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Abstract
The Cauchy distribution plays a major role in biology, mathematics, physics and many
related disciplines. As a consequence, a parameter estimation methodology for data which
is distributed according to a Cauchy distribution is of importance. Nevertheless, the
Cauchy distribution is well known for causing difficulties with classical approaches to
parameter estimation. This diploma thesis is concerned with the study of the properties
of Cauchy distribution. Several robust estimations of its location parameter are presented.
A simulation study programmed in Python allows us to compare the performance of these
parameter estimates in Bi-Cauchy ROC curve estimation. Moreover, some theoretical
properties of the Bi-Cauchy ROC curve are studied.
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1 INTRODUCTION
Cauchy distribution is a distribution which has a bell-shaped density function with heav-
ier tails which are symmetric and unimodal. The distribution was named after a French
mathematician, Augustin-Louis Cauchy (1789–1857). In recent times, Cauchy distribu-
tion has been of interest and many controversies has risen from it due to some properties
it possesses making it difficult to estimate its parameters, hence mathematical approaches
to it is quite hard. It appears that the distribution may look like the normal distribution
but its tails does not recede quickly as those of the normal distribution. There is a great
difference between the Cauchy distribution and the normal distribution indeed, as the ra-
tio of two independent standard normal random variable gives a Cauchy random variable
(details of this can be found in [1]). Also, the standard Cauchy random variable has a
student’s t-distribution with one degree of freedom. The shape of the density function is
sometimes called the witch of Agnesi [2]. In many fields of study fat tailed distributions
like the Cauchy distribution never arise but in other fields they do arise in diverse ways.
For example, in biology, the distribution that seeds end up from the parent plant may have
a "fat-tailed" distribution if most fall by plant are dispersed by wind, water or animals. It
can be shown in quantum mechanically that for a state which decomposes exponentially
with time, the spread of energy throughout the state is expressed by Cauchy distribu-
tion [3]. [4] showed another fascinating application of the distribution in the sense that,
he described the distribution of hypo-centers on focal spheres of earthquakes. Cauchy
distribution can again be used to analyse polar and non-polar liquids in porous glasses
[5].

From the study of the probability distribution, a distribution function is completely de-
termined by its moment generating function in case it exists. The most common moments
are the mean µ = E(X) and the variance E(X2) − µ2 which shows how spread out the
distribution is, and other higher moments like the skewness and kurtosis. In the case of
Cauchy distribution there exist no mean, variance or moment generating function. In ad-
dition, the characteristic function(cf) and the cumulative distribution function(cdf) exist.
The approach of finding the characteristic function and the cumulative distribution func-
tion is by using its probability density function(pdf). The central moments are undefined,
this is due to the long tails of the density function. The pdf of C(µ, λ) is

fX(x) = λ

π (λ2 + (x− µ)2) − ∞ < x < ∞ (1.1)

where µ ∈ (−∞,∞) and λ > 0.
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Figure 1: PDF of Cauchy Distribution with different location parameters and a constant
scale parameter λ = 1

Figure 2: PDF of Cauchy Distribution with different scale parameter and constant loca-
tion parameter µ = 1
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Figure 3: PDF of Cauchy Distribution with different and location and scale parameter

1.1 Motivation
The first objective of the thesis is to study the properties of Cauchy distribution. The

second goal is to apply the distribution in real life or simulated data analysis. Owing
to the fact that the distribution possesses some properties which makes estimation of
its location parameter a difficult task, we shall study new estimation approaches which
are based on order statistics called the robust estimators. They are Huber M-estimate,
Hodges Lehmann estimate, Trimmed Mean, Winsorized Mean and the Sen’s Mean.

We will then apply it in receiver operating characteristic (ROC) curves where we will
build a parametric ROC model for variables with Cauchy distribution and estimate its
parameters using the robust estimators. Conclusions will be made after different set of
simulations are made to know which of the estimators provides the most suitable estimate
of the true ROC.

1.2 Structure of thesis
The thesis work is organised as follows: Theoritical part and practical part.

• The second section is allocated to studying some properties of the distribution and
justifying them with proofs.

• The third section is allocated to parameter estimation where we study the different
robust estimators and their theoretical approaches. This section is mainly based on
the book [6].

• The fourth section is also allocated to the receiver operating characteristic (ROC)
curves where we discuss its properties and operation and derive the ROC model
based on Cauchy distribution. Some theoretical part and assumptions made in this
section was taken from the book [7] and [8].

• The fifth section is allocated to simulation of data in Python using the derived ROC
model in section four. The parameters of the model are estimated by the different
types of the robust estimators.

• The last section is devoted to main conclusions of the work.
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2 PROPERTIES OF CAUCHY DISTRIBUTION

2.1 Expected Value
Expected value or mean of a random variable g(X), denoted by Eg(X) is

Eg(X) =



∫ ∞

−∞
g(x)fXdx if X is continuous

∑
x∈χ

g(x)fX(x), if X is discrete

as long as the integral or sum exists. On condition that E|g(X)| = ∞, we say that Eg(X)
does not exist [1].

Proposition 2.1. The standard Cauchy random variable is a random variable with loca-
tion parameter µ = 0 and scale parameter λ = 1, denoted by C(0, 1). It is the type whose
expected value does not exist, that is, one with probability density function

fX(x) = 1
π(1 + x2) − ∞ < x < ∞ (2.1)

It is trivial to check that
∫∞

−∞ fX(x)dx = 1, but E|X| does not exist.

Proof.
E(X) =

∫ ∞

−∞

x

π(1 + x2)dx = 1
π

∫ ∞

−∞

x

(1 + x2)dx,

but this integral does not converge. The support of a Cauchy random variable is −∞ to
∞, so the integral representing the E(X) is an improper integral, i.e., the limit of the
definite integral of xf(x) as the limits of integration approach minus infinity and plus
infinity, the integral is undefined. Thus,

E[X] = lim
L→−∞

∫ 0

L
xfX(x)dx+ lim

U→∞

∫ U

0
xfX(x)dx (2.2)

E[X] = lim
L→−∞

∫ 0

L
x

1
π(1 + x2)dx+ lim

U→∞

∫ U

0
x

1
π(1 + x2)dx (2.3)

E[X] = lim
L→−∞

[ 1
2π ln(1 + x2)

]0

L
+ lim

U→∞

[ 1
2π ln(1 + x2)

]U

0
(2.4)

E[X] = lim
L→−∞

− 1
2π ln(1 + L2) + lim

U→∞

1
2π ln(1 + U2) (2.5)

E[X] = −∞ + ∞ (2.6)

From (2.6) we can see that E|X| does not exist, this is because both integrals are not
finite. In other words −∞ + ∞ is not a number. Note that, the “tails” of the pdf decay
as ( 1

x2 ), and hence very large outcomes are possible. Since E|X|, does not exist it follows
that no moments of the Cauchy distribution exist or, in other words, all absolute moments
equals ∞. Particularly, the moment generating function does not exist.
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2.2 Characteristic Function
Definition 2.2. The characteristic function of a random variable X is

ϕ(t) = E[eitX ]
= E[cos(tX) + i sin(tX)]

(2.7)

∀t ∈ R and i =
√

−1. Since | cos(tX)|, | sin(tX)| ≤ 1, the characteristic function is defined
for all t for any random variable.
The characteristic function is defined in the discrete or continuous case where is defined as
the Fourier transform of the probability function using the Fourier transform parameters.
It can be written as

ϕX(t) =
∫ ∞

−∞
eitXdPx

If X is a continuous random variable with density function fX(x), then

ϕX(t) =
∫ ∞

−∞
eitXfX(x)dx

The advantage with the characteristic function is that it always exists, unlike the moment
generating function, which can be infinite everywhere except s = 0.
Proposition 2.3. Suppose X is a standard Cauchy variable, then its pdf is given by (2.1).
The characteristic function can be written in closed form as

ϕ(t) = e−|t| t ∈ R.

The above expression is not entirely trivial to obtain. On the other hand, we find here
that the characteristic function for the Cauchy random variable exists everywhere. This is
essentially because the integral defining the characteristic function converges absolutely,
and hence uniformly, for all t ∈ R. Characteristic functions are thus particularly useful in
handling heavy-tailed random variables, for which the corresponding moment generating
functions do not exist.

Proof. We show this by the Cauchy’s residue theorem by evaluation of the contour inte-
grals. We consider three cases of t thus, when t = 0, t > 0 and t < 0. Indeed, it requires
considering two separate contour integrals for t > 0 and t < 0. The integral defining the
characteristic function is given by

ϕ(t) =
∫ ∞

−∞

eitx

π(1 + x2)dx

= 1
π

∫ ∞

−∞

eitx

(1 + x2)dx.

For the case when t = 0

ϕ(0) = 1
π

∫ ∞

−∞

ei(0)x

(1 + x2)dx

= 1
π

∫ ∞

−∞

1
(1 + x2)dx

= 1
π

[arctan(x)]∞−∞

= 1.
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Figure 4: C1, for t > 0

Figure 5: C2, for t < 0

Let
f(z) = eitz

1 + z2

the poles of f(z) are solutions of (z + i)(z − i) = 0 where z ∈ C

For t > 0, we consider Figure 4∫
C1
f(z)dz =

∫ R

−R
f(z)dz +

∫
Γ1
f(z)dz

The left hand side
∫

C1
f(z)dz we use the residue theorem, there’s a pole inside C1 at z = i

so we calculate the residue of the function f(z) at z = i∫
C1
f(z)dz = 2πiResz=if(z)

= 2πi lim
z→i

(z − i) eitz

(z2 + 1)

= 2πi lim
z→i

(z − i) eitz

(z + i)(z − i)
= πe−t

For
∫ R

−R
f(z)dz we do not need to worry more about it because as R → ∞ it approaches

the original integral of the Cauchy distribution. Then for
∫

Γ1
f(z)dz we have
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∣∣∣∣∫
Γ
f(z)dz

∣∣∣∣≤ length(Γ) × max
z∈Γ

|f(z)|

But Γ is a half circle =⇒ Length(Γ) = πR. Considering the maxz∈Γ |f(z)| we can write
|f(z)| =

∣∣∣ eitz

z2+1

∣∣∣ , then by the triangle inequality |z2 + 1| ≥ |z2| − 1 = |z|2 − 1. But on
the curve |z| = R because we are tracing out a semicircle with radius R , where R > 0.
Hence, |z|2 − 1 = R2 − 1 =⇒ 1

|z2+1| ≤ 1
R2−1 which takes care of the denominator. Since

z is a complex number then the curve Γ1 can be parameterized by z = Reit for t ∈ (0, π).
By this then the numerator can be written as

|eitz| = |eitReit|
= |eitR(cos t+i sin t)|
= |eitRcos t+i2tR sin t|
= |eitR cos t| · |ei2 tR sin t|

Since t and R are real numbers, it implies that cos t is also a real number, hence |eitR cos t| =
1. Then |ei2tR sin t| = e−tRsint.

∣∣∣∣∫
Γ1
f(z)dz

∣∣∣∣ =⇒
∣∣∣∣∫

Γ1
f(z)dz

∣∣∣∣ ≤ πR × max
z∈Γ

e−tR sin t

R2 − 1 (2.10)

but if we take the limit as R → ∞ then (2.10) goes to 0. Therefore∫
Γ
f(z)dz = 0. All in all, for the case t > 0 we have

ϕ(t) =
∫ ∞

∞

eitx

1 + x2dx = πe−t. (2.11)

Finally, for the case t < 0 we set new integrals because we consider the contour in Figure
5. Thus ∫

C2
f(z)dz =

∫ −R

R
f(z)dz +

∫
Γ2
f(z)dz.

Just as before, to deal with the integral on the left
∫

C2
f(z)dz we have to use the residual

theorem and looking at the contour in Figure (5) is a simple pole, a pole with multiplicity
of 1 which happens at −i. We just need to calculate the residue at z = −i.

∫
C2
f(z)dz = 2πiResz=−if(z)

= 2πi lim
z→−i

(z + i) eitz

(z2 + 1)

= 2πi lim
z→i

(z + i) eitz

(z + i)(z − i)
= −πet
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Also,
∫

Γ2
f(z)dz is going to be done the same way using the same type of argument. That

is ∣∣∣∣∫
Γ2
f(z)dz

∣∣∣∣≤ length(Γ2) × max
z∈Γ2

|f(z)|. (2.13)

It follows the same approach as before but t is defined in the range t ∈ [−π, 0] and the
length(Γ) = πR but since our t < 0 it implies that sin t ≤ 0 which shows that t sin t ≥ 0,
then we can clearly conclude (2.13) goes to 0 as R → ∞. Hence for t < 0, we have

∫ −∞

∞

eitx

1 + x2dx = −πet

=⇒ ϕ(t) =
∫ ∞

−∞

eitx

1 + x2dx = πet . (2.14)

So we conclude that for the cases t = 0, t > 0 and t < 0

ϕ(t) =
∫ ∞

−∞

eitx

(1 + x2)dx =


πe−t for t > 0
π for t = 0
πet for t < 0

So one best way of summarizing this function is ϕ(t) = πe−|t|, ∀t ∈ R.
Then

ϕ(t) = 1
π

∫ ∞

−∞

eitx

(1 + x2)dx = 1
π

(πe−|t|) = e−|t|.
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Remark 1. Assume X ∼ C(0, 1), then we will say that Y ∼ C(µ, λ) if Y = µ + Xλ,
where µ is the location parameter and λ is the scale parameter, for λ > 0. We know
ΦX(t) = E[eiitX] = e−|t|, to derive the characteristic function,

ΦY (t) = Φµ+λX = E
[
eit(µ+λX)

]
= E

[
eitµ · eitλX

]
= eitµ · E

[
eitλX

]
= eitµ · ϕX(tλ)
= eitµ · e−|λt|

= eitµ · e−λ|t|

= eitµ−λ|t| for λ > 0

hence the characteristic function for Cauchy variable Y with two parameters µ and λ is
given by ΦY (t) = E[eitY ] = eitµ−λ|t|

Proposition 2.4. Suppose Y1, Y2, ..., Yn are independent Cauchy variables such that each
Yi is Cauchy variable with parameters (µi, λi). We find the distribution of ∑n

j=1Yi.

