
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

HYPERLTL MODEL CHECKING
HYPERLTL MODEL CHECKING

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ONDŘEJ ALEXAJ
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

B R N O 2024

Bachelor's Thesis Assignment
Institut:
Student:
Programme:
Title:
Category:

Department of Intelligent Systems (DITS)
Alexaj Ondrej
Information Technology
HyperLTL Model Checking
Formal Verification

154514

Academic year: 2023/24

Assignment:

1. Study the theory of omega automata with a focus on the construction of a complement automaton
and testing language inclusion.

2. Study the HyperLTL logic and its model checking.
3. Design an optimized algorithm for HyperLTL model checking.
4. Implement the designed algorithm and compare the performance of the implementation with existing

tools.
5. Evaluate the obtained results and discuss possible extensions.

• E. Gradel, W. Thomas, and T. Wilke, Eds., Automata, logics, and infinite games, in Lecture notes in
computer science, no. 2500. Berlin ; New York: Springer, 2002.

• B. Finkbeiner, "Logics and Algorithms for Hyperproperties," ACM SIGLOG News, vol. 10, no. 2, pp.
4-23, July 2023, doi: 10.1145/3610392.3610394.

• V. Havlena, O. Lengal, Y. Li, B. Smahlikova, and A. Turrini, "Modular Mix-and-Match
Complementation of Buchi Automata," in Tools and Algorithms for the Construction and Analysis of
Systems, S. Sankaranarayanan and N. Sharygina, Eds., in Lecture Notes in Computer Science.
Cham: Springer Nature Switzerland, 2023, pp. 249-270. doi: 10.1007/978-3-031 -30823-9_13.

• R. Beutner and B. Finkbeiner, "AutoHyper: Explicit-State Model Checking for HyperLTL," in Tools
and Algorithms for the Construction and Analysis of Systems, S. Sankaranarayanan and N.
Sharygina, Eds., in Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2023,
pp. 145-163. doi: 10.1007/978-3-031 -30823-9_8-

Requirements for the semestral defence:

Literature:

1-3

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Lengäl Ondrej, Ing., Ph.D.
Consultant: Havlena Vojtech, Ing., Ph.D.
Head of Department: Hanäcek Petr, doc. Dr. Ing.
Beginning of work: 1.11.2023
Submission deadline: 9.5.2024
Approval date: 6.11.2023

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
HyperLTL model checking is an approach to verifying a system against a given hyper-
property, which is able to relate multiple executions of a system. The algorithmic approach
based on automata which relies on standard w-automata operations is well established. The
aim of this work is to outperform the complete state-of-the-art HyperLTL model checker
A U T O H Y P E R by employing more efficient partial automata operations, in particular com
plementation and inclusion. The implementation of HyperLTL model checking in a novel
modular-based complementation tool K O F O L A resulted in a significant enhancement in
performance compared to the reference tool. Finally, our approach to language inclusion
checking shows a notable improvement in terms of the generated state space. As a com
monly used automata operation, it could potentially contribute to the advancement of other

of verification.

Abstrakt
HyperLTL model checking je technika pre overenie systému voči danej hypervlastnosti vy
jadrenej logikou HyperLTL, ktorá dokáže prepojiť viaceré spustenia systému. Hoci bol
vytvorený algoritmický prístup založený na automatoch, spolieha sa na štandardné op
erácie cj-automatov. Cieľom tejto práce je prekonať kompletný state-of-the-art HyperLTL
model checker A U T O H Y P E R využitím efektívnejších čiastkových operácií nad automatmi,
najmä komplementácie a inklúzie. Implementácia HyperLTL model checkingu v modulárně
založenom nástroji pre komplementáciu, K O F O L A , viedla k výraznému zvýšeniu výkonu
v porovnaní s referenčným nástrojom. Napokon, náš prístup ku kontrole jazykovej inklúzie
vykazuje výrazné zmenšenie generovaného stavového priestoru. Keďže ide o bežne použí
vanú operáciu nad automatmi, náš prístup by potenciálne mohol prispieť k pokroku aj
v iných oblastiach verifikácie.

Keywords
formal verification, model checking, HyperLTL, T G B A , language inclusion, on-the-fly, lan
guage emptiness

Kľúčové slová
formálna verifikácia, model checking, HyperLTL, T G B A , jazyková inklúzia, prázdnosť jazyka

Reference
A L E X A J , Ondrej. HyperLTL Model Checking. Brno, 2024. Bachelor's thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Ondrej
Lengäl, Ph.D.

Rozšírený abstrakt
V oblasti hardvérových a softvérových systémov je formálna verifikácia procesom doka
zovania alebo vyvrátenia správnosti systému vzhľadom na danú vlastnosť. Dosahuje sa
to pomocou formálnych metód, ktoré poskytujú matematický základ pre špecifikáciu vlast
ností a modelovanie správania systému. HyperLTL model checking (MC) je potom technika,
ktorá umožňuje overenie systému voči danej hypervlastnosti vyjadrenej logikou HyperLTL,
ktorá sa vzťahuje na viaceré spustenia systému. Hoci bol vytvorený algoritmický prístup
založený na automatoch (A B V) , spolieha sa na štandardné operácie w-automatov. Každá
formula vyjadrená pomocou HyperLTL obsahuje kvantifikátory nad rôznymi spusteniami
systému. Vo všeobecnosti môže ísť o ľubovoľnú sekvenciu existenčných a univerzálnych
kvantifikátorov. V A B V sa však výskyt univerzálnych kvantifikátorov prevádza na exis
tenčný pomocou zákona dvojitej negácie. To v skratke znamená, že vždy ked dôjde k al
ternácii kvantifikátorov (t.j. existenčný na univerzálny alebo naopak), je do konštrukcie
vnesená požiadavka na komplementáciu w-automatov. Ako je dobre známe, ide o drahú
operáciu, s asymptoticky exponenciálnou stavovou explóziou. P r i riešení HyperLTL M C
existuje špeciálny prípad (vyskytujúci sa pomerne často), kedy môže byť výhodnejšie zisťo
vať jazykovú inklúziu medzi takýmito automatmi, čo okrem komplementácie využíva aj
algoritmus pre rozhodnutie prázdnosti jazyka.

Cieľom tejto práce je prekonať kompletný (teda teoreticky dokáže vyriešiť ľubovoľnú
úlohu pre HyperLTL model checking) state-of-the-art nástroj pre HyperLTL model check
ing, a to využitím efektívnejších čiastkových operácií nad automatmi, hlavne spomínanej
komplementácie a inklúzie. S využitím modulárneho nástroja na komplementáciu Búchiho
automatov (intuitívne, s podmienkou nekonečne veľakrát dosiahnuť akceptačný stav) K O
F O L A [26] sme referenčný nástroj A U T O H Y P E R [4] dokázali v rýchlosti riešenia prekonať
na väčšine testovacích prípadov. K efektívnej existujúcej komplementačnej procedúre bol
v tejto práci pridaný vylepšený algoritmus pre zisťovanie prázdnosti jazyka zovšeobecnených
Búchiho automatov (automaty so zložitejšou akceptačnou podmienkou), ktoré dokopy tvo
ria zlepšený algoritmus pre zisťovanie inklúzie. Konkrétne optimalizuje známy algoritmus
pre test prázdnosti od autorov Gaiser a Schwoon [25]. Okrem optimalizácií pre skoré odhale
nie neprázdnosti jazyka boli navrhnuté a implementované aj techniky pre orezanie stavového
priestoru, ak je jazyk automatu prázdny. Pôvodný algoritmus v takomto prípade generoval
stavový priestor celý. Konkrétne ide o identifikovanie tzv. subsumpcií, teda relácii medzi
stavmi, ktoré takéto orezávanie (aj v prípade neprázdnosti) stavového priestoru umožňujú
na základe ich štruktúry, bez znalosti zatiaľ nepreskúmaných častí automatu. Pričom štruk
túra stavov je daná práve komplementačnou procedúrou nástroja K O F O L A . Dôvodom pre
snaženie o minimalizáciu skúmaného stavového priestoru je fakt, že zložitosť inklúzie je
priamo závislá na zložitosti komplementácie, teda stavový priestor tiež môže exponenciálne
narásť.

Navrhnuté vylepšenia boli spolu s procedúrou pre HyperLTL model checking implemen
tované v spomínanom nástroji K O F O L A , ktorý je implementovaný v jazyku C++ a postavený
nad knižnicou S P O T [21]. Okrem testovania samotného model checkingu sme sa zamerali
aj na testovanie navrhnutého prístupu k inklúzii. Tu sme boli schopní častokrát orezať
stavový priestor aj na polovicu, v extrémnych prípadoch sme dokonca nevygenerovali ži
adny stav. Testovanie voči nástroju S P O T ukázalo, že v tejto metrike ho často porážame,
veľakrát vďaka technikám predstaveným touto prácou. Nakoniec sme otestovali aj rýchlosť
tejto procedúry s ostatnými aktuálnymi nástrojmi, kde sme takmer vo všetkých prípadoch
konštatovali víťazstvo, a to aj napriek tomu, že tento údaj pre nás nebol primárnym cieľom.

H y p e r L T L M o d e l C h e c k i n g

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Ondfej Lengal, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Ondrej Alexaj
May 7, 2024

Acknowledgements
I would like to thank my supervisor Ing. Ondfej Lengal, Ph.D. for his guidance, help and
patience during my work on this thesis.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Automata 3
2.2 Biichi automata 4
2.3 Complementation of Biichi automata 5
2.4 Generalized Biichi automata 6
2.5 Intersection of Biichi automata 6
2.6 Language emptiness 7
2.7 Language inclusion 7
2.8 Hyper L T L 7

3 HyperLTL model checking 13
3.1 Automata-based algorithm 13
3.2 AutoHyper 17

4 Subsumption relations 19
4.1 Simulations 19
4.2 Modular Complementation of Biichi Automata 20
4.3 Early Simulations for T G B A 25
4.4 Early termination in K O F O L A 26

4.5 Inclusion check 31

5 HyperLTL model checking as part of Kofola 34
5.1 Input format 35
5.2 Usage 36

6 Experimental evaluation 37
6.1 Kofola vs Spot 3 7
6.2 Kofola vs AutoHyper 40

7 Conclusion 42

7.1 Future work 42

Bibliography 43

A Contents of the included storage media 47

1

Chapter 1

Introduction

In the domain of hardware and software systems, formal verification is the process of prov
ing or disproving the correctness of a system with respect to a given property. This is
achieved through the use of formal methods which provide a mathematical basis for spec
ifying properties and modeling system behavior. Formal languages, automata theory, and
logics are some of the most important formal methods used in verification tasks [2, 22].
Model checking [2] is an automated verification method that systematically checks whether
a property holds in the modeled system or not. The main advantage of this approach is
the ability to provide a counterexample in case the property does not hold.

Hyperproperties were defined by Clarkson and Schneider in 2008 [10] as a set of trace
properties. They point out properties that cannot be formulated as properties of a single
execution. In contrast to the properties of a single execution trace, which is satisfied by
a trace, a hyperproperty is satisfied by a set of traces. Robustness [16], path planning [28],
generalized non-interference [34], etc. are examples of such properties. HyperLTL [9] is then
an extension of linear temporal logic (LTL) that serves as a formal base to express a class
of linear hyperproperties. A n approach often referred to as Automata-Based Verification
(ABV) [23], has been established to perform model checking. Automata-Based Verification
in HyperLTL model checking relies on utilizing automata over infinite words, w-automata.
Although the A B V approach is decidable [23], it suffers from common w-automata prob
lems. The automata operations it consists of are the costliest ones. Namely, it includes
complementation, automata product, and inclusion checking.

In this thesis, we first settle the common theoretic notions regarding automata theory.
We then move on to the definition of HyperLTL and provide an example of verifying a simple
system against a simple property, based on the formal definition of the semantics of this
logic. Automata-Based Verification is then explained, along with a brief example of how
this check can be done algorithmically. Then we briefly describe the complementation tool
K O F O L A [26], which we use for the HyperLTL model checking. Subsequently, we formally
describe the approaches used in our implementation of the language inclusion procedure
(as an important part of the A B V) , mainly based on subsumption relations [8] that imply
language inclusion between pairs of states, taking advantage of the specifics implied by the
use of K O F O L A . We can divide the approaches into two main categories, those that help
report counterexamples earlier than constructed, and those that prune the state space even
if no counterexample exists. Finally, an experimental evaluation comparing the state-of-
the-art tools is provided for both HyperLTL model checking and inclusion checking.

2

Chapter 2

Preliminaries

We need to define the necessary theory and notation for the reader to understand the
subsequent chapters. Firstly, we define fundamental terms in automata theory relevant to
this thesis. Then we focus on the concepts regarding omega automata. Lastly, we delve
into the definition of Linear-Time Temporal Logic (henceforth referred to as LTL) and its
extension Hyper L T L .

2.1 Automata

A n alphabet is a finite, nonempty set of symbols denoted by E . We call x a (finite) string
over E if and only if x = x\X2 • • • xn where each x% G E for 1 < i < n. The empty string is
denoted by e. The set of all finite strings over E is represented by E*. A language over E
is defined set L C E*.

A finite automaton is a five-tuple A = (Q, E , 5,1, F) where Q is a finite set of states,
2J IS an alphabet, 5: Q ^ 2 Q is a transition function, / C Q is a set of initial states,
and F C Q is a set of accepting states. We say that the automaton A accepts a string
x\X2 . . . i n over E when there exists a sequence qoxiqiX2 • • • xnqn such that qo <E I, qn <E F
and qi+i G S(qi, Xi+\) for all 0 < i < n. The set of all strings accepted by A is called
the language of the automaton A, denoted by L(A). Consider a state qn G Q; if there
is no sequence qoXiq\X2 • • -xnqn such that xi+\ £ E , ̂ £ I, and qi+\ G S(qi, Xi+\) for all
0 < i < n, we say that qn is unreachable.

