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Abstract 
Automatic music transcription and multi-pitch estimation are still challenging tasks in 
the field of music information retrieval. The recent state of the art systems incorporate 
different machine learning techniques to achieve the most accurate transcription of notes. 
Some of them are also limited to a specific music instrument or a music genre to reduce the 
diversity of the analyzed sound. In this work, multiple systems for conversion of electric 
guitar recordings to the MIDI files, based on different machine learning and spectral analysis 
techniques, are proposed, evaluated and compared. 

Abstrakt 
Automatický přepis hudby a odhad vícero znějících tónu jsou stále výzvou v oblasti dolování 
informací z hudby. Moderní systémy jsou založeny na různých technikách strojového učení 
pro dosažení co nej přesnějšího přepisu hudby. Některé z nich jsou také omezeny na konkrétní 
hudební nástroj nebo hudební žánr, aby se snížila rozmanitost analyzovaného zvuku. V 
této práci je navrženo, vyhodnoceno a porovnáváno několik systémů pro konverzi nahrávek 
elektrické kytary do MIDI souborů, založených na různých technikách strojového učení a 
technikách spektrální analýzy. 
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Chapter 1 

Introduction 

In the last years, there has been a great interest in music signal analysis. As the amount 
of audio content on the internet is increasing, the need to analyze or categorize is still 
bigger. One of the ways how to analyze music signal is an automatic music transcription 
( A M T ) . Most existing systems for automatic music transcription provide transcription of 
notes played in the given audio recording in the form of piano-roll or MIDI format that can 
be easily converted to human-readable representation. 

However, while the extraction of fundamental frequency (FO) from speech or mono-
phonic record is considered as solved problem, the problem of estimation of multiple fun­
damental frequencies remains still open. Analysis of music signals compounded of the 
sounds from multiple sources is difficult because the higher harmonic frequencies overlaps 
in a frequency spectrum. This makes the estimation of all the fundamental frequencies the 
challenging task [7] [3]. 

This thesis describes, proposes, evaluates and compares systems for automatic music 
transcription of electric guitar recordings to MIDI representation. The systems are based 
on techniques used in the recent automatic music transcription researches: spectrogram 
factorization using P L C A and deep learning methods using deep neural network are utilized 
to retrieve pitch, time and duration of played notes. 

1.1 Related Work 

The multi-pitch estimation is considered to be one of the most difficult music signal analysis. 
Even the best music transcription systems do not get near the performance of human expert. 
Despite of that, the field is still very active [7]. 

In the past, the system for multi-pitch estimation were mainly based on a combination 
of audio feature extraction and heuristic techniques. These system do not employ specific 
model, they detect pitches according to features extracted from time-frequency represen­
tations of signals either in a joint or an iterative manner. The pitches are estimated using 
pitch salience function or pitch candidate set score function [29, 36, 49]. The best per­
forming method in Music Information Retrieval eXchange (MIREX) for 2009-2011 was a 
joint pitch estimation algorithm based on a pitch candidate set score function proposed 
by Yeh [ ]. Another notable recognition system proposed by Pertusa [36] computes a 
pitch salience function and evaluates combinations of pitch candidates using a measure of 
distance between a Harmonic Partial Sequence (HPS) and a smoothed HPS. 
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Systems using statistical model-based multi-pitch detection calculate a Maximum a 
Posteriori (MAP) of all possible FO combinations. The PreFEst system [' !] models each 
harmonic by a Gaussian centered at its position on the log-frequency axis and calculates 
M A P using the Expectation-Maximization (EM) algorithm. In similar manner to M A P , a 
time-domain Bayesian approach for A M T which used a Gabor atomic model was proposed 
in [16], which used a Markov Chain Monte Carlo ( M C M C ) method for inference, while the 
model also supported time-varying amplitudes and inharmonicity. 

Another approach for note recognition, used also in this work, is a spectrogram factor­
ization technique. Non-negative Matrix Factorization (NMF) is a technique that decompose 
an input spectrogram into spectral bases and time activity bases for each pitch. This tech­
nique was used in [15] where sparseness constraints were added into the N M F update rules. 
Bay [3] employed N M F and its alternative formulation called Probabilistic Latent Compo­
nent Analysis ( P L C A ) in his work. A model that extended the convolutive P L C A algorithm 
proposed by Benetos [ ] incorporates shifting across log-frequency for supporting frequency 
modulations. 

In the most recent years, A M T system based on Artificial Neural Network (ANN) 
achieved the best results in the field. In M I R E X 2016, the best performing A M T system 
was SONIC [ ] that employed networks of oscillators in a combination with a time-delay 
neural network. In M I R E X 2017, system based on Convolution Neural Network (CNN) [ ] 
outperformed all other participating systems. 

1.2 Aims of thesis 

The main goal of the thesis is comparison of systems based on different machine learn­
ing techniques and spectral analysis methods. Short-Time Fourier Transform (STFT) and 
Constant-Q Transform (CQT) are analyzed in detail and their suitability in music transcrip­
tion is compared. For music transcription, a system based on P L C A is created according to 
the previous works in the field [5, 7] together with systems based on Deep Neural Network 
(DNN), Recurrent Neural Network (RNN) inspired by [33] and on combination of P L C A 
and R N N . The systems are evaluated on real guitar recordings obtained from Institute 
for Digital Media Technology and their performance are compared. Finally, the achieved 
results are discussed and pros and cons of each technique are described. 

1.3 Structure of thesis 

In chapter 2, basic theoretical background that this work is based on, is presented. It 
describes techniques for spectral analysis, multi-pitch estimation, post-processing methods 
and evaluation metrics used in this work. In chapter 3, data used for training, validation 
and evaluation of systems are described. Chapter 4 presents the proposed systems, used 
methods and their specific values of parameters. In chapter 5, results of evaluations of the 
proposed models are presented. In chapter 6, the whole work is summed up and future 
directions are suggested. 
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Chapter 2 

Theoretical Background 

2.1 Music Signals 

Signals that repeat itself at regular time intervals (periods) are called periodic signals. The 
fundamental frequency (FO) of such signal is defined as the reciprocal of the period. These 
two attributes are the attributes of periodic signal in the time-domain [ ]. 

A music signal is an audio signal that is typically produced by a combination of one or 
more sounds generated by music instruments or a singing voice. The music signals produced 
by electric guitar can be classified as pitched sounds. Unlike unpitched sounds produced by 
instruments like drums, they have locally stable fundamental periods. Pitched sounds can 
be described by a series of peaks (harmonics) in the frequency domain that are harmonically 
related. They appear at integer multiples of fundamental frequency. 

Time [s] 

Figure 2.1: E2 guitar note (82.4 Hz). The waveform of the signal (a) and the spectrogram 
(b). 

Figure 2.1 shows the waveform and the spectrogram of the signal of the played E2 guitar 
note. The harmonics of the tone E2 are located at the integer multiples of fundamental 
frequency. 

G 



When the note is played, its characteristics change overtime. The evolution of played 
note can be decomposed into several phases. The pitched percussive instruments (guitar, 
piano) have an attack stage followed by decay, sustain and release stages [ ]. The attack 
and decay stages constitute the part when the string is plucked and set in motion. The 
sustain stage is that stage for which the characteristics of the sound are relatively constant, 
while the amplitude is constantly decreasing. The release stage is then defined as the time 
until the sound fade-away. In Figure 2.2, all the stages of a note can be seen. 

Peak r. 

I I I 
Atlack , Decay I Su5!ah l-lf 

Time 

Figure 2.2: The envelope of a waveform with the highlighted stages [24]. 

2.1.1 Problems of real signals 

Real music signals do not meet all the theoretical criteria. They are not periodic in the 
meaning of exact repeating of the same part of the signal, but they are pseudo-periodic. 
The repeating parts of a pseudo-periodic signal are similar but not the same. 

As it was stated in this section, harmonics of the music signal appear on integer multiples 
of fundamental frequency. In the case of the real music signal, some of the harmonics can 
be shifted from the integer multiples of FO. This phenomenon is called inharmonicity of a 
signal [5]. 

Another problem is low or missing peak at fundamental frequency. Human brain per­
ceives the pitch of tone that is physically missing in the signal of tone. This problem is 
not significant in this work because it occurs in the lowest notes of a piano that cannot be 
played on an electric guitar with standard tuning. 

Figure 2.3 shows the inharmonicity phenomenon of the spectrum of the E2 note where 
the harmonic peaks are shifted from the expected locations. 

The mentioned problems make analysis of a music signal more difficult for methods 
that take for granted the theoretical structure of a tone spectrum. However, classifiers or a 
probabilistic models overcome these problems because they do not assume anything about 
the structure of spectra and work with real spectra used during a training phase. 

2.2 M I D I 

One of the way how to store music notation is Musical Instrument Digital Interface (MIDI) 
protocol. MIDI is a technical standard that describes a communication protocol, a digital 
interface, electrical connectors, and provides the capability of a connection of electronic 
musical instruments, computers and other related music and audio devices [45]. The pa­
rameters like pitch, onset, offset, and intensity can be stored using MIDI protocol, along 
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Spectrum of E2 (82.4 Hz) 
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Figure 2.3: The spectrum of guitar note E2 (82.4 Hz). The red vertical line denotes the 
location of the fundamental frequency and the black vertical lines denote the expected 
locations of the harmonics. 

with additional information such as tempo and key. The MIDI protocol has a lot of ad­
vantages, regarding simplicity, but does not provide storage of a proper musical notation 
or expressive features [ ]. 

In the MIDI protocol, pitches are assigned MIDI numbers which relate the fundamental 
frequency F0. The relation is defined as follows: 

F0 
riMiDi = 12 • log 2 — + 69 (2.1) 

F0 
. .„ „nMIDI~ 

440 • 2 i2 (2.2) 

where UMIDI is the MIDI number of a note with fundamental frequency F0. 
Useful visual representation of the MIDI notation is a piano-roll. Figure 2.4 shows the 

piano-roll for J.S. Bach's prelude in C major, from the Well-tempered Clavier Book I. It 
depicts pitches in the vertical axis and time in the horizontal axis. 

2.3 Spectral Analysis 

To process music signals by computer, the signals have to be converted into a digital form 
with sampling and quantization operations. These time-domain digital forms that are used 
to store, playback or edit music signal are not applicable to the most of signal processing 
methods. It is desirable to transform the signals into a more suitable representation. The 
most popular one is the time-frequency domain representation [25, 28]. 
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w so 
time (sec) 

Figure 2.4: The piano roll for J.S. Bach's prelude in C major, from the Well-tempered 
Clavier Book I [7]. 

