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Abstract 

The Cauchy distribution plays a major role in biology, mathematics, physics and many 
related disciplines. A s a consequence, a parameter estimation methodology for data which 
is distributed according to a Cauchy distribution is of importance. Nevertheless, the 
Cauchy distribution is well known for causing difficulties with classical approaches to 
parameter estimation. This diploma thesis is concerned wi th the study of the properties 
of Cauchy distribution. Several robust estimations of its location parameter are presented. 
A simulation study programmed in Python allows us to compare the performance of these 
parameter estimates in Bi-Cauchy R O C curve estimation. Moreover, some theoretical 
properties of the Bi-Cauchy R O C curve are studied. 
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mator, Trimmed Mean, Sens Mean, R O C curves. 
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1 INTRODUCTION 
Cauchy distribution is a distribution which has a bell-shaped density function wi th heav­
ier tails which are symmetric and unimodal. The distribution was named after a French 
mathematician, Augustin-Louis Cauchy (1789-1857). In recent times, Cauchy distribu­
tion has been of interest and many controversies has risen from it due to some properties 
it possesses making it difficult to estimate its parameters, hence mathematical approaches 
to it is quite hard. It appears that the distribution may look like the normal distribution 
but its tails does not recede quickly as those of the normal distribution. There is a great 
difference between the Cauchy distribution and the normal distribution indeed, as the ra­
tio of two independent standard normal random variable gives a Cauchy random variable 
(details of this can be found in [1]). Also, the standard Cauchy random variable has a 
student's t-distribution wi th one degree of freedom. The shape of the density function is 
sometimes called the witch of Agnesi [2]. In many fields of study fat tailed distributions 
like the Cauchy distribution never arise but in other fields they do arise in diverse ways. 
For example, in biology, the distribution that seeds end up from the parent plant may have 
a "fat-tailed" distribution if most fall by plant are dispersed by wind, water or animals. It 
can be shown in quantum mechanically that for a state which decomposes exponentially 
wi th time, the spread of energy throughout the state is expressed by Cauchy distribu­
tion [3]. [4] showed another fascinating application of the distribution in the sense that, 
he described the distribution of hypo-centers on focal spheres of earthquakes. Cauchy 
distribution can again be used to analyse polar and non-polar liquids in porous glasses 
[5]. 

From the study of the probability distribution, a distribution function is completely de­
termined by its moment generating function in case it exists. The most common moments 
are the mean \x = E(X) and the variance E(X2) — fj2 which shows how spread out the 
distribution is, and other higher moments like the skewness and kurtosis. In the case of 
Cauchy distribution there exist no mean, variance or moment generating function. In ad­
dition, the characteristic function(cf) and the cumulative distribution function(cdf) exist. 
The approach of finding the characteristic function and the cumulative distribution func­
tion is by using its probability density function(pdf). The central moments are undefined, 
this is due to the long tails of the density function. The pdf of C(/x, A) is 

f x { x ) = n(V + l - ^ ) - ° ° < - < 0 0 (1-1) 

where \i G (—oo, oo) and A > 0. 
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Figure 1: P D F of Cauchy Distr ibution wi th different location parameters and a constant 
scale parameter A = 1 
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Figure 2: P D F of Cauchy Distr ibution with different scale parameter and constant loca­
tion parameter \x = 1 
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Figure 3: P D F of Cauchy Distr ibution wi th different and location and scale parameter 

1.1 Motivat ion 
The first objective of the thesis is to study the properties of Cauchy distribution. The 

second goal is to apply the distribution in real life or simulated data analysis. Owing 
to the fact that the distribution possesses some properties which makes estimation of 
its location parameter a difficult task, we shall study new estimation approaches which 
are based on order statistics called the robust estimators. They are Huber M-estimate. 
Hodges Lehmann estimate, Trimmed Mean, Winsorized Mean and the Sen's Mean. 

We wi l l then apply it in receiver operating characteristic ( R O C ) curves where we wi l l 
build a parametric R O C model for variables with Cauchy distribution and estimate its 
parameters using the robust estimators. Conclusions wi l l be made after different set of 
simulations are made to know which of the estimators provides the most suitable estimate 
of the true R O C . 

1.2 Structure of thesis 
The thesis work is organised as follows: Theorit ical part and practical part. 

• The second section is allocated to studying some properties of the distribution and 
justifying them with proofs. 

• The thi rd section is allocated to parameter estimation where we study the different 
robust estimators and their theoretical approaches. This section is mainly based on 
the book [6]. 

• The fourth section is also allocated to the receiver operating characteristic ( R O C ) 
curves where we discuss its properties and operation and derive the R O C model 
based on Cauchy distribution. Some theoretical part and assumptions made in this 
section was taken from the book [7] and [8]. 

• The fifth section is allocated to simulation of data in Python using the derived R O C 
model in section four. The parameters of the model are estimated by the different 
types of the robust estimators. 

• The last section is devoted to main conclusions of the work. 
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2 PROPERTIES OF C A U C H Y DISTRIBUTION 
2.1 Expected Value 
Expected value or mean of a random variable g{X), denoted by Eg(X) is 

Eg(X) 

g(x)fxdx if X is continuous 

if X is discrete 

as long as the integral or sum exists. O n condition that E\g(X)\ = oo, we say that Eg(X) 
does not exist [1]. 

Proposition 2.1. The standard Cauchy random variable is a random variable with loca­
tion parameter [/, — 0 and scale parameter A = 1, denoted by C (0 ,1 ) . It is the type whose 
expected value does not exist, that is, one with probability density function 

fx(x) — OO < X < oo 
7T(1 + X2) 

It is trivial to check that fx(x)dx = 1, but E\X\ does not exist. 

Proof. 

(2.1) 

E(X) x 
7I"(1 + X2 

-dx X 
[1 + x2 

-dx. 

but this integral does not converge. The support of a Cauchy random variable is — oo to 
oo, so the integral representing the E(X) is an improper integral, i.e., the limit of the 
definite integral of xf(x) as the limits of integration approach minus infinity and plus 
infinity, the integral is undefined. Thus, 

E[X] = l im [ x E[X] 
L — — o o J 

f° E[X] = l im 
L^t—oo J 

1 X 

E[X] 
1 

E[X] = l im —1 E[X] 
L—¥—oo 2TT 

E[X] = l im -
L—¥—oo 

1 

E[X] = —OO + OC 

7 r ( l + X1 

fU 
-dx + l im / . 

U—>oo J Q 

n 0 
+ l im 

X 

1 - U 

7 r ( l + X2 

2 

-dx 

2tt 
l n ( l + xl 

U—>oo 271 
l n ( l + U2 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

From (2.6) we can see 
finite. In other words -
as ( ^ ) , and hence very 
that no moments of the 
equals 00. Particularly, 

that E\X\ does not exist, this is because both integrals are not 
-00 + 00 is not a number. Note that, the "tails" of the pdf decay 
large outcomes are possible. Since does not exist it follows 
Cauchy distribution exist or, in other words, all absolute moments 
the moment generating function does not exist. • 
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2.2 Characteristic Function 
Definition 2.2. The characteristic function of a random variable X is 

(f>{t) = E[eitx] 

= E[cos(tX) + i sm(tX)} 
(2.7) 

Vt G R and z = \ /—1. Since | cos(£X) | , | s in(£X) | < 1, the characteristic function is defined 
for all t for any random variable. 

The characteristic function is defined in the discrete or continuous case where is defined as 
the Fourier transform of the probability function using the Fourier transform parameters. 
It can be written as _ 

The advantage wi th the characteristic function is that it always exists, unlike the moment 
generating function, which can be infinite everywhere except s — 0. 

Proposition 2.3. Suppose X is a standard Cauchy variable, then its pdf is given by (2.1). 
The characteristic function can be written in closed form as 

The above expression is not entirely t r ivial to obtain. O n the other hand, we find here 
that the characteristic function for the Cauchy random variable exists everywhere. This is 
essentially because the integral defining the characteristic function converges absolutely, 
and hence uniformly, for all t e l . Characteristic functions are thus particularly useful in 
handling heavy-tailed random variables, for which the corresponding moment generating 
functions do not exist. 

Proof. We show this by the Cauchy's residue theorem by evaluation of the contour inte­
grals. We consider three cases of t thus, when t — 0, t > 0 and t < 0. Indeed, it requires 
considering two separate contour integrals for t > 0 and t < 0. The integral defining the 
characteristic function is given by 

If X is a continuous random variable with density function fx{x), then 

(j>{t) = e"1'1 t e R. 

For the case when t — 0 

i(0) 

nJ-oo (1 + X2) 

— [arctan(x)]^° 
n 
1. 
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0 

Figure 4: d, for t > 0 

Figure 5: C 2 , for £ < 0 

Let 

/(*) 

the poles of f(z) are solutions of (z + i)(z — i) = 0 where z G C 

For £ > 0, we consider Figure 4 

R 
f(z)dz= / / f(z)dz 

The left hand side / f(z)dz we use the residue theorem, there's a pole inside C\ at z — % 

so we calculate the residue of the function f(z) at z — % 

\ f(z)dz = 2mResz=if(z) 

.Alz 
2ni \im(z — i) 

= 2ni \im(z — i) 

[z2 + 1) 
„itz 

lie 

Z—>l 
-t 

(z + i){z - i) 

For / f(z)dz we do not need to worry more about it because as R —>• oo it approaches 
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f(z)dz < length(r) x max \f(z) 

But T is a half circle Length(T) = irR. Considering the m a x z g r \f{z)\ we can write 

the curve 
Hence, \z 

z2 + l 
\z\ -

then by the triangle inequality \z2 + 1| > 1. But on 
R because we are tracing out a semicircle wi th radius R , where R > 0. 
= R2 - 1 = r |z 2+l| — R2-l 

z is a complex number then the curve Y\ can be parameterized by z 
B y this then the numerator can be written as 

< „•/ . which takes care of the denominator. Since 

Reu for t e (0,TT). 

Atz I itRe1 

itR(cos t+isin t) i 

itRcos t+i tR sin ť | 

Igiiiicosii |gi 2íAsiní| 

Since t and i? are real numbers, it implies that cost is also a real number, hence \e 
1. Then | e

i 2 ' H s i n ' | = 
iťi? COS t I 

-tRsint 

f(z)dz f(z)dz 
g—íAsin í 

< 7T.R x max —— 
^er R2 - 1 

but if we take the l imit as R —>• oo then (2.10) goes to 0. Therefore 

frf(z)dz = 0. A l l in all , for the case t > 0 we have 

(2.10) 

0(f) 
1 + x 2 

(2.11) 

Finally, for the case t < 0 we set new integrals because we consider the contour in Figure 
5. Thus 

c2 

f{z)dz f(z)dz + / f(z)dz. 
R JV2 

Just as before, to deal with the integral on the left / f(z)dz we have to use the residual 
Jc2 

theorem and looking at the contour in Figure (5) is a simple pole, a pole with multiplicity 
of 1 which happens at —%. We just need to calculate the residue at z — —i. 

/ f(z)dz = 2iriResz=-if(z) 
Jc2 

.,il,z 
= 27ri l im (z + i) 

2ni \im(z + i) 

[z2 + 1) 
„itz 

= —7re 

z—ti 
t 

(z + i)(z — i) 
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Also, / f(z)dz is going to be done the same way using the same type of argument. That 
•/r_. 

is 

r 2 

f(z)dz < length(r 2) x max \f(z)\. 
zer 2 

(2.13) 

It follows the same approach as before but f is defined in the range f G [—it, 0] and the 
length(r) = nR but since our t < 0 it implies that s i n í < 0 which shows that f sinf > 0. 
then we can clearly conclude (2.13) goes to 0 as R —>• oo. Hence for t < 0, we have 

1 + x2 
:d.X -ire 

-dx ire 
- o o 1 ~\~ X2 

So we conclude that for the cases t = 0, t > 0 and t < 0 

(2.14) 

0(f) 
1+X2 

-dx 
ne 

7T 

Tie" J, 

for t > 0 

for f = 0 

for t < 0 

So one best way of summarizing this function is 0(f) = Tie Vf e 
Then 

0(f) = -
7T [1+X2 

-dx = -(Tie
 |ť|

- -1*1 
7T 

• 
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Remark 1. Assume X ~ C(0 ,1 ) , then we wi l l say that Y ~ C(/z, A) ii Y — /j, + XX, 
where is the location parameter and A is the scale parameter, for A > 0. We know 
<&x(t) — E[e%itX] = e -'*', to derive the characteristic function, 

= E 

= eitfl • E AtXX 

eit» . e-|A*| 

eitn _ g-A|t| 

j,t\x—\\t\ for A > 0 

hence the characteristic function for Cauchy variable Y wi th two parameters \x and A is 
given by $ y ( t ) = E[eitY] = e ^ - ^ l 

Proposition 2.4. Suppose Yi,Yi, ...,Yn are independent Cauchy variables such that each 
Yi is Cauchy variable with parameters A;). We find the distribution ofY^j=iY-

Proof. Since al l Y(s are Cauchy variable, the characteristic function of Yj, 

$Y.(t) = E[eu^-XjW] V j = 1, ..n. 

To obtain the characteristic function of J2]=iY that is, 

<PEYj(t) = E [ e ^ } 
n 

= J ] EeitY> 
3=1 

n 

= n 
3=1 

n 
j,tHj-\j\t\ 

3=1 

= e « ( E « ) - ( E ^ ) l ' l 

and as we know this is the characteristic function of Cauchy distribution wi th parameters 
Y fJ>j and Y, -\j a n d by the inversion theorem we say that the distribution of Y Yj is a l s o 

Cauchy wi th parameters J2 A*j a n d D 
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Proposition 2.5. If X l : X 2 , X n are independent standard Cauchy variable. Then the 
distribution of its average, X = ^J2Xj is also standard Cauchy. 

