
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA I N F O R M A Č N Í C H TECHNOLOGI Í 

DEPARTMENT OF INTELLIGENT SYSTEMS 
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ 

HYPERLTL MODEL CHECKING 
HYPERLTL MODEL CHECKING 

BACHELOR'S THESIS 
BAKALÁŘSKÁ PRÁCE 

AUTHOR ONDŘEJ ALEXAJ 
AUTOR PRÁCE 

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D. 
VEDOUCÍ PRÁCE 

B R N O 2024 



Bachelor's Thesis Assignment 
Institut: 
Student: 
Programme: 
Title: 
Category: 

Department of Intelligent Systems (DITS) 
Alexaj Ondrej 
Information Technology 
HyperLTL Model Checking 
Formal Verification 

154514 

Academic year: 2023/24 

Assignment: 

1. Study the theory of omega automata with a focus on the construction of a complement automaton 
and testing language inclusion. 

2. Study the HyperLTL logic and its model checking. 
3. Design an optimized algorithm for HyperLTL model checking. 
4. Implement the designed algorithm and compare the performance of the implementation with existing 

tools. 
5. Evaluate the obtained results and discuss possible extensions. 

• E. Gradel, W. Thomas, and T. Wilke, Eds., Automata, logics, and infinite games, in Lecture notes in 
computer science, no. 2500. Berlin ; New York: Springer, 2002. 

• B. Finkbeiner, "Logics and Algorithms for Hyperproperties," ACM SIGLOG News, vol. 10, no. 2, pp. 
4-23, July 2023, doi: 10.1145/3610392.3610394. 

• V. Havlena, O. Lengal, Y. Li, B. Smahlikova, and A. Turrini, "Modular Mix-and-Match 
Complementation of Buchi Automata," in Tools and Algorithms for the Construction and Analysis of 
Systems, S. Sankaranarayanan and N. Sharygina, Eds., in Lecture Notes in Computer Science. 
Cham: Springer Nature Switzerland, 2023, pp. 249-270. doi: 10.1007/978-3-031 -30823-9_13. 

• R. Beutner and B. Finkbeiner, "AutoHyper: Explicit-State Model Checking for HyperLTL," in Tools 
and Algorithms for the Construction and Analysis of Systems, S. Sankaranarayanan and N. 
Sharygina, Eds., in Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2023, 
pp. 145-163. doi: 10.1007/978-3-031 -30823-9_8-

Requirements for the semestral defence: 

Literature: 

1-3 

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/ 
Supervisor: Lengäl Ondrej, Ing., Ph.D. 
Consultant: Havlena Vojtech, Ing., Ph.D. 
Head of Department: Hanäcek Petr, doc. Dr. Ing. 
Beginning of work: 1.11.2023 
Submission deadline: 9.5.2024 
Approval date: 6.11.2023 

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno 

https://www.fit.vut.cz/study/theses/


Abstract 
HyperLTL model checking is an approach to verifying a system against a given hyper-
property, which is able to relate multiple executions of a system. The algorithmic approach 
based on automata which relies on standard w-automata operations is well established. The 
aim of this work is to outperform the complete state-of-the-art HyperLTL model checker 
A U T O H Y P E R by employing more efficient partial automata operations, in particular com
plementation and inclusion. The implementation of HyperLTL model checking in a novel 
modular-based complementation tool K O F O L A resulted in a significant enhancement in 
performance compared to the reference tool. Finally, our approach to language inclusion 
checking shows a notable improvement in terms of the generated state space. As a com
monly used automata operation, it could potentially contribute to the advancement of other 

of verification. 

Abstrakt 
HyperLTL model checking je technika pre overenie systému voči danej hypervlastnosti vy
jadrenej logikou HyperLTL, ktorá dokáže prepojiť viaceré spustenia systému. Hoci bol 
vytvorený algoritmický prístup založený na automatoch, spolieha sa na štandardné op
erácie cj-automatov. Cieľom tejto práce je prekonať kompletný state-of-the-art HyperLTL 
model checker A U T O H Y P E R využitím efektívnejších čiastkových operácií nad automatmi, 
najmä komplementácie a inklúzie. Implementácia HyperLTL model checkingu v modulárně 
založenom nástroji pre komplementáciu, K O F O L A , viedla k výraznému zvýšeniu výkonu 
v porovnaní s referenčným nástrojom. Napokon, náš prístup ku kontrole jazykovej inklúzie 
vykazuje výrazné zmenšenie generovaného stavového priestoru. Keďže ide o bežne použí
vanú operáciu nad automatmi, náš prístup by potenciálne mohol prispieť k pokroku aj 
v iných oblastiach verifikácie. 

Keywords 
formal verification, model checking, HyperLTL, T G B A , language inclusion, on-the-fly, lan
guage emptiness 
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Rozšírený abstrakt 
V oblasti hardvérových a softvérových systémov je formálna verifikácia procesom doka
zovania alebo vyvrátenia správnosti systému vzhľadom na danú vlastnosť. Dosahuje sa 
to pomocou formálnych metód, ktoré poskytujú matematický základ pre špecifikáciu vlast
ností a modelovanie správania systému. HyperLTL model checking (MC) je potom technika, 
ktorá umožňuje overenie systému voči danej hypervlastnosti vyjadrenej logikou HyperLTL, 
ktorá sa vzťahuje na viaceré spustenia systému. Hoci bol vytvorený algoritmický prístup 
založený na automatoch ( A B V ) , spolieha sa na štandardné operácie w-automatov. Každá 
formula vyjadrená pomocou HyperLTL obsahuje kvantifikátory nad rôznymi spusteniami 
systému. Vo všeobecnosti môže ísť o ľubovoľnú sekvenciu existenčných a univerzálnych 
kvantifikátorov. V A B V sa však výskyt univerzálnych kvantifikátorov prevádza na exis
tenčný pomocou zákona dvojitej negácie. To v skratke znamená, že vždy ked dôjde k al
ternácii kvantifikátorov (t.j. existenčný na univerzálny alebo naopak), je do konštrukcie 
vnesená požiadavka na komplementáciu w-automatov. Ako je dobre známe, ide o drahú 
operáciu, s asymptoticky exponenciálnou stavovou explóziou. P r i riešení HyperLTL M C 
existuje špeciálny prípad (vyskytujúci sa pomerne často), kedy môže byť výhodnejšie zisťo
vať jazykovú inklúziu medzi takýmito automatmi, čo okrem komplementácie využíva aj 
algoritmus pre rozhodnutie prázdnosti jazyka. 

Cieľom tejto práce je prekonať kompletný (teda teoreticky dokáže vyriešiť ľubovoľnú 
úlohu pre HyperLTL model checking) state-of-the-art nástroj pre HyperLTL model check
ing, a to využitím efektívnejších čiastkových operácií nad automatmi, hlavne spomínanej 
komplementácie a inklúzie. S využitím modulárneho nástroja na komplementáciu Búchiho 
automatov (intuitívne, s podmienkou nekonečne veľakrát dosiahnuť akceptačný stav) K O 
F O L A [26] sme referenčný nástroj A U T O H Y P E R [4] dokázali v rýchlosti riešenia prekonať 
na väčšine testovacích prípadov. K efektívnej existujúcej komplementačnej procedúre bol 
v tejto práci pridaný vylepšený algoritmus pre zisťovanie prázdnosti jazyka zovšeobecnených 
Búchiho automatov (automaty so zložitejšou akceptačnou podmienkou), ktoré dokopy tvo
ria zlepšený algoritmus pre zisťovanie inklúzie. Konkrétne optimalizuje známy algoritmus 
pre test prázdnosti od autorov Gaiser a Schwoon [25]. Okrem optimalizácií pre skoré odhale
nie neprázdnosti jazyka boli navrhnuté a implementované aj techniky pre orezanie stavového 
priestoru, ak je jazyk automatu prázdny. Pôvodný algoritmus v takomto prípade generoval 
stavový priestor celý. Konkrétne ide o identifikovanie tzv. subsumpcií, teda relácii medzi 
stavmi, ktoré takéto orezávanie (aj v prípade neprázdnosti) stavového priestoru umožňujú 
na základe ich štruktúry, bez znalosti zatiaľ nepreskúmaných častí automatu. Pričom štruk
túra stavov je daná práve komplementačnou procedúrou nástroja K O F O L A . Dôvodom pre 
snaženie o minimalizáciu skúmaného stavového priestoru je fakt, že zložitosť inklúzie je 
priamo závislá na zložitosti komplementácie, teda stavový priestor tiež môže exponenciálne 
narásť. 

Navrhnuté vylepšenia boli spolu s procedúrou pre HyperLTL model checking implemen
tované v spomínanom nástroji K O F O L A , ktorý je implementovaný v jazyku C++ a postavený 
nad knižnicou S P O T [21]. Okrem testovania samotného model checkingu sme sa zamerali 
aj na testovanie navrhnutého prístupu k inklúzii. Tu sme boli schopní častokrát orezať 
stavový priestor aj na polovicu, v extrémnych prípadoch sme dokonca nevygenerovali ži
adny stav. Testovanie voči nástroju S P O T ukázalo, že v tejto metrike ho často porážame, 
veľakrát vďaka technikám predstaveným touto prácou. Nakoniec sme otestovali aj rýchlosť 
tejto procedúry s ostatnými aktuálnymi nástrojmi, kde sme takmer vo všetkých prípadoch 
konštatovali víťazstvo, a to aj napriek tomu, že tento údaj pre nás nebol primárnym cieľom. 
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Chapter 1 

Introduction 

In the domain of hardware and software systems, formal verification is the process of prov
ing or disproving the correctness of a system with respect to a given property. This is 
achieved through the use of formal methods which provide a mathematical basis for spec
ifying properties and modeling system behavior. Formal languages, automata theory, and 
logics are some of the most important formal methods used in verification tasks [2, 22]. 
Model checking [2] is an automated verification method that systematically checks whether 
a property holds in the modeled system or not. The main advantage of this approach is 
the ability to provide a counterexample in case the property does not hold. 

Hyperproperties were defined by Clarkson and Schneider in 2008 [10] as a set of trace 
properties. They point out properties that cannot be formulated as properties of a single 
execution. In contrast to the properties of a single execution trace, which is satisfied by 
a trace, a hyperproperty is satisfied by a set of traces. Robustness [16], path planning [28], 
generalized non-interference [34], etc. are examples of such properties. HyperLTL [9] is then 
an extension of linear temporal logic (LTL) that serves as a formal base to express a class 
of linear hyperproperties. A n approach often referred to as Automata-Based Verification 
(ABV) [23], has been established to perform model checking. Automata-Based Verification 
in HyperLTL model checking relies on utilizing automata over infinite words, w-automata. 
Although the A B V approach is decidable [23], it suffers from common w-automata prob
lems. The automata operations it consists of are the costliest ones. Namely, it includes 
complementation, automata product, and inclusion checking. 

In this thesis, we first settle the common theoretic notions regarding automata theory. 
We then move on to the definition of HyperLTL and provide an example of verifying a simple 
system against a simple property, based on the formal definition of the semantics of this 
logic. Automata-Based Verification is then explained, along with a brief example of how 
this check can be done algorithmically. Then we briefly describe the complementation tool 
K O F O L A [26], which we use for the HyperLTL model checking. Subsequently, we formally 
describe the approaches used in our implementation of the language inclusion procedure 
(as an important part of the A B V ) , mainly based on subsumption relations [8] that imply 
language inclusion between pairs of states, taking advantage of the specifics implied by the 
use of K O F O L A . We can divide the approaches into two main categories, those that help 
report counterexamples earlier than constructed, and those that prune the state space even 
if no counterexample exists. Finally, an experimental evaluation comparing the state-of-
the-art tools is provided for both HyperLTL model checking and inclusion checking. 
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Chapter 2 

Preliminaries 

We need to define the necessary theory and notation for the reader to understand the 
subsequent chapters. Firstly, we define fundamental terms in automata theory relevant to 
this thesis. Then we focus on the concepts regarding omega automata. Lastly, we delve 
into the definition of Linear-Time Temporal Logic (henceforth referred to as LTL) and its 
extension Hyper L T L . 

2.1 Automata 

A n alphabet is a finite, nonempty set of symbols denoted by E . We call x a (finite) string 
over E if and only if x = x\X2 • • • xn where each x% G E for 1 < i < n. The empty string is 
denoted by e. The set of all finite strings over E is represented by E*. A language over E 
is defined set L C E*. 

A finite automaton is a five-tuple A = (Q, E , 5,1, F) where Q is a finite set of states, 
2J IS an alphabet, 5: Q ^ 2 Q is a transition function, / C Q is a set of initial states, 
and F C Q is a set of accepting states. We say that the automaton A accepts a string 
x\X2 . . . i n over E when there exists a sequence qoxiqiX2 • • • xnqn such that qo <E I, qn <E F 
and qi+i G S(qi, Xi+\) for all 0 < i < n. The set of all strings accepted by A is called 
the language of the automaton A, denoted by L(A). Consider a state qn G Q; if there 
is no sequence qoXiq\X2 • • -xnqn such that xi+\ £ E , ̂  £ I, and qi+\ G S(qi, Xi+\) for all 
0 < i < n, we say that qn is unreachable. 

A language L is called a regular language if there exists a finite automaton A such that 
L = L(A). Regular languages can also be described by regular expressions. In fact, for 
each regular expression, there exists an equivalent finite automaton and vice versa. Regular 
expressions are composed according to the following rules [22]: 

• e and 0 are regular expressions: 
L(e) = {e} and L(0) = 0, 

r + s is also a regular expression: 

• if r and s are both regular expressions 
L(r.s) = {xy \ x G L{r) A y G L(s)}, 

r.s is also a regular expression: 

3 



a, b 

0 
a, b 

b 

1 
1 

Figure 2.1: A directed graph representing a finite automaton A = 
({0,1, 2}, {a, 6}, {(0, a, {0,1}), (0, b, {0,1}), (1, a, {2}), (1, b, {1})}, {0}, {1}) recognizing 
the language L(A) = (a + b)+. States are (in this case) represented as rectangles with 
rounded corners, transitions as arrows, the initial state has an incoming arrow, and an 
accepting state is marked with a double border. 