Proof. Since all Y ′
i s are Cauchy variable, the characteristic function of Yj,

ΦYj
(t) = E[eitµj−λj |t|] ∀j = 1, ..n.

To obtain the characteristic function of ∑n
j=1Yi that is,

Φ∑Yj
(t) = E[eit

∑
Yj ]

=
n∏

j=1
EeitYj

=
n∏

j=1
ϕYj(t)

=
n∏

j=1
eitµj−λj |t|

= eit(
∑

µj)−(
∑

λj)|t|

and as we know this is the characteristic function of Cauchy distribution with parameters∑
µj and ∑λj and by the inversion theorem we say that the distribution of ∑Yj is also

Cauchy with parameters ∑µj and ∑λj.
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Proposition 2.5. If X1, X2, ..., Xn are independent standard Cauchy variable. Then the
distribution of its average, X̄ = 1

n

∑
Xj is also standard Cauchy.

Proof. The general characteristic function of a probability distribution is defined as ϕX(t) =
E(eitX), ∀t ∈ R. The characteristic function of the average X̄ = 1

n

∑
Xj can be written as

ϕ 1
n

∑
Xi

(t) = E
(
eit 1

n
X1 · eit 1

n
X2 . . . eit 1

n
Xn

)
= E

(
eit 1

n
X1
)

· E
(
eit 1

n
X2
)
. . . E

(
eit 1

n
Xn

)
.

= ϕX1

(
t

n

)
· ϕX2

(
t

n

)
. . . ϕXn

(
t

n

)
.

If each Xi is Cauchy distributed, we know that, a random variables has the standard
Cauchy distribution, X ∼ C(0, 1) if and only if its characteristic function is ΦX(t) = e−|t|

from Proposition (2.1). Then

ϕX1

(
t

n

)
· ϕX2

(
t

n

)
. . . ϕXn

(
t

n

)
= e(− 1

n
|t|) · e(− 1

n
|t|) . . . e(− 1

n
|t|)

= e(− 1
n

∑n

i=1 |t|)

= e(− 1
n

·n|t|)

= e−|t|

Hence, if random variables Xi are independent standard Cauchy variable then the distri-
bution of its mean is also standard Cauchy.

Remark 2. Proposition 2.5 can be explained in a more general sense thus, C(µ, λ). Sup-
pose Y1, Y2, ..., Yn are independent Cauchy variable with two parameters (µ,λ), then the
distribution of its average Ȳ = 1

n

∑
Yj is also Cauchy distributed.

Following the same approach in (2.4) we have

ϕ 1
n

∑
Yi

(t) = E
(
eit 1

n

∑n

i=1 Yi

)
= E

(
eit 1

n
Y1
)

· E
(
eit 1

n
Y2
)
. . . E

(
eit 1

n
Yn

)
= ϕY1

(
t

n

)
· ϕY2

(
t

n

)
. . . ϕYn

(
t

n

)
.

Then from Remark1 we know the characteristic function of Cauchy variable with two
parameters C(µ, λ), is given by ϕY (t) = E[eitY ] = eitµ−λ|t| and since each Yi is Cauchy
distributed. It follows that

ϕY1

(
t

n

)
· ϕY2

(
t

n

)
. . . ϕYn

(
t

n

)
= e(

1
n

(itµ−λ|t|)) · e(
1
n

(itµ−λ|t|)) . . . e(
1
n

(itµ−λ|t|))

= e(
1
n

∑n

k=1 itµ−λ|t|)

= e(
1
n

(nitµ−nλ|t|))

= e(itµ− λ|t|)

(2.16)

Therefore, if random variables Yi are independent Cauchy variable with two parameters,
Y ∼ C(µ, λ), then the distribution of its mean is also Cauchy(µ, λ).
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Proposition 2.6. Let X1, X2, ... be independent identically Cauchy distributed random
variables, then 1

n

∑n
i=1 Xi is again Cauchy of the same distribution, which is readily shown

in Proposition 2.5. The weak law of large numbers cannot be applied to Cauchy distribution
(because the first moment is infinite).

Proof. We can proof this by showing that, if An = 1
n

∑n
i=1 Xi converges in distribution

to the Cauchy distribution as n → ∞ and compare this with the conclusion of the weak
law of large numbers. As shown previously, a random variable X obeying the Cauchy
distribution with the location parameter x0 ∈ R and the scale parameter λ ∈ R+,

• Its moment generating functions does not exist( specifically its mean and variance
are undefined)

• Its characteristic function is e(µit−λ|t|)

By the property of the characteristic function of Cauchy shown in the previous remark 2
that

ϕnAn(t) = ϕX1(t)ϕX2(t) . . . ϕXn(t)
= e(

∑n

i=1 x0it−λ|t|)

= e(nx0it−nλ|t|)

ϕAn(t) = ϕnAn

(
t

n

)
= e(nx0i t

n
−nλ| t

n |)

= e(x0it−λ|t|)

If we take the limit as n → ∞

lim
n→∞

ϕAn(t) = e(x0it−λ|t|) (2.17)

Then by the uniqueness theorem, the left hand side of (2.17) is the characteristic function
of the Cauchy distribution with the location x0 and scale parameter λ. If we denote A
obeying this distribution. Then, as n → ∞, An converges in distribution to A, which also
obeys the Cauchy distribution. From [9] the following theorem of the weak law of large
numbers holds
Theorem 2.7. (Weak Law of large numbers) Let X1, X2, ... be a sequence of iden-
tically distributed uncorrelated random variables. Let mean, µ = E{X1} and variance,
Σ = E{(X1 − µ)(X1 − µ)′} be finite. Then the averages

X̄n = 1
n

n∑
i=1

Xi → µ, in probability.

It might be intriguing to apply to this results the weak law of large numbers due to the
form of An, taking x0 as µ. However, the mean and variance are undefined as stated
earlier and shown in Proposition 2.1. Therefore the weak law of large numbers does not
apply to this results.

2.3 Cumulative Distribution Function
The cumulative distribution function (CDF) calculates the cumulative probability for a
given x-value. It is used to determine the probability that a random observation that is
taken from the population will be less than or equal to a certain value. You can also use
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this information to determine the probability that an observation will be greater than a
certain value, or between two values.

Definition 2.8. The cumulative distribution function or cdf of a continuous random
variable X, denoted by FX(x) is defined as

FX(x) = PX(X ≤ x) =
∫ x

−∞
fX(t)dt, for all x ∈ R

where fX(t) is the probability density function.

Proposition 2.9. Suppose X is a standard Cauchy variable with pdf (2.1) then it’s cu-
mulative distribution function is

FX(x) = PX(X ≤ x) = 1
2 + 1

π
arctan(x) − ∞ < x < ∞ (2.18)

Proof. We can show this by integrating (2.1) over the interval −∞ < t < x

F (x) =
∫ x

−∞
fX(t)dt

=
∫ x

−∞

1
π (1 + t2)dt

= 1
π

∫ x

−∞

1
(1 + t2)dt

= 1
π

[arctan(t)]x−∞

= 1
π

[arctan(x) − arctan(−∞)]

= 1
π

[
arctan(x) + π

2

]
= 1

2 + 1
π

arctan(x),

(2.19)

hence, FX(x) = 1
2 + 1

π
arctan(x) is the cumulative distribution function of standard Cauchy

distribution.

Remark 3. In the case of C(µ, λ), Proposition 2.9 can be shown in a more detailed way
thus, integrating the pdf over the same interval.
If

F (x) =
∫ x

−∞

λ

π
· 1
λ2 + (t− µ)2dt

Put
t− µ

λ
= y ⇒ t− µ = λy

and
dt = λdy

which means the interval can be written as

−∞ < y <
x− µ

λ
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then
F (x) = λ

π

∫ x−µ
λ

−∞

1
λ2 + (λy)2λdy

= λ2

πλ2

∫ x−u
x

−∞

1
1 + y2dy

= 1
π

[arctan(y)]
x−µ

λ
−∞

= 1
π

[
arctan

(
x− µ

λ

)
− arctan(−∞)

]
= 1
π

[
arctan

(
x− µ

λ

)
+ π

2

]
= 1

2 + 1
π

arctan
(
x− µ

λ

)
for all λ > 0,

(2.20)

therefore, F (x) = 1
2+ 1

π
arctan

(
x−µ

λ

)
is the cumulative distribution function of Cauchy(µ, λ).

Figure 6: CDF of Cauchy Distribution with different location and scale parameter
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3 PARAMETER ESTIMATION
This chapter is mainly from the book [6].

Parameter estimation is the refers to using data to estimate the parameters of a distribu-
tion. The main goal of estimation of parameters is to estimate the unknown parameters
of a fixed model in order to fit some noisy measurements. For parameter estimation, the
basic step is to choose a parametric model of a function which is a family of functions
that can be described with a finite set of parameters. It can be denoted by F : Rn → Rn.
Data that are used to estimate the parameters of a model are normally contaminated with
noise. Sometimes, it is not pertinent to assume that, this noise are normally distributed.
This is due to the fact that there can be evident errors in the data which is not bound
to happen if we only consider normally-distributed noise. The false measurements that
are seen in the data are called outliers. Outliers are data points that are nowhere near
other data points. Particularly, outliers are just the unusual values in a data set. They
are problematic for analysis in statistics due to the fact that they can cause tests to either
miss important findings or deform real results. An estimator is called robust when these
outliers do not affect the estimation much. Robust statistical methods were developed to
compliment the classical procedures when the data violates classical assumptions. Owing
to the fact that, Cauchy is peculiar with regards to its heavy tails and difficulty in esti-
mation of its location parameter. Then analysis of its data needs to take some technical
approach to be possible. Different robust estimators were adopted to estimate the loca-
tion parameter which can further aid in its application. We shall mainly deal with three
broad classes of robust estimators of the real parameter thus, M-estimators, L-estimators,
and R-estimators. Cauchy distribution can often be cited as an example of the compu-
tational failure of the maximum likelihood method of estimation. The substantial reason
summarized by [10] are: (1) the likelihood equation have 2n− 1 roots which are real and
complex; (2) not either numerical solution or analytical solution of the likelihood equation
can easily be obtained; (3) it is only one of the real roots (the global maximum) of the
likelihood that does not tend to ∞ or −∞ as n → ∞, all the others does. The method
of moment estimation fails since the mean and variance of the Cauchy distribution does
not exist. [11] proposed a new unbiased L-estimator based on order statistics, which is
not only asymptotically efficient but outperforms existing L-estimators in terms of finite
sample efficiency. [12] discussed the properties of various estimators of the central posi-
tion of the Cauchy distribution which is notorious for the divergent nature of its first and
higher moments and evaluated the results of using different kinds of estimators by simu-
lation of different kinds of experiment using Monte Carlo simulations. [13] defined robust
estimators for the parameters of Cauchy distribution based on the probability integral
method where, the estimators were simple, robust and consistent, but asymptotically less
efficient than the maximum likelihood estimators which are not robust. [14] showed that
the likelihood equations obey a certain structure that appears in other robust parameter
estimation problems.
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Definition 3.1. Let X1, X2, ..., Xn ∼ iid,X1 ∼ F . An M-estimator Tn is defined as a
solution of the minimization problem

n∑
i=1

ρ(Xi, t) := min (3.1)

where ρ(., .) is a properly chosen function. If ρ is differentiable in t with a continuous
derivative ψ(X, t) = ∂

∂t
ρ(X, t), then Tn is a root or one of the roots of the equation

n∑
i=1

ψ(Xi, t) = 0 (3.2)

M-estimator is a robust method used as an alternative to be the least square method
when the data under study has outliers, extreme observations, or does not follow a nor-
mal distribution. The fundamentals of the M-estimators consist of taking distributions
that have a probability density function with "heavy tails". A distribution having heavy
tails means that, large errors are less unlikely than it would be with normal distribu-
tion.Different types of M-estimators based on several noise distributions have been sug-
gested. In this study the M-estimator we would consider is;

3.1 Huber M-estimate
Huber(1964) introduced M-estimators and their asymptotic properties and they were an
important part of the modern robust statistics.In the strive of defining a robust criterion,
Huber(1964) considered an agreement between the mean and the median. The mean
criterion is a square and in the "tails" the square gives too much weight to big observations.
In contrast, it is well known robust location estimator.
The M-estimator for the location parameter µ is defined as a solution of

n∑
i=1

ψ(xi − t

σ
) = 0. (3.3)

Taken σ = 1 the solution is
n∑

i=1
ψ(xi − t) = 0.