Proof. The general characteristic function of a probability distribution is defined as <f>x(t) — 
E(ettx),\/t G M.. The characteristic function of the average X — ^J2Xj can be written as 

hY.*i(t) = E (e*'"Xl • e*'"X2 • • •eitix") 

If each Xi is Cauchy distributed, we know that, a random variables has the standard 
Cauchy distribution, X ~ C(0 ,1) if and only if its characteristic function is &x(t) = e-'*' 
from Proposition (2.1). Then 

0 x i (£) • 0 x 2 ( £ ) • • • ( i ) = e i ~ m • e H l < l ) • • • e i ~ m 

= e H E ? = i l * l ) 

= e ( - i " l* l ) 

= e-l'l 

Hence, if random variables Xi are independent standard Cauchy variable then the distri­
bution of its mean is also standard Cauchy. • 

Remark 2. Proposition 2.5 can be explained in a more general sense thus, C( /x ,A) . Sup­
pose Yi,Y2, ...,Yn are independent Cauchy variable wi th two parameters (/x,A), then the 
distribution of its average Y = - J2 Yj is also Cauchy distributed. 
Following the same approach in (2.4) we have 

= E ( e u ^ ) - E ( e u ^ ) . . . E ( e u ^ ) 

Then from R e m a r k l we know the characteristic function of Cauchy variable with two 
parameters C(/x, A), is given by 0y(t) = E[eltY] = e

ltv-x\t\ a n d since each Yj is Cauchy 
distributed. It follows that 

>y2 

n 
>Yn 

n 
e(i(i^-A|t|)) . e(i(i^-A|t|)) 

e ( ^ E L i ^ - ^ l ) 

[±(Üß-\\t\)) 

e(l(mtjU-nA|t|)) 

e^it/j, — X\t\) 

(2.16) 

Therefore, if random variables Yi are independent Cauchy variable wi th two parameters, 
Y ~ C( / / , A), then the distribution of its mean is also Cauchy(//, A). 
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Proposition 2.6. Let Xl,X2,... be independent identically Cauchy distributed random 
variables, then - Y^=i X% is again Cauchy of the same distribution, which is readily shown 
in Proposition 2.5. The weak law of large numbers cannot be applied to Cauchy distribution 
(because the first moment is infinite). 

Proof. We can proof this by showing that, if A n — - Yh=\ A j converges in distribution 
to the Cauchy distribution as n —>• oo and compare this with the conclusion of the weak 
law of large numbers. A s shown previously, a random variable X obeying the Cauchy 
distribution with the location parameter x 0 € R and the scale parameter A 6 M + , 

• Its moment generating functions does not exist ( specifically its mean and variance 
are undefined) 

• Its characteristic function is e^*'_A'''-) 

B y the property of the characteristic function of Cauchy shown in the previous remark 2 
that 

4>nAn{t) = <f)X1{t)<t)X2{t) . ..4>Xn{t) 
= e(Etixoit-Mt\) 

^(nx(jit—n\\t\) 

= e ( n : r o i » - n A l » l ) 
= e(x0u-\\t\) 

If we take the limit as n —>• oc 

l i m <f)An{t) = e

{ x o i t ~ m (2.17) 

Then by the uniqueness theorem, the left hand side of (2.17) is the characteristic function 
of the Cauchy distribution wi th the location x 0 and scale parameter A. If we denote A 
obeying this distribution. Then, a s n ^ oo, A n converges in distribution to A , which also 
obeys the Cauchy distribution. From [9] the following theorem of the weak law of large 
numbers holds 

Theorem 2.7. (Weak Law of large numbers) Let X i , X 2 , . . . be a sequence of iden­
tically distributed uncorrelated random variables. Let mean, \i = E{X{\ and variance, 
£ = E{(Xi — /x ) (Xi — fj) } be finite. Then the averages 

1 n 

Xn = — Xi —>• a, in probability. 

It might be intriguing to apply to this results the weak law of large numbers due to the 
form of An, taking x0 as /x. However, the mean and variance are undefined as stated 
earlier and shown in Proposition 2.1. Therefore the weak law of large numbers does not 
apply to this results. • 

2.3 Cumulative Distribution Function 
The cumulative distribution function ( C D F ) calculates the cumulative probability for a 
given x-value. It is used to determine the probability that a random observation that is 
taken from the population wi l l be less than or equal to a certain value. Y o u can also use 
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this information to determine the probability that an observation wi l l be greater than a 
certain value, or between two values. 

Definition 2.8. The cumulative distribution function or cdf of a continuous random 
variable X, denoted by Fx(x) is defined as 

Fx(x) = PX{X < x) = f fx(t)dt, f o r a l l x e R 
J—oo 

where fxif) is the probability density function. 

Proposition 2.9. Suppose X is a standard Cauchy variable with pdf (2.1) then it's cu­
mulative distribution function is 

Fx{x) = PX(X < x) = ^ + - arctan(x) - oo < x < oo (2.18) 
2 71 

Proof. We can show this by integrating (2.1) over the interval — oo < t < x 

F(x) = f fx(t)dt 
J—oo •DC 

1 

7T 1 + t 2 
-dt 

- 1 r 1 

" W - o o ( T + F ) 

= - [ a r c t an^ ) ]^^ ( 2 - 1 9 ) 
71 

= — [arctan(x) — arctan(—oo)] 
7T 
1 r , . tt' 

= — arctan(x) + — 
7i Y 2. 

= - H — arctan(x), 
2 7T 

hence, Fx(x) = \ + ^ arctan(x) is the cumulative distribution function of standard Cauchy 
distribution. • 

Remark 3. In the case of C(/x, A), Proposition 2.9 can be shown in a more detailed way 
thus, integrating the pdf over the same interval. 
If 

rx A 1 
Fix) = - • ——, -dt 

^ ' J-oo TT A + (t — /X) 2 

Put 
t — a 
—— = y =>. t - n = \y 

and 
dt = Xdy 

which means the interval can be written as 

x — /I 
— oo < y < A 
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then 

Fix) 

TTA2 1+y 
X — fJ, 

A 
- O O 

— [arctan(y)]. 
71 
1 I fx — fl\ 

larctan | — ; — ) — arctan(—ooj 

( 2 . 2 0 ) 

7T 
1 

A 
, X — fl\ 71 

arctan | — - — I + — 
A / 2 7i 

1 1 (X — \1 
-A— arctan I — - — 
2 7T V A 

for all A > 0. 

therefore, F(x) = \ + ^ arctan {^-^j is the cumulative distribution function of Cauchy(/x, A ) . 
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Figure 6: C D F of Cauchy Distr ibution wi th different location and scale parameter 
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3 P A R A M E T E R ESTIMATION 
This chapter is mainly from the book [6]. 

Parameter estimation is the refers to using data to estimate the parameters of a distribu­
tion. The main goal of estimation of parameters is to estimate the unknown parameters 
of a fixed model in order to fit some noisy measurements. For parameter estimation, the 
basic step is to choose a parametric model of a function which is a family of functions 
that can be described wi th a finite set of parameters. It can be denoted by F : W1 —>• W1. 
Data that are used to estimate the parameters of a model are normally contaminated wi th 
noise. Sometimes, it is not pertinent to assume that, this noise are normally distributed. 
This is due to the fact that there can be evident errors in the data which is not bound 
to happen if we only consider normally-distributed noise. The false measurements that 
are seen in the data are called outliers. Outliers are data points that are nowhere near 
other data points. Particularly, outliers are just the unusual values in a data set. They 
are problematic for analysis in statistics due to the fact that they can cause tests to either 
miss important findings or deform real results. A n estimator is called robust when these 
outliers do not affect the estimation much. Robust statistical methods were developed to 
compliment the classical procedures when the data violates classical assumptions. Owing 
to the fact that, Cauchy is peculiar with regards to its heavy tails and difficulty in esti­
mation of its location parameter. Then analysis of its data needs to take some technical 
approach to be possible. Different robust estimators were adopted to estimate the loca­
tion parameter which can further aid in its application. We shall mainly deal wi th three 
broad classes of robust estimators of the real parameter thus, M-estimators, L-estimators, 
and R-estimators. Cauchy distribution can often be cited as an example of the compu­
tational failure of the maximum likelihood method of estimation. The substantial reason 
summarized by [10] are: (1) the likelihood equation have 2n — 1 roots which are real and 
complex; (2) not either numerical solution or analytical solution of the likelihood equation 
can easily be obtained; (3) it is only one of the real roots (the global maximum) of the 
likelihood that does not tend to oo or — oo as n —>• oo, all the others does. The method 
of moment estimation fails since the mean and variance of the Cauchy distribution does 
not exist. [11] proposed a new unbiased L-estimator based on order statistics, which is 
not only asymptotically efficient but outperforms existing L-estimators in terms of finite 
sample efficiency [12] discussed the properties of various estimators of the central posi­
tion of the Cauchy distribution which is notorious for the divergent nature of its first and 
higher moments and evaluated the results of using different kinds of estimators by simu­
lation of different kinds of experiment using Monte Carlo simulations. [13] defined robust 
estimators for the parameters of Cauchy distribution based on the probability integral 
method where, the estimators were simple, robust and consistent, but asymptotically less 
efficient than the maximum likelihood estimators which are not robust. [14] showed that 
the likelihood equations obey a certain structure that appears in other robust parameter 
estimation problems. 

27 



Definition 3.1. Let Xi, X 2 , X n ~ iid,Xi ~ F . A n M-estimator T n is defined as a 
solution of the minimization problem 

n 
^2p(Xi,t) := min (3.1) 
i=i 

where p(.,.) is a properly chosen function. If p is differentiable in t wi th a continuous 
derivative ip(X,t) = ^p{X)t)) then Tn is a root or one of the roots of the equation 

n 
5 > ( X i , t ) = 0 (3.2) 
i=l 

M-estimator is a robust method used as an alternative to be the least square method 
when the data under study has outliers, extreme observations, or does not follow a nor­
mal distribution. The fundamentals of the M-estimators consist of taking distributions 
that have a probability density function wi th "heavy tails". A distribution having heavy 
tails means that, large errors are less unlikely than it would be wi th normal distribu­
tion. Different types of M-estimators based on several noise distributions have been sug­
gested. In this study the M-estimator we would consider is; 

3.1 Huber M-estimate 
Huber(1964) introduced M-estimators and their asymptotic properties and they were an 
important part of the modern robust statistics.In the strive of defining a robust criterion, 
Huber(1964) considered an agreement between the mean and the median. The mean 
criterion is a square and in the "tails" the square gives too much weight to big observations. 
In contrast, it is well known robust location estimator. 
The M-estimator for the location parameter p is defined as a solution of 

X > ( ^ ) = 0 . (3.3) 

Taken a = 1 the solution is 

X > ( * i - t ) = o. 

The function ip is linear in a bounded segment [—k, k] and constant outside this segment. 
The Huber M-estimate is defined by the function ip where 

k, x > k 

x - k < x < k (3.4) 

—k x < —k. 

where k > 0 is a fixed constant.The constant k, which can also be called a turning 
parameter, controls the mix, wi th small values of k yielding a more "median-like" estimator. 
Constant k depends of the number of outliers in the set. A s Huber proved in (1964), an 
estimator, produced by the function (3.4) is mini-maximally robust for a contaminated 
normal distribution, while the value of k depends on the contamination ratio. A more 
practical and natural question is whether there exists a distribution F such that the Huber 
M-estimator is the maximal likelihood estimator p for F(x — p), that is, such that ip is 
the likelihood function of F . A distribution of such property really exists, and its density 
is normal in internal [—k, k] and exponential outside [6]. 
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3.2 Hodges-Lehmann Estimate (R-estimate) 
We define rank Ri as 

R i = J2 hxjKXi], i = l,...,n (3.5) 

which is widely used for location parameter tests(Wilcoxon test) and that is Ri = nFn{X, 
% — 1, ...,n, where Fn is empirical distribution function of Xi, ...,Xn. The ranks remains 
unchanged wi th respect to the class of monotone transformations of observations. The 
pros of the rank test include; [6], 

• The estimators are position and scale equivariant. 
• The most important one is that, the distribution of the test criterion under the hy­

pothesis of randomness i.e.,if Xi, ...,Xn are independent and identically distributed 
wi th a continuous distribution function) is independent of the distribution of obser­
vations. 

A common complaint about non-parametric statistics is that they allow you to assess sta­
tistical significance but they do not allow you to measure effect size. Fortunately, there 
are techniques for measuring the size of an effect that are insensitive to distributional 
unpleasantness (like skewness, kurtosis or outliers) just like non-parametric statistical 
tests are. One of such methods is the Hodges-Lehmann estimator. Hodges and Lehmann 
(1963) proposed that estimators could be obtained by inverting rank tests, and the class 
of such estimators is termed as R-estimators. R-estimate can be defined for a lot of mod­
els, reasonably for all where the rank tests make sense and the test criterion is symmetric 
about a known center or has other appropriate property under the null hypothesis. 
Hodges-Lehmann estimator plays a fundamental role when applying standard rank-based 
methods (in particular, the Wilcoxon signed rank test).The Walsh averages of n obser­
vations refers to all pairwise averages,(X, + Xj)/2 for all % < j . T h e Hodges-Lehmann 
estimator is the median of all Walsh averages, specifically, 

Xi ~\~ Xj 
TnH = medi<j — - . (3.6) 

3.3 Sen's Estimate (L-estimator) 
L-estimators are based on order statistics Xn:1 < ... < Xn:n of random sample Xll ...,Xn. 
The general L-estimator can be given in the form 

n k 

) (3-7) 
i=i j=i 

where c „ i , . . . , c n n and ai,...,afc are given coefficients, 0 < p\ < ... < pu < 1 and h(.) and 
h*(.) are given functions. Also, the coefficient c„j, 1 < % < n are generated by a bounded 
weight function J : [0,1] —> M in the following way: 

cm = J._1J(s)ds z = l,...,n (3.8) 
71 

approximately 
1 % 

cni = -J(——) i = l,...,n (3.9) 
n n + 1 

The first component of the L-estimator (3.7) generally involves all order statistics, while 
the second component is a linear combination of several (finitely many) sample quantiles. 
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The major advantage of the L-estimator is that it has a closed form and is computationally 
easy [11]. The simplest examples suggested by Jureckova and Picek [6] of an L-estimator 
of the distribution location are the sample median and the midrange, in which the later 
is defined as 

Tn = X l : " ^ X w : " (3.10) 

A simple L-estimator of distribution scale is the sample range or 

Rn = Xn.n — X\.n. (3-11) 

A n interesting L-estimator that have immediate connection to the L-moments is the Sen 
weighted mean. A special location statistics, which is based on the order statistics, is the 
Sen weighted mean (Sen, 1964) or the quantity Tn,k- The Tn,k is a robust estimator [6] of 
the mean of a distribution and is defined as 

^ U + i ) g(V)(V) x^ 
where Xn-i are the sample order statistics and k is a weighting or t r imming parameter. 
Note that Tn,o — fj, — Xn or the arithmetic mean and Tn,k is the sample median if either 
n is even and k = in/2) — 1 or n is odd and k — (n — l ) / 2 . 

