3 + 4) and 𝑞 = (621 | 8 | ∅, ∅). Each of them being the product
macrostate of the form (𝑥 | 𝑁 | 𝐶,𝐵) such that 𝑥 ∈ 𝑄𝐴, 𝑁 ⊆ 𝑄𝐵 and 𝐶,𝐵 being sets from
the MH construction (with elements belonging to the same set presented as sums). Then,
the exploration of the red part can be omitted completely and the algorithm can terminate
with stating nonemptiness.

Theorem 5. Consider macrostates 𝑝 = (𝐴𝑝
0, . . . , 𝐴

𝑝
𝑛) and 𝑞 = (𝐴𝑞

0, . . . , 𝐴
𝑞
𝑛) such that 𝐴𝑝

𝑖 ⪯𝑒

𝐴𝑞
𝑖 for each 0 ≤ 𝑖 ≤ 𝑛. Then the following holds:

𝑝 ⪯𝑒 𝑞.

Lemma 7. There is a strategy function 𝛿𝑡 such that 𝜋𝑝 ⪯𝑒 𝛿𝑡(𝑞0, 𝜋𝑝) for each trace 𝜋𝑝
starting in 𝑝0.

Proof. The proof would be exactly like the proof of Lemma 6, leveraging the existence of
strategy functions for partial macrostates.

Theorems 3, 5 that reduce state space in practice can be seen in Figure 4.2. To finish this
section, we point out that since early and early+1 simulations under-approximate language
inclusion [8], if for two states 𝐿(𝑝) ⊆ 𝐿(𝑞) and it was already decided that 𝐿(𝑞) = ∅ we can
conclude 𝐿(𝑝) = ∅ without further exploration (which we utilize in Algorithm 3).

4.4.2 Reducing state space

Another optimization in terms of the early termination of inclusion (emptiness) check in-
cludes the direct simulation relation between the states of automaton 𝐴 and automaton 𝐵.
Intuitively, we want to prove that as soon as a product macrostate of 𝐴 ∩ 𝐵 contains the
state 𝑝 from 𝐴 and the state 𝑞 from 𝐵 such that 𝐿(𝑝) ⊆ 𝐿(𝑞), there is no need to explore
further from this macrostate, as it cannot produce any counterexample.
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Theorem 6. Consider the product macrostate 𝑝 = (𝑝𝐴, 𝑝𝐶) such that 𝑝𝐶 = (𝑁,𝑃0, . . . , 𝑃𝑖)
is a Kofola macrostate. Then we have

(∃𝑞 ∈ 𝑁 : 𝑞 ∈ 𝑄𝐵 ∧ 𝐿(𝑝𝐴) ⊆ 𝐿(𝑞)) =⇒ 𝐿(𝑝) = ∅.

Proof. Suppose 𝑞 ∈ 𝑁 , if it holds that 𝐿(𝑝𝐴) ⊆ 𝐿(𝑞), it means that 𝑞 accepts every 𝜔-word
𝑝𝐴 does. Therefore, if there is an accepting trace from 𝑝𝐴 over 𝑢 ∈ Σ𝜔, there exists one from
𝑞 too, meaning 𝑢 ̸∈ 𝐿(𝑝𝐶) (state of the complement cannot accept word that is accepted in
the original automaton) which implies 𝑢 ̸∈ 𝐿(𝑝). The case when there is a non-accepting
trace from 𝑝𝐴 over 𝑢 ∈ Σ𝜔 trivially leads to 𝑢 ̸∈ 𝐿(𝑝). Since a trace from 𝑝𝐴 of any kind
leads to non-acceptance, 𝐿(𝑝) = ∅, which proves Theorem 6.

Next, we present the reasoning for the special relations that can make the emptiness
check more efficient.

Definition 6. A relation ⊑𝐺𝐹𝐸𝐸 is good for the early emptiness check (GFEE) if:

𝑝 ⊑𝐺𝐹𝐸𝐸 𝑞 ⇐⇒ (𝑝𝑖
𝑎→ 𝑝𝑖+1 ∈ 𝐹 =⇒ ∃𝑗 ≤ 𝑖 : 𝑞𝑗

𝑎→ 𝑞𝑗+1 ∈ 𝐹 ).

Theorem 7. Let 𝑖 be an initial state of BA 𝐴. Then we have the following.

𝐿(𝑖) ̸= ∅ =⇒ ∃𝜋𝑖 : ¬∃𝑝, 𝑞 ∈ 𝑄 and 𝑝, 𝑞 ∈ 𝜋𝑖 : 𝑞 ⊑𝐺𝐹𝐸𝐸 𝑝 ∧ 𝑝⇝ 𝑞 (4.6)

Proof. For the sake of contradiction suppose that 𝐿(𝑖) ̸= ∅ and that ∀𝜋𝑖·∃𝑝, 𝑞 ∈ 𝑄 and 𝑝, 𝑞 ∈
𝜋𝑖 · 𝑞 ⊑𝐺𝐹𝐸𝐸 𝑝∧ 𝑝⇝ 𝑞. In this proof, we will show that this statement necessarily leads to
existence of a trace that satisfies the right-hand side of the implication 4.6, which is clearly
a contradiction. Firstly, let us label each such trace (of the potentially infinite number of
traces) as 𝜋𝑥 for 𝑥 ∈ N. Secondly, for each trace, there must exist a first pair of states
𝑝𝑥, 𝑞𝑥 such that 𝑝𝑥, 𝑞𝑥 ∈ 𝜋𝑖 and 𝑞𝑥 ⊑𝐺𝐹𝐸𝐸 𝑝𝑥 ∧ 𝑝𝑥 ⇝ 𝑞𝑥. For that purpose, we define the
mapping First : 𝜋 ↦→ 𝑄× N×𝑄× N. For trace 𝜋 it returns 𝐹𝑖𝑟𝑠𝑡(𝜋) = (𝑝+ 𝑖, 𝑞 + 𝑗) such
that 𝑗 is the minimum position for each 𝑟, 𝑠 ∈ 𝑄 on the trace 𝜋 where 𝑟 ⊑𝐺𝐹𝐸𝐸 𝑠 ∧ 𝑠⇝ 𝑟.
We often refer to 𝑖 or 𝑗 as 𝑃𝑜𝑠(𝑝) or 𝑃𝑜𝑠(𝑞) and only use 𝐹𝑖𝑟𝑠𝑡(𝜋) = (𝑝, 𝑞). We also define
a mapping Prefix : 𝜋 × N ↦→ 𝑄N that returns a prefix of the trace 𝜋 that forms a string of
states with the length specified by the second argument.
Claim 1: For a trace 𝜋𝑥 with 𝐹𝑖𝑟𝑠𝑡(𝜋𝑥) = (𝑝𝑥 + 𝑖, 𝑞𝑥 + 𝑗) there exists another trace 𝜋𝑦 such
that Prefix (𝜋𝑥,Pos(𝑝𝑥)) = Prefix (𝜋𝑦,Pos(𝑝𝑥)).
Proof: That is implied by the fact that from 𝑝𝑥 we need to see an accepting mark sooner
that we do on the trace 𝜋𝑥 (because 𝑞𝑥 ⪯𝑑𝑖 𝑝𝑥), therefore the need for the other trace 𝜋𝑦.
The existence of such a trace with the equality of the corresponding prefixes is trivial. ■