2.3.1 Short-Time Fourier Transform 

Short-time Fourier Transform (STFT) is used to get time-varying spectra from non-stationary 
signals. This is achieved trough a calculation of discrete Fourier Transform (DFT) over short 
periods of time [3]. The D F T is defined as 

X[k] 
N-l 

E 
n=0 

x\n\e -ju)kn (2.3) 

where x[n] is the discrete time signal and k is the bin-frequency index [ ]. Normalized 
angular frequency is sampled linearly at OJ^ = ^k/N which does not need to be convenient 
in the case of a music signal processing. This problem is described in the next section. 

The part of the signal is selected with an analysis window. Let us define the analysis 
window function as 

'w[n] > 0, n = 0,...,N- 1 
win] = 0, otherwise. 

w\n\ (2.4) 

where iV is the analysis window length. Then, the S T F T of the x[n] signal can be written 
as 

STFT{x[n}} = X[k,m] 
mH+N-l 

E 
n=mH 

x\n\w\n mH]e-juJkn (2.5) 

where m = 0 , . . . , M — 1 is the time-frame index and H is the shift of the analysis window 
in samples. The width of the analysis window has significant impact to how the signal 
is represented because the S T F T has fixed resolution. The window with small length has 
better time resolution (short notes are easier to detect) but worse frequency resolution (one 
peak in the frequency domain can be spread over several frequency bins). 

The D F T produces a spectrum where all frequency components are on linear scale with 
a specific frequency resolution that does not change over frequency. This can result in too 
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little resolution for lower music frequencies and better than needed resolution for higher 
frequencies. For example, consider the note E2 with the frequency equal to 82.4 Hz and the 
note F2 with the frequency equal to 87.3 Hz (the two lowest notes that can be played on 
a guitar with a standard tuning). Between these two notes, there is the 4.9 Hz frequency 
difference. If we consider a sampling frequency (fs) equal to 22050 Hz and a window size 
N of 1024 samples used for the D F T , then the frequency resolution is fs/N = 21.53 Hz 
which is 26% of the frequency of the E2 note. The difference of fundamental frequencies 
of two adjacent semitones (for example E2 and F2) corresponds to 6% of the frequency 
of the lower one. Using the D F T , the information about 4 adjacent semitones would be 
contained in a single frequency component [4] [10]. Thus, it might be inefficient in some 
disciplines of music analysis. This problem can be overcome with multi-resolution analysis 
like constant-Q transform. 

2.3.2 Constant-Q Transform 

Constant-Q Transform (CQT) has several advantages over the discrete Fourier Transform 
(DFT) in analysis of music signals. As it was mentioned in 2.3.1, the D F T produce spectrum 
where all frequency components are on linear scale with a specific frequency resolution that 
does not change over frequency. On the other hand, the C Q T produces spectrum where 
frequency components are on logarithmic scale. 

Instruments like guitar are tuned in equal temperament with frequencies fk = fmin • 
(2( 1/ 1 2) f c) where fmin is the frequency of the lowest note and fk is the frequency of the 
feth semitone of the guitar. In the same manner, we can write the equation for analysis 
frequencies with the quartertone spacing: 

fj = fmin ° (2^ ^ ^) (2-6) 

where j is the counter of quartertones. The frequency resolution, that is equal to the 
difference of frequencies of the adjacent frequency components, is defined as: 

A / j = fj+i — fj = 2 1 / 2 4 • fj — fj (2-7) 

Then, the ratio of frequency to resolution or Q for quartertone spacing is constant 
defined as: 

fj/Afj = l/(2 1/24 _ i ) ^ 34 (2.8) 

For the discrete Fourier transform, the frequency resolution is equal to the sampling 
frequency fs divided by the windows size N. If the ratio of frequency to resolution is a 
constant (constant-Q), the window size varies with the frequency component: 

N[k] = fs/Afk = fs/ih/Q) = fsQ/fk (2.9) 

A n expression of C Q T for the k-th spectral component derived from the expression of 
short-time D F T is: 

N[k]-1 
XCqW = ^ A E w[n,k]x[n]e-^NW (2.10) 

i V ^ J n=0 

Figure 2.5 shows frequency resolution (a) and size of the analysis window (b) corre­
sponding to analyzed frequency using the D F T and C Q T . 
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Figure 2.5: Frequency resolution (a) and size of the analysis window corresponding to 
analyzed frequency using the D F T and C Q T . 

2.4 Fundamental frequency estimation 

Algorithms for estimation of a single fundamental frequency extract the period of the fun­
damental frequency in the given section of a signal. They assume that there is at most 
one harmonic source in the observed short-time signal. Methods that estimate FO from 
time-domain representations are, for example the extraction of FO using Autocorrelation 
Function (ACF) or Average Magnitude Difference Function ( A M D F ) . The techniques like 
cepstrum based FO estimation [35], spectral autocorrelation [30] or harmonic matching [21] 
uses spectral-domain representations of the signal based on Fourier Transform [13]. These 
are not described in detail because an electric guitar as a music instrument can produce 
the sound compounded of the sounds from multiple harmonic sources (strings). 

For the multi-FO estimation, two approaches were selected. The first, spectrogram 
decomposition approach and the method called Probabilistic Latent Component Analysis 
( P L C A ) , decomposes the spectrogram into components that can be computed in advance 
from recordings of individual audio sources. P L C A is very useful for analysis of complex 
polyphonic sounds [ ]. The second approach uses trained models based on artificial neural 
networks that estimates multi-FOs for given polyphonic records. Both of them are described 
in the following sections. 

2.4.1 Spectrogram Factorization Approach 

Probabilistic Latent Component Analysis 

P L C A is a spectrogram factorization technique proposed by Smaragdis, Raj, and Shashanka 
[44]. In general, P L C A decomposes A-dimensional distribution into the specific number 
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Figure 2.6: Application of P L C A on the shown spectrogram (the middle plot). Smaller 
plots on the left and bottom represent frequency and time marginals [ ]. 

of basis. Using it on a spectrogram, it can yield a lot of desirable properties. In our 
case, two dimensional P L C A is used as multi-pitch estimator that decomposes spectrogram 
into matrices that represent spectral basis (frequency marginals) and their time activations 
(time marginals). This decomposition is well suited for music transcription because the 
spectrum of a tone and the time when it is played can be retrieved. It can be also used as 
a technique for audio source recognition or audio source separation. 

The definition of P L C A is 

N 

P(-K)=YJP{Z)\[P(X3\Z) (2.11) 
z j = l 

where -P(x) stands for the iV-dimensional distribution of the random variable x = xi, X2, • • •, XN, 
z is the latent variable or the weight distribution of a component, and P(XJ\Z) are one di­
mensional distributions. To decompose 2-dimensional spectrogram, 2-dimensional P L C A 
is used. There are two forms of 2-D P L C A : symmetric and asymmetric. The asymmetric 
form is described later in this chapter. The symmetric form is defined as 

P(u, t) = J2 P(z)P(u\z)P(t\z) (2.12) 
z 

where P(u,t) is the 2-dimensional distribution (spectrogram), P(z) represents the weight 
distribution of the latent variable (tone), P(uo\z) is the frequency marginal for the latent 
variable z and P(t\z) is the time marginal for the latent variable z. Because P L C A has a 
statistical form, the input spectrogram has to be approximated as a probability distribution. 
The time and frequency marginals calculated from this distribution are also probability 
distributions. This statistical interpretation makes it useful for probabilistic framework 
applications [3]. 

Figure 2.6 shows the spectrogram (the large middle plot) as a time-frequency repre­
sentation of signal that is decomposed into the matrix of frequency marginals (the smaller 
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plot on the left) and the matrix of time marginals (the smaller plot at the bottom). The 
numbers of time and frequency marginals depend on the number of latent variables z . Each 
frequency marginal is coupled with one time marginal trough the z variable. In our case, 
one frequency marginal represents spectral base and time marginal represents a measure 
of how much the given spectral base contributes to the spectrum of the given time frame. 
If there is exactly one spectral basis to represent a tone, the z variable corresponds to the 
tone that is extracted from the spectrogram using the spectral basis P{uo\z). The form of 
the spectral basis depends on a learning process. 

Asymmetric P L C A 

On contrary to the symmetric P L C A , the asymmetric P L C A model decomposes a spectro­
gram into different components. It is more useful when trying to control the number of the 
components in a time frame [6]. Shashanka et al. [42] formulate asymmetric P L C A model 
as: 

P{uj,t) = P{t)YJP{u\z)P{z\t) (2.13) 
z 

where P(UJ\Z) are the spectral templates of the latent variable z, P(z\t) are the time-varying 
component activations and P(t) is the energy distribution of the input spectrogram P(u>, t). 
The asymmetric form of P L C A is not used in the proposed systems because the output of 
the symmetric P L C A is considered to be more suitable for further processing with a neural 
network as it is proposed in chapter 4. 

Shift-Invariant P L C A 

Shift-invariant P L C A is an extension of the P L C A model proposed by Smaragdis, Raj, 
and Shashanka [ .2]. The extended model is able to extract shifted structures from non-
negative data. It is useful when the log-frequency representation of signal is used as an 
input because intervals between adjacent FOs are the same. The shift-invariant model is 
defined as following: 

P(u, t) = J2 P(z)P(u\z) *u P(v, t\z) (2.14) 
z 

where v is the pitch-shifting factor and z is the latent variable. The spectral template 
P(u\z) is shifted across u, producing the time-varying pitch impulse distribution P(u,t\z) 
[7]. The shift-invariant P L C A model can be also expressed as: 

p{u, t) = j2 p{z) E p ^ - »\z)p(»> *\z) (2-15) 
2 V 

by removing the convolution operator. This extension is not incorporated in the proposed 
systems because it extends the asymmetric form of P L C A which is also not utilized. 

Parameter Estimation 

The variant of Expectation-Maximization (EM) algorithm [17] is used to estimate the pa­
rameters of the model based on P L C A . It contains the Expectation step and Maximization 
step. During the estimation, we iteratively alternate between the steps and estimate the 
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parameters until the calculation is stopped [11]. In the Expectation step, the contribution 
of the latent variable z is calculated as 

i?(x, z) = J~l 3 (2.16) 

In the Maximization step, this contribution i?(x, z) is used to calculate the parameters P(z) 
and P(XJ\Z): 

P(z) = ^ P ( x ) P ( x , z ) (2.17) 

P(xj\z) = Xi'X „ / - A (2.18) 
P(z) 

If the input spectrogram -P(x) is an unnormalized histogram in opposed to density, each 
component P{XJ\Z) needs to be normalized to sum to one in every iteration. Otherwise, no 
normalization is needed during the parameter estimation. 