The function ψ is linear in a bounded segment [−k, k] and constant outside this segment.
The Huber M-estimate is defined by the function ψ where

ψk(x) =


k, x ≥ k

x − k ≤ x ≤ k

−k x ≤ −k,
(3.4)

where k > 0 is a fixed constant.The constant k, which can also be called a turning
parameter, controls the mix, with small values of k yielding a more "median-like" estimator.
Constant k depends of the number of outliers in the set. As Huber proved in (1964), an
estimator, produced by the function (3.4) is mini-maximally robust for a contaminated
normal distribution, while the value of k depends on the contamination ratio. A more
practical and natural question is whether there exists a distribution F such that the Huber
M-estimator is the maximal likelihood estimator µ for F (x − µ), that is, such that ψ is
the likelihood function of F. A distribution of such property really exists, and its density
is normal in internal [−k, k] and exponential outside [6].

28



3.2 Hodges-Lehmann Estimate (R-estimate)
We define rank Ri as

Ri =
∑

I[Xj≤Xi], i = 1, ..., n (3.5)

which is widely used for location parameter tests(Wilcoxon test) and that is Ri = nF̂n(Xi),
i = 1, ..., n, where F̂n is empirical distribution function of X1, ..., Xn. The ranks remains
unchanged with respect to the class of monotone transformations of observations. The
pros of the rank test include; [6],

• The estimators are position and scale equivariant.
• The most important one is that, the distribution of the test criterion under the hy-

pothesis of randomness i.e.,if X1, ..., Xn are independent and identically distributed
with a continuous distribution function) is independent of the distribution of obser-
vations.

A common complaint about non-parametric statistics is that they allow you to assess sta-
tistical significance but they do not allow you to measure effect size. Fortunately, there
are techniques for measuring the size of an effect that are insensitive to distributional
unpleasantness (like skewness, kurtosis or outliers) just like non-parametric statistical
tests are. One of such methods is the Hodges-Lehmann estimator. Hodges and Lehmann
(1963) proposed that estimators could be obtained by inverting rank tests, and the class
of such estimators is termed as R-estimators. R-estimate can be defined for a lot of mod-
els, reasonably for all where the rank tests make sense and the test criterion is symmetric
about a known center or has other appropriate property under the null hypothesis.
Hodges–Lehmann estimator plays a fundamental role when applying standard rank-based
methods (in particular, the Wilcoxon signed rank test).The Walsh averages of n obser-
vations refers to all pairwise averages,(Xi + Xj)/2 for all i ≤ j.The Hodges-Lehmann
estimator is the median of all Walsh averages, specifically,

TnH = medi≤j
Xi +Xj

2 . (3.6)

3.3 Sen’s Estimate (L-estimator)
L-estimators are based on order statistics Xn:1 ≤ ... ≤ Xn:n of random sample X1, ..., Xn.
The general L-estimator can be given in the form

Tn =
n∑

i=1
cnih(Xn:i) +

k∑
j=1

ajh
∗(Xn:[npj ]+1) (3.7)

where cn1, ..., cnn and a1, ..., ak are given coefficients, 0 < p1 < ... < pk < 1 and h(.) and
h∗(.) are given functions. Also, the coefficient cni, 1 ≤ i ≤ n are generated by a bounded
weight function J : [0, 1] → R in the following way:

cni =
∫ i

n

i−1
n

J(s)ds i = 1, ..., n (3.8)

approximately
cni = 1

n
J( i

n+ 1) i = 1, ..., n (3.9)

The first component of the L-estimator (3.7) generally involves all order statistics, while
the second component is a linear combination of several (finitely many) sample quantiles.

29



The major advantage of the L-estimator is that it has a closed form and is computationally
easy [11]. The simplest examples suggested by Jurečková and Picek [6] of an L-estimator
of the distribution location are the sample median and the midrange, in which the later
is defined as

Tn = X1:n +Xn:n

2 (3.10)

A simple L-estimator of distribution scale is the sample range or

Rn = Xn:n −X1:n. (3.11)

An interesting L-estimator that have immediate connection to the L-moments is the Sen
weighted mean. A special location statistics, which is based on the order statistics, is the
Sen weighted mean (Sen, 1964) or the quantity Tn,k. The Tn,k is a robust estimator [6] of
the mean of a distribution and is defined as

Tn,k =
(

n

2k + 1

)−1 n∑
i=1

(
i− 1
k

)(
n− i

k

)
Xn:i,

where Xn:i are the sample order statistics and k is a weighting or trimming parameter.
Note that Tn,0 = µ = Xn or the arithmetic mean and Tn,k is the sample median if either
n is even and k = (n/2) − 1 or n is odd and k = (n− 1)/2.

3.4 Trimmed Mean(L-etsimator)
The trimmed mean is another type of unbiased estimator.To compute a trimmed mean,
we remove a predetermined amount of observations on each side of a distribution, and
average the remaining observations. α− trimmed mean 0 < α < 0.5is the average of the
central quantiles. It is given by

X̄nα = 1
n− 2[nα]

n−[nα]∑
i=[nα]+1

Xn:i

where Xn:i are the sample order statistics [6].

3.5 Winsorized Mean(L-estimator)
Winsorization is a method of reducing the influence of outliers in your data set.The
Winsorized mean is similar to the trimmed mean, except that rather than deleting the
extreme values, they are set equal to the largest (or smaller) values.
The average of the Winsorized mean is a typical example of the general form (3.7) which
possess two components

W̄nα = T (Fn)
= 1

n

{
[nα]Xn:[nα]+1 +∑n−[nα]

i=[nα]+1 Xn:i + [nα]Xn:n−[nα]
}

= ∑n
i=1 cniXn:i + [nα]+1

n
Xn:[nα]+1 + [nα]+1

n
Xn:n−[nα]

where
cni =

{
1
n

. . . 1 + [nα] < i < n− [nα]
0 . . . otherwise

The extreme quantiles are not trimmed but substituted with quantiles Xn:[nα]+1 and
Xn:n−[nα] sequentially [6].
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4 RECIEVER OPERATING CHARACTERISTIC CURVE
(ROC) CURVE

4.1 Summary of ROC curves
The ROC curve assesses the performance classification methods used to identify obser-
vations by type. For instance, the ROC curve may indicate the performance of (1) a
software filter which categorizes emails as ham or spam, (2) a medical diagnostic test
which categorizes patients as healthy or sick, or (3) an astrophysics approach which clas-
sifies galaxies as elliptical or spiral. The receiver operating characteristic (ROC) curves
have been in use for a long time, having risen in the context of signal detection theory
which was developed in the 1950s as [15] discussed. To produce ROC curve, a sample of
observations with known classes must be available. Often, the true ROC function may be
a continuous curve which remains unknown.

4.2 Classification methods, scores, and error rates
The ROC curve portrays a classification method’s ability to distinguish classes and depicts
all attainable error rates across thresholds. Furthermore, the ROC curve’s standard axes
of true positive and false positive rates helps to compare various classification methods.
Assume that we have a classification method that accesses observations to establish to
which one of the two classes they belong. For consistency with established terms of the
ROC curves, label one class positive and the other class negative. Considering a given
observation, the classification method gives back a number called a score. On top of
multiple observations, the classification method produces two distributions of scores, one
for the negative class and the other for positive class. Suppose that high scores implies
the positive class and that low scores also implies the negative. We want to measure the
method how the method’s performance is selective between the two classes [8].
Following, for the purposes of testing this performance, let us assume we have an observa-
tion whose true sources are known. We apply the classification method to this test data
to obtain scores for all observations. For a threshold c on the scores, if the score for a
given observation is greater than c, we assume the observation came from the positive
class. Otherwise, the negative class is been considered as the source of the observation.
Supposing we support the wrong assumption, we commit an error. Also, when we favor
the negative class when in truth an observation comes from the positive class, the error
is termed as false negative(FN). Likewise, when we favor the positive class when in truth
an observation comes from the negative class, the error is termed as a false positive(FP).
With multiple observations we can compute the rates of these errors. We will only high-
light on true positive rate (TPR) and false positive rate(FPR), which define the axes of
the ROC plot. Another summary index that has been proposed is the point on the ROC
curve where sensitivity is equal to specificity, TPR = 1 − FPR [8]. The ROC curve can
be constructed as a plot of sensitivity(TPR) versus 1-specificity(FPR). Particularly, the
ROC plots the FPR on the x-axis and the TPR on the y-axis.

TPR(Sensitivity) = TP

TP + FN

and
FPR(1 − Specificity) = FP

TN + FP
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Definition 4.1 (ROC). Using a threshold c, define a binary test result Y as

positive if Y ≥ c,

negative if Y < c.

Let the corresponding true and false positive fractions at the threshold c be TPR(c) and
FPR(c),respectively where

TPF (c) = P [Y ≥ c|D = 1],
FPF (c) = P [Y ≥ c|D = 0].

(4.1)

The ROC curve is the whole set of possible true and false positive rates attainable by
dividing Y with different thresholds. That is, the ROC curve is

ROC(.) = {(FPR(c), TPR(c)), c ∈ (−∞,∞)} (4.2)

We will discover that, as the threshold c increases, both FPR(c) and TPR(c) decrease.
At one extreme, c = ∞ , we have limc→∞ TPR(c) = 0 and limc→∞ FPR(c) = 0. At the
other, c = −∞, we have limc→−∞ TPR(c) = 1 and limc→−∞ FPR(c) = 1 which implies
that, the ROC is a monotone increasing function in the positive quadrant as illustrated
in Figure(3).We can also write the ROC curve as

ROC(.) = {(t, ROC(t)), t ∈ (0, 1)} (4.3)

where the ROC function maps t to TPC(c), and c is the threshold corresponding to
FPF(c)=t.

Mathematically, the ROC curve can be described as a monotone increasing function
in the unit square tied down at the boundary points (0, 0) and (1, 1). A perfect classifier
completely separates diseased and non-diseased subjects thus, (FPR = 0, TPR = 1). Its
ROC curve is along the left and upper borders of the positive unit quadrant,whereas, an
uninformative ROC curve for a continuous test result Y is a diagonal of 45◦. Alternatively,
an uninformative test is one such that TPR(c) = FPR(c) for every threshold t and this
situation is represented by ROC curve ROC(t) = t, which is a line with unit slope. Most
ROC curves lie between those of the perfect and useless tests. Better tests have ROC
curves closer to the upper left corner.

The primary numerical index used to describe the behavior of the ROC curve is the
area under the ROC curve (AUC), defined by

AUC =
∫ 1

0
ROC(t)dt (4.4)
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4.3 Empirical ROC Curve
The empirical ROC curve is a more general type of the ROC curve which is non-parametric.
It does not require any distribution pattern of test values. It uses the trapezoidal rule in
the sense that it calculates the area by joining the points at each interval of the observed
values of continuous test. One advantage of this method is that no structural hypothesis
is made on the form of the plot, and the underlying distributions of the results of the two
groups are not specified. The precision of statistical conclusions based on the empirical
ROC curve is reduced compared to a model-based estimator when the genuine ROC curve
is a smooth function (at least when the model is correctly specified). Nevertheless, the
estimator has some drawbacks, and it may suffer from large variability, particularly for
small sample sizes [16].

Definition 4.2. The empirical estimator of the ROC curve applies the definition of the
ROC curve to the observed data. That is, for every possible threshold c, the empirical
true and false positive ratio are calculated as

T P̂R(c) =
nD∑
i=1

I (YDi
≥ c) /nD,

F P̂R(c) =
nD̄∑
j=1

I
(
YD̄j

≥ c
)
/nD̄

where D and D̄ represent the positive and negative responses, nY and nȲ are the total
number of positive and the negative responses, YD and YD̄ are the random diagnostic
variables in the positive and the negative responses.

Figure 7: An example of an empirical ROC curve denoted by nD and nD̄

Particularly, each point on the empirical ROC curve represents an individual threshold
value. The points are connected to form the curve. Threshold values that result in low
false positive rates tend to result in low true positive rate as well. The empirical ROC
curve is a plot of the true positive rate T P̂R(c) versus the false positive rate FP̂R foe all
c ∈ (−∞,∞). Also, as the true positive increases, the false positive also increases. By [7]
the AUC of the empirical estimator is defined as

AUC = 1
nDnD̄

nD̄∑
j=1

nD∑
i=1

(
I
(
YDi

> YD̄j

)
+ 1

2I
(
YDi

= YD̄j

))
(4.5)

33



4.4 Binormal ROC Curve
The Binormal model for ROC assumes that under some unspecified, monotonic increas-
ing transformation, the negative distribution of the diagonal variables in positive classes
follows normal distributions [7]. To evaluate the binormal ROC curve, the sample mean
and sample variances are estimated from the known positive group, and again for the
known negative group. These sample means and sample variances are used to identify
two normal distributions. The ROC curve is later generated from the two normal distri-
butions. In a case the two normal distributions overlap, Binormal ROC curve is closer
to the 45-degree diagonal line. When the two overlap only in the tails, the Binormal
ROC curve has a much greater distance from the 45-degree diagonal line. The choice of
the binormal estimator to fit the ROC curve is often justified by theoretical considera-
tions, mathematical tractability, familiarity with the normal model, or simply a favorable
agreement or convenience. [17] presents a table outlining the most common arguments in
favor of using this estimator. But some authors also argue that the binormal estimator is
robust.It is used in the sense of robust statistics, meaning that the presence of a certain
amount of observations coming from a non-normal distribution will yield reliable results.