3.4 Trimmed Mean(L-etsimator) 
The tr immed mean is another type of unbiased estimator.To compute a tr immed mean, 
we remove a predetermined amount of observations on each side of a distribution, and 
average the remaining observations, a — trimmed mean 0 < a < 0.5is the average of the 
central quantiles. It is given by 

^ n— [na] 

n — 2\na\ . , 

where Xn:i are the sample order statistics [6]. 

3.5 Winsorized Mean (L-estimator) 
Winsorization is a method of reducing the influence of outliers in your data set.The 
Winsorized mean is similar to the tr immed mean, except that rather than deleting the 
extreme values, they are set equal to the largest (or smaller) values. 
The average of the Winsorized mean is a typical example of the general form (3.7) which 
possess two components 

Wna = T(Fn) 

= \ { [ H ^ n : M + l + ^i=[na\+l ^n-.i + [n«]^n:n-[na]} 
— V™ Y -X- [ n a]+ 1 Y -X- Y 

2—ii=\ (^ni-/*-n:i ' n ^-n:[na] + l < n ^-n:n—[na] 
where 

_ J \ . . . 1 + [na] < i < n — [na] 
"' | 0 . . . otherwise 

The extreme quantiles are not tr immed but substituted wi th quantiles X n : [ n Q , ] + 1 and 
Xn:n-[na] sequentially [6]. 
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4 RECIEVER OPERATING CHARACTERISTIC CURVE 
(ROC) CURVE 

4.1 Summary of R O C curves 
The R O C curve assesses the performance classification methods used to identify obser­
vations by type. For instance, the R O C curve may indicate the performance of (1) a 
software filter which categorizes emails as ham or spam, (2) a medical diagnostic test 
which categorizes patients as healthy or sick, or (3) an astrophysics approach which clas­
sifies galaxies as elliptical or spiral. The receiver operating characteristic (ROC) curves 
have been in use for a long time, having risen in the context of signal detection theory 
which was developed in the 1950s as [15] discussed. To produce R O C curve, a sample of 
observations wi th known classes must be available. Often, the true R O C function may be 
a continuous curve which remains unknown. 

4.2 Classification methods, scores, and error rates 
The R O C curve portrays a classification method's ability to distinguish classes and depicts 
all attainable error rates across thresholds. Furthermore, the R O C curve's standard axes 
of true positive and false positive rates helps to compare various classification methods. 
Assume that we have a classification method that accesses observations to establish to 
which one of the two classes they belong. For consistency wi th established terms of the 
R O C curves, label one class positive and the other class negative. Considering a given 
observation, the classification method gives back a number called a score. O n top of 
multiple observations, the classification method produces two distributions of scores, one 
for the negative class and the other for positive class. Suppose that high scores implies 
the positive class and that low scores also implies the negative. We want to measure the 
method how the method's performance is selective between the two classes [8]. 
Following, for the purposes of testing this performance, let us assume we have an observa­
tion whose true sources are known. We apply the classification method to this test data 
to obtain scores for al l observations. For a threshold c on the scores, if the score for a 
given observation is greater than c, we assume the observation came from the positive 
class. Otherwise, the negative class is been considered as the source of the observation. 
Supposing we support the wrong assumption, we commit an error. Also, when we favor 
the negative class when in t ruth an observation comes from the positive class, the error 
is termed as false negative(FN). Likewise, when we favor the positive class when in t ruth 
an observation comes from the negative class, the error is termed as a false posit ive(FP). 
W i t h multiple observations we can compute the rates of these errors. We wi l l only high­
light on true positive rate ( T P R ) and false positive ra te (FPR) , which define the axes of 
the R O C plot. Another summary index that has been proposed is the point on the R O C 
curve where sensitivity is equal to specificity, TPR = 1 — FPR [8]. The R O C curve can 
be constructed as a plot of sensi t ivi ty(TPR) versus l -specif ic i ty(FPR). Particularly, the 
R O C plots the F P R on the x-axis and the T P R on the y-axis. 

TP 
TPR(Sensitivity) = T p - — 

and 
FP 

FPR{1 - Specificity) = — - p p 
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Definition 4.1 ( R O C ) . Using a threshold c, define a binary test result Y as 

positive if Y > c, 

negative if Y < c. 

Let the corresponding true and false positive fractions at the threshold c be T P R ( c ) and 
F P R ( c ) Respectively where 

TPF(c) = P[Y > c\D = 1], 
v ' 1 ~ 1 J 4.1 

FPF(c) = P[Y > c\D = 0]. V ; 

The R O C curve is the whole set of possible true and false positive rates attainable by 
dividing Y wi th different thresholds. That is, the R O C curve is 

ROC{.) = {(FPR(c),TPR(c)), c e ( -oo , oo)} (4.2) 

We wi l l discover that, as the threshold c increases, both FPR{c) and TPR{c) decrease. 
A t one extreme, c = oo , we have l i m c ^ o o TPR(c) = 0 and l i m ^ o o FPR(c) = 0. A t the 
other, c = —oo, we have l i m c ^ _ o o T P R ( c ) = 1 and l i m c ^ _ o o F P R ( c ) = 1 which implies 
that, the R O C is a monotone increasing function in the positive quadrant as illustrated 
in Figure(3).We can also write the R O C curve as 

ROC{.) = {(£, ROC(t)),t e (0,1)} (4.3) 

where the R O C function maps t to T P C ( c ) , and c is the threshold corresponding to 
F P F ( c ) = t . 

Mathematically, the R O C curve can be described as a monotone increasing function 
in the unit square tied down at the boundary points (0, 0) and (1,1). A perfect classifier 
completely separates diseased and non-diseased subjects thus, (FPR = 0,TPR = 1). Its 
R O C curve is along the left and upper borders of the positive unit quadrant,whereas, an 
uninformative R O C curve for a continuous test result Y is a diagonal of 45°. Alternatively, 
an uninformative test is one such that TPR(c) = FPR(c) for every threshold t and this 
situation is represented by R O C curve ROC it) = t, which is a line wi th unit slope. Most 
R O C curves lie between those of the perfect and useless tests. Better tests have R O C 
curves closer to the upper left corner. 

The primary numerical index used to describe the behavior of the R O C curve is the 
under the R O C curve ( A U C ) , defined by 

AUC= f1 ROC(t)dt (4.4) 
Jo 
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4.3 Empirical R O C Curve 
The empirical R O C curve is a more general type of the R O C curve which is non-parametric. 
It does not require any distribution pattern of test values. It uses the trapezoidal rule in 
the sense that it calculates the area by joining the points at each interval of the observed 
values of continuous test. One advantage of this method is that no structural hypothesis 
is made on the form of the plot, and the underlying distributions of the results of the two 
groups are not specified. The precision of statistical conclusions based on the empirical 
R O C curve is reduced compared to a model-based estimator when the genuine R O C curve 
is a smooth function (at least when the model is correctly specified). Nevertheless, the 
estimator has some drawbacks, and it may suffer from large variability, particularly for 
small sample sizes [16]. 

Definition 4.2. The empirical estimator of the R O C curve applies the definition of the 
R O C curve to the observed data. That is, for every possible threshold c, the empirical 
true and false positive ratio are calculated as 

nD 

TPR(C) = J2HYD1>C) /nD, 
i=l 
nD 

FPR(c) = £ I (YD, > c) /nD 

3=1 

where D and D represent the positive and negative responses, riy and nY are the total 
number of positive and the negative responses, Y d and are the random diagnostic 
variables in the positive and the negative responses. 

Figure 7: A n example of an empirical R O C curve denoted by rin and nD 

Particularly, each point on the empirical R O C curve represents an individual threshold 
value. The points are connected to form the curve. Threshold values that result in low 
false positive rates tend to result in low true positive rate as well. The empirical R O C 
curve is a plot of the true positive rate TPR{c) versus the false positive rate FPR foe all 
c G (—oo, oo). Also, as the true positive increases, the false positive also increases. B y [7] 
the A U C of the empirical estimator is defined as 

1 nD nD , i . 

AUC = — E E ( ' fa > yB,) + ~2' (r» = ̂ )) (4.5) 
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4.4 Binormal R O C Curve 
The Binormal model for R O C assumes that under some unspecified, monotonie increas­
ing transformation, the negative distribution of the diagonal variables in positive classes 
follows normal distributions [7]. To evaluate the binormal R O C curve, the sample mean 
and sample variances are estimated from the known positive group, and again for the 
known negative group. These sample means and sample variances are used to identify 
two normal distributions. The R O C curve is later generated from the two normal distri­
butions. In a case the two normal distributions overlap, Binormal R O C curve is closer 
to the 45-degree diagonal line. When the two overlap only in the tails, the Binormal 
R O C curve has a much greater distance from the 45-degree diagonal line. The choice of 
the binormal estimator to fit the R O C curve is often justified by theoretical considera­
tions, mathematical tractability, familiarity with the normal model, or simply a favorable 
agreement or convenience. [17] presents a table outlining the most common arguments in 
favor of using this estimator. But some authors also argue that the binormal estimator is 
robust.It is used in the sense of robust statistics, meaning that the presence of a certain 
amount of observations coming from a non-normal distribution wi l l yield reliable results. 

0.0 0.2 0.4 0.6 0.8 1.0 

1 -Specificity 

Figure 8: Three hypothetical R O C curves representing the accuracy of an ideal test (line 
A ) on the upper and left axes in the unit square, a typical R O C curve (curve B ) , and a 
diagonal line corresponding to an uninformative test (line C) . A s test accuracy improves, 
the R O C curve moves toward line A 

In figure (8), line A represents a perfect test wi th AUC = 1, curve B represents a typical 
R O C curve (for example AUC = 0.85), and a diagonal line also known as the chance line 
(line C) corresponding to uninformative test with AUC = 0.5. A s test accuracy improves, 
the R O C curve moves toward A , and the A U C approaches 1. Clearly, if two tests are 
ordered wi th test A uniformly better than test B in the sense that [7] 

ROCA(t) > ROCB(t) Vt e (0,1) (4.6) 
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which can clearly be seen in (fig.4), then their A U C statistics are ordered; 

AUCA > AUCB. 

Functional Form of the Binormal R O C Curve 
To derive the functional form of the R O C curve, we can assume that test results are 
normally distributed in the diseased (D) and non-diseased(-D) populations. 
If 

YD~N^D,CTI) Y6~N(/JL6,O%) 

then 
ROC{t) = $ ( a + 6 $ - 1 ( t ) ) 

where 

O~D o-D 

and $ denotes the standard normal cumulative distribution function [7]. 

Proof. The Binormal R O C curve with a given threshold c is commonly assessed using 
the probabilities that correctly classify outcomes thus, the FPR(c) and TPR(c) can be 
define respectively as 

F P R ( c ) = P [YĎ > c] = $ 

T P R ( c ) = P [YD > c] = $ — - ) 
V 0~D J 

For a false positive fraction t, we see that c = /J,d~
aĎ^~1(t) is the corresponding threshold 

for the test positivity criterion. Hence. 

R O C ( i ) = T P R ( c ) = $ 

= $ 

lip - c 

• 
Definition 4.3. The binormal R O C is defined by the form 

ROCit) = $ (a + 6 $ - 1 ( t ) ) (4 .7 ) 

where $(.) is the cumulative distribution function of the standard normal distribution. 
We call a the intercept and b the slope for binormal R O C curve.As per our convention 
that largest test result are more indicative of disease, we have \ID > HD s o A > O.The 
slope b is positive by definition. 

The binormal R O C provides a good approximation to a wide range of R O C curves that 
occur in practice. Note that if the slope 6 = 1 , then the binormal R O C curve is concave 
everywhere. To see this, observe that the slope of the R O C curve at t is likelihood ratio 
at the corresponding threshold c, which can be given as 

ID(C) (aD\ f - ( c - / x D ) 2 ( c - / x ^ ) 2 l 

D 
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when b = 1, we have on = aD and the common value is denoted by a.The likelihood ratio 
then reduces to exp{c(/XD — PD)/<?2 — (PD2 — PD2)/2CT2}. A S C decreases (t increases), 
we seee that the slope decreases because fio > HD- Hence when 6 = 1 the slope of the 
R O C curve is monotone decreasing in t. Again , if b ^ 1 the monotonicity criterion fails. 
For b > 1, the likelihood ratio decreases and then increases. Conversely, for b < 1 the 
likelihood ratio increase and then decrease as t range from 0 to 1. This produces the 
irregularities in the R O C curve where it falls below the uninformative test R O C curve, 
ROC(t) = t. The A U C has a simple analytic form when the R O C curve is binormal. The 
A U C for binormal R O C curve is [7] 

AUC = $ ( . 

4.5 Bi-Cauchy R O C 
Here, we derive the functional form of R O C model for Cauchy similar to the binormal R O C 
curve. Let the distribution in the true positive class be Cauchy wi th location parameter 
\ID and scale parameter a2

D and false positive class be Cauchy wi th location parameter 
\iD and scale parameter a2^ under this transformation 

YD~C{pD)a2

D) Yb~C{pb)al). 

