
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

PHD THESIS

Brno, 2017 Ing. Karel Veselý

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

SEMI-SUPERVISED TRAINING OF DEEP NEURAL NET­
WORKS FOR SPEECH RECOGNITION
'SEMI-SUPERVISED' TRÉNOVÁNÍ HLUBOKÝCH NEURONOVÝCH SÍTÍ PRO ROZPOZNÁVÁNÍ

ŘEČI

PHD THESIS
DISERTAČNÍ PRÁCE

AUTHOR
AUTOR PRÁCE

Ing. KAREL VESELÝ

SUPERVISOR
ŠKOLITEL

Doc. Ing. LUKAS BÜRGET, Ph.D.

BRNO 2017

Abstract
In this thesis, we first present the theory of neural network training for the speech recogni­
t ion, along wi th our implementation, that is available as the ' n n e t l ' t ra ining recipe in the
K a l d i toolkit . The recipe contains R B M pre-training, mini-batch frame Cross-Entropy train­
ing and sequence-discriminative s M B R training. Then we continue wi th the main topic of
this thesis: semi-supervised t raining of DNN-based A S R systems. Inspired by the literature
survey and our in i t ia l experiments, we investigated several problems: Firs t , whether the con­
fidences are better to be calculated per-sentence, per-word or per-frame. Second, whether
the confidences should be used for data-selection or data-weighting. B o t h approaches are
compatible w i th the framework of weighted mini-batch S G D training. Then we tr ied to get
better insight into confidence calibration, more precisely whether it can improve the effi­
ciency of semi-supervised training. We also investigated how the model should be re-tuned
wi th the correctly transcribed data. Final ly , we proposed a simple recipe that avoids a grid
search of hyper-parameters, and therefore is very practical for general use wi th any dataset.
The experiments were conducted on several data-sets: for Babe l Vietnamese wi th 10 hours
of transcribed speech, the W o r d Error Rate (W E R) was reduced by 2.5%. For Switchboard
Engl ish wi th 14 hours of transcribed speech, the W E R was reduced by 3.2%. Al though we
found it difficult to further improve the performance of semi-supervised t raining by means
of enhancing the confidences, we st i l l believe that our findings are of significant practical
value: the untranscribed data are abundant and easy to obtain, and our proposed solution
brings solid W E R improvements and it is not difficult to replicate.

Abstrakt
V t é t o d ize r t ačn í p rác i nejprve prezentujeme teorii t r énován í neu ronových sí t í pro rozpoz­
náván í řeči společně s i m p l e m e n t a c í t r énovac ího receptu ' nne t l ' , k t e r ý je součás t í toolk-
i tu s o t e v ř e n ý m k ó d e m K a l d i . Recept se sk l ádá z p ř e d t r é n o v á n í bez uči te le p o m o c í algo­
r i tmu R B M , t r énován í klasif ikátoru z řečových r á m c ů s kr i te r iá ln í funkcí Cross-entropy a
ze sekvenčního t r énován í po vě t ách s kr i te r iá ln í funkcí s M B R . Následuje h lavní t é m a p ráce ,
k t e r ý m je semi-supervised t r énován í se smíšenými daty s p ř e p i s e m i bez přep isu . Inspi rováni
konferenčními č lánky a ú v o d n í m i experimenty jsme se zaměři l i na několik o tázek : Nejprve
na to, z d a j e lepší konfidence (t.j. d ů v ě r y h o d n o s t i automaticky z ískaných ano tac í) p o č í t a t
po vě tách , po slovech nebo po řečových rámcích . Dá le na to, zda by konfidence měly bý t
použ i ty pro výbě r dat nebo váhování dat - oba p ř í s t u p y jsou kompa t ib i l n í s t r é n o v á n í m
p o m o c í metody s tochas t i ckého ne js t rmějš ího sestupu, kde jsou gradienty řečových r á m c ů
n á s o b e n y vahou. Dále jsme se zabýval i vy lepšován ím semi-supervised t r énován í p o m o c í
kalibrace kofidencí a př í s tupy , jak model dá le vylepši t p o m o c í dat se s p r á v n ý m přep i sem.
Nakonec jsme navrhl i j e d n o d u c h ý recept, pro k t e r ý nen í n u t n é časově n á r o č n é ladění hyper-
p a r a m e t r ů t r énován í , a k t e r ý je prakt icky využ i t e lný pro r ů z n é d a to v é sady. Experimenty
p rob íha ly na několika s a d á c h řečových dat: pro rozpoznávač v i e t n a m š t i n y s 10 p ř e p s a n ý m i
hodinami (Babel) se chybovost snížila o 2.5%, pro angl ič t inu se 14 p ř e p s a n ý m i hodinami
(Switchboard) se chybovost snížila o 3.2%. Zj is t i l i jsme, že je p o m ě r n ě těžké dá le vylepši t
p řesnos t s y s t é m u p o m o c í ú p r a v konfidencí, zá roveň jsme ale přesvědčení , že naše závěry m a j í
z n a č n o u prakt ickou hodnotu: data bez p řep i su je j e d n o d u c h é n a s b í r a t a naše nav rhované
řešení p ř ináš í d o b r á zlepšení úspěšnos t i a nen í t ěžké je replikovat.

