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Abstract
Vehicle speed is one of the crucial variables needed to be known in real-time and with
high accuracy, to serve as input into vehicle dynamic control systems. Its direct mea-
surement in the vehicle is however cost ineffective. The idea is to use the measurements
from generally available on-board sensors and to consequently compute the vehicle speed.
Nevertheless, the measurements are highly influenced by process noises due to complexity
of motion of the vehicle. Therefore, an estimation algorithm with ability to deal with this
negative influence has to be developed. The estimation algorithm presented in this thesis
estimates longitudinal vehicle speed using measurements of four rotational wheel speeds,
longitudinal acceleration, motor torques, yaw rate and steering wheel angle. It was tested
against the numerous situations considered critical according to vehicle speed estimation,
such as rapid acceleration on road with low friction coefficient, emergency braking with
activation of ABS, or driving in the slope with wheels slipping, providing satisfactory
results.

Abstrakt
Rýchlosť vozidla je jednou z kľúčových stavových premenných, ktorej znalosť je potrebná
v reálnom čase a s vysokou presnosťou, aby mohla slúžiť ako vstupná veličina pre sys-
témy kontroly dynamiky vozidla. Jej priame meranie vo vozidle je však finančne náročné.
Riešením tohoto problému môže byť použitie meraní zo senzorov bežne dostupných na
palube vozidla a ich následný prepočet na rýchlosť vozidla. Tieto merania sú však veľmi
zaťažené procesným šumom, čo vyplýva z komplexnosti pohybu vozidla. Preto je nutné
vyvinúť algoritmus so schopnosťou vysporiadať sa s týmito negatívnymi vplyvmi. Algo-
ritmus prezentovaný v tejto práci odhaduje pozdĺžnu rýchlosť vozidla s použitím mer-
aní uhlových rýchlostí štyroch kolies, pozdĺžnej akcelerácie, momentov motora, rýchlosti
otáčania okolo zvislej osi a natočenia volantu. Algoritmus bol testovaný na veľkom počte
situácií považovaných za kritické na odhad rýchlosti vozidla, ako napríklad prudká akcel-
erácia na vozovke s nízkym koeficientom trenia, núdzové brzdenie s aktiváciou ABS, či
jazda v kopci s kolesami v preklze, prinášajúc uspokojujúce výsledky.
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1. INTRODUCTION

1. Introduction
1.1. Background & Motivation
In recent time went the automotive industry through meaningful transformation accom-
panied by considerable amount of innovations in every direction. As times have changed
and vehicles have become more the network of sophisticated computational systems, than
purely mechanical machines, today’s most significant revolution is taking place in the field
of electronics and mechatronics, bringing the biggest competition in automotive research
and development. This holds especially true considering the products with a scope of
autonomous driving, improvement of driving performance and the traffic safety.

Therefore, more and more variables indicating the actual state of vehicle have to be
known in real-time, to serve as inputs for control systems. This also emerges the need
of accurate, reliable and effective method of obtaining those data. Some of the state
variables can be obtained easily by direct measurement via sensors, that are moreover
cost affordable. Contrarily there are those, which require more effort to be measured or
which are totally unmeasurable.

One of those state describing variables, that also suffers from lack of options to be
obtained effectively, is also the vehicle velocity. It can be confidently labeled as an essential
input to many electronic on-board systems, mainly the vehicle driving control systems.
Probably the most well-known are ABS (Anti-lock Preventing System) or ESP (Electronic
Stability Program). These could be also recognized as most important safety systems
carrying out the improvement of vehicle dynamic characteristics. Furthermore, they are
both compulsory elements of every series production vehicle.

So as the proper function and the appropriate intervention of such a control system
can prevent vehicle and its passengers from undergoing hazardous on-road events, their
malfunction can lead to life threatening situations. Therefore, it is necessary to obtain the
vehicle speed with high accuracy and cost effectively at best, as the direct measurement
is not the case. Solution being proposed is to obtain the measurements from instruments,
that are part of general equipment of every today’s vehicle. Then, by using the proper
computational processing convert those to the target one - vehicle speed.

Commonly present sensors, for instance rotational wheel speed sensors, longitudinal
accelerometer, motor torque sensors and several others are being offered. Unfortunately,
the direct conversion to vehicle speed is not the option. The purpose is simple - the vehicle
motion with all its complexity.

Extreme driving performance with pushing the vehicle into its limit conditions, whether
is the purpose sport-drive, or an avoidance maneuver required to avoid a collision. Ex-
treme weather conditions as rain, snow, ice, lowering the road surface friction. Those are
the critical situations defining the challenge of the accurate vehicle speed estimation. All
mentioned produce high process noise, in this particular case mostly the wheel slip, that
effects the sensor measurements and also the wished result consequently. Therefore, more
scientific approach is needed.

The idea is to set up the algorithm, that uses knowledge of the system and its en-
vironment, with ability to benefit from it in defined manner. Such an algorithm can
be introduced as an estimator. To develop one that deals with severe situations and
conditions, bringing sufficient vehicle speed estimation results is the goal of this thesis.
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1.2. RESEARCH OF FORMER USE OF THE STATE OBSERVERS

1.2. Research of former use of the state observers in
order to estimate vehicle speed

The most primitive manner of estimating the vehicle speed, mentioned in publication [1],
is to take one of four wheel speed measurements and to esteem it directly as a longitudinal
velocity of the vehicle. It was usual to take for instance the one of non-driven wheels,
because it should not be affected by slip during acceleration. Unfortunately, this does
not hold true for the braking situation and furthermore it does not fit for vehicles with
all wheels driven. Another simple strategy is to pick the sensor measurement of wheel
according to driving situation, in particular, the speed of the slowest wheel during accel-
eration or normal drive and the fastest wheel during braking. This approach is sometimes
called the best-wheel selection and although it is fast and easy to implement, the produced
results are not sufficient. Major drawback is again related to the wheel over-slip, that
occurs both by acceleration and braking affecting also the picked wheel which leads to
highly inaccurate results.

Even though Jiang and Gao (2000) in [2] used the above mentioned strategy in their
observer, they realized its flaw and therefore used non-linear observer besides, to deal with
a possible wheel slip in braking situation. Their work is focused on providing the resultant
velocity directly to ABS for further slip estimation, which is important for ABS control.
As ABS operates explicitly while braking, the outcome from other driving situations is
less relevant. Nevertheless, for general application the results could be insufficient.

In publications from Jo, Chu, Kim, Sunwoo (2011) [3] and O’Kane and Ringwood
(2013) [4] the fusion of GPS and inertial sensors were used to estimate the velocity.
According to authors, the wheel speed measurements captured by in-wheel sensors may
greatly differ from the real velocity due to the over-slip and the longitudinal acceleration
contains a bias due to the driving in slope. On the other hand, GPS has low reliability of
measurement and suffers from lags as it has low sample rate. Thus, they have developed
an algorithm eliminating disadvantages and combining advantages of both measurements
with good results reported in the end. Nevertheless, many vehicles are not equipped
with GPS device, which contradicts the idea of using generally available and affordable
equipment.