Piano-roll retrieving 

There are multiple ways how to retrieve piano-roll from P L C A ' s output. One of the simplest 
method is thresholding. In the of the symmetric P L C A , the output are time activities of 
all tones. By thresholding, the values of time activations that are higher than selected 
threshold are estimated to be sounding pitch. The threshold have to be adapted to the 
length of the input spectrogram because each time activity is normalized in time. 

More complex method is note tracking using a Hidden Markov Model (HMM) [11]. 
Then, the states of the H M M correspond to the stages of a note (attack, decay, sustain, 
release, silence), which are constrained to occur in a fixed chronological sequence. In some 
cases, only two states (playing, silence) can be used. Using the Viterbi algorithm, the most 
likely state sequence is estimated. These sequences then determines parts where the pitch 
is active. The problem is estimation of fast repeated notes because the H M M attaches a 
high cost to starting a new note. 

This way, more machine learning techniques can be stacked up to process the P L C A ' s 
output. In this work, processing with R N N is also used to filter out pitch time activities. 

2.4.2 Deep Learning Approach 

Another approach to note recognition is recognition with neural networks (NN). In this 
section, two basic types of neural networks will be described: feed-forward networks with 
focus on deep neural networks and recurrent neural networks with focus on Long Short-
Term Memory method. 

Deep Neural Network 

Deep neural network (DNN) is a feed-forward network that is based on a multilayer percep-
tron. In feed forward networks, all outputs of the previous layer are connected to all weights 
of each neuron in subsequent layer and are often initialized using either an unsupervised 
or a supervised pretraining technique [18]. These layers are also called Fully Connected 
(FC) or Densely Connected (DC) layers. DNN's layers are divided into three categories: 
the first layer is called an input layer, the last layer is called an output layer and all layers 
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Hidden 
layer 

Figure 2.7: A concept of a feedforward architecture with the input, output and hidden 
layers [37]. 

between them are called hidden layers. A high number of hidden layers in combination with 
nonlinear activation functions allow a network can learn complicated relationships between 
the input and the output, which is not available with a single-layer network [12]. 

Figure 2.7 illustrates the concept of a feedforward architecture where the input, output 
and hidden layers are depicted. 

Recurrent Neural Network 

One of the disadvantages of feedforward networks is that their output is based only on their 
actual input. Let assume that the input of D N N is a time frame of a musical piece. D N N 
can learn a note is played in that time frame according to input features but it cannot learn 
anything about a context of that frame1. On contrary, Recurrent Neural Networks (RNN) 
are able to model temporal contexts due to the use of recurrent connections in the hidden 
layers [ ]. These connections allow to "remember" sequence information in a hidden state 
of the recurrent neural network. Because of this advantage, RNNs were successfully applied 
in tasks like speech recognition [39] or piano music transcription [9]. Figure 2.8 illustrates 
a concept of the R N N . 

Figure 2.8: A concept of a recurrent network architecture with the input, output and hidden 
layers [37]. 

1 A n input of DNN can be multiple time frames, then we can talk about context of frame or frame 
stacking. But it also can be considered a longer time frame that misses information about its context. In 
this case the context is meant to be an audio sequence which the time frame is a part of. 
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Figure 2.9: General structure of bidirectional recurrent neural network unfolded in three 
time steps [ ]. 

Bidirectional R N N 

Recurrent connections of neurons in the R N N provide a way of dealing with sequential data 
and allow to remember correlations between data that are close in the sequence [ ]. To 
predict the output value ytc, all the available input information up to the current time frame 
tc (i.e. {xt,t = 1, 2, • • • , tc}) are used. Usually, the input that comes later is also useful for 
prediction. This can be partially achieved by delaying the output by the certain number of 
time frames to include future information. However, the optimal delay is task-dependent 
and has to be found by the „trial and error" method. Another approach is to use two 
separate R N N for both time directions and to merge their opinions. Generally, it is not 
clear how to merge network outputs in an optimal way. Therefore, more elegant solution 
would be desirable. 

Bidirectional Recurrent Neural Network (BRNN) was designed to overcome these lim­
itations [41]. The basic idea is to split the state neurons of a regular R N N in two parts. 
One part is responsible for the positive time direction and the other for the negative time 
direction. Input information in the past and the future of the currently evaluated time 
frame can be used to minimize the objective function without the need for delays. Figure 
2.9 shows the general structure of the bidirectional recurrent neural network unfolded in 
three time steps. 

Long Short-Term Memory 

In basic recurrent neural networks, it is difficult or impossible to store information over 
extended time intervals. It is mainly due to blowing up or vanishing error signal during 
training with Back-Propagation Through Time (BPTT) [18]. Long Short-Term Memory 
(LSTM) was designed to solve this problem [26]. In combination with B P T T , constant 
error flow through internal states of the L S T M units is achieved. It can learn to bridge 
time intervals in high number of steps. Figure 2.10 shows the L S T M unit with the input i, 
output o and forget / gates. They can be trained like regular neurons. Thus, it, ot and ft 
represents activations of the input, output and forget gates in the time step t. The output 
of the block ht as well as the activations of the others gates also consider an activation of 
a memory cell c in the time step t — 1. The x symbol denotes element-wise multiplication 
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Figure 2.10: The L S T M unit. 

between its inputs and a symbol similar to the J symbol denotes differentiable function 
(usually sigmoid or tank) [23]. 

Piano-roll retrieving 

Output from the A N N has to be processed to determine when pitches are active or not. 
On contrary to P L C A , values of the output do not depend on the size of the input but 
they depend on selected activation function of an output layer. The simplest method, used 
also in this work, is thresholding. A threshold can be estimated globally (one threshold for 
all tones) or locally (one threshold for each tone). Similarly to P L C A , note tracking with 
H M M or other machine learning techniques can be applied on the A N N ' s output. 

2.5 Evaluation metrics 

To compare performance of the transcription systems, metrics had to be chosen. There 
are no standardized metrics for evaluation of polyphonic music transcription. The metrics 
used to evaluate participating transcription systems in M I R E X are used. These metrics are 
divided into two groups: frame-level and note-level. 

2.5.1 Frame level 

In this type of evaluation, the metrics are calculated frame-wise. Every 10ms, active pitches 
are observed in the output of the evaluated system and in the ground-truth data. Wi th 
Ntp[t] being the number of correct pitches in the t-th frame, Nfp[t] being the number of 
retrieved pitches that do not occur in the ground-truth and Nfn[t] being the number of 
pitches that occur in the ground-truth but were not retrieved by the system, the metrics 
that are used to evaluate the systems are the following: 

Precision = Y,tNtP[t] (2.19) 
EtNtP[t} + Nfp[t] 

Recall = (2.20) 

Accuracy 

Et*tp[t]+Nfn[t] 

(2.21) 
J2tNtp[t]+Nfp[t]+Nfn[t] 
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, , Precision • Recall 
F-Measure = 2 • (2.22 

Precision + Recall 
Precision depicts the portion of correct retrieved pitches for all pitches retrieved in each 
frame, Recall is the ratio of correct pitches to all ground-truth pitches, Accuracy is then 
the ratio of correct pitches to all ground-truth pitches and retrieved pitches. A returned 
pitch is considered to be correct if it is within a half semitone of the ground-truth pitch 
[19]. 

2.5.2 Note level 

Modified Precision, Recall, Accuracy and F-Measure metrics are used. A ground truth 
note is assumed to be correctly transcribed if the transcription system returns a note that is 
within a half semitone, the returned note onset and offset is within a 100 ms range(+-50 ms) 
of the onset and offset of the ground truth note. In this work, offset matching is omitted 
due to the difficulty of offset detection for electric guitar. The metrics are defined as: 

Precision = — ^—— (2.23) 
Ntp + Nfp

 v ' 

Recall = Ntp^T (2.24) 
Ntp + Nfn

 v ' 

Accuracy = — —— —— (2.25) 
Ntp + Nfp + Nfn

 V ; 

^ , r ^ Precision • Recall ,„ 
F-Measure = 2 (2.26) 

Precision + Recall 
where Nfp is the number of correctly transcribed notes, Nfp is the number of retrieved notes 
that do not occur in the ground-truth, and Nfn is the number of the notes that occur in 
the ground-truth but were not retrieved by the system. 

2.6 State of the A r t 

2.6.1 S O N I C : Transcription of Polyphonic Piano Music 

The transcription system called SONIC is a system that participated in Music Information 
Retrieval Evaluation eXchange2 (MIREX) 2016 and achieved the best results in multiple 
fundamental frequency estimation and tracking [ !3]. M I R E X is an event where systems 
for music analysis are evaluated on the same data and compared with each other. Despite 
of being designed for piano music transcription, it is evaluated on guitar music data and 
results are compared with the results of the proposed systems. 

SONIC uses a partial tracking technique based on an auditory model and adaptive 
oscillator networks followed by a Time-Delayed Neural Network (TDNN) for transcription 
of piano music. It also incorporates an onset detector that is not described in this chapter. 

2

http://www.music-ir.org/mirex/wiki/MIREX_HOME 
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time time 

Figure 2.11: Analysis of three partials of the piano tone F3 with the auditory model [33]. 

Partial tracking 

As it was stated in 2.1, pitched sounds produced by music instruments can be described 
by a series of peaks, also called partials. Partial tracking systems then uses time-frequency 
representation of musical signal and tracks these partials in time. The authors of the 
SONIC system proposes a new partial tracking technique based on an auditory model 
which emulates the functionality of human ear and on adaptive oscillators that extract 
partial tracks from outputs of the auditory model. 

The auditory model consists of two stages. A filter bank is first used to split the signal 
into several frequency channels. These frequency channels model the movement of basilar 
membrane in the inner ear. The filter bank consists of an array of bandpass IIR filters, called 
gammatone filters [43]. 200 filters are used with logarithmically spaced center frequencies 
from 70 to 6000 Hz. In the second stage, the output of each gammatone filter is processed 
by the Meddis' model of hair cell transduction that produces a probabilistic representation 
of firing activity in the auditory nerve [34]. Figure 2.11 shows the output of the auditory 
model for three partials of piano tone F3. 

Subsequently, the adaptive Large-Kolen oscillators are used to detect periodicity in 
frequency channels of the auditory model [31]. After the oscillators are synchronized with 
the input signal, it indicates that a partial with frequency equal to that of the oscillator 
is present in the input signal. Each oscillator has 2 parameters: phase and frequency. 
Synchronization of the oscillator is a process of adjusting its phase and frequency to match 
that of the input signal. Figure 2.12 shows 3 examples of partial tracking with oscillators. 
Example A shows case of tracking a 440 Hz sinusoid, example B shows how two oscillators 
with initial frequencies set to 440 and 445 Hz synchronize to a sum of 440 and 445 Hz 
sinusoids (5 Hz beating) and example C presents the tracking of a frequency modulated 
440 Hz sinusoid. In all cases, the oscillators are synchronized successfully. 
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Figure 2.12: Partial tracking with adaptive oscillators [33]. 