Figure 8: Three hypothetical ROC curves representing the accuracy of an ideal test (line
A) on the upper and left axes in the unit square, a typical ROC curve (curve B), and a
diagonal line corresponding to an uninformative test (line C). As test accuracy improves,
the ROC curve moves toward line A

.

In figure (8), line A represents a perfect test with AUC = 1, curve B represents a typical
ROC curve (for example AUC = 0.85), and a diagonal line also known as the chance line
(line C) corresponding to uninformative test with AUC = 0.5. As test accuracy improves,
the ROC curve moves toward A, and the AUC approaches 1. Clearly, if two tests are
ordered with test A uniformly better than test B in the sense that [7]

ROCA(t) ≥ ROCB(t) ∀t ∈ (0, 1) (4.6)
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which can clearly be seen in (fig.4), then their AUC statistics are ordered;

AUCA ≥ AUCB.

Functional Form of the Binormal ROC Curve
To derive the functional form of the ROC curve, we can assume that test results are
normally distributed in the diseased (D) and non-diseased(D̃) populations.
If

YD ∼ N(µD, σ
2
D) YD̃ ∼ N(µD̃, σ

2
D̃)

then
ROC(t) = Φ(a+ bΦ−1(t))

where
a = µD − µD̃

σD

b = σD̃

σD

and Φ denotes the standard normal cumulative distribution function [7].

Proof. The Binormal ROC curve with a given threshold c is commonly assessed using
the probabilities that correctly classify outcomes thus, the FPR(c) and TPR(c) can be
define respectively as

FPR(c) = P [YD̄ > c] = Φ
(
µD̄ − c

σD̄

)

TPR(c) = P [YD > c] = Φ
(
µD − c

σD

)
For a false positive fraction t, we see that c = µD̄−σD̄Φ−1(t) is the corresponding threshold
for the test positivity criterion. Hence.

ROC(t) = TPR(c) = Φ
(
µD − c

σD

)
= Φ

(
µD − µD̄ + σD̄Φ−1(t)

σD

)
= Φ

(
a+ bΦ−1(t)

)
.

Definition 4.3. The binormal ROC is defined by the form

ROC(t) = Φ(a+ bΦ−1(t)) (4.7)

where Φ(.) is the cumulative distribution function of the standard normal distribution.
We call a the intercept and b the slope for binormal ROC curve.As per our convention
that largest test result are more indicative of disease, we have µD > µD̄ so a > 0.The
slope b is positive by definition.

The binormal ROC provides a good approximation to a wide range of ROC curves that
occur in practice. Note that if the slope b = 1, then the binormal ROC curve is concave
everywhere. To see this, observe that the slope of the ROC curve at t is likelihood ratio
at the corresponding threshold c, which can be given as

fD(C)
fD̄(C) =

(
σD̄

σD

)
exp

{
−(c− µD)2

2σ2
D

+ (c− µD̃)2

2σ2
D̄

}
,
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when b = 1, we have σD = σD̄ and the common value is denoted by σ.The likelihood ratio
then reduces to exp{c(µD − µD̄)/σ2 − (µD

2 − µD̄
2)/2σ2}. As c decreases (t increases),

we seee that the slope decreases because µD > µD̄. Hence when b = 1 the slope of the
ROC curve is monotone decreasing in t. Again, if b ̸= 1 the monotonicity criterion fails.
For b > 1, the likelihood ratio decreases and then increases. Conversely, for b < 1 the
likelihood ratio increase and then decrease as t range from 0 to 1. This produces the
irregularities in the ROC curve where it falls below the uninformative test ROC curve,
ROC(t) = t. The AUC has a simple analytic form when the ROC curve is binormal. The
AUC for binormal ROC curve is [7]

AUC = Φ
(

a√
1 + b2

)
.

4.5 Bi-Cauchy ROC
Here, we derive the functional form of ROC model for Cauchy similar to the binormal ROC
curve. Let the distribution in the true positive class be Cauchy with location parameter
µD and scale parameter σ2

D and false positive class be Cauchy with location parameter
µD̄ and scale parameter σ2

D̄
under this transformation

YD ∼ C(µD, σ
2
D) YD̄ ∼ C(µD̄, σ

2
D̄).

Since the ROC curve with a given threshold c is commonly assessed using the probabilities
that correctly defined outcomes as stated in the case of the binormal ROC we can define
the TPR(c) as

TPR(c) = P (YD > c) = 1 − P (YD ≤ c)

= 1 − F
(
c− µD

σD

)
= F

(
−c− µD

σD

)
= F

(
µD − c

σD

)
(4.8)

From above, P (YD ≤ c) = F
(

c−µD

σD

)
by standardization. The false positive rate FPR(c)

follows the same approach. Hence

FPR(c) = P (YD̄ > c) = 1 − P (YD̄ ≤ c)

= F

(
µD̄ − c

σD̄

)
.

(4.9)

For the false positive fraction t, if we rearrange the FPR(c) equation,that is, taking its
inverse transformation we have

F−1(FPR(c)) = µD̄

σD̄

− c

σD̄

(4.10)

we see that
c = µD̄ − σD̄F

−1(t), (4.11)

which can be substituted into (4.9) to get the Bi-Cauchy ROC
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ROC(t) = TPR(c) = F
(
uD − c

σD

)
= F

(
uD − uD + σDF

−1(t)
σD

)

= F

(
uD − uD̄

σD

+ σD̃F
−1(t)
σD

)
introducing

α = uD − uD̄

σD

and β = σD̄

σD

we have
ROC(t) = F

(
α + βF−1(t)

)
, (4.12)

where (4.12) is the Bi-Cauchy ROC model. We see that, the model has two parameters,
α which is the intercept, β is the slope, withholding the fact stated by [7] that larger test
results are more indicative of disease thus µD > µD̄, then we can conclude that α > 0
and also the slope β is positive by definition. F is the cumulative distribution function of
standard Cauchy distribution as shown in Proposition (2.9) and F−1 is the inverse of the
cumulative distribution function. Since all terms are known the Bi-Cauchy ROC model
in (4.12) is

ROC(t) = 1
2 + 1

π
arctan

(
α + β tan

(
πt− π

2

))
∀t ∈ (0, 1) (4.13)

The nature and behavior of the curve is dependent on the slope α and the intercept β.
From [7] when β = 1, the Binormal ROC curve is concave everywhere. This assertion
holds for the Bi-Cauchy ROC in the sense that, for a constant β the curves are concave
but for different values of β there are anomalies in the nature of the curves which can be
seen in Figure 10. Proper ROC curves are concave and symmetric and never cross each
other, this makes it reliable in comparison between different subjects, Figure 9 shows a
proper Bi-Cauchy ROC curves.
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Figure 9: Bi-Cauchy ROC curves with a constant slope (β = 1)

Figure 10: Bi-Cauchy ROC curves with a constant Intercept (α = 1)
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Figure 11: Bi-Cauchy ROC curves with different α and β values

AUC of the Bi-Cauchy ROC curve
From [7] the area under the curve is

AUC = P [YD > YD̄], (4.14)

where YD and YD̄ are independent randomly chosen test results from the diseased and
non-diseased population, respectively. [18] base on the same assumption in (4.14) in
its estimates in clinical trials. It can be calculated as the average of TPR accross all
FPR. Then basing on the same results (4.14) which was used to derived the AUC for
the Binormal ROC curve by [7], we can derive the Bi-Cauchy ROC in the sense that

AUC = P [YD > YD̄] = P [YD − YD̄ > 0]

Let

K = P [YD − YD̄].

Then using the properties of the characteristic function it can be shown that

K ∼ C(µD − µD̄, σ
2
D + σ2

D̄)
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which implies that
P (K > 0) = 1 − P (K ≤ 0)

= 1 − F

−µD + µD̄√
σ2

D + σ2
D̄


= F

 µD − µD̄√
σ2

D + σ2
D̄



= F

 µD − µD̄√
σ2

D ×
(

1 + σ2
D̄

σ2
D

)


= F

µD − µD̄

σD

÷

√√√√1 +
σ2

D̄

σ2
D



(4.15)

if we denote

α = uD − uD̄

σD

and β = σD̄

σD

.

From the assertion above, the AUC of the Bi-Cauchy ROC can be written in the following
convenient closed form

AUC = F

(
α√

1 + β2

)
, (4.16)

g since F is a known function, thus the cumulative distribution function of Cauchy distri-
bution as show in Proposition 2.9, it follows that the AUC of the Bi-Cauchy ROC model
is

AUC = 1
2 + 1

π
arctan

(
α√

1 + β2

)
. (4.17)

4.5.1 Point of Inflection of the Bi-Cauchy ROC Model

A point of inflection is established where the graph of a function changes concavity. From
basic calculus results concerning concave functions it follows that the an inflection is where
a curve changes from concave upwards to concave downwards. The first derivative of the
function gives the slope and the second derivative tells us whether the slope increases or
decreases. In the case the second derivative is positive the curve is concave upwards and
vice-versa is concave downwards. When β ̸= 1, Bi-Cauchy ROC curve is not "proper" as
is not concave throughout the whole ROC square as seen in Figure(10). We seek to find
a point in the model (4.13) where the curve inflects. This is possible by finding the first
and second derivative. To locate the inflection point, we set the second derivative to zero,
and solve the equation.
For the model,

ROC(t) = 1
2 + 1

π
arctan(α + β tan(πt− π/2)) ∀t ∈ (0, 1).
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The first derivative
∂ROC(t)

∂t
= ∂

∂t

(1
2 + 1

π
arctan(α + β tan(πt− π/2))

)
= ∂

∂t

(1
2

)
+ ∂

∂t

( 1
π

arctan(α + β tan(πt− π/2))
)

= 1
π

(
1

1 + (α + β tan(πt− π/2))2 × βπ

cos2(πt− π/2)

)

=
(

β

(1 + (α + β tan(πt− π/2))2) cos2(πt− π/2)

)
.

For the second derivative we differentiate the first derivative by the approach of the
product rule and we have
∂2ROC(t)

∂t2
=
[
β(1 +

(
α + β tan(πt− π/2)2

))−1
(

−
(
cos2(πt− π/2)

)−2
)

(2 cos(πt− π/2))

(− sin(πt− π/2))π
]

+
[
cos2(πt− π/2)

(
−
(

1 +
(
α + β tan(πt− π/2)2

)−2

(2α + 2β tan(πt− π/2))
(

βπ

cos2(πt− π/2)

) ]
,

by simplification of the second derivative and equating it to zero, it follows that,

2 sin(πt− π/2) × π

(1 + (α + β tan(πt− π/2))2) (cos(πt− π/2))3 − 2(α + β tan(πt− π/2)) × βπ

(1 + (α + β tan(πt− π/2))2)2 = 0

sin(πt− π/2) (1 + (α + β tan(πt− π/2))) = β(α + β tan(πt− π/2))(cos(πt− π/2))3

=⇒ tan(πt− π/2)(1 + (α+ β tan(πt− π/2)) = β(α+ β tan(πt− π/2))(cos(πt− π/2))2.

Let
D = tan(πt− π/2)

Then we have the expression

D (1 + α + βD) = (α + βD) × β
(
cos2(πt− π/2)

)
(4.18)

But
cos2(πt− π/2) = 1

1 + tan2(πt− π/2) (4.19)

Putting (4.19) into (4.18) we have

D + αD + βD2 = (α + βD) × β

1 +D2

⇒D + αD + βD2 = αβ

1 +D2 + β2D

1 +D2 .

By simplifying the above expression we have

βD4 + αD3 +D3 + βD2 + αD − β2D +D − αβ = 0, (4.20)

If we assume α = 1 and β = 1 then we have

D4 + 2D3 +D2 +D − 1 = 0. (4.21)
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It is not trivial to find the roots of the polynomial (4.21), we find the roots numerically
and the real roots are D1 = 0.48402 and D2 = −1.8972. Since

D = tan(πt− π/2),

then for D1 = 0.48402 we have

tan(πt− π/2) = 0.48402
(πt− π/2) = arctan(048402)
πt = arctann(048402) + π/2.

t = 1
π

arctan(048402) + 2.

⇒ t1 = 10.221,

also for D2 = −1.8972 we have

tan(πt− π/2) = −1.8972
πt− π/2 = arctan(−1.8972)

πt = arctan(−1.8972) + π/2

t = 1
π

arctan(−1.8972) + 2

⇒ t2 = −17.801.

From above we can infer that there are many roots of the second derivative and finding
the point by which the Bi-Cauchy ROC curve inflects will be complex. This is because
the points t1 and t2 above were obtained when we assumed the constants α = 1 and
β = 1. How about the cases when there are different values of α and β. We find the
roots numerically to see the behavior for different values of the constants by using the
expression (4.20). Since the value of D is known then the second derivative for t ∈ (0, 1)
is

β tan4 (πt− π/2) + α tan3 (πt− π/2) + tan3 (πt− π/2) + β tan2 (πt− π/2) +
α tan (πt− π/2) − β2 tan (πt− π/2) + tan (πt− π/2) − αβ = 0.

(4.22)

We simulate using the function (4.22) to see the behavior of the function and this can be
seen in the figure below. From the figure we see for different values of α, β and t ∈ (0, 1)
all the curves remains constant at the same point in the middle before the switch which
shows the behavior of the points of inflection of the Bi-Cauchy ROC curve.
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Figure 12: Point of Inflection of the Bi-Cauchy ROC curve for different values of α and β

CASE STUDY
Suppose that the test results are Cauchy distributed in the diseased and non-diseased
populations with location parameter (µD, µD̄) and scale parameter (1, 1) thus the case

YD ∼ C(µD, 1) YD̄ ∼ C(µD̄, 1).