• if r is a regular expression, then r* is also a regular expression: 
L(r*) = {x\... xn J n G N and Xi G L(r) for all 0 < i < n}, 

• if r is a regular expression, then r+ is also a regular expression: 
L ( r + ) = {x\ ... xn I n G N and Xj G L(r) for all 1 < i < n}. 

Refer to Figure 2.1 for a graphical representation of a finite automaton and the language 
it recognizes, expressed by a regular expression. 

2.2 Biichi automata 

Let X be an alphabet. Then S w is the set of all infinite words (w-words) over S. A n 
w-language is a subset of Consider an a;-word X over S. X(i), for i G N , represents the 
i -th symbol of X starting from 0. The substring of X from i to j inclusive will be denoted 
as X(i,j) = X{i).. -X(j). Automata operating over w-words are called UJ-automata. 

A state-based Biichi automaton (BA) is an w-automaton defined as a five-tuple A = 
(Q, S, 5,1, F), where 

• Q is a finite set of states, 

• S is an alphabet, 

• { C Q x S x Q i s a set of transitions, 

• ICQ denotes the set of initial states, and 

• F C Q is a set of accepting states. 

If needed, 5 can be treated as a transition function 5: Q x S —> 2®. We say that A is 
deterministic if and only if | 5(q, a) \ < 1 for all q G Q, a G S; if 15(q, a) \ > 1 the automaton 
A is complete. Figure 2.2 provides an example of an automaton that is neither deterministic 
nor complete. 

For convenience, we often use a transition-based Biichi automaton, as it may provide 
a more compact representation. To maintain uniformity in further definitions of different 
types of w-automata, we define it as a special type of a non-deterministic transition-
based Emerson-Lei automaton ( T E L A ) over S. It is represented by the tuple AEL = 
(Q, 5,1 ,T ,p, Ace), where Q is a finite set of states, { C Q x E x Q i s a set of transitions, 
/ C Q is the set of initial states, r = { 0 , . . . , k — 1} is a set of k G i V + colors, p: 5 —>• 2 r 
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a,b b a,b 5 

(a) L(A) = (a + &)*.(&)<" (b) L(Atba) = (a + &)*.(&)• 

Figure 2.2: Examples of state-based (a) and transition-based (b) Biichi automata. 

is a coloring function of transitions, and Acc is any acceptance condition generated by the 
following grammar: 

a ::= Inf(c) \ Fin(c) | (a A a) | (a V a) 

such that c £ r . We refer to it as a transition-based Biichi automaton when T = { 0 } 
and Acc = Inf(Qi), denoting it as Atba = (Q, S, S,1, F), where F = p _ 1 ( 0 ) (the set of all 
accepting transitions) [26]. 

2.2.1 R u n 

Let x G T,w. A run r of A on x is an a;-word over the alphabet of states Q, such that 
r(0) = qin and r(i+l) G S(r(i), x{i)) for all i > 0. Consider the state-based Biichi automaton 
A = (Q, E , 5, {qin}, F) and let (r) be the set of all states that occur infinitely often in 
the run r. The run r is accepting if and only if <Sinf(r) n F 7̂  0 [1]. Similarly, for the 
transition-based case, let T-mt(r) be the set of all transitions that occur infinitely often in 
the run r. The run r is accepting iff T inf(r) D F 7̂  0. 

2.2.2 Language of Biichi automaton 

A Biichi automaton A accepts an infinite word a if there is an accepting run r of A on a. 
The language recognized by A is defined as follows: L(A) = {a G S w | A accepts a}. The 
complementary language is defined as L(A) = {a G S w | A does not accept a}. 

Let R be a regular expression with e g" L(R), then i ? w is called the infinite concatenation. 
L(RUJ) = L(R)U, where L(R)U = { x 0 x i . . . | Xi G L(R) for all i G N}. A language L is co-
regular if L = |J™ = 1-RjS^, where Rj and are regular languages. Such languages are 
precisely those recognized by Biichi automata. When it comes to closure properties, UJ-
regular languages are closed under union, intersection, and complement. [22, 38] 

2.2.3 Strongly connected component 

A non-empty set of states C C Q is a maximal strongly connected component (SCC) if for 
each p, q G C , q is reachable in C from p and p is reachable in C from q, and C is a maximal 
set with these properties [26]. A strongly connected component is called trivial if it consists 
only of one state with no self-loops. In the further text, SCC always refers to the maximal 
strongly connected component. 

2.3 Complementation of Biichi automata 

Complementation of Biichi automata is a crucial task, integral to termination analysis, 
model checking procedures, etc. For a given Biichi automaton A, complementation is the 
process of obtaining a Biichi automaton Ac such that L(AC) = L{A). 
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The complement of a deterministic B A has at most 2n states. However, non-determinism 
enhances the expressiveness of BAs [22]. Consequently, there exist nondeterministic Biichi 
automata for which no deterministic equivalent exists (e.g., L = (a+b)*1f can only be recog
nized by a nondeterministic B A ) . Non-determinism is a factor that makes complementation 
difficult. 

The worst-case state explosion resulting from the general complementation procedures 
is O((0.76n) n) [1]. Several main general complementation approaches are identified: 

• determinization-based [36], 

• slice-based [29], 

• rank-based [31], 

• Ramsey-based [7], and 

• subset-tuple construction [1]. 

Additionally, there are algorithms that leverage the structure of the input automaton, 
applying specialized complementation procedures to enhance the bounds on state explosion. 
A n overview and a brief description of the structure of special automata types is listed 
below [27, 26]. 

• Deterministic B A : defined above, complement size is at most 2n. 

• Semi-deterministic B A : consists of an initial part without accepting states/transitions 
and a deterministic part containing accepting states/transitions. The transitions from 
initial to deterministic part are one-way only. The size of the complement is 0(4") 

result of the NCSB construction [6]. 

• Inherently weak B A : within each SCC, all cycles are accepting, or all cycles are 
rejecting. The size of the complement is 0(3") as a result of the Miyano-Hayashi 
construction [35]. 

• Elevator B A : each SCC is deterministic or inherently weak. Complement size is 
0(4") [26]. 

2.4 Generalized Biichi automata 

A transition-based Generalized Biichi automaton ( T G B A ) can be defined as the transition-
based Emerson-Lei automaton A^GBA = (Qi S, I, T,p, Acc) over E such that T = { 0 , . . . , k — 
1} and Acc = lnf(0) A . . . A Inf(k - 1) [20]. A n example of a T G B A is shown in Figure 2.3. 

2.5 Intersection of Biichi automata 

Consider (TG)BAs A = (Qa,5a,Ia,Ta,pa,Acca) and B = (Qb,5b,Ib,Tb,pb,Accb) over the 
same alphabet E, and without loss of generality, we assume Qa n Qb = 0 and Tar\Tb = 0. 
Then the automaton P = (Q',5',/',V,p',Acc') over E that recognizes the intersection of 
their languages L(P) = L(A) n L(B) can be defined as follows: 

• Q' = <2a x Qb, 
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Figure 2.3: Example of T G B A A over E = {a, b} with Acc = Ira/(0) A Inf {I) A Inf (2) and 
L(A) = E w . 

• <J'((5ai,56i),o) = Sa(qai,a) x 6b(qbl,a), for a G E , 

. r = i a x ib, 

. r ' = r a u r 6 , 

• P'((9ai,96i) A (Qa2,Qb2)) =Pa(qai 4 <?a2) U j ) ^ ^ 4 % 2 ) , and 

• ^4cc' = ^4cca A ̂ 4ccft. 

Refer to Figure 2.4 for a demonstration of the construction of the product (states are the 
product of the original automata states). 

Theorem 1. For TGBA P it holds that L(P) = L(A) n L(B). 

2.6 Language emptiness 
Consider an automaton A. The language emptiness problem is the task of deciding whether 
L{A) = 0 holds. For automata over infinite words (w-automata) it boils down to checking 
the existence of a lasso that satisfies the respective acceptance condition. 

2.7 Language inclusion 

Consider automata A and B. The language inclusion problem is the task of deciding whether 
L{A) C L(B) holds. The theoretically optimal solution is to decide the following problem 
L(A) n L(B) = 0. This entails complementation, subsequent intersection, and finally an 
emptiness check of the resulting automaton. In practice, we can avoid constructing the 
entire product automaton. More specifically, to check if the resulting automaton is empty, 
we can use techniques that significantly restrict the generated state space. 

2.8 HyperLTL 
We fix a finite set of atomic propositions AP. A trace over AP is a map t: N —> 2AP, which 
can be expressed as a sequence t (0) t ( l ) . . . The set of all traces over AP is then denoted as 
{2APy. 
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b a 

a 
(c) The resulting automaton with Acc = 7n/(0) A/n/(l) recognizes the language 
L(P) = L(A) n L(B) = 0. 

Figure 2.4: Example of product construction, in accordance to definition in Section 2.5, 
used to obtain an automaton that recognizes the intersection of languages. 

Linear-time temporal logic (LTL) can be seen as a logic describing dynamic worlds, i.e. 
it is a modal logic. To do so, temporal operators are defined to express changes in time. 
L T L formulas are generated by the following grammar [23]: 

ip ;•— a I -*tp I (p A (p | Xtp | tpXJtp 

where a £ AP is an atomic proposition, and A are standard Boolean operators (other 
commonly used Boolean operators can be defined in the usual way) and X , U are temporal 
operators next and until respectively. 

Suppose a trace t and an L T L formula (p. By notation t,i \= ip we express that the trace 
t at a position i G N satisfies the formula (p. See the following definition [23]: 

t,i \= a 
t,i\=-«p 
t,i \= ipi A (p2 

t,i \= Xip 

t,i \= ipiU<p2 

iff a G t(i), 
iff t, i ¥= ip, 

iff t, i \= ip\ and t, i \= f2, 
iff t, i + 1 |= (p, 
iff 3k > i: t, k \= (p2 and Vz < j < k: t, j \= (pi. 

The trace t satisfies (ft, denoted as t \= (j), if t, 0 |= 4>. 
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Xip ip ipi ipi <pi ipi ip2 

o - ^ o - ^ o - * X>^0-X>-K>-» - • • • CH*O^CH*-—> y+o-*~ > -><>->• • • • 
0 1 2 i i+1 0 1 2 i i+1 k-1 k 

(a) Xip. (b) <piUtp2-

Figure 2.5: Visualization of next (a) and until (b) operators. The states for which the 
corresponding operator holds are colored. 

Intuitively, Xip means that ip is satisfied at the next position and ip\Uip2 says that at 
some point (position) ip2 is satisfied, but until that moment ip\ holds. One can also come 
across other derived temporal operators (syntactic sugar), such as: 

• eventually: Ftp 4=̂ > trueUip, 

def 
• globally: Gip •£=>• -F-np, 

def 
• weak until: ipWip (ipVip) V Gip, and 

def 
• release: ipKip •£=>• — I ^ J X J — . 

For a better understanding of the next and until temporal operators, see the visualization 
in Figure 2.5. 

However, L T L can only be used for reasoning about a single path. HyperLTL extends 
L T L formulas with quantification over traces to explicitly express the relations of executions 
and their properties. HyperLTL formulas are generated by the following grammar [23, 9]: 

4> ::= 3-7T.0 | V7T.0 | tp 

ip ::= a-x \ ->ip | ip A ip | Xtp \ ipXJijj 

where a G AP, IT G V is a trace variable with V being the infinite supply of trace variables. 
The body of the HyperLTL formula tp is essentially an L T L formula. A HyperLTL formula 
is considered closed if each occurrence of the trace variable is bound by a quantifier [9], 
refer to Figure 2.6 for an illustration. 

2.8.1 Semantics 

To define the semantics of HyperLTL we need to introduce a trace assignment n : V —> 
( 2 j 4 p ) w for mapping trace variables to actual traces (of the system). If we want to map 
some trace variable TT G V to a particular trace t using our mapping n , we denote updating 
n so that II(7r) = t as n[7r —> t\. For the satisfaction of a closed HyperLTL formula <j> over 
n and a set of traces T at a position i G N, we use the notation T, II, i \= 4>, defined as 
follows [23]: 
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i 

I I 
V7TiV7r2: lw2) ~> G(oni <-» o ^ ) 

t t 

Figure 2.6: Formula ip is closed, while formula ip is not closed. 

r , n , i ^ a ^ iff aen(7r ) ( i ) (1) 

T,n,i\=^ iff r , n , i ^ v (2) 

T, n , i |= V i A V2 iff T, n , * |= V i and r , n , t |= V2 (3) 
r , n , i \= x?p iff t, n , * +11= v (4) 

T , n , z |= V i ^ 2 iff 3/c > t: T,IL,i \= ip2 and Vi < j < k: T,U, j \= fa (5) 

r , n , i ^ 3 v r : 0 iff 3t€T:T,U[ir-H],i\=<l> (6) 

r , n , i ^ V v r : 0 iff Vt€T:T,U[ir-H],i\=<l> (7) 

Similarly to L T L , we say that a set of traces T satisfies the property 4> (written as T \= 4>) 
if T, ILj, 0 |= (ft, where ILj denotes a mapping with the empty domain. 

2.8.2 Kripke structure 

Modeling the traces (behavior) of a specific system can be achieved through the use of 
a Kripke structure (sometimes referred to as a transition system) [5, 23]. A Kripke structure 
is a tuple K. = (S, so, 5, AP, L) with the items of the following meaning: 

• S is a finite set of states, 

• SQ is the initial state, 

• 5 is a transition function 5: S —>• 2s, 

• T4P is the set of atomic propositions, and 

• L is a labeling function L: S —>• 2 ^ . 

When dealing with properties that imply infinite traces, it is necessary for all states s £ S 
to have | <5(s) | > 1. A n infinite sequence so^i • • • £ is a pai/i of a Kripke structure, with 
so being the initial state and Sj+i G 5(SJ) for each i G N . A trace corresponding to a path 
sosi . . . is an infinite sequence of labels ^ i • • •> where each lj = L(SJ). We use Tr(/C, s) to 
represent the set of all traces whose corresponding paths start in the state s of a Kripke 
structure K,. Given the set of traces, we can establish the satisfaction of Kripke structure K. 
with respect to the HyperLTL formula ip as /C |= ip if and only if Tr(/C, SQ) \= (p. 
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so, s i , S4, 
w 

S5, 
{a} 

(a) Graphical representation of the Kripke 
structure K. 

a a a a, b a a, b 

(b) The only two traces starting at the initial 
state. 