To improve the partial tracking technique, adaptive oscillators are grouped into net­
works. Networks consist of up to 10 interconnected oscillators with the initial frequencies 
set to integer multiples of the frequency of the first oscillator in a network. 88 oscillator 
networks are used in the SONIC system and the initial frequency of the first oscillators in 
all networks are set to the fundamental frequency of each of tone from AO to C8. Conse­
quently, all other oscillators in networks track partials of tones. This technique produces a 
clearer representation of the signal than techniques like S T F T or oscillator themselves. 

Note Recognition 

Set of neural networks is used to recognize notes from the partial tracking model. Each of 
76 TDNNs are trained to recognize single note [47]. The lowest octave (AO-Abl inclusive) 
was omitted because of poor recognition results. Because each network recognize only one 
tone, it has only one output that is thresholded to determine if observed tone is or is not 
played. 

2.6.2 Tablature Transcription System ( I D M T ) 

Work of Christian Kehling [ 7] presents algorithm for automatic transcription and param­
eter extraction from isolated polyphonic guitar recordings. It retrieves general information 
such as pitch, onset and offset but also information such as plucked string, plucking and 
expression styles. Figure 2.13 shows schematic model of the proposed system. Only multi-
pitch estimation and partial tracking will be described in this section because other parts 
are not related with the previously described techniques. 
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Figure 2.13: Schematic model of the analysis framework [27]. 

Multipitch Estimation 

After an input recording is segmented using onset detection algorithm, reassigned magni­
tude spectrogram based on the Instantaneous Frequency (IF) [ ] representation in addition 
to the conventional time-frequency transform is computed for each segment. IF magnitude 
spectrogram with a logarithmically spaced frequency components is used as input for Blind 
Harmonic Adaptive Decomposition (BHAD) [20]. The framework on which the B H A D re­
lies is the P L C A . Using the note and noise model (described in [ ]), the input spectrogram 
is decomposed in note and noise components. 

Partial Tracking 

The fundamental frequency and 15 partials of each note event retrieved from the pitch 
estimation algorithm are tracked over time. Simple peak picking is applied on magnitude 
spectrum of each time frame. The spectral peaks are then assigned to harmonics of different 
fundamental frequency candidates by minimizing the distance between the ideal harmonic 
frequency positions and the detected peak positions. This way, notes played by bending or 
sliding a string can be easily detected and their pitch can be accurately estimated. 
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Chapter 3 

Data 

3.1 Training Dataset 

A l l the systems based on P L C A or neural networks have to be trained before they are 
used for music transcription. For this task, training data has to be carefully selected, resp. 
generated. 

3.1.1 Data for P L C A 

As it was stated in chapter 2, spectral basis for spectrogram decomposition can be learned 
in advance to improve the pitch estimation. Only one spectral base is used to represent a 
pitch. To extract the spectral basis for each pitch, recordings of isolated notes are used. 

The sound samples from the sound fonts1 of FS Collection 3 2 were extracted and used 
for training of the spectral bases. FS Collection 3 is the collection of sound fonts released 
by FlameStudios under the G N U G P L license. It contains the following sound fonts: 

• FS Fender Jaguar Electric Guitar Both Pickups Direct In 

• FS Fender Telecaster Electric Guitar Bridge Pickup Direct In 

• FS Fender Telecaster Electric Guitar Neck Pickup Direct In 

• FS Gibson Les Paul Bridge Pick-Up Electric Guitar Direct In 

• FS Gibson Les Paul Neck Pick-Up Electric Guitar Direct In 

The names of the sound fonts describe the setting of recordings. First, the name of the 
guitar model is noted. Three guitars were recorded: Fender Jaguar, Fender Telecaster, and 
Gibson Les Paul. Next, used pick-ups are denoted (neck, bridge, or both) and the „Direct 
In" denotes that the guitar was plugged directly to the recording device during recording 
(no effects applied). 

The audio files were extracted using the sound font decompiler F2Comp 3 . Each sound 
font consists of audio files for 45 pitches - from note E2 (MIDI number 40) to note C6 (MIDI 
number 84), inclusive. For each pitch, there are three W A V files with different dynamics 
of recorded note. They were sampled with 44.1 kHz sampling rate and with a bit depth 16 

x

https: //www.digitalsoundfactory.com/what-soundfont 
2

http: //www.f lamestudios.org/free/Soundfonts 
3

http: //www.hammersound.net/mirrors/last_night/sf .htm 
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Bit . The files are from 5 to 40 seconds long (lower notes sound longer) but only the first 
2 seconds from each note recording are used for training. Therefore, the training recording 
for each note lasts 30 seconds and consists of 15 notes played on different guitars and with 
different volumes. It improves the ratio of different stages (attack, decay, sustain) of the 
notes in the training dataset. It also resulted in higher accuracy during early experiments. 

3.1.2 Data for neural network 

Neural networks are trained on labeled input samples. In this case, the input for D N N 
are spectra of several time frames and the input for L S T M are 10 seconds long spectra 
sequences. The most suitable data would be labeled recordings of a real guitar. It is too 
difficult and time-consuming to create a dataset like this. Instead, synthesized songs were 
used to train the neural network models. 

The training dataset consists of 35 synthesized MIDI songs downloaded from Classical 
Guitar MIDI Archives 4 and the converted .gp files from the guitarprotabs.org5 page with 
the tuxguitar software6. The complete list of MIDI songs used for the training dataset can 
be seen in table 3.1. FluidSynth was used to synthesize MIDI files to W A V files, using all 
sound fonts from the P L C A training dataset with the same parameters. This results in 525 
generated songs (5 guitar, 3 volumes). Due to the nature of the MIDI protocol, the MIDI 
files served as the labels for synthesized files. 

Table 3.1: MIDI songs used for training dataset. The Trans value 
determines the number of semitones that the song was transposed 
by. 

Artist Song Note 
events Tones 

Song 
duration 
[s] 

Total 
notes 
duration 
[s] 

Trans 

ACDC Hells Bells 1182 29 292 371 0 
ACDC Highway To Hell 1413 13 179 507 18 
Dionisio Aguado Douze Valses No. 1 464 23 71 170 1 
Ludwig van 
Beethoven 

Sonata No.8 in 
C minor 1204 32 87 195 0 

Bullet For My 
Valentine 

Al l these things I hate 
revolve around me 2217 20 223 484 0 

Bullet For My 
Valentine End of days 2025 20 253 297 0 

John Frusciante Wind Up Space 855 10 124 368 18 
John Butler Trio Betterman 1339 25 162 334 0 
John Mayer Come Back To Bed 1798 27 306 1035 2 

John Mayer Everyday I Have 
The Blues 1100 35 228 315 1 

Robert Johnson Crossroad Blues 529 24 78 144 0 

Robert Johnson Drunken Hearted 
Man 199 23 38 67 0 

Led Zeppelin Gallows Pole 3454 17 317 809 1 

4

http: //www.classicalguitarmidi.com/  
5

https://guitarprotabs.org/  
6

http: //www. tuxguitar.com.ar/ 
7

http: //www.f luidsynth.org/ 
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Led Zeppelin Stairway To 
Heaven 1935 21 350 772 -1 

John Mayer No Such Thing 2954 24 204 635 1 
Johann Kaspar 
Mertz Lob Der Tranen 873 34 181 536 2 

Pat Metheny Bright Size Life 653 36 141 124 0 
Luis Milan Two Part Fantasia 484 18 444 777 20 
Francesco Molino Second Nocturne 2683 30 471 677 0 
Santiago de Murcia Paspied Nuovo 364 17 59 127 0 
Pearl Jam Even Flow 1426 19 257 357 17 
Pearl Jam Garden 1462 20 288 416 0 
John Petrucci Hollow Years 1133 29 330 451 1 
Django Reinhardt Blue Drag 249 29 65 54 0 
Django Reinhardt Minor Swing 219 19 70 52 0 
Sabicas Castellana 1382 28 221 414 -1 
Julio Salvador 
Sagreras Magdalena 720 35 202 632 1 

Domenico Scarlatti Sonate K18/L.416 896 26 247 275 19 
Robert Alexander 
Schumann Träumerei 248 28 76 113 0 

John Scofield Protocol 955 35 178 129 0 
Vincente Emilio 
Sojo Nino Lindo 371 22 81 151 0 

Alexandre Tansman In Modo Polonico 
Kolysanka N . l 617 32 99 268 0 

Steve Ray Vaughan Little Wing 2695 41 388 534 0 

Robert De Visee Overture de la grotte 
de Versailles 926 23 191 472 1 

Silvius Leopold 
Weiss 

Sarabande (from 
Suite No. 2) 463 25 149 215 0 

Transposition of training dataset 

To create efficient training dataset, it has to be balanced. In this case, it means that 
the number of samples for each note should be roughly the same. This condition is not 
satisfied for unmodified MIDI songs. Because of they were selected randomly and most of 
them are just in a few keys, the differences between the numbers of the note samples for 
different notes are too high. This problem is partially solved by transposition of some of 
the training MIDI songs. Several MIDI songs were chosen and pitches in their MIDI events 
were transposed. The intervals between notes and their durations are preserved, the key 
and the pitch of the notes are changed. Figure 3.1 shows the histogram of note samples 
(100ms of note duration) of the original and transposed training dataset. 
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Figure 3.1: The histograms of note samples in the original and transposed training dataset. 
One sample represents 100ms of a note duration. 

3.2 Validation Dataset 

The validation dataset serves for evaluation of neural network models after each epoch. 
The accuracy obtained on this data shows the performance of a model during training 
session. Also, thresholds for output values of each neural network model are trained on the 
validation dataset. 

Similarly to the training dataset for neural network models, the validation dataset was 
created by synthesizing 5 MIDI songs with the samples of 5 different guitars and 3 different 
volumes. Detailed information about the MIDI songs of the validation dataset can be seen 
in table 3.2. 

Table 3.2: MIDI songs used for validation dataset. The Trans value 
determines the number of tones that the song was transposed by. 