A language L is called a regular language if there exists a finite automaton A such that
L = L(A). Regular languages can also be described by regular expressions. In fact, for
each regular expression, there exists an equivalent finite automaton and vice versa. Regular
expressions are composed according to the following rules [22]:

• e and 0 are regular expressions:
L(e) = {e} and L(0) = 0,

r + s is also a regular expression:

• if r and s are both regular expressions
L(r.s) = {xy \ x G L{r) A y G L(s)},

r.s is also a regular expression:

3

a, b

0
a, b

b

1
1

Figure 2.1: A directed graph representing a finite automaton A =
({0,1, 2}, {a, 6}, {(0, a, {0,1}), (0, b, {0,1}), (1, a, {2}), (1, b, {1})}, {0}, {1}) recognizing
the language L(A) = (a + b)+. States are (in this case) represented as rectangles with
rounded corners, transitions as arrows, the initial state has an incoming arrow, and an
accepting state is marked with a double border.

• if r is a regular expression, then r* is also a regular expression:
L(r*) = {x\... xn J n G N and Xi G L(r) for all 0 < i < n},

• if r is a regular expression, then r+ is also a regular expression:
L (r +) = {x\ ... xn I n G N and Xj G L(r) for all 1 < i < n}.

Refer to Figure 2.1 for a graphical representation of a finite automaton and the language
it recognizes, expressed by a regular expression.

2.2 Biichi automata

Let X be an alphabet. Then S w is the set of all infinite words (w-words) over S. A n
w-language is a subset of Consider an a;-word X over S. X(i), for i G N , represents the
i -th symbol of X starting from 0. The substring of X from i to j inclusive will be denoted
as X(i,j) = X{i).. -X(j). Automata operating over w-words are called UJ-automata.

A state-based Biichi automaton (BA) is an w-automaton defined as a five-tuple A =
(Q, S, 5,1, F), where

• Q is a finite set of states,

• S is an alphabet,

• { C Q x S x Q i s a set of transitions,

• ICQ denotes the set of initial states, and

• F C Q is a set of accepting states.

If needed, 5 can be treated as a transition function 5: Q x S —> 2®. We say that A is
deterministic if and only if | 5(q, a) \ < 1 for all q G Q, a G S; if 15(q, a) \ > 1 the automaton
A is complete. Figure 2.2 provides an example of an automaton that is neither deterministic
nor complete.

For convenience, we often use a transition-based Biichi automaton, as it may provide
a more compact representation. To maintain uniformity in further definitions of different
types of w-automata, we define it as a special type of a non-deterministic transition-
based Emerson-Lei automaton (T E L A) over S. It is represented by the tuple AEL =
(Q, 5,1 ,T ,p, Ace), where Q is a finite set of states, { C Q x E x Q i s a set of transitions,
/ C Q is the set of initial states, r = { 0 , . . . , k — 1} is a set of k G i V + colors, p: 5 —>• 2 r

4

a,b b a,b 5

(a) L(A) = (a + &)*.(&)<" (b) L(Atba) = (a + &)*.(&)•

Figure 2.2: Examples of state-based (a) and transition-based (b) Biichi automata.

is a coloring function of transitions, and Acc is any acceptance condition generated by the
following grammar:

a ::= Inf(c) \ Fin(c) | (a A a) | (a V a)

such that c £ r . We refer to it as a transition-based Biichi automaton when T = { 0 }
and Acc = Inf(Qi), denoting it as Atba = (Q, S, S,1, F), where F = p _ 1 (0) (the set of all
accepting transitions) [26].

2.2.1 R u n

Let x G T,w. A run r of A on x is an a;-word over the alphabet of states Q, such that
r(0) = qin and r(i+l) G S(r(i), x{i)) for all i > 0. Consider the state-based Biichi automaton
A = (Q, E , 5, {qin}, F) and let (r) be the set of all states that occur infinitely often in
the run r. The run r is accepting if and only if <Sinf(r) n F 7̂ 0 [1]. Similarly, for the
transition-based case, let T-mt(r) be the set of all transitions that occur infinitely often in
the run r. The run r is accepting iff T inf(r) D F 7̂ 0.

2.2.2 Language of Biichi automaton

A Biichi automaton A accepts an infinite word a if there is an accepting run r of A on a.
The language recognized by A is defined as follows: L(A) = {a G S w | A accepts a}. The
complementary language is defined as L(A) = {a G S w | A does not accept a}.

Let R be a regular expression with e g" L(R), then i ? w is called the infinite concatenation.
L(RUJ) = L(R)U, where L(R)U = { x 0 x i . . . | Xi G L(R) for all i G N}. A language L is co-
regular if L = |J™ = 1-RjS^, where Rj and are regular languages. Such languages are
precisely those recognized by Biichi automata. When it comes to closure properties, UJ-
regular languages are closed under union, intersection, and complement. [22, 38]

2.2.3 Strongly connected component

A non-empty set of states C C Q is a maximal strongly connected component (SCC) if for
each p, q G C , q is reachable in C from p and p is reachable in C from q, and C is a maximal
set with these properties [26]. A strongly connected component is called trivial if it consists
only of one state with no self-loops. In the further text, SCC always refers to the maximal
strongly connected component.

2.3 Complementation of Biichi automata

Complementation of Biichi automata is a crucial task, integral to termination analysis,
model checking procedures, etc. For a given Biichi automaton A, complementation is the
process of obtaining a Biichi automaton Ac such that L(AC) = L{A).

5

The complement of a deterministic B A has at most 2n states. However, non-determinism
enhances the expressiveness of BAs [22]. Consequently, there exist nondeterministic Biichi
automata for which no deterministic equivalent exists (e.g., L = (a+b)*1f can only be recog
nized by a nondeterministic B A) . Non-determinism is a factor that makes complementation
difficult.

The worst-case state explosion resulting from the general complementation procedures
is O((0.76n) n) [1]. Several main general complementation approaches are identified:

• determinization-based [36],

• slice-based [29],

• rank-based [31],

• Ramsey-based [7], and

• subset-tuple construction [1].

Additionally, there are algorithms that leverage the structure of the input automaton,
applying specialized complementation procedures to enhance the bounds on state explosion.
A n overview and a brief description of the structure of special automata types is listed
below [27, 26].

• Deterministic B A : defined above, complement size is at most 2n.

• Semi-deterministic B A : consists of an initial part without accepting states/transitions
and a deterministic part containing accepting states/transitions. The transitions from
initial to deterministic part are one-way only. The size of the complement is 0(4")

result of the NCSB construction [6].

• Inherently weak B A : within each SCC, all cycles are accepting, or all cycles are
rejecting. The size of the complement is 0(3") as a result of the Miyano-Hayashi
construction [35].

• Elevator B A : each SCC is deterministic or inherently weak. Complement size is
0(4") [26].

2.4 Generalized Biichi automata

A transition-based Generalized Biichi automaton (T G B A) can be defined as the transition-
based Emerson-Lei automaton A^GBA = (Qi S, I, T,p, Acc) over E such that T = { 0 , . . . , k —
1} and Acc = lnf(0) A . . . A Inf(k - 1) [20]. A n example of a T G B A is shown in Figure 2.3.

2.5 Intersection of Biichi automata

Consider (TG)BAs A = (Qa,5a,Ia,Ta,pa,Acca) and B = (Qb,5b,Ib,Tb,pb,Accb) over the
same alphabet E, and without loss of generality, we assume Qa n Qb = 0 and Tar\Tb = 0.
Then the automaton P = (Q',5',/',V,p',Acc') over E that recognizes the intersection of
their languages L(P) = L(A) n L(B) can be defined as follows:

• Q' = <2a x Qb,

6

Figure 2.3: Example of T G B A A over E = {a, b} with Acc = Ira/(0) A Inf {I) A Inf (2) and
L(A) = E w .

• <J'((5ai,56i),o) = Sa(qai,a) x 6b(qbl,a), for a G E ,

. r = i a x ib,

. r ' = r a u r 6 ,

• P'((9ai,96i) A (Qa2,Qb2)) =Pa(qai 4 <?a2) U j) ^ ^ 4 % 2) , and

• ^4cc' = ^4cca A ̂ 4ccft.

Refer to Figure 2.4 for a demonstration of the construction of the product (states are the
product of the original automata states).

Theorem 1. For TGBA P it holds that L(P) = L(A) n L(B).

2.6 Language emptiness
Consider an automaton A. The language emptiness problem is the task of deciding whether
L{A) = 0 holds. For automata over infinite words (w-automata) it boils down to checking
the existence of a lasso that satisfies the respective acceptance condition.

2.7 Language inclusion

Consider automata A and B. The language inclusion problem is the task of deciding whether
L{A) C L(B) holds. The theoretically optimal solution is to decide the following problem
L(A) n L(B) = 0. This entails complementation, subsequent intersection, and finally an
emptiness check of the resulting automaton. In practice, we can avoid constructing the
entire product automaton. More specifically, to check if the resulting automaton is empty,
we can use techniques that significantly restrict the generated state space.

2.8 HyperLTL
We fix a finite set of atomic propositions AP. A trace over AP is a map t: N —> 2AP, which
can be expressed as a sequence t (0) t (l) . . . The set of all traces over AP is then denoted as
{2APy.

7

b a

a
(c) The resulting automaton with Acc = 7n/(0) A/n/(l) recognizes the language
L(P) = L(A) n L(B) = 0.

Figure 2.4: Example of product construction, in accordance to definition in Section 2.5,
used to obtain an automaton that recognizes the intersection of languages.

Linear-time temporal logic (LTL) can be seen as a logic describing dynamic worlds, i.e.
it is a modal logic. To do so, temporal operators are defined to express changes in time.
L T L formulas are generated by the following grammar [23]:

ip ;•— a I -*tp I (p A (p | Xtp | tpXJtp

where a £ AP is an atomic proposition, and A are standard Boolean operators (other
commonly used Boolean operators can be defined in the usual way) and X , U are temporal
operators next and until respectively.

Suppose a trace t and an L T L formula (p. By notation t,i \= ip we express that the trace
t at a position i G N satisfies the formula (p. See the following definition [23]:

t,i \= a
t,i\=-«p
t,i \= ipi A (p2

t,i \= Xip

t,i \= ipiU<p2

iff a G t(i),
iff t, i ¥= ip,

iff t, i \= ip\ and t, i \= f2,
iff t, i + 1 |= (p,
iff 3k > i: t, k \= (p2 and Vz < j < k: t, j \= (pi.

The trace t satisfies (ft, denoted as t \= (j), if t, 0 |= 4>.

8

Xip ip ipi ipi <pi ipi ip2

o - ^ o - ^ o - * X>^0-X>-K>-» - • • • CH*O^CH*-—> y+o-*~ > -><>->• • • •
0 1 2 i i+1 0 1 2 i i+1 k-1 k

(a) Xip. (b) <piUtp2-

Figure 2.5: Visualization of next (a) and until (b) operators. The states for which the
corresponding operator holds are colored.

Intuitively, Xip means that ip is satisfied at the next position and ip\Uip2 says that at
some point (position) ip2 is satisfied, but until that moment ip\ holds. One can also come
across other derived temporal operators (syntactic sugar), such as:

• eventually: Ftp 4=̂ > trueUip,

def
• globally: Gip •£=>• -F-np,

def
• weak until: ipWip (ipVip) V Gip, and

def
• release: ipKip •£=>• — I ^ J X J — .

For a better understanding of the next and until temporal operators, see the visualization
in Figure 2.5.

However, L T L can only be used for reasoning about a single path. HyperLTL extends
L T L formulas with quantification over traces to explicitly express the relations of executions
and their properties. HyperLTL formulas are generated by the following grammar [23, 9]:

4> ::= 3-7T.0 | V7T.0 | tp

ip ::= a-x \ ->ip | ip A ip | Xtp \ ipXJijj

where a G AP, IT G V is a trace variable with V being the infinite supply of trace variables.
The body of the HyperLTL formula tp is essentially an L T L formula. A HyperLTL formula
is considered closed if each occurrence of the trace variable is bound by a quantifier [9],
refer to Figure 2.6 for an illustration.

2.8.1 Semantics

To define the semantics of HyperLTL we need to introduce a trace assignment n : V —>
(2 j 4 p) w for mapping trace variables to actual traces (of the system). If we want to map
some trace variable TT G V to a particular trace t using our mapping n , we denote updating
n so that II(7r) = t as n[7r —> t\. For the satisfaction of a closed HyperLTL formula <j> over
n and a set of traces T at a position i G N, we use the notation T, II, i \= 4>, defined as
follows [23]:

9

i

I I
V7TiV7r2: lw2) ~> G(oni <-» o ^)

t t

Figure 2.6: Formula ip is closed, while formula ip is not closed.

r , n , i ^ a ^ iff aen(7r) (i) (1)

T,n,i\=^ iff r , n , i ^ v (2)

T, n , i |= V i A V2 iff T, n , * |= V i and r , n , t |= V2 (3)
r , n , i \= x?p iff t, n , * +11= v (4)

T , n , z |= V i ^ 2 iff 3/c > t: T,IL,i \= ip2 and Vi < j < k: T,U, j \= fa (5)

r , n , i ^ 3 v r : 0 iff 3t€T:T,U[ir-H],i\=<l> (6)

r , n , i ^ V v r : 0 iff Vt€T:T,U[ir-H],i\=<l> (7)

Similarly to L T L , we say that a set of traces T satisfies the property 4> (written as T \= 4>)
if T, ILj, 0 |= (ft, where ILj denotes a mapping with the empty domain.

2.8.2 Kripke structure

Modeling the traces (behavior) of a specific system can be achieved through the use of
a Kripke structure (sometimes referred to as a transition system) [5, 23]. A Kripke structure
is a tuple K. = (S, so, 5, AP, L) with the items of the following meaning:

• S is a finite set of states,

• SQ is the initial state,

• 5 is a transition function 5: S —>• 2s,

• T4P is the set of atomic propositions, and

• L is a labeling function L: S —>• 2 ^ .