Figure 2.7: Kripke structure and traces starting at the initial state. 

2.8.3 Example 

To be more illustrative and to gain some intuition over HyperLTL and its semantics, we 
provide a simple example. Consider the following HyperLTL formula (expressing a made 
up hyperproperty): 

ip = V7ri37T2 : a^Ufr^ , 

informally, read as for each trace TTI there exists a trace TT2 such that a holds on the trace 
7Ti until b holds on the trace TT2. Also, consider the following Kripke structure K. (depicted 
in Figure 2.7a): 

• S = {S0,S1,S2,S3,S4,S5}, 

• so is the initial state, 

• $ = {(so, {si}), (si , {s2, s4}), (s2, {s3}), (s3, {s2}), (s4, {s5}), (s 5, {s2})}, 

• AP = {a, b}, and 

• L = {(s0, {a}), (si , {a}), (s2, {a}), (s 3, {a, &}), (s 4, {&}), (s5, {a})}-

Because K, is structurally simple, we observe that it contains only two distinct paths starting 
from the initial state: soSi(s2S3)UJ and sosis^s^^ss)^. That means Tr(fC,so) contains 
traces h = {a}{a}({a}{a, b})u and t2 = {a}{a}{b}{a}({a}{a,b})UJ (Figure 2.7b shows 
traces t\ and t2, respectively). In order to decide whether Tr(/C, so) \= tp holds, we need to 
inspect every possible assignment to the path variable TTI from our formula. 
Let 7Ti be t\. Clearly, when we assign 7T2 trace t2, formula a^Ub^ holds. Starting from 
position 0, a holds throughout the entire trace t\, therefore it is true that a holds until 
position 2, where b holds on the trace t2. 
Let 7Ti be t2. By assigning 7T2 the trace t2 again, the formula a^Ub^ becomes true. 
Starting from position 0, a holds until position 2, where b holds on the trace t2. 

The previous was an intuitive approach, so let us now apply systematically the rules 
from Section 2.8.1. Considering T = Tr(tC,so), we can rephrase our problem to check if 
T |= (p holds, that is, if T, 110,0 |= (p. After applying Rule 7 with t = t\, we proceed to 
rule 6 with t = t2. This results in II = {(TTI,h), (TT2, t2)}. Next, we examine the quantifier-
free formula aniXJbn2 using Rule 5, selecting k = 2 (i = 0 from the problem definition). 
Now we need to verify Vi < j < k: T,IL,j \= a 7 r i using Rule 1. For all j G {0,1}, we 
have a G II(7ri)(j), implying that T, U,j \= anj holds. Similarly, for k = 2 and Rule 1 we 
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confirm that b G n(7T2)(/c), and consequently T,IL,j \= b^k holds. To complete the proof 
that T \= (p, Rule 7 would be applied with t = ti following a similar procedure. 
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Chapter 3 

HyperLTL model checking 

Model checking serves as an automated verification method. Various properties of system 
behavior, such as mutual exclusion and accessibility, require verification. To compare a sys
tem and its specification, automata over infinite words are often employed. For properties 
related to a single execution of the system, the established approach is the language inclu
sion check. To be more precise, let the system S be represented by the w-automaton As and 
the specification ip by the w-automaton Av (typically obtained through the LTL- to -NBA 
conversion [14]). Finally, the inclusion check L(Ag) Q L{Atp) is performed. 

However, when dealing with hyperproperties (expressing relations between multiple sys
tem executions), the task becomes more challenging. When comparing hyperproperties to 
properties expressed by L T L and aiming to represent them through w-automata, we must 
also consider the presence of quantifiers and trace variables in the HyperLTL formulas. 
Quantifiers, more specifically each quantifier alternation, then cause the need for (possibly 
more) complementations of w-automata, making the whole procedure difficult. 

Recall the example in Section 2.8.3, where we actually performed model checking in 
a brute-force manner. Our goal is to perform such checks algorithmically. This is feasible 
because, similar to single-execution properties, it ultimately involves a language emptiness 
check, which is decidable. 

In this chapter, we first introduce Automata-based Verification (ABV) [24, 4, 23], as one 
of the approaches for algorithmic verification of hyperproperties, followed by an illustrative 
explanatory example. Subsequently, we briefly describe A U T O H Y P E R [4], a tool that im
plements a slightly modified version of this algorithm. It will be used as a reference when 
comparing our implementation against the state-of-the-art push button HyperLTL model 
checker. 

3.1 Automata-based algorithm 

Consider a Kripke structure K. = (S, so, d;c, AP, L) and a closed HyperLTL formula (p. The 
task is to check whether IC\= <p. The idea behind the automata-based model-checking is to 
construct a Biichi automaton that is equivalent to the L T L part (body) of the formula (p. 
Then we iteratively eliminate trace quantifiers, starting with the innermost one. By doing 
so, an automaton is acquired that combines the system fC and formula ip. To conclude 
K. \= (p or K. Y= ip, we need to decide whether the language of the resulting automaton is 
empty or not. 
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(BA:= Convert j: to~BA~] 

Take and remove the innermost 

scqnenee of the same type quantifiers 

(unsat) 

Outermost seqnenee *| A^ C BA1 

1 [BA := BA) 
[BA := BA >OC] 

[BA .= BA x tc)  

[BA := ~Bl} 

N o more quantifiers 

Emptiness eheek of BA 

[sat] 

Figure 3.1: The scheme summarizes the steps of the A B V and automata operations it 
employs. Colors indicate the focus on optimizing specific operations, with red frames indi
cating a greater focus and orange frames indicating a lower focus. 

Here, the algorithm is explained in greater detail. Let ip = Q\iriQ2K2 ••• Qn^n'• <P*, 
with ip* denoting the quantifier-free subformula of ip and Qi G {3,V} for all 1 < i < n. 
Firstly, a (non-deterministic) Biichi automaton A^* equivalent to the L T L body ip* is 
constructed. This is accomplished by the standard Tableau construction that creates an 
automaton accepting exactly w-words satisfying ip* [14]. This automaton's alphabet is 
X^* = (2AP)n, one set of atomic propositions for each trace quantifier. The next step 
is to inductively eliminate the trace quantifiers. Suppose the following subformula of <p, 
^ = Qk^k- <pk- We can safely make an assumption that automaton Ak = (Q,T,,5,qin,F) 
for ipk is already constructed (automaton Av* being the base case). Since Qk is the 
th quantifier, the alphabet of the automaton Ak is E = (2AP)k. Now, if Qk = 3, we 
can perform existential projection, which is intuitively the product of Ak and the Kripke 
structure K. = (S,so,5,AP,L), necessary to associate the specification with the behavior. 
Formally, we construct an automaton Ak-i = (Q x S, E , 5 , (%„, so), F x S) where E = 
{2AP)k~1 and: 

5'((q, s),(h,..., lk-i)) = {(r, a') | (s, a') G 5K and r G S(q, (h,..., lk_u L(a)))} (3.1) 
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(-"OTTI, ~ , & 7 T 2 ) (0^,-16^) (OTTI, ~ , & 7 T 2 ) 

(a) Kripke structure /C. (b) NBA A for G(a 7 r i —> F^aVl) V F6„-2, adjusted from [30]. 

Figure 3.2: A simple Kripke structure to describe system behavior and an N B A representing 
the L T L body of the HyperLTL formula G(a 7 r i —>• F-*ani) V Fbn2. To avoid cumbersome 
notation, sets are given as sums. For example, transition labeled with (a 7 r i + -<ani,bn2) 
denotes (a 7 r i V -•a7 r i) A bn2. 

where (h,..., ^ - 1 ) and ( Z i , . . . , Zfc-i, are letters of automata Ak-i and 4̂fc respectively 
(making it E ' = ( 2 j 4 p ) f c _ 1 for ^4fc_i). A n intuitive explanation of this definition is that we 
read along both the automaton and Kripke structure, choosing only transitions that are 
acceptable with respect to the current state of the system (Kripke structure). However, we 
omitted the case where Qk = V. This is transformed to the previous scenario using the law 
of double negation, i.e. -i-N-Kk^Pk = vVfc^fc, which we can rewrite as -i-N-Kk^Pk = ~^k~'lPk-
Here, the negations raise the need for the complementation procedure of Biichi automata. 

After each quantifier is eliminated as described above, we end up with an automaton 
over the single-letter alphabet E = (2AP)° = {()}. Now we just have to perform an 
emptiness check on this automaton, which means that JC \= (p if and only if the language 
of the automaton is non-empty. 

Consider the Kripke structure fC and the HyperLTL formula ip from the algorithm 
description. If the following holds: Tr(JC, so), H[KI —>• ti,... 7Tn —>• tn], 0 |= ip if and only if 
(SQ ... )(sj . . . s^)... G L(A), where ti = s®s} ... for all traces, we say that automaton A 
is /C-equivalent to the formula (p. Each step of the above algorithm produced a /C-equivalent 
automaton to certain subformula via combining the automaton with /C. [24, 4] 

One can modify the algorithm, for example, by negating the original formula and finding 
the nonexistence, so the automaton with the empty language means satisfaction of the 
formula (in other words, finding the counter-example to prove nonsatisfaction). For a more 
schematic overview, see Figure 3.1. 

3.1.1 Example 

To demonstrate the algorithm, consider the HyperLTL formula V7ri37T2 : G(a 7 r i —>• F-*ani) V 
F&7T2 and a system modeled by the Kripke structure K. = (S, SQ, 5, AP, L) (Figure 3.2a). 
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Figure 3.3: N B A A* as the result of the existential projection of JC onto A. 

A nondeterministic Biichi automaton A = (Q, E , 5, {qin}, F) representing the L T L body of 
our formula may look like the one in Figure 3.2b. 

The transitions of A consist of tuples of size 2, where the first component is the set of APs 
of trace 7Ti and the second one is the set of APs of trace iT2 • Since the innermost quantifier 
is existential, we can now perform the existential projection and build an automaton An2 = 
(QTT2, E ^ , <5TT2) I-K21 Fir?)- To avoid creating unreachable states, we start with the initial 
states of JC and A and gradually find the successors of each state. According to Section 3.1, 
the new initial state(s) originate from the product of the initial states of JC and A. Since 
we have only one initial state in each of them, the new initial state is In2 = {(qo, so)}, and 
we have (qo,so) G FW2 since qo G F. By applying Eq. 3.1 to find its successors, we obtain 
the following: 

• (lii si) ^ ^7r2((̂ 0) so), (a^)) because s\ is the successor of so in JC, and 
qi G S(qo, ( a^ , ^b^)) where L(so) = {a} (indicating that -*b also holds in that state). 

• (<70)Si) G 5,r2((go, so), (~,ani)), same as before, s\ is the successor of so in JC, and 
-•6^2)) where L(SQ) — {a}. Moreover, (qo,s\) G FW2 due to qo G F. 

• For example (q2, si) is not a successor of (go, so) because -16 holds in SQJ whereas the 
transition in A from go to q<i requires b. 

The completion of the construction for the automaton An2 over E ^ 2 = { a ^ , -•a7 r i} follows 
the same process as described above for each new state resulting in automaton in Figure 3.3. 
Now that we have eliminated the existential quantifier, a universal quantifier remains in the 
formula W i : (p*. Following the algorithm, we apply double negation, leading to the formula 
—i37Ti: ""z9* • Since we already have the automaton for ip*, the next step is to complement 
it. After using S P O T [21] to complement An2, we obtain the complement automaton Ac = 
(Qc, ^Ci 5ci Co, Fc), see Figure 3.4. The next step is to perform existential projection once 
again, aiming to eliminate the existential quantifier, but this time with respect to the trace 
variable Employing the same approach as in the initial elimination, we combine Ac 
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Figure 3.4: N B A AQ as the result of the complementation needed to handle the universal 
quantifier. 

with the Kripke structure tC starting with the initial states. The resulting automaton of this 
process, denoted cts Af j is depicted in Figure 3.5. The fact that the resulting automaton 
Ar does not have any accepting states implies that its language is empty. Consequently, 
we can interpret it as a nonsatisfaction of the system given the specification. However, we 
must address the negation placed in front of the existential quantifier. This negation would 
typically entail complementation of Ar. But in this case, it is evident that the complement 
of an empty language will not be empty. Therefore, our conclusion is that the system does 
satisfy the given specification. In formal terms, JC \= ip holds. 

3.2 AutoHyper 

In their work [4], Finkbeiner et al. introduce the A U T O H Y P E R tool as the first complete push 
button tool capable of handling model verification of HyperLTL formulas without restric
tions on the number of quantifier alternations. A U T O H Y P E R employs an automata-based 
approach introduced above, and they state the following language inclusion property [4]: 
Let (p* = W i . . . vVn</? be a HyperLTL formula (ip may include additional trace quanti
fiers), and let Av be an automaton over £ = (2AP)n that is /C-equivalent to <p. Then 
JC |= ip* if and only if L(A^) C L(Aip). Here, Afc is a nondeterministic Biichi automa
ton over £ = (2AP)n, such that for any n-tuple t\, ti, • • •, tn of the traces from JC it holds 
that ( i i ( 0 ) , t 2 ( 0 ) • •. , t N (0 ) ) ( t i ( l ) , t 2 ( l ) • • • ,*n(l)) • • • e L(A%). The construction of such an 
automaton would follow Algorithm 1. 

While the inclusion check, theoretically optimally done via complementation and the 
following emptiness check, is no better than the standard automata-based procedure in 
the worst case scenario [4], A U T O H Y P E R capitalizes on the possibility of terminating much 
earlier when K, y= ip* without constructing the entire complement to prove automaton 
(non)emptiness (by finding an accepting lasso). 
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Figure 3.5: The final existential projection results in the N B A Ar over a singleton alphabet, 
with no accepting states. 

A U T O H Y P E R uses S P O T [21] for L T L - t o - N B A conversion, complementation, and as the 
inclusion checker. In addition to S P O T , it offers several other tools to use as inclusion 
checkers, namely R A B I T [12], B A I T [18], or F O R K L I F T [17]. However, in terms of successfully 
solved instances, S P O T stands out as the most successful among them. On the other 
hand, there are cases where S P O T is outperformed by some of the alternatives, therefore 
A U T O H Y P E R provides the flexibility to use any of them. 