Artist Song Note 
events Tones 

Song 
duration 
[s] 

Total 
notes 
duration 
[s] 

Trans 

Dionisio Aguado 
Morceaux Agreables 
Pour Guitare 
Contredanse 

379 25 129 177 0 

Creedence Clearwater 
Revival Fortunate Son 1171 16 128 270 0 

Ed Sheeran Give Me Love 2771 17 318 805 0 
Hammerfall Heeding the Call 186 10 36 51 0 
Steve Ray Vaughan Pride and Joy 1834 34 215 360 0 
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3.3 Evaluation Dataset 

The IDMT-SMT-Gui ta r database8 was selected as an evaluation dataset. It is a large 
database designated for automatic guitar transcription created by Christian Kehling, An­
dreas Männchen, Arndt Eppler (Fraunhofer I D M T ) . Seven different guitars and various 
pick-up settings were used to ensure efficient diversification. The recordings are provided 
in one channel R I F F W A V E format with 44100 Hz sample rate. 

The dataset consists of 4 subsets: 

• Dataseti 

— bit depth of 24 bit 

— 2 different guitars 

— single note and chord recordings 

• Dataset2 

— bit depth of 16 bit 

— 3 different guitars 

— twelve licks of monophonic and polyphonic parts varied in playing techniques 
and used guitar 

• Dataset3 

— bit depth of 16 bit 

— 1 guitar 

— five short musical pieces 

• Dataset4 

— bit depth of 16 bit 

— 3 different guitars 

— 64 short musical pieces grouped into the 8 genres 

Dataset4 is not used for evaluation because the labels contain description of chords 
instead of single notes. For more detailed description of the evaluation dataset, see the 
IDMT-SMT-Gui ta r database page. Table 3.3 shows summary of the evaluation dataset. 

Table 3.3: Summary of the evaluation dataset. 
Note events Tones Total recording duration [s] Total notes duration [s] 

Dataset 1 796 37 973 1778 
Dataset 2 4881 48 3238 3198 
Dataset 3 90 30 61 100 

'https: //www. idmt.fr aunhofer.de/en/business_units/m2d/smt/guitar.html 
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Chapter 4 

Note recognition systems 

This chapter proposes and describes 4 systems for automatic music transcription of electric 
guitar recordings. The first system {PLCA2MIDI) is based on spectrogram factorization 
( P L C A ) . It decomposes an input spectrogram in time pitch activations using pretrained 
spectral basis. The second and the third system (DNN2MIDI and LSTM2MIDI) detect 
active pitches with trained neural networks. The last system {HYBRID2MIDI) combines 
both approaches. 

A l l systems were implemented in Python 3 1 . Keras 2 was used to create neural networks, 
L i b R O S A 3 provided implementation of C Q T and M I D O 1 was used to handle MIDI file 
parsing. Whole development environment with the manual are described in appendix B. 

4.1 P L C A 2 M I D I 

4.1.1 Preprocessing 

To obtain a spectrogram from an input recording, both methods mentioned in chapter 2 
were used to be able to compare the impact on performance of the P L C A 2 M I D I system. 

Before a time-frequency representation is calculated, some modifications of an input 
music signal are done. The PICA2MIDI system and all other proposed systems are designed 
to process only the input audio files with 11025 Hz sampling frequency. Therefore, if this 
condition is not met, the input files have to be resampled before they are processed. 

If the input music recording has more channels, only one channel is generated by aver­
aging all channels of the original recording. Then, the recording is divided into 60-second 
long segments like in [5]. It reduces the time needed for spectrogram factorization with 
P L C A . Finally, a Gaussian noise is added to prevent zero values in spectrogram because in 
further calculation, they might appear in denominators of fractions. 

4.1.2 Frequency resolution issues 

It seems that constant-Q transform (CQT) is more suitable for music signal analysis because 
it produces the spectrum where the frequency bins are geometrically spaced. Though, it 
has low time resolution with the parameters that ensure sufficient frequency resolution for 

x

https: //www.python.org/  
2

https://keras.io/ 
3

https: //librosa.github.io/librosa/index.html 
4

https: //mido.readthedocs.io/en/latest/# 
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the lowest analyzed fundamental frequencies. The length of the longest analysis window 
Nmax used in C Q T is calculated as: 

M - ill (A \\ 
fmin(2B 1) 

where fs is the sampling rate, fmin is the lowest analyzed frequency, B is the number of bins 
per octave and q is the filter scale factor where the constant Q = q/(2~B — 1) (derived from 
eq. 2.9) [40]. Let us assume that fs is 11025 kHz, fmin is 82.4 Hz (fundamental frequency 
of E2), q is 1 and 24 frequency bins per octave are used. Then, the length of the analysis 
window is 4566 samples. Such long analysis window causes poor performance of the system 
in detection of short notes. The time resolution can be increased by lowering the frequency 
resolution. The first option is lowering the number of frequency bins per octave. In the 
case we lower it from 24 to 12, the size of the biggest analysis frame would be 2250 samples. 
The second option is lowering the filter scale factor. If the factor would be lowered from 1 
to 0.5, it would have the same effect like using the first option. 

In addition to S T F T and C Q T , we have also experimenting with a third time-frequency 
representation. Firstly, the S T F T magnitude spectrogram is calculated from music signal. 
Then, this spectrogram is filtered with a semitone filterbank. The same technique was used 
in [9]. The filterbank is a set of triangular passband filters with the center frequency on 
fundamental frequencies of semitones. The first passband's center frequency is a frequency 
of the E2 tone (82.41 Hz). Each next center frequency / is calculated as / = fp • 212 where 
fp is the center frequency of the previous passband filter. That many passband filters 
are calculated until the center frequency of the next one reaches the half of the sampling 
frequency (5512 Hz). Area of each filter is normalized to 1 to prevent the overemphasis of 
high frequencies with broad filters. 

Figure 4.1 shows the three spectra of note E2. The upper plot shows the spectrum 
produced by C Q T with different values of the filter scale factor. It can be seen that the 
lower the filter scale factor is, the lower frequency resolution the spectrum has. The middle 
plot shows the spectrum produced by D F T and the lower plot shows the filtered spectrum 
(DFT) with the semitone filterbank. The advantage of the first and the third spectra is that 
their frequency components are logarithmically spaced which corresponds with spacing of 
fundamental frequencies of tones. Also, a spectrogram produced by filtered S T F T has both 
advantages of the previous spectral analysis - logarithmically spaced frequency components 
and good time resolution. 

According to the results obtained on validation data with the 11025 Hz sampling fre­
quency, the appropriate parameters for S T F T and C Q T were chosen. The window length 
for S T F T is 1024 samples and the shift between two adjacent frames is 128 samples. The 
first and the last frequency components of S T F T spectrogram are omitted because they do 
not carry useful information for further note recognition. The minimal frequency for C Q T 
calculation is 70 Hz, the number of bins per octave is 24, the total number of bins of a 
spectrum is 144, and the filter scale factor is 0.7. 

Before the spectrogram is decomposed by P L C A , it has to be normalized to be a prob­
ability distribution. This is achieved by dividing the whole spectrogram with the sum of 
all its values. 

4.1.3 P L C A Note Recognition 

Active pitches are retrieved from the input spectrogram with P L C A . P L C A , described 
in section 2.4.1, decomposes the input spectrogram on frequency and time basis. The 
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Figure 4.1: Spectrum of note E2. The upper plot (a) shows the two spectra produced by 
C Q T with different filter scale factor. The middle plot (b) shows the spectrum calculated 
with D F T and the lower plot shows filtered spectrum of D F T with the semitone filterbank. 
The x axis of all plots are linear but in the case of the plot (a) and (c), it can be seen that the 
higher frequency components are more coarsely spaced than lower frequency components 
(their components are on a logarithmic scale). 

frequency bases are obtained in advance by supervised learning. The time bases denote 
pitch activations in time and are used to create a piano-roll. 

The learning process consists of decomposition of spectrograms of isolated note record­
ings. Despite of the recordings contains only the sound of a single note, its spectrum 
changes overtime according to the note stages (see section 2.1). The biggest differences are 
between the spectrum of the attack stage and the spectrum of the rest. For this reason, the 
spectrograms are decomposed in two frequency and time marginals. The final spectral base 
is calculated as the average of the two frequency marginals. Figure 4.2 shows two trained 
frequency basis spectra of the tone F2. The spectrum of the tone's attack stage (orange 
line) has energy more spread over all frequencies while the spectrum of decay stage has a 
lot more energy in frequency components of harmonics. 

When spectral basis of all pitches are known, they are used to decompose an input 
spectrogram. Expectation-Maximization (EM) algorithm is used to obtain time marginals. 
Though, the frequency marginals are not updated during the maximization step. The num­
ber of iterations of the algorithm was determined by observing the value of Kullback-Leibler 
(KL) divergence that measures how one probability distribution diverges from another. It 
is defined as: 

DKL(P\\Q) = Y / P m o g ^ ) (4.2) 

where P(i) is the spectrum of i-th frame of the estimated spectrogram and Q(i) is the 
spectrum of i-th frame from the input spectrogram [32]. After 50-60 iterations, the values 
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The spectra of two frequency basis trained with PLCA 

Frequency [Hz] 

Figure 4.2: Two spectra of trained frequency basis with P L C A . 

of K L divergence differ by a negligible value. Therefore, the number of iterations was set 
to 70 as in [5]. 

4.1.4 Post-processing 

P L C A produces time basis for each tone. Tone's time base consists of values that represent 
the measure how much the corresponding frequency base contributes to the original spec­
trum of a specific time frame. As the input spectrogram is always normalized to sum to 1, 
all produced time basis are normalized. A simple thresholding method is used to recognize 
a note according to values of the time bases. Because the values of the time bases are 
dependent on the length of input spectrogram, a value of the threshold has to be adapted 
to that. The value of the threshold is 15 divided by the size of the output piano-roll (45 
notes x number of time frames) according to [5]. Figure 4.3 shows the reference piano-roll 
of the nocturneNr2.wav recording from the evaluation dataset (a), the piano-roll produced 
by P L C A on the corresponding recording (b) and the piano-roll after thresholding (c). 

After the "soft" piano-roll (piano-roll with real values) is thresholded, notes that are 1 
time frame long can appear in the result. Such long notes are considered to be wrongly 
recognized because it is arguably impossible to play them. Therefore, they are removed 
from the resulting piano-roll. 

4.2 D N N 2 M I D I 

The DNN2MIDI system is based on a feedforward Deep Neural Network (DNN) (described 
in 2.4.2). 
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Figure 4.3: The reference piano-roll of the nocturneNr2. wav recording from the evaluation 
dataset (a), the piano-roll produced by P L C A from the same recording before thresholding 
(b) and the thresholded piano-roll (c). 

4.2.1 Preprocessing 

The same audio preprocessing and time-frequency representations of input signals that are 
used for the PLCA2MIDI system are used (more details in 4.1.1). The D N N , in opposite to 
P L C A , does not process whole spectrogram at once. Thus, it has to be further processed. 