Since the R O C curve wi th a given threshold c is commonly assessed using the probabilities 
that correctly defined outcomes as stated in the case of the binormal R O C we can define 
the TPR(c) as 

TPR(c) = P(YD > c) = 1 - P(YD < c) 

= F 

= F 

CD 
C-HD\ (4.* 

HD - c 

From above, P{YD < C) = F ( c ~ ^ ° ) by standardization. The false positive rate FPR(c) 
follows the same approach. Hence 

FPR(c) = P(YD > c) = 1 - P(YD < c) 

= p f»p ~ (4-9) 

For the false positive fraction t, if we rearrange the FPR(c) equation,that is, taking its 
inverse transformation we have 

F-\FPR(c)) = ^ - — (4.10) 

we see that 

c = pD-aDF-1(t), (4.11) 

which can be substituted into (4.9) to get the Bi-Cauchy R O C 
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R O C ( t ) = TPR{c) = F 

introducing 

we have 

'up - c  

(up - u D + aDF-1(t)\ 

K AD J 
( u D - uD a-fiF-1^)^ 
V o-D aD ) 

u D - u D aD 

a = and p = — 
O~D o-D 

ROC{t) = F (a + PF~\t)) , (4.12) 

where (4.12) is the Bi-Cauchy R O C model. We see that, the model has two parameters, 
a which is the intercept, j3 is the slope, withholding the fact stated by [7] that larger test 
results are more indicative of disease thus \ID > fijj, then we can conclude that a > 0 
and also the slope j3 is positive by definition. F is the cumulative distribution function of 
standard Cauchy distribution as shown in Proposition (2.9) and F~x is the inverse of the 
cumulative distribution function. Since all terms are known the Bi-Cauchy R O C model 
in (4.12) is 

ROC(t) = ^ + i arctan (a + P tan (nt - Vt e (0,1) (4.13) 

The nature and behavior of the curve is dependent on the slope a and the intercept (3. 
From [7] when (3 = 1, the Binormal R O C curve is concave everywhere. This assertion 
holds for the Bi-Cauchy R O C in the sense that, for a constant (3 the curves are concave 
but for different values of (3 there are anomalies in the nature of the curves which can be 
seen in Figure 10. Proper R O C curves are concave and symmetric and never cross each 
other, this makes it reliable in comparison between different subjects, Figure 9 shows a 
proper Bi-Cauchy R O C curves. 
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Figure 11: Bi-Cauchy R O C curves wi th different a and j3 values 

A U C of the Bi-Cauchy R O C curve 
From [7] the under the curve is 

AUC = P[YD> YD] (4.14) 

where YD and YQ are independent randomly chosen test results from the diseased and 
non-diseased population, respectively. [18] base on the same assumption in (4.14) in 
its estimates in clinical trials. It can be calculated as the average of TPR accross all 
FPR. Then basing on the same results (4.14) which was used to derived the A U C for 
the Binormal R O C curve by [7], we can derive the Bi-Cauchy R O C in the sense that 

AUC = P[YD > YD\ = P[YD — Yjj > 0] 

Let 

K = P[YD-YD}. 

Then using the properties of the characteristic function it can be shown that 

K ~ C{fiD -liDi°D + a 

DJ 

39 



which implies that 

P(K > 0) = 1-P(K < 0) 

1 — F 

f*D- Vp 

VP -f*D 

Op 
1 + 

a D 

a 

(4.15) 

if we denote 
Up - M Q 

<?P 
and j3 a p 

op 

From the assertion above, the A U C of the Bi-Cauchy R O C can be written in the following 
convenient closed form 

AUC a (4.16) 

g since F is a known function, thus the cumulative distribution function of Cauchy distri­
bution as show in Proposition 2.9, it follows that the A U C of the Bi-Cauchy R O C model 
is 

„ r n 1 1 ( a 
AU C = — I — arctan . 

2 7i \VTT]P 
(4.17) 

4.5.1 Point of Inflection of the Bi-Cauchy R O C Mode l 

A point of inflection is established where the graph of a function changes concavity. From 
basic calculus results concerning concave functions it follows that the an inflection is where 
a curve changes from concave upwards to concave downwards. The first derivative of the 
function gives the slope and the second derivative tells us whether the slope increases or 
decreases. In the case the second derivative is positive the curve is concave upwards and 
vice-versa is concave downwards. When (3^1, Bi-Cauchy R O C curve is not "proper" as 
is not concave throughout the whole R O C square as seen in Figure(lO). We seek to find 
a point in the model (4.13) where the curve inflects. This is possible by finding the first 
and second derivative. To locate the inflection point, we set the second derivative to zero, 
and solve the equation. 
For the model, 

1 1 
R O C ( t ) = - + - arctan(a + ^tan(?rt - TT/2)) Vt G (0,1). 

2 7T 
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The first derivative 

dROCit) « 9 / 1 1 , n . 
= 7^ — I — arctanlo; + (3 tan(7rt — 7i72)) 

dt dt \2 7T v v ' " 

d (\\ d (\ . n . 
+ — ( — arctan(o; + (3 tan(7rt — TT/2)) dt \2J dt VTT 

1 / 1 (3n 

7T \1 + (a + /3t&n(irt - TT/2)) 2 COS2(TT£ - TT/2) J 

J » V 
V (1 + (a + /3tan(?rt - TT/2)) 2) cos 2(7rt - TT/2) / 

For the second derivative we differentiate the first derivative by the approach of the 
product rule and we have 

d2ROC(t) 

dt2 
(3(1 + ( a + ^ t a n ( 7 r t - 7 r / 2 ) 2 ) ) 1 ( - (cos 2(7r£ - TT/2)) ^ (2 cos(7rt - TT/2)) 

[— sin(7r£ — 7r /2))7r + COS2(TT£ - TT/2) ( l + (a + p tan(7rt - TT/2) : 

(2a + 2 /3 tan(7r*-7r /2 ) ) — _. 
V V ' " VC0S2(7Tt - 7 T / 2 ) / 

by simplification of the second derivative and equating it to zero, it follows that, 

2sin(7r£ — TT/2) X 7r 2(a + ^ t a n ( 7 r t - n/2)) x (3n _ 

(1 + (a + ^ t a n ( 7 r t - TT/2)) 2) (cos(7r£ - TT/2)) 3 ~ (1 + (a + ^ tan(7rt - TT/2)) 2 ) 2 ~ 

sin(7rt - 7r/2) (1 + (a + /3tan(7rt - TT/2))) = (3(a + /3tan(?rt - 7r/2))(cos(7rt - TT/2)) 3 

tan(7rt - 7r / 2 ) ( l + (a + /3tan(7rt - 7r/2)) = /3(ct + /3tan(7rt - 7r/2))(cos(7rt - 7r /2 ) ) 2 . 

Let 
D = tan(7rt - 7r/2) 

Then we have the expression 

D (1 + a + (3D) = (a + (3D) x (3 (COS 2(TT£ - TT/2) 

But 

C O S 2 ( 7 T t - 7 T / 2 ) 
1 

Put t ing (4.19) into (4.18) we have 

D + aD + (3D2 = (a + (3D) x 

1 + t a n 2 ( 7 r t - 7 r / 2 ) 

0 

(4.18) 

(4.19) 

=^D + aD + (3D2 
a(3 

+ 

1 + D2 

(32D 

1 + D2 1 + D2' 

B y simplifying the above expression we have 

(3DA + aD3 + D3 + (3D2 + aD - (32D + D - a(3 = 0, 

If we assume a — 1 and (3 = 1 then we have 

L>4 + 2D3 + D2 + D - 1 = 0. 

(4.20) 

(4.21) 
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It is not t r ivial to find the roots of the polynomial (4.21), we find the roots numerically 
and the real roots are Di — 0.48402 and D2 = —1.8972. Since 

D = tan(7rt - 7r /2), 

then for Dl = 0.48402 we have 

tan(7rt - 7r/2) = 0.48402 

(wt - 7r/2) = arctan(048402) 

7rt = arctann(048402) + TT/2. 

t = - arctan(048402) + 2. 

=J> t i = 10.221, 

also for D2 = —1.8972 we have 

tan(7rt - 7r/2) = -1.8972 

7rt - TT/2 = arctan(-1.8972) 

Tit = arctan(-1.8972) + TT/2 

1 
t = - a rc tan( -1 .8972) + 2 

W 
=> t2 = -17.801. 

From above we can infer that there are many roots of the second derivative and finding 
the point by which the Bi-Cauchy R O C curve inflects wi l l be complex. This is because 
the points t\ and t2 above were obtained when we assumed the constants a — 1 and 
(3 = 1. How about the cases when there are different values of a and j3. We find the 
roots numerically to see the behavior for different values of the constants by using the 
expression (4.20). Since the value of D is known then the second derivative for t G (0,1) 
is 

(5 t an 4 (wt - TT/2) + a t an 3 (wt - TT/2) + t an 3 {nt - TT/2) + (5 t an 2 {nt - TT/2) + 

a tan (wt - TT/2) - (32 tan (wt - w/2) + tan (wt - w/2) - af3 = 0. 

We simulate using the function (4.22) to see the behavior of the function and this can be 
seen in the figure below. From the figure we see for different values of a, (3 and t G (0,1) 
all the curves remains constant at the same point in the middle before the switch which 
shows the behavior of the points of inflection of the Bi-Cauchy R O C curve. 
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Figure 12: Point of Inflection of the Bi-Cauchy R O C curve for different values of a and (3 

C A S E S T U D Y 

Suppose that the test results are Cauchy distributed in the diseased and non-diseased 
populations with location parameter (fj,D, (ifj) and scale parameter (1,1) thus the case 

YD~C{»D,1) YĎ~C(pĎ,l). 

Then for any threshold c, we can express the F P R and T P R using the cdf of standard 
Cauchy distribution as 

F P R ( c ) = P[Y5> c] 

T P R ( c ) = P[YD> c] 

to arrive at a simple expression for R O C ( t ) for the Cauchy distributed test, we take the 
inverse function of the first term FPR(c), we can see that c = \xD — F~x{t) which wil l be 
the corresponding threshold for the test positivity criterion. Therefore, 

R O C ( í ) = T P R ( c ) = F (^Y^) 

= F (pD - (pD - F-\t))) (4-23) 

= F ( / x D - / x Ď + F - 1 ( í ) ) , 
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hence for Cauchy distributed diagnosing random variable wi th distribution parameters 
C{fiDi 1) and C(fj,i), 1) the Bi-Cauchy model can be written as 

ROCit) = F ( / x D - / x 5 + F - 1 ( t ) ) . (4.24) 

Since the functions F and _F _ 1 (£) are known the Bi-Cauchy R O C model is 

ROC(t) = ^ + ^ arctan (pD - fj,3 + tan (nt - V* G (0,1) (4.25) 
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5 RESULTS OF SIMULATIONS 

5.1 Results 1 
In this section, I performed simulations based on the previously described model in pyhton 
software version 3.6.0]. We have our Bi-Cauchy R O C model 

ROC{t) — - H — arctan (^iD — / / ^ + tan (^rrt — T^J^J Vt & (0,1) 

we simulate for different values of ratio and fijj and compared it wi th the empirical 
R O C curve as discussed earlier in (4.3). I chose a random set of data for n = 100 for 
both diseased and non-diseased population. The data was chosen from [cardiovascular-
disease-dataset]. The discussed estimators in section 3 thus, Huber M-estimate, Hodges 
Lehmann estimate(R-estimate), Sen's mean(L-estimator), Trimmed mean(L-estimator) 
and the Winsorized mean(L-estimator) were used to estimate the the chosen data set for 
both diseased and non-diseased population.The data were chosen just get a values for 
each estimates in order to apply in the Bi-Cauchy model. 

The estimator values were then used to generate a random set of observations which 
are Cauchy distributed for both the diseased and non-diseased population The different 
values of the estimates were set as the location parameter \iD and \ify to perform these 
simulations. 

The Cauchy random variables generated were used to plot different empirical R O C 
curves and compared wi th Bi-Cauchy R O C . The results of the estimator values are shown 
in the table below 

Estimator Diseased Population Non-Diseased Population 
Mean(x) 26.0831 25.0013 
Huber M-estimate(M-estimator) 25.7658 25.0784 
Hodges Lehmann Estimate(R-estimator) 25.7850 25.1625 
Sen' Estimate(L-estimator) 26.0831 25.0013 
5% Trimmed Mean(L-estimator) 25.7658 25.0698 
10% Trimmed Mean(L-estimator) 25.7748 25.25175 
5% Winsorized Mean (L-estimator) 25.7467 24.9033 
10% Winsorized Mean(L-estimator) 25.7408 24.9234 

Table 1: Table Showing different estimator values 

The results for the empirical and Bi-Cauchy R O C curves for the different estimates wi th 
their A U C s are shown as follows 
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Figure 13: R O C curve when the diseased and non-diseased class follows a Cauchy distri­
bution wi th the Mean (//£> = 26.0831 and \xD = 25.0013 estimates in Table 1) 

Figure 14: R O C curve when the diseased and non-diseased class follows a Cauchy distri­
bution wi th the Huber M-estimate (fio = 25.7658 and = 25.0784 estimates in Table 

1) 

densities Ftoc plots 

Figure 15: R O C curve when the diseased and non-diseased class follows a Cauchy distri­
bution wi th the Hodges Lehmann Estimate (fio — 25.7850 and /xg, = 25.1625 estimates 
in Table 1) 
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Figure 16: R O C curve when the diseased and non-diseased class follows a Cauchy distri­
bution with the Sen Weighted Mean (//£> = 26.0831 and /x D = 25.0013 estimates in Table 

1) 

densities ROC plots 

Figure 17: R O C curve when the diseased and non-diseased class follows a Cauchy distri­
bution wi th 5%-Trimmed Mean (/XD = 25.7658 and /x D = 25.0698 estimates in Table 1) 

densities ROC plots 

Figure 18: R O C curve when the diseased and non-diseased class follows a Cauchy distri­
bution with 10%-Trimmed Mean (/XD = 25.7748 and / x D = 25.25175 estimates in Table 1) 
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densities ROC plots 

Figure 19: R O C curve when the diseased and non-diseased class follows a Cauchy distri­
bution wi th 5%- Winsorized Mean (fj,D = 25.7467 and \ify = 25.9033 estimates in Table 

1) 

Figure 20: R O C curve when the diseased and non-diseased class follows a Cauchy distri­
bution with 10%- Winsorized Mean (up = 25.7408 and Up = 24.9234 estimates in Table 

1) 
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From the above R O C plots, it is evident that, the estimate wi th the average mean 
Figure 13 shows a vast difference between the empirical R O C and the true(Bi-Cauchy) 
R O C curve as compared to the other estimates. Also, comparing the A U C s , the A U C 
for the empirical is far lower than that of the Bi-Cauchy R O C curve as compared to the 
difference between the A U C s of other estimates.This also shows why the mean deviates 
for Cauchy distribution and why the weak law of large numbers does not hold for Cauchy 
distribution as explained in Proposition 2.6. 

