

1

Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

Bachelor Thesis

Blockchain infrastructure in e-Governance

and its Data Security

Yoseph Zeleke

© 2022 CZU Prague

2

3

4

Declaration

I declare that I have worked on my bachelor thesis titled “Blockchain infrastructure in e-

Governance and its data security” by myself, and I have used only the sources mentioned at the

end of the thesis. Furthermore, as the author of the bachelor thesis, I declare that the thesis does

not break any copyrights.

In Prague on 15.03.2022

5

Acknowledgment

I would like to thank my thesis supervisor Ing. Tomáš Vokoun, for the useful comments,

remarks, and engagement through the learning process of this bachelor thesis. Furthermore, I

would like to express my profound gratitude to my family and friends for providing me with

unfailing support and continuous encouragement throughout my years of study and writing this

thesis.

6

Abstract

In the current information culture, simple, convenient, and effective engagement between

government and citizens has become a common expectation. Electronic government solutions,

which are based on the automation of decision-making processes on a national scale, are helping

to achieve these expectations while improving government and social communications for every

member of society. Electronic government fundamentally alters the dispersed governance system,

affecting all aspects of document management and processing. Blockchain technology is a leading

tool for implementing this governance. Numerous nations are attempting to incorporate technology

into various government areas. This thesis will investigate the use of blockchain technology in e-

governance and will put it to the test through its integration. Thus, it concludes that technology is

still in its infancy, with plenty of room for improvement.

Key Words: Blockchain, Cryptocurrency, Decentralization, e-Government, Cryptography, Smart

Contracts, Ledgers, Transaction, Encryption, Mining

7

Abstrakt

V současné informační kultuře se jednoduché, pohodlné a efektivní zapojení mezi vládou a občany

stalo běžným očekáváním. Elektronická řešení státní správy, která jsou založena na automatizaci

rozhodovacích procesů v národním měřítku, pomáhají naplňovat tato očekávání a zároveň zlepšují

vládní a sociální komunikaci pro každého člena společnosti. Elektronická správa zásadně mění

systém rozptýlené správy a ovlivňuje všechny aspekty správy a zpracování dokumentů.

Technologie blockchain je předním nástrojem pro implementaci tohoto řízení. Mnoho zemí se

pokouší začlenit technologii do různých vládních oblastí. Tato práce bude zkoumat využití

technologie blockchain v e-governance a otestovat ji prostřednictvím její integrace. Dochází tedy

k závěru, že technologie je stále v plenkách a je zde spousta prostoru pro zlepšení.

Klíčová slova: Blockchain, kryptoměna, decentralizace, e-Government, kryptografie, chytré

smlouvy, hlavní knihy, transakce, šifrování, těžba

8

Table of Contents

1. Introduction to Blockchain Technology ... 10

2. Objectives and methodology ... 11

2.1. Objectives ... 11

2.2. Methodology .. 11

3. Literature Review ... 12

3.1. Definition of Blockchain .. 12

3.2. Cryptography .. 13

3.2.1. Unkeyed Encryption ... 14

3.2.2. Symmetric-key Encryption ... 16

3.2.3. Public-key Encryption .. 17

3.2.4. Signatures .. 18

3.3. Characteristics of Blockchain... 19

3.3.1. Trust .. 19

3.3.2. Decentralization .. 20

3.4. Blockchain Structure .. 22

3.4.1. Blockchain .. 22

3.4.2. Block ... 22

3.4.3. Transaction .. 23

3.5. Network Operations ... 24

3.5.1. Consensus ... 25

3.5.2. Mining Puzzle ... 26

3.5.3. Proof of Work ... 27

3.5.4. Proof of Stake ... 30

3.6. Ledger Types and Governance Models .. 31

3.7. Application: Smart Contracts ... 33

3.8. Regulatory Landscape .. 35

4. Practical Part .. 37

4.1. Functionality Test ... 37

4.1.1. Smart Contracts ... 37

4.1.2. Setting up experiments and its overview .. 41

4.1.3. Analysis of results ... 51

4.2. Data Integrity Test .. 60

4.2.1. Experimental environment .. 60

4.2.2. Calculation in the program.. 61

9

4.2.3. Integrity verification process .. 62

4.2.4. Cloud data integrity analysis based on blockchain 64

4.2.5. Implementation of some functions.. 64

5. Discussion and Results ... 66

6. Conclusion ... 68

7. References ... 69

8. List of Tables and Figures ... 70

8.1. List of Tables .. 70

8.2. List of Figures .. 71

8.3. List of Abbreviations .. 72

10

1. Introduction to Blockchain Technology

For the aim of understanding, however, Blockchain works associate degreed what its

capabilities are. It’s essential to linger over a number of the underlying principles and technologies

it was designed upon. The notion of blockchain first emerged in an exceedingly paper written by

Satoshi Nakamoto in 2008. It introduces the digital currency Bitcoin, which depends on a

decentralized and trustless platform, removing a central authority’s necessity to validate

transactions (1). It is supported three established technologies, a musical organization in a new

way, public-key cryptography, a distributed peer-to-peer network, and a protocol implementing an

incentivization system and record keeping (2). Whereas initially suffering from slow adoption from

each world and business, Bitcoin itself, similarly because the conception of cryptocurrencies and

Blockchain, typically fleetly gained traction. To date, there are around 1750 different

cryptocurrencies listed on over two hundred exchange platforms, presently having an additive

capitalization of over $ 263 billion, with a record high of virtually $ 800 billion in Dec 2017 (3),

as displayed in Figure 1 (orange denotes the Bitcoin market capitalization, grey represents all

different cryptocurrencies’ market capitalization combined).

Figure 1 - Cryptocurrencies Market Cap (4)

This section can start with presenting details on the definition and cryptological

foundations of the technology. It’ll proceed to elaborate on the most characteristics, structure, and

processes concerned in its operations. The present sorts and governance models will be examined

in additional detail.

11

2. Objectives and methodology

2.1. Objectives

This thesis aims to delve into the implementation of blockchain technology in e-

governance and test it out in its integration. During which will occur some problems and what

solutions it might give away during its implementation. Several countries are trying to integrate

the technology in different sectors of the government. This paper will thus focus on the

functionality and integrity of the technology.

2.2. Methodology

The methodology of this bachelor’s thesis is based on the study and gathering of

information on the topic from the literature, the analysis of professional information sources and

case studies, and the comparative method of applications of the technology. It will put emphasis

on the architecture, application, and security of the Blockchain network.

It will then head on to use several platforms mentioned in the paper to test out the

Functional aspect of the blockchain and test out the data integrity in cloud-based platforms and

statistical explanations and discussions.

Subsequently, it will put conclusions justifying the objectives of this thesis with the help

of findings in the experimental part of the paper.

12

3. Literature Review

3.1. Definition of Blockchain

Although the underlying blockchain technology was conceptualized and revealed in

Nakamoto’s written report in 2008 (1), a widely accepted definition wasn’t a part of this paper and

has not been developed till today. Jeffries, in her article” ‘Blockchain,’ is meaningless,” (5) collects

impressions from varied fields and use cases, reminiscent of governments, finance, law, etc., and

concludes that” establishing a clear definition can facilitate clear up some (of these)

misunderstandings.” Walch (6) notes that the unclearness of the vocabulary used relating to the

technology is thanks to many factors reminiscent of” word taint,” the development of some terms

getting undesirable meanings; technology variation, the continual development of all underlying

technology that Blockchain depends on; and” crossfield communication,” the fact that periods are

utilized across multiple fields and industries with variable degrees of technological expertise. The

International Standards Organization is presently engaged in the quality ISO/TC 307, which aims

at shaping and standardizing varied aspects of Blockchain and distributed ledger technology such

as terminology, security, privacy, and interactions through smart contracts (7). A definition of

Blockchain devised by Seebacher and Schultz (8), additionally to be adopted during this paper,

states the following:

A blockchain may be a distributed database that is shared among and specified by a peer-to-

peer network. It consists of a connected sequence of blocks, holding timestamped transactions

secured by public-key cryptography and verified by the network community.

Data is kept on the Blockchain, and it can be distributed across all nodes on the network, thus,

forming a decentralized network (9). All collaborating nodes agree on a collection of rules before

changing the blockchain network’s integrity and operating accordingly. Counting on the specifics

of the rules, the network’s type, aim, and practicality is determined. One of the fundamental

characteristics of a blockchain network is its immutability, i.e., all records created are permanent

and may be modified solely at a high cost. Many styles of blockchain networks exist. They’re

13

typically characterized supported the agreement and governance models employed, namely,

decentralized (public, not permission), hybrid (consortium, permissioned), centralized (private/

ruled by one organization, permissioned). (10) (11)

3.2. Cryptography

As critical different strategies wont to hide information, cryptography aims to form transmitted

messages incomprehensible to outsiders (12). The most data security objectives it pursues are the

following:

• Confidentiality: reassuring that content is merely obtainable to those licensed to possess

access to its information

• integrity: preventing unauthorized data manipulation

• Authentication: includes each entities authentication similarly to information and data

identification; some reliable mechanism is a gift that assures that entities are who they

claim to be which data has not been changed by unauthorized parties

• Nonrepudiation: preventing the denial of previous actions or transactions.

These characteristics are essential for Blockchain and form one among its most valuable

components. Achieving confidentiality once transferring data over insecure channels is completed

by employing an associate degree encryption scheme. Whereas there are several different

approaches to encryption, three usually used strategies stand out: atonal encryption, rhombohedral-

key encryption, and asymmetric-key encryption (also brought up as public-key). Atonal encryption

cryptological tools (primitives) are discretionary length hash functions, unidirectional

permutations, and random sequences. Some symmetric-key primitives are, for example,

signatures, symmetric vital ciphers, identification primitives, etcetera Public-key ciphers,

signatures, and identification primitives are samples of public-key primitives. Key-based

encryption is predicated on the institution of a critical try only notable to the users who must be

compelled to exchange information secretly. It’s attainable for one person to transmit a message

that will solely be recovered by the one who has the second key. In symmetric-key encryption, the

key for encryption and decipherment is the same, whereas in asymmetric, a try of different keys is

14

necessary. Key encryption is in situ to permit similar reusable information transformations to occur

repetitively.

In contrast, the keys are often modified if suspicion that an unauthorized party obtained access

occurs or as an alternative as a precaution. The safety cryptography provides supported the idea

that the other information (e.g., the algorithmic specification), excluding the actual essential try in

use, is or is public knowledge. Whereas keeping the particular encryption and decipherment

transformation secret may in theory offer extra security, in practice, it’s exhausting to assure those

are unbroken secret—nevertheless, the secrecy of solely the key pair suffices to ensure a sufficient

level of data security.

3.2.1. Unkeyed Encryption

Cryptological hash functions are a usually used tool for reassuring data integrity and message

authentication. As a result of these characteristics, they’re additionally one of the building blocks

of the Blockchain. They take an input (message) and turn out a hash price or just a hash as an

output.” The basic plan of cryptological hash performs is that a hash value is a compact

representative image of an input string and may be used as if it were unambiguously placeable in

addition to that string.” Typical usage of an atonal hash function would proceed with the

subsequent steps:

• The hash value of a message is computed then is kept safely.

• At a later purpose in time, another hash of the first message is calculated.

A hash function has two essential properties: Compression:

• the process takes associate degree input of discretionary length and produces an output of

a set bit size

• simple computation: the hash is simple to figure, notwithstanding the first input

Reflective on more specific properties, the modification detection codes (MDCs) atonal hash

class is of interest within the Blockchain. The primary of those properties is preimage resistance

15

Figure 2: Iterated hash function algorithm (25)

(also machine noninvertible), implying that thanks to the intense level of computational

complexity, it’s impossible to guess or generate the input supported by the ensuing hash output.