In the subsequent claims, we will show that existence of accepting trace 𝜋𝑥 from Claim 1
necessarily leads to generating an accepting trace 𝜋𝑖 such that ¬∃𝑝, 𝑞 ∈ 𝑄 and 𝑝, 𝑞 ∈ 𝜋𝑖 ·
𝑞 ⊑𝐺𝐹𝐸𝐸 𝑝 ∧ 𝑝 ⇝ 𝑞. In other words, it cannot generate traces 𝜋𝑗 such that ∃𝑝, 𝑞 ∈
𝑄 and 𝑝, 𝑞 ∈ 𝜋𝑗 · 𝑞 ⊑𝐺𝐹𝐸𝐸 𝑝∧ 𝑝⇝ 𝑞 infinitely often. Note that this trace can already exist;
we only prove that it always exists. We also add the definition of function 𝐴𝑐𝑐 : 𝜋×𝑄×N ↦→
N returning position of the 𝑛-th accepting mark from 𝑞𝑥 on the accepting trace we start
with, on another trace from certain state.
Claim 2: Consider the traces 𝜋𝑥 and 𝜋𝑦 from Claim 1 and let 𝐹𝑖𝑟𝑠𝑡(𝜋𝑦) = (𝑝𝑦 + 𝑔, 𝑞𝑦 + ℎ).
It holds that 𝑃𝑜𝑠(𝑝𝑥) < 𝑃𝑜𝑠(𝑞𝑦) on trace 𝜋𝑦.
Proof: Suppose Pos(𝑝𝑥) ≥ Pos(𝑞𝑦) holds, from Prefix (𝜋𝑥,Pos(𝑝𝑥)) = Prefix (𝜋𝑦,Pos(𝑝𝑥))
it follows that 𝐹𝑖𝑟𝑠𝑡(𝜋𝑥) = (𝑝𝑦, 𝑞𝑦), which contradicts 𝐹𝑖𝑟𝑠𝑡(𝜋𝑥) = (𝑝𝑥, 𝑞𝑥). ■
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Claim 3: Consider the traces 𝜋𝑥 and 𝜋𝑦 from Claim 2. It holds that if there is a state 𝑟
with an outgoing accepting transition on the trace 𝜋𝑥 such that 𝑟 ⇝

∙
𝑝𝑥, then the trace 𝜋𝑦

contains the same prefix Prefix (𝜋𝑥, 𝑃𝑜𝑠(𝑟) + 1) (here we overload the function 𝑃𝑜𝑠, as it is
contextually evident what we mean).
Proof: That is implied by the fact that Prefix (𝜋𝑥,Pos(𝑝𝑥)) = Prefix (𝜋𝑦,Pos(𝑝𝑥)), which is
longer than or equal to Prefix (𝜋𝑥, 𝑃𝑜𝑠(𝑟) + 1). ■

Claim 4: Consider the traces 𝜋𝑥 and 𝜋𝑦 from Claim 2. It holds that 𝐴𝑐𝑐(𝜋𝑥, 𝑝𝑥, 𝑖) >
𝐴𝑐𝑐(𝜋𝑦, 𝑝𝑥, 𝑖).
Proof: The 𝐴𝑐𝑐(𝜋𝑥, 𝑝𝑥, 𝑖) > 𝐴𝑐𝑐(𝜋𝑦, 𝑝𝑥, 𝑖) is given by the fact that |𝑝𝑥, 𝑞𝑥 | ≥ 1 (the length
of path from 𝑝𝑥 to 𝑞𝑥) and 𝐴𝑐𝑐(𝜋𝑦, 𝑝𝑥, 𝑖) ≤ 𝐴𝑐𝑐(𝜋𝑥, 𝑝𝑥, 𝑖)−|𝑝𝑥, 𝑞𝑥 | < 𝐴𝑐𝑐(𝜋𝑥, 𝑝𝑥, 𝑖) (caused
by ⊑𝐺𝐹𝐸𝐸). ■

Claim 5: Consider the traces 𝜋𝑥 and 𝜋𝑦 from Claim 1. If a path from 𝑝𝑥 to 𝑞𝑦 contains
𝑘 ∈ N accepting marks on the trace 𝜋𝑦, it holds that 𝐴𝑐𝑐(𝜋𝑥, 𝑞𝑥, 𝑘+1) > 𝐴𝑐𝑐(𝜋𝑦, 𝑞𝑦, 𝑘+1).
Proof: Relation ⊑𝐺𝐹𝐸𝐸 gives us 𝐴𝑐𝑐(𝜋𝑥, 𝑞𝑥, 𝑖) ≥ 𝐴𝑐𝑐(𝜋𝑦, 𝑝𝑥, 𝑖) for 𝑖 ≥ 𝑘 + 1, resulting in
𝐴𝑐𝑐(𝜋𝑥, 𝑝𝑥, 𝑖) > 𝐴𝑐𝑐(𝜋𝑥, 𝑞𝑥, 𝑖) ≥ 𝐴𝑐𝑐(𝜋𝑦, 𝑝𝑥, 𝑖). From Pos(𝑝𝑥) < Pos(𝑞𝑦) on 𝜋𝑦 and the fact
that there is only 𝑘 accepting marks between 𝑝𝑥 and 𝑞𝑦 on 𝜋𝑦, we have 𝐴𝑐𝑐(𝜋𝑦, 𝑞𝑦, 𝑘+1) =
𝐴𝑐𝑐(𝜋𝑦, 𝑝𝑥, 𝑘 + 1)− (Pos(𝑞𝑦)− Pos(𝑝𝑥)), forming the inequality

𝐴𝑐𝑐(𝜋𝑥, 𝑝𝑥, 𝑘 + 1) > 𝐴𝑐𝑐(𝜋𝑥, 𝑞𝑥, 𝑘 + 1) ≥ 𝐴𝑐𝑐(𝜋𝑦, 𝑝𝑥, 𝑘 + 1) > 𝐴𝑐𝑐(𝜋𝑦, 𝑞𝑦, 𝑘 + 1).■

Corollary 1. According to Claim 5 from 𝜋𝑥, inductively there is a point where a trace 𝜋𝑚
is generated such that 𝐴𝑐𝑐(𝜋𝑚, 𝑞𝑚, 𝑘 + 1) < 0, which means 𝑝𝑚−1 ⇝∙

𝑝𝑚 ⇝ 𝑞𝑚.