When dealing with properties that imply infinite traces, it is necessary for all states s £ S
to have | <5(s) | > 1. A n infinite sequence so^i • • • £ is a pai/i of a Kripke structure, with
so being the initial state and Sj+i G 5(SJ) for each i G N . A trace corresponding to a path
sosi . . . is an infinite sequence of labels ^ i • • •> where each lj = L(SJ). We use Tr(/C, s) to
represent the set of all traces whose corresponding paths start in the state s of a Kripke
structure K,. Given the set of traces, we can establish the satisfaction of Kripke structure K.
with respect to the HyperLTL formula ip as /C |= ip if and only if Tr(/C, SQ) \= (p.

10

so, s i , S4,
w

S5,
{a}

(a) Graphical representation of the Kripke
structure K.

a a a a, b a a, b

(b) The only two traces starting at the initial
state.

Figure 2.7: Kripke structure and traces starting at the initial state.

2.8.3 Example

To be more illustrative and to gain some intuition over HyperLTL and its semantics, we
provide a simple example. Consider the following HyperLTL formula (expressing a made
up hyperproperty):

ip = V7ri37T2 : a^Ufr^ ,

informally, read as for each trace TTI there exists a trace TT2 such that a holds on the trace
7Ti until b holds on the trace TT2. Also, consider the following Kripke structure K. (depicted
in Figure 2.7a):

• S = {S0,S1,S2,S3,S4,S5},

• so is the initial state,

• $ = {(so, {si}), (si , {s2, s4}), (s2, {s3}), (s3, {s2}), (s4, {s5}), (s 5, {s2})},

• AP = {a, b}, and

• L = {(s0, {a}), (si , {a}), (s2, {a}), (s 3, {a, &}), (s 4, {&}), (s5, {a})}-

Because K, is structurally simple, we observe that it contains only two distinct paths starting
from the initial state: soSi(s2S3)UJ and sosis^s^^ss)^. That means Tr(fC,so) contains
traces h = {a}{a}({a}{a, b})u and t2 = {a}{a}{b}{a}({a}{a,b})UJ (Figure 2.7b shows
traces t\ and t2, respectively). In order to decide whether Tr(/C, so) \= tp holds, we need to
inspect every possible assignment to the path variable TTI from our formula.
Let 7Ti be t\. Clearly, when we assign 7T2 trace t2, formula a^Ub^ holds. Starting from
position 0, a holds throughout the entire trace t\, therefore it is true that a holds until
position 2, where b holds on the trace t2.
Let 7Ti be t2. By assigning 7T2 the trace t2 again, the formula a^Ub^ becomes true.
Starting from position 0, a holds until position 2, where b holds on the trace t2.

The previous was an intuitive approach, so let us now apply systematically the rules
from Section 2.8.1. Considering T = Tr(tC,so), we can rephrase our problem to check if
T |= (p holds, that is, if T, 110,0 |= (p. After applying Rule 7 with t = t\, we proceed to
rule 6 with t = t2. This results in II = {(TTI,h), (TT2, t2)}. Next, we examine the quantifier-
free formula aniXJbn2 using Rule 5, selecting k = 2 (i = 0 from the problem definition).
Now we need to verify Vi < j < k: T,IL,j \= a 7 r i using Rule 1. For all j G {0,1}, we
have a G II(7ri)(j), implying that T, U,j \= anj holds. Similarly, for k = 2 and Rule 1 we

11

confirm that b G n(7T2)(/c), and consequently T,IL,j \= b^k holds. To complete the proof
that T \= (p, Rule 7 would be applied with t = ti following a similar procedure.

12

Chapter 3

HyperLTL model checking

Model checking serves as an automated verification method. Various properties of system
behavior, such as mutual exclusion and accessibility, require verification. To compare a sys
tem and its specification, automata over infinite words are often employed. For properties
related to a single execution of the system, the established approach is the language inclu
sion check. To be more precise, let the system S be represented by the w-automaton As and
the specification ip by the w-automaton Av (typically obtained through the LTL- to -NBA
conversion [14]). Finally, the inclusion check L(Ag) Q L{Atp) is performed.

However, when dealing with hyperproperties (expressing relations between multiple sys
tem executions), the task becomes more challenging. When comparing hyperproperties to
properties expressed by L T L and aiming to represent them through w-automata, we must
also consider the presence of quantifiers and trace variables in the HyperLTL formulas.
Quantifiers, more specifically each quantifier alternation, then cause the need for (possibly
more) complementations of w-automata, making the whole procedure difficult.

Recall the example in Section 2.8.3, where we actually performed model checking in
a brute-force manner. Our goal is to perform such checks algorithmically. This is feasible
because, similar to single-execution properties, it ultimately involves a language emptiness
check, which is decidable.

In this chapter, we first introduce Automata-based Verification (ABV) [24, 4, 23], as one
of the approaches for algorithmic verification of hyperproperties, followed by an illustrative
explanatory example. Subsequently, we briefly describe A U T O H Y P E R [4], a tool that im
plements a slightly modified version of this algorithm. It will be used as a reference when
comparing our implementation against the state-of-the-art push button HyperLTL model
checker.

3.1 Automata-based algorithm

Consider a Kripke structure K. = (S, so, d;c, AP, L) and a closed HyperLTL formula (p. The
task is to check whether IC\= <p. The idea behind the automata-based model-checking is to
construct a Biichi automaton that is equivalent to the L T L part (body) of the formula (p.
Then we iteratively eliminate trace quantifiers, starting with the innermost one. By doing
so, an automaton is acquired that combines the system fC and formula ip. To conclude
K. \= (p or K. Y= ip, we need to decide whether the language of the resulting automaton is
empty or not.

13

(BA:= Convert j: to~BA~]

Take and remove the innermost

scqnenee of the same type quantifiers

(unsat)

Outermost seqnenee *| A^ C BA1

1 [BA := BA)
[BA := BA >OC]

[BA .= BA x tc)

[BA := ~Bl}

N o more quantifiers

Emptiness eheek of BA

[sat]

Figure 3.1: The scheme summarizes the steps of the A B V and automata operations it
employs. Colors indicate the focus on optimizing specific operations, with red frames indi
cating a greater focus and orange frames indicating a lower focus.

Here, the algorithm is explained in greater detail. Let ip = Q\iriQ2K2 ••• Qn^n'• <P*,
with ip* denoting the quantifier-free subformula of ip and Qi G {3,V} for all 1 < i < n.
Firstly, a (non-deterministic) Biichi automaton A^* equivalent to the L T L body ip* is
constructed. This is accomplished by the standard Tableau construction that creates an
automaton accepting exactly w-words satisfying ip* [14]. This automaton's alphabet is
X^* = (2AP)n, one set of atomic propositions for each trace quantifier. The next step
is to inductively eliminate the trace quantifiers. Suppose the following subformula of <p,
^ = Qk^k- <pk- We can safely make an assumption that automaton Ak = (Q,T,,5,qin,F)
for ipk is already constructed (automaton Av* being the base case). Since Qk is the
th quantifier, the alphabet of the automaton Ak is E = (2AP)k. Now, if Qk = 3, we
can perform existential projection, which is intuitively the product of Ak and the Kripke
structure K. = (S,so,5,AP,L), necessary to associate the specification with the behavior.
Formally, we construct an automaton Ak-i = (Q x S, E , 5 , (%„, so), F x S) where E =
{2AP)k~1 and:

5'((q, s),(h,..., lk-i)) = {(r, a') | (s, a') G 5K and r G S(q, (h,..., lk_u L(a)))} (3.1)

14

(-"OTTI, ~ , & 7 T 2) (0^,-16^) (OTTI, ~ , & 7 T 2)

(a) Kripke structure /C. (b) NBA A for G(a 7 r i —> F^aVl) V F6„-2, adjusted from [30].

Figure 3.2: A simple Kripke structure to describe system behavior and an N B A representing
the L T L body of the HyperLTL formula G(a 7 r i —>• F-*ani) V Fbn2. To avoid cumbersome
notation, sets are given as sums. For example, transition labeled with (a 7 r i + -<ani,bn2)
denotes (a 7 r i V -•a7 r i) A bn2.

where (h,..., ^ - 1) and (Z i , . . . , Zfc-i, are letters of automata Ak-i and 4̂fc respectively
(making it E ' = (2 j 4 p) f c _ 1 for ^4fc_i). A n intuitive explanation of this definition is that we
read along both the automaton and Kripke structure, choosing only transitions that are
acceptable with respect to the current state of the system (Kripke structure). However, we
omitted the case where Qk = V. This is transformed to the previous scenario using the law
of double negation, i.e. -i-N-Kk^Pk = vVfc^fc, which we can rewrite as -i-N-Kk^Pk = ~^k~'lPk-
Here, the negations raise the need for the complementation procedure of Biichi automata.

After each quantifier is eliminated as described above, we end up with an automaton
over the single-letter alphabet E = (2AP)° = {()}. Now we just have to perform an
emptiness check on this automaton, which means that JC \= (p if and only if the language
of the automaton is non-empty.

Consider the Kripke structure fC and the HyperLTL formula ip from the algorithm
description. If the following holds: Tr(JC, so), H[KI —>• ti,... 7Tn —>• tn], 0 |= ip if and only if
(SQ ...)(sj . . . s^)... G L(A), where ti = s®s} ... for all traces, we say that automaton A
is /C-equivalent to the formula (p. Each step of the above algorithm produced a /C-equivalent
automaton to certain subformula via combining the automaton with /C. [24, 4]

One can modify the algorithm, for example, by negating the original formula and finding
the nonexistence, so the automaton with the empty language means satisfaction of the
formula (in other words, finding the counter-example to prove nonsatisfaction). For a more
schematic overview, see Figure 3.1.

3.1.1 Example

To demonstrate the algorithm, consider the HyperLTL formula V7ri37T2 : G(a 7 r i —>• F-*ani) V
F&7T2 and a system modeled by the Kripke structure K. = (S, SQ, 5, AP, L) (Figure 3.2a).

15

Figure 3.3: N B A A* as the result of the existential projection of JC onto A.

A nondeterministic Biichi automaton A = (Q, E , 5, {qin}, F) representing the L T L body of
our formula may look like the one in Figure 3.2b.

The transitions of A consist of tuples of size 2, where the first component is the set of APs
of trace 7Ti and the second one is the set of APs of trace iT2 • Since the innermost quantifier
is existential, we can now perform the existential projection and build an automaton An2 =
(QTT2, E ^ , <5TT2) I-K21 Fir?)- To avoid creating unreachable states, we start with the initial
states of JC and A and gradually find the successors of each state. According to Section 3.1,
the new initial state(s) originate from the product of the initial states of JC and A. Since
we have only one initial state in each of them, the new initial state is In2 = {(qo, so)}, and
we have (qo,so) G FW2 since qo G F. By applying Eq. 3.1 to find its successors, we obtain
the following:

• (lii si) ^ ^7r2((̂ 0) so), (a^)) because s\ is the successor of so in JC, and
qi G S(qo, (a^ , ^b^)) where L(so) = {a} (indicating that -*b also holds in that state).

• (<70)Si) G 5,r2((go, so), (~,ani)), same as before, s\ is the successor of so in JC, and
-•6^2)) where L(SQ) — {a}. Moreover, (qo,s\) G FW2 due to qo G F.

• For example (q2, si) is not a successor of (go, so) because -16 holds in SQJ whereas the
transition in A from go to q<i requires b.

The completion of the construction for the automaton An2 over E ^ 2 = { a ^ , -•a7 r i} follows
the same process as described above for each new state resulting in automaton in Figure 3.3.
Now that we have eliminated the existential quantifier, a universal quantifier remains in the
formula W i : (p*. Following the algorithm, we apply double negation, leading to the formula
—i37Ti: ""z9* • Since we already have the automaton for ip*, the next step is to complement
it. After using S P O T [21] to complement An2, we obtain the complement automaton Ac =
(Qc, ^Ci 5ci Co, Fc), see Figure 3.4. The next step is to perform existential projection once
again, aiming to eliminate the existential quantifier, but this time with respect to the trace
variable Employing the same approach as in the initial elimination, we combine Ac

16

Figure 3.4: N B A AQ as the result of the complementation needed to handle the universal
quantifier.

with the Kripke structure tC starting with the initial states. The resulting automaton of this
process, denoted cts Af j is depicted in Figure 3.5. The fact that the resulting automaton
Ar does not have any accepting states implies that its language is empty. Consequently,
we can interpret it as a nonsatisfaction of the system given the specification. However, we
must address the negation placed in front of the existential quantifier. This negation would
typically entail complementation of Ar. But in this case, it is evident that the complement
of an empty language will not be empty. Therefore, our conclusion is that the system does
satisfy the given specification. In formal terms, JC \= ip holds.

3.2 AutoHyper

In their work [4], Finkbeiner et al. introduce the A U T O H Y P E R tool as the first complete push
button tool capable of handling model verification of HyperLTL formulas without restric
tions on the number of quantifier alternations. A U T O H Y P E R employs an automata-based
approach introduced above, and they state the following language inclusion property [4]:
Let (p* = W i . . . vVn</? be a HyperLTL formula (ip may include additional trace quanti
fiers), and let Av be an automaton over £ = (2AP)n that is /C-equivalent to <p. Then
JC |= ip* if and only if L(A^) C L(Aip). Here, Afc is a nondeterministic Biichi automa
ton over £ = (2AP)n, such that for any n-tuple t\, ti, • • •, tn of the traces from JC it holds
that (i i (0) , t 2 (0) • •. , t N (0)) (t i (l) , t 2 (l) • • • ,*n(l)) • • • e L(A%). The construction of such an
automaton would follow Algorithm 1.