Also, the same values of the estimators are considered and the empirical is been 
simulated by a combination of all the data sets from both the diseased and non-diseased 
population from each of the estimators. The result of the simulation is seen in the Figure 
21. From the figure, we can see that estimation wi th the mean moves farther from the 
empirical as compared to the other estimators. In the order of suitability the closest one 
to the empirical is the 10%-Trimmed mean followed by the Hodges Lehmann estimate, 
Huber M-estimator, 5%-Trimmed mean, 10%-Winsorized mean, 5%-Winsorized mean, 
Sen's mean and the last was the average mean. 

ROC plots 

6440154100562143 
631988027052247 
707 B56184953 7 230 
6455774104485394 
6127612491304307 
6711703084686259 
666319130031012 
707 B56184953 7 239 
513392B57142B571 

0.4 0.6 
False Positive Rate 

Huber-M ROC 
Hodges ROC 
5ens ROC 
5% Trimmed ROC 
10% Trimmed ROC 
511 VYinsorized ROC 
10%Winsorized ROC 
Mean 
Em pi real ROC 

L0 

Figure 21: R O C Plots comparing the empirical R O C and all Bi-Cauchy R O C of different 
estimates 
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5.2 Results 2 
A new set of simulations were performed to check how the various estimators can be 
applied to Cauchy distributed data using the same R O C approach. I choose two constant 
values (//£> = 28) and (fijj = 26.5) as the location parameter for both diseased and 
non-diseased subjects wi th the same model 

ROC(t) = ^ + ^ arctan (pD - fj,3 + tan (nt - | ) ) Vt G (0,1) 

The constant values (fio = 28) and (fijj = 26.5) were used to generate Cauchy distributed 
random variables, 100 for each value. The various estimators were then used to estimate 
each of the set of variables for both the diseased and non-diseased populations and applied 
in R O C plots. The constant values were used to plot the true Bi-Cauchy R O C curves and 
the estimated values were used for theoretical Bi-Cauchy R O C curves and plotted wi th 
the empirical R O C . The empirical R O C was generated from the same 100 set of randomly 
generated variable for both populations. Results for the estimator values are shown in 
the table below 

Estimator Diseased Population Non-Diseased Population 
Mean(x) 27.879129 26.804028 
Huber M-estimate(M-estimator) 27.86196 26.69340 
Hodges Lehmann Estimate(R-estimator) 27.85858 26.64251 
Sen's Estimate(L-estimator) 27.87913 26.80403 
5% Trimmed Mean(L-estimator) 27.90481 26.72807 
10% Trimmed Mean(L-estimator) 27.86493 26.69325 
5% Winsorized Mean(L-estimator) 27.91092 26.775005 
10% Winsorized Mean(L-estimator) 27.90945 26.70798 

Table 2: Table Showing different estimator values for 

The R O C plots comparing the Empir ica l R O C curve, True R O C curve and the Theo­
retical R O C curve for two set of observations. Small sample size n = 100 and large sample 
size n = 500 are shown as follows 
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MEAN ROC plots 

Theoretical ROC 
l u e R O C 

HUBER-M ESTIMATOR ROC plots 

Theoretical ROC 
l u e ROC 

HODGES LEHMANN ESTIMATOR ROC plots 

r 

AUC = 0.7260652531790672 
AUC=0.59375 
AUC=0.759 36746 3 009 5 386 

-1 1 1 1 1 1—1 

0.0 0.2 0.4 0.6 ™ 
False Positive Rate " E m P i r c a l R 0 C 

Theoretical ROC 
l u e R O C 

Figure 22: Simulation of small sample size n=100 

51 



SENS WEIGHTED MEAN ROC plots 

_ r 

AUC =0.706 902 65632 7 21fl 
AIJC=0.59375 
AUC=0.759367463009538 

c 0 0 2 0 4 Ö.E n E 1 04 06 rtE in 
False Positive Rate " ErrpircalROC 

Theoretical ROC 
lue ROC 

5% Trimm Mean ROC plots 

Theoretical ROC 
lue ROC 

10% Trimm Mean ROC plots 

Theoretical ROC 
lue ROC 

Figure 23: Simulation of small sample size n=100 
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5% Winsorized Mean ROC plots 

AUC = 0.7L5399 72953 64736 
ALPC=0.59375 
flJC=0.7593674630095386 

+ 0.0 0.2 0.4 0.6 
False Positive Rate 

im i n 
Em pi real ROC 
Theoretical ROC 
l u e R O C 

10% Winsorized Mean ROC plots 

ALPC=0.724167 317 75 3 74 71 
ALIC=0.59375 

AUC=Q. 7593674630095386 

0.0 0.2 0.4 0.6 
False Positive Rate 

T T 
(\ ft i n 

Em pi real ROC 
Theoretical ROC 
"fue ROC 

Figure 24: Simulation of small sample size n=100 
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W i t h reference to the R O C plots above, we can see by the A U C , s of the theoretical B i -
Cauchy R O C curve which is very close to the true Bi-Cauchy R O C curve is the Hodges 
Lehmann estimator followed by 10%-Winsorized mean, 10%-Trimmed mean, 5%-Trimmed 
mean, Huber M-estimator, 5%-Winsorized mean, Sens mean and the average mean. The 
Sens mean and the average mean are the most farther from the true Bi-Cauchy R O C curve. 
Figure (6) below shows a comparison of the various true Bi-Cauchy R O C , empirical roc 
and theoretical R O C plots of the estimates. 

ROC plots 

5% Trimmed ROC 
10% Trimmed ROC 
5K Winsorized ROC 
10% Winsorized ROC 
Sens ROC 
Mean 
lue 
EmpirralROC 

Figure 25: Simulation of small sample size n = 100 of the True Bi-Cauchy R O C , Theo­
retical Bi-Cauchy R O C and the empirical R O C of each of the estimators estimators. 
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We simulated for a large sample size, for n — 500. Large sample size increases the 
estimator values and this increases the A U C s of the Bi-Cauchy R O C curves because the 
higher the difference between fip and \iD the more concave the Bi-Cauchy R O C curves. 
But this reduces the A U C of the empirical because the empirical is dependent on the 
number of observation n as studied in section 4.3. 

MEAN ROC plots 

• • 

• • 

ALIC = 0.366450338917137 
ALIC=0.510327635327635 
AUC=0.759 367463 009 5 38 

4 
5 

1 1 
04 06 n E 1 n 

False Positive Rate " E m P i r c a l R 0 C 

Theoretical ROC 
l u e R O C 

HUBER-M ESTIMATOR ROC plots 

Theoretical ROC 
l u e R O C 

Figure 26: Simulations of Large sample size n = 500 
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HODGES LEHMANN ESTIMATOR ROC plots 

Theoretical ROC 
l u e ROC 

SENS WEIGHTED MEAN ROC plots 

Theoretical ROC 
l u e ROC 

5% Trimm Mean ROC plots 

Theoretical ROC 
l u e ROC 

Figure 27: Simulations of Large sample size n = 500 
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10% Trimm Mean ROC plots 

Theoretical ROC 
l u e R O C 

5% Winsorized Mean ROC plots 

Theoretical ROC 
l u e ROC 

10% Winsorized Mean ROC plots 

Theoretical ROC 
l u e R O C 

Figure 28: Simulations of Large sample size n = 500 
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ROC plots 

7513876224355542 
7555415233305093 
7662673913315669 
7522409070659797 
7834363484885128 
7613495123180507 
B684503B55031638 
B684503389171B7 
7593674630095386 
5L032763S3276354 

0.4 0.6 
False Positive Rate — Huber-M ROC 

— Hodges ROC 
516 Trimmed ROC 

— 10% Trimmed ROC 
5% Winiorized ROC 

— 10%Win5orized ROC 

— 5ens ROC 

— Mean 

— "fue 

— Empircal ROC 

Figure 29: Simulations of Large sample size n = 500 of all the estimates 
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The values for both the diseased and non-diseased population were set in a such a way 
that the difference wi l l be a more bit wider. We set the diseased population to jiD = 28 
and non-diseased to — 22. Simulation done for both small sample n = 100 size and 
large sample size n = 500 to see how the concavity of the R O C improves. Results is seen 
below 

ROC plots 
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Figure 30: Simulations of sample size n = 100 of all the estimates wi th fxD = 28 and 
fi6 = 22 
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ROC plots 
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Figure 31: Simulations of sample size n = 500 of all the estimates wi th /j,D = 28 and 
(iB = 22 
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Theoritical Comments 
Comparing both simulations in section 5.1 and 5.2, in both cases the R O C estimate 
based on the average estimate of fio and / x D deviates from all the other estimates in 
its estimation which assert to the fact that the conditions for the weak law of large 
numbers are not fulfilled and thus the average does not converge to the location 
parameter in probability. This can be seen from Figure 21, 25 and 29. 
Furthermore, we were considering the order of their performance in a model wi th 
Cauchy distribution. To compare from the two results, estimates with the Hodges 
Lehmann estimator, Huber M-estimate, both 5% and 10% Trimmed mean, 5% W i n -
sorized mean and the 10% Winsorized mean show to be more suitable in their es­
timation. The average mean and the Sens mean were not suitable. In summary, 
Hodges Lehmann estimator, Huber M-estimate, both 5% and 10% Trimmed mean, 
5% Winsorized and the 10% Winsorized are more suitable in the estimation of the 
location parameter of Cauchy distribution. 
Owing to the fact that, R O C analysis is a method for evaluating the accuracy or 
performance of medical diagnostic test, then for any real life data that is Cauchy 
distributed, this technical approach can also be used to give out the best diagnosis 
to a patient using the robust estimators aforementioned. 
This can be possible by the help of the A U C since it is a summary measure that 
gives a very meaningful interpretation. In the case of a perfect classification the 
Bi-Cauchy R O C curve wi l l reach the point of highest theoretical accuracy i.e the 
sensitivity and specificity wi l l both be 100% and the A U C wi l l tend to one (the 
highest possible value). 
The A U C values was between the range of 0.5 — 0.8 in the simulations, in analysis 
of R O C 0.5 gives a non-informative diagnostic curve but all the data used in the 
simulation were randomly generated not a real life data or accurate. 
In Figure 30 and Figure 31 where we considered a wider difference \ID = 28 and /x D = 
22. The A U C values increased and the Bi-Cauchy R O C curves moved a bit higher 
to the top left corner. [19] argued to the fact that concavity is a characteristic of 
the parametric R O C curves because it guarantees that the R O C wi l l never cross the 
main diagonal line. Since the Bi-Cauchy R O C is parametric, then this characteristic 
is of importance to its functionality. 
The technical approach suggested in this work would also be more important in 
solving real life problems that requires analysis of data. A l l that is required is to 
perform a goodness of fit test on the data set to wrap Cauchy distribution then apply 
this approach to give results. A n example of such statistics which is mentioned in 
literature for fitting real life data to fit Cauchy distribution is the Watson's U -
squared statistics. [20] also gave an approach for performing a goodness of fit test 
for Cauchy distribution based on empirical characteristic function. 
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6 CONCLUSION 
In this thesis, a new approach of estimation of the location parameter of Cauchy dis­

tr ibution was studied. The main controversies of Cauchy distribution was the difficulties 
in estimating its parameters. Numerous approaches have already been used in literature 
both numerical and analytical approach to estimate the parameters. A set of robust 
estimators were suggested in this work and were later applied in the receiver operating 
characteristic curves where a number of simulations were performed based on a model 
derived in Cauchy sense called the Bi-Cauchy R O C curve. This thesis is divided into six 
chapters. In chapter 2, we studied some properties of Cauchy distribution, in particular 
the expected value, the characteristic function and the cumulative distribution function. 

Furthermore, in chapter 3 we studied the theoretical operation of the different types 
of robust estimators which are the Huber M-estimator, Hodges Lehmann estimator, Sens 
mean, Trimmed mean and the winsorized mean. In Chapter 4, we studied the receiver 
operating Characteristic (ROC) curve where we derived Bi-Cauchy R O C model and ap­
plied it in the simulation of data where we considered mainly diseased and non-diseased 
population. 