Corollary 2. From Claim 3 and Corollary 1 it holds that traces 𝜋𝑚, . . . , 𝜋𝑚1 such that
𝐴𝑐𝑐(𝜋𝑚, 𝑞𝑚, 𝑘+2) > · · · > 0 > 𝐴𝑐𝑐(𝜋𝑚1, 𝑞𝑚1, 𝑘+2) share the same prefix with the accepting
mark.

Inductively applying Corollary 2 at most |𝑄 | times, we obtain a trace 𝜋𝑚𝑄 such that it
contains Prefix (𝜋𝑚, 𝑃𝑜𝑠(𝑟𝑚)+1),Prefix (𝜋𝑚1, 𝑃𝑜𝑠(𝑟𝑚1)+1), . . . ,Prefix (𝜋𝑚𝑄, 𝑃𝑜𝑠(𝑟𝑚𝑄)+1).
Each prefix has the property of not containing any 𝐹𝑖𝑟𝑠𝑡(𝑝𝑚𝑖), and it contains an accepting
mark. We thus certainly have a trace that reaches state 𝑡 and after at most |𝑄 | transitions
again 𝑡 while seeing an accepting state. We give the desired trace, proving Theorem 7.

A simple example showing the reduction of the state space using Theorem 7 with ⪯𝑑𝑖

being ⊑𝐺𝐹𝐸𝐸 is shown in Figure 4.3.

Proposition 2. Direct simulation ⊑𝑑𝑖 and early simulation ⪯𝑒 are ⊑𝐺𝐹𝐸𝐸.

Corollary 3. Let 𝑖 be an initial state of TGBA 𝐴, then:

𝐿(𝑖) ̸= ∅ =⇒ ∃𝜋𝑖 · ¬∃𝑝, 𝑞 ∈ 𝑄 and 𝑝, 𝑞 ∈ 𝜋𝑖 : 𝑞 ⊑𝐺𝐹𝐸𝐸 𝑝 ∧ 𝑝⇝ 𝑞.

Proof. Proof is given by the proof of Theorem 7, applying the same reasoning successively
for each color 𝑐 ∈ Γ.
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Figure 4.3: This figure shows exploring given BA 𝐴 over 𝑎, 𝑏 for emptiness check when uti-
lizing Theorem 7. The orange transitions with orange numbers represent the DFS traversal
and its order. And because 2 ⪯𝑑𝑖 0 and 0⇝ 2, we do not explore the red area from state 2.

Algorithm 2 Merge SCC
1: Function mergeSCCaccMarks(𝑑𝑠𝑡):
2: 𝑐𝑜𝑛𝑑← ∅;
3: do
4: (𝑢,𝐶)← SCCs.pop();
5: if (not 𝐹𝑖𝑟𝑠𝑡(𝑢)) or 𝑢 is not Root then 𝑐𝑜𝑛𝑑← 𝑐𝑜𝑛𝑑 ∪ 𝐶; ◁ To avoid acc. mark

outside the SCC
6: if 𝑐𝑜𝑛𝑑 = Γ then 𝑒𝑚𝑝𝑡𝑦 = 𝑓𝑎𝑙𝑠𝑒;𝑑𝑒𝑐𝑖𝑑𝑒𝑑 = 𝑡𝑟𝑢𝑒;return true;
7: while (𝑢.dfsnum > 𝑑𝑠𝑡.dfsnum);
8: SCCs.push((𝑢, 𝑐𝑜𝑛𝑑));
9: return false;

4.5 Inclusion check
For the algorithm that orchestrates the emptiness check for our inclusion, we chose to the
best of our knowledge the best state-of-the-art algorithm for the emptiness check of the
TGBA when it comes to number of generated states. The algorithm introduced by Gaiser
and Schwoon [25] builds on the standard Tarjan’s algorithm [37] to search strongly con-
nected components, which is also well suited for on-the-fly checking. We provide an adap-
tation of this algorithm using our optimizations from previous sections. This algorithm is
an amendment of Couvreur’s algorithm [14], which is, to the best of our knowledge, imple-
mented in Spot. There also exists an algorithm for the generic acceptance condition [3]
(also implemented in Spot for some cases) that we do not use since it works with the SCCs
being found completely, which is not suitable for our goal. If edited to work on-the-fly, so
far no significant advantage has been found over the algorithm from [14].

The standard emptiness check algorithm is shown in Algorithms 2 and 3 without the
lines inside the colored boxes. The lines in the orange boxes correspond to theorems in
Subsection 4.4.1 and the green boxes correspond to Theorem 7. Theorem 6 is trivially
implemented within the computation of the successors (necessary precomputation of direct
simulation on a disjoint union of automata 𝐴 and 𝐵 [13]). The function isEmpty takes
two arguments, a state and the set of accepting marks incoming to this state. We use
the function post to obtain successors together with accepting marks on the incoming
transitions.
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(a) State 𝑞 is not explored due to 𝑞 ⪯𝑒 𝑝.
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(b) The search continues as indicated by the
numbers on the edges, eventually finding the
accepting lasso.

Figure 4.4: Example of a wrong guess to prune a state when checking TGBA with 𝐴𝑐𝑐 =
Inf ( 0 ) ∧ Inf ( 1 ).

4.5.1 Plugging relation ⊑𝐺𝐹𝐸𝐸

In this section we provide the intuition of adjusting the Algorithm in [25] so that Theorem 7
can be applied. The idea behind it is to only search for the trace from Theorem 4.6, therefore
each time we encounter states 𝑝, 𝑞 on the searchpath [25] such that 𝑝⇝ 𝑞 and 𝑞 ⊑𝐺𝐹𝐸𝐸 𝑝,
we do not explore this state 𝑞. Note that we use early simulation as an instance of ⊑𝐺𝐹𝐸𝐸

simulation. However, each state between such two states needs to have the information
about the state 𝑞 and the exploration from 𝑞 being cut off; therefore, if some of the states
between 𝑝 and 𝑞 is encountered again, exploration is “redirected” to the state that was cut
off. Intuitively, this can be done, as we surely know that between 𝑝 and 𝑞 there was no
accepting mark; if there was a cycle containing the accepting mark, the pruned state would
have been explored already.

Proposition 3. Algorithm 3 is correct.