Use of frontal video camera and acceleration data from drive-recorder for estimating
the vehicle speed has been studied by Osamura, Yumoto and Nakayama (2013) [5]. Stud-
ied method is based on tracking the featured points on captured image and obtaining the
vehicle velocity from their position against the vehicle changing in time. Acceleration is
then used as cross-check to obtain the possible range in order to avoid the possible error
created by image processing. Apart from the fact, that still very few vehicles are equipped
by these devices, the output of video camera is sensitive to disturbances of environment
and therefore inapplicable for subsequent image processing, for instance in certain weather
conditions. Similar weakness concerns also the solution presented in [6], where the camera
was mounted looking downwards, with optical axis perpendicular to the terrain.

Pettersson (2008) compared Extended Kalman Filter and Averaging observer by es-
timation of lateral velocity and slip angle in his master’s thesis [7]. Two-track model,
capturing also the chassis roll dynamics, and tire and damper models were used, with ex-
pectation of more accurate results to be provided. Besides of higher accuracy of results,
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1. INTRODUCTION

demands such a complex modeling a lot effort and is susceptible to introduce errors to
the system. It also entails non-linearities, so the Extended Kalman Filter needs to be
used. This brings not inconsiderable increase of computational burden and probability
of estimation to be biased as a result of linearization or incorrect calculation of Jacobian
matrices. Based on authors’ statement, the simpler Averaging observer brought similar
results with less effort needed.

In [8] have Kiencke and Nielsen (2005) introduced the Fuzzy estimator. In this kind
of estimator, the inputs are represented as linguistic variables with membership grades
between 0 and 1 assigned. Separate rule-base is created for different driving states of
vehicle, according to the knowledge of signal errors in corresponding state. The output
comprises weighting factors, one for each wheel and one for accelerometer. Those factors
serve as inputs to the weighted average equation. It is undeniable that using this method
can produce good results. However, it is complicated, and it needs a lot of effort to define
the rule-base and driving states, which cover all possible situations and then assign the
reasonable size to corresponding weighting factors.

Kobayashi, Cheok and Watanabe (1995) [9] presented estimator with Fuzzy logic rule-
based Kalman Filter, where the covariances are switched according to which sensor mea-
surement is more reliable and therefore more useful for updating the Filter. Measurements
were obtained from four wheel-speed sensors and accelerometer. In this estimator, the
accelerometer offset was not taken into account introducing error to the estimate. This
deficiency was complemented by Wu (2011) [10] and Momeni, Moasheri, Chabok, Kher-
admand (2015) [11] by obtaining the acceleration update from Kalman Filter. Despite
that, the estimate will be significantly influenced by high wheel over-slip, because even
if the weight of measurement is penalized in covariance matrix, it still introduces not
inconsiderable error. Gao (2013) used adaptive Kalman filter, measuring wheel speeds,
longitudinal acceleration and motor torques in his master’s thesis [12]. Main idea of
his estimation algorithm is to detect wheel over-slip in time and eliminate the defective
measurement from updating the state prediction. As high over-slip is considered to be
the major source of negative impact influencing the result, his strategy has inspired the
algorithm developed in this thesis.

3



2. Theoretical introduction to state
estimation

2.1. State observers
As indicated in the introduction of this thesis, the essential component for the successful
state estimation is the state observer. Generally said, state observer is an algorithm, used
to estimate the values of the state variables of dynamical system [13]. State observers are
used in cases, when the direct measurement of the state variable is impossible, or is not
effective for some specific reason. State observers employ the knowledge of the dynamical
system and the measurements of other variables.

First step in understanding the motivation of using the state observer and also its
function, is to realize the distinctions between the plant, how the system of our interest
is being called, and its model. On one side, the plant is most typically a complex and
highly non-linear object varying in time, which requires a quantum of state variables
and parameters, to be represented flawlessly. On the other side, model of the plant is
willing to be a simplified representation based on the knowledge of the real plant. It is
usually capturing its characteristics and behavior only in narrow sphere of its operation,
intentionally chosen to be sufficient to reach the defined objective, i.e. to be used for an
analysis or a computation [14].

Even with putting many effort to model the plant precisely, there are still other uncer-
tainties that tend to arise. These uncertainties may be caused by stochastic phenomenon
in environment, such as wind with random force affecting the helicopter or unpredictable
bumps and water on the road causing wheels of vehicle to over-slip. On top of that, also
the measurement output is commonly influenced by the measurement noise.

Therefore the logic has to be developed, where the output of the model, which is feeded
by the same input values as the plant, is corrected, in order to achieve the accurate value
of desired state variable. Basic scheme of general state observers is shown in Figures 2.1a
and 2.1b.

Plant

Observer

Input Output

State
estimate

(a) Observer with system model implemented
inside

Plant

Model

Input

Measurement

State estimate

Observer
Correction

Prediction

(b) Observer with external system model
Figure 2.1: Example observers presented in diagrams
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2. THEORETICAL INTRODUCTION TO STATE ESTIMATION

2.2. State space representation
As the majority of state observers work with the state-space representation of the dynam-
ical system, it is considered important to be shortly introduced.

Representing linear time-invariant system of finite dimensions in state-space form,
means using differential equations for its description, structured as follows [15]:

ẋ = Ax+Bu (2.1)

y = Cx+Du (2.2)

where first of equations is state equation of the system, second is known as the output
equation. Vector x ∈ Rn is state vector with initial condition x0, u ∈ Rs, y ∈ Rm are
system input and output vector respectively. n represents the order of the described
system.

A ∈ Rnxn is in all cases square matrix, called state or system matrix and it determines
how the previous states xk, will be translated to new states xk+1;

B ∈ Rnxs is matrix of inputs to the system;

C ∈ Rmxn is output matrix which acquires only values of 0 and 1, defining the correlation
between the state and output of the system;

D ∈ Rmxs is called feedforward or a direct transition matrix and is usually set to 0
[16],[17].

System described

by state variables

{x1, …, xn}

u1(t)

us(t)
⋮

y1(t)

ym(t)
⋮

Input vector Output vector

Figure 2.2: System inputs and outputs
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2.3. SYSTEM OBSERVABILITY

+

+

+ +
u(t) y(t)ẋ x

A

B ∫ C

D

Figure 2.3: Vector block diagram of a linear system
represented in state-space

2.3. System observability
Every system to be investigated by the observer has to fulfill the pre-condition of being
observable.

To explain the term observability, let’s consider the system:

ẋ = Ax+Bu (2.3)

y = Cx (2.4)
where all its elements are having the same meaning as described in Chapter 2.2 and

initial state is set to be:
x(0) = x0 (2.5)

We find such a system observable, if its state x(t) can be at any time t ≥ t0 uniquely
determined from the inputs u(s) and outputs y(s), where 0 < s < t or if x(t) can be
uniquely determined from known initial state x(0) and inputs [19],[20].

Investigation for observability is carried out by computing a rank of observability
matrix, which has to be equal to order of the dynamical system. [19]

rank(Q) = rank


C
CA1

...
CAn−1

 !
= v (2.6)

If the rank of matrix is lesser than v, what refers to number of linear independent
rows of matrix, the system is unstable and therefore not observable. In spite of that,
some of unstable systems can be stabilized or several methods can be followed to reach
the observability.