While the inclusion check, theoretically optimally done via complementation and the
following emptiness check, is no better than the standard automata-based procedure in
the worst case scenario [4], A U T O H Y P E R capitalizes on the possibility of terminating much
earlier when K, y= ip* without constructing the entire complement to prove automaton
(non)emptiness (by finding an accepting lasso).

17

Figure 3.5: The final existential projection results in the N B A Ar over a singleton alphabet,
with no accepting states.

A U T O H Y P E R uses S P O T [21] for L T L - t o - N B A conversion, complementation, and as the
inclusion checker. In addition to S P O T , it offers several other tools to use as inclusion
checkers, namely R A B I T [12], B A I T [18], or F O R K L I F T [17]. However, in terms of successfully
solved instances, S P O T stands out as the most successful among them. On the other
hand, there are cases where S P O T is outperformed by some of the alternatives, therefore
A U T O H Y P E R provides the flexibility to use any of them.

Algorithm 1 N-fold self-composition of a Kripke structure

Input: Kripke structure K. = (S, s0, 5, AP, L), N G N +

Output: N B A A = (Q, E, 5,1, F)
Q «- 0, £ «- (2AP)N, S {{s0)N}, F «- 0
Queue q
q.Enqueue(I)
while q.nonemptyQ do

current q.DequeueQ
trans_cond 4—1 > neutral for conjunction
succs 4- {%}N

for each 0 < i < N do
state <— current[i]
trans_cond 4— trans_cond A L(state)
succs[i] get_successors_of (state)

end for

all_possible_comb 4— product(succs, N)
for each dst state of all possible comb do

if state £ Q then
q. Enqueue (dst_state)
Q.add(dst_state)

end if
5.add(current, trans_cond, dst_state)

end for
end while
F 4- Q

return (Q,T,,S,I,F)

> product of N same sets of successors

18

Chapter 4

Subsumption relations

One of the approaches to decide L(A) C L(B) between w-automata A and B is to decide
whether the language of an automaton resulting from L(A) D L(B) is empty. When con
structing the product automaton on-the-fly, we can use the information gathered before
and during construction to predict and cut off unnecessary parts or find counterexamples
without explicitly constructing them. This approach extends far beyond the HyperLTL
model checking and thus can be utilized in various problems that include emptiness check.

This chapter introduces the necessary notions regarding simulations on w-automata.
We then define and combine various relations and theorems for an efficient inclusion check,
specifically when leveraging modular complementation from K O F O L A [26].

4.1 Simulations

There is a wide range of simulations over w-automata. Simulations allow us to relate states
not only by whether they accept the same w-words, but they allow us also to reason about
traces. Simulation can be defined as the game of two players [13], Spoiler and Duplicator.
Consider the following initial configuration of the game. The Spoiler starts in the state
so and Duplicator starts in state do. In each round of the game, Spoiler chooses a; £ E
and picks a transition such that Si —^ Sj+i G 5. Duplicator has to pick the corresponding
transition such that di —^ di+\ G 5. Assuming the automaton is complete, there are two
infinite traces, irs = SQ s\ —^ S2 • • • and ir^ = do d\ —^ di... According to the
winning condition for Duplicator, we distinguish the direct (di), delayed (de) and fair (/)
simulation. Let x G {di,de, / } , the Duplicator wins when Cz(7rs,7Trf) holds [11]:

Vi > 0: Si G F = ^ die F, (4.1)

Vi > 0: Si G F =^ 3j>i: dj G F, (4.2)

ns is fair 7Td is fair, (4.3)

where an infinite trace is fair if and only if it visits the accepting state(s) infinitely often.
Whenever the winning condition is not met, the winner is Spoiler. To denote that the state
p is direct simulated by the state q, we use the notation p -<di Q- This definition would be
trivially extended to transition-based automata.

C {TTs,TTd)

pdet^ „ \ def

cH del'

19

4.1.1 Early simulations

This section defines early and early+1 simulations as introduced in [8], but for transition-
based Biichi automata.

Definition 1. Consider the Biichi automaton A = (Q,Y,,5,I,F) and the traces TTP =
Pou>oPiu>i • • • and 7rr = rQWQr\W\ ... over the same word w = wowi... G T,w, where each
Pi-,fi G Q. Trace irp is early simulated by 7rr, denoted as irp <e irr,if and only if

Vz < j: ({pi 4 p i + i G F V i = -1) A pj 4 pj+1 G F) =>• 3z < k < j : rk 4 rk+i G F .

Similarly, trace TTp is early+1 simulated by 7rr, denoted as TTP ^e+i TTr,if and only if

Vi < j: (pi 4 pi+i G F A 4 pj+i G F) =4> 3i < A; < j: r f c 4 r f c + i G F .

For early+1 simulation this means that there is one accepting state in the irr for every two
accepting states in the TTP and early simulation also requires that 7rr visits accepting state
no later than irp.

To be able to express these relations on the states, [8] provides the following definitions.

Definition 2. Strategy is a function 5S: Q x (Q x S x Q) —>• (Q x S x Q) such that
8s(r,(p,a,p')) = (r, a, r') where r' G <5(r, a).

In other words, strategy function chooses a transition from state r based on transition
(p,a,p').

Definition 3. Strategy for traces is a function St - Q x (Q x S) w -> (Q x S) w suc/i i/iai
(5i(ro,7rp) = r0w0riwi ... where Ss(ri, (pi,Wi,pi+1)) = (ri,Wi,ri+1) holds for all i > 0.

It is essentially choosing the successors of ri following the trace TTP.

Definition 4. State po is early (early+1) simulated by state TQ, denoted aspo -<E TQ (po ^e+i
ro), if and only if there is a strategy function 5t suchthat7rp -<e St(ro,7rp) (TTP ^e+i St(ro,irp))
holds for each trace irp starting in po.

The language of a state p G Q from (T G) B A A = (Q, S, 5,1, F) is defined as L(p) =
{w | 3 an accepting trace from p in A over w}. By we denote the relation of language
inclusion of states, p CL q <^=^> L(p) C L(q) [8].

Proposition 1. For the relations over the states of BA A the following holds [8]:

4.2 Modular Complementation of Biichi Automata

This thesis builds on the tool K O F O L A [26], which employs a modular-based complementa
tion approach (note that whenever we talk about modular complementation, it is a reference
to K O F O L A ' S approach). Prior to complementation, the input automaton is divided into
partition blocks (a partition block is a group of strongly connected components, where
a group consists of at least one SCC) based on the structure of the strongly connected
components. A n example of partitions can be seen in Figure 4.1a. Then, for each partition
block, the most suitable complementation algorithm is determined. Subsequently, the tool

20

a, b

(a) Identified partitions of automaton Aex (in this case a partition is an SCC). Green and blue frames
each contain an inherently weak accepting component, the orange frame contains a non-accepting
component (does not produce a partial macrostate).

—{O | 0,0 | 0,0) O — 4 ° ' 2 I 2 ' 2 I0'") »{0, 2,3 J 2, 2 |o7o] »(l,3 I 1,1

(b) The outcome of the modular complementation of the automaton Aex. The blue part of the
macrostates corresponds to the partition containing the blue SCC from Aex in (a), and the green
part corresponds to the partition containing the green SCC from Aex. An instance of the MH
procedure is applied to each of the two. The resulting automaton has the acceptance condition
Acc = Inf(Q) A Inf(Q) where irc/(©) is from MH for the green partition and Inf() is from MH for
the blue partition.

Figure 4.1: Example of modular complementation showing the input automaton and the
resulting automaton.

performs the complementation for each partition block using either synchronous construc
tion or a postponed construction. The acceptance condition of the complement produced
by K O F O L A can potentially be more general - a conjuction of partial acceptance conditions
- which is one of the benefits of this approach (it can lead to smaller automata).
Postponed. In the postponed construction, the complementation of each partition block is
performed independently. The result is then obtained using the product construction of the
partial complements of the partition blocks. This approach is appropriate for applications
that require the entire complement, as reductions on the partial results can be applied.
Synchronous. The synchronous construction synchronizes the complementation of each
partition in each step. For example, consider an input automaton consisting of three
SCCs of different types. The states produced by modular complementation are of the
form (N, Si, S2, S3), where N is the set for tracking all runs and Si is the state containing
runs within the i-th SCC. In each step, the successors of states in N are computed and with
respect to them, the successors of each Si, S2, and S3 are computed according to partial
procedures. Creating the whole state of the complement in each step makes it fitting for

21

on-the-fly applications (such as inclusion testing) because there are cases where we can
determine the result without the need for constructing the entire complement automaton.
However, compared to the postponed construction, it may suffer from generating useless
states.

4.2.1 Inherently Weak Accepting Components

One of the partial algorithms that K O F O L A uses is the standard Miyano-Hayashi(MB) com
plementation procedure [35] for inherently weak Biichi automata. If an SCC is inherently
weak, all its cycles are either accepting or rejecting (for rejecting it means that the SCC
has an empty language). The approach in K O F O L A therefore assumes only inherently weak
accepting components, whose complementation is not trivial. The task is then to track all
the runs in such an SCC (or a partition) and to determine whether they leave it eventually.
If they leave it infinitely often for a certain w-word, the complement automaton will accept
such a word. To be precise and coherent with K O F O L A , consider the input automaton
A = (Q,T,, 5,1, F) and pick a partition block P of inherently weak accepting SCCs. This
procedure within the modular complementation produces macrostates1 of the form (C, B),
where C stands for check and represents runs in P and B C C stands for breakpoint and
contains the runs that are being inspected whether they leave P. Each macrostate has ex
actly one successor given by the following transition function: 5c(N, (C, B),a) = (C, B'),
where iV denotes all current runs within the automaton A, C = 8{N, a) n P and when
5(B, a)nC = 0 then B' = C, otherwise B' = 5{B, a)nC. The transition (C, B) 4 (C, B')
is accepting when 5(B, a) n C = 0. Details are omitted, the full specification of the algo
rithm plugged into K O F O L A can be found in [26]. A n example can be seen in Figure 4.1.

We can now delve into the definition of the proposed subsumptions. Suppose macrostates
p = (Np, Cp, Bp) and r = (Nr, Cr,Br) with N, N' representing the sets of all currently vis
ited states. Thus, C C N and C C N'. Note that the sets N, N' are always present in the
modular procedure, which implies that we can use them freely. Let us define the following
subsumption relation:

p c r <̂ 4 Np D Nr A Cp D Cr.

We also define a similar but stronger relation:

p\ZB r <̂ 4 Np D Nr A Cp D Cr A Bp D Br.

Lemma 1. The relation C is an early+1 simulation:

p\Zr p ^e+i r.

Proof. This proof follows the structure of the proof in [8].
We need to find the suitable strategy 5t(r,irp) according to Definition 4. As we stated
above, the Miyano-Hayashi complementation procedure produces deterministic transitions.
Therefore, the strategy is implicitly defined by the output's characteristics. Namely, we
use strategy <fe which for a transition (p,a,p') chooses a transition (r, a, r'), with p' =
(Npi, Cpi, Bpi) and r' = (Nr/, Cr>, Bri), such that 5c(Nr, (Cr, Br),a) = {Cri, Br>). And given
that Nr C Np, also Cr< C Cv<. Putting the strategy in place guarantees p C r p' C r',
the consequence of determinism and completeness is that (r, a, r') exists. It is also evident
that, whenever a state is removed from Bp, it is also removed from Br if present.

x B y term macrostate we mean a state consisting of more states (typically sets of states of the original
automaton).

22

Now we show that for any two traces TTP = PQWQP\W\ . . . and 7rr = Sr(ro,^P) =
rQWQr\W\ ..., with p = po and r = ro, the condition TTP ^e+i 7rr is satisfied. By defini
tion, it is necessary to prove that Vi < j: (pi 4 pi+i G F c A pj -4 Pj+i £ Fc) =>• 3i <
k < j': rfc ^1 rfc+i G F c , where F c is the set of accepting macrostates of Ac-
Claim 1: For all i > 0, if pi 4 pi+i G F c , then p j + i C B rj+i.
Proof: Suppose that pi+\ = (NPi+1, CPi+1, BPi+1) and ri+\ = (Nri+l,Cri+l,Bri+l). Since
Pi 4 pi+i is accepting, it holds that (i) BPi+1 = CPi+1, (ii) CPi+1 D Cri+1 since pj+i C
r i + i i V p i + 1 D i V r . + 1 (C w + 1 = i V p i + 1 n F) D (C r i + 1 = i V r i + 1 n F) and (iii) C r i + 1 D
B n + 1 . From (F p i + 1 = CPi+1) D Cn+1 D B n + 1 , it follows that Bpi+1 D B n + 1 , implying
Pi+i E B ri+1. •
Claim 2: If pi C and pj -4 Pj+i G F c for some i < j, then there exists i < k < j such
that rk ^ r f c + i G FC-
Proof: From pi C B ri we have F p i D Bri and our strategy guarantees that in this case Bri

will be emptied no later than BPi. •
The two claims imply TTP ^e+i 7rr. The conclusion is that our strategy meets the

requirements of Definition 4. •

Lemma 2. The relation C B is an early simulation:

p\Z r =4> p -<e r.

Proof. The strategy 5c we use is the same as in the proof of Lemma 1. Now we show that
for any two traces TTp = powopiwi... and irr = <5c(ro, 7rp) = ro^o^i^i • • • it follows that
% r̂ e TTr- Similarly as in the proof in [8] we restate Definition 1 of early simulation in the
following conjunction:

Vi < j : (pi 4 pi+i G F c A pj 4 pj+i G F c) 3z < fe < j : r f c ̂ r f c + i G F c , (4.4)

Pi 4 pi+i G F 3k < i: r f c ̂ r f c + i G F . (4.5)

The condition 4.4 is the same as for the definition of C and since C s is stronger, it follows
that p C r. Wi th strategy <5c being the same as in the proof of Lemma 1, Condition 4.4
is satisfied. Condition 4.5 follows from the second claim in the proof of Lemma 1. •

4.2.2 Deterministic Accepting Components

For deterministic accepting components (DACs) K O F O L A [26] uses an approach based on the
N C S B construction [6] for the complementation of semi-deterministic Biichi automata. In
this section, we will prove that there exists early simulation between states of the particular
partial algorithm used within K O F O L A .