The second property is collision resistance; a collision signifies the event of a hash performs

manufacturing a similar production for two different inputs; applying MDCs, it’s computationally

impracticable to succeed in such a collision. Thus, it is accepted that the input is that the same if

the hash is the same; labeling the hash function is deterministic.

As illustrated in Figure 2, a hash function depends on repetitive processes that take associate

degree input of indefinite length then format it into separate fastened length blocks. The subsequent

steps are typically followed:

• The hash input x is split into blocks of fixed length xi, and additional information,

reminiscent of the length of the first input and extra bits to succeed in a definite bit length,

is appended.

• Then, each block xi acts as associate degree input for the compression performance of the

hash function h, which ends up in an intermediate result of fastened length.

The steps higher than are continual till the ultimate output reaches a predefined length. A final

elective transformation g is employed as a final step, the so-called identity mapping. Relating to

16

the safety of hash functions, ideal security is considered a gift if manufacturing a preimage (the

initial input) of a hash function needs 2n operations, and simulating a collision needs 2n/2 processes.

Within the context of Blockchain, an actual application of hashes is that questionable hash

purposes.” A hash pointer may be a pointer to wherever data is kept at the side of a cryptological

soup of the worth of that data at some fastened point in time.” additionally to providing the suggests

that to retrieve data, a hash pointer offers the likelihood to verify that the stored information has

not been changed since its initial storage.

3.2.2. Symmetric-key Encryption

Similar secrets won’t characterize Symmetric-key encoding to encrypt and decode the

information transmitted between parties over an associate degree insecure channel. Two categories

of functions are usually employed in practice: block and stream ciphers. Generally, it’s assumed

that the sole data that has got to be an unbroken secret once victimization key-based encryption is

that the key itself. within the case of symmetric-key encryption, meaning that each party must

assure that their keys (also referred to as secret-key ciphers) are kept secret as they’re identical,

and revealing any would jeopardize both the confidentiality and also the authentication of the

communication. The most crucial challenge for symmetric-key encryption is the questionable

fundamental distribution problem. To assure the integrity of the vital exchange transaction, it’s

sometimes necessary to encode the key in an exceedingly different key, implying the recipient

already possesses that key. Despite this challenge, the most advantages of victimization

symmetric-key cryptography lie the following aspects: the power to make ciphers with high rates

of information throughput; the comparatively short, nevertheless cheap, keys used which offer a

high level of protection; algorithms that are compared to others inexpensive to process; the fact

that ciphers are wont to create stronger ciphers through easy transformations. (13)

17

Figure 3: Public key encryption (25)

3.2.3. Public-key Encryption

Public-key cryptography, additionally brought up as asymmetric-key cryptography, is

predicated on the existence of a try of keys, namely, a non-public key associate degreed a public

key, every appointed to an entity that has to verify its identity electronically or to encode

information. The method is based on the premise that the general public secret’s created overtly

obtainable, whereas the private key is an unbroken secret. Messages that are encrypted

victimization the public key will solely be disclosed through the employment of the corresponding

private key. The most advantages of using public-key cryptography are the following:

• The transmission of encrypted data over insecure channels with the receiver’s power to

decode the information upon receiving it.

• Nonrepudiation: the sender will not deny the fact of causing the data or the data being

altered at associate degree purpose throughout the transmission.

Figure 3 illustrates the process of public-key encryption between two parties:

✓ The entity B establishes a key pair consisting of the private key d and the public key e.

✓ B sends the public key e to the lefthand party A over an unsecured channel but keeps d

private.

18

✓ A can use an encryption transformation to encrypt and transport a message to B using the

public key e.

✓ The message may then be decrypted by B using the private key d.

Compared to symmetric-key encoding, public-key encryption needs additional calculations,

making it inappropriate for enormous amounts of data. However, a possible, usually applied

workaround is to use public-key encryption to send a symmetric key, thus, finding the critical

distribution drawback. Diffie and playwright conceptualized uneven key encryption to unravel the

urgent distribution problem within the first place. Furthermore, the public key is transferred over

an insecure channel (as evident in Figure 3), enabling anyone possessing the general public key to

send encrypted messages that solely the essential private entity will decrypt. (14)

3.2.4. Signatures

Aboard the encryption as mentioned earlier methods, digital signatures have applications for

authentication, conserving information integrity, and providing nonrepudiation.” A digital

signature of a message may be a range obsessed with some secret notable only to the signer, and,

additionally, on the content of the statement being signed.” this enables the message to be digitally

connected with its origin. one among the essential uses of such signatures is for the verification of

public vital owners’ identities and, as a consequence, preventing that the sender of a message

denies the dealings at a later point. Functionally, a non-public key assumes the role of a digital

signature, thus, authenticating the origin of a transmitted message. The message receiver will then

utilize the general public key to decode the message, therefore, establishing the sender’s identity.

If a sender denies authoring a statement, the match between their private key and the public key

wont to decrypt the message is Proof that they were the first author.

19

Figure 4: Blockchain characteristics (8)

3.3. Characteristics of Blockchain

In keeping with Seebacher and Schuritz’s literature review, blockchain technology creates

a setting that will be best characterized as decentralized and trust inspiring. Thanks to the system’s

design and the technologies it was designed on, as illustrated in Figure 4, more parts form these

facets. Transparency, information integrity, and unchangeableness underline the trust perspective,

whereas privacy, reliability, and flexibility strengthen the worth decentralization delivers. More

details on every aspect are going to be provided during this section.

3.3.1. Trust

Blockchain’s provision of transparency is alleged to support the peer-to-peer nature of the

network it’s built on, enabling shared and public interactions among the participants. Thanks to

the fact that every transaction is publicly seeable and broadcasted to the whole network, all actors

In the system can acquire timely and thorough information. Furthermore, since a central authority

who may singlehandedly influence transactions, permit them, discard them, or alter them is

replaced with a trust model supported networkwide consensus, transparency and trust are essential

characteristics of Blockchain.

The technology additionally facilitates information integrity due to the reliance on public-

key encryption and hashing that modify high-security levels and govern the direct interaction with

data keep on the system.

20

The third necessary characteristic of blockchain causative to declarative trust is its

questionable unchangeableness. Theoretically, once a dealing is approved by the network

participants, further to a block, and the league is added to the Blockchain, it can’t be modified.

This transformation is processed through the employment of agreement mechanisms, reminiscent

of Proof of labor and Proof of stake, that permit the participants to demonstrate their

trustworthiness. Whereas the immutability claim is often cited, it should be noted that a” sufficient

quantity of computing power” is wont to alter a blockchain (for example, within the case of the

Ethereum decentralized Autonomous Organization fork in 2016). Thus, Conte Diamond State

Leon et al. describe the unchangeableness property of Blockchain as” emergent,” that’s to imply

that it’s not incontestible nevertheless is desired.

Additionally, it is a challenge to say with certainty that such characteristics hold in reality.

Some analysis (e.g.) has been done to analyze blockchains’ performance and security, specifically

the Proof of labor algorithm. In contrast, others reminiscent of Cucurull and Puiggali created a

proposal that” enhances the safety of the immutable logs” and provides more integrity and

nonrepudiation by” publishing log identity proofs on the Blockchain.”

3.3.2. Decentralization

Within Blockchain, trust and decentralization are interconnected as transparency, information

integrity, and unchangeableness is necessary for creating a decentralized network.

Decentralization, on the other hand, together with the aspects of privacy, reliability, and versatility,

is important to assure the participants’ participation. To elaborate, privacy in an exceedingly

blockchain-based system is builtin through the employment of public and personal keys that

manifest users while not the necessity for revealing real identities. whereas transactions are derived

back to a particular key, thus, creating the network pseudonymous, privacy continues to be

enabled. , Blockchain’s dependableness is an associate degree other facets that are tagged as”

emergent” thanks to bound risks that, whereas unlikely and machine difficult, still exist. The

reliability claim is predicated on two factors: firstly, the data and transactions being shared and

kept in an exceedingly distributed manner across the network, and secondly, on the machine-driven

nature of the system. However, Conte Diamond State Leon et al. argue that if the Blockchain has

21

been tampered with, for example, through an individual usurping fifty-one or additional p.c of the

computational power within the network, such an attack is left unnoticed, so compromising the

reliability of future transactions. Suppose one party controls a minimum of 51% of a blockchain

network. In that case, they will stop new transactions from gaining confirmation through the

agreement protocol, so they block different users from victimization the network as intended.

Relating to versatility, the character of blockchain technology permits developers to contribute

their own code and extend the appliance landscape, thus enabling the event of a range of use cases

and more shifting aloof from centralized systems.

To better comprehend blockchain, let us examine how Bitcoin implemented it. Bitcoin,

like a database, requires a network of computers to keep its blockchain. In the case of Bitcoin, this

blockchain is just a special form of database that records every Bitcoin transaction ever made.

However, in Bitcoin's databases, these computers are not all housed in the same building, and each

computer or set of computers is run by a distinct individual or group of individuals.

Bitcoin is made up of thousands of computers, yet each computer or set of computers that

stores its blockchain is located in a different geographic location and is managed by a different

individual or group of individuals. The machines that comprise Bitcoin's network are referred to

as nodes.

Each node in a blockchain maintains a complete record of all data placed on the blockchain

since its beginning. The data for Bitcoin is the complete history of all Bitcoin transactions. As a

result, if a node's data has a mistake, it may utilize the thousands of other nodes as a reference

point to repair the issue. In this manner, no node in the network may modify its data. As a result,

the history of transactions within each block that constitutes the Bitcoin blockchain is irreversible.

Consider what would happen if one user tampered with Bitcoin's transaction record; all

other nodes would cross-reference and readily find the node that contained the wrong information.

This system contributes to establishing a precise and visible sequence of occurrences. This

information is in the form of a list for Bitcoin.

22

Figure 5: Simplified blockchain structure (26)

3.4. Blockchain Structure

3.4.1. Blockchain

The Blockchain as a concept, i.e., not concerning any specific application however rather

to the information structure overall, maybe a combination of blocks. As a consecutive dealings

database, it keeps a record of all transactions that have occurred, bundled in interconnected

timestamped blocks (Figure 5). the primary block in every Blockchain is named a genesis block

and is outlined by the developers of the particular Blockchain. Thanks to the interlacing of all

blocks supported hashes. Any changes are created within the Blockchain when the acceptance of

a given block is derived back as all blocks have a similar genesis block. Every new block contains

the hash of the previous block. Therefore, if something is altered, the hashes won’t match, so

demonstrating inconsistency and tampering.

3.4.2. Block

As evident from Figure 5, every block within the chain contains two objects: a block header

containing data and a bundle of dealings. The block’s header helps to verify the validity of the

transactions keeps in it. It generally contains the subsequent information: the present version of

the block; the header hash of the previous block; Merkle root hash (hash of all transactions

enclosed in the block); a timestamp; a present (random price miners modify to unravel the machine

puzzle). Typically, each transaction that’s new to the network is enclosed within the latest block.

23

Generally, blocks were introduced into the blockchain network to optimize its operations,

and efficiency, i.e., rather than corroborative individual transactions on the network, nodes will

handle bundles of multiple transactions forming a block simultaneously. Block size is one

dimension that influences the operations of the network because it indirectly defines the number

of transactions included in an exceeding block, that influences the general output of the system,

i.e., larger blocks lead to lower propagation speed, which ends up in additional questionable stale

blocks, resulting in a less secure network. Stale blocks are specified; they are not enclosed within

the longest chain, thanks to conflicts. They will trigger chain forks, thus, speed down the general

growth of the Blockchain and jeopardizing its performance and security by giving a plus to

potential attacks, reminiscent of double-spending.