Algorithm 1 N-fold self-composition of a Kripke structure 

Input: Kripke structure K. = (S, s0, 5, AP, L), N G N + 

Output: N B A A = (Q, E, 5,1, F) 
Q «- 0, £ «- (2AP)N, S {{s0)N}, F «- 0 
Queue q 
q.Enqueue(I) 
while q.nonemptyQ do 

current q.DequeueQ 
trans_cond 4—1 > neutral for conjunction 
succs 4- {%}N 

for each 0 < i < N do 
state <— current[i] 
trans_cond 4— trans_cond A L(state) 
succs[i] get_successors_of (state) 

end for 

all_possible_comb 4— product(succs, N) 
for each dst state of all possible comb do 

if state £ Q then 
q. Enqueue (dst_state) 
Q.add(dst_state) 

end if 
5.add(current, trans_cond, dst_state) 

end for 
end while 
F 4- Q 

return (Q,T,,S,I,F) 

> product of N same sets of successors 
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Chapter 4 

Subsumption relations 

One of the approaches to decide L(A) C L(B) between w-automata A and B is to decide 
whether the language of an automaton resulting from L(A) D L(B) is empty. When con
structing the product automaton on-the-fly, we can use the information gathered before 
and during construction to predict and cut off unnecessary parts or find counterexamples 
without explicitly constructing them. This approach extends far beyond the HyperLTL 
model checking and thus can be utilized in various problems that include emptiness check. 

This chapter introduces the necessary notions regarding simulations on w-automata. 
We then define and combine various relations and theorems for an efficient inclusion check, 
specifically when leveraging modular complementation from K O F O L A [26]. 

4.1 Simulations 

There is a wide range of simulations over w-automata. Simulations allow us to relate states 
not only by whether they accept the same w-words, but they allow us also to reason about 
traces. Simulation can be defined as the game of two players [13], Spoiler and Duplicator. 
Consider the following initial configuration of the game. The Spoiler starts in the state 
so and Duplicator starts in state do. In each round of the game, Spoiler chooses a; £ E 
and picks a transition such that Si —^ Sj+i G 5. Duplicator has to pick the corresponding 
transition such that di —^ di+\ G 5. Assuming the automaton is complete, there are two 
infinite traces, irs = SQ s\ —^ S2 • • • and ir^ = do d\ —^ di... According to the 
winning condition for Duplicator, we distinguish the direct (di), delayed (de) and fair (/) 
simulation. Let x G {di,de, / } , the Duplicator wins when Cz(7rs,7Trf) holds [11]: 

Vi > 0: Si G F = ^ die F, (4.1) 

Vi > 0: Si G F =^ 3j>i: dj G F, (4.2) 

ns is fair 7Td is fair, (4.3) 

where an infinite trace is fair if and only if it visits the accepting state(s) infinitely often. 
Whenever the winning condition is not met, the winner is Spoiler. To denote that the state 
p is direct simulated by the state q, we use the notation p -<di Q- This definition would be 
trivially extended to transition-based automata. 

C {TTs,TTd) 

pdet^ „ \ def 

cH del' 
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4.1.1 Early simulations 

This section defines early and early+1 simulations as introduced in [8], but for transition-
based Biichi automata. 

Definition 1. Consider the Biichi automaton A = (Q,Y,,5,I,F) and the traces TTP = 
Pou>oPiu>i • • • and 7rr = rQWQr\W\ ... over the same word w = wowi... G T,w, where each 
Pi-,fi G Q. Trace irp is early simulated by 7rr, denoted as irp <e irr,if and only if 

Vz < j: ({pi 4 p i + i G F V i = -1 ) A pj 4 pj+1 G F) =>• 3z < k < j : rk 4 rk+i G F . 

Similarly, trace TTp is early+1 simulated by 7rr, denoted as TTP ^e+i TTr,if and only if 

Vi < j: (pi 4 pi+i G F A 4 pj+i G F ) =4> 3i < A; < j: r f c 4 r f c + i G F . 

For early+1 simulation this means that there is one accepting state in the irr for every two 
accepting states in the TTP and early simulation also requires that 7rr visits accepting state 
no later than irp. 

To be able to express these relations on the states, [8] provides the following definitions. 

Definition 2. Strategy is a function 5S: Q x (Q x S x Q) —>• (Q x S x Q) such that 
8s(r,(p,a,p')) = (r, a, r') where r' G <5(r, a). 

In other words, strategy function chooses a transition from state r based on transition 
(p,a,p'). 

Definition 3. Strategy for traces is a function St - Q x (Q x S) w -> (Q x S) w suc/i i/iai 
(5i(ro,7rp) = r0w0riwi ... where Ss(ri, (pi,Wi,pi+1)) = (ri,Wi,ri+1) holds for all i > 0. 

It is essentially choosing the successors of ri following the trace TTP. 

Definition 4. State po is early (early+1) simulated by state TQ, denoted aspo -<E TQ (po ^e+i 
ro), if and only if there is a strategy function 5t suchthat7rp -<e St(ro,7rp) (TTP ^e+i St(ro,irp)) 
holds for each trace irp starting in po. 

The language of a state p G Q from ( T G ) B A A = (Q, S, 5,1, F ) is defined as L(p) = 
{w | 3 an accepting trace from p in A over w}. By we denote the relation of language 
inclusion of states, p CL q <^=^> L(p) C L(q) [8]. 

Proposition 1. For the relations over the states of BA A the following holds [8]: 

4.2 Modular Complementation of Biichi Automata 

This thesis builds on the tool K O F O L A [26], which employs a modular-based complementa
tion approach (note that whenever we talk about modular complementation, it is a reference 
to K O F O L A ' S approach). Prior to complementation, the input automaton is divided into 
partition blocks (a partition block is a group of strongly connected components, where 
a group consists of at least one SCC) based on the structure of the strongly connected 
components. A n example of partitions can be seen in Figure 4.1a. Then, for each partition 
block, the most suitable complementation algorithm is determined. Subsequently, the tool 
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a, b 

(a) Identified partitions of automaton Aex (in this case a partition is an SCC). Green and blue frames 
each contain an inherently weak accepting component, the orange frame contains a non-accepting 
component (does not produce a partial macrostate). 

—{O | 0,0 | 0,0) O — 4 ° ' 2 I 2 ' 2 I0'") »{0, 2,3 J 2, 2 |o7o] »(l,3 I 1,1 

(b) The outcome of the modular complementation of the automaton Aex. The blue part of the 
macrostates corresponds to the partition containing the blue SCC from Aex in (a), and the green 
part corresponds to the partition containing the green SCC from Aex. An instance of the MH 
procedure is applied to each of the two. The resulting automaton has the acceptance condition 
Acc = Inf(Q) A Inf(Q) where irc/(©) is from MH for the green partition and Inf( ) is from MH for 
the blue partition. 

Figure 4.1: Example of modular complementation showing the input automaton and the 
resulting automaton. 

performs the complementation for each partition block using either synchronous construc
tion or a postponed construction. The acceptance condition of the complement produced 
by K O F O L A can potentially be more general - a conjuction of partial acceptance conditions 
- which is one of the benefits of this approach (it can lead to smaller automata). 
Postponed. In the postponed construction, the complementation of each partition block is 
performed independently. The result is then obtained using the product construction of the 
partial complements of the partition blocks. This approach is appropriate for applications 
that require the entire complement, as reductions on the partial results can be applied. 
Synchronous. The synchronous construction synchronizes the complementation of each 
partition in each step. For example, consider an input automaton consisting of three 
SCCs of different types. The states produced by modular complementation are of the 
form (N, Si, S2, S3), where N is the set for tracking all runs and Si is the state containing 
runs within the i-th SCC. In each step, the successors of states in N are computed and with 
respect to them, the successors of each Si, S2, and S3 are computed according to partial 
procedures. Creating the whole state of the complement in each step makes it fitting for 
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on-the-fly applications (such as inclusion testing) because there are cases where we can 
determine the result without the need for constructing the entire complement automaton. 
However, compared to the postponed construction, it may suffer from generating useless 
states. 

4.2.1 Inherently Weak Accepting Components 

One of the partial algorithms that K O F O L A uses is the standard Miyano-Hayashi(MB) com
plementation procedure [35] for inherently weak Biichi automata. If an SCC is inherently 
weak, all its cycles are either accepting or rejecting (for rejecting it means that the SCC 
has an empty language). The approach in K O F O L A therefore assumes only inherently weak 
accepting components, whose complementation is not trivial. The task is then to track all 
the runs in such an SCC (or a partition) and to determine whether they leave it eventually. 
If they leave it infinitely often for a certain w-word, the complement automaton will accept 
such a word. To be precise and coherent with K O F O L A , consider the input automaton 
A = (Q,T,, 5,1, F) and pick a partition block P of inherently weak accepting SCCs. This 
procedure within the modular complementation produces macrostates1 of the form (C, B), 
where C stands for check and represents runs in P and B C C stands for breakpoint and 
contains the runs that are being inspected whether they leave P. Each macrostate has ex
actly one successor given by the following transition function: 5c(N, (C, B),a) = (C, B'), 
where iV denotes all current runs within the automaton A, C = 8{N, a) n P and when 
5(B, a)nC = 0 then B' = C, otherwise B' = 5{B, a)nC. The transition (C, B) 4 (C, B') 
is accepting when 5(B, a) n C = 0. Details are omitted, the full specification of the algo
rithm plugged into K O F O L A can be found in [26]. A n example can be seen in Figure 4.1. 

We can now delve into the definition of the proposed subsumptions. Suppose macrostates 
p = (Np, Cp, Bp) and r = (Nr, Cr,Br) with N, N' representing the sets of all currently vis
ited states. Thus, C C N and C C N'. Note that the sets N, N' are always present in the 
modular procedure, which implies that we can use them freely. Let us define the following 
subsumption relation: 

p c r <̂ 4 Np D Nr A Cp D Cr. 

We also define a similar but stronger relation: 

p\ZB r <̂ 4 Np D Nr A Cp D Cr A Bp D Br. 

Lemma 1. The relation C is an early+1 simulation: 

p\Zr p ^e+i r. 

Proof. This proof follows the structure of the proof in [8]. 
We need to find the suitable strategy 5t(r,irp) according to Definition 4. As we stated 
above, the Miyano-Hayashi complementation procedure produces deterministic transitions. 
Therefore, the strategy is implicitly defined by the output's characteristics. Namely, we 
use strategy <fe which for a transition (p,a,p') chooses a transition (r, a, r'), with p' = 
(Npi, Cpi, Bpi) and r' = (Nr/, Cr>, Bri), such that 5c(Nr, (Cr, Br),a) = {Cri, Br>). And given 
that Nr C Np, also Cr< C Cv<. Putting the strategy in place guarantees p C r p' C r', 
the consequence of determinism and completeness is that (r, a, r') exists. It is also evident 
that, whenever a state is removed from Bp, it is also removed from Br if present. 

x B y term macrostate we mean a state consisting of more states (typically sets of states of the original 
automaton). 
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Now we show that for any two traces TTP = PQWQP\W\ . . . and 7rr = Sr(ro,^P) = 
rQWQr\W\ ..., with p = po and r = ro, the condition TTP ^e+i 7rr is satisfied. By defini
tion, it is necessary to prove that Vi < j: (pi 4 pi+i G F c A pj -4 Pj+i £ Fc ) =>• 3i < 
k < j': rfc ^1 rfc+i G F c , where F c is the set of accepting macrostates of Ac-
Claim 1: For all i > 0, if pi 4 pi+i G F c , then p j + i C B rj+i. 
Proof: Suppose that pi+\ = (NPi+1, CPi+1, BPi+1) and ri+\ = (Nri+l,Cri+l,Bri+l). Since 
Pi 4 pi+i is accepting, it holds that (i) BPi+1 = CPi+1, (ii) CPi+1 D Cri+1 since pj+i C 
r i + i i V p i + 1 D i V r . + 1 ( C w + 1 = i V p i + 1 n F ) D ( C r i + 1 = i V r i + 1 n F ) and (iii) C r i + 1 D 
B n + 1 . From ( F p i + 1 = CPi+1) D Cn+1 D B n + 1 , it follows that Bpi+1 D B n + 1 , implying 
Pi+i E B ri+1. • 
Claim 2: If pi C and pj -4 Pj+i G F c for some i < j, then there exists i < k < j such 
that rk ^ r f c + i G FC-
Proof: From pi C B ri we have F p i D Bri and our strategy guarantees that in this case Bri 

will be emptied no later than BPi. • 
The two claims imply TTP ^e+i 7rr. The conclusion is that our strategy meets the 

requirements of Definition 4. • 

Lemma 2. The relation C B is an early simulation: 

p\Z r =4> p -<e r. 

Proof. The strategy 5c we use is the same as in the proof of Lemma 1. Now we show that 
for any two traces TTp = powopiwi... and irr = <5c(ro, 7rp) = ro^o^i^i • • • it follows that 
% r̂ e TTr- Similarly as in the proof in [8] we restate Definition 1 of early simulation in the 
following conjunction: 

Vi < j : (pi 4 pi+i G F c A pj 4 pj+i G F c ) 3z < fe < j : r f c ̂  r f c + i G F c , (4.4) 

Pi 4 pi+i G F 3k < i: r f c ̂  r f c + i G F . (4.5) 

The condition 4.4 is the same as for the definition of C and since C s is stronger, it follows 
that p C r. Wi th strategy <5c being the same as in the proof of Lemma 1, Condition 4.4 
is satisfied. Condition 4.5 follows from the second claim in the proof of Lemma 1. • 

4.2.2 Deterministic Accepting Components 

For deterministic accepting components (DACs) K O F O L A [26] uses an approach based on the 
N C S B construction [6] for the complementation of semi-deterministic Biichi automata. In 
this section, we will prove that there exists early simulation between states of the particular 
partial algorithm used within K O F O L A . 