Figure 4.4 shows the situation when the guess of no need to explore the state 𝑞 still
leads to correctly finding the accepting lasso. To provide more details, after it is decided
that 𝑞 ⪯𝑒 𝑝 (green part in Line 15 of Algorithm 3), the state between 𝑝 and 𝑞 stores
the information about 𝑞 being cut off. The search then continues with a witnessing lasso
containing the accepting mark 0 , which means the existence of a path that violates 𝑝 ⇝
𝑞 ∧ 𝑝 ⪯𝑒 𝑞. Therefore, it is allowed to jump to 𝑞 and continue the exploration from there.

The situation where such a guess actually helped is provided in Figure 4.3, although
using a stronger direct simulation.
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Algorithm 3 TGBA emptiness check
Input: TGBA 𝐴 = (𝑄, 𝛿, 𝐼,Γ, 𝑝, 𝐴𝑐𝑐)
Output: true/false
Global: 𝑒𝑚𝑝𝑡𝑦 = 𝑡𝑟𝑢𝑒, 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 = 𝑓𝑎𝑙𝑠𝑒, 𝑒𝑚𝑝𝑡𝑦𝐿 = ∅ ⊆ 𝑄 , U = −1, index = 0, SCCs
= 𝑠𝑡𝑎𝑐𝑘(), tarjanStack = 𝑠𝑡𝑎𝑐𝑘()

1: Function emptinessCheck(𝐴):
2: foreach 𝑞𝐼 ∈ 𝐼
3: if 𝑞𝐼 ̸∈ 𝑄𝑒𝑚𝑝 then
4: isEmpty(𝑞𝐼 , ∅);
5: return 𝑒𝑚𝑝𝑡𝑦;
6:
7: Function isEmpty(𝑞, 𝑎𝑐𝑐𝑀𝑎𝑟𝑘𝑠):
8: if ∃𝑝 on searchpath : (𝑝⇝

∙
𝑞 ∧ 𝑝 ⪯𝑒 𝑞) ∨ (𝑝⇝

∙
⇝
∙
𝑞 ∧ 𝑝 ⪯𝑒+1 𝑞) then

9: 𝑒𝑚𝑝𝑡𝑦 = 𝑓𝑎𝑙𝑠𝑒; 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 = 𝑡𝑟𝑢𝑒;
10: return;
11: q.dfsnum← index; index++;
12: SCCs.push((q, 𝑎𝑐𝑐𝑀𝑎𝑟𝑘𝑠)); tarjanStack.push(q);
13: foreach (𝑑𝑠𝑡,𝑚𝑎𝑟𝑘𝑠) ∈ 𝑝𝑜𝑠𝑡(𝑞) do
14: if 𝑑𝑠𝑡 ∈ ⌈𝑒𝑚𝑝𝑡𝑦𝐿⌉ then continue; ◁ iff ∃𝑟 ∈ 𝑒𝑚𝑝𝑡𝑦𝐿 : 𝐿(𝑑𝑠𝑡) ⊆ 𝐿(𝑟)
15: else if 𝑑𝑠𝑡.dfsnum = U and ¬∃𝑟 ∈ 𝑄 on searchpath : 𝑑𝑠𝑡 ⪯𝑒 𝑟 then
16: isEmpty(𝑑𝑠𝑡, 𝑚𝑎𝑟𝑘𝑠);
17: if 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 then return;
18: else if 𝑑𝑠𝑡.dfsnum ̸= U then
19: if 𝑑𝑠𝑡 ∈ tarjanStack and mergeSCCaccMarks(𝑑𝑠𝑡) then return;
20: foreach cutoff ∈ jumpToCutOffs[𝑑𝑠𝑡] do
21: if cutoff.dfsnum = U and ¬∃𝑟 ∈ 𝑄 on searchpath : cutoff ⪯𝑒 𝑟 then
22: isEmpty(cutoff, ∅);
23: if 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 then return;
24: else if cutoff ∈ tarjanStack and mergeSCCaccMarks(cutoff) then return;
25: else if 𝑑𝑠𝑡 ∈ tarjanStack and mergeSCCaccMarks(𝑑𝑠𝑡) then return;
26:
27: if SCCs.top() = (𝑞,𝑋) then
28: SCCs.pop()
29: do
30: 𝑢← tarjanStack.pop();
31: 𝑒𝑚𝑝𝑡𝑦𝐿.add(𝑢);
32: while (𝑢 ̸= 𝑞);
33: return;
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Chapter 5

HyperLTL model checking as part
of Kofola

Framework Kofola [26] is a command-line tool implemented in C++ on top of the Spot li-
brary [21] providing mainly complementation of Büchi automata. Spot is used for common
automata manipulations such as reading input automaton, providing internal representation
for automata, etc. The intriguing operations like inclusion and emptiness check are, with
the goal of outperforming the state-of-the-art approaches in some metrics, implemented as
the result of this thesis.

The implementation relevant to this thesis (extending Kofola) can be found in the
public repository1, which is a fork from repository2. In the spirit of Kofola’s modularity,
the HyperLTL model checking is also implemented in a modular way. More specifically, the
emptiness check can be given any algorithm implementing desired methods, with getting
successors being the most important one. This is convenient because we use the emptiness
check in two different cases, (i) inclusion and (ii) emptiness of the automaton resulting
from HyperLTL model checking, both on-the-fly. Moreover, it provides the potential for
a straightforward extension when supporting new 𝜔-automata types.

At first sight, the most easily recognizable difference compared to AutoHyper is the
on-the-fly emptiness check when the formula is of the type ∃* : 𝜙. In addition, the inclusion
that Spot (used by AutoHyper) uses first complements the automaton 𝐵 and then makes
the on-the-fly product (if possible). Our solution also makes use of Kofola being well-
suited for an on-the-fly construction of the complement. Then we utilize the subsumptions
introduced in the previous chapter. That can lead to a significant state-space reduction
when on-the-fly emptiness check is performed.

Apart from the previous optimizations, comparing to theoretic approach for HyperLTL
model checking, we also use the fact that a formula of the type (∃*∀*)*𝜙 can be transformed
into ¬(∀*∃*)*¬𝜙, which in practice makes model checking much faster. Next, the product
automaton for the sequence of existence quantifiers is performed at once. Nevertheless, such
observations are also implemented in AutoHyper, negating the possibility of a significant
advantage.