A Merkle tree, named when its creator Ralph Merkle, may be an organization that

represents a binary tree designed victimization Hash pointers. All blocks containing information

are sorted into pairs of 2, and also the hash of every one of them is kept in an exceeding parent

node. In turn, the parent nodes are grouped into pairs of two and stored in another parent node one

level up the tree. This procedure is continued till all blocks are sorted into one block that’s the

foundation of the tree. The foundation of the Merkle tree is kept within the block header and helps

assure the integrity of the block and also the dealings enclosed in it.

3.4.3. Transaction

A transaction is that the smallest building block of a blockchain. It consists of a sender

address, a recipient address, and a value. There are bound rules that every transaction has to obey.

one among these states is that for every transaction on the Blockchain, the input must equal output,

wherever these represent any tangible or intangible value. Extra rules rely upon the particular

blockchain application and are sometimes enforced through the employment of a scripting

language reminiscent of Forth in Bitcoin. Such rules are the underlying infrastructure for smart

contracts, which can be represented intimately within the following section.

Any dealings on the Blockchain basically modifies the state of the whole chain. Thanks to

the shared, decentralized, and distributed nature of the ledger, all nodes on the Blockchain that

24

severally hold a replica of the chain have to be compelled to method the transactions to get an

updated copy. As noted previously, dealings are bundled in blocks associate with degreed unfold

throughout the network. Afterward, they’re checked for correctness and validity by every node

following the predefined rules. Every transaction includes a minimum of one input and at least one

output. The additive value of all inputs should equal that of all outputs to assure that no partly

unexpended transactions occur. Thus, the worth that isn’t transferred to a different entity is

additionally tagged as an output (unspent transaction). The sole difference between input and

output allowed, wherever input is larger, is to account for transaction fees that are paid to the

laborer who establishes the actual block.

Additionally, output values can’t be larger than input values to forestall the creation of

inexistent values on the Blockchain, reminiscent of cryptocurrency. Associate degree input may

be with respect to an output from a previous transaction that permits for a verifiable stream of the

transferred value. The output consists of a quantity and an address. In addition, every input

additionally includes a digital public signature/key of the sender, scriptSig, signifying their

credibleness and certifying that they’re after all allowed to send the enclosed value. Solely the

entity in possession of the matching personal key has access to defrayal the dealings output. (2)

3.5. Network Operations

The subsequent subsections are dedicated to elaborating on the {ways|ways that|ways in

that} blockchain networks operate, specifically, how their integrity is ensured by different

agreement mechanisms and the way new data is further to the chain. Whereas many styles of

blockchains exist, namely, decentralized, permissioned (centralized), and hybrid, the processes

below specialize in the classical decentralized perspective.

25

3.5.1. Consensus

A consensus mechanism is a vital facet of a blockchain-based system, and it’s tightly

interlinked with its peer-to-peer distributed nature. The implementation of distributed consensus

in an exceeding network with multiple nodes, a number of which are potentially malicious, aims

at establishing dependableness associate degreed includes two aspects: firstly, delivering a price

(in this context, a block) on that all honest nodes agree and secondly, reassuring that the worth was

generated by an honest node. Thus, the formula permits the community as a full to verify that every

block projected by a node is legitimate and, in an exceeding addition, serves to avoid conflicts. So

as to try to do this, all nodes on a blockchain abide by a collection of reciprocally specified and

self-enforced rules that are outlined, counting on the nature, purpose, and underlying assets in a

blockchain. Therefore, the additional nodes participate in an exceeding network, the stronger the

agreement mechanism becomes, thanks to the number of actors enacting their own rules. The

fundamental rules a blockchain follows are the following: 1) the valid chain is that the one that

contains the genesis block; 2) it contains solely blocks deemed valid in keeping with the chain’s

rules; 3) the chain is the longest that exists within the network, i.e., together with the foremost

blocks. Furthermore, a consensus mechanism will vary in style, counting on the particular

cryptological validation technique encoded in the distributed ledger. The Bitcoin ledger, for

example, utilizes the” proof of work” mechanism to produce agreement {in a|during a|in associate

degree exceedingly|in a very} globally distributed blockchain network. More details on” Proof of

work” and an alternative, namely,” Proof of stake,” are bestowed within the following sections.

The final consensus reaching method entails the following: at regular intervals, for example, every

10 minutes, one haphazardly selected node broadcasts a group of nevertheless unapproved

transactions for an ensuing block on the chain; then, every node executes a consensus protocol,

checking the validity of the projected transactions; if the consensus protocol is run successfully, a

legitimate block is going to be selected, and its hash will be enclosed in the next block. Although

some valid transactions weren’t enclosed within the projected block, they’re going to stay

outstanding and expect the ensuing valid block they will be proposed and included in.

Pseudonymity, as antecedently mentioned, maybe a goal pursued by some blockchains,

reminiscent of Bitcoin. Whereas some transactions can still be connected to 1 another, no node is

forced to reveal its true identity. Additionally, as a result of the shortage of authority dominant the

26

identities of the network participants, some nodes can produce copies, all controlled by one

individual with the aim to maliciously influence the constructions of blocks, so getting a better

degree of control. This is often brought up as a Sybil attack. The shortage of identities and also the

simple making of extra nodes produce difficulties for the safety of the agreement protocols. This

challenge, involving the Byzantine Generals Problem, common in distributed systems, is

overcome by choice of a random node through the employment of a mining puzzle. That node

obtains the correct to propose ensuing block to be enclosed within the chain. Just in case that node

is detected to be malicious by different nodes, it’ll not be verified, thus, will not be enclosed within

the chain, therefore, implicitly reaching an agreement that the node isn’t trustworthy and

lengthening the chain with associate degree other valid blocks. Nevertheless, there are risks that

attack reminiscent of the double-spend attack, in the case of a cryptocurrency-based blockchain,

occur in the network. Such an attack is characterized by a particular node trying to pay a similar

coin doubly by 1st causing a coin to a different user then provision dealings that returns the at the

start spent coin back to an address controlled by the payer. Therein case, if the second transaction

is valid and included in an exceedingly block, the coin is spent twice. However, thanks to heuristic

mechanisms reminiscent of nodes corroboratory the blocks that they 1st detected within the

network and, additional importantly, incentives, the probability of such attacks are drastically

reduced.

3.5.2. Mining Puzzle

The method of making a replacement block and also the real-world resources invested

within it are altogether brought up as mining, a vital component of all blockchain-based systems.

From a technical perspective, mining involves the steps printed above, namely, validating, storing,

and building a dealings tree of all transactions declared in the network in an amount of time. In

order to construct and propose a block out of this information, at the side of the attendant metadata,

a node should notice the answer to a mathematical puzzle. Once the solution is found, it’s

additionally enclosed within the block, and it is then broadcasted to the network. Then, the network

node can use the agreement mechanism explained higher than to validate the block and

domestically store it. The mining puzzle not solely assures the randomness of the node that

proposes a block however also regulates the time intervals at that new blocks are issued. For

27

example, in the Bitcoin network, the typical time it takes for a replacement block proposal is 10

minutes. Thanks to the interdependence between the provision of resources (computing power)

and also the time it takes to unravel a puzzle, the puzzle difficulty is adjusted to assure the

approximate regularity of the interval. The introduction of such a mining puzzle prevents malicious

nodes from posting faux transactions and threatening the integrity of the network, thus, acting as

an answer to the Byzantine Generals’ Problem. whereas multiple mathematical puzzle formats

exist and are applied across different blockchain networks, the foremost widespread ones are”

Proof of work” and” Proof of stake,” which are explained below.

3.5.3. Proof of Work

The agreement mechanism is that the most generally used consensus formula among existing

blockchains. The underlying plan is that the choice of the random node that forms the ensuing

block within the chain is proportionately supported by the resources obtainable thereto node.

Within the case of Proof of work, the resource in question is computing power. Supported the

notion that a minimum of fifty-one percent of the network should be controlled by one entity for a

Sybil attack to be launched, thus, nullifying the Blockchain’s integrity, the assumption is that it’s

getting ready to not possible for associate degree individuals to succeed in such a high level of

management over the computing power obtainable {in a|during a|in an exceedingly|in a terribly}

blockchain network. The operation of the POW formula is going to be detailed on supported the

Proof of labor system employed in Bitcoin.

The Bitcoin network obtains proof of work victimization hash-based puzzles. So as to

propose a replacement block, a node has to notice a random price (nonce) that concatenated with

the hash of the block falls in a bound target value bracket. This target area may be a very tiny set

of the general output space. Forward that hash functions are cryptographically secure, making an

attempt all attainable mixtures is that the sole thanks to noticing an answer to such a problem.

Therefore, it’s doubtless that the node which can find the answer to the matter is the one that has

the foremost computing power available. Hash puzzles have three necessary properties. The

primary one is the machine difficulty, which will increase over time, each 2016 block, to adapt to

the increasing handiness of computing power within the network. The second property ensuing

28

from this adjustment is the variability of the price for a block. Considering the increasing difficulty

and also the continuous growth of the network, the effort to mine a block will increase over time,

thus, either increasing the demand for additional computing power, i.e., hardware, or decreasing a

node’s possibilities to seek out a block. The third essential property is that the simple corroborative

answer to the puzzle revealed by a node. On average, it takes a node 1020 to do to find a present

that fulfills the condition that the hash falls below the target, which nonce should be published as

a part of the block. Once that’s done, the other node will verify that the hash of the block’s contents

is below the target value. This asserts the decentralization characteristic of Blockchain as no central

authority is required to verify the honestness of the blocks. The hash perform employed in Bitcoin

is double SHA256, which ends up in an exceedingly 256bit (64character) output. The concrete

drawback is to seek out a block whose hash starts with a given number of zero bits, wherever the

amount denotes the difficulty of the puzzle. Whereas Proof of labor may be a reliable mechanism

for reassuring the integrity of the network, there Are serious concerns over the intensive power

usage and questionable property of the present design. Diamond State Vries estimates that as of

March 2022,” about twenty-six large integer hashing operations are performed each second”

within the Bitcoin network, whereas it processes solely twenty-three transactions per second.

Whereas hard the whole power consumption for the Bitcoin network remains a challenge thanks

to its distributed and close nature, in keeping with a report revealed by the International Energy

Agency already in 2022, it surpassed the yearly usage rates of Thailand (195 TWh), among others,

and is projected to grow to one hundred twenty-five TWh each year by March 2022 (Figure 6)

(15). additionally to the energy utilization concern, Bitcoin mining is dominated by specialized

hardware creating the method loads additional efficient, namely, associate degree application-

specific microcircuit (ASIC), that is tailor-made for a particular use, during this case, the mining

of Bitcoin, and outperforms any graphics process unit (GPU), effectively pushing the miners

counting on those out of the mining market. This tendency threatens the decentralization

conception of the Bitcoin network, move a challenge for one among the basic characteristics of

Blockchain.