6



2. THEORETICAL INTRODUCTION TO STATE ESTIMATION

2.4. Luenberger observer
It was D. G. Luenberger who first purposed and further developed the linear observer
used for estimation of unknown state variable in publications from 1964, 1966 and 1971.
[21],[22],[23]

In addition to the state space representation of dynamical system, incorporates the
equation of Luenberger observer also correction term. It corrects the estimate by amount,
proportional to prediction error, which is obtained from variance of estimated and mea-
sured value of the observed state variable. [20]

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− ŷ(t)) (2.7)

is a system in state space form with Luenberger observer. Vectors x, u, y have the same
meaning as in Equations 2.3 and 2.4. Hats above the vectors x̂,ŷ depict, that their values
come from the estimation. Initial state is x(0) = x0 and is chosen arbitrarily. t is time.

Matrices A, B, C have also the same meaning as in Chapter 2.3 and are constant in
design of the Luenberger observer, contrary to the observer gain matrix L, called also
Luenberger gain. Its value is arbitary and determines the identity of the observer [19].

After substituting:

ŷ(t) = C + x̂(t) (2.8)

y(t) = C + x(t) (2.9)

Into the equation 2.7, we get:

˙̂x(t) = Ax̂(t) +Bu(t) + LC(x(t)− x̂(t)) (2.10)

which could be arranged to form:

˙̂x(t) = (A− LC)x̂(t) +Bu(t) + Ly(t) (2.11)

Estimation error is defined as:

e(t) = x(t)− x̂(t) (2.12)

and the dynamics of this error is [19]:

ė(t) = (A− LC)e(t) (2.13)

7



2.5. KALMAN FILTER

To get e(t) → 0 as t → ∞, which in other words means to asymptotically reach
accurate results without estimation error, since the estimate x(t) converges to the real
state x(t), poles describing the behavior of the system have to be placed properly. As
(A − LC) is the system matrix of the observer, the mentioned poles are represented by
its eigenvalues [20],[24].

Eigenvalues of the matrix can be obtained by solving its characteristic polynomial
which due to [25] equals:

PA = det
(
(sI − (A− LC)

)
= (s− λ1), . . . , (s− λn) (2.14)

where λ is vector of eigenvalues of system matrix, I is identity matrix and n represents
order of the observed system.

Solution of this equation brings us to relationship between poles represented by eigen-
values and elements of L matrix l1, . . . , ln which are the target of investigation.

To achieve suitable eigenvalues of (A − LC), the general strategy of pole placement
could be introduced:

• in order to prevent the system of becoming unstable, both eigenvalues must be set
negative

• placing the eigenvalues too far left on the complex plane makes the observer too
sensitive to noise

• by contrast placing eigenvalues close to imaginary axis makes the observer to react
slow, so it will not be able to response to rapid changes [8].

2.5. Kalman filter
The Kalman filter is mathematical algorithm that employs statistical methods to provide
the estimation of past, present or future states of a system by minimizing error covariance.
It is prevalent tool used in wide range of applications, most commonly in engineering
field, i.e. for signal processing, system control and navigation in transport or military
industry, process control, but also in socio-economic tasks. For mentioned ability to solve
widespread scope of problems, numerous extensions allowing solution of i.e. non-linear
problems, small computational and memory requirements and relative simplicity, it has
found the great favour [26],[27].

In order to estimate the state of process x ∈ Rn in discrete-time, Kalman filter uses
its state-space represented model [28]:

xk = Axk−1 +Buk + wk (2.15)

and a measurement model, describing relationship between the state of the process and
the measurements that are taking place in observed process:

zk = Hxk + vk (2.16)

8



2. THEORETICAL INTRODUCTION TO STATE ESTIMATION

The index k, in state vector xk, input vector uk and measurement vector zk, represents
the actual time step. Matrices A, B, H are system matrix, input matrix and measurement
matrix respectively.

wk is random variable, that represents the process noise and random variable vk repre-
sents the measurement noise. Both are assumed to be white, independent of each other,
and their probability distributions are:

P (w) ∼ N(0, Q) (2.17)

P (v) ∼ N(0, R) (2.18)

where Q is process noise covariance and R is measurement noise covariance. Most simply
said – the lower the variances - how are the coefficients on the matrix diagonal called -
of Q are, the less uncertainty is assumed and therefore the correctness of model is more
trusted and similarly the lower are the variances of matrix R, the more the measurement
correctness is trusted, as low uncertainty is assumed [29].

Algorithm of Kalman filter operates in two steps: prediction and update step. In
prediction step, current state variables are estimated taking their actual uncertainty into
account. Then, the measurement is observed and the estimate is updated using weighted
average with idea, that real state should lie somewhere between the measurement and the
prediction, giving more weight on observation with higher certainty presumed [15]. This
certainty presumption is given by matrices Q and R.

Note, that matrices Q and R, with matrix H additionally, can be arbitrarily changed
with every single time step. This is interesting feature, as they adapt the Kalman gain K
according to some external conditions, making it no more constant. Therefore, this type
of Kalman filter is called Adaptive [30]. Such an approach is being used i.e. in cases,
when the covariance of noises is ill-conditioned, so the accuracy of the estimate would be
greatly affected [31].

The above introduced is practically done by iterative solution of following equations
in every time step:

Prediction
x̂(k|k−1) = Akx̂(k−1|k−1) +Bkuk (2.19)

P(k|k−1) = AkP(k−1|k−1)A
⊤
k +Qk (2.20)

9



2.5. KALMAN FILTER

Update
ŷk = zk −Hkx̂(k|k−1) (2.21)

Sk = Rk +HkP(k|k−1)H
⊤
k (2.22)

Kk = P(k|k−1)H
⊤
k S

(−1) (2.23)

x̂(k|k) = x̂(k|k−1) +Kkŷk (2.24)

P(k|k) = (I −KkHk)P(k|k−1)(I −KkHk)
⊤ +KkRkK

⊤
k (2.25)

ŷ(k|k) = zk −Hkx̂(k|k) (2.26)

For better imagination, the Figure 2.4 shows how the algorithm is performed.

Update step

Prediction step

x̂ P̂ x P

measurement y

input u

initial state x0

estimated state xk

Figure 2.4: Process of Kalman filter algorithm

From the introduction section follows, that the normal Kalman filter is convenient for
linear dynamic systems only. For non-linear systems is the most common application the
Extended Kalman filter [15].

Assuming the all transformations being quasilinear, Extended Kalman filter linearizes
non-linearities in every time step around the last state estimate and substitutes the ma-
trices for linear transformation with Jacobian matrices. It is important to remark, that
there are few limitations and drawbacks in using EKF. First of all, not in every case can
be non-linearities approximated by the linear function well. Then, the Jacobian matrices
must exist, which is not always the case. Furthermore, their calculation is nontrivial,
susceptible to errors caused by human factor which cannot be easy to identifiy [15],[32].

For applications, where Extended Kalman filter results are considered insufficient, the
improvement in form of Unscented Kalman filter, more detailed studied in [33], can be
put in to practice.
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3. ALGORITHM DESIGN

3. Algorithm design
3.1. Algorithm overview
Announced by many studies presented in 1.2, wheel over-slip is the factor, that introduces
the most significant error into the estimation. Especially high over-slip caused for instance
by rapid acceleration on the road with reduced friction or due to emergency braking with
wheel lock and consequent ABS activation.

The only effective way to prevent the defective measurement from affecting the estima-
tion, is to remove that measurement from further computation. To do so, the occurrence
of over-slip on each single wheel has to be detected. For this purpose, the algorithm with
physically based criteria has been developed, which can be declared as the main feature
of the introduced estimation algorithm. Together with other components, it carries out
the successful estimation of vehicle longitudinal speed.