Keywords
Deep neural networks, speech recognition, semi-supervised training, K a l d i , nne t l

Klíčová slova
Hluboké neuronové s í tě , rozpoznáván í řeči,
p řep i sem i bez přep i su , K a l d i , nne t l

semi-supervised t r énován í se smíšenými daty s

Reference
V E S E L Ý , K a r e l . Semi-supervised training of Deep Neural Networks for speech recognition.
Brno, 2017. P h D thesis. B rno Universi ty of Technology, Facul ty of Information Technology.
Supervisor Doc. Ing. Lukáš Bürge t , P h . D .

4

Semi-supervised training of Deep Neural Networks for
speech recognition

Declaration
Hereby I declare that this doctoral thesis was prepared as my original author's work under
the supervision of Doc. Ing. Lukáš Burget, P h . D . A l l the relevant information sources,
which were used during preparation of this thesis, are properly cited and included in the
list of references.

Ka re l Veselý
A p r i l 6, 2018

Acknowledgements
Here, I would like to thank all the great people I had a chance to interact w i th during the
P h . D . studies, they were numerous. Firs t ly , I would like to thank to our group leader Jan
'Honza ' Ce rnocký for al l the support, as well as for creating and especially maintaining such
a great speech processing group as we have i n Brno Universi ty of Technology. Then, I would
like to thank my supervisor Lukáš Burget for introducing me to al l the details of the neural
network t raining and also for being open to the numerous discussions of technical questions
which arised on-the-way. Also , I owe a big 'Thank you!' to Daniel Povey for being such
a great father of K a l d i and for allowing me to contribute the ' n n e t l ' code to K a l d i . Very
helpful were the code reviews, suggestions and discussions. Then, I would like to thank
Sanjeev Khudanpur and Hynek H e ř m a n s k ý for supporting the stays at the Johns Hopkins
University. I would also like to thank all the colleagues i n the Speech@FIT in Brno, al l
the present members, former members and the international visitors. Thank you for being
around, ready for a technical discussion or to spend a good time. Next, I would like to
thank the people from C L S P i n Johns Hopkins Universi ty and the people from numerous
workshops (K a l d i , J H U , J S A L T) . I would also like to thank the authors who published
their work about semi-supervised t raining i n speech recognition, they were a great source
of inspiration. Final ly , I would like to thank our secretaries and my parents for al l the care
and support. Lastly, I thank all the people I might have forgotten to thank to.