29

Figure 7: Energy consumption by country

Figure 6: Energy Consumption by Country (15)

Incentives: Proof of labor and specifically Bitcoin (and different cryptocurrencies) believe

a model with two separate rewards to incentivize honest behavior in laborers. The primary one is

that the block reward. Every recently created block includes extra coin creation dealings that grant

the miner the correct to distribute the reward by either causing it to associate degree address of

their own or elsewhere. By provision the reward, the node is incentivized to behave honestly so as

to possess different nodes further extend the agreement chain. The block reward is fastened for the

period of mining 210,000 blocks, which commonly takes around four years. Currently, the reward

is 12.5 Bitcoin, whereas, at the origin of the currency, it was 50. This mechanism is enforced to

make sure the finite amount of obtainable coins, twenty-one million, mimicking real-world

currencies. The second incentive mechanism in Bitcoin may be a dealings fee. The difference

between the input associate degreed output values for any transaction is reserved by the creator of

a transaction and issued to a block laborer as a fee for the transaction being enclosed therein block.

Whereas such action is voluntary, additional nodes follow the system so as to assure a decent

service level on the network.

30

3.5.4. Proof of Stake

Proof of stake (PoS) is another agreement protocol designed for public blockchains. It

absolutely was designed as an alternate to Proof of labor to counteract, among different issues, the

energy consumption issues bestowed previously. Whereas several PoS variants are developed, the

mechanism isn’t as widely adopted as PoW, with the foremost outstanding blockchain

victimization it’s Ethereum. The nodes in PoS are denoted as validators, and rather than mining

the Blockchain, they validate dealings so as to earn a transaction fee. The ability of every validator

is predicated on the proportion of coins command by the node. Therefore, once the agreement

formula haphazardly selects a node to propose the ensuing block and broadcast it to the network,

the likelihood that a node is chosen depends on the quantity of stake it holds. So as to become a

validator, one will send special dealings that turn the cryptocurrency they hold into a deposit, i.e.,

their stake.

The most advantages of PoS over POW embody the subsequent aspects :

• the safety of the Blockchain isn’t obsessed with giant energy consumption. Thus, the

network is additional property within the long run.

• There are additional opportunities to employ techniques that discourage the formation of

centralized unions and thus jeopardize the decentralized nature of Blockchain.

• Possessing a larger stake not only entitles you to proportionate gains as a critical PoW, but

also provides you with the means to acquire additional computing power.

• Ability to introduce economic penalties for 51% attacks, thus, creating them loads dearer

as security within the network originates from putt price at a loss thanks to the validators’

deposit.

Despite these positive aspects of the PoS protocol, there are many vulnerabilities that need

more development to assure the broader adoption of PoS. Most of the problems are due to the

actual fact that PoS isn’t tuned in to any external factors that occur on the far side of the Blockchain

(in opposition, machine power in POW is an associate degree external factor); therefore, there’s

no affiliation between PoS and also the physical world. The primary drawback is that the

questionable” nothing at stake” concerning the power of a validator to, at the same time, mint

31

blocks on multiple branches/forks once they occur accidentally or deliberately. Such a scenario

will build it easier to double pay or issue different attacks on the Blockchain. Another potential

threat is the” long-range attack” at an assaulter with a sufficient stake who can decide to build an

alternate chain beginning either at a random block or even at the genesis block. more weaknesses

embody the likelihood for double-spending, the initial distribution problem, which provides a plus

to entities that joined the chain at associate degree earlier purpose in time, etcetera Furthermore,

the social element of PoS and also the inability to objectively confirm the PoS system state

primarily based solely on protocol rules weaken its” decentralization facet and mathematical

soundness.” Modification of PoS similarly as hybrid PoWPoS models, reminiscent of Slasher, are

developed and enforced in varied blockchain systems in a shot to mitigate the abovementioned

risks. Delegated PoS systems offer the validators the chance to 1st vote on a gaggle of delegates

who then have the right to come up with blocks one when the opposite in exchange for a bequest

and acquire disciplined just in case of malicious activity. During this setup, a block is formed by

one user. However, it has to be signed by over one delegate. (16)

3.6. Ledger Types and Governance Models

When the initial blockchains reminiscent of Bitcoin and other cryptocurrencies gained popularity,

more use cases and architectures for the dealings important in peer-to-peer networks were designed

and implemented. The three styles of blockchains, counting on the amount of decentralization they

are characterized by, are public (decentralized), hybrid, and personal (centralized). Thanks to the

inherent decentralization facet of blockchain technology and also the claim that the private kind

doesn’t fulfill this aspect, the overarching” distributed ledger technology (DLT)” term is employed

to consult with the three variations. Figure 7 classifies the kinds of blockchains in keeping with

two features: obscurity and trust in an exceeding validator. Obscurity denotes the degree to those

participants within the Blockchain are identified. Trust in a validator on the coordinate axis

describes the degree to which penalization for wrongful conduct is inevitable; i.e., in a

permissioned blockchain, nodes would like to be allowed to participate and acquire express rights

to conduct bound actions Table one is customized from Kruijff and Weigand And summarizes the

32

Figure 8: Types of Blockchains Trust vs. Anonymity (27)

most characteristics of the three styles of blockchains and provides a summary of the nomenclature

wont to describe a similar notion across the literature.

Public blockchains reminiscent of Bitcoin have supported the Proof of labor agreement

mechanism and that they aren’t permissioned. Thus, anyone will participate in them and validate

transactions. The character of the network additionally guarantees the pseudonymity of all nodes.

Thanks to the open and unconditional participation character of the network, the level of trust

among participants are outlined as” low.”

Thanks to the antecedently mentioned giant resource demands, the measurability of those

networks are limited. Ethereum, for example, is additionally a public blockchain; however, it’s

tagged as permissioned due to the usage of the Proof of Stake algorithm, i.e., one should purchase

coins before having the ability to participate within the block validation process, thus, offering a

better degree of trust in the validators in the network. Public blockchains have a high potential to

disrupt multiple industries and varied business models, counting on intermediaries and trustworthy

third parties to interact value.

Hybrid blockchains also brought up as association blockchains, are ruled by a preselected

group. Such blockchains are quicker and additional scalable and offer a better degree of privacy

for all dealings. The agreement mechanism is predicated on validation from a preselected set of

nodes and a change of integrity. The network is additionally controlled by a closed group. Variable

33

degrees of reading rights are granted, wherever some chains may be receptive to the general public

to view. Such a consortia setup offers a reduced rate of transaction prices and may replace a paper-

based system to exchange documents among a closed cluster of stakeholders. Thanks to the hybrid

nature, Kravchenko characterizes this sort of ledger as permissioned, private (Figure 7) as

underneath bound social agreement anybody who qualifies will become a validator.

Private blockchains are under the management of one organization. Write permissions are

monitored by that entity, whereas scan privileges could also be granted to a wider audience or

restricted. A non-public blockchain may be a permissioned ledger, thus, enabling a high level of

trust among the participants. Such blockchains are appropriate for applications reminiscent of

auditing and database management that are internal to one company.

3.7. Application: Smart Contracts

As this paper can more linger over specific implementations of blockchain use cases, it’s

essential to look at the appliance layer of the system too. The foremost outstanding and notable

wide application of Blockchain on the far side cryptocurrencies is predicated on smart contracts.

The term originated from Nick Szabo’s cryptography add 1996. It was outlined as” a set of

promises, per digital form, together with protocols among which the parties perform on the

opposite promises.” Furthermore, concerning Bitcoingrounded smart contracts, technology

applications used for mechanically transferring cash as a trigger event are widely A smart contract

may be a mechanism that mechanically distributes digital assets between 2 or other parties,

wherever some or all of them 1st deposit the assets into the smart contract.

Consensus Type Governance Trust Scalability

Decentralized Public Pseudonymous nodes/
Low Limited

Based on proof and cryptoeconomics Not permissioned No centralized management

Hybrid Consortium Pre-selected set of nodes/
Medium Unlimited

Based on validation by a pre-selected set of nodes Permissioned Multiple organizations

Centralized Private
Single organization High Unlimited

Based on validation Permissioned

Table 1: Public, Hybrid, and Private Blockchains

34

The main advantage of implementing a smart contract is that the execution is warranted

underneath a specified set of conditions and is freelance of someone entity among or on the far

side of the Blockchain while not the necessity for a central authority or a legal system.

Additionally, smart contracts radically cut back dealings prices thanks to the employment of

standardized rules expressed in digital type (machine-readable code). They will flip legal

obligations into machine-driven processes, ensure a larger security level by being tamper-resistant,

and reduce reliance on third parties reminiscent of intermediaries.

Bitcoin uses some smart contract typescripts to make sure the transfer of coins between

parties. However, to modify the event of discretionary scripts, a Turing-complete programing

language is needed. Ethereum accomplished this by building a separate” abstract foundation

layer,” thus, permitting anyone to make smart contracts with their own rules and formats (17).

Whereas smart contracts offer virtually endless potentialities relating to what is enclosed in them,

there are bound challenges to be thought of too. Firstly, a smart contract’s mechanisms are

somebody’s creation, i.e., a programmer develops the code. Thus, it will still embody some logical

errors that can’t be accounted for by the contract itself. Secondly, while such agreements have an

advantage thanks to their accuracy, cryptological and analytical safety, traceability, and

unchangeableness features, they’re not thought to be de jure enforceable contracts at the instant.

They aren’t accepted in an exceeding court of law. Finally, smart contracts solely believe data

provided to them. Therefore, they can not take actions supported by external circumstances, which

poses another challenge once considering the immutability aspect, i.e., there’s no chance to change

a smart contract kept on the Blockchain. (18)

Decentralized Autonomous Organizations (DAO) function a long extension to individual smart

contracts of upper complexity, wherever organizations like structured are sculptural on the

Blockchain. Rather than following ancient governance models, DAOs believe the distributed

blockchain network and offer shares through Initial Coin Offerings (ICOs) to autonomous

stakeholders, thus, enabling deciding and operations management through the employment of

distributed agreement and smart contracts. The viability of such organizations and their attendant

parts are still to be evaluated for their success and sustainability.

35

3.8. Regulatory Landscape

The continual development of varied applications of Blockchain, together with

cryptocurrencies, ICOs, smart contracts, etc., in an exceeding multitude of industries, with a big

dominance within the monetary sector, has raised several queries relating to the legal and

restrictive implications of the technology. The quick pace of amendment causes the shortcoming

of restrictive agencies worldwide to introduce relevant laws and regulations. The bulk of the

discussions are fragmented and focus totally on ICOs and cryptocurrencies. As evident from

BitLegal’s map of regulatory attitudes toward blockchain technology, sentiments vary from

permissive (mostly in North America and Europe) through” contentious” (in the majority of Asia)

to” hostile” in states reminiscent of China (19) with loads of conditions remaining within the”

unknown” state.

Twenty-three of the ECU trade unionist states signed a declaration on the institution of an ECU

Blockchain Partnership on Gregorian calendar March 10, 2018, communicating a disposition to

support the event of the technology for the advantage of the general public and private sector.

However, the final information Protection Regulation (GDPR), effective since May 25, 2018, is

thought to be a challenge for implementing blockchain applications involving personal data thanks

to the clash between Blockchain’s unchangeableness characteristics and” the right to be forgotten.”

Countries reminiscent of Japan and Germany acknowledge Bitcoin as a currency and have already

obligatory taxes on it. In contrast, China, Indonesia, and South Korea have prohibited the

employment of cryptocurrencies and ICOs. The G20 meeting in the Gregorian calendar month

confirmed the member states’ position on remaining alert relating to developments within the

cryptocurrency space. It recognized the potential importance of technology as a full for” financial

systems broader economy”. From among the blockchain space, there’s typically a positive

perspective that” increased regulation, as long because it is completed with the cooperation of

trade stakeholders and with the aim of de-risking the broader market, can hasten blockchain

adoption by giant enterprise users and reassure institutional investors.” Implications for legal and

governance processes and structures and also a gift and are being acknowledged thus far

principally in analysis with authors reminiscent of Raskin and Diamond State Filippi and Wright

suggesting that smart contracts, specifically, and Blockchain generally have to be compelled to be

36

recognized for their potential and integrated among existing processes and controlled through”

new rules and new approaches to legal thinking.”