The most important aspect is again the computation of the successors. So let us briefly 
sum up the definition provided in K O F O L A . A S referred in [26], a partial algorithm CSB 

uses a set B similarly as MH for tracking the runs that eventually leave the SCC, further it 
uses a set S for storing runs which it guessed will not visit accepting transitions anymore 
(safe runs). A set C then contains runs that has not yet been decided as safe nor have they 
been sampled into B. To avoid transitions between SCCs of the partition F (so that we can 
treat all runs as deterministic) Sscc is used. Moreover, transition function that only returns 
accepting transitions (if present) 5F is used. We define 5CSB(N, (C, S, B), a) = U [26] such 
that: 
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. if 6F(S, a) + 0, then U = 0, 

• otherwise: 

- U includes (C',S',B'), where: 

* C = (5(N, a) n P) \ 5', 
* S' = < W ( S , a ) n P , 
* P' = C" if 5Scc(B, a) = 0, otherwise P' = 5Scc(B, a). 

We refer to this type of transition as emptying. The transition (C, S, P) A 
( C , 5', B') is accepting if 5SCc(B, a) = 0. 

- If 5Scc(B, a) n <5F(P, a) = 0, U also contains (C", 5", C") , where: 

* C " = C" \ 5", 
* S" = S'U B'. 

The transition (C, 5, P) —> (C", S", C") is always accepting, and we refer to 
this type of transition as safeing. 

Now, similarly as for MH macrostates, we define the relation for the CSB macrostates. More 
specifically, consider macrostates p = (Np, Cp, Sp, Bp) and r = (Nr, Cr, Sr, P r); then 

def 

V E c s s r <v=̂  NpD Nr ASpD Sr A (Sp U Bp) D Br. 

Lemma 3. The relation ^CSB is an early simulation: 

P Ec5B r => p <e r. 

Proof. First, let us state the following facts: 
1. J V C J V ' S(N,a) C 5(N',a), 

2. S U C = N n P, and 

3. if a run p is moved to S on an infinite trace, then it stays safe forever or becomes 
discontinued. 

From each state of the CSB construction, there are at most two successors. We use a strategy 
<5JZCiSS that if pi -4 pi+\ is safeing, we also take safeing transition from ri if possible. This 
is the only scenario when safeing transition is picked from r̂ . In all other cases, emptying 
transition is chosen. 
Claim 3: If pi Ec5B n and pi pi+1 g" FC and n ri+1 g" F C , then pj+i Ec5B ^i+i-
Proof: For SPi+1 = 5scc(SPi,a) and BPi+1 = 5Scc(BPi,a). For B n + 1 , we have P r i + 1 = 
Sscc(Bn,a). From U P P i ) D Bn, it holds that (SPi+1 U P K + 1 ) = (Sscc(SPi, a) U 
^5Cc(P P i,a)) 2 fecclPr^a) = Bri+1 and = 5Scc(SPi,a) D 5Scc(Sri,a) = Sn+1. • 

Claim 4: If p^ E c s s and pj A Pj+i G Fc 1: then there is a A: such that i < k < j and 
rk % rk+1 G FC. 

Proof: We split the proof into two cases. 

(I) pj -A Pj+i G FQ is emptying. 
(Li) Suppose BPi D Bri, then BTi becomes empty (and emits an accepting mark) no 

later than Bv.. 
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(I.ii) Otherwise, there was no emptying transition up to rj, so we use Claim 3. Since 
Pj -4 Pj+i is emptying, BPj becomes empty. Therefore, each run from (SPj U 
BPj) D Brj is discontinued or safe, which means 5scc(Brj,a) n 5F(Brj,a) = 
0. That proves the existence of the safeing transition from rj (which we take 
according to our strategy). 

(II) pj % pj+i G Fc is safeing. 

(II.i) Suppose BPi D Bn then either Bri becomes empty sooner than pj -4 Pj+i or 
BPj 2 Brj and rj —> rj+\ is also safeing. 

(II.ii) Suppose that BPi Bn and no emptying transition from ri to rj (worst case). 
Then each run from (SPj U Bpj) D Brj is moved to safe set. Therefore also the 

transition rj -4 rj+i can be safeing (which is picked by our strategy). 

Claim 5: If p Ec5B f then for all i it holds that SPi D 5 r i . 
Proof: This follows from our strategy not picking safeing transition (emptying transition 
does not alter set S) if not necessary. We can only pick safeing transition on irr on the 
exact same position as present on TTP, for example position i. Utilizing Claim 3 and emptying 
transition not altering set S, the only alternation happens when safeing transition occur. In 
that case, suppose it happens for pi -4 pi+\ and ri -4 ri+\. Clearly, it holds that pi Ec5B fi 
(according to Claim 3). We start with NPi D Nn A SPi D Sri A (SPi U BPi) D Bn. Since 
safeing transition moves all runs from set B to set S, all runs from (SPiL)BPi) D Bri become 
safe together with SPi D Sn, leading to SPi+1 D Sri+1. • 

Claim 6: If p Ec5B r and JH % pi+\ G Fc, then pi+i Ec5B ri+\. 
Proof: Whenever the accepting transition is encountered, we have C = B; additionally from 
Fact 2 we have S U C = N (1 P. In this particular case, for Pii+1 it holds that CPi+1 = BPi+1 

and thus SPi+1 U CPi+1 = SPi+1 U BPi+1 = NPi+1 n P. From Fact 1 and p Ec5B r we 
inductively have NPi+1 D Nri+1, therefore NPi+1 (1 P D Nn+l n P. From definition, for ri+\ 
it certainly holds that Nn+1 f l P 3 C V i + 1 3 Bri+1. Putting everything together, we have 
(SPi+1 U Bpi+1) D Bn+1, and thanks to Claim 5 SPi+1 D Sn+1. • 
The validity of Claims 3, 4 and 6 concludes the proof, together with Claim 5 ensuring 
existence of transitions. • 

4.3 Early Simulations for T G B A 

Due to the fact that the result of the product construction A n B of two (TG)BAs, is also 
a T G B A , we need to define early and early+1 simulation for T G B A s . 

Definition 5. Consider TGBA A with acceptance Acc = lnf(0) A . . . A Inf(n). Next, 
suppose two traces TTp = powopi... and 7rq = qow^qi... of the automaton A. We say that 
irp ^e+i 7Tq if the following holds: 

VO < m < n: Vi < j: (pi ^ pi+i G Fm A pj pj+i G Fm) =^ 

=^ 3i < k < j: rk ^ rk+i G Fm. 
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Similarly, for early simulation, irp -<e irq if: 

VO < m < n: Vi < j: ((pi ^ pi+1 G Fm V i = —1) A pj —£ pj+1 G Fm) => 

=>• 3i < k < j: rk ^ rk+i G Fm. 

4.4 Early termination in Kofola 

This section provides observations that can be used within K O F O L A for an efficient inclusion 
and emptiness checking. 

In this section, we assume a T G B A ATGBA = (Q, S, I, F, p, Ace) over E such that F = 
{ 0 , . . . , k — 1}. The fact that there is a transition t such that p{t) = i (i.e., accepting) for 
some selected color 0 < i < k — I o n the path over u from state p to state q, is denoted by 
p •w q. By L(p) we denote the set of w-words accepted from state p and L(p)1, moreover, 

adds a restriction to F = {i} (intuitively simplifying the acceptance condition of ATGBA to 
Acc = Inf(i)). 

Firstly, we begin with the observations that help in reporting counterexamples with
out fully constructing them. Then, additional observations are introduced to reduce the 
explored state space (which is particularly useful when inclusion holds). 

4.4.1 Early counterexample reporting 

The first observation is that whenever we reach the state q from the state p over some 
u G E* such that p ^ e +i q and there were at least two accepting transitions between them, 
the early+1 simulation ensures infinite generating of accepting transitions from q, so we 
can decide the language of the automaton as nonempty at this moment. For T G B A s , it 
means seeing at least two accepting transitions for each color 0 < i < k — 1. 

Theorem 2. / / TGBA A has Acc = Inf(O) A . . . A Inf(k - 1) then it holds that 

( V 0 < i < k-l:p~*~*qAp^e+i q) =^ L(pf ^ 0. 

Lemma 4. Op -w^w q Ap ^ e +i q) = ^ G Lip)1 

Proof. In this proof we use the notation TTX(U) representing the finite trace from the state 
x when reading u G E*. We also use TT^(U) to denote the infinite trace from state x over 
uu G E w . 
Suppose a finite trace TTP(U) = po —>• p i —>• . . . —>• pi, where po = p,p% = q, and a finite 
trace 7Tq(u) = qo —> q\ —> ... —> qi, where qo = q. The existence of 7rq is given by the fact 
that the strategy function exists, from Definition 4. Let us say, that accepting transitions 
are pj —>• Pj+i and pm —>• pm+i where 0 < j < m < i. Since p ^ e +i q, the trace 7rq must 
see the accepting transition in position k such that j < k < m. That means that also the 
transition qk —>• (/fc+i is accepting. Wi th trace 7Tq (u) = qo —>• q\... —>• qi... being the suffix 
of trace -K^ (U) = po —> p\ • • • —> qo —> Qi —> • • • —> Qi —> • • •, the exact same transition is 
accepting on trace i^{u). Now we have that the position of pj —>• Pj+i on trace 7Tp (u) is j, 
the position of pm —>• pm+i on 7rp°(u) is m, position of qk —> qk+i on iTp(u) is i + k and fc on 
7Tg (u). Clearly, it holds that 
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In other words, for accepting transitions on position m and i + k on trace ir^ (u) there has 
to be some accepting transition qn —>• gn+i on 7r^ (it), therefore also qn —>• gn+i on position 
i + n on 7Tp (it), such that 

Such generation will continue infinitely, which concludes Lemma 4. Theorem 2 is the direct 
consequence of Lemma 4. • 

The next observation is similar to the one in Theorem 2, but for early simulation it is 
sufficient to see only one accepting transition. 

Theorem 3. (VO < i < k - 1: p A q Ap <e q) = ^ L{jp) ̂  0 

Lemma 5. (p A g A p -<e q) =>• G Lip)1 

Proof. The proof would be carried out in a way similar to the proof of Lemma 4. Intu
itively, early simulation ensures existence of the accepting transition on the path from p 
to q within the trace irp implies the accepting transition on the path from q within the 
trace 7rq. That, however, creates a second accepting transition on the trace TTP without 
a corresponding accepting transition on the trace irq. Early simulation ensures that there 
is another accepting transition on irq, which also implies another accepting transition on 
lip. This happens infinitely often, which proves Lemma 5. The validity of Lemma 5 proves 
Theorem 5. • 

Now we would like to extend such an approach to K O F O L A ' S macrostates, making use 
of the partial macrostates included in them. Therefore, we have to consider Definition 5 
provided for T G B A . 

Theorem 4. Consider macrostates p = (AQ,...,An) and q = (AQ,...,An) such that 
A\ ^ e +i A\ for each 0 < i < n. Then the following holds: 

p <e+i q. 

Lemma 6. There is a strategy function 5t such that TTP ^ e +i St(qo,7Tp) for each trace TTP 

starting in po. 

Proof. We define the strategy function St with respect to partial strategy functions whose 
existence is given by the early+1 relation between partial macrostates. More specifically, 
function Si for each pair Av

i,A\. The strategy St is then defined as follows: 

8t(qo,TTP) = Qo ^ Qi ^ • • •, 

such that 
S(qi,(pi,Wi,pi+1)) = q i ^ \ qi+i, 

where 
= (S0(A$, (Ap

0%wt,A%+1)),5n(A%, (A%,Wi,Ap

n

i+1))). 

The sequence of j - t h macrostate components, where 0 < j < n, creates a subtrace, for 
which the Definition 1 (for early+1) holds for F = p _ 1 ( j ) . A l l n such subtraces create 
one trace of macrostates. Therefore, for each 0 < j < n Definition 1 of early+1 simulation 
holds, where Fj = p _ 1 ( j ) . That is exactly Definition 5. This proves validity of Lemma 6, 
which proves Theorem 4. 

• 
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[621 | 3 + 4 + 8 | 3 + 4,3 + 4 | 

[626 | 3 + 4 + 8 | 3 + 4,3 + 4] 

b 
[6 | 8J 0.0) 

Figure 4.2: Fragment of the product automaton A n Bcompi with ^4cc = Inf(Qi) A Inf(Qi) 
demonstrates the effect of an optimization that uses Theorem 3 and Theorem 4, where 
p = (621 | 3 + 4 + 8 | 3 + 4, 3 + 4) and q = (621 | 8 | 0, 0). Each of them being the product 
macrostate of the form (x \ N \ C,B) such that x £ QA, N C QB and C, B being sets from 
the MH construction (with elements belonging to the same set presented as sums). Then, 
the exploration of the red part can be omitted completely and the algorithm can terminate 
with stating nonemptiness. 

Theorem 5. Consider macrostates p = (AQ, . . . , An) and q = (AQ, . . . , An) such that A\ <e 

Af for each 0 < i < n. Then the following holds: 

P <e q-

Lemma 7. There is a strategy function 5t such that irp <e 5t(qo,7rp) for each trace TTP 

starting in po. 

Proof. The proof would be exactly like the proof of Lemma 6, leveraging the existence of 
strategy functions for partial macrostates. • 

Theorems 3, 5 that reduce state space in practice can be seen in Figure 4.2. To finish this 
section, we point out that since early and early+1 simulations under-approximate language 
inclusion [8], if for two states L(p) C L(q) and it was already decided that L(q) = 0 we can 
conclude L(p) = 0 without further exploration (which we utilize in Algorithm 3). 

4.4.2 Reducing state space 

Another optimization in terms of the early termination of inclusion (emptiness) check in
cludes the direct simulation relation between the states of automaton A and automaton B. 
Intuitively, we want to prove that as soon as a product macrostate of A n B contains the 
state p from A and the state q from B such that L(p) C L(q), there is no need to explore 
further from this macrostate, as it cannot produce any counterexample. 

28 



Theorem 6. Consider the product macrostate p = (PA,PC) such that pc = (N, PQ, . . . , Pi) 
is a KOFOLA macrostate. Then we have 

(3qeN:qeQBA L{pA) C L(q)) L(p) = 0. 

Proof. Suppose q € N, if it holds that C L(g), it means that g accepts every w-word 
PA does. Therefore, if there is an accepting trace from PA over u G there exists one from 
q too, meaning it 0 L(pc) (state of the complement cannot accept word that is accepted in 
the original automaton) which implies u 0 L(p). The case when there is a non-accepting 
trace from PA over u G S w trivially leads to u 0 L(p). Since a trace from PA of any kind 
leads to non-acceptance, L(p) = 0, which proves Theorem 6. • 

Next, we present the reasoning for the special relations that can make the emptiness 
check more efficient. 