Then for any threshold c, we can express the FPR and TPR using the cdf of standard
Cauchy distribution as

FPR(c) = P [YD̄ > c] = F
(
µD̄ − c

1

)
TPR(c) = P [YD > c] = F

(
µD − c

1

)
,

to arrive at a simple expression for ROC(t) for the Cauchy distributed test, we take the
inverse function of the first term FPR(c), we can see that c = µD̄ −F−1(t) which will be
the corresponding threshold for the test positivity criterion. Therefore,

ROC(t) = TPR(c) = F
(
µD − c

1

)
= F

(
µD − (µD̄ − F−1(t))

)
= F

(
µD − µD̄ + F−1(t)

)
,

(4.23)
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hence for Cauchy distributed diagnosing random variable with distribution parameters
C(µD, 1) and C(µD̄, 1) the Bi-Cauchy model can be written as

ROC(t) = F (µD − µD̄ + F−1(t)). (4.24)

Since the functions F and F−1(t) are known the Bi-Cauchy ROC model is

ROC(t) = 1
2 + 1

π
arctan

(
µD − µD̄ + tan

(
πt− π

2

))
∀t ∈ (0, 1) (4.25)
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5 RESULTS OF SIMULATIONS

5.1 Results 1
In this section, I performed simulations based on the previously described model in pyhton
software version 3.6.0]. We have our Bi-Cauchy ROC model

ROC(t) = 1
2 + 1

π
arctan

(
µD − µD̄ + tan

(
πt− π

2

))
∀t ∈ (0, 1)

we simulate for different values of muD and µD̄ and compared it with the empirical
ROC curve as discussed earlier in (4.3). I chose a random set of data for n = 100 for
both diseased and non-diseased population. The data was chosen from [cardiovascular-
disease-dataset]. The discussed estimators in section 3 thus, Huber M-estimate, Hodges
Lehmann estimate(R-estimate), Sen’s mean(L-estimator), Trimmed mean(L-estimator)
and the Winsorized mean(L-estimator) were used to estimate the the chosen data set for
both diseased and non-diseased population.The data were chosen just get a values for
each estimates in order to apply in the Bi-Cauchy model.

The estimator values were then used to generate a random set of observations which
are Cauchy distributed for both the diseased and non-diseased population The different
values of the estimates were set as the location parameter µD and µD̄ to perform these
simulations.

The Cauchy random variables generated were used to plot different empirical ROC
curves and compared with Bi-Cauchy ROC. The results of the estimator values are shown
in the table below

Estimator Diseased Population Non-Diseased Population
Mean(x̄) 26.0831 25.0013
Huber M-estimate(M-estimator) 25.7658 25.0784
Hodges Lehmann Estimate(R-estimator) 25.7850 25.1625
Sen’ Estimate(L-estimator) 26.0831 25.0013
5% Trimmed Mean(L-estimator) 25.7658 25.0698
10% Trimmed Mean(L-estimator) 25.7748 25.25175
5% Winsorized Mean(L-estimator) 25.7467 24.9033
10% Winsorized Mean(L-estimator) 25.7408 24.9234

Table 1: Table Showing different estimator values

The results for the empirical and Bi-Cauchy ROC curves for the different estimates with
their AUCs are shown as follows
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Figure 13: ROC curve when the diseased and non-diseased class follows a Cauchy distri-
bution with the Mean (µD = 26.0831 and µD̄ = 25.0013 estimates in Table 1)

Figure 14: ROC curve when the diseased and non-diseased class follows a Cauchy distri-
bution with the Huber M-estimate (µD = 25.7658 and µD̄ = 25.0784 estimates in Table
1)

Figure 15: ROC curve when the diseased and non-diseased class follows a Cauchy distri-
bution with the Hodges Lehmann Estimate (µD = 25.7850 and µD̄ = 25.1625 estimates
in Table 1)
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Figure 16: ROC curve when the diseased and non-diseased class follows a Cauchy distri-
bution with the Sen Weighted Mean (µD = 26.0831 and µD̄ = 25.0013 estimates in Table
1)

Figure 17: ROC curve when the diseased and non-diseased class follows a Cauchy distri-
bution with 5%-Trimmed Mean (µD = 25.7658 and µD̄ = 25.0698 estimates in Table 1)

Figure 18: ROC curve when the diseased and non-diseased class follows a Cauchy distri-
bution with 10%-Trimmed Mean (µD = 25.7748 and µD̄ = 25.25175 estimates in Table 1)
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Figure 19: ROC curve when the diseased and non-diseased class follows a Cauchy distri-
bution with 5%- Winsorized Mean (µD = 25.7467 and µD̄ = 25.9033 estimates in Table
1)

Figure 20: ROC curve when the diseased and non-diseased class follows a Cauchy distri-
bution with 10%- Winsorized Mean (µD = 25.7408 and µD̄ = 24.9234 estimates in Table
1)
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From the above ROC plots, it is evident that, the estimate with the average mean
Figure 13 shows a vast difference between the empirical ROC and the true(Bi-Cauchy)
ROC curve as compared to the other estimates. Also, comparing the AUCs, the AUC
for the empirical is far lower than that of the Bi-Cauchy ROC curve as compared to the
difference between the AUCs of other estimates.This also shows why the mean deviates
for Cauchy distribution and why the weak law of large numbers does not hold for Cauchy
distribution as explained in Proposition 2.6.

Also, the same values of the estimators are considered and the empirical is been
simulated by a combination of all the data sets from both the diseased and non-diseased
population from each of the estimators. The result of the simulation is seen in the Figure
21. From the figure, we can see that estimation with the mean moves farther from the
empirical as compared to the other estimators. In the order of suitability the closest one
to the empirical is the 10%-Trimmed mean followed by the Hodges Lehmann estimate,
Huber M-estimator, 5%-Trimmed mean, 10%-Winsorized mean, 5%-Winsorized mean,
Sen’s mean and the last was the average mean.

Figure 21: ROC Plots comparing the empirical ROC and all Bi-Cauchy ROC of different
estimates

49



5.2 Results 2
A new set of simulations were performed to check how the various estimators can be
applied to Cauchy distributed data using the same ROC approach. I choose two constant
values (µD = 28) and (µD̄ = 26.5) as the location parameter for both diseased and
non-diseased subjects with the same model

ROC(t) = 1
2 + 1

π
arctan

(
µD − µD̄ + tan

(
πt− π

2

))
∀t ∈ (0, 1)

The constant values (µD = 28) and (µD̄ = 26.5) were used to generate Cauchy distributed
random variables, 100 for each value. The various estimators were then used to estimate
each of the set of variables for both the diseased and non-diseased populations and applied
in ROC plots. The constant values were used to plot the true Bi-Cauchy ROC curves and
the estimated values were used for theoretical Bi-Cauchy ROC curves and plotted with
the empirical ROC. The empirical ROC was generated from the same 100 set of randomly
generated variable for both populations. Results for the estimator values are shown in
the table below

Estimator Diseased Population Non-Diseased Population
Mean(x̄) 27.879129 26.804028
Huber M-estimate(M-estimator) 27.86196 26.69340
Hodges Lehmann Estimate(R-estimator) 27.85858 26.64251
Sen’s Estimate(L-estimator) 27.87913 26.80403
5% Trimmed Mean(L-estimator) 27.90481 26.72807
10% Trimmed Mean(L-estimator) 27.86493 26.69325
5% Winsorized Mean(L-estimator) 27.91092 26.775005
10% Winsorized Mean(L-estimator) 27.90945 26.70798

Table 2: Table Showing different estimator values for

The ROC plots comparing the Empirical ROC curve, True ROC curve and the Theo-
retical ROC curve for two set of observations. Small sample size n = 100 and large sample
size n = 500 are shown as follows
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Figure 22: Simulation of small sample size n=100
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Figure 23: Simulation of small sample size n=100
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Figure 24: Simulation of small sample size n=100
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With reference to the ROC plots above, we can see by the AUC,s of the theoretical Bi-
Cauchy ROC curve which is very close to the true Bi-Cauchy ROC curve is the Hodges
Lehmann estimator followed by 10%-Winsorized mean, 10%-Trimmed mean, 5%-Trimmed
mean, Huber M-estimator, 5%-Winsorized mean, Sens mean and the average mean. The
Sens mean and the average mean are the most farther from the true Bi-Cauchy ROC curve.
Figure (6) below shows a comparison of the various true Bi-Cauchy ROC, empirical roc
and theoretical ROC plots of the estimates.

Figure 25: Simulation of small sample size n = 100 of the True Bi-Cauchy ROC, Theo-
retical Bi-Cauchy ROC and the empirical ROC of each of the estimators estimators.
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We simulated for a large sample size, for n = 500. Large sample size increases the
estimator values and this increases the AUCs of the Bi-Cauchy ROC curves because the
higher the difference between µD and µD̄ the more concave the Bi-Cauchy ROC curves.
But this reduces the AUC of the empirical because the empirical is dependent on the
number of observation n as studied in section 4.3.

Figure 26: Simulations of Large sample size n = 500
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Figure 27: Simulations of Large sample size n = 500

56



Figure 28: Simulations of Large sample size n = 500
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Figure 29: Simulations of Large sample size n = 500 of all the estimates
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The values for both the diseased and non-diseased population were set in a such a way
that the difference will be a more bit wider. We set the diseased population to µD = 28
and non-diseased to µD̄ = 22. Simulation done for both small sample n = 100 size and
large sample size n = 500 to see how the concavity of the ROC improves. Results is seen
below

Figure 30: Simulations of sample size n = 100 of all the estimates with µD = 28 and
µD̄ = 22
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Figure 31: Simulations of sample size n = 500 of all the estimates with µD = 28 and
µD̄ = 22
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5.3 Theoritical Comments
• Comparing both simulations in section 5.1 and 5.2, in both cases the ROC estimate

based on the average estimate of µD and µD̄ deviates from all the other estimates in
its estimation which assert to the fact that the conditions for the weak law of large
numbers are not fulfilled and thus the average does not converge to the location
parameter in probability. This can be seen from Figure 21, 25 and 29.

• Furthermore, we were considering the order of their performance in a model with
Cauchy distribution. To compare from the two results, estimates with the Hodges
Lehmann estimator, Huber M-estimate, both 5% and 10% Trimmed mean, 5% Win-
sorized mean and the 10% Winsorized mean show to be more suitable in their es-
timation. The average mean and the Sens mean were not suitable. In summary,
Hodges Lehmann estimator, Huber M-estimate, both 5% and 10% Trimmed mean,
5% Winsorized and the 10% Winsorized are more suitable in the estimation of the
location parameter of Cauchy distribution.

• Owing to the fact that, ROC analysis is a method for evaluating the accuracy or
performance of medical diagnostic test, then for any real life data that is Cauchy
distributed, this technical approach can also be used to give out the best diagnosis
to a patient using the robust estimators aforementioned.

• This can be possible by the help of the AUC since it is a summary measure that
gives a very meaningful interpretation. In the case of a perfect classification the
Bi-Cauchy ROC curve will reach the point of highest theoretical accuracy i.e the
sensitivity and specificity will both be 100% and the AUC will tend to one (the
highest possible value).

• The AUC values was between the range of 0.5 − 0.8 in the simulations, in analysis
of ROC 0.5 gives a non-informative diagnostic curve but all the data used in the
simulation were randomly generated not a real life data or accurate.

• In Figure 30 and Figure 31 where we considered a wider difference µD = 28 and µD̄ =
22. The AUC values increased and the Bi-Cauchy ROC curves moved a bit higher
to the top left corner. [19] argued to the fact that concavity is a characteristic of
the parametric ROC curves because it guarantees that the ROC will never cross the
main diagonal line. Since the Bi-Cauchy ROC is parametric, then this characteristic
is of importance to its functionality.

• The technical approach suggested in this work would also be more important in
solving real life problems that requires analysis of data. All that is required is to
perform a goodness of fit test on the data set to wrap Cauchy distribution then apply
this approach to give results. An example of such statistics which is mentioned in
literature for fitting real life data to fit Cauchy distribution is the Watson’s U-
squared statistics. [20] also gave an approach for performing a goodness of fit test
for Cauchy distribution based on empirical characteristic function.
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6 CONCLUSION
In this thesis, a new approach of estimation of the location parameter of Cauchy dis-

tribution was studied. The main controversies of Cauchy distribution was the difficulties
in estimating its parameters. Numerous approaches have already been used in literature
both numerical and analytical approach to estimate the parameters. A set of robust
estimators were suggested in this work and were later applied in the receiver operating
characteristic curves where a number of simulations were performed based on a model
derived in Cauchy sense called the Bi-Cauchy ROC curve. This thesis is divided into six
chapters. In chapter 2, we studied some properties of Cauchy distribution, in particular
the expected value, the characteristic function and the cumulative distribution function.

Furthermore, in chapter 3 we studied the theoretical operation of the different types
of robust estimators which are the Huber M-estimator, Hodges Lehmann estimator, Sens
mean, Trimmed mean and the winsorized mean. In Chapter 4, we studied the receiver
operating Characteristic (ROC) curve where we derived Bi-Cauchy ROC model and ap-
plied it in the simulation of data where we considered mainly diseased and non-diseased
population.