Algorithm operates in discrete-time with sample time of 0.01seconds, which corre-
sponds to sampling period of captured input data and CPU clock. This simultaneously,
after compiling to C, makes algorithm ready to be used on control unit directly.

The estimation algorithm was developed for the electric vehicle with 2 motors, one for
each axle, which means that all wheels are driven.

Overview of signals from on-board sensors used for estimation can be found in Table
3.1.

Measured signal Variable Unit
Wheel rotational speed ωfl, ωfr, ωrl, ωrr rad s−1

Longitudinal acceleration am,x m s−2

Motor torque (front, rear) Mm,f ,Mm,r N m−1

Yaw rate ψ̇ deg s−1

Steering wheel angle δ deg

Table 3.1: Signals used as input into the vehicle speed estimation algorithm

To introduce how the algorithm flows, the block diagram presented below was created.
Sense and function of the individual components will be parsed separately in following
chapters.
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3.1. ALGORITHM OVERVIEW

Look-up table

Wheel speed
measurements

Longitudinal
accelerationδψ̇

Motor torque
(front/rear)

Wheel speeds
pre-processing

Wheel
over-slip
criterion

Acceleration
criterion

Torque
criterion

All wheels in over-slip limitation

Adaptive Kalman Filter

Slope estimation

(Luenberger observer)

Longitudinal
acceleration

pre-processing

Estimated
vehicle speed

z−1

(Unit delay)

H

δRδL

Figure 3.1: Estimation algorithm flowchart
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3. ALGORITHM DESIGN

3.2. Co-ordinate system and model reductions
Co-ordinate system used in this thesis has its origin at the vehicle center-of-gravity. It is
presented in Figure 3.2.

Figure 3.2: Orientation of co-ordinate system

When the vehicle dynamics has to be represented by the model for further analy-
sis, the compromise between the perfectly accurate reproduction of the real vehicle and
immoderate complexity of the model should be found. Simply said, the model has to
capture the characteristics and behavior of the real vehicle good enough according to the
application needs.

In this work, it is believed that in overwhelming majority of states, the commercial
vehicle undergoes during its motion, is the lateral component of velocity very small and
its influence on the overall velocity is negligible. Hence, from this moment, it will be
only talked about the longitudinal velocity to be estimated. This allows us to dismiss
rolling of the chassis and side slip angle. Such a reduction simplifies the modeling process
noticeably, saves computational costs and reduces the amount of nonlinearities to deal
with.
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3.3. WHEEL SPEED SENSOR DATA PRE-PROCESSING

3.3. Wheel speed sensor data pre-processing
Measurement of rotational wheel speed takes place by four sensors, one installed on each
wheel. Captured rotational speed ωij can be converted to wheel speed in ground contact
point vij by:

vij = ωij · rD (3.1)

where i and j denote reference of measurement to front (f) or rear (r) axle and left (l) or
right (r) side respectively and rD is dynamic wheel radius.

However, every signal captured by sensor contains some systematic error and must be
pre-processed [8]. Firstly are the signals filtered by 1st order low-pass filter to mitigate
the sensor noise. Secondly due to driving in the curves the correction of wheel speeds by
their transformation to the center-of-gravity is necessary.

Parameters and variables used to derive the correcting Equations 3.2 - 3.5 are all to
be found in Figure 3.4.

Figure 3.3: Vehicle in xy-plane with parameters de-
scribed
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3. ALGORITHM DESIGN

Figure 3.4: Wheel speed transformation explained by
the figure

To translate the front wheels the following equations are used:

vc,fl = vfl cos  δl + ψ̇
bf
2

(3.2)

vc,fr = vfr cos  δr − ψ̇
bf
2

(3.3)

Rear wheels are translated by equations:

vc,rl = vrl + ψ̇
br
2

(3.4)

vc,rr = vrr − ψ̇
br
2

(3.5)

It may have been noticed, that depicted in the Figure 3.4 and also in translation equa-
tions, different deflection angles were used for left and right wheel. That is a consequence
of the real cars steering design, where the deflection towards x-axis is for each wheel dif-
ferent by the same angle of lock of steering wheel. As the available signal was the signal
carrying steering wheel angle, the calculation of single wheel angles δl and δr is also the
part of data pre-processing in the estimation algorithm. For this calculation, where the
dependence between steering wheel angle and the deflection of wheels is non-linear, the
Lookup table is being used.
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3.3. WHEEL SPEED SENSOR DATA PRE-PROCESSING

Importance of this pre-processing step is shown by Figures below.
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Figure 3.5: Wheel speeds at ground contact point be-
fore correction to the center-of-gravity
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Figure 3.6: Wheel speeds at ground contact point af-
ter correction to the center-of-gravity
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3. ALGORITHM DESIGN

3.4. Longitudinal accelerometer data pre-processing
Discussed in many publications introduced in Chapter 1.2, also the measurement from lon-
gitudinal accelerator is biased by systematic error. Luckily, the part of bias created by its
installation position and the effect of temperature is already corrected in the longitudinal
acceleration signal provided by the CAN bus.

Still, because the sensor is fixed on the vehicle body, which deviates from xy-plane of
our co-ordinate system, the additional correction is indeed mandatory. Deviation is caused
by driving in the slope, where then the component of gravity acceleration is measured and
also by chassis pitching during acceleration or deceleration. Impact of pitching is very
small and can be therefore neglected [8].

Figure 3.7: Effect of gravity acceleration on longitu-
dinal acceleration measurement when driving in slope

In order to eliminate the gravity acceleration from measurement and thereby correct
the longitudinal acceleration we use:

am,x = ac,x + g sinχroad (3.6)

where am,x is measured longitudinal acceleration, ac,x is corrected longitudinal accelera-
tion, g in gravity acceleration and χroad is road slope.

In equation 3.6 the road slope is unknown variable and must be estimated.
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3.4. LONGITUDINAL ACCELEROMETER DATA PRE-PROCESSING

3.4.1. Slope estimation
Chosen state variable vector consists of longitudinal velocity and road slope:

x =

[
vCoG

χroad

]
(3.7)

the input into the system will be longitudinal acceleration:

u =

[
am,x

0

]
(3.8)

and the current estimate of longitudinal speed v̂CoG is output measurement:

y = v̂CoG (3.9)
Equation 3.6 can be also written as

ax = am,x − g sinχroad (3.10)

when driving straight:

ax = v̇CoG (3.11)
According to fact, that the slope of public roads is limited approximately to ±12◦ [34]

following linearization can be made, allowing us to employ linear observer:

sinχroad ≈ χroad (3.12)
Then, if the road slope is presumed constant, the system can be written in state space

form as follows: [
v̇CoG

χ̇road

]
︸ ︷︷ ︸

ẋ

=

[
0 −g
0 0

]
︸ ︷︷ ︸

A

[
vCoG

χroad

]
︸ ︷︷ ︸

x

+

[
1 0
0 0

]
︸ ︷︷ ︸

B

[
am,x

0

]
︸ ︷︷ ︸

u

(3.13)

v̇CoG︸︷︷︸
y

=

[
1
0

]⊤

︸︷︷︸
C

[
vCoG

χroad

]
︸ ︷︷ ︸

x

(3.14)

For estimation of road slope χroad, the Luenberger observer will be employed. At first,
the observability of given system must be analyzed.