The most important aspect is again the computation of the successors. So let us briefly
sum up the definition provided in K O F O L A . A S referred in [26], a partial algorithm CSB

uses a set B similarly as MH for tracking the runs that eventually leave the SCC, further it
uses a set S for storing runs which it guessed will not visit accepting transitions anymore
(safe runs). A set C then contains runs that has not yet been decided as safe nor have they
been sampled into B. To avoid transitions between SCCs of the partition F (so that we can
treat all runs as deterministic) Sscc is used. Moreover, transition function that only returns
accepting transitions (if present) 5F is used. We define 5CSB(N, (C, S, B), a) = U [26] such
that:

23

. if 6F(S, a) + 0, then U = 0,

• otherwise:

- U includes (C',S',B'), where:

* C = (5(N, a) n P) \ 5',
* S' = < W (S , a) n P ,
* P' = C" if 5Scc(B, a) = 0, otherwise P' = 5Scc(B, a).

We refer to this type of transition as emptying. The transition (C, S, P) A
(C , 5', B') is accepting if 5SCc(B, a) = 0.

- If 5Scc(B, a) n <5F(P, a) = 0, U also contains (C", 5", C") , where:

* C " = C" \ 5",
* S" = S'U B'.

The transition (C, 5, P) —> (C", S", C") is always accepting, and we refer to
this type of transition as safeing.

Now, similarly as for MH macrostates, we define the relation for the CSB macrostates. More
specifically, consider macrostates p = (Np, Cp, Sp, Bp) and r = (Nr, Cr, Sr, P r); then

def

V E c s s r <v=̂ NpD Nr ASpD Sr A (Sp U Bp) D Br.

Lemma 3. The relation ^CSB is an early simulation:

P Ec5B r => p <e r.

Proof. First, let us state the following facts:
1. J V C J V ' S(N,a) C 5(N',a),

2. S U C = N n P, and

3. if a run p is moved to S on an infinite trace, then it stays safe forever or becomes
discontinued.

From each state of the CSB construction, there are at most two successors. We use a strategy
<5JZCiSS that if pi -4 pi+\ is safeing, we also take safeing transition from ri if possible. This
is the only scenario when safeing transition is picked from r̂ . In all other cases, emptying
transition is chosen.
Claim 3: If pi Ec5B n and pi pi+1 g" FC and n ri+1 g" F C , then pj+i Ec5B ^i+i-
Proof: For SPi+1 = 5scc(SPi,a) and BPi+1 = 5Scc(BPi,a). For B n + 1 , we have P r i + 1 =
Sscc(Bn,a). From U P P i) D Bn, it holds that (SPi+1 U P K + 1) = (Sscc(SPi, a) U
^5Cc(P P i,a)) 2 fecclPr^a) = Bri+1 and = 5Scc(SPi,a) D 5Scc(Sri,a) = Sn+1. •

Claim 4: If p^ E c s s and pj A Pj+i G Fc 1: then there is a A: such that i < k < j and
rk % rk+1 G FC.

Proof: We split the proof into two cases.

(I) pj -A Pj+i G FQ is emptying.
(Li) Suppose BPi D Bri, then BTi becomes empty (and emits an accepting mark) no

later than Bv..

24

(I.ii) Otherwise, there was no emptying transition up to rj, so we use Claim 3. Since
Pj -4 Pj+i is emptying, BPj becomes empty. Therefore, each run from (SPj U
BPj) D Brj is discontinued or safe, which means 5scc(Brj,a) n 5F(Brj,a) =
0. That proves the existence of the safeing transition from rj (which we take
according to our strategy).

(II) pj % pj+i G Fc is safeing.

(II.i) Suppose BPi D Bn then either Bri becomes empty sooner than pj -4 Pj+i or
BPj 2 Brj and rj —> rj+\ is also safeing.

(II.ii) Suppose that BPi Bn and no emptying transition from ri to rj (worst case).
Then each run from (SPj U Bpj) D Brj is moved to safe set. Therefore also the

transition rj -4 rj+i can be safeing (which is picked by our strategy).

Claim 5: If p Ec5B f then for all i it holds that SPi D 5 r i .
Proof: This follows from our strategy not picking safeing transition (emptying transition
does not alter set S) if not necessary. We can only pick safeing transition on irr on the
exact same position as present on TTP, for example position i. Utilizing Claim 3 and emptying
transition not altering set S, the only alternation happens when safeing transition occur. In
that case, suppose it happens for pi -4 pi+\ and ri -4 ri+\. Clearly, it holds that pi Ec5B fi
(according to Claim 3). We start with NPi D Nn A SPi D Sri A (SPi U BPi) D Bn. Since
safeing transition moves all runs from set B to set S, all runs from (SPiL)BPi) D Bri become
safe together with SPi D Sn, leading to SPi+1 D Sri+1. •

Claim 6: If p Ec5B r and JH % pi+\ G Fc, then pi+i Ec5B ri+\.
Proof: Whenever the accepting transition is encountered, we have C = B; additionally from
Fact 2 we have S U C = N (1 P. In this particular case, for Pii+1 it holds that CPi+1 = BPi+1

and thus SPi+1 U CPi+1 = SPi+1 U BPi+1 = NPi+1 n P. From Fact 1 and p Ec5B r we
inductively have NPi+1 D Nri+1, therefore NPi+1 (1 P D Nn+l n P. From definition, for ri+\
it certainly holds that Nn+1 f l P 3 C V i + 1 3 Bri+1. Putting everything together, we have
(SPi+1 U Bpi+1) D Bn+1, and thanks to Claim 5 SPi+1 D Sn+1. •
The validity of Claims 3, 4 and 6 concludes the proof, together with Claim 5 ensuring
existence of transitions. •

4.3 Early Simulations for T G B A

Due to the fact that the result of the product construction A n B of two (TG)BAs, is also
a T G B A , we need to define early and early+1 simulation for T G B A s .

Definition 5. Consider TGBA A with acceptance Acc = lnf(0) A . . . A Inf(n). Next,
suppose two traces TTp = powopi... and 7rq = qow^qi... of the automaton A. We say that
irp ^e+i 7Tq if the following holds:

VO < m < n: Vi < j: (pi ^ pi+i G Fm A pj pj+i G Fm) =^

=^ 3i < k < j: rk ^ rk+i G Fm.

25

Similarly, for early simulation, irp -<e irq if:

VO < m < n: Vi < j: ((pi ^ pi+1 G Fm V i = —1) A pj —£ pj+1 G Fm) =>

=>• 3i < k < j: rk ^ rk+i G Fm.

4.4 Early termination in Kofola

This section provides observations that can be used within K O F O L A for an efficient inclusion
and emptiness checking.

In this section, we assume a T G B A ATGBA = (Q, S, I, F, p, Ace) over E such that F =
{ 0 , . . . , k — 1}. The fact that there is a transition t such that p{t) = i (i.e., accepting) for
some selected color 0 < i < k — I o n the path over u from state p to state q, is denoted by
p •w q. By L(p) we denote the set of w-words accepted from state p and L(p)1, moreover,

adds a restriction to F = {i} (intuitively simplifying the acceptance condition of ATGBA to
Acc = Inf(i)).

Firstly, we begin with the observations that help in reporting counterexamples with
out fully constructing them. Then, additional observations are introduced to reduce the
explored state space (which is particularly useful when inclusion holds).

4.4.1 Early counterexample reporting

The first observation is that whenever we reach the state q from the state p over some
u G E* such that p ^ e +i q and there were at least two accepting transitions between them,
the early+1 simulation ensures infinite generating of accepting transitions from q, so we
can decide the language of the automaton as nonempty at this moment. For T G B A s , it
means seeing at least two accepting transitions for each color 0 < i < k — 1.

Theorem 2. / / TGBA A has Acc = Inf(O) A . . . A Inf(k - 1) then it holds that

(V 0 < i < k-l:p~*~*qAp^e+i q) =^ L(pf ^ 0.

Lemma 4. Op -w^w q Ap ^ e +i q) = ^ G Lip)1

Proof. In this proof we use the notation TTX(U) representing the finite trace from the state
x when reading u G E*. We also use TT^(U) to denote the infinite trace from state x over
uu G E w .
Suppose a finite trace TTP(U) = po —>• p i —>• . . . —>• pi, where po = p,p% = q, and a finite
trace 7Tq(u) = qo —> q\ —> ... —> qi, where qo = q. The existence of 7rq is given by the fact
that the strategy function exists, from Definition 4. Let us say, that accepting transitions
are pj —>• Pj+i and pm —>• pm+i where 0 < j < m < i. Since p ^ e +i q, the trace 7rq must
see the accepting transition in position k such that j < k < m. That means that also the
transition qk —>• (/fc+i is accepting. Wi th trace 7Tq (u) = qo —>• q\... —>• qi... being the suffix
of trace -K^ (U) = po —> p\ • • • —> qo —> Qi —> • • • —> Qi —> • • •, the exact same transition is
accepting on trace i^{u). Now we have that the position of pj —>• Pj+i on trace 7Tp (u) is j,
the position of pm —>• pm+i on 7rp°(u) is m, position of qk —> qk+i on iTp(u) is i + k and fc on
7Tg (u). Clearly, it holds that

26

In other words, for accepting transitions on position m and i + k on trace ir^ (u) there has
to be some accepting transition qn —>• gn+i on 7r^ (it), therefore also qn —>• gn+i on position
i + n on 7Tp (it), such that

Such generation will continue infinitely, which concludes Lemma 4. Theorem 2 is the direct
consequence of Lemma 4. •

The next observation is similar to the one in Theorem 2, but for early simulation it is
sufficient to see only one accepting transition.

Theorem 3. (VO < i < k - 1: p A q Ap <e q) = ^ L{jp) ̂ 0

Lemma 5. (p A g A p -<e q) =>• G Lip)1

Proof. The proof would be carried out in a way similar to the proof of Lemma 4. Intu
itively, early simulation ensures existence of the accepting transition on the path from p
to q within the trace irp implies the accepting transition on the path from q within the
trace 7rq. That, however, creates a second accepting transition on the trace TTP without
a corresponding accepting transition on the trace irq. Early simulation ensures that there
is another accepting transition on irq, which also implies another accepting transition on
lip. This happens infinitely often, which proves Lemma 5. The validity of Lemma 5 proves
Theorem 5. •

Now we would like to extend such an approach to K O F O L A ' S macrostates, making use
of the partial macrostates included in them. Therefore, we have to consider Definition 5
provided for T G B A .

Theorem 4. Consider macrostates p = (AQ,...,An) and q = (AQ,...,An) such that
A\ ^ e +i A\ for each 0 < i < n. Then the following holds:

p <e+i q.

Lemma 6. There is a strategy function 5t such that TTP ^ e +i St(qo,7Tp) for each trace TTP

starting in po.

Proof. We define the strategy function St with respect to partial strategy functions whose
existence is given by the early+1 relation between partial macrostates. More specifically,
function Si for each pair Av

i,A\. The strategy St is then defined as follows:

8t(qo,TTP) = Qo ^ Qi ^ • • •,

such that
S(qi,(pi,Wi,pi+1)) = q i ^ \ qi+i,

where
= (S0(A$, (Ap

0%wt,A%+1)),5n(A%, (A%,Wi,Ap

n

i+1))).

The sequence of j - t h macrostate components, where 0 < j < n, creates a subtrace, for
which the Definition 1 (for early+1) holds for F = p _ 1 (j) . A l l n such subtraces create
one trace of macrostates. Therefore, for each 0 < j < n Definition 1 of early+1 simulation
holds, where Fj = p _ 1 (j) . That is exactly Definition 5. This proves validity of Lemma 6,
which proves Theorem 4.

•

27

[621 | 3 + 4 + 8 | 3 + 4,3 + 4 |

[626 | 3 + 4 + 8 | 3 + 4,3 + 4]

b
[6 | 8J 0.0)

Figure 4.2: Fragment of the product automaton A n Bcompi with ^4cc = Inf(Qi) A Inf(Qi)
demonstrates the effect of an optimization that uses Theorem 3 and Theorem 4, where
p = (621 | 3 + 4 + 8 | 3 + 4, 3 + 4) and q = (621 | 8 | 0, 0). Each of them being the product
macrostate of the form (x \ N \ C,B) such that x £ QA, N C QB and C, B being sets from
the MH construction (with elements belonging to the same set presented as sums). Then,
the exploration of the red part can be omitted completely and the algorithm can terminate
with stating nonemptiness.

Theorem 5. Consider macrostates p = (AQ, . . . , An) and q = (AQ, . . . , An) such that A\ <e

Af for each 0 < i < n. Then the following holds:

P <e q-

Lemma 7. There is a strategy function 5t such that irp <e 5t(qo,7rp) for each trace TTP

starting in po.

Proof. The proof would be exactly like the proof of Lemma 6, leveraging the existence of
strategy functions for partial macrostates. •

Theorems 3, 5 that reduce state space in practice can be seen in Figure 4.2. To finish this
section, we point out that since early and early+1 simulations under-approximate language
inclusion [8], if for two states L(p) C L(q) and it was already decided that L(q) = 0 we can
conclude L(p) = 0 without further exploration (which we utilize in Algorithm 3).

4.4.2 Reducing state space

Another optimization in terms of the early termination of inclusion (emptiness) check in
cludes the direct simulation relation between the states of automaton A and automaton B.
Intuitively, we want to prove that as soon as a product macrostate of A n B contains the
state p from A and the state q from B such that L(p) C L(q), there is no need to explore
further from this macrostate, as it cannot produce any counterexample.