Chapter 5 was mainly devoted to simulations and results. The simulations were per-
formed in Python software in Google Colab [ version 3.6.0]. Two approaches were used to
perform the simulations and some theoretical comments were given. The results showed
that although estimation of the location parameters Cauchy distribution is difficult but
the suggested robust estimators are suitable in its operation.
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Appendices
A Bi-Cauchy ROC curves

1 # −∗− coding : utf −8 −∗−
2 " " " Bi−Cauchy Curves
3

4 Automatica l ly generated by Colaboratory .
5

6 Or ig ina l f i l e i s l o ca t ed at
7 https : // co lab . r e s ea r ch . goog l e . com/ dr ive /1Y774PEYLf9xxQtX7−

AibYv9wWXxeJjAo
8 " " "
9

10 #import packages
11 import math
12 import numpy as np
13 import matp lo t l i b . pyplot as p l t
14 #Bi−Cauchy ROC curves
15 pi = math . p i
16 tan = np . tan
17 arctan = np . arctan
18 p l t . t i t l e ( " Bi−Cauchy ROC Curves " )
19 x = np . l i n s p a c e (0 . 00001 , 1 , num=200)
20 b = 1
21 c o l o r s = [ ’ purp le ’ , ’ brown ’ , ’ pink ’ , ’ o l i v e ’ , ’ cyan ’ , ’ red ’ , ’ green ’ , ’ i nd i go ’ , ’

darkblue ’ , ’ darkcyan ’ ]
22 col_count = 0
23 seq = [ 0 . 5 , 1 , 2 , 3 ]
24 h = [ ]
25 f o r i in seq :
26 a = i
27 y= (1/2) + (1/ p i ) ∗ arctan ( a + b∗ tan ( p i ∗x + ( pi /2) ) )
28 g l o b a l s ( ) [ f "h_{ col_count } " ] , = p l t . p l o t (x , y , c o l o r = c o l o r s [ col_count ] ,

l a b e l=" Alpha = "+s t r ( i ) )
29 h . append ( g l o b a l s ( ) [ f "h_{ col_count } " ] , )
30 col_count = col_count + 1
31 l e g = p l t . l egend ( handles=h , l o c=’ lower r i g h t ’ )
32 ax = p l t . gca ( ) . add_art i s t ( l e g )
33

34 f i g = p l t . g c f ( )
35 p l t . g r id ( )
36 p l t . show ( )
37

38 import math
39 import numpy as np
40 import matp lo t l i b . pyplot as p l t
41 p l t . t i t l e ( " Bi−Cauchy ROC Curves " )
42 pi = math . p i
43 tan = np . tan
44 arctan = np . arctan
45 x = np . l i n s p a c e (0 . 00001 , 1 , num=100)
46 a = 1
47 c o l o r s = [ ’ purp le ’ , ’ brown ’ , ’ pink ’ , ’ o l i v e ’ , ’ cyan ’ , ’ red ’ , ’ green ’ , ’ i nd i go ’ , ’

darkblue ’ , ’ darkcyan ’ ]
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48 col_count = 0
49 seq = [ 0 . 5 , 1 , 2 , 3 ]
50 h = [ ]
51 f o r i in seq :
52 b = i
53 y= (1/2) + (1/ p i ) ∗ arctan ( a + b∗ tan ( p i ∗x + ( pi /2) ) )
54 g l o b a l s ( ) [ f "h_{ col_count } " ] , = p l t . p l o t (x , y , c o l o r = c o l o r s [ col_count ] ,

l a b e l=" \u03B2 = "+s t r ( i ) )
55 h . append ( g l o b a l s ( ) [ f "h_{ col_count } " ] , )
56 col_count = col_count + 1
57 l e g = p l t . l egend ( handles=h , l o c=’ lower r i g h t ’ )
58 ax = p l t . gca ( ) . add_art i s t ( l e g )
59 f i g = p l t . g c f ( )
60 p l t . g r id ( )
61 p l t . show ( )
62

63 import math
64 import numpy as np
65 import matp lo t l i b . pyplot as p l t
66 p l t . t i t l e ( " Bi−Cauchy ROC Curves " )
67 pi = math . p i
68 tan = np . tan
69 arctan = np . arctan
70 x = np . l i n s p a c e (0 . 00001 , 1 , num=100)
71 b = [ 0 . 5 , 1 . 5 , 2 . 5 , 3 . 5 ]
72 a = [ 1 , 2 , 3 , 4 ]
73 c o l o r s = [ ’ purp le ’ , ’ brown ’ , ’ pink ’ , ’ o l i v e ’ , ’ cyan ’ , ’ red ’ , ’ green ’ , ’ i nd i go ’ , ’

darkblue ’ , ’ darkcyan ’ ]
74 col_count = 0
75 h = [ ]
76 f o r i in range ( l en ( a ) ) :
77 y= (1/2) + (1/ p i ) ∗ arctan ( a [ i ] + b [ i ] ∗ tan ( p i ∗x + ( pi /2) ) )
78 g l o b a l s ( ) [ f "h_{ col_count } " ] , = p l t . p l o t (x , y , c o l o r = c o l o r s [ col_count ] ,

l a b e l=" \u03B1 = "+s t r ( a [ i ] )+" , \u03B2 = " + s t r (b [ i ] ) )
79 h . append ( g l o b a l s ( ) [ f "h_{ col_count } " ] , )
80 col_count = col_count + 1
81 l e g = p l t . l egend ( handles=h , l o c=’ lower r i g h t ’ )
82 ax = p l t . gca ( ) . add_art i s t ( l e g )
83

84 f i g = p l t . g c f ( )
85 p l t . g r id ( )
86 p l t . show ( )

B Simulation Results 2

1 # −∗− coding : utf −8 −∗−
2 " " "RESULTS1
3

4 Automatica l ly generated by Colaboratory .
5

6 Or ig ina l f i l e i s l o ca t ed at
7 https : // co lab . r e s ea r ch . goog l e . com/ dr ive /1

gVKpiAz8cALqJot0vZLFX7yJ6gSwUfY0
8 " " "
9

10 #import PACKAGES
11 import numpy as np
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12 import pandas as pd
13 import pandas . u t i l . t e s t i n g as tm
14 from stat smode l s . robust . s c a l e import huber
15 import array as ar r
16 from sc ipy . s t a t s import cauchy
17 import matp lo t l i b . pyplot as p l t
18 from sk l ea rn . met r i c s import roc_curve , auc
19 from sc ipy . s t a t s import wi lcoxon
20 from sc ipy import s t a t s
21 #import s t a t i s t i c s as s t a t s
22

23 #Def in ing terms f o r the emp i r i c a l ROC
24 de f plot_roc ( y_test , probs ) :
25 fpr , tpr , th r e sho ld=roc_curve ( y_test , probs )
26 roc_auc=auc ( fpr , tpr )
27 pr in t ( ’ROC AUC=%0.2 f ’%roc_auc )
28 p l t . p l o t ( fpr , tpr , l a b e l=’AUC=%0.2 f ’%roc_auc , c o l o r=’ darkorange ’ )
29 p l t . l egend ( l o c=’ lower r i g h t ’ )
30 p l t . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , ’b−− ’ )
31 p l t . xl im ( [ 0 , 1 ] )
32 p l t . yl im ( [ 0 , 1 . 0 5 ] )
33 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
34 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
35 p l t . show ( )
36

37 #packages to read data and s p l i t
38 #L o g i s t i c r e g r e s s i o n i s used f o r binary c l a s s i f i c a t i o n problem
39 #I t help s p l i t the data in to t r a i n i n g and t e s t i n g
40 import pandas as pd
41 import numpy as np
42 from sk l ea rn . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
43 from sk l ea rn . l inear_model import L o g i s t i c R e g r e s s i o n
44 from sk l ea rn import metr i c s
45 import matp lo t l i b . pyplot as p l t
46

47 #Read data f o r a l l the e s t imate s
48 data = pd . read_csv ( ’ Together2 . csv ’ )
49 h = l i s t ( data . columns . va lue s )
50 h [ : −1 ]
51

52 X = data [ h [ : − 1 ] ]
53 y = data [ ’Outcome ’ ]
54

55 #s p l i t the datase t i n to t r a i n i n g (70%) and t e s t i n g (30%) s e t s
56 X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e =0.3 ,

random_state=0)
57

58 #i n s t a n t i a t e the model
59 l o g_reg r e s s i on = L o g i s t i c R e g r e s s i o n ( )
60

61 #f i t the model us ing the t r a i n i n g data
62 l o g_reg r e s s i on . f i t ( X_train , y_train )
63

64 #d e f i n e metr i c s
65 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
66 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )
67
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68 #c r e a t e ROC curve
69 p l t . p l o t ( fpr , tpr )
70 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
71 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
72 p l t . g r id ( )
73 p l t . show ( )
74

75 #d e f i n e metr i c s
76 import math
77 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
78 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )
79 auc = metr i c s . roc_auc_score ( y_test , y_pred_proba )
80

81 #Bi−Cauchy cons tant s a f t e r sub t ra c t i ng the not−d i s ea s ed from the d i s ea s ed
82 c1 = 0.6874
83 c2 = 0.6225
84 c3 = 1.0818
85 c4 = 0.696
86 c5 = 0.52305
87 c6 = 0.8434
88 c7 = 0.8174
89 c8 = 1.0818000000000012
90 e s t imate s = [ ’ Huber−M ROC’ , ’ Hodges ROC’ , ’ Sens ROC’ , ’5% Trimmed ROC’ , ’

10% Trimmed ROC’ , ’5% Winsorized ROC’ , ’10% Winsorized ROC’ , ’Mean ’ ]
91 const = [ c1 , c2 , c3 , c4 , c5 , c6 , c7 , c8 ]
92 c o l o r s = [ ’ purp le ’ , ’ brown ’ , ’ pink ’ , ’ o l i v e ’ , ’ cyan ’ , ’ red ’ , ’ green ’ , ’ darkblue ’ ,

’ darkcyan ’ , ’ darkcyan ’ ]
93 col_count = 0
94 t = np . l i n s p a c e (0 , 1 , 20 )
95 ct = [ ]
96 ct2 = [ ]
97 x = np . p i ∗ t − np . p i /2
98 f o r i in const :
99 y = i + np . tan ( x )

100 z = 1/2 + 1/np . p i ∗np . arctan ( y )
101

102 auc2 = 1/2 + 1/np . p i ∗np . arctan ( i /math . s q r t (2 ) )
103

104 g l o b a l s ( ) [ f "h1_{ col_count } " ] , = p l t . p l o t ( t , z , c o l o r = c o l o r s [ col_count ] ,
l a b e l="AUC="+s t r ( auc2 ) )

105 g l o b a l s ( ) [ f "h2_{ col_count } " ] , = p l t . p l o t ( t , z , c o l o r = c o l o r s [ col_count ] ,
l a b e l=es t imate s [ col_count ] )

106 ct . append ( g l o b a l s ( ) [ f "h1_{ col_count } " ] , )
107 ct2 . append ( g l o b a l s ( ) [ f "h2_{ col_count } " ] , )
108 col_count = col_count + 1
109

110

111

112

113

114

115 #c r e a t e ROC curve
116 h32 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l="AUC="+s t r ( auc ) )
117 h3 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l=" Empircal ROC" )
118 p l t . t i t l e ( "ROC p l o t s " )
119 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
120 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
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121 #p l t . p l o t ( tpr , np . tan ( tpr ) )
122

123 ct . append ( h32 )
124 ct2 . append ( h3 )
125 l e g = p l t . l egend ( handles=ct , l o c=’ lower r i g h t ’ )
126 ax = p l t . gca ( ) . add_art i s t ( l e g )
127 l e g = p l t . l egend ( handles=ct2 , l o c =3, bbox_to_anchor =(0.7 , −0.3) )
128 f i g = p l t . g c f ( )
129 f i g . s e t_s i ze_inches ( 1 2 . 5 , 10 . 5 )
130 f i g . s a v e f i g ( ’ tes t2png . png ’ , dpi =100)
131 p l t . g r id ( )
132 p l t . show ( )

C Simulation Results 1

1 # −∗− coding : utf −8 −∗−
2 " " "RESULT2
3

4 Automatica l ly generated by Colaboratory .
5

6 Or ig ina l f i l e i s l o ca t ed at
7 https : // co lab . r e s ea r ch . goog l e . com/ dr ive /1 wihcrpGAczJ_6hliI3aV−D7eY−

MN88Rc
8 " " "
9

10 #import a l l packages
11 import numpy as np
12 import pandas as pd
13 import pandas . u t i l . t e s t i n g as tm
14 from stat smode l s . robust . s c a l e import huber
15 import array as ar r
16 from sc ipy . s t a t s import cauchy
17 import matp lo t l i b . pyplot as p l t
18 from sk l ea rn . met r i c s import roc_curve , auc
19 from sc ipy . s t a t s import wi lcoxon
20 from sc ipy import s t a t s
21

22 from sc ipy . s t a t s . mstats import w in so r i z e
23

24 # Commented out IPython magic to ensure Python c o m p a t i b i l i t y .
25 #This i s a very important package f o r running Sens Mean
26 # %load_ext rpy2 . ipython
27

28 #Random Cauchy v a r i a b l e s f o r d i s ea s ed populat ion
29 r d i s e a s e d = cauchy . rvs ( l o c = 28 , s c a l e =1, s i z e =100)
30 r d i s e a s e d
31

32 #Random Cauchy v a r i a b l e s f o r notd i s ea s ed populat ion
33 rno td i s e a s ed = cauchy . rvs ( l o c = 26 .5 , s c a l e =1, s i z e =100)
34 rno td i s e a s ed
35