1https://github.com/OndrejAlexaj/kofola/tree/inclusion-test
2https://github.com/VeriFIT/kofola/tree/devel
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HOA: v1
States: 4
Start: 3
AP: 3 “h_0” “l_0” “o_0”
acc-name: all
Acceptance: 0 t
properties: state-labels explicit-labels
--BODY--
State: [!0&!1&!2] 2
3
State: [!0&!1&!2] 3
4
State: [2&!0&!1] 4
5
State: [2&!0&!1] 5
2
--END--

Figure 5.1: Behavior of a system in the HOA format. Each state of the system is specified be-
tween --BODY-- and --END-- lines, where the conjunction in the square brackets expresses
which APs hold in the specific state. To the right there is the state specifier. Under the
state there is a line with the successor states.

5.1 Input format
Our formats differ from those used in AutoHyper. We only support a specific input format
for the specification of a system behavior, so the necessity for parsing different input formats
is eliminated.

5.1.1 System

As input format for system behavior, we decided to use the HOA [19] format so that it can
be easily parsed and stored by Spot as a Kripke structure. An example of such an input
file is shown in Figure 5.1.

5.1.2 HyperLTL formula

For LTL body of the HyperLTL formula we support the exact format that Spot sup-
ports. However, each atomic proposition (AP) is of the format {ap_sys}_{trace_var}
with ap_sys standing for the atomic proposition used within the system and trace_var
stands for the quantified trace. The formula with quantifiers is then generated by the
following syntax:

𝜙 ::= ((forall trace_var.)* (exists trace_var.)*)* LTL

trace_var ::= string

An example of the GNI property for the system in Figure 5.1 is the following:
forall A. forall B. exists C.

(G (“{h_0}_{A}” <-> “{h_0}_{C}”)) & (G(“{l_0}_{B}” <-> “{l_0}_{C}”))

& (G(“{o_0}_{B}” <-> “{o_0}_{C}”))
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Parsing HyperLTL MC

Emptiness

Inclusion

Complement

p can contain any of the
following state space
reductions:

• early_sim=yes;

• early_plus_sim=yes;

• dir_sim=yes;

• gfee=yes;

--params=’p’

SAT

UNSAT

𝜙

𝒦1, . . . ,𝒦𝑛

BALTL, quantifiers

𝒦1, . . . ,𝒦𝑛

Ak𝒦, An−k compl_successors

exist_projection_successors

prod_successors

Figure 5.2: Overview of the architecture of HyperLTL model checking within Kofola,
where dashed arrows represents only usage of the given component. Solid arrows mean
handing over control to the other component. The orange frame summarizes the command
line arguments regarding inclusion; none are used by default. Some arrows are colored
differently to differentiate Emptiness in different uses.

5.2 Usage
The architecture of the HyperLTL model checking within Kofola is depicted in Figure 5.2
together with command line arguments, which can be used in the following way:

kofola --hyperltl_mc 𝜙 𝒦1 . . . 𝒦n --params=’p’

where if more Kripke structures are provided, then 𝒦𝑖
3 corresponds to the 𝑖-th quantified

trace in the HyperLTL formula 𝜙 for 1 ≤ 𝑖 ≤ 𝑛.

5.2.1 Inclusion checker

One can use Kofola as an inclusion checker in the following way:

kofola --inclusion buchi_A.hoa buchi_B.hoa --params=’p’

with both Büchi automata in the HOA [19] format.

3𝒦𝑖 represents a file containing the i-th Kripke structure, and 𝜙 represents a file containing the HyperLTL
formula.
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Chapter 6

Experimental evaluation

Firstly, we want to evaluate our inclusion check in terms of the generated state space
against Spot [21] and show the effect of the proposed optimizations. Next, we compare our
HyperLTL model checker with the state-of-the-art tool AutoHyper [4] together with other
relevant inclusion checkers in terms of execution time. All experiments were performed on
a Debian GNU/Linux 12 (bookworm) system with 32 GiB RAM and an Intel(R) 2.67GHz
Xeon(R) X5650 CPU.

6.1 Kofola vs Spot
The key metric that we wanted to outperform Spot [21] in is the number of visited
states. More specifically, we incremented a counter every time a state was put on the
tarjanStack. Spot’s inclusion checking approach is directly comparable to ours, since it

Table 6.1: Statistics for our experiments. The table shows a comparison of the state space
generated by solving the inclusion. That is, it shows how individual optimizations behave
and compares the approach utilizing all proposed optimizations (Kofola MAX) to Spot.
The Kofola MAX no direct then refers to not employing direct simulation optimization,
and the Kofola and GFEE refers to only utilizing Theorem 7. Kofola basic is then only
the implementation of Algorithm from [25]. The column solved contains values separated
by a colon, with the following meaning (number of solved when inclusion is violated
: number of solved when inclusion holds), where the number of cases where inclusion
does not hold is 762 and 825 where it holds. Values in the columns mean and median are
separated by the colon with the following meaning (all test cases : inclusion violated
: inclusion holds). The column “wins”/“losses” contains a number of cases where
Kofola MAX produced strictly less/more states, where (number) means how many times
it was due to the other’s approach timeout. The column TOs (timeouts) shows how many
times the approach could not decide the inclusion within 7 min.

tool solved mean median wins losses TOs

Kofola basic 720 : 774 540 : 51 : 995 31 : 13 : 99.5 620 (0) 11 (11) 93
Kofola and early(+1) 719 : 768 162 : 49 : 268 29 : 13 : 73 637 (8) 23 (20) 100
Kofola and direct 700 : 780 379 : 48 : 676 14 : 13 : 21.5 420 (0) 5 (5) 107
Kofola and GFEE 718 : 775 507 : 50 : 932 31 : 13 : 96 769 (5) 24 (24) 94
Kofola MAX no direct 718 : 768 160 : 48 : 264 28 : 13 : 73 498 (8) 20 (19) 101
Kofola MAX 700 : 775 89 : 46 : 127 14 : 13 : 17 - - 112
Spot 744 : 819 21,478 : 21,896 : 21,098 41 : 40.5 : 41 988 (1) 495 (89) 24
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Figure 6.1: The scatter plots compare the state space generated by implementation of
algorithm from [25] provided by Gaiser & Schwoon , referred to as Kofola basic, against its
extensions by various optimizations proposed in this work. The dashed lines represent the
timeouts, which was set to 7 min. Green marks indicate instances where inclusion holds,
and red marks otherwise. As the axes are logarihtmic, cases with 0 generated states are
represented as 1 (100).

uses a similar orchestrating algorithm [15] (based on Tarjan’s algorithm [37]). More specif-
ically, we compared our approach with Spot’s command line tool autfilt, which provides
the --included-in parameter for inclusion checking. In addition to comparison, autfilt
was used to test the correctness of our inclusion checking implementation.