Chapter 5 was mainly devoted to simulations and results. The simulations were per­
formed in Python software in Google Colab [ version 3.6.0]. Two approaches were used to 
perform the simulations and some theoretical comments were given. The results showed 
that although estimation of the location parameters Cauchy distribution is difficult but 
the suggested robust estimators are suitable in its operation. 
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A p p e n d i c e s 

A Bi-Cauchy ROC curves 

1 # — *— coding : utf — 8 — *— 
2 Bi-Cauchy Curves 
3 

4 Au tomat i ca l ly generated by Colaboratory . 
5 

fi O r i g i n a l f i l e is located at 
7 https : / / colab . research . google . com/ dr ive /1 Y774PEYLf9xxQtX7— 

AibYv9wWXxeJjAo 
8 " " " 

9 

10 ^ import packages 
11 import math 
12 import numpy as np 
13 import ma tp lo t l i b . pyplot as pi t 
14 #Bi—Cauchy ROC curves 
15 pi = math. pi 
i d tan = np. tan 
17 arctan = np .a rc tan 
is p i t . t i t l e ("Bi-Cauchy ROC Curves") 
iH x = np. l inspace (0.00001 , 1, num=200) 
2d b = 1 
21 colors = [ ' p u r p l e ' , ' b r o w n ' , ' p i n k ' , ' o l i ve ' , ' c y a n ' , ' r e d ' , ' g r e e n ' , ' i n d i g o ' , ' 

d a r k b l u e ' , ' d a r k c y a n ' ] 
22 col_count = 0 
23 seq = [0 .5 ,1 ,2 ,3 ] 
24 h = [] 
25 for i in seq: 
26 a = i 
27 y= (1/2) + ( 1 / p i ) *arctan (a + b*tan(pi*x + ( p i / 2 ) ) ) 
28 g lobals () [ f "h_{col_count} " ] , = pi t . plot (x , y , color = colors [ col_count ] , 

label=" Alpha = "+s t r ( i ) ) 
29 h . append( globals () [ f "h_{col_count} " ] ,) 
30 col count = col count + 1 
31 leg = pi t . legend ( handles=h , loc= ' lower r i g h t ' ) 
32 ax = pi t . gca () . add_ar t i s t ( leg ) 
33 

34 f ig = pi t . gcf () 
35 p 11 . g r i d () 
36 p i t . show () 
37 

38 import math 
39 import numpy as np 
40 import ma tp lo t l i b . pyplot as pi t 
41 p i t . t i t l e ("Bi-Cauchy ROC Curves") 
42 pi = math. pi 
43 tan = np. tan 
44 arctan = np .a rc tan 
45 x = np . l inspace (0.00001 , 1, num=100) 
46 a = 1 
47 colors = [ ' p u r p l e ' , ' b r o w n ' , ' p i n k ' , ' o l i v e ' , ' c y a n ' , ' r e d ' , ' g r e e n ' , ' i n d i g o ' , ' 

d a r k b l u e ' , ' d a r k c y a n ' ] 
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48 col_count = 0 
49 seq = [0.5 ,1 ,2 ,3] 
50 h = [] 
51 for i in seq: 
52 b = i 
r,:i y= (1/2) + ( 1 / p i ) * a r c t a n ( a + b*tan(pi*x + ( p i / 2 ) ) ) 
54 globals () [ f "h_{col_count} " ] , = pi t . plot (x , y , color = colors [ col_ coun t ] , 

label="\u03B2 = "+s t r ( i ) ) 
!)!) h . append( globals () [ f "h_{col_count} " ] ,) 
56 col_count = col_count + 1 
57 leg = pi t . legend ( handles=h , loc= ' lower r i g h t ' ) 
58 ax = pi t . gca () . add_ar t i s t ( leg ) 
59 f ig = pi t . gcf () 
60 pi t . g r id () 
(il pi t . show () 
02 

63 import math 
64 import numpy as np 
65 import ma tp lo t l i b . pyplot as pi t 
66 pi t . t i t l e ("Bi-Cauchy ROC Curves") 
67 pi = math . pi 
68 tan = np. tan 
69 arctan = np .arc tan 
70 x = np. l inspace (0.00001 , 1, num=100) 
71 b = [ 0 . 5 , 1 . 5 , 2 . 5 ,3.5] 
72 a = [1 ,2 ,3 ,4] 
73 colors = [ ' p u r p l e ' , ' b r o w n ' , ' p i n k ' , ' o l i v e ' , ' c y a n ' , ' r e d ' , ' g r e e n ' , ' i n d i g o ' , ' 

d a r k b l u e ' , ' d a r k c y a n ' ] 
74 col count = 0 
75 h = [] 
76 for i in r ange ( l en (a ) ) : 
77 y= (1/2) + ( 1 / p i ) *arctan (a [ i ] + b [ i ] * tan( pi *x + ( p i / 2 ) ) ) 
78 globals () [ f"h_{col_count} "] , = pi t . plot (x , y , color = colors [ col_ coun t ] , 

l abe l=" \u03Bl = "+str (a [ i ])+" , \u03B2 = " + s t r ( b [ i ] ) ) 
79 h. append( globals () [ f "h_{col_count} " ] ,) 
80 col_count = col_count + 1 
81 leg = pi t . legend ( handles=h , loc= ' lower r i g h t ' ) 
82 ax = pi t . gca () . add_ar t i s t ( leg ) 
8.'5 

84 f ig = pi t . gcf () 
85 pi t . g r id () 
86 pi t . show () 

B Simulation Results 2 

1 : #• — *— coding : utf —8 —*— 
2 RESULTS! 
3 

4 Automat i ca l ly generated by Colaboratory . 

o O r i g i n a l f i l e is located at 
7 h t t p s : / / c o l a b . r e s e a r c h . g o o g l e , com/ dr ive / l 

gVKpiAz8cALqJot0vZLFX7yJ6gSwUfY0 
8 " " " 

9 

10 #import PACKAGES 
11 import numpy as np 
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12 import pandas as pd 
13 import pandas . u t i l . t e s t ing as tm 
14 from statsmodels . robust . scale import huber 
15 import array as arr 
16 from s c i p y . s tats import cauchy 
17 import ma tp lo t l i b . pyplot as pi t 
is from sklearn . metrics import roc curve , auc 
19 from s c i p y . s tats import wilcoxon 
20 from scipy import s tats 
21 ^import s t a t i s t i c s as stats 
22 

23 ^ D e f i n i n g terms for the e m p i r i c a l ROC 
24 def p lo t_roc (y_test , probs ) : 
25 fpr , tpr , threshold=roc curve (y_test , probs) 
26 roc_auc=auc ( fpr , tpr ) 
27 p r in t ( 'ROC AUC=%0.2f '%roc_auc) 
28 pi t . plot (fpr , tpr , label='AUC=%0.2f '%roc_auc , co lo r= ' darkorange ') 
29 pi t . legend ( loc= ' lower r i g h t ' ) 
so pi t . plot ([0 ,1] ,[0 ,1] , : b — ' ) 
s i pi t . x l i m ( [ 0 ,1]) 
32 pi t . y l im( [0 ,1.05]) 
33 pi t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
34 pi t . y l abe l ( : True P o s i t i v e Ra te ' ) 
35 pi t . show () 
36 

37 ^packages to read data and s p l i t 
38 ^ L o g i s t i c regress ion is used for binary c l a s s i f i c a t i o n problem 
39 #It help s p l i t the data in to t r a i n i n g and t e s t ing 
40 import pandas as pd 
41 import numpy as np 
42 from sklearn . model selection import t r a i n test sp l i t 
43 from sklearn . linear model import L o g i s t i c R e g r e s s i o n 
44 from sklearn import metrics 
45 import ma tp lo t l i b . pyplot as pi t 
46 

47 #Read data for a l l the estimates 
48 data = pd . read csv ( ' Together2 . csv ') 
49 h = 1 i s t (data . columns .values ) 
so h[: - 1 ] 
51 

52 X = data [h[: -1 ] ] 
53 y = data ['Outcome ' ] 
54 

55 # s p l i t the dataset into t r a i n i n g (70%) and t e s t ing (30%) sets 
56 X _ t r a i n , X_test , y_ t r a in , y_test = t r a i n _ t e s t _ s p l i t (X, y , t e s t_s i ze =0.3 . 

random_state=0) 
57 

58 ^ i n s t a n t i a t e the model 
59 log regression = L o g i s t i c R e g r e s s i o n () 
60 

61 # f i t the model using the t r a i n i n g data 
62 log regress ion, f i t (X train , y t rain ) 
63 

64 ^def ine metrics 
65 y pred proba = log regression . predict proba (X_tes t ) [:: ,1] 
(id fp r , t p r , _ = metrics . roc_curve (y_test , y pred proba) 
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68 #create ROC curve 
69 p i t . plot ( fpr , tpr ) 
711 p i t . y l abe l ( : True P o s i t i v e Ra te ' ) 
71 p i t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
72 p i t . g r id () 
73 p i t . show () 
74 

75 ^def ine metrics 
76 import math 
77 y pred proba = log regression . predict proba (X_tes t ) [:: ,1] 
78 fpr , t p r , _ = metrics . roc_curve (y_test , y pred proba) 
79 auc = metrics . roc_auc_score (y_test , y_pred_proba) 
80 
si #Bi—Cauchy constants after sub t rac t ing the not—diseased from the diseased 
82 c l = 0.6874 
sa c2 = 0.6225 
84 c3 = 1.0818 
85 c4 = 0.696 
se c5 = 0.52305 
87 c6 = 0.8434 
ss c7 = 0.8174 
89 c8 = 1.0818000000000012 
90 estimates = ['Huber^Vl R O C ' , 'Hodges R O C ' , 'Sens R O C ' , '5% Trimmed R O C ' , ' 

10% Trimmed ROC' , '5% Winsorized R O C ' , '10% Winsorized R O C ' , ' M e a n ' ] 
91 const = [ c l , c2 , c3 , c4 , c5 , c6 , c7 , c8 ] 

colors = [ ' p u r p l e ' , ' b r o w n ' , ' p i n k ' , ' o l i ve ' , ' c y a n ' , ' r e d ' , ' g r e e n ' , ' d a r k b l u e ' , 
' d a r k c y a n ' , ' d a r k c y a n ' ] 

93 col count = 0 
94 t = np . l inspace (0 ,1 ,20) 
95 C t = | 

96 Ct2 = [] 
97 x = np .p i* t — n p . p i / 2 
98 for i in const : 
99 y = i + np . tan (x) 

100 z = 1/2 + 1/np . p i *np . arctan (y) 
101 

102 auc2 = 1/2 + 1/np . pi *np . arctan ( i /math . sqrt (2) ) 
103 
104 g lobals () [ f "hi {col_count} " ] , = pi t . plot (t , z , color = colors [ col_count ] , 

label="AUC="+str (auc2)) 
105 g lobals ()[ f"h2_{col_count} "] , = pi t . plot (t , z , color = colors [ col_count ] , 

label=est imates [col_count]) 
106 ct . append( g lobals () [ f " hi { col_count} " ] ,) 
107 ct2 . append( globals () [ f " h2 { col_count} " ] ,) 
108 col count = col count + 1 
109 
110 

111 

112 

113 
114 
115 #create ROC curve 
lie h32 , = pi t . plot (fpr , tpr , color = ' s t e e l b l u e ' , label="AUC="+str (auc)) 
117 h3 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label=" Empirca l ROC" ) 
118 pi t . t i t l e ("ROC plots ") 
119 pi t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
120 pi t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
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121 #plt . plot (tpr , n p . t a n ( t p r ) ) 
122 

123 ct . append (h32) 
124 ct2 . append (h3) 
125 leg = pi t . legend (handles=ct , loc= ' lower r i g h t ' ) 
126 ax = pi t . gca () . add_ar t i s t ( leg ) 
127 leg = pi t . legend ( handles=ct2 , loc=3, bbox_to_anchor = (0.7 , — 0.3)) 
128 f ig = pi t . gcf () 
129 f ig . se t_s ize_inches (12.5 , 10.5) 
130 f ig . savefig ( ' test2png . png ' , dpi = 100) 
131 p i t . g r id () 
132 p i t . show () 

C Simulation Results 1 

1 # — *— coding : utf —8 — *— 
2 RESULT2 
3 

4 Au tomat i ca l ly generated by Colaboratory . 
5 

fi O r i g i n a l f i l e is located at 
7 h t t p s : / / c o l a b . r e s e a r c h . g o o g l e , com/ dr i ve /1 wihcrpGAczJ 6hliI3aV—D7eY— 

MN88Rc 
s """ 
9 

10 ^ import a l l packages 
11 import numpy as np 
12 import pandas as pd 
13 import pandas . u t i l . t e s t ing as tm 
14 from statsmodels . robust . scale import huber 
15 import array as arr 
16 from s c i p y . s tats import cauchy 
17 import ma tp lo t l i b . pyplot as pi t 
is from sklearn . metrics import roc curve , auc 
19 from s c i p y . s tats import wilcoxon 
20 from scipy import s tats 
21 

22 from scipy . s tats . mstats import winsor ize 
23 

24 # Commented out IPython magic to ensure Python c o m p a t i b i l i t y . 
25 #This is a very important package for running Sens Mean 
26 # %load_ext rpy2 . ipython 
27 

28 ^Random Cauchy va r i ab les for diseased popula t ion 
29 rdiseased = cauchy. rvs ( loc = 28, scale =1, size=100) 
in rdiseased 

31 

32 ^Random Cauchy va r i ab les for notdiseased popula t ion 
rnotdiseased = cauchy. rvs ( loc = 26.5 , scale =1, size=100) 

34 rnotdiseased 
35 

36 #This reads the data f i l e that w i l l be upladed 
37 df = pd . read csv ( : Result2 . csv ') 
38 

39 ^ D e f i n i n g metric for E m p i r i c a l ROC 
40 def p lo t_roc (y_test , probs ) : 

fpr , tpr , threshold=roc_curve (y_test , probs) 
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42 roc_auc=auc ( fpr , tpr ) 
43 p r in t ( 'ROC AUC=%0.2f '%roc_auc) 

pit . plot (fpr , tpr , label='AUC=%0.2f '%roc_auc , co lo r= ' darkorange ') 
45 pi t . legend ( l o c = ' lower r i g h t ' ) 
46 pi t . plot ([0 ,1] ,[0 ,1] , : b — ' ) 
47 pi t . x l i m ( [ 0 ,1]) 

pi t . y l im( [0 ,1.05]) 
pi t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 

so pi t . y l a be l ( : True P o s i t i v e Ra te ' ) 
51 pi t . show () 
52 

53 import pandas as pd 
54 import numpy as np 
55 from sklearn . model selection import t r a i n test sp l i t 
56 from sklearn . linear model import L o g i s t i c R e g r e s s i o n 
57 from sklearn import metrics 
ss import ma tp lo t l i b . pyplot as pi t 
59 

(.i) data= df 
61 ^def ine the p red ic to r va r i ab les and the response va r i ab le 
62 X = data [ [ ' Diseased ' , 'Not Diseased ' ] ] 
63 y = data ['Outcome ' ] 
64 