36 #This reads the data f i l e that w i l l be upladed
37 df = pd . read_csv ( ’ Result2 . csv ’ )
38

39 #Def in ing metr ic f o r Empir ica l ROC
40 de f plot_roc ( y_test , probs ) :
41 fpr , tpr , th r e sho ld=roc_curve ( y_test , probs )
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42 roc_auc=auc ( fpr , tpr )
43 pr in t ( ’ROC AUC=%0.2 f ’%roc_auc )
44 p l t . p l o t ( fpr , tpr , l a b e l=’AUC=%0.2 f ’%roc_auc , c o l o r=’ darkorange ’ )
45 p l t . l egend ( l o c=’ lower r i g h t ’ )
46 p l t . p l o t ( [ 0 , 1 ] , [ 0 , 1 ] , ’b−− ’ )
47 p l t . xl im ( [ 0 , 1 ] )
48 p l t . yl im ( [ 0 , 1 . 0 5 ] )
49 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
50 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
51 p l t . show ( )
52

53 import pandas as pd
54 import numpy as np
55 from sk l ea rn . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
56 from sk l ea rn . l inear_model import L o g i s t i c R e g r e s s i o n
57 from sk l ea rn import metr i c s
58 import matp lo t l i b . pyplot as p l t
59

60 data= df
61 #d e f i n e the p r e d i c t o r v a r i a b l e s and the response v a r i a b l e
62 X = data [ [ ’ Diseased ’ , ’ Not Diseased ’ ] ]
63 y = data [ ’Outcome ’ ]
64

65 #s p l i t the datase t i n to t r a i n i n g (70%) and t e s t i n g (30%) s e t s
66 X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e =0.3 ,

random_state=0)
67

68 #i n s t a n t i a t e the model
69 l o g_reg r e s s i on = L o g i s t i c R e g r e s s i o n ( )
70

71 #f i t the model us ing the t r a i n i n g data
72 l o g_reg r e s s i on . f i t ( X_train , y_train )
73

74 #d e f i n e metr i c s
75 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
76 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )
77

78 #c r e a t e ROC curve
79 p l t . p l o t ( fpr , tpr )
80 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
81 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
82 p l t . g r id ( )
83 p l t . show ( )
84

85 " " " ∗∗HUBER ESTMATE∗∗ " " "
86

87 #HUBER ESTIMATE COMPUTATION
88 import math
89 Huberdisease = huber ( df [ ’ Diseased ’ ] )
90 Hubernotdisease = huber ( df [ ’ Not Diseased ’ ] )
91 pr in t ( Huberdisease )
92

93 d i f f 1 = Huberdisease [ 0 ] − Hubernotdisease [ 0 ]
94 pr in t ( d i f f 1 )
95

96 #d e f i n e metr i c s
97
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98 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
99 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )

100 auc = metr i c s . roc_auc_score ( y_test , y_pred_proba )
101

102 const = d i f f 1 ;
103 t = np . l i n s p a c e (0 ,1 ,1000)
104 x = np . p i ∗ t − np . p i /2
105 y = const + np . tan ( x )
106 z = 1/2 + 1/np . p i ∗np . arctan ( y )
107 #auc2 = np . trapz ( z , t )
108 auc2 = 1/2 + 1/np . p i ∗np . arctan ( const /math . s q r t (2 ) )
109

110

111 y2 = (28 −26.5) + np . tan ( x )
112 const2 = 1 .5
113 z2 = 1/2 + 1/np . p i ∗np . arctan ( y2 )
114 #auc3 = np . trapz ( z2 , t )
115 auc3 = 1/2 + 1/np . p i ∗np . arctan ( const2 /math . s q r t (2 ) )
116

117 #c r e a t e ROC curve
118 h22 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l="AUC="+s t r ( auc ) )
119 h2 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l=" Empircal ROC" )
120 p l t . t i t l e ( "HUBER−M ESTIMATOR ROC p l o t s " )
121 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
122 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
123 #p l t . p l o t ( tpr , np . tan ( tpr ) )
124 h11 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l="AUC="+s t r ( auc2 ) )
125 h1 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l=" Theo r e t i c a l ROC" )
126 h33 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l="AUC="+s t r ( auc3 ) )
127 h3 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l=" True ROC" )
128

129 l e g = p l t . l egend ( handles =[h11 , h22 , h33 ] , l o c=’ lower r i g h t ’ )
130 ax = p l t . gca ( ) . add_art i s t ( l e g )
131 l e g = p l t . l egend ( handles =[h2 , h1 , h3 ] , l o c =3, bbox_to_anchor =(0.7 , −0.3) )
132 p l t . g r id ( )
133 p l t . show ( )
134

135 " " " ∗∗HODGES∗∗
136

137 " " "
138

139 #HODGES COMPUTATION
140 import s t a t i s t i c s as s t a t s
141 hL = [ ] ;
142 ard = [ ’ Diseased ’ , ’ Not Diseased ’ ]
143 f o r i in range (2 ) :
144 l_input = df [ ard [ i ] ] ;
145 l_avgs = [ ] ;
146

147 i = 0 ;
148 j = 0 ;
149

150 whi le i < l en ( l_input ) :
151 whi le j < l en ( l_input ) :
152 l_avgs . append ( s t a t s . mean ( [ l_input [ i ] , l_input [ j ] ] ) )
153 j = j + 1
154 i = i + 1
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155 j = i
156

157 hl_est = s t a t s . median ( l_avgs )
158 hL . append ( hl_est )
159

160 d i f f 2 = hL [ 0 ] − hL [ 1 ]
161 pr in t ( d i f f 2 )
162

163

164

165 #Def ine Metr ics
166 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
167 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )
168 auc = metr i c s . roc_auc_score ( y_test , y_pred_proba )
169

170 const = d i f f 2 ;
171 t = np . l i n s p a c e (0 ,1 ,1000)
172 x = np . p i ∗ t − np . p i /2
173 y = const + np . tan ( x )
174 z = 1/2 + 1/np . p i ∗np . arctan ( y )
175 #auc2 = np . trapz ( z , t )
176 auc2 = 1/2 + 1/np . p i ∗np . arctan ( const /math . s q r t (2 ) )
177

178 y2 = (28 −26.5) + np . tan ( x )
179 const2 = 1 .5
180 z2 = 1/2 + 1/np . p i ∗np . arctan ( y2 )
181 #auc3 = np . trapz ( z2 , t )
182 auc3 = 1/2 + 1/np . p i ∗np . arctan ( const2 /math . s q r t (2 ) )
183

184 #c r e a t e ROC curve
185 h22 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l="AUC="+s t r ( auc ) )
186 h2 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l=" Empircal ROC" )
187 p l t . t i t l e ( "HODGES LEHMANN ESTIMATOR ROC p l o t s " )
188 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
189 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
190 #p l t . p l o t ( tpr , np . tan ( tpr ) )
191 h11 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l="AUC="+s t r ( auc2 ) )
192 h1 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l=" Theo r e t i c a l ROC" )
193 h33 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l="AUC="+s t r ( auc3 ) )
194 h3 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l=" True ROC" )
195

196 l e g = p l t . l egend ( handles =[h11 , h22 , h33 ] , l o c=’ lower r i g h t ’ )
197 ax = p l t . gca ( ) . add_art i s t ( l e g )
198 l e g = p l t . l egend ( handles =[h2 , h1 , h3 ] , l o c =3, bbox_to_anchor =(0.7 , −0.3) )
199 p l t . g r id ( )
200 p l t . show ( )
201

202 " " " ∗∗5% Trimm Mean∗∗ " " "
203

204 #Trimm Mean Computation
205 from sc ipy import s t a t s
206 pernt = 0.05
207 y = arr . array ( ’d ’ , [ s t a t s . trim_mean ( df [ ’ Diseased ’ ] , pernt ) , s t a t s . trim_mean

( df [ ’ Not Diseased ’ ] , pernt ) ] )
208 d i f f t r i m 5 = y[0] −y [ 1 ]
209 pr in t ( d i f f t r i m 5 )
210 d i f f 3 = d i f f t r i m 5
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211

212

213

214 #Def ine Metr ics
215 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
216 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )
217 auc = metr i c s . roc_auc_score ( y_test , y_pred_proba )
218

219 const = d i f f t r i m 5 ;
220 t = np . l i n s p a c e (0 ,1 ,1000)
221 x = np . p i ∗ t − np . p i /2
222 y = const + np . tan ( x )
223 z = 1/2 + 1/np . p i ∗np . arctan ( y )
224 #auc2 = np . trapz ( z , t )
225 auc2 = 1/2 + 1/np . p i ∗np . arctan ( const /math . s q r t (2 ) )
226

227 y2 = (28 −26.5) + np . tan ( x )
228 conts2 = 1 .5
229 z2 = 1/2 + 1/np . p i ∗np . arctan ( y2 )
230 #auc3 = np . trapz ( z2 , t )
231 auc3 = 1/2 + 1/np . p i ∗np . arctan ( const2 /math . s q r t (2 ) )
232

233 #c r e a t e ROC curve
234 h22 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l="AUC="+s t r ( auc ) )
235 h2 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l=" Empircal ROC" )
236 p l t . t i t l e ( "5% Trimm Mean ROC p l o t s " )
237 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
238 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
239 #p l t . p l o t ( tpr , np . tan ( tpr ) )
240 h11 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l="AUC="+s t r ( auc2 ) )
241 h1 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l=" Theo r e t i c a l ROC" )
242 h33 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l="AUC="+s t r ( auc3 ) )
243 h3 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l=" True ROC" )
244

245 l e g = p l t . l egend ( handles =[h11 , h22 , h33 ] , l o c=’ lower r i g h t ’ )
246 ax = p l t . gca ( ) . add_art i s t ( l e g )
247 l e g = p l t . l egend ( handles =[h2 , h1 , h3 ] , l o c =3, bbox_to_anchor =(0.7 , −0.3) )
248 p l t . g r id ( )
249 p l t . show ( )
250

251 " " " ∗∗10% Trimm Mean∗∗ " " "
252

253 #Trimm Mean Computation
254 pernt = 0.10
255 y = arr . array ( ’d ’ , [ s t a t s . trim_mean ( df [ ’ Diseased ’ ] , pernt ) , s t a t s . trim_mean

( df [ ’ Not Diseased ’ ] , pernt ) ] )
256 d i f f t r i m 1 0 = y [0] −y [ 1 ]
257 pr in t ( d i f f t r i m 1 0 )
258 d i f f 4 = d i f f t r i m 1 0
259 pr in t ( y [ 1 ] )
260

261 #Def ine Metr ics
262 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
263 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )
264 auc = metr i c s . roc_auc_score ( y_test , y_pred_proba )
265

266 const = d i f f t r i m 1 0 ;
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267 t = np . l i n s p a c e (0 ,1 ,1000)
268 x = np . p i ∗ t − np . p i /2
269 y = const + np . tan ( x )
270 z = 1/2 + 1/np . p i ∗np . arctan ( y )
271 #auc2 = np . trapz ( z , t )
272 auc2 = 1/2 + 1/np . p i ∗np . arctan ( const /math . s q r t (2 ) )
273

274

275 y2 = (28 −26.5) + np . tan ( x )
276 const2 = 1 .5
277 z2 = 1/2 + 1/np . p i ∗np . arctan ( y2 )
278 #auc3 = np . trapz ( z2 , t )
279 auc3 = 1/2 + 1/np . p i ∗np . arctan ( const2 /math . s q r t (2 ) )
280

281

282 #c r e a t e ROC curve
283 h22 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l="AUC="+s t r ( auc ) )
284 h2 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l=" Empircal ROC" )
285 p l t . t i t l e ( "10% Trimm Mean ROC p l o t s " )
286 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
287 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
288 #p l t . p l o t ( tpr , np . tan ( tpr ) )
289 h11 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l="AUC="+s t r ( auc2 ) )
290 h1 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l=" Theo r e t i c a l ROC" )
291 h33 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l="AUC="+s t r ( auc3 ) )
292 h3 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l=" True ROC" )
293

294 l e g = p l t . l egend ( handles =[h11 , h22 , h33 ] , l o c=’ lower r i g h t ’ )
295 ax = p l t . gca ( ) . add_art i s t ( l e g )
296 l e g = p l t . l egend ( handles =[h2 , h1 , h3 ] , l o c =3, bbox_to_anchor =(0.7 , −0.3) )
297 p l t . g r id ( )
298 p l t . show ( )
299

300 " " " ∗∗5% Winsorized Mean∗∗
301

302 " " "
303

304 #Winssor i sed mean computation
305 winsor izedarray_adep = win so r i z e ( df [ ’ Not Diseased ’ ] , l i m i t s =[0 .05 , 0 . 0 5 ] )
306 WinsorizedMean_adep = np . mean( winsor izedarray_adep )
307 winsor izedarray_obes = win so r i z e ( df [ ’ Diseased ’ ] , l i m i t s =[0 .05 , 0 . 0 5 ] )
308 WinsorizedMean_obes = np . mean( winsor izedarray_obes )
309 y1 = arr . array ( ’d ’ , [ WinsorizedMean_obes , WinsorizedMean_adep ] )
310 Winn5 = y1 [0] − y1 [ 1 ]
311 pr in t (Winn5)
312 d i f f 5 = Winn5
313