Order of investigated system is n = 2, therefore:

Q =

[
C
CA

]
=

[
1 −g
0 0

]
(3.15)
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3. ALGORITHM DESIGN

The rank will be checked by calculating the determinant. If determinant of this matrix
is equal to 0, its lines are linear independent, and therefore is the system observable:

detQ = det
[
1 −g
0 0

]
= −g ̸= 0 (3.16)

The system has been proven to be observable, so the pole placement by means of
Equation 2.14 can be made. Because of order of the system, gain matrix L will have
elements l1, l2:

det
(
sI − (A− LC)

)
= det

([
s 0
0 s

]
−
[
0 −g
0 0

]
+

[
l1 0
l2 0

])
= s2 + s · l1 − g · l2 (3.17)

from

s2 + s · l1 − g · l2 = (s− λ1)(s− λ2) = s2 − s(λ1 + λ2) + λ1 · λ2 (3.18)

we get

l1 = −λ1 − λ2 (3.19)

l2 =
−λ1 · λ2

g
(3.20)

According to strategy from Chapter 2.4, we know, that l1 has to be positive and l2
negative. Their exact value was tuned experimentally, and it is:

L =

[
l1
l2

]
=

[
12
−1

]
(3.21)

In Figure 3.8 the implementation of Luenberger observer is depicted.
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B

A

C

L

∫

x ̂ ˙0

x ̂ x ̂ ˙am,x

vCoG

+

−

+

+

−

v ̂ CoG

χ ̂ 
road

χ ̂ 
road

Figure 3.8: Implementation of Luenberger observer
for road slope estimation

Few important measures have been made that need be remarked in the end.
The road slope estimation cannot be performed in case, when all wheels are considered

in over-slip. This will introduce significant error to the estimation, as the estimated
vehicle speed v̂CoG, then equals only to integration of corrected longitudinal acceleration
ac,x. Therefore, the criterion has been defined, which freezes the estimation of road slope
keeping the last estimated value, when mentioned situation occurs, and holds that value
until the wheel speed measurements are available again.

Additionaly, to obtain better road slope estimation results some post-processing has
been implemented. The maximal road slope has been limited by saturation to benevolent
value of ∼ ±30◦. Also the unrealistically rapid changes of incline have been mitigated by
limiting the allowed change rate with calibrated constant. Comparison of results before
and after is attached below.
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Figure 3.9: Road slope estimation result for ∼ 0◦ in-
cline before post-processing
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Figure 3.10: Road slope estimation result for ∼ 0◦

incline after post-processing

21



3.5. KALMAN FILTER FOR VEHICLE SPEED ESTIMATION

3.5. Kalman filter for vehicle speed estimation
To estimate the vehicle speed the adaptive Kalman filter is used. From the theory of
Kalman filter, which was presented in Chapter 2.5, is known, that the trust of measure-
ment updating the Kalman gain K is given by the covariance matrix. The problem is,
that in our case, the wheel can slip extensively, so the measurement if its speed will drift
away rapidly, of the real vehicle velocity. Then, even if we assign that measurement the
variance of the biggest value, we can imagine, it will be still so far away from infinity.
In result, the accuracy of vehicle speed estimate will be ruined. To prevent this from
happening, the strategy of eliminating measurements completely, by adaptation of the
measurement matrix H is proposed.

In implemented Kalman filter, vehicle speed is the state variable:

x = vCoG (3.22)

with initial condition set to arithmetical avarage of wheel speeds, for cases when the
estimation does not start from standstill:

x0 =
vfl · vfr · vrl · vrr

4
(3.23)

Corrected longitudinal acceleration is the input:

u = ac,x (3.24)

and the measurement vector consists of wheel speed measurements:

zk =


vfl
vfr
vrl
vrr

 (3.25)

Measurement vector is initially set to:

H =


1
1
1
1

 (3.26)

but values of its elements can be changed on demand to 0 in position corresponding to
the wheel in over-slip. This is carried out by over-slip criteria presented later in text.
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3. ALGORITHM DESIGN

The observed state space model is:

vCoGk
= vCoGk−1

+ Tsac,xk
+ wk (3.27)

where Ts is time step.

The covariance matrices Qk and Rk were determined by the calibration as follows:

Qk = 10 (3.28)

Rk =


500 0 0 0
0 500 0 0
0 0 500 0
0 0 0 500

 (3.29)
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3.6. WHEEL OVER-SLIP CRITERIA

3.6. Wheel over-slip criteria
To detect the occurrence of the over-slip on individual wheels and to provide the infor-
mation for adaptation of matrix H, the wheels-slip critetions are defined in algorithm. 2
different main criteria for the detection will be introduced in this Chapter. Both working
for each wheel separately, sending further the information about detected over-slip by
raising and decreasing over-slip flags, based on the state of selected variables. Then, in
the last subsection, the description of subsidiary criterion is to be found.

3.6.1. Wheel over-slip
Since the term slip or over-slip is frequently mentioned in this thesis, it would be proper
to define and shortly introduce what does it state for.

Wheel is said to be in over-slip, when the theoretical and the real distance traveled
by wheel are not the same. This can be described by an example, where perimeter of the
wheel is 2 meters. When the wheel turns 5 times, it should travel 10 meters - in ideal
case. When is travels more or less, the cause is the over-slip [35]. Whether the distance
traveled by wheel is longer or shorter than ideal distance, depends on origin of the slip.

The shorter distance traveled is a consequence of slip caused by motor torque (accel-
eration) and is defined as:

λx =
ωwrw − Vx
ωwrw

(3.30)

and on the other hand, the longer distance is traveled when braking (deceleration):

λx =
vx − ωwrw

Vx
(3.31)

where λx = is wheel slip, ωw is rotational velocity and rw is wheel radius [36].
Figure 3.11 illustrates relationships between rotational and translational velocities of

wheel in mentioned states.

(a) Wheel slip due to accel-
eration

(b) Wheel rolling ideally
without slip

(c) Wheel slip due to decel-
eration

Figure 3.11: Wheel slip situations in regards to rotational and translational velocities
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3. ALGORITHM DESIGN

3.6.2. Acceleration criterion
Acceleration criterion uses the measurement of wheel speed, absolute value of their ac-
celeration obtained from derivation of the wheel speeds and the estimate of vehicle speed
vCoG from previous step.

If the algorithm concludes, that the wheel may be in over-slip, it raises the over-slip
flag. This is made by tick which appears in the moment, when the wheel acceleration is
considered too high and exceeds the limit value. The limit value does not vary in time
and was pre-calculated as follows:

alim =

∑
F

mm

(3.32)

with mm as weight of middle loaded vehicle and sum of forces [37]:∑
F =

Mmax,F

rD
+
Mmax,R

rD
− Fg︸︷︷︸

mmg sinχroad

− Froll︸︷︷︸
mmgfrr

(3.33)

where Mmax,F ,Mmax,R are maximal motor torques for front and rear axle respectively, rD
is dynamic wheel radius.

Fg represents the sinus component of the gravitational force when driving in slope
of χroad. Here, the value of slope was selected χroad = −30◦. Road gradient of 30◦

is considered as the maximal to occur, when driving the conventional vehicle including
extreme conditions. The negative value makes the component Fg positive, pushing the
acceleration limit higher. This is wanted effect, as the slip occurs only because of that
part of acceleration regarding to motor torque. Not counting with this fact will lead to
unreasoning slip-flags.