28

Theorem 6. Consider the product macrostate p = (PA,PC) such that pc = (N, PQ, . . . , Pi)
is a KOFOLA macrostate. Then we have

(3qeN:qeQBA L{pA) C L(q)) L(p) = 0.

Proof. Suppose q € N, if it holds that C L(g), it means that g accepts every w-word
PA does. Therefore, if there is an accepting trace from PA over u G there exists one from
q too, meaning it 0 L(pc) (state of the complement cannot accept word that is accepted in
the original automaton) which implies u 0 L(p). The case when there is a non-accepting
trace from PA over u G S w trivially leads to u 0 L(p). Since a trace from PA of any kind
leads to non-acceptance, L(p) = 0, which proves Theorem 6. •

Next, we present the reasoning for the special relations that can make the emptiness
check more efficient.

Definition 6. A relation ^GFEE is good for the early emptiness check (GFEE) if:

P ^GFEE q (Pi A Pi+i G F =4> 3j < i: qj 4- qj+1 G F).

Theorem 7. Let i be an initial state of BA A. Then we have the following.

L(i) / 0 => 3m : -<3p, q G Q and p,q G 7Tj: g ^GFEE pAp-^q (4.6)

Proof. For the sake of contradiction suppose that L(i) 7̂ 0 and that V7Tj-3p, q £ Q and p, g G
TTJ • q ^=GFEE p Ap ^ q. In this proof, we will show that this statement necessarily leads to
existence of a trace that satisfies the right-hand side of the implication 4.6, which is clearly
a contradiction. Firstly, let us label each such trace (of the potentially infinite number of
traces) as TTX for x G N. Secondly, for each trace, there must exist a first pair of states
Px 1 qx such that px, Qx G Tii and qx ^GFEE PX A px qx. For that purpose, we define the
mapping First: i ^ Q x N x Q x N . For trace TT it returns First(7r) = (p + i,q + j) such
that j is the minimum position for each r, s G Q on the trace 7r where r EGFBB s A s ^ r ,
We often refer to i or j as Pos(p) or Pos(q) and only use Firsts) = (p, q). We also define
a mapping Prefix: TT X N 1—>• Q N that returns a prefix of the trace TT that forms a string of
states with the length specified by the second argument.
Claim 1: For a trace 7r z with First(7rx) = (px + i,qx+ j) there exists another trace 7Ty such
that Prefix(TTx, Pos(px)) = Prefix(ity, Pos(px)).
Proof: That is implied by the fact that from px we need to see an accepting mark sooner
that we do on the trace TTX (because qx ^di Px), therefore the need for the other trace 7Ty.
The existence of such a trace with the equality of the corresponding prefixes is trivial. •

In the subsequent claims, we will show that existence of accepting trace irx from Claim 1
necessarily leads to generating an accepting trace 7Ti such that ~<3p, q G Q and p, q G 7Ti •
q ^=GFEE P A p q. In other words, it cannot generate traces TTJ such that 3p, q G
Q and p, q G TTJ • q ^GFEE pAp^q infinitely often. Note that this trace can already exist:
we only prove that it always exists. We also add the definition of function Acc: TTXQXNH-
N returning position of the n-th accepting mark from qx on the accepting trace we start
with, on another trace from certain state.
Claim 2: Consider the traces irx and 7Ty from Claim 1 and let Firstly) = (py + g,qy + h).
It holds that Pos(px) < Pos(qy) on trace 7ry.
Proof: Suppose Pos(px) > Pos(qy) holds, from Prefix (TT x , Pos(px)) = Prefix (7r„, Pos(px))
it follows that First(irx) = (py,qy), which contradicts First(7rx) = (px,qx). I

29

Claim 3: Consider the traces irx and iry from Claim 2. It holds that if there is a state r
with an outgoing accepting transition on the trace TTX such that r px, then the trace 7ry

contains the same prefix Prefix(7rx, Pos{r) + 1) (here we overload the function Pos, as it is
contextually evident what we mean).
Proof: That is implied by the fact that Prefix (TTx, Pos(px)) = Prefix (7ry, Pos(px)), which is
longer than or equal to Prefix(7rx, Pos{r) + 1). •

Claim 4: Consider the traces TTX and 7ry from Claim 2. It holds that Acc(7rx,px,i) >
Acc(TTy,px,i).
Proof: The Acc(7rx,px,i) > Acc(7ry,px,i) is given by the fact that \ px,qx \ > 1 (the length
of path from px to qx) and Acc(7ry,px,i) < Acc(7rx,px,i)—\px,qx\ < Acc(7rx,px,i) (caused
by ^GFEE)- •

Claim 5: Consider the traces irx and iry from Claim 1. If a path from px to qy contains
k G N accepting marks on the trace 7ry, it holds that ACC(TTx, qx, k + 1) > Acc(7Ty, qy, k + 1).
Proof: Relation ^GFEE gives us ACC(TTx, qx,i) > Acc(7ry,px,i) for i > k + 1, resulting in
Acc(7rx,px,i) > ACC(TTx, qx,i) > Acc(7ry,px,i). From Pos(px) < Pos(qy) on 7ry and the fact
that there is only k accepting marks between px and qy on 7ry, we have Acc(iry, qy,k + l) =
Acc(iry,px, k + 1) — (Pos(qy) — Pos(px)), forming the inequality

Acc(irx,px, k + 1) > Acc(irx,qx, k + 1) > Acc{ny,px,k + 1) > Acc{-Ky,qy,k + 1).B

Corollary 1. According to Claim 5 from TTx, inductively there is a point where a trace 7rm

is generated such that Acc(irm, qm, k + 1) < 0, which means pm-i Pm

Corollary 2. From Claim 3 and Corollary 1 it holds that traces 7 r m , . . . , 7 r m i suc/i i/iai
Acc(7rm, qm, fc + 2) > • • • > 0 > Acc(7rmi, qmi, k + 2) share the same prefix with the accepting
mark.

Inductively applying Corollary 2 at most | Q \ times, we obtain a trace 7TmQ
such that it

contains Prefix (irm, Pos(rm) + l), Prefix (irml, Pos(rml) + l),..., Prefix (irmQ, Pos(rmQ) + l).
Each prefix has the property of not containing any First(pmi), and it contains an accepting
mark. We thus certainly have a trace that reaches state t and after at most | Q \ transitions
again t while seeing an accepting state. We give the desired trace, proving Theorem 7. •

A simple example showing the reduction of the state space using Theorem 7 with <di
being ^GFEE is shown in Figure 4.3.

Proposition 2. Direct simulation and early simulation -<e are ^GFEE-

Corollary 3. Let i be an initial state of TGBA A, then:

L(i) / 0 =4> 3in • -.3p, q G Q and p,q G 7Tj: q ^GFEE p/\p~> q.

Proof. Proof is given by the proof of Theorem 7, applying the same reasoning successively
for each color c G T. •

30

Figure 4.3: This figure shows exploring given B A A over a, b for emptiness check when uti
lizing Theorem 7. The orange transitions with orange numbers represent the DFS traversal
and its order. And because 2 0 and 0 2, we do not explore the red area from state 2.

Algorithm 2 Merge SCO
1: Function mergeSCCaccMarks(iist):
2: cond 4- 0;
3: do
4: (u,C)<-SCCs.pop();
5: if (not First(u)) or u is not Root then cond <— cond U C; > To avoid acc. mark

outside the SCC
6: if cond = r then empty = false;decided = irwe;return true;
7: while (w.dfsnum > dst.dfsnum);
8: SCCs.push((w, cond)):
9: return false;

4.5 Inclusion check

For the algorithm that orchestrates the emptiness check for our inclusion, we chose to the
best of our knowledge the best state-of-the-art algorithm for the emptiness check of the
T G B A when it comes to number of generated states. The algorithm introduced by Gaiser
and Schwoon [25] builds on the standard Tarjan's algorithm [37] to search strongly con
nected components, which is also well suited for on-the-fly checking. We provide an adap
tation of this algorithm using our optimizations from previous sections. This algorithm is
an amendment of Couvreur's algorithm [14], which is, to the best of our knowledge, imple
mented in S P O T . There also exists an algorithm for the generic acceptance condition [3]
(also implemented in S P O T for some cases) that we do not use since it works with the SCCs
being found completely, which is not suitable for our goal. If edited to work on-the-fly, so
far no significant advantage has been found over the algorithm from [14].

The standard emptiness check algorithm is shown in Algorithms 2 and 3 without the
lines inside the colored boxes. The lines in the orange boxes correspond to theorems in
Subsection 4.4.1 and the green boxes correspond to Theorem 7. Theorem 6 is trivially
implemented within the computation of the successors (necessary precomputation of direct
simulation on a disjoint union of automata A and B [13]). The function isEmpty takes
two arguments, a state and the set of accepting marks incoming to this state. We use
the function post to obtain successors together with accepting marks on the incoming
transitions.

31

(a) State q is not explored due to q <e p. (b) The search continues as indicated by the
The state between p and q stores the state q numbers on the edges, eventually finding the
being pruned. accepting lasso.

Figure 4.4: Example of a wrong guess to prune a state when checking T G B A with Acc =
lnf(0) A/n/(0)-

4.5.1 Plugging relation ^GFEE

In this section we provide the intuition of adjusting the Algorithm in [25] so that Theorem 7
can be applied. The idea behind it is to only search for the trace from Theorem 4.6, therefore
each time we encounter states p, q on the searchpath [25] such that p q and q EGFEE P,
we do not explore this state q. Note that we use early simulation as an instance of ^GFEE

simulation. However, each state between such two states needs to have the information
about the state q and the exploration from q being cut off; therefore, if some of the states
between p and q is encountered again, exploration is "redirected" to the state that was cut
off. Intuitively, this can be done, as we surely know that between p and q there was no
accepting mark; if there was a cycle containing the accepting mark, the pruned state would
have been explored already.

Proposition 3. Algorithm 3 is correct.

Figure 4.4 shows the situation when the guess of no need to explore the state q still
leads to correctly finding the accepting lasso. To provide more details, after it is decided
that q <e p (green part in Line 15 of Algorithm 3), the state between p and q stores
the information about q being cut off. The search then continues with a witnessing lasso
containing the accepting mark 0 , which means the existence of a path that violates p
1 Ap ^ e g. Therefore, it is allowed to jump to q and continue the exploration from there.

The situation where such a guess actually helped is provided in Figure 1.3, although
using a stronger direct simulation.

32

Algorithm 3 T G B A emptiness check
Input: TGBA A = (Q, 5,I, T, p, Ace)
Output: true/false
Global: empty = true, decided = false, emptyL = 0 C Q , U = —1, index = 0, SCCs
= stackQ, tarjanStack = stackQ
Function emptinessCheck(A):

foreach qi E I
if qi G" Qemp then

isEmpty(<7/,0);
return empty:

Function isEmpty(q, accMarks):
if Bp on searchpath : (p ~» q Ap ̂ e q) V (p q Ap ;<e+i q) then

• • •
empty = false; decided = true;
return;

q.dfsnum <— index; index+-1-;
SCCs.push((q, accMarks)); tarjanStack.push(q);
foreach (dst, marks) G post(q) do

if dst G \emptyL] then continue; > iff 3r G emptyL

else if dsí.dfsnum = U and —i3r £ Q on searchpath: dst -<e r then
isEmpty((ist, marks);
if decided then return;

else if dsi.dfsnum ̂ U then
if dst G tarjanStack and mergeSCCaccMarks(cfo£) then return;

foreach cutoff 6 jumpToCutOffs[<is£] do

if cutoff.dfsnum = U and -Br G Q on searchpath: cutoff <e r then

isEmpty (cutoff, 0);

if decided then return;
else if cutoff G tarjanStack and mergeSCCaccMarks(cutoff) then return;

else if dst £ tarjanStack and mergeSCCaccMarks (dst) then return;

if SCCs.top() = (q,X) then
SCCs.pop()
do

u <r- tarjanStack.pop():
emptyL. add(w):

while (u ̂ q);
return;

33

file:///emptyL

Chapter 5

HyperLTL model checking as part
of Kofola

Framework K O F O L A [26] is a command-line tool implemented in C+-1- on top of the S P O T l i
brary [21] providing mainly complementation of Biichi automata. S P O T is used for common
automata manipulations such as reading input automaton, providing internal representation
for automata, etc. The intriguing operations like inclusion and emptiness check are, with
the goal of outperforming the state-of-the-art approaches in some metrics, implemented as
the result of this thesis.

The implementation relevant to this thesis (extending K O F O L A) can be found in the
public repository1, which is a fork from repository 2. In the spirit of K O F O L A ' s modularity,
the HyperLTL model checking is also implemented in a modular way. More specifically, the
emptiness check can be given any algorithm implementing desired methods, with getting
successors being the most important one. This is convenient because we use the emptiness
check in two different cases, (i) inclusion and (ii) emptiness of the automaton resulting
from HyperLTL model checking, both on-the-fly. Moreover, it provides the potential for
a straightforward extension when supporting new w-automata types.

At first sight, the most easily recognizable difference compared to A U T O H Y P E R is the
on-the-fly emptiness check when the formula is of the type 3* : ip. In addition, the inclusion
that S P O T (used by A U T O H Y P E R) uses first complements the automaton B and then makes
the on-the-fly product (if possible). Our solution also makes use of K O F O L A being well-
suited for an on-the-fly construction of the complement. Then we utilize the subsumptions
introduced in the previous chapter. That can lead to a significant state-space reduction
when on-the-fly emptiness check is performed.

Apart from the previous optimizations, comparing to theoretic approach for HyperLTL
model checking, we also use the fact that a formula of the type (3*V*)*</? can be transformed
into -i(V*3*)*-«£>, which in practice makes model checking much faster. Next, the product
automaton for the sequence of existence quantifiers is performed at once. Nevertheless, such
observations are also implemented in A U T O H Y P E R , negating the possibility of a significant
advantage.