In early experiments with the D N N , there were problems with training due to incorrect 
data normalization methods. After numerous methods were tried, the way how to properly 
scale values of input spectrograms to prevent to weights of the network to blow up was found: 
the mean and standard deviation are estimated in advance from the training dataset for 
each frequency component of a spectrum. After that, the means of frequency components 
are subtracted from each frame of the input spectrogram and these frames are divided by 
the standard deviations (mean and variance normalization). No batch normalization layers 
are then needed in the network. 

Note recognition with neural networks is considered as a multi-label multi-class classi­
fication. There are multiple classes (45 tones) which input data can be classified into and 
one input sample can be classified into multiple classes (0-6 simultaneously played tones). 
As the input sample, 19 time frames of the input spectrogram are selected. For each time 
frame of the spectrogram, 9 adjacent time frames are concatenated from both sides. Wi th 
the 128 samples shift size and the 11025 Hz sampling frequency, it covers the 220 ms of an 
input recording. Only notes that are played in the middle time frame are used as a label 
for a supervised training. This method provides a small temporal context for classification 
which improves the performance of the system. 
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DNN architecture 
Input 

Flatten 
F C (512) 

Activation (ELU) 6x 
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Activation (sigmoid) 

Figure 4.4: Sequence of layers of the D N N network from top to bottom. The 6x symbol 
denotes that the whole block (FC (512), Activation (ELU) and Dropout (0.15)) is 6 times 
sequentially repeated. 

The last step of data preprocessing for training is shuffling the input samples. Due to 
the size of the training dataset, only 5 randomly selected files from the dataset are loaded 
at once, then the context frames are concatenated to each frame and these input samples 
are shuffled. 

4.2.2 D N N Architecture 

Deep neural network for note recognition is simply designed as 6 Fully Connected (FC) 
hidden layers, each containing 512 neurons. Figure 4.4 shows the architecture of the net­
work. "Flatten" layer is used before the fully connected layers to create one-dimensional 
vector from two-dimensional input sample. There are activation and dropout layers after 
each of the hidden layers. The activation layers apply the exponential linear unit (ELU) 
activation function on output of each neuron of the previous F C layer [ ]. Higher accura­
cies were obtained with the E L U function than with the mostly used Rectified Linear Unit 
(ReLU) function. The dropout layers are used as a regularization to prevent overfitting of 
the network. Their dropout rate is set to 0.15. The output layer is again F C layer but only 
with 45 neurons. Each output neuron corresponds to one recognized tone. Activation func­
tion of the output layer is set to the sigmoid function instead of the mostly used softmax 
function that normalizes all output values to sum to one and is determined to single label 
classification. The output values are then near zero when tone is not played or up to one if 
the tone is played in a time frame. 

4.2.3 Training 

The training dataset described in 3.1.2 was used to train the network. Stochastic gradient 
descent (SGD) algorithm was used as a training algorithm with the initial learning rate set 
to 0.0001. The learning rate was continually decreased with a learning scheduler similar to 
the Newbob scheduler. 

Training was divided into several training sessions. Each session was composed of 60 
training epochs. After each epoch, the frame-level accuracy (described in 2.5) is calculated 
on the validation dataset (described in 3.2). The learning rate scheduler decreased the 
learning rate value when the accuracy on the validation data did not increase for 10 epochs. 
When the learning rate was decreased, also the network with weights that achieved the 
best accuracy was loaded. The first training session was executed with the initial learning 
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rate set to 0.0001. The second training session had the same parameters except the initial 
learning rate that was set to 0.00005. The last training session was executed with the 
learning rate set to 0.00001. 

4.2.4 Calibration 

As well as the system based on P L C A , the network produces piano-roll with real values. It 
is needed determine if the notes are played or not according to these values. 

The resulting piano-roll is produced by thresholding the output of the network. A global 
threshold (one threshold for all tones) is determined trough a process of calibration. The 
frame-level accuracy is calculated on the validation dataset for each threshold in range from 
0 to 1 with step 0.1. The threshold value that provides the highest accuracy is saved. After 
that, the values of adjacent thresholds are taken and the new threshold is calculated from the 
range of these adjacent thresholds with step 0.01. The threshold value calculated this way 
is also used for evaluation. Fig 4.5 shows the reference piano-roll of the nocturneNr2.wav 
recording from the evaluation dataset (a), the piano-rolls produced by the D N N before (b) 
and after thresholding (c). 

Figure 4.5: The reference piano-roll of the nocturneNr2.wav recording from the evalu­
ation dataset (a), the piano-roll produced by the D N N from the same recording before 
thresholding (b) and the thresholded piano-roll (c). 
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4.3 L S T M 2 M I D I 

For the LSTM2MIDI system, a recurrent neural network is used. As it is described in 
2.4.2, recurrent neural networks are able to learn the temporal context from input sequences 
because of their recurrent connections that can be regarded as memory of the network. This 
ability is very convenient in case of a music analysis. 

4.3.1 Preprocessing 

Input samples for the LSTM2MIDI system are sequences of time frames of the recordings. 
On contrary to classification of D N N where one input sample (several stacked time frames 
are considered as one input sample) is classified as one output label, the recurrent neural 
network classifies iV time frames of input sequence to iV output label vectors where iV can 
be different integer for different inputs. For training, an input spectrogram of the training 
data is divided into 10-second parts that represent the input sequences. Labels for each 
frame in the training input sequence form the training label sequence. If the last part is 
shorter than 10 seconds, it is padded with zero frames in both input and output sequences. 
In case of the validation and evaluation, whole spectrograms of recordings are used as the 
inputs. 

The input spectrograms are preprocessed in the same way as for the DNN2MIDI system 
(see 4.2.1). The same time-frequency representations and normalization techniques (except 
of frame grouping) are used before the spectrogram is divided into the input sequences. 

4.3.2 Architecture 

The network, that the LSTM2MIDI system is based on, is created according to the network 
used in [9]. Three Bidirectional Long Short-Term Memory (BLSTM) layers create the core 
of the network. L S T M layers are used because they solve the problems with vanishing or 
blowing gradients in the R N N . The Bidirectional L S T M , on contrary to regular L S T M , has 
the advantage of training simultaneously in the positive and negative time directions. The 
bidirectional recurrent network and L S T M layers are described in detail in 2.4.2. Each of 
the B L S T M layers are composed of 200 L S T M units. 

The zero frames of the padded input sequences can have negative impact on training 
of the recurrent neural network. Masking layer is added to overcome this problem. A l l the 
frames that consist of only zero values are masked (skipped) during the training process in 
all downstream layers. 

Time-Distributed Fully Connected (TDFC) layer is used as the output layer with the 
sigmoid activation layer. T D F C layer is a standard F C layer that is applied to every time 
frame of the input sequence. This ensures that the size of the output sequence is the same 
as the size of the input sequence. 45 neurons are used in the output layer to provide one 
output value for each of the recognized tone. Figure 4.6 shows the architecture of the 
network. 

4.3.3 Training 

Training process of the B L S T M network is similar to the training process of D N N . The 
same SGD algorithm and the learning rate scheduler was used as it is described in 4.2.3. 
The initial value of the learning rate was set to 0.001. In the next training sessions it was 
lowered to 0.0005, then to 0.0001. The number of epochs was set to 30 for each training 
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Figure 4.6: Sequence of layers of the B L S T M network from the top to the bottom. 

session. Due to the lower number of epochs, the number of training session with the same 
initial value of learning rate was higher according to the current performance of the network. 

4.3.4 Calibration 

The result piano-roll is obtained from the output of the B L S T M network by thresholding 
the output sequence. The same process of calibration is used here as it is used for the 
DNN2MIDI system (see 4.2.4). Figure 4.7 shows the reference piano-roll of the noctur-
neNr2.wav recording from the evaluation dataset (a), piano-roll with real values produced 
by the B L S T M network on the same recording (b), and the final thresholded piano-roll (c). 

4.4 H Y B R I D 2 M I D I 

The thresholding of the PLCA2MIDI system is a simple postprocessing method. Some 
existing systems [8, 11] using P L C A process the output with more complex techniques such 
as Hidden Markov Model ( H M M ) . The B L S T M network used in the LSTM2MIDI system 
is used for processing the output of P L C A to smooth out the result. 

4.4.1 Preprocessing 

The preprocessing step has two stages. In the first stage, the audio data preprocessing and 
all the spectral analysis methods are applied on an input data in the same way they are 
applied in case of the PLCA2MIDI system (see 4.1.1 for details). In the second stage, the 
input is processed by P L C A and the resulting soft piano-roll, instead of being thresholded, 
is normalized. Values of the soft piano-roll depend on a length of the input because they are 
normalized in time to sum to 1 during the P L C A processing. Therefore, this soft piano-roll 
is multiplied by its size (number of time frames x number of tones) and then normalized by 
subtracting the mean value and dividing with the standard deviation that were calculated 
in advance from the training data preprocessed with P L C A . Finally, all the training inputs 
are divided into 10 second long sequences that are used for training. 

4.4.2 Architecture, training and calibration 

The rest of the system is the same as in the LSTM2MIDI system description. The same 
architecture of the network, the same training method and calibration process are used 
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Figure 4.7: The reference piano-roll of the nocturneNr2.wav recording from the evaluation 
dataset (a), the piano-roll produced by the B L S T M network from the same recording before 
thresholding (b) and the thresholded piano-roll (c). 

(see 4.3). Figure 4.8 shows the reference piano-roll of the nocturneNr2.wav recording from 
the evaluation dataset (a), the result piano-roll after the same recording was processed by 
P L C A (b) and subsequently by the B L S T M network (c) and the final thresholded piano-roll 
(c). 
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Figure 4.8: The reference piano-roll of the nocturneNr2. wav recording from the evaluation 
dataset (a), the piano-roll produced by the P L C A (b), the piano-roll produced by the 
B L S T M network before thresholding (c) and the thresholded piano-roll (d). 
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Chapter 5 

Results 

In this chapter, the performance of the proposed systems is presented. Evaluation dataset 
(described in section 3.3) was used and metrics (defined in section 2.5) were evaluated. 
They are compared in the following column plots. The transcription system SONIC [33] 
(described in 2.6.1) is evaluated, too, to be compared with the proposed systems. Full 
tables with specific values of metrics for each system can be seen in appendix C. 

Table 5.1 shows the results of the system proposed by the authors of the validation 
dataset - Fraunhofer I D M T , obtained on the dataset 1 and dataset 2 [ ] (described in 
section 2.6.2). They stated that onsets were detected with the 50 ms tolerance, offsets were 
detected with 200 ms tolerance and the pitch is scored as correct if both annotated and 
detected frequencies are rounded to the same MIDI pitch numbers. 