Froll is rolling resistance with rolling resistance coefficient frr. Value of frr lies between
0.01 and 0.04. For the commercial passenger vehicle, its typical value is ∼ 0.015 [37].

Wind resistance does not act in the sum of forces. The reason is, that also the vehicle
stand-still has to be considered as a potential state for over-slip to occur and then the
wind resistance equals 0.

Speed of the wheel is continuously compared to the actual estimate of vCoG. When
the wheel speed approaches to the estimated vehicle speed it is assumed, that the wheel is
turning back from the over-slip, so the tick is produced in order to decrease the over-slip
flag.
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Figure 3.12: Acceleration criterion function - Raise
and Decrease Flag ticks
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Figure 3.13: Acceleration criterion result with all
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Figure 3.14: Acceleration criterion result with all
wheels in over-slip with rapid return to traction and
over-slip again

Results seen in the Figures 3.13 and 3.14 show, that even this criterion detects the
wheel over-slip reliably, the detection is slow because of constrained dynamics of accel-
eration limit. This results in obvious inaccuracy of estimation. Therefore, new criterion
working simultaneously has to be defined, to report the over-slip earlier.

3.6.3. Torque criterion
Use of electric vehicle allows us to define also the torque criterion, as sufficiently accurate
torque can be obtained. This could be not practically done for a conventional vehicle, as
the torque has to be estimated there.

The motor torque criterion is based on real-time model computation of maximal
torque, that should be transmittable on the road. This is then compared to demanded
motor torque applied on wheels. By normal traction, the motor torque on left and right
wheel is equal. Therefore, torque for single wheel on the axle, will by obtained by di-
viding the motor torque on that axle by 2. Additional inputs for the criterion are wheel
accelerations obtained from derivating the measured wheel speeds, corrected longitudinal
acceleration and the Flag-decreasing signal from the acceleration criterion.

First the motor torque model for each wheel has to be set up. The longitudinal traction
force is [38]:

Ft,x = FN · µ (3.34)

where road friction coefficient µ can be interpreted as:

µ =
ax
g

(3.35)
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The normal force of vehicle in dynamic state equals for front wheels:

FN,f = Fstat − Fdyn (3.36)

FN,f = mg cosα lr
lr + lf

− hCoG

lr + lf
mg sinχroad + ac,x (3.37)

and for rear wheels:

FN,r = Fstat + Fdyn (3.38)

FN,r = mg cosα lf
lr + lf

+
hCoG

lr + lf
mg sinχroad + ac,x (3.39)

where all parameters are described by the Figure 3.15.
In the implementation used in estimation algorithm the equations were adjusted as

follows:

FN,fl/fr =
1

2
mg

lr
lr + lf

− 1

2

hCoG

lr + lf
m+ am,x (3.40)

FN,rl/rr =
1

2
mg

lf
lr + lf

+
1

2

hCoG

lr + lf
m+ am,x (3.41)

as measured longitudinal acceleration consists of correct longitudinal acceleration and
sinus component of gravity acceleration am,x = g sinχroad + ac,x and this way the error
introduction is eliminated. cosχroad is neglected as in incline of ±12◦ it is cosχroad = 0.978
and would only unnecessarily produce the risk of error being introduced due to inaccurate
estimation of slope χroad. As mentioned above, by division by 2, the normal force for each
of wheels on the axle is obtained.

Besides the model torque compared to the actual motor torque another criterion has
to be fulfilled to raise the over-slip flag on. In real-time, the algorithm checks, if the wheel
with applied torque, which exceeds the model torque has accelerated enough to be said,
that it is in over-slip.

For this, the difference between actual and previous value of wheel acceleration, ob-
tained from derivation of wheel speed measurement, showed the best results in detection
speed. As it is practically the 2nd derivation of the wheel speed, there is a lot of noise
present. Therefore, calibration was made on the data capturing the driving situation with
high process noise present. Additionally, the compromise between the detection speed and
lowering the faulty detection rate had to be made.

Even if it comes to situation, that the flag was raised only because of the noise present,
the decrease flag criterion comparing the difference between actual and previous wheel
speed will intervene. The slip flag of this criterion can be also decreased by the decrease
flag of the acceleration criterion, supporting the robustness again.

The estimation results with torque criterion are presented below also with comparison
to acceleration criterion by itself.
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Figure 3.15: Forces acting on vehicle on inclined road,
parameters from the equations

25 30 35 40
t [s]

0

10

20

30

40

50

v 
[m

s-1
]

v
c,fl

v
c,fr

v
c,rl

v
c,rr

v
est (acc)

v
est (acc+trq)

Figure 3.16: Improved estimation result with com-
parison to acceleration criterion only - all wheels in
over-slip
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Figure 3.17: Improved estimation result with com-
parison to acceleration criterion only - all wheels in
over-slip with rapid return to traction and over-slip
again

3.6.4. Subsidiary criterion
Subsidiary criterion guards the period, during which are all the wheels considered in over-
slip, so the estimation algorithm relies only on the integration of longitudinal acceleration.
Criterion says, that over-slip of all wheels should not last for more than 10sec and therefore
puts back to H matrix that wheel measurement, whose speed is closest to the estimated
vehicle speed in that moment. This is done for very special cases and improves robustness
of the algorithm by protecting it from outputting unreal values.

Even if there was a situation where all the wheels were in over-slip for more than
10sec for real, the estimate obtained from acceleration integration will be anyway most
probably substantially inaccurate, so it would be no more relevant to continue without
the wheel speed measurement.
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4. Test against data from model
vehicle

In this Chapter the test of estimation algorithm against the data obtained from ve-
hicle model will be presented. The algorithm was tested against the model data only in
very beginning of its development, as enough data captured from real vehicle had been
available. Measurements obtained during real driving situations include different noises
and as the algorithm has to work properly in the real vehicle, it must be also calibrated
via real test cases.

Instead of that fact, the depicted tests show, how the expected result of vehicle speed
should look like. This could be helpful in case, that real data are not provided by the
measurement of reference real vehicle speed. All presented estimation results are compared
with longitudinal velocity value provided by model.

In the first presented test, the model vehicle has been driving with initial velocity of
5ms−1 with constant drive torque mode. The surface had road friction coefficient µ = 0.8.
Only the rear wheels have been driven.

At time of 2s, the torque demand was increased to 1500Nm and the vehicle accelerated
smoothly. At time 4s has the vehicle driven into the surface with low friction and the
driven wheels started to slip. Algorithm has detected the over-slip and followed only the
measurement of non-driven wheels which was correct. Thanks to initial condition given
to Kalman Filter, there was no estimation delay present.
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Figure 4.1: Estimation result by test of against the
model - rear wheels in slip
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Other modeled case had the same preconditions, but during the drive, also the torque
on front wheels had been employed. Approximately at time 4s has vehicle driven into
the surface with low friction and after circa 2s again to surface with prior value of road
friction coefficient. The µ-jump from high to low friction was repeated three times.
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Figure 4.2: Estimation result by test of against the
model - all wheels slip due to µ-jump
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In this case with all wheels driven, the model vehicle has driven into road surface
with low friction causing all wheels to slip. Wheels remained in over-slip till end of the
sequence. Algorithm detected the wheels slipping in time so only little error has been
integrated. Therefore the accurate results were obtained even the slip had last for more
than 6s.
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Figure 4.3: Estimation result by test of against the
model - all wheels in long over-slip
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5. Test against data from real vehicle
Results from testing the algorithm against the data capcured from sensor measure-

ments of real vehicle will be introduced in this Chapter. Sample data have been chosen
due to some specific situation captured, to show the function and accuracy of estimation
in situation considered critical. In every Subsection, the data chacteristics will be de-
scribed and the estimation results will be shown. None of presented data have the real
longitudinal velocity measured, but according to experience from previous Chapter, the
path of real longitudinal velocity can be easily assumed.