37

4. Practical Part

In this part I will use the information gathered from the literature review to formulate an

experiment and achieve the objectives of this thesis. I will mainly focus on functionality testing

and data integrity testing to fulfill my targets.

4.1. Functionality Test

4.1.1. Smart Contracts

Smart contracts are self-executing business automation applications that run on a

decentralized network such as blockchain. In most cases, they are a set of digital contracts with a

set of rules, and they can be enforced without the help of a third party. In the blockchain, many

people work together to make smart contracts. Once the smart contract is deployed, it will be added

to the blockchain network and sent to all nodes that can check it.

However, some researchers have said that writing secure smart contracts is not easy

because of how the EVM works. A contract cannot be changed after being put into place, which

means that any flaws could cost much money if exploited.

One of the most popular decentralized investment fund projects called DAO, was attacked

in 2016. The figure below is a simplified version of the DAO contract used in the figure. It uses a

mapping called balances to track how much money each project has raised. When a project gets

enough support from the community, the owner can call the withdrawBalance function to get the

ether out of the DAO. It was a mistake, but the transfer mechanism in DAO allowed the ether to

be sent to an outside address before the internal state was changed. In this way, the attacker can

steal more ether from the contract. Call.value would be called by the withdrawBalance function

and the call.value method would be called by the withdrawBalance function by the caller’s fallback

function. Then there was another withdrawal. Because the balance array’s value had not been

changed, the contract would keep giving the attacker ether until the balance of the contract was 0,

at which point it would stop. It cost $60 million and caused the hard fork of Ethereum, which

caused many bad things.

38

Figure 9: Algorithmic steps during transactions

4.1.1.1. Testing Technologies and Tools

Many people found flaws in smart contracts to ensure that everyone’s money and privacy

were safe. During a literature review, I looked at 27 papers published between 2016 and 2020 and

used traditional software testing methods to look at the security of smart contracts. Table 3 shows

them in order of when they were made. Here a quick summary will be given of the main ideas

behind these tools, organized by the detection method they are primarily based on. When the

conclusion comes, how they evaluate their proposed methods will be discussed, which will be

discussed in more detail in the next section.

39

Static Analysis. Static analysis is a fashion for studying a program without executing it,

and it may be used at both the source law and bytecode situations. While stationary analysis ways

may examine an entire law base, they can induce numerous false cons. SolidityCheck parses each

function at the source law position and compares it topre-defined vulnerability patterns. Generally,

other tools will admit double bytecode and also use it to induce a bespoke intermediate

representation, similar as SSA used by Slither, Datalog used by Security and MadMax, XML

parsing tree used by SmartCheck, and XCFG used by Extrasensory perception. This format defines

and matches vulnerability patterns to screen out questionable law particles. Formal verification, as

a static analysis fashion grounded on fine attestations, is also generally used to insure the logical

integrity of smart contracts similar as EtherTrust, VeriSmart, and Zeus. Also, stationary analysis

may be employed to prize features that can be used to train classifiers.

Symbolic Execution. When symbolic execution is used to examine a program, symbolic

values are used as input rather than execution. When a fork occurs, the analyzer gathers the

appropriate path constraints and then uses a constraint solver to determine the particular values

triggering each branch. While symbolic execution allows for simultaneous exploration of several

pathways a program might follow in response to various inputs, it also introduces inherent

difficulties such as path explosion. Typically, the symbolic executor will construct a control flow

graph based on Ethereum bytecode, establish relevant constraints depending on the features of

smart contract vulnerabilities, and then generate good test cases using the constraint solver. For

instance, Oyente, Mythril, and its derivatives. There has been an ongoing effort to improve the

symbolic execution process in recent years. For example, Manticore offers support for

unconventional execution contexts, DefectChecker pulls defect-related characteristics to aid in

performance optimization, sCompile detects essential routes involving monetary transactions, and

VerX focuses on validating external callback-free contracts successfully.

Dynamic Fuzzing. Fuzzing is a technique for detecting software faults that involve creating

unexpected input data and observing the target program’s anomalous results during execution. It

enables developers to assure a consistent level of quality through the use of pre-defined tests but

does not provide insight into the reasons for reported defects. When used to smart contracts, a

fuzzing engine will attempt to produce initial seeds before constructing executable transactions.

40

Then, it will dynamically alter the produced data in response to test outcomes to explore as much

smart contract state space as feasible. Finally, it will assess each transaction’s status using the finite

state machine to determine whether an attackable threat exists. ContractFuzzer pioneered the use

of fuzz testing for smart contracts. Later on, additional scholars investigate ways to improve

various aspects of fuzzing. At the same time, ReGuard and Harvey focus on producing varied

inputs and transactions that are more likely to expose vulnerabilities, ILF and sFuzz focus on

developing a more effective generation of mutation strategies.

4.1.1.2. Related Work

Numerous empirical studies have focused on smart contract test suites and test techniques

in recent years. Several detailed classic test approaches, concentrating on their inherent limitations,

such as fuzzing’s instability and symbolic execution’s state explosion problem. Others focused on

developing benchmarks for evaluation via web crawling, bug injection, and patch improvement.

Additionally, they will run several vulnerability detection programs to undertake exploratory trials

to establish the benchmarks’ quality.

In contrast to the previous work, It would provide a systematic, complete analysis of the

many aspects that might influence smart contract testing tools’ assessments and suggest a

recommended evaluation technique for future reviews of such tools. In contrast to empirical

research on fuzz testing and symbolic executions, It would concentrate on the minutiae often

overlooked when these approaches are used to smart contracts. More crucially, most of the

discoveries and solutions for bias elimination are smart contract-specific, such as the suggested

search depth range and the integration of multi-dimensional metrics. In contrast to previous work

that advocated for benchmarks, It will illustrate that several additional elements might induce bias

and provide a bias-free evaluation technique. Consider SmartBugs, which gives two datasets and

focuses exclusively on the consistency of the execution outcomes without studying the execution

process or suggesting a more effective assessment technique.

41

4.1.2. Setting up experiments and its overview

Security for smart contracts has been a hot topic of discussion in recent years, and relevant

research papers have been published in a steady stream of high-quality publications. It has

examined five highly referenced comprehensive surveys and tracked down citations to and from

them to compile articles or tools linked to smart contract testing. There are 46 publications in all

that come under this category; however, only 27 focus on vulnerability identification. Others

focused on reverse engineering, interpretation and visualization, and gas optimization, among

other topics not covered in this study.

I am interested in evaluating the experimental procedure for smart contract testing tools in

this study. As previously stated, the conventional assessment procedure should consist of four

phases to compare to past work. The details of each task in these phases are summarized in Table

3. It specifies the detection approach used for each tool, whether the tool is publicly available,

which dataset served as the benchmark suite, which tools served as a baseline, and the depth

limitation specified for every contract throughout operation. the number of tests carried for each

setup, the delay time between trials, the sample size used to verify bugs, the indicators used to

group related bugs, and the achieved level of code coverage.

Throughout the review process, it was determined that each piece of work on the list was

superior to specified baselines or earlier work. However, due to the proliferation of empirical

research on smart contract testing tools, the results in certain articles appear to be skewed, if not

entirely contradictory to the actual scenario. This inconsistency is due to the absence of a

standardized benchmark suite, scientific review procedure, and general performance measures.

This paper shall explain the relevance of these elements in this study through comprehensive

experiments and make recommendations for further research.

42

Figure 10: Overall experimental evaluation process (20)

The remainder of this section will describe the experimental setup and technique. Fig. 10

illustrates the whole procedure. To begin, I create unified test suites and evaluate potential testing

technologies. Then, based on the tools, I filter and determine runtime settings. Following that, each

tool begins analyzing the contract and generating problem reports in a unified execution

environment. Finally, I collect the total number of alerts, carefully verify their validity, screen out

any overlooked vulnerabilities, and determine the value of relevant metrics.

4.1.2.1. Constructing Test Suites

Due to the lack of common benchmarks for C/C++ applications, such as LAVA-M and

Google fuzzer test suite, researchers are forced to scan real-world smart contracts from the

Ethereum network or experiment with susceptible contracts put on GitHub. However, this

approach mostly has two drawbacks: 1) Because Ethereum does not allow direct access to all

contracts, repeated crawling is inefficient in terms of both personnel and time. Meanwhile, the

extent to which these contracts may include vulnerabilities is unknown. Furthermore, without

explicit labels, determining the legitimacy of detection findings is extremely difficult, and

obtaining missing reports is impossible; 2) While the susceptible contracts downloaded from

GitHub have clear labels given by experts, they are frequently brief and lack complex business

logic.

43

Category # Contracts # Bugs # Bug Types # Reentrancy

UR 45622 - - 10

MI 350 ≥ 9369 7 119

CV 214 ≥ 214 35 10
Table 2: Smart contract benchmarks and its analysis

Where UR-unlabeled real-world contracts;

MI-manually injected bugs;

CV-vulnerable contracts.

To compensate for the lack of a standardized test set, I created a benchmark suite using

contracts crawled from Etherscan, SolidiFI, the Common Vulnerabilities and Exposures library,

and the Smart Contract Weakness Classification and Test Cases library. They fall into three distinct

categories: 1) real-world contracts that are not labeled; 2) contracts that have been intentionally

injected with defects; and 3) confirmed susceptible contracts, as indicated in Table 2. Due to the

magnitude and diversity of the benchmarks, I anticipate the evaluation results will generalize. To

conduct additional research, I expose and confirm the reentrant code components buried in each

contract in advance with the aid of two experts in the field of smart contract security. There are

ten, one hundred and ninety-nine, and ten reentry vulnerabilities, respectively.

44

45

Table 3: lists published assessments of smart contract testing tools (21)

Where SA- static analysis; DF – fuzzing; SE - symbolic execution; DL for deep learning

• E - Etherscan; B – blockchain; U denotes user-written contracts; C denotes the database of

Common Vulnerabilities and Exposures.

• The number in brackets denotes the total number of contracts evaluated. Baseline: O - Oyente, M -

Mythril, S - Securify, H -Harvey, I - ILF, SL - Slither, SC - SmartCheck, SF - sFuzz, MA - MAIAN,

MT - Manticore, CF - ContractFuzzer, RG - ReGuard, OS - Osiris, and Z - Zeus.

• TP - true positives, FP - false positives, FN - false negatives, and TN - true negatives. Coverage: I,

P, BL, and BR denote instruction/path/basic-block/branch coverage, respectively.

46

UR dataset collection and processing. The first category is based on data collected by

Etherscan, the world’s biggest decentralized platform for Ethereum smart contracts. Because all

contracts on Etherscan are uniquely addressed, I begin by retrieving the addresses of all contracts

with multiple transactions through Google BigQuery. For example, I retrieve 1,511,925 different

contract addresses with the following query request:

Figure 11: Query to retrieve data from Google BigQuery

Then, using Etherscan’s API, I construct a script to acquire the bytecode and/or source

code. Finally, I gather 765,928 contracts that are entirely composed of bytecode, 4,063 contracts

that are entirely composed of source code, and 741,934 contracts that are composed both of source

code and bytecode. I preserve only source-available contracts for further analysis2. Then, I apply

the approach described to eliminate duplicates, which involves comparing the MD5 checksums of

the two source files after eliminating all blank lines and comments. I end up with 45,622 separate

contracts after deduplication. Next, I added certain labels to the UR dataset to validate the

legitimacy of defects reported by each tool. Specifically, I evaluate these contracts using all

available techniques and extract 8,200 suspected susceptible ones. Finally, I undertake a two-

month manual assessment with two specialists from the industry colleague WeBank and identify

ten genuine vulnerabilities that may be exploited.