Definition 6. A relation ^GFEE is good for the early emptiness check (GFEE) if: 

P ^GFEE q (Pi A Pi+i G F =4> 3j < i: qj 4- qj+1 G F). 

Theorem 7. Let i be an initial state of BA A. Then we have the following. 

L(i) / 0 => 3m : -<3p, q G Q and p,q G 7Tj: g ^GFEE pAp-^q (4.6) 

Proof. For the sake of contradiction suppose that L(i ) 7̂  0 and that V7Tj-3p, q £ Q and p, g G 
TTJ • q ^=GFEE p Ap ^ q. In this proof, we will show that this statement necessarily leads to 
existence of a trace that satisfies the right-hand side of the implication 4.6, which is clearly 
a contradiction. Firstly, let us label each such trace (of the potentially infinite number of 
traces) as TTX for x G N. Secondly, for each trace, there must exist a first pair of states 
Px 1 qx such that px, Qx G Tii and qx ^GFEE PX A px qx. For that purpose, we define the 
mapping First: i ^ Q x N x Q x N . For trace TT it returns First(7r) = (p + i,q + j) such 
that j is the minimum position for each r, s G Q on the trace 7r where r EGFBB s A s ^ r , 
We often refer to i or j as Pos(p) or Pos(q) and only use Firsts) = (p, q). We also define 
a mapping Prefix: TT X N 1—>• Q N that returns a prefix of the trace TT that forms a string of 
states with the length specified by the second argument. 
Claim 1: For a trace 7r z with First(7rx) = (px + i,qx+ j) there exists another trace 7Ty such 
that Prefix(TTx, Pos(px)) = Prefix(ity, Pos(px)). 
Proof: That is implied by the fact that from px we need to see an accepting mark sooner 
that we do on the trace TTX (because qx ^di Px), therefore the need for the other trace 7Ty. 
The existence of such a trace with the equality of the corresponding prefixes is trivial. • 

In the subsequent claims, we will show that existence of accepting trace irx from Claim 1 
necessarily leads to generating an accepting trace 7Ti such that ~<3p, q G Q and p, q G 7Ti • 
q ^=GFEE P A p q. In other words, it cannot generate traces TTJ such that 3p, q G 
Q and p, q G TTJ • q ^GFEE pAp^q infinitely often. Note that this trace can already exist: 
we only prove that it always exists. We also add the definition of function Acc: TTXQXNH-
N returning position of the n-th accepting mark from qx on the accepting trace we start 
with, on another trace from certain state. 
Claim 2: Consider the traces irx and 7Ty from Claim 1 and let Firstly) = (py + g,qy + h). 
It holds that Pos(px) < Pos(qy) on trace 7ry. 
Proof: Suppose Pos(px) > Pos(qy) holds, from Prefix (TT x , Pos(px)) = Prefix (7r„, Pos(px)) 
it follows that First(irx) = (py,qy), which contradicts First(7rx) = (px,qx). I 
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Claim 3: Consider the traces irx and iry from Claim 2. It holds that if there is a state r 
with an outgoing accepting transition on the trace TTX such that r px, then the trace 7ry 

contains the same prefix Prefix(7rx, Pos{r) + 1) (here we overload the function Pos, as it is 
contextually evident what we mean). 
Proof: That is implied by the fact that Prefix (TTx, Pos(px)) = Prefix (7ry, Pos(px)), which is 
longer than or equal to Prefix(7rx, Pos{r) + 1). • 

Claim 4: Consider the traces TTX and 7ry from Claim 2. It holds that Acc(7rx,px,i) > 
Acc(TTy,px,i). 
Proof: The Acc(7rx,px,i) > Acc(7ry,px,i) is given by the fact that \ px,qx \ > 1 (the length 
of path from px to qx) and Acc(7ry,px,i) < Acc(7rx,px,i)—\px,qx\ < Acc(7rx,px,i) (caused 
by ^GFEE)- • 

Claim 5: Consider the traces irx and iry from Claim 1. If a path from px to qy contains 
k G N accepting marks on the trace 7ry, it holds that ACC(TTx, qx, k + 1) > Acc(7Ty, qy, k + 1). 
Proof: Relation ^GFEE gives us ACC(TTx, qx,i) > Acc(7ry,px,i) for i > k + 1, resulting in 
Acc(7rx,px,i) > ACC(TTx, qx,i) > Acc(7ry,px,i). From Pos(px) < Pos(qy) on 7ry and the fact 
that there is only k accepting marks between px and qy on 7ry, we have Acc(iry, qy,k + l) = 
Acc(iry,px, k + 1) — (Pos(qy) — Pos(px)), forming the inequality 

Acc(irx,px, k + 1) > Acc(irx,qx, k + 1) > Acc{ny,px,k + 1) > Acc{-Ky,qy,k + 1).B 

Corollary 1. According to Claim 5 from TTx, inductively there is a point where a trace 7rm 

is generated such that Acc(irm, qm, k + 1) < 0, which means pm-i Pm 

Corollary 2. From Claim 3 and Corollary 1 it holds that traces 7 r m , . . . , 7 r m i suc/i i/iai 
Acc(7rm, qm, fc + 2) > • • • > 0 > Acc(7rmi, qmi, k + 2) share the same prefix with the accepting 
mark. 

Inductively applying Corollary 2 at most | Q \ times, we obtain a trace 7TmQ 
such that it 

contains Prefix (irm, Pos(rm) + l), Prefix (irml, Pos(rml) + l),..., Prefix (irmQ, Pos(rmQ) + l). 
Each prefix has the property of not containing any First(pmi), and it contains an accepting 
mark. We thus certainly have a trace that reaches state t and after at most | Q \ transitions 
again t while seeing an accepting state. We give the desired trace, proving Theorem 7. • 

A simple example showing the reduction of the state space using Theorem 7 with <di 
being ^GFEE is shown in Figure 4.3. 

Proposition 2. Direct simulation and early simulation -<e are ^GFEE-

Corollary 3. Let i be an initial state of TGBA A, then: 

L(i) / 0 =4> 3in • -.3p, q G Q and p,q G 7Tj: q ^GFEE p/\p~> q. 

Proof. Proof is given by the proof of Theorem 7, applying the same reasoning successively 
for each color c G T. • 
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Figure 4.3: This figure shows exploring given B A A over a, b for emptiness check when uti
lizing Theorem 7. The orange transitions with orange numbers represent the DFS traversal 
and its order. And because 2 0 and 0 2, we do not explore the red area from state 2. 

Algorithm 2 Merge SCO 
1: Function mergeSCCaccMarks(iist): 
2: cond 4- 0; 
3: do 
4: (u,C)<-SCCs.pop(); 
5: if (not First(u)) or u is not Root then cond <— cond U C; > To avoid acc. mark 

outside the SCC 
6: if cond = r then empty = false;decided = irwe;return true; 
7: while (w.dfsnum > dst.dfsnum); 
8: SCCs.push((w, cond)): 
9: return false; 

4.5 Inclusion check 

For the algorithm that orchestrates the emptiness check for our inclusion, we chose to the 
best of our knowledge the best state-of-the-art algorithm for the emptiness check of the 
T G B A when it comes to number of generated states. The algorithm introduced by Gaiser 
and Schwoon [25] builds on the standard Tarjan's algorithm [37] to search strongly con
nected components, which is also well suited for on-the-fly checking. We provide an adap
tation of this algorithm using our optimizations from previous sections. This algorithm is 
an amendment of Couvreur's algorithm [14], which is, to the best of our knowledge, imple
mented in S P O T . There also exists an algorithm for the generic acceptance condition [3] 
(also implemented in S P O T for some cases) that we do not use since it works with the SCCs 
being found completely, which is not suitable for our goal. If edited to work on-the-fly, so 
far no significant advantage has been found over the algorithm from [14]. 

The standard emptiness check algorithm is shown in Algorithms 2 and 3 without the 
lines inside the colored boxes. The lines in the orange boxes correspond to theorems in 
Subsection 4.4.1 and the green boxes correspond to Theorem 7. Theorem 6 is trivially 
implemented within the computation of the successors (necessary precomputation of direct 
simulation on a disjoint union of automata A and B [13]). The function isEmpty takes 
two arguments, a state and the set of accepting marks incoming to this state. We use 
the function post to obtain successors together with accepting marks on the incoming 
transitions. 
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(a) State q is not explored due to q <e p. (b) The search continues as indicated by the 
The state between p and q stores the state q numbers on the edges, eventually finding the 
being pruned. accepting lasso. 

Figure 4.4: Example of a wrong guess to prune a state when checking T G B A with Acc = 
lnf(0) A/n/(0)-

4.5.1 Plugging relation ^GFEE 

In this section we provide the intuition of adjusting the Algorithm in [25] so that Theorem 7 
can be applied. The idea behind it is to only search for the trace from Theorem 4.6, therefore 
each time we encounter states p, q on the searchpath [25] such that p q and q EGFEE P, 
we do not explore this state q. Note that we use early simulation as an instance of ^GFEE 

simulation. However, each state between such two states needs to have the information 
about the state q and the exploration from q being cut off; therefore, if some of the states 
between p and q is encountered again, exploration is "redirected" to the state that was cut 
off. Intuitively, this can be done, as we surely know that between p and q there was no 
accepting mark; if there was a cycle containing the accepting mark, the pruned state would 
have been explored already. 

Proposition 3. Algorithm 3 is correct. 

Figure 4.4 shows the situation when the guess of no need to explore the state q still 
leads to correctly finding the accepting lasso. To provide more details, after it is decided 
that q <e p (green part in Line 15 of Algorithm 3), the state between p and q stores 
the information about q being cut off. The search then continues with a witnessing lasso 
containing the accepting mark 0 , which means the existence of a path that violates p 
1 Ap ^ e g. Therefore, it is allowed to jump to q and continue the exploration from there. 

The situation where such a guess actually helped is provided in Figure 1.3, although 
using a stronger direct simulation. 
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Algorithm 3 T G B A emptiness check 
Input: TGBA A = (Q, 5,I, T, p, Ace) 
Output: true/false 
Global: empty = true, decided = false, emptyL = 0 C Q , U = —1, index = 0, SCCs 
= stackQ, tarjanStack = stackQ 
Function emptinessCheck(A): 

foreach qi E I 
if qi G" Qemp then 

isEmpty(<7/,0); 
return empty: 

Function isEmpty(q, accMarks): 
if Bp on searchpath : (p ~» q Ap ̂ e q) V (p q Ap ;<e+i q) then 

• • • 
empty = false; decided = true; 
return; 

q.dfsnum <— index; index+-1-; 
SCCs.push((q, accMarks)); tarjanStack.push(q); 
foreach (dst, marks) G post(q) do 

if dst G \emptyL] then continue; > iff 3r G emptyL 

else if dsí.dfsnum = U and —i3r £ Q on searchpath: dst -<e r then 
isEmpty((ist, marks); 
if decided then return; 

else if dsi.dfsnum ̂  U then 
if dst G tarjanStack and mergeSCCaccMarks(cfo£) then return; 

foreach cutoff 6 jumpToCutOffs[<is£] do 

if cutoff.dfsnum = U and -Br G Q on searchpath: cutoff <e r then 

isEmpty (cutoff, 0); 

if decided then return; 
else if cutoff G tarjanStack and mergeSCCaccMarks(cutoff) then return; 

else if dst £ tarjanStack and mergeSCCaccMarks (dst) then return; 

if SCCs.top() = (q,X) then 
SCCs.pop() 
do 

u <r- tarjanStack.pop(): 
emptyL. add(w): 

while (u ̂  q); 
return; 
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Chapter 5 

HyperLTL model checking as part 
of Kofola 

Framework K O F O L A [26] is a command-line tool implemented in C+-1- on top of the S P O T l i 
brary [21] providing mainly complementation of Biichi automata. S P O T is used for common 
automata manipulations such as reading input automaton, providing internal representation 
for automata, etc. The intriguing operations like inclusion and emptiness check are, with 
the goal of outperforming the state-of-the-art approaches in some metrics, implemented as 
the result of this thesis. 

The implementation relevant to this thesis (extending K O F O L A ) can be found in the 
public repository1, which is a fork from repository 2. In the spirit of K O F O L A ' s modularity, 
the HyperLTL model checking is also implemented in a modular way. More specifically, the 
emptiness check can be given any algorithm implementing desired methods, with getting 
successors being the most important one. This is convenient because we use the emptiness 
check in two different cases, (i) inclusion and (ii) emptiness of the automaton resulting 
from HyperLTL model checking, both on-the-fly. Moreover, it provides the potential for 
a straightforward extension when supporting new w-automata types. 

At first sight, the most easily recognizable difference compared to A U T O H Y P E R is the 
on-the-fly emptiness check when the formula is of the type 3* : ip. In addition, the inclusion 
that S P O T (used by A U T O H Y P E R ) uses first complements the automaton B and then makes 
the on-the-fly product (if possible). Our solution also makes use of K O F O L A being well-
suited for an on-the-fly construction of the complement. Then we utilize the subsumptions 
introduced in the previous chapter. That can lead to a significant state-space reduction 
when on-the-fly emptiness check is performed. 

Apart from the previous optimizations, comparing to theoretic approach for HyperLTL 
model checking, we also use the fact that a formula of the type (3*V*)*</? can be transformed 
into -i(V*3*)*-«£>, which in practice makes model checking much faster. Next, the product 
automaton for the sequence of existence quantifiers is performed at once. Nevertheless, such 
observations are also implemented in A U T O H Y P E R , negating the possibility of a significant 
advantage. 

1 https: / / github. com / Ondrej Alexaj /kofola / tree / inclusion-test 
2https: / / github.com/VeriFIT/kofola/tree/devel 
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HOA: vl 

States: 4 

Start: 3 

AP: 3 "h_0" "1_0" "o_0" 

acc-name: a l l 

Acceptance: 0 t 

properties: state-labels explicit-labels 

—BODY— 

State: [!0&!1&!2] 2 

3 

State: [!0&!1&!2] 3 

4 

State: [2&!0&!1] 4 

5 
State: [2&!0&!1] 5 

2 

—END— 

Figure 5.1: Behavior of a system in the HOA format. Each state of the system is specified be
tween —BODY— and —END— lines, where the conjunction in the square brackets expresses 
which APs hold in the specific state. To the right there is the state specifier. Under the 
state there is a line with the successor states. 