5.1. All wheels slip & 10% slope
This 30 seconds short sequence of measured data captures the situation of 4WD vehicle
driving in winter time. During first and second acceleration, there is enough road fric-
tion offered according to acceleration request transformed into the motor torque. Then,
around 21st second the over-slip of all 4 wheels occures 2-times. As seen from Figures 5.1
and 5.2 showing the vehicle speed estimate and the defined criteria acting in practice, rep-
resented by adapting corresponding elements of H matrix, the algorithm acts correctly. It
detects wheels slipping and removes faulty wheel speed measurements, using integration
of longitudinal acceleration.
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5. TEST AGAINST DATA FROM REAL VEHICLE

20 21 22 23 24 25
t [s]

5

10

15

20

25

v 
[m

s-1
]

v
c,fl

v
c,fr

v
c,rl

v
c,rr

v
est

Figure 5.1: Wheel speeds and vehicle speed estimate
- all wheels slip
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5.1. ALL WHEELS SLIP & 10% SLOPE

The whole data sequence also with torques on front and rear wheels is shown here.
Additionaly, it is known, that the vehicle was driving into slope with circa 10% incline,
which corresponds to ∼ 5.7◦. Therefore, the result of slope estimation is also attached.
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Figure 5.3: Wheel speeds and vehicle speed estimate
- whole sequence all wheels slip
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Figure 5.4: Front and rear motor torque
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Figure 5.5: Road slope estimation
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5. TEST AGAINST DATA FROM REAL VEHICLE

5.2. Braking with ABS & µ-split
Two braking situations with ABS activation have been captured in this test-drive. Char-
acteristic behaviour of releasing locked wheels and reapplying the brake force in order to
maintain better control of vehicle and shorten the braking distance can be recognised.
The real value of vehicle speed should ”slide” on the peaks of the highest wheel speed in
the moment. It is shown, that algorithm detects also the negative torque by the criterion
and follows the peaks with almost none margin. The vehicle has all wheels driven and is
driven on a flat road with low friction surface. Whole sequence is presented in the next
page where also the slope estimate is shown.
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Figure 5.6: Detailed view of second ABS braking
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5.2. BRAKING WITH ABS & µ-SPLIT

Here, the µ-split situation is to be seen. µ-split names the situation, when the friction
of one wheelpath side differst from the other significantly. Big positive or negative slip of
wheels on right or left side is typical. The estimation algorithm had succesfully eliminated
the corrupted measurements.
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Figure 5.8: Wheel speeds and vehicle speed estimate
in µ-split situation depicted
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Figure 5.9: Slope estimation with assumption to be
∼ 0◦, the influence of ABS breaking on estimate can
be noticed
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5. TEST AGAINST DATA FROM REAL VEHICLE

5.3. Ice circle
Finally, the critical situation of driving in circle on ice with wheels nearly permanently
slipping, steering wheel turning violently and violent acting on acceleration pedal. This
is demonstrated by Figures 5.10, 5.11 and 5.12.

The algorithm produced sufficient estimation results with ability to detect the wheel
in over-slip in time, even it was provided with such a noisy wheel speed measurement
signals.
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Figure 5.10: Wheel speeds and vehicle speed estimate
in selected data sequence
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Figure 5.11: Steering wheel angle
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Figure 5.12: Motor torques on front and rear wheels

39



5.3. ICE CIRCLE
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Figure 5.13: Wheel speeds and vehicle speed estimate
in whole data sequence
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wheel-lock
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6. CONCLUSION

6. Conclusion
In this thesis, first the research of former use of state observers in order to estimate the

vehicle speed made is presented. It brings a summary of methods used in previous work
in vehicle speed estimation including a brief insight. Advantages and drawbacks of the
methods were considered and commented, partly forming the way of further algorithm
development.

Subsequently the theoretical background was build up. Terms such as state observer,
system observability are clarified here and useful tools as Luenberger observer or Kalman
Filter are introduced. A focus was given to describe the terms and tools clearly and
mainly in a range of vehicle state estimation. It was attempted to form the description
in comprehensible manner, to be understood also by reader with no previous experience.
Therefore, it could serve as a base for practical use in simple private applications.

Following from the theoretical background, the implementation of all parts found in
algorithm is introduced. The algorithm which estimates the vehicle speed was successfully
developed. This was made in accordance with given requirements.

In the beginning, pre-processing of the wheel rotational speeds, consisting mainly of
translation of the wheel speeds in ground contact point to the center-of-gravity, is shown.
Its importance is demonstrated by Figures 3.5 and 3.6.

Afterwards, the slope estimation carried out by Luenberger observer is presented.
Estimate from Luenberger observer is post-processed by introduced limitations. Their
positive influence on the estimation result was proven. The estimated slope χroad serves
for correction of the longitudinal acceleration, which is essential element of the vehicle
speed estimation. In situations where are all the wheels in over-slip, is the longitudinal
acceleration crucial.

The reason can be found in the design of the estimation algorithm under the adaptive
Kalman filter with matrix H handled by the wheel slip criteria. Set up of the matrix
regulates which measurement can and cannot influence the estimation value in the next
step. This gives the algorithm an ability to disqualify the measurements corrupted by a
process noise and to prevent the estimation result from the error being introduced.

Therefore, two main criteria are implemented. First based on observing the accelera-
tion, second comparing demanded torque with computed torque considered to be maxi-
mally transmittable on the road surface without wheel slipping.

Results from testing the algorithm against the model vehicle are presented. The rsults
also show, how the wished result of vehicle speed estimation during the wheel over-slip
should look like, by comparison with do model vehicle speed. Algorithm was tested
against the model data only in the very beginning of its development. Then it had to
be recalibrated to deal with the real conditions, captured on the measurements obtained
from test drives with the real vehicle. Therefore, the final version of the algorithm will
not necessarily produce the flawless estimation when using the model data.

The estimation results obtained from testing against the data recorded in a real vehicle
are more interesting. During the development the estimation algorithm was calibrated on
and tested against several data. The driving situations selected for the presentation have
been carefully picked due to some specific phenomenon captured. Thus, the value of the
developed estimation algorithm can be presented.

The vehicle speed estimate is shown in the situation, when an over-slip of all wheels
due to rapid acceleration on surface with low friction takes place. The algorithm did
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its job properly and eliminated the corrupted measurements via wheel slip criteria. The
estimation algorithm also worked well during the emergency braking with ABS activated
or by µ-split. The robustness of the algorithm was tested on the noisy data captured
during driving in the circle on icy road. Here the results were again satisfactory.

In the end, couple of implementation ideas for further development can be proposed
due to experience gained.

It is assumed, that there is room to grow in employment of more signals and creating
the rule base according to the state detected. As a brief example can serve the use of the
signal from ABS which indicates that the ABS is active. Then, knowing this fact and also
knowing how the vehicle speed should look like, the estimation can be switched to follow
defined pattern and therefore not to be dependent on the external criteria. Setting such
a base of cases will take much effort.