Detection Function Precision Recall F-Measure 
Onset 0.98 0.99 0.99 
Offset 0.98 0.98 0.98 

Pitch Estimation 0.95 0.98 0.96 

Table 5.1: Precision, Recall and F-Measure results of onset detection, offset detection, and 
pitch estimation of the proposed system by Fraunhofer I D M T group [27]. 
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5.1 Frame level evaluation 

5.1.1 Dataset 1 

Frame level evaluation - dataset 1 
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Figure 5.1: Frame level evaluation of the systems on dataset 1. 

5.1.2 Dataset 2 

Frame level evaluation - dataset 2 
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Figure 5.2: Frame level evaluation of the systems on dataset 2. 
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5.1.3 Dataset 3 

Frame level evaluation - dataset 3 
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Figure 5.3: Frame level evaluation of the systems on dataset 3. 

5.2 Note level evaluation 

5.2.1 Dataset 1 

Note level evaluation - dataset 1 
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Figure 5.4: Note level evaluation of the systems on dataset 1. 
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5.2.2 Dataset 2 

Note level evaluation - dataset 2 
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Figure 5.5: Note level evaluation of the systems on dataset 2. 

5.2.3 Dataset 3 

Note level evaluation - dataset 3 
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Figure 5.6: Note level evaluation of the systems on dataset 3. 
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5.3 Discussion 

In this section, the achieved results are discussed. The nature of the evaluation data and 
evaluation metrics have to be considered. Therefore, the section is divided into two parts 
where frame level and note level evaluations are discussed separately. 

5.3 .1 Frame level evaluation 

Starting with the SONIC system, the results significantly vary according to the dataset that 
the system was evaluated on. As it was described in section 3.3, dataset 1 consists of single 
notes and chord recordings, dataset 2 consists of licks and polyphonic parts that varied in 
playing techniques and expression styles, and dataset 3 consists of five short musical pieces 
played on single guitar. Considering that the SONIC system was trained to recognize piano 
notes, it makes sense that it achieved the best results on dataset 3 where the sound is not 
so different from the sound produced by piano. The sound of the recordings in dataset 3 is 
produced by a guitar directly plugged into the recording device and notes are played with 
a standard playing technique. It also outperformed all the other systems which proves the 
robustness of the SONIC system. On contrary, the results achieved on dataset 2 are the 
worst due to a variance of playing and expression techniques (e.g. muted strings, slides, 
natural harmonics) that the SONIC system was not trained to recognize, and they are 
not similar to any piano playing techniques. A l l the proposed systems were not trained to 
recognize all these techniques, too, but they recognize more successfully the pitch of these 
notes due to similarity to notes played on guitar in a standard way. 

The PLCA2MIDI system has the worst performance of pitch recognition from all the 
proposed systems. While the Precision values (that express how many of recognized pitches 
occur in the ground truth) are quite high, the low value of Recall shows that the system 
is not able to identify all the pitches from the ground truth in a given time frame. This 
negatively influences the values of Accuracy and F-Meassure. 

The DNN2MIDI system achieved the highest frame level Accuracy and F-Meassure 
among the proposed systems. The best results were obtained with the C Q T spectral anal­
ysis for dataset 1 and 3, and with the filtered S T F T for dataset 2. Despite of similar 
number of trainable parameters of the neural networks used in the DNN2MIDI system 
and the LSTM2MIDI system, the DNN2MIDI system performs better in the frame level 
note recognition task. One of the reasons can be that the D N N are more appropriate for 
mapping features to a more separable space [ ]. Therefore, it is easier for the D N N to 
recognize each pitch in a time frame. However, the LSTM2MIDI system achieved similar 
results. 

Postprocessing of the P L C A output with the B L S T M network improved the perfor­
mance in almost every case. The HYBRID2MIDI scored the higher values of Accuracy 
and F-Meassure except of the case with S T F T . The decrease of performance in this case 
is probably caused by the spurious output of P L C A with the S T F T spectral analysis. The 
HYBRID2MIDI system with the filtered S T F T spectral analysis even achieved the same 
highest accuracy for dataset 2 as the DNN2MIDI system with filtered S T F T . 

In general, the DNN2MIDI CQT system seems to be the best performing system because 
acquired the highest value of Accuracy and F-Meassure on almost each dataset. Also, 
C Q T and filtered S T F T appear to be the more suitable spectral analysis methods for 
music transcription than simple S T F T . 
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5.3.2 Note level evaluation 

In the case of a note level evaluation, note is assumed to be correctly transcribed if a 
transcription system returns a note that is within a half semitone and the returned note 
onset is within the range of 100 ms of the ground truth note. This type of evaluation offers 
different view on a performance of transcription systems. The SONIC system's results look 
similar to the results from the frame level evaluation. The results achieved on dataset 2 
are the lowest because of the large diversity of the sound in the recordings. The results 
achieved on dataset 3 are the highest among all the systems. The main reason of such high 
metric values is probably an onset detector that is a part of the SONIC system and that 
ensures that the most of the onsets of the transcribed notes are within the time tolerance 
of the onsets of the ground truth notes. 

The results show very distinctive performance of the PLCA2MIDI and HYBRID2MIDI 
systems. These systems with the C Q T spectral analysis achieved significantly higher values 
of the Accuracy and F-Meassure metrics than the systems with the S T F T and filtered 
S T F T spectral analysis. The HYBRID2MIDI system with C Q T even achieved the highest 
Accuracy on dataset 1. These huge differences in the performance are probably caused by 
a poor onset detection ability of the P L C A method using the S T F T . It turns out that note 
onsets and offsets in the output piano-roll of P L C A are "blurry" over time and it is difficult 
to determine where the notes start or end. This phenomenon can be seen in figure 5.7 where 
the reference piano-roll of the first six seconds of Beethoven's Sonata No. 8 in C minor midi 
song (a), the soft piano-roll produced by P L C A using filtered S T F T of the corresponding 
recording (b), the soft piano-roll produced by the B L S T M network processing the P L C A 
output (c) and the thresholded piano-roll (d) are shown. In plot (c), the blurry output of 
the B L S T M network can be seen which is probably caused by the training process when 
the P L C A output does not provide the sharp onsets and offset and the values in the P L C A 
output indicate that notes are probably played but the training labels tell that they are 
not and vice versa. This does not happen in such scale if C Q T is used, and the onsets 
of transcribed notes lie in the allowed time range of the note onsets of the ground truth. 
A reason for this can be the different time resolution of C Q T and S T F T . Another draw­
back of the PLCA2MIDI system is high number of returned spurious notes during the note 
attack stages when an energy in the spectrum is more spread over the frequencies. This 
has bigger impact on the Precision, Accuracy and F-Meassure metric values in the case 
of the note level evaluation. However, it is a failure that can be successfully filtered out by 
the B L S T M network. 

The most successful and stable results are provided by the LSTM2MIDI system. It 
achieved the highest accuracy in a note transcription with C Q T on dataset 2 and with fil­
tered S T F T on dataset 3. The ability of learning the temporal context from input sequences 
allows to produce more coherent piano-roll. The lack of this ability in the DNN2MIDI and 
PLCA2MIDI systems causes that longer notes are often divided into several shorter notes 
that do not occur in the ground truth. These redundant notes decrease the overall values 
of the note level Precission, Accuracy and F-Meassure metrics. 

5.3.3 Summary 

From the results, we can conclude that systems based on neural networks perform better 
that system based solely on P L C A . The systems that incorporate the B L S T M network 
{LSTM2MIDI and HYBRID2MIDI with CQT) achieved the best note level transcription 
performance among the proposed systems. On the other, the DNN2MIDI system achieved 
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Figure 5.7: The reference piano-roll of the first six seconds of the Beethoven's Sonata No.8 
in C minor midi song (a), the soft piano-roll produced by P L C A using filtered S T F T of the 
corresponding recording (b), the soft piano-roll produced by the B L S T M network processing 
the P L C A output (c) and the final thresholded piano-roll (d). 

the best frame level transcription performance. Also, the results show the C Q T and filtered 
S T F T spectral analysis are the most suitable spectral analysis for both, the note level and 
frame level transcription, probably because their components are logarithmically spaced on 
the frequency axis. 

5.4 Examples 

We have prepared demonstration files to show the actual output of the systems. They 
can be generated from data by running the script stored on appended memory medium 
(see appendix A and B) or can be downloaded from https:/ /drive.google.com/open?id= 
!ZWpnqD7IQYFz70241T7nQSpOPsuqJlBV. 
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Chapter 6 

Conclusion 

This thesis represents an experimental work where various techniques for automatic music 
transcription with the specialization on electric guitar were described, evaluated on the 
same data and compared. First, the potential of machine learning methods and spectral 
analysis techniques had to be discovered in the scope of music information retrieval. Short-
Time Fourier Transform, Constant-Q Transform and Probabilistic Component analysis were 
described in detail. Also, the basic principles of neural networks were presented and eval­
uation metrics were introduced. Because all the examined techniques had to be trained in 
advance on proper data, several representative MIDI songs were obtained, synthesized with 
the recordings of single notes from various electric guitars and used as training data. The 
real recordings of electric guitar notes, chords and musical pieces provided by Institute for 
Digital Media Technology Fraunhofer served as the evaluation dataset. Subsequently, four 
different note transcription systems with three spectral analysis methods were proposed 
and described. After the systems were trained, they were evaluated and the results were 
presented. They show that the systems that employ the neural networks perform better 
than systems based only on P L C A technique. While the system with the D N N had the 
best results in frame level pitch estimation, the systems that incorporate the B L S T M net­
work achieved higher accuracy in note level evaluation due to their capability of temporal 
modeling. The results of these system were compared to the results of the SONIC piano 
transcription system; in some experiments, it still outperformed all the proposed systems. 
This failure is attributed mainly to the lack of a more complex onset detection algorithm 
in the proposed systems. 

6.1 Future research 

As it was mentioned in this chapter, most of the proposed systems suffers from poor onset 
detection performance. Utilization of an onset detector would bring the improvement espe­
cially in the systems that are based on P L C A . It would be possible to detect onset of notes 
more precisely, identify the attack stages of the notes and withdraw them from analysis 
to avoid the errors made by decomposition of these parts. Consequently, it would provide 
more accurate piano-roll produced by P L C A that serves as input features for the B L S T M 
network in the HYBRID2MIDI system. 