Contents

1 Introduction 5
1.1 Mot iva t ion 7
1.2 Scope of the thesis 8
1.3 Or ig ina l claims 9
1.4 Structure of the thesis 9

2 Introduction to Neura l Network based speech recognition 10
2.1 The history of neural networks in speech recognition 10
2.2 The problem of speech recognition 11
2.3 Models in speech recognition and decoding 12

2.3.1 Language model 13
2.3.2 Lexicon 13
2.3.3 Hidden Markov M o d e l 14
2.3.4 H y b r i d acoustic model, context dependency, prior tr ick 14
2.3.5 Compi l ing the recognition network 15
2.3.6 Rewr i t ing the decoding formula 17
2.3.7 Latt ices in W F S T format 17
2.3.8 Forward-backward algori thm for lattice 18

2.4 The Backpropagation t raining algori thm 20

3 K a l d i 'nnet l ' D N N training recipe 28
3.1 Training the D N N acoustic model 30

3.1.1 Pre-training wi th Deep Belief Network (Restricted Bo l t zmann M a ­
chines) 30

3.1.2 Frame classification mini-batch t raining 34
3.1.3 Sequence-discriminative training, s M B R 36

3.2 Accelerating the D N N training 41
3.2.1 N N training implementations 42
3.2.2 Speed measurements 43
3.2.3 Other implementations in the literature 45

3.3 Summary 45

4 Data-sets 46
4.1 Babe l Vietnamese 46
4.2 Other Babe l languages 47
4.3 Switchboard 48

5 Semi-supervised training 49

J

5.1 Definit ion 49
5.2 The key questions of semi-supervised D N N training 50

5.2.1 Granular i ty of confidence units 51
5.2.2 The concept of ' ideal ' confidence 52
5.2.3 Cal ibra t ion of confidences 52
5.2.4 Use of confidences in S G D 53

5.3 Summary of published works 54
5.3.1 Semi-supervised t raining of G M M - H M M systems 54
5.3.2 Confidence methods based on single A S R system 55
5.3.3 Other methods 57
5.3.4 W h a t we believe to be interesting 58

6 Initial experiments with semi-supervised training 59
6.1 Frame selection by confidence (ASRU2013) 59

6.1.1 Confidence measures 59
6.1.2 Seed system 60
6.1.3 Supervised experiments 60
6.1.4 Semi-supervised experiments 61

6.2 Re-scaling the frame posteriors 64
6.2.1 Ana lyz ing the per-frame confidences 64
6.2.2 The seed system 65
6.2.3 Experiments w i th lattice-scale A, frame-weighted t raining 66
6.2.4 Summary 67

7 W h a t is the best granularity of confidences? 68
7.1 Oracle experiments 69

7.1.1 Ana lyz ing tied-state frequencies in the best path of lattice 70
7.2 Per-sentence confidences 71

7.2.1 Min imum-Bayes risk confidence 72
7.2.2 Cal ib ra t ion of confidences 73
7.2.3 N N posterior-based confidence 75
7.2.4 Summary 75
7.2.5 Re-training wi th transcribed data 76

7.3 Per-word confidences 78
7.3.1 M i n i m u m Bayes Risk confidence 78
7.3.2 Weighting words by calibrated confidence 79
7.3.3 W h a t happens i n data selection? 80
7.3.4 Re-tra ining wi th transcribed data 80

7.4 Tied-state confidences 82
7.4.1 Tuning confidence scale a in frame-weighted S G D training 82
7.4.2 Per-phoneme analysis of the frame confidences 82
7.4.3 Cal ib ra t ion by logistic regression 83
7.4.4 Re-training wi th transcribed data 86

7.5 Summary 87

8 F ind ing generic semi-supervised training approach 89
8.1 Repeating experiments, Switchboard 91

8.1.1 Word-weighted t raining 91

2

8.1.2 Cal ibra ted frame-weights 91
8.2 Re-tuning wi th correctly transcribed data, Switchboard 92
8.3 F i n a l summary, simple word-selection 93

9 Two system combination as the seed system 94

10 F ina l remarks 96

Acronyms

A S R Automat ic speech recognition
W E R W o r d error rate (evaluation metric)
P E R Phone error rate (evaluation metric)
A M Acoust ic model
L M Language model
W F S T Weighted finite state transducer

(automaton representing a graph wi th costs on arcs)

G M M Gaussian mixture model

E M Expecta t ion maximizat ion (training algori thm for G M M)

N N Neural network

D N N Deep neural network (N N wi th 'several' hidden layers)
R B M Restricted Bo l t zmann Machine