5.1 Input format 

Our formats differ from those used in A U T O H Y P E R . We only support a specific input format 
for the specification of a system behavior, so the necessity for parsing different input formats 
is eliminated. 

5.1.1 System 

As input format for system behavior, we decided to use the HOA [19] format so that it can 
be easily parsed and stored by S P O T as a Kripke structure. A n example of such an input 
file is shown in Figure 5.1. 

5.1.2 H y p e r L T L formula 

For L T L body of the HyperLTL formula we support the exact format that S P O T sup
ports. However, each atomic proposition (AP) is of the format {ap_sys}_{trace_var]-
with ap_sys standing for the atomic proposition used within the system and trace_var 
stands for the quantified trace. The formula with quantifiers is then generated by the 
following syntax: 

ip ::= ((forall trace_var.)* (exists trace_var. )*)* LTL 

trace_var ::= string 

A n example of the GNI property for the system in Figure 5.1 is the following: 

forall A. forall B. exists C. 

(G ("{h_0}_{A}" <-> "{h_0}_{C}")) & (G("{1_0}_{B}" <-> "{1_0>_{C}")) 

& (G("{o_0}_{B}" <-> "{o_0}_{C}")) 
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A k A , 

"•tr i "n—k 

Parsing 
BALTL, quantifiers 

HyperLTL MC 
K-i,... , K n 

Parsing 
K-i, • • • ,K.n 

HyperLTL MC 

—params- p 5 

p can contain any of the 
following state space 
reductions: 
• early_sim=yes; 
• early_plus_sim=yes 
• dir_sim=yes; 
• gfee=yes; 

I Inclusion 

exist_projection_successors--^ r 

\ compl_successors 

Complement 

' prod_successors 

Figure 5.2: Overview of the architecture of HyperLTL model checking within K O F O L A , 

where dashed arrows represents only usage of the given component. Solid arrows mean 
handing over control to the other component. The orange frame summarizes the command 
line arguments regarding inclusion; none are used by default. Some arrows are colored 
differently to differentiate Emptiness in different uses. 

5.2 Usage 

The architecture of the HyperLTL model checking within K O F O L A is depicted in Figure 5.2 
together with command line arguments, which can be used in the following way: 

kofola —hyperltl_mc ip fC\ ... fCn —params=
,

p
) 

where if more Kripke structures are provided, then /Cj 3 corresponds to the i-th quantified 
trace in the HyperLTL formula ip for 1 < i < n. 

5.2.1 Inclusion checker 

One can use K O F O L A as an inclusion checker in the following way: 

kofola —inclusion buchi_A.hoa buchi_B.hoa —params='p' 

with both Biichi automata in the HO A [19] format. 

3K,i represents a file containing the i-th Kripke structure, and ip represents a file containing the HyperLTL 
formula. 
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Chapter 6 

Experimental evaluation 

Firstly, we want to evaluate our inclusion check in terms of the generated state space 
against S P O T [21] and show the effect of the proposed optimizations. Next, we compare our 
HyperLTL model checker with the state-of-the-art tool A U T O H Y P E R [4] together with other 
relevant inclusion checkers in terms of execution time. A l l experiments were performed on 
a Debian G N U / L i n u x 12 (bookworm) system with 32 G i B R A M and an Intel(R) 2.67GHz 
Xeon(R) X5650 C P U . 

6.1 Kofola vs Spot 

The key metric that we wanted to outperform S P O T [21] in is the number of visited 
states. More specifically, we incremented a counter every time a state was put on the 
tarjanStack. S P O T ' S inclusion checking approach is directly comparable to ours, since it 

Table 6.1: Statistics for our experiments. The table shows a comparison of the state space 
generated by solving the inclusion. That is, it shows how individual optimizations behave 
and compares the approach utilizing all proposed optimizations ( K O F O L A M A X ) to S P O T . 
The K O F O L A M A X N O D I R E C T then refers to not employing direct simulation optimization, 
and the K O F O L A A N D G F E E refers to only utilizing Theorem 7. K O F O L A B A S I C is then only 
the implementation of Algorithm from [25]. The column solved contains values separated 
by a colon, with the following meaning (number of solved when inclusion is violated 
: number of solved when inclusion holds), where the number of cases where inclusion 
does not hold is 762 and 825 where it holds. Values in the columns mean and median are 
separated by the colon with the following meaning (all test cases : inclusion violated 
: inclusion holds). The column "wins"/"losses" contains a number of cases where 
K O F O L A M A X produced strictly less/more states, where (number) means how many times 
it was due to the other's approach timeout. The column TOs (timeouts) shows how many 
times the approach could not decide the inclusion within 7 min. 

tool solved mean median wi ns losses TOs 

K O F O L A B A S I C 720 774 540 : 51 : 995 31 : 13 : 99.5 620 (0) H ( H ) 93 
K O F O L A A N D E A R L Y ( + 1 ) 719 768 162 : 49 : 268 29 : 13 73 637 (8) 23 (20) 100 
K O F O L A A N D D I R E C T 700 780 379 : 48 : 676 14 : 13 : 21.5 120 (0) 5(5) 107 
K O F O L A A N D G F E E 718 775 507 : 50 : 932 31 : 13 96 769 (5) 24 (24) 94 
K O F O L A M A X N O D I R E C T 718 768 160 : 48 : 264 28 : 13 73 498 (8) 20 (19) 101 
K O F O L A M A X 700 775 89 46 : 127 14 : 13 17 - 112 
S P O T 744 819 21,478 : 21,896 : 21,098 41 : 40.5 : 41 988 (1) 495 (89) 24 
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10 1 10 3 10 5 10 1 10 3 1 0 s 

Kofola MAX no direct Kofola and GFEE 

Figure 6.1: The scatter plots compare the state space generated by implementation of 
algorithm from [25] provided by Gaiser & Schwoon , referred to as Kofola basic, against its 
extensions by various optimizations proposed in this work. The dashed lines represent the 
timeouts, which was set to 7 min. Green marks indicate instances where inclusion holds, 
and red marks otherwise. As the axes are logarihtmic, cases with 0 generated states are 
represented as 1 (10°). 

uses a similar orchestrating algorithm [15] (based on Tarjan's algorithm [37]). More specif
ically, we compared our approach with S P O T ' S command line tool autf i l t , which provides 
the —included-in parameter for inclusion checking. In addition to comparison, autf i l t 

was used to test the correctness of our inclusion checking implementation. 

6.1.1 Dataset 

To observe the effect of the proposed optimizations, we tested K O F O L A in the scenar
ios where the automaton B in the question of A C B contains deterministic accepting 
components (DACs) or inherently weak accepting components. More specifically, we used 
automata used in [8] from [32] and benchmarks originating from HyperLTL model check
ing [33]. Both repositories contain pairs of automata (suffix A.hoa and B.hoa) with the 
mentioned properties. And since both automata in such a pair have the same alphabet, to 

? ? ? ? 
obtain more test cases, all four combinations (i.e. A C B, A C A, B C B, and B C. A) 
were tried and kept those whose corresponding complementation by K O F O L A produced a 
T G B A . The total number of test cases is 1,587. The mean number of automata states from 
repositories is 891, the median is 14 states, the maximum number of states is 88,304, and 
the minimum is 1. 

6.1.2 Results 

The results shown in Figure 6.1 show a great (and expected) impact of precomputation 
of the direct simulation between the states of automata A and B. The huge amount of 

38 



10 1 10 3 10 5 10 7 

Kofola basic 
10 1 10 3 10 5 10 7 

Kofola MAX 

To1 io3 io5
 10 7 

Kofola MAX no direct 

Figure 6.2: Here we provide comparison of the explored state space by S P O T [21] against 
our approaches. The dashed lines represent the timeouts, which was set to 7 min. Green 
marks indicate instances, where the inclusion holds, red marks otherwise. As the axes are 
logarihtmic, cases with 0 generated states are represented as 1 (10°). 

instances where we produced zero states is also not surprising, since if the language inclusion 
holds between the initial states of the automata A,B (implied by the direct simulation), 
then it holds between the automata as well (which is expected since many test cases are 
of type where A = B). We can state that our optimizations seem to significantly reduce 
the state space when the inclusion holds; the opposite case is only slightly better when 
utilizing our optimizations (see also Table 6.1). In Figure 6.1 it may seem that there is 
not much of an impact of the optimization GFEE (based on Theorem 7, green parts in 
Algorithm 3), but Table 6.1 shows some improvement especially when the inclusion holds 
(as expected). Figure 6.2 provides a comparison of our approach with S P O T . We can see 
that we improved the cases where the basic implementation of the emptiness check algorithm 
loses against S P O T the most - when the inclusion holds. Although the explored state space 
size is in our favor, we timed out visibly more than S P O T . Detailed statistical evaluation for 
summarization is provided in Table 6.1. It shows that we are able to significantly (in almost 
40% of the benchmarks) reduce the state space explored by the basic implementation of 
the algorithm from Gaiser & Schwoon [25], moreover in more than 60% of the test cases we 
generated a smaller state space than S P O T . Although our maximally optimized approach 
shows significantly better numbers, we have to bear in mind that those are the numbers 
taken when the tool did not time out. From the TOs column in Table 6.1 it is clear that 
our most optimized procedure timed out in 88 more cases than S P O T . If we compare the 
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Kofola (ms) Kofola (ms) 

Figure 6.3: Comparison of execution times for K O F O L A ' S inclusion checking (all optimiza
tions used) used as a backend checker for A U T O H Y P E R VS other state-of-the-art tools. The 
dashed lines represent timeout, which was set to 10 minutes. 

cases where both tools successfully solved inclusion, we obtain median value 3 7 for S P O T 

and 14 for K O F O L A M A X , and mean value 3340 for S P O T and 89 for K O F O L A M A X , 
which is still significantly better. Here, we have to point out that there is an undeniable 
effect of the K O F O L A ' S complementation. Next, in Table 6.1 we can observe that in terms 
of solved problems, we have slightly better success rate (no timeout) in cases where the 
inclusion holds, but still it is roughly only 9 4 % versus the 9 9 % success rate of S P O T . 

Lastly, we separately tested our procedure that utilizes all optimizations except for the 
precomputation of the direct simulation, since for large automata, only this operation itself 
causes timeout. This can be seen in both Figures 6.1 and 6.2 and also in a separate row in 
Table 6 .1 , referred to as K O F O L A M A X N O D I R E C T . We can conclude that although the 
number of timeouts decreased by 11 (compared to the maximally optimized approach), the 
mean of the generated state space is approximately twice as large. 

6.2 Kofola vs AutoHyper 

In Figure 6.3 we can see a comparison between inclusion checkers R A B I T [12], B A I T [18], 
F O R K L I F T [17], S P O T [21], and K O F O L A . More specifically, these are the execution times 
that the inclusion checkers spent when solving the HyperLTL model checking within A U 
T O H Y P E R [4] ( K O F O L A was also used by A U T O H Y P E R as a backend solver in order for 
the results to be fair), when solving the exact same 35 benchmarks as in [4] (actually it 
was 36, but in one case inclusion was not used). From the results in Figure 6.3 we can 

40 



Figure 6.4: The scatter plot compares the execution time of K O F O L A and A U T O H Y P E R 
(with S P O T as inclusion checker). Here, no mark lies on the dashed line, therefore there were 
no timeouts (10 minutes). In the left hand side plot K O F O L A with maximally optimized 
inclusion checking is tested and in the right hand side no optimizations are used. 

conclude that we highly outperform R A B I T , B A I T , and F O R K L I F T . However, there is a case 
where our tool timed out. This was due to the precomputation of direct simulation in our 
approach. When disabled, we again outperformed the tools. When we look at the plot 
compared to S P O T , we managed to beat it twice, which might be surprising given that our 
implementation is not optimized for this metric. 

In Figure 6.4 we provide a comparison of the time it takes to solve 36 instances also 
tested in [4]. We solved the model checking problem faster in 25 out of 36 test cases. 
As witnessed before, our inclusion checking is slower than the one implemented in S P O T , 
therefore, our win rate could be caused by the fact that we use S P O T ' S highly optimized 
internal representation for w-automata and their attributes. After using more optimized 
inclusion checking, the K O F O L A ' S model checking procedure tends to slow down (non-
optimized is faster in 27 out of 36 test gainst A U T O H Y P E R ) , which is expected 
unless their implementation is optimized as well. 

A U T O H Y P E R also served for checking correctness of our HyperLTL M C implementation. 
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Chapter 7 

Conclusion 

This thesis presents several optimizations regarding the language inclusion check on OJ-
automata (more specifically, we focus on T G B A ) , one of the most crucial operations used 
not only in HyperLTL model checking. To optimize this operation, we set our goal to reduce 
the generated state space. To do so, we came up with the relations between states of the 
automaton that leverage only the structure of the states themselves, without the need to 
know the entire automaton. We tried to come up with not only a reporting counterexample 
as early as we can, but also techniques to reduce state space when the resulting language 
is empty. 

As an inclusion checker, our tool is able to improve the existing algorithm in the gener
ated state space and report better results than the other similarly working state-of-the-art 
tools. Our procedure was able to outperform the reference tool in more than 60% bench
mark cases, and in almost 40% of the benchmarks, we were able to generate a smaller state 
space than the algorithm we used as a base for our inclusion check. Other relevant inclu
sion checking tools are shown to be slower on the inclusion problems from HyperLTL model 
checking than us. Finally, as HyperLTL model checker, we are also able to outperform the 
state-of-the-art push button tool in the execution time. 

7.1 Future work 

When it comes to the inclusion check introduced in this thesis, the implementation was not 
meant to be performance-optimized; therefore, there is plenty of room for improvement in 
this area. 

One of the future directions is definitely to extend Theorem 7, as we believe it has more 
to offer. As K O F O L A is planned to be able to output w-automata with generic acceptance 
condition as a result of complementation. Another way can be to come up with an opti
mized version of inclusion check for these generic automata. In addition, there are more 
partial complementation procedures implemented within K O F O L A , SO bringing up a similar 
subsumption relations as we worked with here is also a sensible continuation. It seems that 
inclusion is the right direction to take to improve HyperLTL model checking, since this 
operation is often encountered and is the source of interesting inclusion problems. 