Real contracts typically have a greater number of lines of code and a more complicated

underlying logic. Additionally, the availability of interface calls and inheritance complicates the

interactions between contracts. These contracts’ potential weaknesses are unknown, and they are

frequently concealed in deeper branches, making them difficult to uncover. Additionally, the UR

category contains a particular pattern of vulnerabilities, and tools can build tailored techniques to

47

improve performance. As a result, I require additional datasets with a greater variety of problem

types to avoid overfitting.

Collecting and processing MI datasets. The second category includes SolidiFI, a manually

generated benchmark created to aid academic research. It is a big library built by inserting bugs

into several potential areas to create susceptible contracts with specific security flaws. SolidiFI

supports seven specific bugs, including reentrancy, timestamp dependency, unhandled exceptions,

unchecked send, transaction order dependency, integer overflow/underflow, and usage of tx.origin.

Each category has 50 unique bug-free contracts. However, following injection, 9,369 unique flaws

are distributed throughout all contracts.

These vulnerabilities are self-contained and do not affect other internal activities.

Furthermore, their coding logic is straightforward, relying on only a few known vulnerability

patterns. Along with the changed contracts dataset, the repository provides injection logs that may

be used to pinpoint the position and nature of each problem.

Collecting and analyzing CV datasets. Finally, susceptible contracts that CVE reviewers

or the SWC registry have validated are included in this category. To begin, I use the keyword

“smart contract” to query the CVE database, which returns 513 results. Next, I download all source

code files and categorize them into six categories, as defined, including arithmetic

overflow/underflow, poor randomization, access control, and dangerous input reliance. Next, I

acquired 124 different contracts after eliminating duplicates. Following that, I visit the SWC

registry’s official website and crawl 90 contracts associated with 37 unique IDs. Finally, I merge

these vulnerable contracts to form a dataset size of 214.

Each contract has professionally validated vulnerabilities that are explicitly categorized

and labeled. Additionally, the average number of code lines per contract in this dataset is less than

200, and there are no interface calls or inter-contract interactions.

48

4.1.2.2. Selecting Candidate Tools

Nine of the most commonly compared open-source programs were employed in the

investigation, three for each detection approach (see Table 4). I use Security, SmartCheck, and

Slither for static analysis; Oyente, Mythril, and Osiris for symbolic execution; and ContractFuzzer,

sFuzz, and ILF for dynamic fuzzing.

Tools Method #Baseline #Citation Publication

Securify SA 7 267 CCS’18

SmartCheck SA 2 147 WETSEB’18

Slither SA 1 43 WETSEB’19

Oyente SE 16 1008 CCS’16

Mythril SE 10 1500 White Paper

Osiris SE 3 56 ACSAC’18

ContractFuzzer DF 3 140 ASE’18

sFuzz DF 1 8 ICSE’20

ILF DF 1 22 CCS’19

Table 4: list of selected smart contract testing tools (21)

where

#Baseline denotes the number of times the tool has been used as a baseline

#Citation denotes the number of citations.

Since each tool is designed to address a specific issue, the sorts of vulnerabilities it covers

differ significantly. To provide a fair comparison, I look at the sorts of vulnerabilities that each

prospective tool supports. Then I map them to a list of the most often reported vulnerability

categories for EVM-based smart contracts. Finally, I see that all of them support only reentrancy.

Table 5 has a summary.

4.1.2.3. Unified Execution

A consistent execution environment is critical for dynamic executors, providing a single

platform and consistent runtime parameters. I use the same value for each tool’s corresponding

parameter and maintain consistency with the other environment variables in each set of parameters

experiment. Given that each tool might have an arbitrary number of self-defined parameters, I

49

conduct tests using the common parameters that they all support for tools that use the same

implementation approach. Additionally, because the fuzzing technique is random, I provide the

number of trials as a parameter. This paper’s final parameter list includes depth limit, trials, and

timeout.

Tool Vulnerability types

AC IO DS TO RE TM UE LE

Security Yes Yes Yes Yes Yes

SmartCheck Yes Yes Yes Yes Yes Yes Yes

Slither Yes Yes Yes Yes Yes Yes

Oyente Yes Yes Yes Yes Yes Yes

Mythril Yes Yes Yes Yes Yes Yes Yes

Osiris Yes Yes Yes Yes

ContractFuzzer Yes Yes Yes Yes Yes

sFuzz Yes yes Yes Yes Yes Yes

ILF Yes Yes Yes Yes Yes
Table 5: A overview of the vulnerability categories that candidate tools offer (22)

For each form of vulnerability:

AC - access control;

IO - integer overflow;

DS - denial of service;

TO - transaction order dependency;

RE - reentrancy;

TM - time manipulation;

UE - an unhandled exception

LE - locked ether.

We prepare (at least) twenty different values for each of the parameters. The default value

is 1, and the maximum value is 2X the mode value3 that is used by the majority of tools to

configure this parameter. Due to the fact that the first two parameters are only used to evaluate

symbolic executors or dynamic fuzzers, the interval between each pair of values is pre-defined.

Timeout is a parameter that is shared by all tools. We selected increasing intervals in different

ranges to account for the disparity in execution speeds across the various tools. For instance, the

time interval between the first 5 seconds is 2 seconds; from the 5th to the 30th second, the interval

is 5 seconds; from the 30th second to the 3rd minute, the interval is 30 seconds; from the 3rd

minute to the 30th minute, the interval is 30 seconds; from the 30th minute to the 30th minute, the

50

interval is 5 minutes; and after the 30th minute, the interval is 30 minutes. Each runtime parameter

is configured in detail in Table 6.

Parameters Method Mode Maximum Time Interval

Limit Depth SE 50 100 5

Trials DF 24 48 -

Timeout in seconds SA,SE,DF 1800 3600 2,5,30,1800
Table 6: parameter in the experiment

All studies were conducted on three different machines. Each has eight cores (Intel i7-

7700HQ @3.6GHz), 24GB of RAM, and runs Ubuntu 16.04.6 as the host operating system. In

order to eliminate any differences between these computers, each proposed tool is always

evaluated on the same computer.

4.1.2.4. Quantitative Analysis

I use unique bugs, accuracy, and recall as performance measures. Each tool generates an

output file containing the analysis findings in JSON format when the execution is complete. Then,

I parse it using a Python script, creating a mapping between vulnerability kind and line numbers.

I can determine the total number of reported bugs (Ns), true positives (TPs), false positives (FPs),

and missing samples (FNs) for each tool on each contract by comparing them to manually marked

labels. I may calculate each measure using the following ways using these data:

Unique bugs. It relates to the number of problems reported by each tool after deduplication

on each contract. I consider multiple reports of the same type of vulnerability on the same line to

be duplicated and maintain only one count. After deduplication, the total number of bugs equals

the number of unique bugs (N). I may get unique true positives (TP), false positives (FP), and

missing samples (FN) using the same procedure, which is then employed in the following

calculations.

Precision. It is defined as the ratio of genuine positives to all positive predictions made by

a model. A higher accuracy number suggests a greater proportion of valid alarms and fewer false

alarms, making bug verification and code change easier.

51

Recall. It is the proportion of all relevant instances that were retrieved. A greater recall

value means that more genuine vulnerabilities may be discovered, that fewer concealed

vulnerabilities are overlooked, and that the danger of unknown attacks is reduced. Particularly,

accuracy and recall are indifferent to size, implying that the paper’s results will be unaffected by

the absolute number of seeded defects.

4.1.3. Analysis of results

This section will give experimental data and assess how tool performance varies among test suites,

runtime settings, and evaluation measures. By observing the trends across many experimental

settings, I uncovered some issues that had been overlooked in prior analyses. Then, I will

recommend some principles for future research that should be followed when comparing to

different baselines.

4.1.3.1. Variation on Different Test Suites

Recent research has used diverse datasets as test suites, including real-world contracts

crawled from Etherscan and susceptible contracts validated by the CVE organization. However,

none of the current benchmark options matched the comprehensiveness criterion. As seen in the

fourth column of Table 3, 78 percent of tools (21 of 27) evaluate only one dataset type. Because

the code features are confined in this case, the tool may readily design certain focused detection

rules to improve performance by over-fitting. As a result, the findings generated from these trials

may be biased and may not accurately reflect the tool’s capabilities in all cases.

Fig. 12 illustrates how each measure varies across different test suites. I run each tool 48

times for each dataset to obtain final reliable findings. Most tools assessed (6/9) are deterministic,

with each run producing the same output. The other tools converge for 12 hours. From the

horizontal axis, it can be observed how each tool’s performance differs significantly between

52

datasets. Following statistical analysis, It demonstrates that most differences are statistically

significant (p<0.021 in the Wilcoxon test). Different dataset selections can result in wildly

divergent experimental outcomes. Using SmartCheck and Slither as examples, Slither reports that

SmartCheck generated a high number of false positives owing to a lack of in-depth knowledge of

Solidity. The investigation demonstrates, however, that this conclusion is not always correct.

SmartCheck accurately identifies ten existing vulnerabilities on the UR dataset and achieves an

accuracy rate of 100%, which is 5X greater than Slither. When it comes to the MI dataset, they are

almost identical. However, Slither outperforms SmartCheck by 1.6X on the final dataset.

Similarly, Mythril and Osiris exhibit the same scenario. Whether on real-world contracts

or buggy contracts loaded with manufactured bugs, Osiris can detect more hidden flaws with

greater accuracy, as seen by a 10% improvement in precision and a 30% increase in recall.

However, the observation is fully inverted on the CV dataset, where the code structures are much

simpler. As a result, while Osiris discovers six additional defects in total, it lags Mythril by ten

percentage points in both precision and recall.

Deeper Analysis. The inability of tools to execute reliably is mostly due to targeted rule

designation for a certain vulnerability pattern and insufficient processing capability for deep calls.

Additionally, differing judgment standards for genuine vulnerabilities result in disparate

evaluations of tool performance. Only vulnerabilities that can be exploited in practice are used as

positive samples in this article, which is more practical than the judgment requirements used in

prior publications but results in a loss of precision. Take Slither as an example; it will flag

addr.transfer() as a reentrancy error since it includes a built-in gas limit of 2300 to prevent reentry

difficulties. Since these false-positive samples were classified as actual bugs during the first

evaluation of the published tools, the majority of them (22/27) reported a high accuracy rate in

their papers but performed badly in practice.

53

Figure 12: Variation in unique bugs, precision, and recall on different test suites of all tools (Excel)

54

4.1.3.2. Variation on Runtime Parameters

Figure 13: Variation in unique bugs, precision and recall with different depth limit of Oyente, Mythril and Osiris (Excel)

This section will empirically illustrate various factors’ effects on the performance of tools4.

A tool’s execution is dependent on its execution environment, which consists of a generic platform

and the appropriate runtime parameters. For static tools, they frequently start with a bytecode-

based intermediate expression and then do pattern matching or data structure analysis on it. Thus,

after installing the necessary dependencies, the user simply has to give the contract’s source code

or bytecode and the maximum execution duration. Dynamic tools are more sophisticated since

they need the user to specify extra runtime parameters, such as the maximum recursion depth.

Most users utilize the same parameter settings throughout the assessment process for all tools.