(an auxil iary model for D N N pre-training)
D B N Deep Belief Network (a stack of R B M s , in i t ia l iz ia t ion of hidden layers)
S G D Stochastic gradient descent (training algori thm for NNs)
C E per-frame cross-entropy (objective function for N N training)
M M I M a x i m u m mutual information (objective function)
M P E M i n i m u m phone error (objective function)
B M M I Boosted max imum mutual information (objective function)
s M B R State min imum Bayes risk (objective function)

M F C C Mel-frequency cepstral coefficients (input features)
F B A N K L o g Mel-fil terbank output (input features)
P L P Perceptual linear predictive analysis (input features)
L D A Linear discriminant analysis
M L L T M a x i m u m likel ihood linear transform (feature projection, also called

Semi-tied covariance method)
f M L L R Feature-based maximum-l ikel ihood linear regression (speaker adaptation

technique)

3

Notation

t, T t ime indexing

k, K NN-outpu t class indexing

Wj,W single word, word sequence

s, Si, S tied-state, tied-state from a sequence, a sequence of tide states

£ , 7r lattice, a path from lattice

K acoustic scale applied to the per-frame likelihoods from the acoustic
model

Q graph scale applied to graph-costs i n W F S T graphs, representing lattices
or recognition network

x single data-point (vector) of input features

X matr ix wi th input features (composed from single vectors)

h hidden vector from neural network

y output vector from neural network

W mat r ix wi th synapses from single layer of neurons

Wij single element from the matr ix of synapses

b bias vector from single layer of neurons

a logistic sigmoid

w a l l neural network parameters reshaped in one big vector

M size of mini-batch

iV number of inputs from neuron or neural network

L identifier of specific neural network layer

asrc(a J)) Agt(a J) accumulation statistics i n Forward-backward algorithm, which produces
lattice-posteriors 7 (0 7)

j(cij) posterior probabil i ty of traversing through lattice-link a,j

7(t, s) posterior probabil i ty of being i n tied-state s at time t

7(t, St) posterior of a particular tied-state s~t from the best path of lattice

7(5, w) posterior probabil i ty of word w being at posit ion q i n decoder output

liQ^Wq) posterior of a particular word wq from the best path of lattice

A the lattice-scale, applied to re-scale the lattice posteriors by mul t ip ly ing
the l ink scores before the forward-backward algori thm is started

a the exponential scale, applied to the confidences which are already ex­
tracted from the lattices

4

Chapter 1

Introduction

Probably the most natural way of communicat ing non-tr ivial ideas between humans is by
speech. It is very likely that the abi l i ty to speak was developing slowly for thousands of
years when our pre-historic ancestors l ived in the groups of 'hunters-gatherers'. Ce r t a in ly
they needed an efficient way to communicate the ideas to achieve a common goal, be it a
mammoth hunt, or taking care of youth, while other fellows were searching for food.

Since then, the way of life has changed, the culture and language have changed, and
also the technology has changed. A big leap forward was the invention of a script, which
allowed to 'conserve the speech'. Before that, the only way to preserve a message was to
memorize i t . The next huge step forward was the invention of the print. This allowed to
spread the knowledge to a larger mass of people. Wi thou t this invention, bo th the industr ial
revolution and modern education would not be possible. Nowadays, we live i n an electronic
era, a data-gram equivalent to the content of a whole book can be transferred v ia Internet
to the other side of our planet i n a fraction of a second wi th almost no cost.

Our ancestors would definitely be bewildered seeing us communicat ing wi th 'computer
machines'. The means of human-machine communication also evolved over t ime. The
perforated paper-cards were replaced wi th keyboards and terminal screens. Later on, after
inventing a computer mouse, the graphical user interface was born. The keyboard and
mouse are the dominant interfaces unt i l now. Despite their huge success, they also have
some l imitat ions. They require space, they are operated by hands and typically, the user
needs to have a mental capacity to process the visual feedback from the screen.