6.1.1 Dataset

To observe the effect of the proposed optimizations, we tested Kofola in the scenar-
ios where the automaton 𝐵 in the question of 𝐴 ⊆ 𝐵 contains deterministic accepting
components (DACs) or inherently weak accepting components. More specifically, we used
automata used in [8] from [32] and benchmarks originating from HyperLTL model check-
ing [33]. Both repositories contain pairs of automata (suffix A.hoa and B.hoa) with the
mentioned properties. And since both automata in such a pair have the same alphabet, to
obtain more test cases, all four combinations (i.e. 𝐴

?
⊆ 𝐵, 𝐴

?
⊆ 𝐴, 𝐵

?
⊆ 𝐵, and 𝐵

?
⊆ 𝐴)

were tried and kept those whose corresponding complementation by Kofola produced a
TGBA. The total number of test cases is 1,587. The mean number of automata states from
repositories is 891, the median is 14 states, the maximum number of states is 88,304, and
the minimum is 1.

6.1.2 Results

The results shown in Figure 6.1 show a great (and expected) impact of precomputation
of the direct simulation between the states of automata 𝐴 and 𝐵. The huge amount of
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Figure 6.2: Here we provide comparison of the explored state space by Spot [21] against
our approaches. The dashed lines represent the timeouts, which was set to 7 min. Green
marks indicate instances, where the inclusion holds, red marks otherwise. As the axes are
logarihtmic, cases with 0 generated states are represented as 1 (100).

instances where we produced zero states is also not surprising, since if the language inclusion
holds between the initial states of the automata 𝐴,𝐵 (implied by the direct simulation),
then it holds between the automata as well (which is expected since many test cases are
of type where 𝐴 = 𝐵). We can state that our optimizations seem to significantly reduce
the state space when the inclusion holds; the opposite case is only slightly better when
utilizing our optimizations (see also Table 6.1). In Figure 6.1 it may seem that there is
not much of an impact of the optimization GFEE (based on Theorem 7, green parts in
Algorithm 3), but Table 6.1 shows some improvement especially when the inclusion holds
(as expected). Figure 6.2 provides a comparison of our approach with Spot. We can see
that we improved the cases where the basic implementation of the emptiness check algorithm
loses against Spot the most - when the inclusion holds. Although the explored state space
size is in our favor, we timed out visibly more than Spot. Detailed statistical evaluation for
summarization is provided in Table 6.1. It shows that we are able to significantly (in almost
40% of the benchmarks) reduce the state space explored by the basic implementation of
the algorithm from Gaiser & Schwoon [25], moreover in more than 60% of the test cases we
generated a smaller state space than Spot. Although our maximally optimized approach
shows significantly better numbers, we have to bear in mind that those are the numbers
taken when the tool did not time out. From the TOs column in Table 6.1 it is clear that
our most optimized procedure timed out in 88 more cases than Spot. If we compare the
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Figure 6.3: Comparison of execution times for Kofola’s inclusion checking (all optimiza-
tions used) used as a backend checker for AutoHyper vs other state-of-the-art tools. The
dashed lines represent timeout, which was set to 10 minutes.

cases where both tools successfully solved inclusion, we obtain median value 37 for Spot
and 14 for Kofola MAX, and mean value 3340 for Spot and 89 for Kofola MAX,
which is still significantly better. Here, we have to point out that there is an undeniable
effect of the Kofola’s complementation. Next, in Table 6.1 we can observe that in terms
of solved problems, we have slightly better success rate (no timeout) in cases where the
inclusion holds, but still it is roughly only 94% versus the 99% success rate of Spot.

Lastly, we separately tested our procedure that utilizes all optimizations except for the
precomputation of the direct simulation, since for large automata, only this operation itself
causes timeout. This can be seen in both Figures 6.1 and 6.2 and also in a separate row in
Table 6.1, referred to as Kofola MAX no direct. We can conclude that although the
number of timeouts decreased by 11 (compared to the maximally optimized approach), the
mean of the generated state space is approximately twice as large.

6.2 Kofola vs AutoHyper
In Figure 6.3 we can see a comparison between inclusion checkers Rabit [12], Bait [18],
Forklift [17], Spot [21], and Kofola. More specifically, these are the execution times
that the inclusion checkers spent when solving the HyperLTL model checking within Au-
toHyper [4] (Kofola was also used by AutoHyper as a backend solver in order for
the results to be fair), when solving the exact same 35 benchmarks as in [4] (actually it
was 36, but in one case inclusion was not used). From the results in Figure 6.3 we can
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Figure 6.4: The scatter plot compares the execution time of Kofola and AutoHyper
(with Spot as inclusion checker). Here, no mark lies on the dashed line, therefore there were
no timeouts (10 minutes). In the left hand side plot Kofola with maximally optimized
inclusion checking is tested and in the right hand side no optimizations are used.

conclude that we highly outperform Rabit, Bait, and Forklift. However, there is a case
where our tool timed out. This was due to the precomputation of direct simulation in our
approach. When disabled, we again outperformed the tools. When we look at the plot
compared to Spot, we managed to beat it twice, which might be surprising given that our
implementation is not optimized for this metric.

In Figure 6.4 we provide a comparison of the time it takes to solve 36 instances also
tested in [4]. We solved the model checking problem faster in 25 out of 36 test cases.
As witnessed before, our inclusion checking is slower than the one implemented in Spot,
therefore, our win rate could be caused by the fact that we use Spot’s highly optimized
internal representation for 𝜔-automata and their attributes. After using more optimized
inclusion checking, the Kofola’s model checking procedure tends to slow down (non-
optimized is faster in 27 out of 36 test cases against AutoHyper), which is expected
unless their implementation is optimized as well.

AutoHyper also served for checking correctness of our HyperLTL MC implementation.
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Chapter 7

Conclusion

This thesis presents several optimizations regarding the language inclusion check on 𝜔-
automata (more specifically, we focus on TGBA), one of the most crucial operations used
not only in HyperLTL model checking. To optimize this operation, we set our goal to reduce
the generated state space. To do so, we came up with the relations between states of the
automaton that leverage only the structure of the states themselves, without the need to
know the entire automaton. We tried to come up with not only a reporting counterexample
as early as we can, but also techniques to reduce state space when the resulting language
is empty.

As an inclusion checker, our tool is able to improve the existing algorithm in the gener-
ated state space and report better results than the other similarly working state-of-the-art
tools. Our procedure was able to outperform the reference tool in more than 60% bench-
mark cases, and in almost 40% of the benchmarks, we were able to generate a smaller state
space than the algorithm we used as a base for our inclusion check. Other relevant inclu-
sion checking tools are shown to be slower on the inclusion problems from HyperLTL model
checking than us. Finally, as HyperLTL model checker, we are also able to outperform the
state-of-the-art push button tool in the execution time.