However, the bigger gap is seen in an inaccuracy of the acceleration. There are many
critical situations, when the observer can only rely on the integration of longitudinal
acceleration to achieve the vehicle speed estimate, as all wheels are in over-slip. Then,
especially in over-slip with long duration the integration error will be growing, as there is
no reference measurement available. Improvement of estimation in such a situation can
be gained by correcting the acceleration via Kalman filter. For this, the model describing
the relationship between torques and acceleration can to be built. Torque during the
acceleration is known from the motor torque signals. There is however no signal indicating
braking torque directly. Part of it can be also captured by motor torque measurement, as
the electric vehicles are equipped with recuperation function activating during braking.
Here the negative torque made by brakes is problematic. Probably there is an option to
obtain it from the measurement of brake fluid pressure with a consequent calculation of
braking forces on brake discs. Nevertheless, this will require deep knowledge of the vehicle
parameters. Also, the model which is to be set up is complex and therefore it would be
time demanding to derive it precisely enough.
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NOMENCLATURE

Nomenclature
ABS anti-lock braking system

ESP electronic stability program

4WD four-wheel drive

RWD rear-wheel drive

x state vector

u input vector

y output vector

z measurement vector

k time step

Ts duration of time step

t time

e error

ė error dynamics

λ vector of eigenvalues

A state/system matrix

B input matrix

C output matrix

H measurement matrix

L Luenberger gain

l element of Luenberger gain

K Kalman gain

I identity matrix

Q process noise covariance

R measurement noise covariance

wk process noise

vk measurement noise

ψ yaw
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ψ̇ yaw rate

ϕ roll

χ pitch

χroad road slope

ωfl rotational speed of front left wheel

ωfr rotational speed of front right wheel

ωrl rotational speed of rear left wheel

ωrr rotational speed of rear right wheel

vfl wheel speed in ground contact point of front left wheel

vfr wheel speed in ground contact point of front right wheel

vrl wheel speed in ground contact point of rear left wheel

vrr wheel speed in ground contact point of rear right wheel

vc,fl front left wheel speed corrected to center-of-gravity

vc,fr front right wheel speed corrected to center-of-gravity

vc,rl rear left wheel speed corrected to center-of-gravity

vc,rr rear right wheel speed corrected to center-of-gravity

vCoG vehicle longitudinal speed in center-of-gravity

rD dynamic radius of wheel

δ steering wheel angle

δl left wheel angle

δr right wheel ange

bf vehicle front track

br vehicle rear track

lf longitudinal distance of center-of-gravity from front axle

lr longitudinal distance of center-of-gravity from rear axle

hCoG vertical position of center of gravity above the ground

m mass

mm mass of middle loaded vehicle
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NOMENCLATURE

g gravity acceleration

ax longitudinal acceleration

am,x measured longitudinal acceleration

ac,x corrected longitudinal acceleration

Mm,f motor torque on wheels on front axle

Mm,r motor torque on wheels on rear axle

Ft,x longitudinal traction force

FN normal force

FN,f normal force of front axle

FN,r normal force of rear axle

Fstat static force

Fdyn dynamic force

Froll rolling force

frr rolling resistance coefficient

µ road friction coefficient

49



LIST OF FIGURES

List of Figures
2.1 Example observers presented in diagrams . . . . . . . . . . . . . . . . . . . 4
2.2 System inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Vector block diagram of a linear system represented in state-space . . . . . 6
2.4 Process of Kalman filter algorithm . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Estimation algorithm flowchart . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Orientation of co-ordinate system . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Vehicle in xy-plane with parameters described . . . . . . . . . . . . . . . . 14
3.4 Wheel speed transformation explained by the figure . . . . . . . . . . . . . 15
3.5 Wheel speeds at ground contact point before correction to the center-of-

gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Wheel speeds at ground contact point after correction to the center-of-gravity 16
3.7 Effect of gravity acceleration on longitudinal acceleration measurement

when driving in slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8 Implementation of Luenberger observer for road slope estimation . . . . . 20
3.9 Road slope estimation result for ∼ 0◦ incline before post-processing . . . . 21
3.10 Road slope estimation result for ∼ 0◦ incline after post-processing . . . . . 21
3.11 Wheel slip situations in regards to rotational and translational velocities . 24
3.12 Acceleration criterion function - Raise and Decrease Flag ticks . . . . . . . 26
3.13 Acceleration criterion result with all wheels in over-slip . . . . . . . . . . . 26
3.14 Acceleration criterion result with all wheels in over-slip with rapid return

to traction and over-slip again . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.15 Forces acting on vehicle on inclined road, parameters from the equations . 29
3.16 Improved estimation result with comparison to acceleration criterion only

- all wheels in over-slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17 Improved estimation result with comparison to acceleration criterion only

- all wheels in over-slip with rapid return to traction and over-slip again . . 30
4.1 Estimation result by test of against the model - rear wheels in slip . . . . . 31
4.2 Estimation result by test of against the model - all wheels slip due to µ-jump 32
4.3 Estimation result by test of against the model - all wheels in long over-slip 33
5.1 Wheel speeds and vehicle speed estimate - all wheels slip . . . . . . . . . . 35
5.2 Criterion adaptation of matrix H - all wheels slip . . . . . . . . . . . . . . 35
5.3 Wheel speeds and vehicle speed estimate - whole sequence all wheels slip . 36
5.4 Front and rear motor torque . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Road slope estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Detailed view of second ABS braking . . . . . . . . . . . . . . . . . . . . . 37
5.7 Criterion adapting the H matrix of Front Right wheel during ABS braking 37
5.8 Wheel speeds and vehicle speed estimate in µ-split situation depicted . . . 38
5.9 Slope estimation with assumption to be ∼ 0◦, the influence of ABS breaking

on estimate can be noticed . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.10 Wheel speeds and vehicle speed estimate in selected data sequence . . . . . 39
5.11 Steering wheel angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.12 Motor torques on front and rear wheels . . . . . . . . . . . . . . . . . . . . 39
5.13 Wheel speeds and vehicle speed estimate in whole data sequence . . . . . . 40
5.14 Detail of short braking situation with wheel-lock . . . . . . . . . . . . . . . 40

50



LIST OF TABLES

List of Tables
3.1 Signals used as input into the vehicle speed estimation algorithm . . . . . 11

51



List of Attachments
1. Vehicle speed estimation algorithm - Simulink® model
2. Sample data recorded in real vehicle

52


	Introduction
	Background & Motivation
	Research of former use of the state observers

	Theoretical introduction to state estimation
	State observers
	State space representation
	System observability
	Luenberger observer
	Kalman filter

	Algorithm design
	Algorithm overview
	Co-ordinate system and model reductions
	Wheel speed sensor data pre-processing
	Longitudinal accelerometer data pre-processing
	Slope estimation

	Kalman filter for vehicle speed estimation
	Wheel over-slip criteria
	Wheel over-slip
	Acceleration criterion
	Torque criterion
	Subsidiary criterion


	Test against data from model vehicle
	Test against data from real vehicle
	All wheels slip & 10% slope
	Braking with ABS & -split
	Ice circle

	Conclusion
	Bibliography
	Nomenclature
	List of Figures
	List of Tables
	List of Attachments