The lack of space becomes a l imi t ing factor in the case of small devices, like smart-phones
or tablets. These are usually equipped wi th touch-screens, however wr i t ing on them is not
comfortable. Then, a good example of a cognitively loaded person would be the driver, who
would like to make a call or to control the GPS-naviga t ion . In both cases the interaction
using natural speech is a good alternative to the t radi t ional input methods.

Other successful uses of speech recognition are in the fields that t radi t ional ly involve
dictat ing for documentary purposes. Th is is the case of medicine, courts, state administra­
tive and parliamentary talks. Speech recognition might also be interesting for companies,
where it can be used to keep track of internal meetings or it can be integrated into customer
care systems.

A very specific area is the on-the-fly generation of TV-capt ions , which is done by re-
speaking the simplified content by a shadow speaker i n a space wi th controlled acoustic
conditions [Trmal et al . , 2010]. The subtitles need to be generated rapidly, there is only a
l i t t le t ime for correction of the recognition output. A l i t t le easier si tuation is the off-line
production of video transcriptions, where processing t ime does not matter. The speech

5

recognition output can then be used to bu i ld an index and make the multimedia-document
searchable for keywords, as is done i n Superlectures1. This system enables textual search
for video lectures, conference talks, or recordings from various events.

Lastly, speech recognition is used as a front-end of the machine translation systems,
which makes the 'speech to speech translation' possible, as it is demonstrated by the Google
Translate appl ica t ion 2 .

Nowadays, speech recognition is commonly used to search the Internet from mobile
devices. The speech is also an input interface to the personal assistants like S i r i , Cor tana or
Google Now. Slowly, speech recognition is finding its way to our home gadgets like TV-sets ,
light switches, etc. A recent product is the question-answering machine A m a z o n E c h o 3 .
It is equipped wi th a speaker and a microphone array for improved robustness on distant
speech. It can be asked about news or weather, it can read a W i k i p e d i a page or play a
music on demand. Technically, it is a hardware client, while the speech recognition and the
dialogue management is running in a cloud server.

It really seems that we are experiencing the golden era of speech recognition. The
companies are investing into the new trendy technology, while the speech recognition is used
in many ways. However, it is a result of a long evolution. Very interesting documents are
the popularizat ion videos from the historic speech projects at Carnegie Mel lon Universi ty:
Hear Here1 (1968), Hearsay5 (1973) and Harpy® (1976). A t the t ime voice commands were
used to control a robot to move simple objects like cubes or chess figures. It is very likely
that the speech recognition research d id also inspire the authors of science fiction literature
to write about intelligent computers w i th voice interface: the H A L i n 'Space odyssey 2001',
the human-like robot C - 3 P O in 'Star wars', or the spaceship computer in 'Star trek'.

F rom the more serious history, a remarkable researcher wi th Czech origin was Fred
Jelinek (1932-2010) , who founded and led a research team at I B M i n 1972-1993. Inspired
by Shannon's work on the information theory, he pioneered wi th his colleagues the use of
statistical methods for speech recognition [Jelinek, 1976], which led to adoption of Hidden
Markov Models . A rumor says that in '70 the computers were becoming fast enough for
the standard tasks, which was not a favorable prediction for selling new computers. W i t h
speech recognition, it was clear that there w i l l be need for new faster computers, once the
technology was ready for massive use, which motivated the industr ial research.

Al though there was a tremendous research progress i n the last few years, especially after
the Deep Neural Networks were introduced, the current Automat ic Speech Recognit ion
(A S R) systems are not perfect. A l though the recognition of formal talks, conversational
telephone speech and meetings does have an acceptable performance ranging between 10-
25% of word error rate, a big challenge remains the far-field speech recognition of informal
speaking style, here the error rate ranges 35-50%. Then, an unresolved problem remains the
A S R of recordings wi th overlapped speakers, recorded by 1 microphone. Another challenge
might be the l imi ted amount of noisy t raining data, the W E R can increase up to 50-70%,
which we observed while working on Babe l program.