65 # s p l i t the dataset into t r a i n i n g (70%) and t e s t ing (30%) sets 
66 X _ t r a i n , X_test , y_ t r a in , y_test = t r a i n _ t e s t _ s p l i t (X, y , t e s t_s i ze =0.3 . 

random_state=0) 
67 

(is ^ i n s t a n t i a t e the model 
(in log_regress ion = L o g i s t i c R e g r e s s i o n () 
70 

71 # f i t the model using the t r a i n i n g data 
72 log regress ion, f i t (X train , y t rain ) 
73 

74 ^def ine metrics 
y pred proba = log regression . predict proba (X_tes t ) [:: ,1] 
fp r , t p r , _ = metrics . roc_curve (y_test , y_pred_proba) 

#create ROC curve 
p i t . p l o t ( f p r , t p r ) 

so p i t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
s i p i t . x l a b e l ( : False P o s i t i v e Ra te ' ) 
82 p i t . g r id () 
83 p i t . show () 
84 

86 

87 #IUBER ESTIMATE COMPUTATION 
ss import math 
89 Huberdisease = huber ( df [ 'D i seased ' ] ) 
90 Hubernotdisease = huber (df ['Not Diseased ' ] ) 
91 p r in t ( Huberdisease ) 
92 

93 d i f f l = Huberdisease [0] — Hubernotdisease [0] 
94 p r in t ( d i f f l ) 
95 

96 ^def ine metrics 
97 

70 



98 y pred proba = log regression . predict proba (X_tes t ) [:: ,1] 
99 fpr , tpr , _ = metrics . roc_curve (y_test , y pred proba) 

100 auc = metrics . roc_auc_score (y_test , y_pred_proba) 
101 

102 const = d i f f l ; 
103 t = np . l inspace (0 ,1 ,1000) 
m i x = np .p i* t — n p . p i / 2 
105 y = const + np . tan(x) 
106 z = 1/2 + 1/np . pi *np . arctan (y) 
107 #auc2 = np . trapz (z , t) 
ins auc2 = 1/2 + 1/np . pi *np . arctan ( const/math. sqrt (2) ) 
109 

110 

in y2 = (28-26.5) + np . tan(x) 
112 const2 = 1.5 
113 z2 = 1/2 + 1/np . p i *np . arctan (y2) 
114 #auc3 = np . trapz (z2 , t) 
u s auc3 = 1/2 + 1/np . pi *np . arctan ( const2/math. sqrt (2) ) 
116 

n 7 #create ROC curve 
u s h22 , = pi t . plot (fpr , tpr , color = ' s t e e l b l u e ' , label="AUG="+str (auc)) 
119 h2 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label=" Empirca l ROC" ) 
120 p i t . t i t l e ("HUBERM ESTIMATOR ROC p lo t s " ) 
121 p i t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
122 p i t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
123 #plt . plot (tpr , n p . t a n ( t p r ) ) 
124 h l l , = pi t . plot (t , z , color = ' darkorange ' , label="AUC="+str (auc2 )) 
i2r, h i , = pi t . plot (t , z , color = ' da rkorange ' , label=" Theo re t i c a l ROC") 
126 h33, = pi t . plot (t ,z2 , color = ' grey ' , label="AUC="+s t r (auc3)) 
127 h3, = pi t . plot (t ,z2 , color = ' g r e y ' , label=" True ROC" ) 
128 

129 leg = pi t . legend ( handles = [hl 1 , h22 , h33 ] , loc= ' lower r i g h t ' ) 
130 ax = pi t . gca () . add_ar t i s t ( leg ) 
131 leg = pi t . legend ( handles = [h2 , h i , h3 ] , loc=3, bbox_to_anchor = (0.7 , —0.3)) 
132 p i t . g r id () 
133 p i t . show () 
134 

135 **HODGES** 
136 

n n n 

137 

138 

139 #tODGES COMPUTATION 
140 import s t a t i s t i c s as s tats 
141 hL = [ ] ; 
142 ard = [ ' D i s e a s e d ' , ' N o t Diseased ' ] 
143 for i in range (2) : 
144 1 input = d f [ a r d [ i ] ] ; 
145 l_avgs = [ ] ; 
146 

147 i = 0; 
148 j = 0; 
149 

150 while i < l e n ( l i n p u t ) : 
151 while j < l e n ( l i n p u t ) : 
152 l_avgs . append ( s tats . mean ([ l _ inpu t [ i ] , l _ inpu t [ j ] ]) ) 
153 j = j + 1 
154 i = i + 1 
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inn J = l 
100 

ins 

157 hl_est = s tats . median ( l_avgs) 
hL.append(hl_es t ) 

109 

Kill 

161 

d i f f 2 = hL[0] 
p r in t ( diff2 ) 

h L [ l ] 

102 

lO.'i 

104 

165 ^Define Metr ics 
166 y_pred_proba = log_regress ion . predic t_proba (X_tes t ) [:: ,1] 
io7 fpr , tpr , _ = metrics . roc_curve (y_test , y_pred_proba) 
168 auc = metrics . roc_auc_score (y_test , y_pred_proba) 
169 

170 const = diff2 ; 
171 t = np . l inspace (0 ,1 ,1000) 
172 x = np .p i* t — n p . p i / 2 
173 y = const + np . tan(x) 
174 z = 1/2 + 1/np . pi *np . arctan (y) 
175 ^auc2 = np . trapz (z , t) 
170 auc2 = 1/2 + 1/np . pi *np . arctan ( const/math. sqrt (2) ) 

178 y2 = (28-26.5) + np . tan(x) 
179 const2 = 1.5 
180 z2 = 1/2 + 1/np . p i *np . arctan (y2) 
181 #auc3 = n p . t r a p z ( z 2 , t ) 
182 auc3 = 1/2 + 1/np . pi *np . arctan ( const2/math. sqrt (2) ) 
183 

184 #create ROC curve 
185 h22, = pi t . plot (fpr , tpr , color = ' s t e e l b l u e ' , label="AUC="+str (auc)) 
186 h2 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label=" Empirca l ROC" ) 
187 p i t . t i t l e ("HODGES LEtMANN ESTIMATOR ROC plots ") 
188 p i t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
189 p i t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
190 #plt . plot (tpr , n p . t a n ( t p r ) ) 
191 h l l , = pi t . plot (t ,z , color = 'darkorange ' , label="AUC="+str (auc2)) 
192 h i , = pi t . plot (t , z , color = ' da rkorange ' , label=" Theo re t i c a l ROC") 
193 h33, = pi t . plot (t ,z2 , color = ' grey ' , label="AUC="+s t r (auc3)) 
194 h3, = pi t . plot (t ,z2 , color = ' g r e y ' , label=" True ROC" ) 
195 

190 leg = pi t . legend ( handles = [hl 1 , h22 , h33 ] , loc= ' lower r i g h t ' ) 
197 ax = pi t . gca () . add_ar t i s t ( leg ) 
198 leg = pi t . legend ( handles = [h2 , h i , h3 ] , loc=3, bbox_to_anchor = (0.7 , —0.3)) 
199 p i t . g r id () 
200 p i t . show () 
201 

202 **5% Trimm Mean** 
203 

204 $Trimm Mean Computation 
205 from scipy import s tats 
200 pernt = 0.05 
207 y = a r r . a r r a y ( ' d : , [ s t a t s , trim mean (df[ 'Diseased '] , pernt) , s ta ts . trim mean 

( d f [ ' N o t D i s e a s e d ' ] , pernt ) ] ) 
208 d i f f t r im5 = y[0]—y[l] 
209 p r in t ( d i f f t r im5 ) 
210 d i f f3 = d i f f t r im5 

177 
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211 

212 

213 

214 ^Define Metr ics 
215 y_pred_proba = log_regress ion . predic t_proba (X_tes t ) [:: ,1] 
216 fpr , tpr , _ = metrics . roc_curve (y_test , y_pred_proba) 
217 auc = metrics . roc_auc_score (y_test , y_pred_proba) 
218 

2iH const = d i f f t r im5 ; 
220 t = np . l inspace (0 ,1 ,1000) 
221 x = np .p i* t — n p . p i / 2 
222 y = const + np . tan(x) 
223 z = 1/2 + 1 /np .p i*np .a rc tan(y) 
224 #auc2 = np . trapz (z , t) 
225 auc2 = 1/2 + 1/np . pi *np . arctan ( const/math. sqrt (2) ) 
226 

227 y2 = (28-26.5) + np . tan(x) 
228 conts2 = 1.5 
229 z2 = 1/2 + 1 /np .p i*np.arc tan(y2) 
230 #auc3 = np . trapz (z2 , t) 
231 auc3 = 1/2 + 1/np . pi *np . arctan ( const2/math. sqrt (2) ) 
232 

233 #create ROC curve 
234 h22 , = pi t . plot (fpr , tpr , color = ' s t e e l b l u e ' , label="AUG="+str (auc)) 
235 h2 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label=" Empirca l ROC" ) 
230 p i t . t i t l e ("5% Trimm Mean ROC plots " ) 
237 p i t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
238 p i t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
239 #plt . plot (tpr , n p . t a n ( t p r ) ) 
240 h l l , = pi t . plot (t , z , color = ' darkorange ' , label="AUG="+str (auc2)) 
241 h i , = pi t . plot (t , z , color = ' da rkorange ' , label=" Theo re t i c a l ROC") 
242 h33, = pi t . plot (t ,z2 , color = ' grey ' , label="AUC="+s t r (auc3)) 
24.i h3, = pi t . plot (t ,z2 , color = ' g r e y ' , label="True ROC") 
244 

245 leg = pi t . legend ( handles = [hl 1 , h22 , h33 ] , loc= ' lower r i g h t ' ) 
240 ax = pi t . gca () . add_ar t i s t ( leg ) 
247 leg = pi t . legend ( handles = [h2 , h i , h3 ] , loc=3, bbox_to_anchor = (0.7 , —0.3)) 
248 p i t . g r id () 
249 p i t . show () 
250 

251 **10% Trimm Mean** 
252 

253 ^Trimm Mean Computation 
254 pernt = 0.10 
255 y = a r r . a r r a y ( ' d : , [ s t a t s , trim mean (df[ 'Diseased '] , pernt) , s ta ts . trim mean 

( d f [ ' N o t D i s e a s e d ' ] , pernt ) ] ) 
256 d i f f t r i m l O = y [ 0 ] - y [ l ] 
257 p r in t ( d i f f t r i m l O ) 
258 d i f f4 = d i f f t r i m l O 
259 p r in t ( y [ l ] ) 
260 

261 ^Define Metr ics 
202 y pred proba = log regression . predict proba (X_tes t ) [:: ,1] 
263 fp r , t p r , _ = metrics . roc_curve (y_test , y_pred_proba) 
264 auc = metrics . roc_auc_score (y_test , y_pred_proba) 
265 

266 const = d i f f t r i m l O ; 
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267 t = np . l inspace (0 ,1 ,1000) 
268 x = np .p i* t — n p . p i / 2 
269 y = const + np . tan(x) 
270 z = 1/2 + 1 /np .p i*np .a rc tan(y) 
271 #auc2 = np . trapz (z , t ) 
272 auc2 = 1/2 + 1/np . pi *np . arctan ( const/math. sqrt (2) ) 
273 

274 

275 y2 = (28-26.5) + np . tan(x) 
276 const2 = 1.5 
277 z2 = 1/2 + 1/np . p i *np . arctan (y2) 
278 #auc3 = np . trapz (z2 , t) 
279 auc3 = 1/2 + 1/np . pi *np . arctan ( const2/math. sqrt (2) ) 
280 

281 

282 ^create ROC curve 
283 h22 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label="AUG="+str (auc)) 
284 h2 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label=" Empirca l ROC" ) 
285 p i t . t i t l e ("10% Trimm Mean ROC p lo t s " ) 
286 p i t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
287 p i t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
288 #plt . plot (tpr , n p . t a n ( t p r ) ) 
289 h l l , = pi t . plot (t , z , color = 'darkorange ' , label="AUC="+str (auc2)) 
290 h i , = pi t . plot (t , z , color = ' da rkorange ' , label=" Theo re t i c a l ROC") 
291 h33, = pi t . plot (t ,z2 , color = ' grey ' , label="AUC="+st r (auc3)) 
202 h3, = pi t . plot (t ,z2 , color = ' g r e y ' , label="True ROC") 
293 

294 leg = pi t . legend ( handles = [hl 1 , h22 , h33 ] , loc= ' lower r i g h t ' ) 
295 ax = pi t . gca () . add_ar t i s t ( leg ) 
296 leg = pi t . legend ( handles = [h2 , h i , h3 ] , loc=3, bbox_to_anchor = (0.7 , —0.3)) 
297 p i t . g r id () 
298 p i t . show () 
299 

300 " "" **5% Winsorized Mean** 
301 

n n n 

302 

303 

304 $Winssor i sed mean computation 
305 winsorizedarray_adep = winsor ize ( df [ : Not D i s e a s e d ' ] , l i m i t s = [0.05 , 0.05]) 
306 WinsorizedMean adep = np . mean ( winsorizedarray adep) 
307 winsorizedarray obes = winsor ize ( df [ 'Diseased ' ] , l i m i t s = [0.05 , 0.05]) 
308 WinsorizedMean obes = np . mean ( winsorizedarray obes ) 
309 y l = arr . array ( ' d ' , [WinsorizedMean obes , WinsorizedMean adep]) 
310 Winn5 = y l [ 0 ] - y l [1] 
311 p r in t (Winn5) 
312 d i f f5 = Winn5 
313 

314 

315 

316 ^Define Metr ics 
317 y pred proba = log_regress ion . predic t_proba (X_tes t ) [:: ,1] 
318 fp r , t p r , _ = metrics . roc_curve (y_test , y_pred_proba) 
319 auc = metrics . roc_auc_score (y_test , y_pred_proba) 
320 