314

315

316 #Def ine Metr ics
317 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
318 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )
319 auc = metr i c s . roc_auc_score ( y_test , y_pred_proba )
320

321 const = Winn5 ;
322 t = np . l i n s p a c e (0 ,1 ,1000)
323 x = np . p i ∗ t − np . p i /2
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324 y = const + np . tan ( x )
325 z = 1/2 + 1/np . p i ∗np . arctan ( y )
326 #auc2 = np . trapz ( z , t )
327 auc2 = 1/2 + 1/np . p i ∗np . arctan ( const /math . s q r t (2 ) )
328

329

330 y2 = (28 −26.5) + np . tan ( x )
331 const2 = 1 .5
332 z2 = 1/2 + 1/np . p i ∗np . arctan ( y2 )
333 #auc3 = np . trapz ( z2 , t )
334 auc3 = 1/2 + 1/np . p i ∗np . arctan ( const2 /math . s q r t (2 ) )
335

336

337 #c r e a t e ROC curve
338 h22 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l="AUC="+s t r ( auc ) )
339 h2 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l=" Empircal ROC" )
340 p l t . t i t l e ( "5% Winsorized Mean ROC p l o t s " )
341 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
342 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
343 #p l t . p l o t ( tpr , np . tan ( tpr ) )
344 h11 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l="AUC="+s t r ( auc2 ) )
345 h1 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l=" Theo r e t i c a l ROC" )
346 h33 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l="AUC="+s t r ( auc3 ) )
347 h3 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l=" True ROC" )
348

349 l e g = p l t . l egend ( handles =[h11 , h22 , h33 ] , l o c=’ lower r i g h t ’ )
350 ax = p l t . gca ( ) . add_art i s t ( l e g )
351 l e g = p l t . l egend ( handles =[h2 , h1 , h3 ] , l o c =3, bbox_to_anchor =(0.7 , −0.3) )
352 p l t . g r id ( )
353 p l t . show ( )
354

355 " " " 10% Winsorized Mean " " "
356

357 #Winssor i sed mean computation
358 winsor izedarray_adep = win so r i z e ( df [ ’ Not Diseased ’ ] , l i m i t s =[0 .1 , 0 . 1 ] )
359 WinsorizedMean_adep = np . mean( winsor izedarray_adep )
360 winsor izedarray_obes = win so r i z e ( df [ ’ Diseased ’ ] , l i m i t s =[0 .1 , 0 . 1 ] )
361 WinsorizedMean_obes = np . mean( winsor izedarray_obes )
362 y1 = arr . array ( ’d ’ , [ WinsorizedMean_obes , WinsorizedMean_adep ] )
363 Winn10 = y1 [0] − y1 [ 1 ]
364 pr in t (Winn10)
365 d i f f 6 = Winn10
366 pr in t ( y1 [ 1 ] )
367

368

369 #Def ine Metr ics
370 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
371 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )
372 auc = metr i c s . roc_auc_score ( y_test , y_pred_proba )
373

374 const = Winn10 ;
375 t = np . l i n s p a c e (0 ,1 ,1000)
376 x = np . p i ∗ t − np . p i /2
377 y = const + np . tan ( x )
378 z = 1/2 + 1/np . p i ∗np . arctan ( y )
379 #auc2 = np . trapz ( z , t )
380 auc2 = 1/2 + 1/np . p i ∗np . arctan ( const /math . s q r t (2 ) )
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381

382

383 y2 = (28 −26.5) + np . tan ( x )
384 const2 = 1 .5
385 z2 = 1/2 + 1/np . p i ∗np . arctan ( y2 )
386 #auc3 = np . trapz ( z2 , t )
387 auc3 = 1/2 + 1/np . p i ∗np . arctan ( const2 /math . s q r t (2 ) )
388

389

390 #c r e a t e ROC curve
391 h22 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l="AUC="+s t r ( auc ) )
392 h2 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l=" Empircal ROC" )
393 p l t . t i t l e ( "10% Winsorized Mean ROC p l o t s " )
394 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
395 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
396 #p l t . p l o t ( tpr , np . tan ( tpr ) )
397 h11 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l="AUC="+s t r ( auc2 ) )
398 h1 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l=" Theo r e t i c a l ROC" )
399 h33 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l="AUC="+s t r ( auc3 ) )
400 h3 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l=" True ROC" )
401

402 l e g = p l t . l egend ( handles =[h11 , h22 , h33 ] , l o c=’ lower r i g h t ’ )
403 ax = p l t . gca ( ) . add_art i s t ( l e g )
404 l e g = p l t . l egend ( handles =[h2 , h1 , h3 ] , l o c =3, bbox_to_anchor =(0.7 , −0.3) )
405 p l t . g r id ( )
406 p l t . show ( )
407

408 " " " ∗∗SENS WEIGHTED MEAN∗∗ " " "
409

410 # Commented out IPython magic to ensure Python c o m p a t i b i l i t y .
411 # %%R
412 # i n s t a l l . packages ( " lmomco " )
413 # l i b r a r y ( " lmomco " )
414 #
415 # df <− read . csv ( f i l e = ’ Both . csv ’ )
416 #
417 # sen1 <− sen . mean( df [ 1 ] ) ;
418 # sen2 <− sen . mean( df [ 2 ] ) ;
419 #
420 # # l i s t 1 <− append ( l i s t 1 , sen )
421 # x <− c ( sen1 , sen2 )
422 #
423 # pr in t ( x )
424 #
425 #
426

427 d i f f s e n = 27.87913 − 26.80403
428 pr in t ( d i f f s e n )
429 d i f f 7 = d i f f s e n
430 #Def ine Metr ics
431 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
432 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )
433 auc = metr i c s . roc_auc_score ( y_test , y_pred_proba )
434

435 const = d i f f s e n ;
436 t = np . l i n s p a c e (0 ,1 ,1000)
437 x = np . p i ∗ t − np . p i /2
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438 y = const + np . tan ( x )
439 z = 1/2 + 1/np . p i ∗np . arctan ( y )
440 #auc2 = np . trapz ( z , t )
441 auc2 = 1/2 + 1/np . p i ∗np . arctan ( const /math . s q r t (2 ) )
442

443 y2 = (28 −26.5) + np . tan ( x )
444 const2 = 1 .5
445 z2 = 1/2 + 1/np . p i ∗np . arctan ( y2 )
446 #auc3 = np . trapz ( z2 , t )
447 auc3 = 1/2 + 1/np . p i ∗np . arctan ( const2 /math . s q r t (2 ) )
448

449 #c r e a t e ROC curve
450 h22 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l="AUC="+s t r ( auc ) )
451 h2 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l=" Empircal ROC" )
452 p l t . t i t l e ( "SENS WEIGHTED MEAN ROC p l o t s " )
453 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
454 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
455 #p l t . p l o t ( tpr , np . tan ( tpr ) )
456 h11 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l="AUC="+s t r ( auc2 ) )
457 h1 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l=" Theo r e t i c a l ROC" )
458 h33 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l="AUC="+s t r ( auc3 ) )
459 h3 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l=" True ROC" )
460

461 l e g = p l t . l egend ( handles =[h11 , h22 , h33 ] , l o c=’ lower r i g h t ’ )
462 ax = p l t . gca ( ) . add_art i s t ( l e g )
463 l e g = p l t . l egend ( handles =[h2 , h1 , h3 ] , l o c =3, bbox_to_anchor =(0.7 , −0.3) )
464 p l t . g r id ( )
465 p l t . show ( )
466

467 " " " ∗∗MEAN∗∗ " " "
468

469 # Computation o f mean
470 mean_1 = np . mean( df [ ’ Not Diseased ’ ] )
471 mean_2 = np . mean( df [ ’ Diseased ’ ] )
472 mean = [ mean_1 , mean_2 ]
473 mean
474

475 di f fmean = mean[1] −mean [ 0 ]
476 pr in t ( di f fmean )
477 d i f f 8 = di f fmean
478 pr in t ( mean)
479

480 #Def ine Metr ics
481 y_pred_proba = log_reg r e s s i on . predict_proba ( X_test ) [ : : , 1 ]
482 fpr , tpr , _ = metr i c s . roc_curve ( y_test , y_pred_proba )
483 auc = metr i c s . roc_auc_score ( y_test , y_pred_proba )
484

485 const = di f fmean ;
486 t = np . l i n s p a c e (0 ,1 ,1000)
487 x = np . p i ∗ t − np . p i /2
488 y = const + np . tan ( x )
489 z = 1/2 + 1/np . p i ∗np . arctan ( y )
490 #auc2 = np . trapz ( z , t )
491 auc2 = 1/2 + 1/np . p i ∗np . arctan ( const /math . s q r t (2 ) )
492

493 y2 = (28 −26.5) + np . tan ( x )
494 const2 = 1 .5
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495 z2 = 1/2 + 1/np . p i ∗np . arctan ( y2 )
496 #auc3 = np . trapz ( z2 , t )
497 auc3 = 1/2 + 1/np . p i ∗np . arctan ( const2 /math . s q r t (2 ) )
498

499 #c r e a t e ROC curve
500 h22 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l="AUC="+s t r ( auc ) )
501 h2 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l=" Empircal ROC" )
502 p l t . t i t l e ( " MEAN ROC p l o t s " )
503 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
504 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
505 #p l t . p l o t ( tpr , np . tan ( tpr ) )
506 h11 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l="AUC="+s t r ( auc2 ) )
507 h1 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l=" Theo r e t i c a l ROC" )
508 h33 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l="AUC="+s t r ( auc3 ) )
509 h3 , = p l t . p l o t ( t , z2 , c o l o r = ’ grey ’ , l a b e l=" True ROC" )
510

511 l e g = p l t . l egend ( handles =[h11 , h22 , h33 ] , l o c=’ lower r i g h t ’ )
512 ax = p l t . gca ( ) . add_art i s t ( l e g )
513 l e g = p l t . l egend ( handles =[h2 , h1 , h3 ] , l o c =3, bbox_to_anchor =(0.7 , −0.3) )
514 p l t . g r id ( )
515 p l t . show ( )
516

517 " " " ∗∗PLOTS OF ALL ESTIMATORS∗∗ " " "
518

519 const = [ d i f f 1 , d i f f 2 , d i f f 3 , d i f f 4 , d i f f 5 , d i f f 6 , d i f f 7 , d i f f 8 , const2 ]
520 e s t imate s = [ ’ Huber−M ROC’ , ’ Hodges ROC’ , ’5% Trimmed ROC’ , ’10% Trimmed

ROC’ , ’5% Winsorized ROC’ , ’10% Winsorized ROC’ , ’ Sens ROC’ , ’Mean ’ , " True "
]

521 c o l o r s = [ ’ purp le ’ , ’ brown ’ , ’ pink ’ , ’ o l i v e ’ , ’ cyan ’ , ’ red ’ , ’ green ’ , ’ darkblue ’ ,
’ grey ’ , ’ darkcyan ’ ]

522 col_count = 0
523 t = np . l i n s p a c e (0 ,1 ,1000)
524 ct = [ ]
525 ct2 = [ ]
526

527 x = np . p i ∗ t − np . p i /2
528 f o r i in const :
529 y = i + np . tan ( x )
530 z = 1/2 + 1/np . p i ∗np . arctan ( y )
531 auc2 = 1/2 + 1/np . p i ∗np . arctan ( i /math . s q r t (2 ) )
532 g l o b a l s ( ) [ f "h1_{ col_count } " ] , = p l t . p l o t ( t , z , c o l o r = c o l o r s [ col_count ] ,

l a b e l="AUC="+s t r ( auc2 ) )
533 g l o b a l s ( ) [ f "h2_{ col_count } " ] , = p l t . p l o t ( t , z , c o l o r = c o l o r s [ col_count ] ,

l a b e l=es t imate s [ col_count ] )
534 ct . append ( g l o b a l s ( ) [ f "h1_{ col_count } " ] , )
535 ct2 . append ( g l o b a l s ( ) [ f "h2_{ col_count } " ] , )
536 col_count = col_count + 1
537

538

539

540

541 #h11 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l ="AUC="+s t r ( auc2 ) )
542 #h1 , = p l t . p l o t ( t , z , c o l o r = ’ darkorange ’ , l a b e l ="Bi−Cauchy ROC" )
543

544

545 #c r e a t e ROC curve
546 h32 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l="AUC="+s t r ( auc ) )
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547 h3 , = p l t . p l o t ( fpr , tpr , c o l o r = ’ s t e e l b l u e ’ , l a b e l=" Empircal ROC" )
548 p l t . t i t l e ( "ROC p l o t s " )
549 p l t . y l a b e l ( ’ True P o s i t i v e Rate ’ )
550 p l t . x l a b e l ( ’ Fa l se P o s i t i v e Rate ’ )
551 #p l t . p l o t ( tpr , np . tan ( tpr ) )
552

553 ct . append ( h32 )
554 ct2 . append ( h3 )
555 l e g = p l t . l egend ( handles=ct , l o c=’ lower r i g h t ’ )
556 ax = p l t . gca ( ) . add_art i s t ( l e g )
557 l e g = p l t . l egend ( handles=ct2 , l o c =3, bbox_to_anchor =(0.7 , −0.3) )
558 f i g = p l t . g c f ( )
559 f i g . s e t_s i ze_inches ( 1 2 . 5 , 10 . 5 )
560 f i g . s a v e f i g ( ’ tes t2png . png ’ , dpi =100)
561 p l t . g r id ( )
562 p l t . show ( )
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