Because the guitar is able to produce a wide variety of sounds by applying different 
playing techniques and expression styles (muted strings, slides, bends, natural harmonics), 
modifications of the proposed systems to recognize these techniques and styles would im-

45 



prove the recognition capabilities, too. The different techniques for partial tracking could 
help to recognized bends and slides, while the additional detections systems could detect if 
a string is muted or if natural harmonics are played. 

Another aspects that would be worth of further research are multi-resolution spectral 
analysis and input feature composition for the neural networks. Also, creating more spec­
trograms with different time and frequency resolution provides more informations about 
the audio signal. Features like the first derivation of the input spectrogram could be useful 
for note recognition with the neural networks. 

Using augmented data during the training process of the neural networks could bring 
higher robustness of the note recognition systems, too. Adding noise generally helps, but in 
the case of the electric guitar recordings, there are other approaches. Expanding the training 
dataset with the data with slightly shifted pitches of some notes that would represents 
mistakes of a guitar player or a string that is out of tune, or applying guitar effects on a 
clear sound of a guitar would simulate more realistic guitar recordings. 

In this work, single threshold was used on all tones to get the resulting piano-roll. 
Another option is to estimate threshold for each tones separately. Thresholding would be 
adapted to a character of each tone which could lead to a performance improvement. 
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Appendix A 

D V D content 

The content of D V D consists of 
Anaconda3-5.1.0-Linux-x86_ 
demol.wav, demo2.wav, demo3.wav 

guitar2midi.yaml 

IDMT-SMT-GUITAR_V2 

models 

README.txt 

resources 

run_demonstration.sh 

sound_fonts 

src 

synthesize. sh 

train_transposed 

valid 

the following files: 
64. sh installation file of Anaconda3 

demonstration recordings from the evaluation 
dataset 
development environment configuration file 
directory that contains the evaluation dataset 
directory that contains trained neural network 
models and files with thresholds 
file with a basic description and manual 
directory that contains pretrained frequency 
bases for P L C A 
script that generates midi files from the demon­
stration recordings 
directory that contains guitar recordings used for 
generating training dataset 
directory that contains source files 
script that synthesizes midi songs for the training 
and validation dataset 
directory that contains transposed midi songs of 
the training dataset 
directory that contains midi songs for the vali­
dation dataset 
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Appendix B 

Manual 

This appendix describes how to prepare environment for executing source files on Linux 
operating system. The current working directory has to be set to the root folder of the 
appended memory medium. Before the systems can be executed, Anaconda3 has to be 
installed. It can be installed using the 

Anaconda3-5.1.0-Linux-x86_64. sh installation file with the following command: 

$ bash Anaconda3-5.1.0-Linux-x86_64.sh 
After it is successfully installed, the guitar2midi environment has to be imported and 
activated using the guitar2midi .yaml configuration file: 

$ conda env create -f guitar2midi.yaml 

$ source activate guitar2midi 

Now, demonstration midi files can be generated by running the following command: 

$ bash run_demonstration.sh 

and the training and validation dataset can be generated by running the following command: 

$ bash synthesize.sh 
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Appendix C 

Ful l tables with results 

C . l Frame level evaluation 

C . l . l Dataset 1 

System Spectral analysis Precision Recall Accuracy F-Measure 

P L C A 2 M I D I 
S T F T 0.818 0.36 0.333 0.5 

P L C A 2 M I D I C Q T 0.913 0.425 0.409 0.58 P L C A 2 M I D I 
S T F T F I L T E R 0.899 0.414 0.395 0.567 

DNN2MIDI 
S T F T 0.919 0.662 0.626 0.77 

DNN2MIDI C Q T 0.913 0.702 0.658 0.794 DNN2MIDI 
S T F T F I L T E R 0.911 0.688 0.645 0.784 

L S T M 2 M I D I 
S T F T 0.897 0.649 0.604 0.753 

L S T M 2 M I D I C Q T 0.884 0.688 0.631 0.774 L S T M 2 M I D I 
S T F T F I L T E R 0.891 0.679 0.627 0.771 

H Y B R I D 2 M I D I 
S T F T 0.812 0.664 0.576 0.731 

H Y B R I D 2 M I D I C Q T 0.915 0.642 0.606 0.764 H Y B R I D 2 M I D I 
S T F T F I L T E R 0.889 0.669 0.618 0.764 

SONIC 0.859 0.626 0.568 0.724 

Table C . l : Frame level evaluation on dataset 1. 
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C.1.2 Dataset 2 

System Spectral analysis Precision Recall Accuracy F-Measure 

P L C A 2 M I D I 
S T F T 0.562 0.455 0.336 0.503 

P L C A 2 M I D I C Q T 0.643 0.5 0.391 0.562 P L C A 2 M I D I 
S T F T F I L T E R 0.6 0.478 0.363 0.532 

DNN2MIDI 
S T F T 0.8 0.521 0.461 0.631 

DNN2MIDI C Q T 0.775 0.558 0.481 0.649 DNN2MIDI 
S T F T F I L T E R 0.781 0.559 0.483 0.652 

L S T M 2 M I D I 
S T F T 0.799 0.492 0.438 0.609 

L S T M 2 M I D I C Q T 0.816 0.512 0.459 0.629 L S T M 2 M I D I 
S T F T F I L T E R 0.784 0.535 0.466 0.636 

H Y B R I D 2 M I D I 
S T F T 0.563 0.567 0.394 0.565 

H Y B R I D 2 M I D I C Q T 0.751 0.575 0.483 0.651 H Y B R I D 2 M I D I 
S T F T F I L T E R 0.644 0.587 0.443 0.614 

SONIC 0.215 0.2 0.115 0.207 

Table C.2: Frame level evaluation on dataset 2. 

C.1.3 Dataset 3 

System Spectral analysis Precission Recall Accuracy F-Measure 

P L C A 2 M I D I 
S T F T 0.598 0.352 0.284 0.443 

P L C A 2 M I D I C Q T 0.781 0.443 0.394 0.565 P L C A 2 M I D I 
S T F T F I L T E R 0.736 0.424 0.368 0.538 

DNN2MIDI 
S T F T 0.786 0.49 0.432 0.604 

DNN2MIDI C Q T 0.771 0.572 0.489 0.657 DNN2MIDI 
S T F T F I L T E R 0.724 0.56 0.461 0.631 

L S T M 2 M I D I 
S T F T 0.638 0.425 0.343 0.51 

L S T M 2 M I D I C Q T 0.764 0.565 0.481 0.649 L S T M 2 M I D I 
S T F T F I L T E R 0.786 0.549 0.477 0.646 

H Y B R I D 2 M I D I 
S T F T 0.415 0.372 0.244 0.392 

H Y B R I D 2 M I D I C Q T 0.7 0.479 0.397 0.569 H Y B R I D 2 M I D I 
S T F T F I L T E R 0.672 0.527 0.419 0.591 

SONIC 0.78 0.575 0.495 0.662 

Table C.3: Frame level evaluation on dataset 3. 
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C.2 Note level evaluation 

C.2.1 Dataset 1 

System Spectral analysis Precission Recall Accuracy F-Measure 

P L C A 2 M I D I 
S T F T 0.234 0.433 0.179 0.304 

P L C A 2 M I D I C Q T 0.455 0.721 0.387 0.558 P L C A 2 M I D I 
S T F T F I L T E R 0.279 0.427 0.203 0.338 

DNN2MIDI 
S T F T 0.28 0.791 0.261 0.414 

DNN2MIDI C Q T 0.442 0.794 0.397 0.568 DNN2MIDI 
S T F T F I L T E R 0.493 0.82 0.445 0.616 

L S T M 2 M I D I 
S T F T 0.573 0.765 0.487 0.655 

L S T M 2 M I D I C Q T 0.572 0.774 0.49 0.658 L S T M 2 M I D I 
S T F T F I L T E R 0.557 0.745 0.468 0.638 

H Y B R I D 2 M I D I 
S T F T 0.189 0.334 0.137 0.241 

H Y B R I D 2 M I D I C Q T 0.621 0.73 0.505 0.671 H Y B R I D 2 M I D I 
S T F T F I L T E R 0.189 0.271 0.125 0.223 

SONIC 0.587 0.714 0.475 0.644 

Table C.4: Note level evaluation on dataset 1. 

C.2.2 Dataset 2 

System Spectral analysis Precission Recall Accuracy F-Measure 

P L C A 2 M I D I 
S T F T 0.163 0.621 0.148 0.258 

P L C A 2 M I D I C Q T 0.212 0.691 0.194 0.324 P L C A 2 M I D I 
S T F T F I L T E R 0.184 0.635 0.166 0.285 

DNN2MIDI 
S T F T 0.443 0.643 0.356 0.525 

DNN2MIDI C Q T 0.485 0.702 0.402 0.573 DNN2MIDI 
S T F T F I L T E R 0.468 0.701 0.39 0.562 

L S T M 2 M I D I 
S T F T 0.607 0.545 0.402 0.574 

L S T M 2 M I D I C Q T 0.657 0.596 0.455 0.625 L S T M 2 M I D I 
S T F T F I L T E R 0.618 0.579 0.426 0.598 

H Y B R I D 2 M I D I 
S T F T 0.282 0.32 0.176 0.3 

H Y B R I D 2 M I D I C Q T 0.541 0.668 0.426 0.598 H Y B R I D 2 M I D I 
S T F T F I L T E R 0.323 0.328 0.195 0.326 

SONIC 0.153 0.22 0.099 0.18 

Table C.5: Note level evaluation on dataset 2. 
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.2.3 Dataset 3 

System Spectral analysis Precission Recall Accuracy F-Measure 

P L C A 2 M I D I 
S T F T 0.251 0.511 0.203 0.337 

P L C A 2 M I D I C Q T 0.458 0.778 0.405 0.576 P L C A 2 M I D I 
S T F T F I L T E R 0.28 0.5 0.218 0.359 

DNN2MIDI 
S T F T 0.311 0.722 0.278 0.435 

DNN2MIDI C Q T 0.412 0.756 0.364 0.533 DNN2MIDI 
S T F T F I L T E R 0.46 0.767 0.404 0.575 

L S T M 2 M I D I 
S T F T 0.187 0.644 0.384 0.555 

L S T M 2 M I D I C Q T 0.553 0.633 0.419 0.591 L S T M 2 M I D I 
S T F T F I L T E R 0.628 0.656 0.172 0.641 

H Y B P J D 2 M I D I 
S T F T 0.196 0.222 0.116 0.208 

H Y B P J D 2 M I D I C Q T 0.608 0.656 0.461 0.631 H Y B P J D 2 M I D I 
S T F T F I L T E R 0.242 0.244 0.138 0.243 

SONIC 0.686 0.8 0.585 0.738 

Table C.6: Note level evaluation on dataset 3. 
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