However, this may not be the best option. Experiments conducted with parameters that are

inappropriate for them may yield conflicting results. The details are included below.

Adjust the Maximum Search Depth: The maximum depth that may be attained via a single

path is referred to as the depth limit. Most symbolic executors access nodes in the control flow

graph in a depth-first manner. Each instruction included within a basic block will be performed

symbolically, beginning with the entry node. After completing the previous command, the

executor will proceed to the next block based on the jump condition. This operation will continue

until the termination block is reached or the search depth reaches its maximum value.

The depth constraint is crucial for finding deeper vulnerabilities. When it is set to a too big

value, blocks on other execution routes become unavailable for a certain amount of time, resulting

in the neglect of vulnerabilities. Varying symbolic execution tools have very different depth

55

settings. Among ten recent articles (see Table 3), MAIAN and sCompile specify a depth limit of

three; VerX and Mythril specify five and twenty-two, respectively; Oyente and its derivatives,

Osiris and HoneyBadger, specify a huge threshold of fifty; and others do not specify a depth

restriction at all.

I evaluated Oyente, Mythril, and Osiris at various depth limitations, and the resulting

performance differences are depicted in Fig. 13. As search depth rises, the path that each tool may

access gets more complex, and the number of reported problems, precision, and recall continues

to climb. However, when the search depth surpasses 50, it begins to impair the tool’s usual

operation. Due to the excessive time spent on deep blocks of a single path, the performance of

each tool degrades in variable degrees. Using a variety of various depth limitations for examination

might result in a variety of different results. When the maximum search depth is set to 25, Mythril

and Osiris both report 110 separate defects, but Mythril outperforms Osiris by having a 4% better

accuracy rate and four extra flaws. When the depth limit is increased to 70, Mythril’s performance

lags significantly behind Osiris’s. This time around, Osiris reports 164 specific bugs with an

accuracy rate of 66% and a recall rate of 78%. At the same time, Mythril can only detect 104

alleged bugs with an accuracy of 56% and recall of 42%.

Increase Test Trials: As is well known, randomization significantly influences dynamic

fuzzers. Therefore, it is insufficient to run each fuzzer once and compare their results during the

assessment. A possible option is to conduct many rounds of experiments to conduct statistically

valid comparisons.

This requirement should also apply to other fuzzing-based testing methods. Regrettably,

Table 1 demonstrates that just three fuzzing tools execute tests several times.

56

Figure 14: Variation in unique bugs, precision and recall throughout 48 trials of ContractFuzzer, sFuzz and ILF (Excel)

I ran ContractFuzzer, sFuzz, and ILF independently to ensure that the performance of each

run was steady. Fig. 14 depicts the overall performance distribution of each tool throughout 48

distinct runs. The data distribution is split into four equal sections for each tool, and a box shows

the highest and lower quartiles. The orange line within it denotes the median value, while the lines

outside it indicate the minimum and highest values. Individual outliers, often highly good or

negative points, are denoted by little dots. It has been discovered that even within the same

execution environment, performance might vary significantly between runs. Consider ILF. It can

detect up to 35 distinct bugs, approximately twice as many as the lowest point. Its highest precision

rate is 100%, and it can identify up to one-fifth of genuine vulnerabilities.

Meanwhile, its accuracy rate dips to around 70% in certain rounds, and its recall rate is less

than 10%. A single run’s result is contingent, and the dominance relationship it reflects may be

skewed. In practice, it is recommended to conduct numerous trials and analyze using the mean or

the most often occurring values.

Extend the Execution Timeout: The execution timeout specifies the maximum amount of

time a tool may spend analyzing a contract. It is a user-customizable parameter for each tool. A

widely held belief is that a longer time period may reveal a more steady performance trend.

Meanwhile, it is widely considered that increasing execution time beyond a certain point is

unnecessary and leads to resource waste. The rationale for this is that they will only produce minor

swings in performance and will have no effect on the tool’s dominance relationship. These two

assumptions offer considerable leeway for configuring the execution timeout. The column timeout

in Table 3 demonstrates the enormous variation in timeout settings among previous assessments,

57

ranging from 20 seconds to more than three days. The most often used time period is 30 minutes,

employed in four articles. Nearly 70% of the remaining users specified an arbitrary timeout value

between 2 minutes and 1 hour. MadMax, sCompile, and Zeus all have a timeout of fewer than two

minutes, even though the majority of them are static tools. The following four publications run

their instruments for more than an hour, with each tool being dynamic.

I set up 20 termination times and conducted trials on all selected tools to determine the

effect of execution timeout on tool performance. Fig. 15 illustrates the trends. Due to the execution

speed disparity, dynamic tools sometimes take longer to notify errors and achieve stability.

ContractFuzzer, for example, did not access the branch containing the problem until the 1800th

second. However, due to the fact that this is the only known problem, the accuracy leaps from 0%

to 100% and stays there.

Figure 15: Variation in unique bugs, precision and recall with different execution timeout of all tools (Excel)

In comparison, SmartCheck completed the examination of the whole code in less than two

seconds, and the precision remained constant after that. Prior to reaching the upper bound,

performance improvement is non-linear. As a result, the relative performance of tools will fluctuate

over time. In this case, a brief wait for review may result in an imprecise judgment. For example,

when Mythril and Osiris are run with a timeout of 10 seconds, Mythril reports a total of 28, five

more than Osiris. Mythril also outperforms Osiris in accuracy and recall by 21% and 6%,

respectively. However, running them for a longer period of time appears to tell a different

narrative. When the delay is set to 120 seconds, Osiris reports a total of 164 distinct defects, 109

of which are genuine, accounting for 78% of all concealed vulnerabilities. By comparison, Mythril

58

reports just 64 distinct flaws, of which half are genuine, accounting for fewer than a fifth of

vulnerabilities.

Deeper Analysis. The greatest advantage that any tool’s detection method can provide

depends on how many execution settings are configured. As a result, even tools that perform the

same approach may exhibit varying degrees of parameter sensitivity. For illustration, the optimal

search depth limit for breadth-first tools may be larger than the optimal search depth limit for

depth-first tools because the greater depth limit does not prevent breadth-first tools from

discovering shallow vulnerabilities in other branches but prevents depth-first tools from accessing

other branches.

4.1.3.3. Variation on Performance Metrics

In addition to benchmark suite and runtime parameters, the selection of performance

metrics also needs to be persuasive and reasonable. Looking back on published work in recent

years, there are two commonly used performance metrics: discovering real vulnerabilities and code

coverage. The former can be subdivided into three metrics, the total number of bugs, precision,

and recall; the latter generally has three manifestations. As shown in Table 3, the most commonly

used is path coverage, which was used by six papers, referring to the coverage of all feasible paths

in the code. Then comes instruction coverage used by five papers, which counts the number of

executed instructions. The remaining two types are basic-block and branch coverage, calculated

as the percentage of the covered basic blocks or branches. It seems to make sense that coverage

can represent the ability of a tool to discover vulnerabilities: the more code a tool executes, the

more likely it is to find vulnerabilities. However, the relationship between them does not seem to

be strong. As a result, utilizing it directly to demonstrate the tool's bug-finding capability (such as

Manticore) is similarly inadvisable and insufficient.

Consider the following example of a real-world contract named ItemToken5. I separately

ran ILF and sFuzz and recorded the variation in instruction coverage6 and the total number of

reported vulnerabilities over time. The results are shown in Fig. 16. After 30 seconds, neither ILF

nor sFuzz discovered any new vulnerabilities, and coverage remained unchanged. Therefore, I

drew the curves of the first 30 seconds to explain.

59

Figure 16: Variation in coverage and number of vulnerabilities reported by sFuzz and ILF over time (Excel)

Although sometimes, the increase in coverage is accompanied by the growth in

vulnerabilities. For example, at the fifth second, sFuzz succeeded in entering a new branch, and

the coverage increased from 61% to 71%, while a new vulnerability was discovered. Nevertheless,

comparing the number of steps in (left) and (right), it can be found that most of the time, while the

coverage increases, the number of vulnerabilities remains unchanged. For example, in sFuzz’s

coverage curve, only one out of 22 rises results in discovering new vulnerabilities. Similarly, ILF's

coverage curve has increased 29 times, while the vulnerability finding curve has altered just three

times.

What’s more, higher coverage does not guarantee a stronger ability to find vulnerabilities.

For example, as shown in Fig. 16 (left), sFuzz achieves a coverage rate of 91 percent, while ILF

only achieves an 80 percent coverage rate. However, as shown from (right), ILF finally finds three

unique bugs while sFuzz can only find one. So, in this case, it is not very objective to conclude

that ILF performs better than sFuzz according to higher coverage.

Deeper Analysis. The most fundamental metric to measure tool performance is the number

and percentage of real vulnerabilities it finds. As an indirect indicator, higher coverage cannot

stand for a better performance of the tool. The increase in coverage may be caused by meaningless

code, such as test code, which is not directly helpful to vulnerability detection.

60

Finding: Different tools have different performances on different metrics. To reach a

rigorous conclusion, I need to evaluate more comprehensive metrics, including the number of

unique bugs, precision, recall, and coverage.

4.2. Data Integrity Test

4.2.1. Experimental environment

Cloud data integrity protection has emerged as a significant research area at this point. While

utilizing network coding technology for storage and integrity protection has achieved some results,

the computational overhead associated with the integrity protection process is too high, adversely

affecting the storage node’s operational efficiency and reducing the cloud storage service’s

availability. Therefore, this study conducts simulated tests to validate the accuracy of the initial

theoretical proof. As seen in Table 7, the experimental setting is as follows.

Category Parameter

CPU Core i7(TM)2

Processor Frequency 2.66 GHz

RAM 8 GB

OS Windows 10

Software Simulation MATLAB 9.0

Table 7: Parameters of the environment during experiment

Procedure for carrying out experimental simulations (see Fig. 17): During the experimental

simulation, a virtual cloud storage service environment is created, consisting of one cloud storage

management server and five storage node servers, one of which serves as a backup node for the

data integrity protection node and the remaining four as the operational cloud. Node for storage

service. The cloud service management node holds the essential information about each data

storage node and is primarily responsible for managing the related storage node; the storage node

saves the relevant data and the link between the storage servers, mostly for data storage.

Additionally, data transit is required for data integrity protection. The experimental simulation’s

unique environment is as follows. First, the k data blocks are distributed among n nodes to facilitate

discussion of data integrity protection in a single node failure. To compare the computational

61

overhead of the two data integrity protection techniques, the computed quantity of data is the

number of multiplication operations performed throughout the data integrity protection procedure.

Figure 17: Topology of experimental simulation

4.2.2. Calculation in the program

This paper establishes a blockchain network by installing distributed virtual machine agents in

the cloud and utilizing the cloud’s multi-tenancy. A cloud data integrity verification technique

called BPDP is studied. It consists of five algorithms/steps:

(1) Generating a public key/private key pair

KeyGen (1k) → (pk.SK)

(2) Generate a digital label

TagBlock (pk, SK, m) → Tm

(3) Formulate a piece of information to challenge the label

GenChal (c,r) → chal

(4) Generate evidence based on the previous steps

GenProof (pk, F, chal, Σ) → V

(5) Test evidence as shown in the formula

Check Proof (SK, V) → results

62

4.2.3. Integrity verification process

Fig. 18 depicts the integrity verification step. First, the user selects a data block at random,

challenges the CSP’s storage node through the VMA node, receives the file location specified in

the IPFS cluster query block, creates proof, and returns it to the VMA. Next, the VMA performs

verification in order to compute the evidence. If it is genuine and valid, the second step is

confirmed. Finally, the MHT is used to determine the existence of the challenge block and its

consistency with the root hash value. If they concur, the evidence file is complete; otherwise, it is

deleted.