1 https: / / github. com / Ondrej Alexaj /kofola / tree / inclusion-test
2https: / / github.com/VeriFIT/kofola/tree/devel

34

http://github.com/VeriFIT/kofola/tree/devel

HOA: vl

States: 4

Start: 3

AP: 3 "h_0" "1_0" "o_0"

acc-name: a l l

Acceptance: 0 t

properties: state-labels explicit-labels

—BODY—

State: [!0&!1&!2] 2

3

State: [!0&!1&!2] 3

4

State: [2&!0&!1] 4

5
State: [2&!0&!1] 5

2

—END—

Figure 5.1: Behavior of a system in the HOA format. Each state of the system is specified be
tween —BODY— and —END— lines, where the conjunction in the square brackets expresses
which APs hold in the specific state. To the right there is the state specifier. Under the
state there is a line with the successor states.

5.1 Input format

Our formats differ from those used in A U T O H Y P E R . We only support a specific input format
for the specification of a system behavior, so the necessity for parsing different input formats
is eliminated.

5.1.1 System

As input format for system behavior, we decided to use the HOA [19] format so that it can
be easily parsed and stored by S P O T as a Kripke structure. A n example of such an input
file is shown in Figure 5.1.

5.1.2 H y p e r L T L formula

For L T L body of the HyperLTL formula we support the exact format that S P O T sup
ports. However, each atomic proposition (AP) is of the format {ap_sys}_{trace_var]-
with ap_sys standing for the atomic proposition used within the system and trace_var
stands for the quantified trace. The formula with quantifiers is then generated by the
following syntax:

ip ::= ((forall trace_var.)* (exists trace_var.)*)* LTL

trace_var ::= string

A n example of the GNI property for the system in Figure 5.1 is the following:

forall A. forall B. exists C.

(G ("{h_0}_{A}" <-> "{h_0}_{C}")) & (G("{1_0}_{B}" <-> "{1_0>_{C}"))

& (G("{o_0}_{B}" <-> "{o_0}_{C}"))

35

A k A ,

"•tr i "n—k

Parsing
BALTL, quantifiers

HyperLTL MC
K-i,... , K n

Parsing
K-i, • • • ,K.n

HyperLTL MC

—params- p 5

p can contain any of the
following state space
reductions:
• early_sim=yes;
• early_plus_sim=yes
• dir_sim=yes;
• gfee=yes;

I Inclusion

exist_projection_successors--^ r

\ compl_successors

Complement

' prod_successors

Figure 5.2: Overview of the architecture of HyperLTL model checking within K O F O L A ,

where dashed arrows represents only usage of the given component. Solid arrows mean
handing over control to the other component. The orange frame summarizes the command
line arguments regarding inclusion; none are used by default. Some arrows are colored
differently to differentiate Emptiness in different uses.

5.2 Usage

The architecture of the HyperLTL model checking within K O F O L A is depicted in Figure 5.2
together with command line arguments, which can be used in the following way:

kofola —hyperltl_mc ip fC\ ... fCn —params=
,

p
)

where if more Kripke structures are provided, then /Cj 3 corresponds to the i-th quantified
trace in the HyperLTL formula ip for 1 < i < n.

5.2.1 Inclusion checker

One can use K O F O L A as an inclusion checker in the following way:

kofola —inclusion buchi_A.hoa buchi_B.hoa —params='p'

with both Biichi automata in the HO A [19] format.

3K,i represents a file containing the i-th Kripke structure, and ip represents a file containing the HyperLTL
formula.

36

Chapter 6

Experimental evaluation

Firstly, we want to evaluate our inclusion check in terms of the generated state space
against S P O T [21] and show the effect of the proposed optimizations. Next, we compare our
HyperLTL model checker with the state-of-the-art tool A U T O H Y P E R [4] together with other
relevant inclusion checkers in terms of execution time. A l l experiments were performed on
a Debian G N U / L i n u x 12 (bookworm) system with 32 G i B R A M and an Intel(R) 2.67GHz
Xeon(R) X5650 C P U .

6.1 Kofola vs Spot

The key metric that we wanted to outperform S P O T [21] in is the number of visited
states. More specifically, we incremented a counter every time a state was put on the
tarjanStack. S P O T ' S inclusion checking approach is directly comparable to ours, since it

Table 6.1: Statistics for our experiments. The table shows a comparison of the state space
generated by solving the inclusion. That is, it shows how individual optimizations behave
and compares the approach utilizing all proposed optimizations (K O F O L A M A X) to S P O T .
The K O F O L A M A X N O D I R E C T then refers to not employing direct simulation optimization,
and the K O F O L A A N D G F E E refers to only utilizing Theorem 7. K O F O L A B A S I C is then only
the implementation of Algorithm from [25]. The column solved contains values separated
by a colon, with the following meaning (number of solved when inclusion is violated
: number of solved when inclusion holds), where the number of cases where inclusion
does not hold is 762 and 825 where it holds. Values in the columns mean and median are
separated by the colon with the following meaning (all test cases : inclusion violated
: inclusion holds). The column "wins"/"losses" contains a number of cases where
K O F O L A M A X produced strictly less/more states, where (number) means how many times
it was due to the other's approach timeout. The column TOs (timeouts) shows how many
times the approach could not decide the inclusion within 7 min.

tool solved mean median wi ns losses TOs

K O F O L A B A S I C 720 774 540 : 51 : 995 31 : 13 : 99.5 620 (0) H (H) 93
K O F O L A A N D E A R L Y (+ 1) 719 768 162 : 49 : 268 29 : 13 73 637 (8) 23 (20) 100
K O F O L A A N D D I R E C T 700 780 379 : 48 : 676 14 : 13 : 21.5 120 (0) 5(5) 107
K O F O L A A N D G F E E 718 775 507 : 50 : 932 31 : 13 96 769 (5) 24 (24) 94
K O F O L A M A X N O D I R E C T 718 768 160 : 48 : 264 28 : 13 73 498 (8) 20 (19) 101
K O F O L A M A X 700 775 89 46 : 127 14 : 13 17 - 112
S P O T 744 819 21,478 : 21,896 : 21,098 41 : 40.5 : 41 988 (1) 495 (89) 24

37

10 1 10 3 10 5 10 1 10 3 1 0 s

Kofola MAX no direct Kofola and GFEE

Figure 6.1: The scatter plots compare the state space generated by implementation of
algorithm from [25] provided by Gaiser & Schwoon , referred to as Kofola basic, against its
extensions by various optimizations proposed in this work. The dashed lines represent the
timeouts, which was set to 7 min. Green marks indicate instances where inclusion holds,
and red marks otherwise. As the axes are logarihtmic, cases with 0 generated states are
represented as 1 (10°).

uses a similar orchestrating algorithm [15] (based on Tarjan's algorithm [37]). More specif
ically, we compared our approach with S P O T ' S command line tool autf i l t , which provides
the —included-in parameter for inclusion checking. In addition to comparison, autf i l t

was used to test the correctness of our inclusion checking implementation.

6.1.1 Dataset

To observe the effect of the proposed optimizations, we tested K O F O L A in the scenar
ios where the automaton B in the question of A C B contains deterministic accepting
components (DACs) or inherently weak accepting components. More specifically, we used
automata used in [8] from [32] and benchmarks originating from HyperLTL model check
ing [33]. Both repositories contain pairs of automata (suffix A.hoa and B.hoa) with the
mentioned properties. And since both automata in such a pair have the same alphabet, to

? ? ? ?
obtain more test cases, all four combinations (i.e. A C B, A C A, B C B, and B C. A)
were tried and kept those whose corresponding complementation by K O F O L A produced a
T G B A . The total number of test cases is 1,587. The mean number of automata states from
repositories is 891, the median is 14 states, the maximum number of states is 88,304, and
the minimum is 1.

6.1.2 Results

The results shown in Figure 6.1 show a great (and expected) impact of precomputation
of the direct simulation between the states of automata A and B. The huge amount of

38

10 1 10 3 10 5 10 7

Kofola basic
10 1 10 3 10 5 10 7

Kofola MAX

To1 io3 io5
 10 7

Kofola MAX no direct

Figure 6.2: Here we provide comparison of the explored state space by S P O T [21] against
our approaches. The dashed lines represent the timeouts, which was set to 7 min. Green
marks indicate instances, where the inclusion holds, red marks otherwise. As the axes are
logarihtmic, cases with 0 generated states are represented as 1 (10°).

instances where we produced zero states is also not surprising, since if the language inclusion
holds between the initial states of the automata A,B (implied by the direct simulation),
then it holds between the automata as well (which is expected since many test cases are
of type where A = B). We can state that our optimizations seem to significantly reduce
the state space when the inclusion holds; the opposite case is only slightly better when
utilizing our optimizations (see also Table 6.1). In Figure 6.1 it may seem that there is
not much of an impact of the optimization GFEE (based on Theorem 7, green parts in
Algorithm 3), but Table 6.1 shows some improvement especially when the inclusion holds
(as expected). Figure 6.2 provides a comparison of our approach with S P O T . We can see
that we improved the cases where the basic implementation of the emptiness check algorithm
loses against S P O T the most - when the inclusion holds. Although the explored state space
size is in our favor, we timed out visibly more than S P O T . Detailed statistical evaluation for
summarization is provided in Table 6.1. It shows that we are able to significantly (in almost
40% of the benchmarks) reduce the state space explored by the basic implementation of
the algorithm from Gaiser & Schwoon [25], moreover in more than 60% of the test cases we
generated a smaller state space than S P O T . Although our maximally optimized approach
shows significantly better numbers, we have to bear in mind that those are the numbers
taken when the tool did not time out. From the TOs column in Table 6.1 it is clear that
our most optimized procedure timed out in 88 more cases than S P O T . If we compare the

39

Kofola (ms) Kofola (ms)

Figure 6.3: Comparison of execution times for K O F O L A ' S inclusion checking (all optimiza
tions used) used as a backend checker for A U T O H Y P E R VS other state-of-the-art tools. The
dashed lines represent timeout, which was set to 10 minutes.

cases where both tools successfully solved inclusion, we obtain median value 3 7 for S P O T

and 14 for K O F O L A M A X , and mean value 3340 for S P O T and 89 for K O F O L A M A X ,
which is still significantly better. Here, we have to point out that there is an undeniable
effect of the K O F O L A ' S complementation. Next, in Table 6.1 we can observe that in terms
of solved problems, we have slightly better success rate (no timeout) in cases where the
inclusion holds, but still it is roughly only 9 4 % versus the 9 9 % success rate of S P O T .

Lastly, we separately tested our procedure that utilizes all optimizations except for the
precomputation of the direct simulation, since for large automata, only this operation itself
causes timeout. This can be seen in both Figures 6.1 and 6.2 and also in a separate row in
Table 6 .1 , referred to as K O F O L A M A X N O D I R E C T . We can conclude that although the
number of timeouts decreased by 11 (compared to the maximally optimized approach), the
mean of the generated state space is approximately twice as large.

6.2 Kofola vs AutoHyper

In Figure 6.3 we can see a comparison between inclusion checkers R A B I T [12], B A I T [18],
F O R K L I F T [17], S P O T [21], and K O F O L A . More specifically, these are the execution times
that the inclusion checkers spent when solving the HyperLTL model checking within A U
T O H Y P E R [4] (K O F O L A was also used by A U T O H Y P E R as a backend solver in order for
the results to be fair), when solving the exact same 35 benchmarks as in [4] (actually it
was 36, but in one case inclusion was not used). From the results in Figure 6.3 we can

40

Figure 6.4: The scatter plot compares the execution time of K O F O L A and A U T O H Y P E R
(with S P O T as inclusion checker). Here, no mark lies on the dashed line, therefore there were
no timeouts (10 minutes). In the left hand side plot K O F O L A with maximally optimized
inclusion checking is tested and in the right hand side no optimizations are used.

conclude that we highly outperform R A B I T , B A I T , and F O R K L I F T . However, there is a case
where our tool timed out. This was due to the precomputation of direct simulation in our
approach. When disabled, we again outperformed the tools. When we look at the plot
compared to S P O T , we managed to beat it twice, which might be surprising given that our
implementation is not optimized for this metric.

In Figure 6.4 we provide a comparison of the time it takes to solve 36 instances also
tested in [4]. We solved the model checking problem faster in 25 out of 36 test cases.
As witnessed before, our inclusion checking is slower than the one implemented in S P O T ,
therefore, our win rate could be caused by the fact that we use S P O T ' S highly optimized
internal representation for w-automata and their attributes. After using more optimized
inclusion checking, the K O F O L A ' S model checking procedure tends to slow down (non-
optimized is faster in 27 out of 36 test gainst A U T O H Y P E R) , which is expected
unless their implementation is optimized as well.

A U T O H Y P E R also served for checking correctness of our HyperLTL M C implementation.

41

Chapter 7

Conclusion

This thesis presents several optimizations regarding the language inclusion check on OJ-
automata (more specifically, we focus on T G B A) , one of the most crucial operations used
not only in HyperLTL model checking. To optimize this operation, we set our goal to reduce
the generated state space. To do so, we came up with the relations between states of the
automaton that leverage only the structure of the states themselves, without the need to
know the entire automaton. We tried to come up with not only a reporting counterexample
as early as we can, but also techniques to reduce state space when the resulting language
is empty.

As an inclusion checker, our tool is able to improve the existing algorithm in the gener
ated state space and report better results than the other similarly working state-of-the-art
tools. Our procedure was able to outperform the reference tool in more than 60% bench
mark cases, and in almost 40% of the benchmarks, we were able to generate a smaller state
space than the algorithm we used as a base for our inclusion check. Other relevant inclu
sion checking tools are shown to be slower on the inclusion problems from HyperLTL model
checking than us. Finally, as HyperLTL model checker, we are also able to outperform the
state-of-the-art push button tool in the execution time.