42 



Bibliography 

[1] A L L R E D , J . D . and U L T E S N I T S C H E , U . A Simple and Optimal Complementation 
Algorithm for Büchi Automata. In: Proceedings of the 33rd Annual ACM/IEEE 
Symposium on Logic in Computer Science. New York, NY, USA: Association for 
Computing Machinery, 2018, p. 4 6 - 5 5 . LICS ' 18 . ISBN 9781450355834 . Available at: 
https://doi.org/10.1145/3209108.3209138. 

[2] A N D R E S , M . E. Quantitative Analysis of Information Leakage in Probabilistic and 
Nondeterministic Systems. 2011 . 

[3] B A I E R , C ; B L A H O U D E K , F.; D U R E T L U T Z , A.; K L E I N , J . ; M Ü L L E R , D . et al. Generic 
Emptiness Check for Fun and Profit. In: C H E N , Y.-F.; C H E N G , C.-H. and E S P A R Z A , 

J., ed. Automated Technology for Verification and Analysis. Cham: Springer 
International Publishing, 2019, p. 4 4 5 - 4 6 1 . ISBN 978-3-030-31784-3 . 

[4] B E U T N E R , R. and F I N K B E I N E R , B. AutoHyper: Explicit-State Model Checking for 
HyperLTL. 2023 . 

[5] B E U T N E R , R. and F I N K B E I N E R , B. Model Checking Omega-Regular Hyperproperties 
with AutoHyperQ. In: P I S K A C , R. and V O R O N K O V , A., ed. Proceedings of 24th 
International Conference on Logic for Programming, Artificial Intelligence and 
Reasoning. EasyChair, 2023 , vol. 94, p. 2 3 - 3 5 . EPiC Series in Computing. ISSN 
2398-7340. Available at: https://easychair.org/publications/paper/dlVW. 

[6] B L A H O U D E K , F.; H E I Z M A N N , M.; S C H E W E , S.; S T R E J C E K , J . and T S A I , M.-H. 

Complementing Semi-deterministic Büchi Automata. In: C H E C H I K , M . and R A S K I N , 

J.-F., ed. Tools and Algorithms for the Construction and Analysis of Systems. Berlin, 
Heidelberg: Springer Berlin Heidelberg, 2016, p. 7 7 0 - 7 8 7 . ISBN 978-3-662-49674-9 . 

[7] B Ü C H I , J . R. On a decision method in restricted second order arithmetic, Logic, 
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.). Stanford 
Univ. Press, Stanford, Calif, 1962. 

[8] C H E N , Y.-F.; H E I Z M A N N , M. ; L E N G Ä L , O.; L I , Y.; T S A I , M.-H. et al. Advanced 
automata-based algorithms for program termination checking. In: Proceedings of the 
39th ACM SIGPLAN Conference on Programming Language Design and 
Implementation. New York, NY, USA: Association for Computing Machinery, 2018, 
p. 1 3 5 - 1 5 0 . ISBN 9781450356985 . Available at: 
https://doi.org/10.1145/3192366.3192405. 

[9] C L A R K S O N , M . R.; F I N K B E I N E R , B.; K O L E I N I , M. ; M I C I N S K I , K . K . ; R A B E , M. N. 

et al. Temporal Logics for Hyperproperties. In: A B A D I , M . and K R E M E R , S., 

43 

https://doi.org/10.1145/3209108.3209138
https://easychair.org/publications/paper/dlVW
https://doi.org/10.1145/3192366.3192405


ed. Principles of Security and Trust. Berlin, Heidelberg: Springer Berlin Heidelberg, 
2014, p. 265-284. ISBN 978-3-642-54792-8. 

[10] C L A R K S O N , M . R. and S C H N E I D E R , F . B . Hyperproperties. In: 2008 21st IEEE 
Computer Security Foundations Symposium. 2008, p. 51-65. 

[11] C L E M E N T E , L . and M A Y R , R. Advanced Automata Minimization. CoRR, 2012, 
abs/1210.6624. Available at: http://arxiv.org/abs/1210.6624. 

[12] C L E M E N T E , L . and M A Y R , R. Efficient reduction of nondeterministic automata with 
application to language inclusion testing. CoRR, 2017, abs/1711.09946. Available at: 
http://arxiv.org/abs/1711.09946. 

[13] C L E M E N T E , L . and M A Y R , R. Efficient reduction of nondeterministic automata with 
application to language inclusion testing. CoRR, 2017, abs/1711.09946. Available at: 
http://arxiv.org/abs/1711.09946. 

[14] C O U V R E U R , J . - M . On-the-fly Verification of Linear Temporal Logic. In: W I N G , 
J . M . ; W O O D C O C K , J . and D A V I E S , J . , ed. FM'99 — Formal Methods. Berlin, 
Heidelberg: Springer Berlin Heidelberg, 1999, p. 253-271. ISBN 978-3-540-48119-5. 

[15] C O U V R E U R , J . - M . On-the-Fly Verification of Linear Temporal Logic. In:. September 
1999, p. 253-271. ISBN 978-3-540-66587-8. 

[16] D ' A R G E N I O , P. R.; B A R T H E , C ; B I E W E R , S.; F I N K B E I N E R , B . and H E R M A N N S , H . IS 
Your Software on Dope? In: Y A N G , H . , ed. Programming Languages and Systems. 
Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, p. 83-110. ISBN 
978-3-662-54434-1. 

[17] D O V E R I , K . ; G A N T Y , P. and M A Z Z O C C H I , N . FORQ-Based Language Inclusion 
Formal Testing. In: S H O H A M , S. and V I Z E L , Y . , ed. Computer Aided Verification. 
Cham: Springer International Publishing, 2022, p. 109-129. ISBN 978-3-031-13188-2. 

[18] D O V E R I , K . ; G A N T Y , P.; P A R O L I N I , F . and R A N Z A T O , F . Inclusion Testing of Büchi 
Automata Based on Well-Quasiorders. In: H A D D A D , S. and V A R A C C A , D., ed. 32nd 
International Conference on Concurrency Theory (CONCUR 2021). Dagstuhl, 
Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, vol. 203, 
p. 3:1-3:22. Leibniz International Proceedings in Informatics (LIPIcs). ISBN 
978-3-95977-203-7. Available at: 
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.C0NCUR.2021.3. 

[19] D U R E T L U T Z , A . ; B L A H O U D E K , F.; K R E T I N S K Y , J . ; S T R E J C E K , J . and K L E I N , J . 
The Hanoi Omega-Automata Format. February 2015. Available at: 
https: / / adl.github.io/hoaf/#authors. 

[20] D U R E T L U T Z , A . ; P O I T R E N A U D , D . and C O U V R E U R , J . - M . On-the-fly Emptiness 
Check of Transition-Based Streett Automata. In: L i u , Z. and R A V N , A . P., 
ed. Automated Technology for Verification and Analysis. Berlin, Heidelberg: Springer 
Berlin Heidelberg, 2009, p. 213-227. ISBN 978-3-642-04761-9. 

[21] D U R E T L U T Z , A . ; R E N A U L T , E. ; C O L A N G E , M . ; R E N K I N , F.; A I S S E , A . G . et al. 
From Spot 2.0 to Spot 2.10: What's New? In: Proceedings of the 34th International 

http://arxiv.org/abs/1210.6624
http://arxiv.org/abs/1711.09946
http://arxiv.org/abs/1711.09946
https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.C0NCUR.2021


Conference on Computer Aided Verification (CAV'22). Springer, August 2022, vol. 
13372, p. 174-187. Lecture Notes in Computer Science. 

[22] F I N K B E I N E R , B . Automata, Games, and Verification. Saarland University, 2015. 
Available at: https : //www.react.uni-Saarland.de/teaching/automata-games-
ver i f i ca t ion- 15/downloads/notes.pdf. 

[23] F I N K B E I N E R , B . Logics and Algorithms for Hyperproperties. ACM SIGLOG News. 
New York, N Y , USA: Association for Computing Machinery, jul 2023, vol. 10, no. 2, 
p. 4-23. Available at: https://doi.org/10.1145/3610392.3610394. 

[24] F I N K B E I N E R , B. ; R A B E , M . N . and S A N C H E Z , C. Algorithms for Model Checking 
HyperLTL and HyperCTL*. In: K R O E N I N G , D. and P Ä S Ä R E A N U , C. S., 
ed. Computer Aided Verification. Cham: Springer International Publishing, 2015, 
p. 30-48. ISBN 978-3-319-21690-4. 

[25] G A I S E R , A . and S C H W O O N , S. Comparison of Algorithms for Checking Emptiness on 
Buechi Automata. CoRR, 2009, abs/0910.3766. Available at: 
http: //arxiv.org/abs/0910.3766. 

[26] H A V L E N A , V . ; L E N G A L , O . ; L I , Y . ; S M A H L I K O V Ä , B . and T U R R I N I , A . Modular 
Mix-and-Match Complementation of Büchi Automata. In: S A N K A R A N A R A Y A N A N , S. 
and S H A R Y G I N A , N . , ed. Tools and Algorithms for the Construction and Analysis of 
Systems. Cham: Springer Nature Switzerland, 2023, p. 249-270. ISBN 
978-3-031-30823-9. Available at: https://doi.org/10.1007/978-3-031-30823-9_13. 

[27] H A V L E N A , V . ; L E N G Ä L , O . and S M A H L I K O V Ä , B . Sky Is Not the Limit. In: F I S M A N , 
D. and Rosu , G . , ed. Tools and Algorithms for the Construction and Analysis of 
Systems. Cham: Springer International Publishing, 2022, p. 118-136. ISBN 
978-3-030-99527-0. 

[28] Hsu, T. -H. ; S A N C H E Z , C. and B O N A K D A R P O U R , B . Bounded Model Checking for 
Hyperproperties. In: G R O O T E , J . F . and L A R S E N , K . G . , ed. Tools and Algorithms 
for the Construction and Analysis of Systems. Cham: Springer International 
Publishing, 2021, p. 94-112. ISBN 978-3-030-72016-2. 

[29] K A H L E R , D. and W I L K E , T. Complementation, Disambiguation, and 
Determinization of Büchi Automata Unified. In: A C E T O , L . ; D A M G Ä R D , I.; 
G O L D B E R G , L . A . ; H A L L D Ö R S S O N , M . M . ; I N G O L F S D O T T I R , A . et al., ed. Automata, 
Languages and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, 
p. 724-735. ISBN 978-3-540-70575-8. 

[30] K A U F F M A N , S.; H A V E L U N D , K . and F I S C H M E I S T E R , S. What can we monitor over 
unreliable channels? Lnternational Journal on Software Tools for Technology 
Transfer, Aug 2021, vol. 23, no. 4, p. 579-600. ISSN 1433-2787. Available at: 
https://doi.org/10.1007/sl0009-021-00625-z. 

[31] K U P F E R M A N , O . and V A R D I , M . Y . Weak alternating automata are not that weak. 
ACM Trans. Comput. Logic. New York, N Y , USA: Association for Computing 
Machinery, jul 2001, vol. 2, no. 3, p. 408-429. ISSN 1529-3785. Available at: 
https://doi.org/10.1145/377978.377993. 

45 

http://www.react.uni-Saarland.de/teaching/automata-games-
https://doi.org/10.1145/3610392.3610394
https://doi.org/10.1007/978-3-031-30823-9_13
https://doi.org/10.1007/sl0009-021-00625-z
https://doi.org/10.1145/377978.377993


[32] L E N G A L , O N D R E J . Automata-benchmarks h t tps : / /github.com/ondrik/automata-
benchmarks/tree/master/omega/advanced-automata-for-termination/hoa. 
GitHub, 2024. 

[33] L E N G A L , O N D R E J . Automata-benchmarks h t tps : 
/ / github.com/ondrik/automata-benchmarks/tree/master/omega/autohyper. 
GitHub, 2024. 

[34] M C C U L L O U G H , D. Noninterference and the composability of security properties. 
In: Proceedings. 1988 IEEE Symposium on Security and Privacy. 1988, p. 1 7 7 - 1 8 6 . 

[35] M I Y A N O , S. and H A Y A S H I , T . Alternating finite automata on w-words. Theoretical 
Computer Science, 1984, vol. 32, no. 3, p. 3 2 1 - 3 3 0 . ISSN 0304-3975 . Available at: 
https: //www. sciencedirect.com/science/axticle/pii/0304397584900495. 

[36] S A F R A , S. On the complexity of omega -automata. In: [Proceedings 1988] 29th 
Annual Symposium on Foundations of Computer Science. 1988, p. 3 1 9 - 3 2 7 . 

[37] T A R J A N , R. Depth-first search and linear graph algorithms. In: 12th Annual 
Symposium on Switching and Automata Theory (swat 1971). 1971, p. 1 1 4 - 1 2 1 . 

[38] VlSWANATHAN, M . Automata on Infinite Words. 2018 . Available at: 
https: / / courses.engr.illinois.edu/cs498mv/fa2018/wAutomata.pdf. 

46 

http://github.com/
http://sciencedirect.com/science/axticle/pii/0304397584900495
http://courses.engr.illinois.edu/cs498mv/fa2018/


Appendix A 

Contents of the included storage 
media 

Everything needed to create this text (electronic version is also included) can be found 
in the directory text_resources (.tex files, figures, . . . ) . The implementation of the 
tool K O F O L A can be found in the directory kofola, which contains a README.md with 
instructions on how to build and run an executable file. This thesis extends the function
ality of K O F O L A , therefore, the source codes of the whole tool are included; the actual 
work of this thesis is implemented in files in the src directory shown in Figure A . l (al
though necessary changes were also made in main.cpp, complement sync.{c, h}pp and 
abstract complement alg.jc,h}pp). 

"README.md" 

text_resources 

kofola 

"README.md" 

src 

"abstract_successor.{c, h}pp" 

"hyperltl_f ormula_processor.{c, h}pp" 

"hyperltl_mc.{c, h}pp" 

"inclusion_check.{c, h}pp" 

"emptiness_check.{c, h}pp" 

Figure A . l : Contents of the included storage media as a directory tree that also shows 
important files (these are marked with a "" to distinguish them from directories). 
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