7.1 Future work
When it comes to the inclusion check introduced in this thesis, the implementation was not
meant to be performance-optimized; therefore, there is plenty of room for improvement in
this area.

One of the future directions is definitely to extend Theorem 7, as we believe it has more
to offer. As Kofola is planned to be able to output 𝜔-automata with generic acceptance
condition as a result of complementation. Another way can be to come up with an opti-
mized version of inclusion check for these generic automata. In addition, there are more
partial complementation procedures implemented within Kofola, so bringing up a similar
subsumption relations as we worked with here is also a sensible continuation. It seems that
inclusion is the right direction to take to improve HyperLTL model checking, since this
operation is often encountered and is the source of interesting inclusion problems.

42



Bibliography

[1] Allred, J. D. and Ultes Nitsche, U. A Simple and Optimal Complementation
Algorithm for Büchi Automata. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. New York, NY, USA: Association for
Computing Machinery, 2018, p. 46–55. LICS ’18. ISBN 9781450355834. Available at:
https://doi.org/10.1145/3209108.3209138.

[2] Andrés, M. E. Quantitative Analysis of Information Leakage in Probabilistic and
Nondeterministic Systems. 2011.

[3] Baier, C.; Blahoudek, F.; Duret Lutz, A.; Klein, J.; Müller, D. et al. Generic
Emptiness Check for Fun and Profit. In: Chen, Y.-F.; Cheng, C.-H. and Esparza,
J., ed. Automated Technology for Verification and Analysis. Cham: Springer
International Publishing, 2019, p. 445–461. ISBN 978-3-030-31784-3.

[4] Beutner, R. and Finkbeiner, B. AutoHyper: Explicit-State Model Checking for
HyperLTL. 2023.

[5] Beutner, R. and Finkbeiner, B. Model Checking Omega-Regular Hyperproperties
with AutoHyperQ. In: Piskac, R. and Voronkov, A., ed. Proceedings of 24th
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning. EasyChair, 2023, vol. 94, p. 23–35. EPiC Series in Computing. ISSN
2398-7340. Available at: https://easychair.org/publications/paper/d1VW.

[6] Blahoudek, F.; Heizmann, M.; Schewe, S.; Strejček, J. and Tsai, M.-H.
Complementing Semi-deterministic Büchi Automata. In: Chechik, M. and Raskin,
J.-F., ed. Tools and Algorithms for the Construction and Analysis of Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, p. 770–787. ISBN 978-3-662-49674-9.

[7] Büchi, J. R. On a decision method in restricted second order arithmetic, Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.). Stanford
Univ. Press, Stanford, Calif, 1962.

[8] Chen, Y.-F.; Heizmann, M.; Lengál, O.; Li, Y.; Tsai, M.-H. et al. Advanced
automata-based algorithms for program termination checking. In: Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. New York, NY, USA: Association for Computing Machinery, 2018,
p. 135–150. ISBN 9781450356985. Available at:
https://doi.org/10.1145/3192366.3192405.

[9] Clarkson, M. R.; Finkbeiner, B.; Koleini, M.; Micinski, K. K.; Rabe, M. N.
et al. Temporal Logics for Hyperproperties. In: Abadi, M. and Kremer, S.,

43

https://doi.org/10.1145/3209108.3209138
https://easychair.org/publications/paper/d1VW
https://doi.org/10.1145/3192366.3192405


ed. Principles of Security and Trust. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, p. 265–284. ISBN 978-3-642-54792-8.

[10] Clarkson, M. R. and Schneider, F. B. Hyperproperties. In: 2008 21st IEEE
Computer Security Foundations Symposium. 2008, p. 51–65.

[11] Clemente, L. and Mayr, R. Advanced Automata Minimization. CoRR, 2012,
abs/1210.6624. Available at: http://arxiv.org/abs/1210.6624.

[12] Clemente, L. and Mayr, R. Efficient reduction of nondeterministic automata with
application to language inclusion testing. CoRR, 2017, abs/1711.09946. Available at:
http://arxiv.org/abs/1711.09946.

[13] Clemente, L. and Mayr, R. Efficient reduction of nondeterministic automata with
application to language inclusion testing. CoRR, 2017, abs/1711.09946. Available at:
http://arxiv.org/abs/1711.09946.

[14] Couvreur, J.-M. On-the-fly Verification of Linear Temporal Logic. In: Wing,
J. M.; Woodcock, J. and Davies, J., ed. FM’99 — Formal Methods. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, p. 253–271. ISBN 978-3-540-48119-5.

[15] Couvreur, J.-M. On-the-Fly Verification of Linear Temporal Logic. In:. September
1999, p. 253–271. ISBN 978-3-540-66587-8.

[16] D’Argenio, P. R.; Barthe, G.; Biewer, S.; Finkbeiner, B. and Hermanns, H. Is
Your Software on Dope? In: Yang, H., ed. Programming Languages and Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, p. 83–110. ISBN
978-3-662-54434-1.

[17] Doveri, K.; Ganty, P. and Mazzocchi, N. FORQ-Based Language Inclusion
Formal Testing. In: Shoham, S. and Vizel, Y., ed. Computer Aided Verification.
Cham: Springer International Publishing, 2022, p. 109–129. ISBN 978-3-031-13188-2.

[18] Doveri, K.; Ganty, P.; Parolini, F. and Ranzato, F. Inclusion Testing of Büchi
Automata Based on Well-Quasiorders. In: Haddad, S. and Varacca, D., ed. 32nd
International Conference on Concurrency Theory (CONCUR 2021). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, vol. 203,
p. 3:1–3:22. Leibniz International Proceedings in Informatics (LIPIcs). ISBN
978-3-95977-203-7. Available at:
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.3.

[19] Duret Lutz, A.; Blahoudek, F.; Křetínský, J.; Strejček, J. and Klein, J.
The Hanoi Omega-Automata Format. February 2015. Available at:
https://adl.github.io/hoaf/#authors.

[20] Duret Lutz, A.; Poitrenaud, D. and Couvreur, J.-M. On-the-fly Emptiness
Check of Transition-Based Streett Automata. In: Liu, Z. and Ravn, A. P.,
ed. Automated Technology for Verification and Analysis. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, p. 213–227. ISBN 978-3-642-04761-9.

[21] Duret Lutz, A.; Renault, E.; Colange, M.; Renkin, F.; Aisse, A. G. et al.
From Spot 2.0 to Spot 2.10: What’s New? In: Proceedings of the 34th International

44

http://arxiv.org/abs/1210.6624
http://arxiv.org/abs/1711.09946
http://arxiv.org/abs/1711.09946
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.3
https://adl.github.io/hoaf/#authors


Conference on Computer Aided Verification (CAV’22). Springer, August 2022, vol.
13372, p. 174–187. Lecture Notes in Computer Science.