63

Figure 18: Verification of data integrity in a flowchart

64

4.2.4. Cloud data integrity analysis based on blockchain

To begin, this experiment assesses the protocol’s correctness using sampling-based

integrity verification. The total number of data blocks on the cloud server is considered to be n. If

data is tampered with improperly, the ratio of corrupted data blocks is: pb = e n, assuming t is per

second. Because the number of data blocks in the secondary challenge is proportional to the total

number n, the likelihood of detecting illicit tampering is P, as defined in the Equation below.

4.2.5. Implementation of some functions

The purpose of this work is to construct a fixed-size file by randomly populating letters or integers.

To pre-process the file, the user specifies the correct number of data segments, data segment size,

and data block size. First, the file is separated into data blocks, which are then divided further.

Finally, divided into data chunks, as seen in the illustration below.

Figure 19: Sample pre-processing function

65

Figure 20: Data label destruction after verification

The Figure above illustrates the verification results of simulation data tag destruction. If

the data stored in the storage node is destroyed, the data’s digital label is likewise altered, and only

the MHT root hash value is recalculated, and the information in the blockchain network is

compared, and the file is destroyed and the new calculation completed. The MHT hash differs

from the original MHT hash, suggesting that the data tag has been corrupted.

66

5. Discussion and Results

Though current testing tools can detect a significant amount of potential security vulnerabilities

in actual projects, I still find out the following points worthy of being discussed:

A single assessment standard is important. I have investigated numerous related papers and

analyzed their experimental methodologies in this paper. The description in the paper showed that

they did not share a unified setting. Using nine representative tools, I illustrated that those

individual evaluations with different experiment settings could lead to misleading conclusions. It

can be found that:

• Over 70% of articles utilized just unlabeled real-world contracts as a benchmark, where

the vulnerability distribution is unknown and the vulnerability pattern is straightforward.

This makes it hard to conduct a full evaluation of the tool's capacity to detect all types of

vulnerabilities and makes it simple to overfit, as demonstrated by SmartCheck's

performance on the UR dataset. Simultaneously, without clearly labeled samples, it is also

hard to reliably count false negatives. Experiments demonstrated that varying test suites

have a significant effect on tool performance.

• Papers varied widely on the setting of runtime parameters, such as maximum search depth.

However, the experiments showed that too large a threshold would hinder the normal

execution of the tool.

• Most papers failed to take varying performance caused by runs into consideration. The

experiments showed that it is necessary to perform multiple trials with statistical tests to

balance the impact of randomness.

• Among all papers, the choice of execution timeout ranges from 20 seconds to 80 hours.

However, the trials demonstrated that a longer wait is required to accurately depict a tool's

performance, particularly for dynamic tools.

• Only little more than half of the publications assessed the tool's performance across all

metrics: unique bugs, accuracy, and recall. Others chose just one or two to demonstrate

their greatest tools, or even judged their effectiveness solely on the basis of coverage.

Experiments demonstrated that using only a portion of them is insufficient.

67

• Runtime setting choices have a significant impact on the tool's performance. Therefore, to

produce a more impartial and compelling assessment, it is recommended that acceptable

and adequate values for each tool's custom parameters are supplied during the experiment.

• The test suite's code size and vulnerability pattern have a significant influence on tool

performance. Therefore, it is preferable to examine a multi-type integrated benchmark suite

to avoid biases.

68

6. Conclusion

Worldwide, commercial and non-profit use of blockchain technology have proved

considerable advantages over existing arrangements. The technique appears to be particularly

suitable for applications that demand the storing and processing of huge volumes of secure data.

Effective technology research and experimentation in a range of sectors require a favorable legal

framework. Additionally, it should be noted that the primary characteristic of the technology is

that it represents a dispersed network with encrypted data and no central server that might be

hacked or changed with. Among other things, blockchain-based arrangements such as automated

auctions, smart contracts, and decentralized autonomous organizations represent significant

advances toward more decentralisation.

It is impossible to see widespread use of blockchain technology in a centrally controlled

economy. Instead, it is likely to be most successful under a system that favors little government

engagement in the economy, with the regulator only setting and enforcing rules and serving as an

adjudicator in disputes.

In practice, administering an administrative procedure entails entering information about one’s

civil status, property rights, and health into an official registry. As a result, blockchain technology

may be considered a unique and universal technology that enables the automation and

simplification of practically all administrative processes while boosting the transparency and

efficacy of e-government.

69

7. References
1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
2. Pluralsight. Blockchain Architecture. Pluralsight. [Online] 2017. https://www.pluralsight.com/guides/blockchain-
architecture.
3. CoinMarketCap. Cryptocurrency Market Capitalizations. CoinMarketCap. [Online] https://coinmarketcap.com/..
4. Dance, Coin. [Online] Coin Dance.
5. Blockchain is meaningless. Jeffries., A. s.l. : https://www.theverge.com/2018/3/7/17091766/, 2018.
6. The Path of the Blockchain Lexicon (and the Law). Walch., A. 2017. SSRN 2940335.
7. Blockchain and distributed ledger technologies. [Online]
https://www.iso.org/committee/6266604/x/catalogue/. ISO/TC 307.
8. Sch•uritz, S. Seebacher and R. Blockchain Technology as an Enabler of Service Systems: A Structured
Literature Review. [book auth.] M. Drgoicea, and M. Cavallari In S. Za. Exploring Services Science,. cham :
Springer International Publishing,, 2017.
9. S. P. Stawicki, M. S. Firstenberg, and T. J. Papadimos. What's new in academic medicine? Blockchain
technology in health-care: Bigger, better, fairer, faster, and leaner. 2018.
10. Bitcoin and Cryptocurrency Technologies. . A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder.
s.l. : Princeton University Press, , 2016.
11. Understanding the Blockchain Using Enterprise Ontology. In Advanced Information Systems Engineering,
Lecture Notes in Computer Science. Weigand, J. d. Kruijff and H. Cham : Springer, 2017.
12. Kahn, D. The CodeBreakers. s.l. : The Macmillan Company, 1973.
13. IBM Knowledge Center. Symmetric cryptography. IBM. [Online]
https://www.ibm.com/support/knowledgecenter/en/SSB23S_1.1.0.14/gtps7/s7symm.html..
14. IBM Knowledge Center - . Public key cryptography. IBM. [Online]
https://www.ibm.com/support/knowledgecenter/en/SSB23S_1.1.0.14/gtps7/s7pkey.html.
15. Bitcoin Energy Consumption Index. Digiconomist. [Online] https://digiconomist.net/bitcoin-energy-
consumption.
16. L. Bell, W. J. Buchanan, J. Cameron, and O. Lo. Applications of Blockchain Within Healthcare. Blockchain in
Healthcare Today,. 2018.
17. Buterin., V. A NEXT GENERATION SMART CONTRACT & DECENTRALIZED APPLICATION PLATFORM.
18. Wood., A. Antonopoulos and G. Mastering Ethereum: Building Smart Contracts and Dapps. s.l. : O'Reilly UK
Ltd,, 2018.
19. Tracking blockchain technology and regulation around the world. BitLegal. [Online] http://bitlegal.io/..
20. Etherscan. [Online] Etherscan.io.
21. [Online] https://blog.logrocket.com/complete-guide-blockchain-testing/.
22. Marijan, Chhagan Lal and Dusica. [Online] https://arxiv.org/pdf/2103.10074.pdf.
23. G20. Communiqu G20 Finance Ministers & Central Bank Governors Meeting. [Online] 2018.
https://g20.org/sites/default/files/media/communique-_fmcbg_july.pdf.
24. EU. European countries join Blockchain Partnership. Europa. [Online] https://ec.europa.eu/digital-single-
market/en/news/european-countries-join-blockchain-partnership,.
25. Handbook of applied cryptography. J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. s.l. : CRC
Press, 1996.
26. Nandwani., K. What is a Blockchain and why does it matter? http://kunalnandwani.com/. [Online] 2016.
http://kunalnandwani.com/blockchain-matters/.
27. S. Voshmgir, Kalinov, and V. Kalinov. Blockchain Technology Handbook. [Online] https://s3.eu-west-
2.amazonaws.com/blockchainhub.media/Blockchain+Technology+Handbook.pdf.
28. Software System Security Assurance Group — WingTecher Lab. [Online] http://wingtecher.com/bugs/cveen.

70

8. List of Tables and Figures

8.1. List of Tables
Table 1: Public, Hybrid, and Private Blockchains ... 33
Table 2: Statistical analysis of smart contract benchmarks ... 43
Table 3: lists published assessments of smart contract testing tools .. 45
Table 4: list of selected smart contract testing tools ... 48
Table 5: A overview of the vulnerability categories that candidate tools offer .. 49
Table 6: parameter in the experiment... 50
Table 7: Parameters of the environment during experiment .. 60

71

8.2. List of Figures
Figure 1 - Cryptocurrencies Market Cap .. 10
Figure 2: Iterated hash function algorithm .. 15
Figure 3: Public key encryption.. 17
Figure 4: Blockchain characteristics ... 19
Figure 5: Simplified blockchain structure .. 22
Figure 6: Energy consumption by country ... 29
Figure 7: Types of Blockchains Trust vs. Anonymity ... 32
Figure 8: Algorithmic steps during transactions .. 38
Figure 9: Overall experimental evaluation process ... 42
Figure 10: Query to retrieve data from Google BigQuery ... 46
Figure 11: Variation in unique bugs, precision, and recall on different test suites of all tools 53
Figure 12: Variation in unique bugs, precision and recall with different depth limit of Oyente, Mythril and Osiris .. 54
Figure 13: Variation in unique bugs, precision and recall throughout 48 trials of ContractFuzzer, sFuzz and ILF 56
Figure 14: Variation in unique bugs, precision and recall with different execution timeout of all tools 57
Figure 15: Variation in coverage and number of vulnerabilities reported by sFuzz and ILF over time 59
Figure 16: Topology of experimental simulation ... 61
Figure 17: Verification of data integrity in a flowchart .. 63
Figure 18: Sample pre-processing function ... 64
Figure 19: Data label destruction after verification ... 65

https://czuvpraze-my.sharepoint.com/personal/xzely002_studenti_czu_cz/Documents/Plocha/BT/Bachelor%20Thesis%20.docx#_Toc98275622
https://czuvpraze-my.sharepoint.com/personal/xzely002_studenti_czu_cz/Documents/Plocha/BT/Bachelor%20Thesis%20.docx#_Toc98275623
https://czuvpraze-my.sharepoint.com/personal/xzely002_studenti_czu_cz/Documents/Plocha/BT/Bachelor%20Thesis%20.docx#_Toc98275624
https://czuvpraze-my.sharepoint.com/personal/xzely002_studenti_czu_cz/Documents/Plocha/BT/Bachelor%20Thesis%20.docx#_Toc98275625
https://czuvpraze-my.sharepoint.com/personal/xzely002_studenti_czu_cz/Documents/Plocha/BT/Bachelor%20Thesis%20.docx#_Toc98275626
https://czuvpraze-my.sharepoint.com/personal/xzely002_studenti_czu_cz/Documents/Plocha/BT/Bachelor%20Thesis%20.docx#_Toc98275627

72

8.3. List of Abbreviations

DAO - Decentralized Autonomous Organizations

MHT – Merkle Hash Tree

ICO - initial coin offering

EVM - Ethereum Virtual Machine

CVE - Common Vulnerabilities and Exposures