321 const = Winn5; 
322 t = np . l inspace (0 ,1 ,1000) 
323 x = np .p i* t — n p . p i / 2 
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.124 y = const + np . tan(x) 
325 z = 1/2 + 1 /np .p i*np .a rc tan(y) 
326 #auc2 = np . trapz (z , t) 
327 auc2 = 1/2 + 1/np . pi *np . arctan ( const/math. sqrt (2) ) 
328 

329 

330 y2 = (28-26.5) + np . tan(x) 
331 const2 = 1.5 
332 z2 = 1/2 + 1/np . p i *np . arctan (y2) 
333 #auc3 = np . trapz (z2 , t) 
334 auc3 = 1/2 + 1/np . pi *np . arctan ( const2/math. sqrt (2) ) 
335 

336 

337 #create ROC curve 
338 h22 , = pi t . plot (fpr , tpr , color = ' s t e e l b l u e ' , label="AUC="+str (auc)) 
339 h2 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label=" Empirca l ROC" ) 
340 p i t . t i t l e ("5% Winsorized Mean ROC p lo t s " ) 
341 p i t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
342 p i t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
343 #plt . plot (tpr , n p . t a n ( t p r ) ) 
344 h l l , = pi t . plot (t , z , color = 'darkorange ' , label="AUC="+str (auc2)) 
345 h i , = pi t . plot (t , z , color = ' da rkorange ' , label=" Theo re t i c a l ROC") 
346 h33, = pi t . plot (t ,z2 , color = ' grey ' , label="AUC="+s t r (auc3)) 
347 h3, = pi t . plot (t ,z2 , color = ' g r e y ' , label=" True ROC" ) 
348 

349 leg = pi t . legend ( handles = [hl 1 , h22 , h33 ] , loc= ' lower r i g h t ' ) 
350 ax = pi t . gca () . add_ar t i s t ( leg ) 
351 leg = pi t . legend ( handles = [h2 , h i , h3 ] , loc=3, bbox_to_anchor = (0.7 , —0.3)) 
352 p i t . g r id () 
353 p i t . show () 
354 

355 10% Winsorized Mean 
356 

357 $Winssor i sed mean computation 
358 winsorizedarray_adep = winsor ize ( df ['Not D i s e a s e d ' ] , l i m i t s =[0.1 , 0.1]) 
359 WinsorizedMean_adep = np . mean ( winsorizedarray_adep ) 
360 winsorizedarray_obes = winsor ize ( df [ 'Diseased ' ] , l i m i t s = [0.1 , 0.1]) 
361 WinsorizedMean obes = np . mean ( winsorizedarray obes) 
362 y l = arr . array ( ' d ' , [ WinsorizedMean_obes , WinsorizedMean_adep ]) 
ses WinnlO = y l [ 0 ] - y l [1] 
364 p r in t (WinnlO) 
ses d i f f6 = WinnlO 
366 p r in t ( y l [1] ) 
367 

368 

369 ^Define Metr ics 
370 y pred proba = log regression . predict proba (X_tes t ) [:: ,1] 
371 fp r , t p r , _ = metrics . roc_curve (y_test , y_pred_proba) 
372 auc = metrics . roc_auc_score (y_test , y_pred_proba) 
373 

374 const = WinnlO; 
375 t = np . l inspace (0 ,1 ,1000) 
376 x = np .p i* t — n p . p i / 2 
377 y = const + np . tan(x) 
378 z = 1/2 + 1 /np .p i*np .a rc tan(y) 
379 #auc2 = np . trapz (z , t) 
380 auc2 = 1/2 + 1/np . pi *np . arctan ( const/math. sqrt (2) ) 
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381 

382 

383 y2 = (28-26.5) + np . tan(x) 
384 const2 = 1.5 
385 z2 = 1/2 + 1/np . p i *np . arctan (y2) 
386 ^auc3 = np . trapz (z2 , t) 
387 auc3 = 1/2 + 1/np . pi *np . arctan ( const2/math. sqrt (2) ) 
388 

389 

390 #create ROC curve 
391 h22 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label="AUC="+str (auc)) 
392 h2 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label=" Empirca l ROC" ) 
393 p i t . t i t l e ("10% Winsorized Mean ROC p lo t s " ) 
394 p i t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
395 p i t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
396 #plt . plot (tpr , n p . t a n ( t p r ) ) 
397 h l l , = pi t . plot (t , z , color = 'darkorange ' , label="AUG="+str(auc2)) 
398 h i , = pi t . plot (t , z , color = ' da rkorange ' , label=" Theo re t i c a l ROC") 
399 h33, = pi t . plot (t ,z2 , color = ' grey ' , label="AUC="+s t r (auc3)) 
400 h3, = pi t . plot (t ,z2 , color = ' g r e y ' , label="True ROC") 
401 

402 leg = pi t . legend ( handles = [hl 1 , h22 , h33 ] , loc= ' lower r i g h t ' ) 
403 ax = pi t . gca () . add_ar t i s t ( leg ) 
404 leg = pi t . legend ( handles = [h2 , h i , h3 ] , loc=3, bbox_to_anchor = (0.7 , —0.3)) 
405 p i t . g r id () 
406 p i t . show () 
407 

408 **SENS WFJGHTED MEAN** 
409 

410 # Commented out IPython magic to ensure Python c o m p a t i b i l i t y . 
411 # %m 
412 # i n s t a l l , packages (" lmomco ") 
413 # 1 i b r a r y (" lmomco ") 
414 # 

415 # df <— read . csv ( f i le = ' B o t h . c s v ' ) 
416 # 

417 # senl <— sen . mean ( df [ 1 ]) ; 
u s # sen2 <— sen .mean(df [2]) ; 
419 # 

420 # # l i s t l <— a p p e n d ( l i s t l , sen) 
421 # x <— c (senl , sen2 ) 
422 

423 # p r i n t ( x ) 
424 

425 # 

426 

427 d i f fsen = 27.87913- 26.80403 
428 p r in t ( d i f fsen ) 
429 d i f f7 = d i f fsen 
430 ^Define Metr ics 
431 y pred proba = log_regress ion . predic t_proba (X_tes t ) [:: ,1] 
432 fp r , t p r , _ = metrics . roc_curve (y_test , y_pred_proba) 
433 auc = metrics . roc_auc_score (y_test , y_pred_proba) 
434 

435 const = d i f fsen ; 
436 t = np . l inspace (0 ,1 ,1000) 
437 x = np .p i* t — n p . p i / 2 
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438 y = const + np . tan(x) 
439 z = 1/2 + 1 /np .p i*np .a rc tan(y) 
440 #auc2 = np . trapz (z , t) 
441 auc2 = 1/2 + 1/np . pi *np . arctan ( const/math. sqrt (2) ) 
442 

443 y2 = (28-26.5) + np . tan(x) 
i n const2 = 1.5 
445 z2 = 1/2 + 1/np . p i *np . arctan (y2) 
446 #auc3 = np . trapz (z2 , t) 
447 auc3 = 1/2 + 1/np . pi *np . arctan ( const2/math. sqrt (2) ) 
448 

449 #create ROC curve 
450 h22, = pi t . plot (fpr , tpr , color = ' s t e e l b l u e ' , label="AUC="+str (auc)) 
451 h2 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label=" Empirca l ROC") 
452 p i t . t i t l e ("SENS WEIGHTED MEAN ROC p lo t s " ) 
453 p i t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
4r,4 p i t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
455 #plt . plot (tpr , n p . t a n ( t p r ) ) 
456 h l l , = pi t . plot (t , z , color = 'darkorange ' , label="AUC="+str (auc2)) 
4r,7 h i , = pi t . plot (t , z , color = ' da rkorange ' , label=" Theo re t i c a l ROC") 
458 h33, = pi t . plot (t ,z2 , color = ' grey ' , label="AUC="+s t r (auc3)) 
459 h3, = pi t . plot (t ,z2 , color = ' g r e y ' , label="True ROC") 
460 

461 leg = pi t . legend ( handles = [hl 1 , h22 , h33 ] , loc= ' lower r i g h t ' ) 
462 ax = pi t . gca () . add_ar t i s t ( leg ) 
463 leg = pi t . legend ( handles = [h2 , h i , h3 ] , loc=3, bbox_to_anchor = (0.7 , —0.3)) 
464 p i t . g r id () 
465 p i t . S h o w ( ) 

466 

467 **MEAN** 
468 

469 # Computation of mean 
470 mean 1 = np . mean ( df ['Not Diseased ' ] ) 
471 mean 2 = np . mean ( df [' Diseased ']) 
472 mean = [ mean 1, mean 2 ] 
473 mean 
474 

475 diffmean = mean[l] —mean [0] 
476 p r in t ( diffmean) 
477 d i f f8 = diffmean 
478 p r in t ( mean) 
479 

480 ^Define Metr ics 
4«i y pred proba = log_regress ion . predic t_proba (X_tes t ) [:: ,1] 
482 fp r , t p r , _ = metrics . roc_curve (y_test , y_pred_proba) 
483 auc = metrics . roc_auc_score (y_test , y_pred_proba) 
484 

485 const = diffmean ; 
486 t = np . l inspace (0 ,1 ,1000) 
4«7 x = np .p i* t — n p . p i / 2 
488 y = const + np . tan(x) 
489 z = 1/2 + 1/np . pi *np . arctan (y) 
490 #auc2 = np . trapz (z , t) 
491 auc2 = 1/2 + 1/np . pi *np . arctan ( const/math. sqrt (2) ) 
492 

493 y2 = (28-26.5) + np . tan(x) 
m i const2 = 1.5 
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495 z2 = 1/2 + 1 /np .p i*np.arc tan(y2) 
496 #auc3 = np . trapz (z2 , t) 
497 auc3 = 1/2 + 1/np . pi *np . arctan ( const2/math. sqrt (2) ) 
498 

499 #create ROC curve 
500 h22 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label="AUC="+str (auc)) 
501 h2 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label=" Empirca l ROC") 
502 p i t . t i t l e (" MEAN ROC p lo t s " ) 
503 p i t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
r,o4 p i t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
505 #plt . plot (tpr , n p . t a n ( t p r ) ) 
506 h l l , = pi t . plot (t , z , color = 'darkorange ' , label="AUG="+str(auc2)) 
r,07 h i , = pi t . plot (t , z , color = ' da rkorange ' , label=" Theo re t i c a l ROC") 
508 h33, = pi t . plot (t ,z2 , color = ' grey ' , label="AUC="+s t r (auc3)) 
509 h3, = pi t . plot (t ,z2 , color = ' g r e y ' , label="True ROC") 
510 

•vii leg = pi t . legend ( handles = [h l l , h22 , h33 ] , loc= ' lower r i g h t ' ) 
512 ax = pi t . gca () . add_ar t i s t ( leg ) 
513 leg = pi t . legend ( handles = [h2 , h i , h3 ] , loc=3, bbox_to_anchor = (0.7 , —0.3)) 
514 p i t . g r id () 
sis p i t . show () 
516 

517 **PLOTS OF ALL ESTIMATORS** 
518 

519 const = [ d i f f l , d i f f2 , diff3 , diff4 , diff5 , diff6 , diff7 , diff8 ,const2] 
520 estimates = ['Huber^Vl R O C ' , 'Hodges R O C ' , '5% Trimmed R O C ' , '10% Trimmed 

R O C ' , ' 5 % Winsorized ROC' , ' 10% Winsorized R O C ' , 'Sens R O C ' , 'Mean ' , " True" 
] 

521 colors = [ ' p u r p l e ' , ' b r o w n ' , ' p i n k ' , ' o l i ve ' , ' c y a n ' , ' r e d ' , ' g r e e n ' , ' d a r k b l u e ' , 
' g r e y ' , ' d a r k c y a n ' ] 

522 col count = 0 
523 t = np . l inspace (0 ,1 ,1000) 
524 C t = [ ] 
525 C t 2 = [] 

526 

527 x = np .p i* t — n p . p i / 2 
528 for i in const : 
529 y = i + np . tan(x) 
530 z = 1/2 + 1/np . p i *np . arctan (y) 
531 auc2 = 1/2 + 1/np . pi *np . arctan ( i /math . sqrt (2) ) 
532 g lobals () [ f "hi {col_count} " ] , = pi t . plot (t , z , color = colors [ col_count ] , 

label="AUC="+str (auc2)) 
533 g lobals ()[ f"h2_{col_count} "] , = pi t . plot (t , z , color = colors [ col_count ] , 

label=est imates [col_count]) 
534 ct . append( g lobals () [ f " hi { col_count} " ] ,) 
535 ct2 . append( globals () [ f " h2 { col_count} " ] ,) 
536 col count = col count + 1 
537 

538 

539 

540 

5 4 i # h l l , = pi t . plot (t ,z , color = 'darkorange ' , label="AUC="+str (auc2)) 
542 #hl , = pi t . plot (t , z , color = ' da rkorange ' , label="Bi—Cauchy ROC") 
543 

544 

545 #create ROC curve 
546 h32 , = pi t . plot ( fpr , tpr , color = ' s t e e l b l u e ' , label="AUC="+str (auc)) 
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547 h3 , = pi t . plot ( fpr , tpr , color = ' s tee lb lue ' , label=" Empirca l ROC" ) 
548 p i t . t i t l e ("ROC plots ") 
r,4H p i t . y l abe l ( 'True P o s i t i v e Ra te ' ) 
r,r,() p i t . x l a b e l ( ' F a l s e P o s i t i v e Ra te ' ) 
551 #plt . plot (tpr , np . tan (tpr ) ) 
552 

553 ct . append (h32) 
554 ct 2 . append (h3) 
555 leg = pi t . legend (handles=ct , loc= ' lower r i g h t ' ) 
556 ax = pi t . gca () . add_ar t i s t ( leg ) 
557 leg = pi t . legend ( handles=ct2 , loc=3, bbox_to_anchor = (0.7 , —0.3)) 
558 f ig = pi t . gcf () 
559 f ig . se t_s ize_inches (12.5 , 10.5) 
560 f ig . savefig ( ' test2png . png ' , dpi = 100) 
561 p i t . g r id () 
562 p i t . show () 
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