[22] Finkbeiner, B. Automata, Games, and Verification. Saarland University, 2015.
Available at: https://www.react.uni-saarland.de/teaching/automata-games-
verification-15/downloads/notes.pdf.

[23] Finkbeiner, B. Logics and Algorithms for Hyperproperties. ACM SIGLOG News.
New York, NY, USA: Association for Computing Machinery, jul 2023, vol. 10, no. 2,
p. 4–23. Available at: https://doi.org/10.1145/3610392.3610394.

[24] Finkbeiner, B.; Rabe, M. N. and Sánchez, C. Algorithms for Model Checking
HyperLTL and HyperCTL*. In: Kroening, D. and Păsăreanu, C. S.,
ed. Computer Aided Verification. Cham: Springer International Publishing, 2015,
p. 30–48. ISBN 978-3-319-21690-4.

[25] Gaiser, A. and Schwoon, S. Comparison of Algorithms for Checking Emptiness on
Buechi Automata. CoRR, 2009, abs/0910.3766. Available at:
http://arxiv.org/abs/0910.3766.

[26] Havlena, V.; Lengál, O.; Li, Y.; Šmahlíková, B. and Turrini, A. Modular
Mix-and-Match Complementation of Büchi Automata. In: Sankaranarayanan, S.
and Sharygina, N., ed. Tools and Algorithms for the Construction and Analysis of
Systems. Cham: Springer Nature Switzerland, 2023, p. 249–270. ISBN
978-3-031-30823-9. Available at: https://doi.org/10.1007/978-3-031-30823-9_13.

[27] Havlena, V.; Lengál, O. and Šmahlíková, B. Sky Is Not the Limit. In: Fisman,
D. and Rosu, G., ed. Tools and Algorithms for the Construction and Analysis of
Systems. Cham: Springer International Publishing, 2022, p. 118–136. ISBN
978-3-030-99527-0.

[28] Hsu, T.-H.; Sánchez, C. and Bonakdarpour, B. Bounded Model Checking for
Hyperproperties. In: Groote, J. F. and Larsen, K. G., ed. Tools and Algorithms
for the Construction and Analysis of Systems. Cham: Springer International
Publishing, 2021, p. 94–112. ISBN 978-3-030-72016-2.

[29] Kähler, D. and Wilke, T. Complementation, Disambiguation, and
Determinization of Büchi Automata Unified. In: Aceto, L.; Damgård, I.;
Goldberg, L. A.; Halldórsson, M. M.; Ingólfsdóttir, A. et al., ed. Automata,
Languages and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
p. 724–735. ISBN 978-3-540-70575-8.

[30] Kauffman, S.; Havelund, K. and Fischmeister, S. What can we monitor over
unreliable channels? International Journal on Software Tools for Technology
Transfer, Aug 2021, vol. 23, no. 4, p. 579–600. ISSN 1433-2787. Available at:
https://doi.org/10.1007/s10009-021-00625-z.

[31] Kupferman, O. and Vardi, M. Y. Weak alternating automata are not that weak.
ACM Trans. Comput. Logic. New York, NY, USA: Association for Computing
Machinery, jul 2001, vol. 2, no. 3, p. 408–429. ISSN 1529-3785. Available at:
https://doi.org/10.1145/377978.377993.

45

https://www.react.uni-saarland.de/teaching/automata-games-verification-15/downloads/notes.pdf
https://www.react.uni-saarland.de/teaching/automata-games-verification-15/downloads/notes.pdf
https://doi.org/10.1145/3610392.3610394
http://arxiv.org/abs/0910.3766
https://doi.org/10.1007/978-3-031-30823-9_13
https://doi.org/10.1007/s10009-021-00625-z
https://doi.org/10.1145/377978.377993


[32] Lengál, Ondřej. Automata-benchmarks https://github.com/ondrik/automata-
benchmarks/tree/master/omega/advanced-automata-for-termination/hoa.
GitHub, 2024.

[33] Lengál, Ondřej. Automata-benchmarks https:
//github.com/ondrik/automata-benchmarks/tree/master/omega/autohyper.
GitHub, 2024.

[34] McCullough, D. Noninterference and the composability of security properties.
In: Proceedings. 1988 IEEE Symposium on Security and Privacy. 1988, p. 177–186.

[35] Miyano, S. and Hayashi, T. Alternating finite automata on 𝜔-words. Theoretical
Computer Science, 1984, vol. 32, no. 3, p. 321–330. ISSN 0304-3975. Available at:
https://www.sciencedirect.com/science/article/pii/0304397584900495.

[36] Safra, S. On the complexity of omega -automata. In: [Proceedings 1988] 29th
Annual Symposium on Foundations of Computer Science. 1988, p. 319–327.

[37] Tarjan, R. Depth-first search and linear graph algorithms. In: 12th Annual
Symposium on Switching and Automata Theory (swat 1971). 1971, p. 114–121.

[38] Viswanathan, M. Automata on Infinite Words. 2018. Available at:
https://courses.engr.illinois.edu/cs498mv/fa2018/wAutomata.pdf.

46

https://github.com/ondrik/automata-benchmarks/tree/master/omega/advanced-automata-for-termination/hoa
https://github.com/ondrik/automata-benchmarks/tree/master/omega/advanced-automata-for-termination/hoa
https://github.com/ondrik/automata-benchmarks/tree/master/omega/autohyper
https://github.com/ondrik/automata-benchmarks/tree/master/omega/autohyper
https://www.sciencedirect.com/science/article/pii/0304397584900495
https://courses.engr.illinois.edu/cs498mv/fa2018/wAutomata.pdf


Appendix A

Contents of the included storage
media

Everything needed to create this text (electronic version is also included) can be found
in the directory text_resources (.tex files, figures, . . . ). The implementation of the
tool Kofola can be found in the directory kofola, which contains a README.md with
instructions on how to build and run an executable file. This thesis extends the function-
ality of Kofola, therefore, the source codes of the whole tool are included; the actual
work of this thesis is implemented in files in the src directory shown in Figure A.1 (al-
though necessary changes were also made in main.cpp, complement_sync.{c, h}pp and
abstract_complement_alg.{c, h}pp).

”README.md”

text_resources

kofola
...

”README.md”

src
...

”abstract_successor.{c, h}pp”

”hyperltl_formula_processor.{c, h}pp”

”hyperltl_mc.{c, h}pp”

”inclusion_check.{c, h}pp”

”emptiness_check.{c, h}pp”
...

Figure A.1: Contents of the included storage media as a directory tree that also shows
important files (these are marked with a ”” to distinguish them from directories).
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