7.1 Future work

When it comes to the inclusion check introduced in this thesis, the implementation was not
meant to be performance-optimized; therefore, there is plenty of room for improvement in
this area.

One of the future directions is definitely to extend Theorem 7, as we believe it has more
to offer. As K O F O L A is planned to be able to output w-automata with generic acceptance
condition as a result of complementation. Another way can be to come up with an opti
mized version of inclusion check for these generic automata. In addition, there are more
partial complementation procedures implemented within K O F O L A , SO bringing up a similar
subsumption relations as we worked with here is also a sensible continuation. It seems that
inclusion is the right direction to take to improve HyperLTL model checking, since this
operation is often encountered and is the source of interesting inclusion problems.

42

Bibliography

[1] A L L R E D , J . D . and U L T E S N I T S C H E , U . A Simple and Optimal Complementation
Algorithm for Büchi Automata. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. New York, NY, USA: Association for
Computing Machinery, 2018, p. 4 6 - 5 5 . LICS ' 18 . ISBN 9781450355834 . Available at:
https://doi.org/10.1145/3209108.3209138.

[2] A N D R E S , M . E. Quantitative Analysis of Information Leakage in Probabilistic and
Nondeterministic Systems. 2011 .

[3] B A I E R , C ; B L A H O U D E K , F.; D U R E T L U T Z , A.; K L E I N , J . ; M Ü L L E R , D . et al. Generic
Emptiness Check for Fun and Profit. In: C H E N , Y.-F.; C H E N G , C.-H. and E S P A R Z A ,

J., ed. Automated Technology for Verification and Analysis. Cham: Springer
International Publishing, 2019, p. 4 4 5 - 4 6 1 . ISBN 978-3-030-31784-3 .

[4] B E U T N E R , R. and F I N K B E I N E R , B. AutoHyper: Explicit-State Model Checking for
HyperLTL. 2023 .

[5] B E U T N E R , R. and F I N K B E I N E R , B. Model Checking Omega-Regular Hyperproperties
with AutoHyperQ. In: P I S K A C , R. and V O R O N K O V , A., ed. Proceedings of 24th
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning. EasyChair, 2023 , vol. 94, p. 2 3 - 3 5 . EPiC Series in Computing. ISSN
2398-7340. Available at: https://easychair.org/publications/paper/dlVW.

[6] B L A H O U D E K , F.; H E I Z M A N N , M.; S C H E W E , S.; S T R E J C E K , J . and T S A I , M.-H.

Complementing Semi-deterministic Büchi Automata. In: C H E C H I K , M . and R A S K I N ,

J.-F., ed. Tools and Algorithms for the Construction and Analysis of Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, p. 7 7 0 - 7 8 7 . ISBN 978-3-662-49674-9 .

[7] B Ü C H I , J . R. On a decision method in restricted second order arithmetic, Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.). Stanford
Univ. Press, Stanford, Calif, 1962.

[8] C H E N , Y.-F.; H E I Z M A N N , M. ; L E N G Ä L , O.; L I , Y.; T S A I , M.-H. et al. Advanced
automata-based algorithms for program termination checking. In: Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation. New York, NY, USA: Association for Computing Machinery, 2018,
p. 1 3 5 - 1 5 0 . ISBN 9781450356985 . Available at:
https://doi.org/10.1145/3192366.3192405.

[9] C L A R K S O N , M . R.; F I N K B E I N E R , B.; K O L E I N I , M. ; M I C I N S K I , K . K . ; R A B E , M. N.

et al. Temporal Logics for Hyperproperties. In: A B A D I , M . and K R E M E R , S.,

43

https://doi.org/10.1145/3209108.3209138
https://easychair.org/publications/paper/dlVW
https://doi.org/10.1145/3192366.3192405

ed. Principles of Security and Trust. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, p. 265-284. ISBN 978-3-642-54792-8.

[10] C L A R K S O N , M . R. and S C H N E I D E R , F . B . Hyperproperties. In: 2008 21st IEEE
Computer Security Foundations Symposium. 2008, p. 51-65.

[11] C L E M E N T E , L . and M A Y R , R. Advanced Automata Minimization. CoRR, 2012,
abs/1210.6624. Available at: http://arxiv.org/abs/1210.6624.

[12] C L E M E N T E , L . and M A Y R , R. Efficient reduction of nondeterministic automata with
application to language inclusion testing. CoRR, 2017, abs/1711.09946. Available at:
http://arxiv.org/abs/1711.09946.

[13] C L E M E N T E , L . and M A Y R , R. Efficient reduction of nondeterministic automata with
application to language inclusion testing. CoRR, 2017, abs/1711.09946. Available at:
http://arxiv.org/abs/1711.09946.

[14] C O U V R E U R , J . - M . On-the-fly Verification of Linear Temporal Logic. In: W I N G ,
J . M . ; W O O D C O C K , J . and D A V I E S , J . , ed. FM'99 — Formal Methods. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, p. 253-271. ISBN 978-3-540-48119-5.

[15] C O U V R E U R , J . - M . On-the-Fly Verification of Linear Temporal Logic. In:. September
1999, p. 253-271. ISBN 978-3-540-66587-8.

[16] D ' A R G E N I O , P. R.; B A R T H E , C ; B I E W E R , S.; F I N K B E I N E R , B . and H E R M A N N S , H . IS
Your Software on Dope? In: Y A N G , H . , ed. Programming Languages and Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, p. 83-110. ISBN
978-3-662-54434-1.

[17] D O V E R I , K . ; G A N T Y , P. and M A Z Z O C C H I , N . FORQ-Based Language Inclusion
Formal Testing. In: S H O H A M , S. and V I Z E L , Y . , ed. Computer Aided Verification.
Cham: Springer International Publishing, 2022, p. 109-129. ISBN 978-3-031-13188-2.

[18] D O V E R I , K . ; G A N T Y , P.; P A R O L I N I , F . and R A N Z A T O , F . Inclusion Testing of Büchi
Automata Based on Well-Quasiorders. In: H A D D A D , S. and V A R A C C A , D., ed. 32nd
International Conference on Concurrency Theory (CONCUR 2021). Dagstuhl,
Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, vol. 203,
p. 3:1-3:22. Leibniz International Proceedings in Informatics (LIPIcs). ISBN
978-3-95977-203-7. Available at:
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.C0NCUR.2021.3.

[19] D U R E T L U T Z , A . ; B L A H O U D E K , F.; K R E T I N S K Y , J . ; S T R E J C E K , J . and K L E I N , J .
The Hanoi Omega-Automata Format. February 2015. Available at:
https: / / adl.github.io/hoaf/#authors.

[20] D U R E T L U T Z , A . ; P O I T R E N A U D , D . and C O U V R E U R , J . - M . On-the-fly Emptiness
Check of Transition-Based Streett Automata. In: L i u , Z. and R A V N , A . P.,
ed. Automated Technology for Verification and Analysis. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, p. 213-227. ISBN 978-3-642-04761-9.

[21] D U R E T L U T Z , A . ; R E N A U L T , E. ; C O L A N G E , M . ; R E N K I N , F.; A I S S E , A . G . et al.
From Spot 2.0 to Spot 2.10: What's New? In: Proceedings of the 34th International

http://arxiv.org/abs/1210.6624
http://arxiv.org/abs/1711.09946
http://arxiv.org/abs/1711.09946
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.C0NCUR.2021

Conference on Computer Aided Verification (CAV'22). Springer, August 2022, vol.
13372, p. 174-187. Lecture Notes in Computer Science.

[22] F I N K B E I N E R , B . Automata, Games, and Verification. Saarland University, 2015.
Available at: https : //www.react.uni-Saarland.de/teaching/automata-games-
ver i f i ca t ion- 15/downloads/notes.pdf.

[23] F I N K B E I N E R , B . Logics and Algorithms for Hyperproperties. ACM SIGLOG News.
New York, N Y , USA: Association for Computing Machinery, jul 2023, vol. 10, no. 2,
p. 4-23. Available at: https://doi.org/10.1145/3610392.3610394.

[24] F I N K B E I N E R , B. ; R A B E , M . N . and S A N C H E Z , C. Algorithms for Model Checking
HyperLTL and HyperCTL*. In: K R O E N I N G , D. and P Ä S Ä R E A N U , C. S.,
ed. Computer Aided Verification. Cham: Springer International Publishing, 2015,
p. 30-48. ISBN 978-3-319-21690-4.

[25] G A I S E R , A . and S C H W O O N , S. Comparison of Algorithms for Checking Emptiness on
Buechi Automata. CoRR, 2009, abs/0910.3766. Available at:
http: //arxiv.org/abs/0910.3766.

[26] H A V L E N A , V . ; L E N G A L , O . ; L I , Y . ; S M A H L I K O V Ä , B . and T U R R I N I , A . Modular
Mix-and-Match Complementation of Büchi Automata. In: S A N K A R A N A R A Y A N A N , S.
and S H A R Y G I N A , N . , ed. Tools and Algorithms for the Construction and Analysis of
Systems. Cham: Springer Nature Switzerland, 2023, p. 249-270. ISBN
978-3-031-30823-9. Available at: https://doi.org/10.1007/978-3-031-30823-9_13.

[27] H A V L E N A , V . ; L E N G Ä L , O . and S M A H L I K O V Ä , B . Sky Is Not the Limit. In: F I S M A N ,
D. and Rosu , G . , ed. Tools and Algorithms for the Construction and Analysis of
Systems. Cham: Springer International Publishing, 2022, p. 118-136. ISBN
978-3-030-99527-0.

[28] Hsu, T. -H. ; S A N C H E Z , C. and B O N A K D A R P O U R , B . Bounded Model Checking for
Hyperproperties. In: G R O O T E , J . F . and L A R S E N , K . G . , ed. Tools and Algorithms
for the Construction and Analysis of Systems. Cham: Springer International
Publishing, 2021, p. 94-112. ISBN 978-3-030-72016-2.

[29] K A H L E R , D. and W I L K E , T. Complementation, Disambiguation, and
Determinization of Büchi Automata Unified. In: A C E T O , L . ; D A M G Ä R D , I.;
G O L D B E R G , L . A . ; H A L L D Ö R S S O N , M . M . ; I N G O L F S D O T T I R , A . et al., ed. Automata,
Languages and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
p. 724-735. ISBN 978-3-540-70575-8.

[30] K A U F F M A N , S.; H A V E L U N D , K . and F I S C H M E I S T E R , S. What can we monitor over
unreliable channels? Lnternational Journal on Software Tools for Technology
Transfer, Aug 2021, vol. 23, no. 4, p. 579-600. ISSN 1433-2787. Available at:
https://doi.org/10.1007/sl0009-021-00625-z.

[31] K U P F E R M A N , O . and V A R D I , M . Y . Weak alternating automata are not that weak.
ACM Trans. Comput. Logic. New York, N Y , USA: Association for Computing
Machinery, jul 2001, vol. 2, no. 3, p. 408-429. ISSN 1529-3785. Available at:
https://doi.org/10.1145/377978.377993.

45

http://www.react.uni-Saarland.de/teaching/automata-games-
https://doi.org/10.1145/3610392.3610394
https://doi.org/10.1007/978-3-031-30823-9_13
https://doi.org/10.1007/sl0009-021-00625-z
https://doi.org/10.1145/377978.377993

[32] L E N G A L , O N D R E J . Automata-benchmarks h t tps : / /github.com/ondrik/automata-
benchmarks/tree/master/omega/advanced-automata-for-termination/hoa.
GitHub, 2024.

[33] L E N G A L , O N D R E J . Automata-benchmarks h t tps :
/ / github.com/ondrik/automata-benchmarks/tree/master/omega/autohyper.
GitHub, 2024.

[34] M C C U L L O U G H , D. Noninterference and the composability of security properties.
In: Proceedings. 1988 IEEE Symposium on Security and Privacy. 1988, p. 1 7 7 - 1 8 6 .

[35] M I Y A N O , S. and H A Y A S H I , T . Alternating finite automata on w-words. Theoretical
Computer Science, 1984, vol. 32, no. 3, p. 3 2 1 - 3 3 0 . ISSN 0304-3975 . Available at:
https: //www. sciencedirect.com/science/axticle/pii/0304397584900495.

[36] S A F R A , S. On the complexity of omega -automata. In: [Proceedings 1988] 29th
Annual Symposium on Foundations of Computer Science. 1988, p. 3 1 9 - 3 2 7 .

[37] T A R J A N , R. Depth-first search and linear graph algorithms. In: 12th Annual
Symposium on Switching and Automata Theory (swat 1971). 1971, p. 1 1 4 - 1 2 1 .

[38] VlSWANATHAN, M . Automata on Infinite Words. 2018 . Available at:
https: / / courses.engr.illinois.edu/cs498mv/fa2018/wAutomata.pdf.

46

http://github.com/
http://sciencedirect.com/science/axticle/pii/0304397584900495
http://courses.engr.illinois.edu/cs498mv/fa2018/

Appendix A

Contents of the included storage
media

Everything needed to create this text (electronic version is also included) can be found
in the directory text_resources (.tex files, figures, . . .) . The implementation of the
tool K O F O L A can be found in the directory kofola, which contains a README.md with
instructions on how to build and run an executable file. This thesis extends the function
ality of K O F O L A , therefore, the source codes of the whole tool are included; the actual
work of this thesis is implemented in files in the src directory shown in Figure A . l (al
though necessary changes were also made in main.cpp, complement sync.{c, h}pp and
abstract complement alg.jc,h}pp).

"README.md"

text_resources

kofola

"README.md"

src

"abstract_successor.{c, h}pp"

"hyperltl_f ormula_processor.{c, h}pp"

"hyperltl_mc.{c, h}pp"

"inclusion_check.{c, h}pp"

"emptiness_check.{c, h}pp"

Figure A . l : Contents of the included storage media as a directory tree that also shows
important files (these are marked with a "" to distinguish them from directories).

47