Another l imi ta t ion of current A S R systems comes from the nature of its supervised

x h t t p : //www. super lectures, com/
2https://support.google. com/translate/answer/6142468?co=GENIE.Platform7„3DDesktop&hl=

en&oco=0
3 h t t p s : //www.youtube.com/watch?v=KkOCeAtKHIc
4 h t t p s : //www.youtube.com/watch?v=8MrkioDG2xU
5 h t t p s : //www.youtube.com/watch?v=McrSCrl4mUc
6 h t t p s : //www.youtube.com/watch?v=N3i6NoUZsSw
7 h t t p s : //en. wikipedia.org/wiki/Frederick_Jelinek

6

https://support.google
http://www.youtube.com/watch?v=KkOCeAtKHIc
http://www.youtube.com/watch?v=8MrkioDG2xU
http://www.youtube.com/watch?v=McrSCrl4mUc
http://www.youtube.com/watch?v=N3i6NoUZsSw
http://wikipedia.org/wiki/Frederick_Jelinek

machine-learning. To develop an A S R system for a new language, we need to carefully
transcribe at least few hours of the t raining recordings. Then, for the language model
training, we need a text corpus, ideally wi th vocabulary and speaking style similar to the
target domain, in which the recognizer w i l l be deployed. We also need a linguist to design
a phone-set and create a pronunciation lexicon. Final ly , the acoustic conditions i n target
domain need to be similar to those i n the t raining data, otherwise a mismatched acoustic
model w i l l cause performance degradation.

Fortunately, many of the problems are part ia l ly solved: The robustness is improved by
various acoustic feature normalizations or by capturing the signal by microphone array and
processing the multi-channel input (beam-forming, de-noising, source separation, . . .) . The
pronunciation lexicon can be replaced by a graphemic one at the cost of small degradation in
performance (typically few percents of W E R) . The text corpus can be prepared by cleaning
downloaded web resources.

A n d finally, in the case of having only a l i t t le amount of the transcribed training data,
we can improve the acoustic model by using the untranscribed data i n the semi-supervised
training, which is the main topic of this thesis.

1.1 Motivation

The state-of-the-art Au tomat ic Speech Recognit ion (A S R) systems need carefully transcri­
bed and thus expensive data to be trained on. It is therefore i n the interest of the research
community to search for such techniques that w i l l help to reduce this 'cost barrier' , and
make the A S R technology more accessible both for commercial and non-commercial use.

The idea of semi-supervised t raining is to improve the system by using non-transcribed
data. This is done by generating automatic transcripts along wi th their confidences, i.e. the
probabil i ty of being correct. Then the performance is improved because of better acoustic
models trained on more data. We are using a 'self-training' scenario, where a small part of
data is transcribed manually. Th is allows us to t ra in a 'seeding' system, which we use to
generate the automatic transcripts, that we later use for the self-training.

The self-training of A S R systems has been studied extensively. However, at that time,
the dominant acoustic models were G M M s (Gaussian Mix tu re Models) [Wessel and Ney,
2005, Wessel et al . , 2001]. These are typical ly trained generatively by E M algori thm. In
this model, each acoustic unit is described by a G M M , i.e. a probabil i ty density function
estimated on its associated data-points. In the E M training, the models do not par t i t ion
the feature space exclusively, so two acoustic units can have similar distributions. A minor
part of wrong labels i n the t raining data, may not have too bad influence on the final model.

However, the current state-of-the-art acoustic modeling is based on neural networks,
which are usually trained discriminatively to classify feature frames into a closed set of
acoustic units. Here the classification is exclusive, the posterior probabil i ty is sub-divided
among the acoustic units, which makes the t raining potentially less robust to wrong labels.

For this reason, it is interesting to re-visit some of the older techniques and to use them as
an inspirat ion for developing a self-training recipe for current state-of-the-art A S R systems.

7

1.2 Scope of the thesis

In this thesis is presented a systematic study of acoustic model self-training. The acoustic
model is a feed-forward Deep Neural Network and I searched for answers to these crucial
questions:

• W h a t is the most suitable confidence granularity for the semi-supervised D N N train­
ing. Should we extract confidences: per-sentence, per-word, per-frame?

• How should we use the confidence, for data selection or for weighted training?

• W h a t is the 'ideal confidence' ? W h a t should be its role in self-training?

• Is confidence cal ibrat ion important?

• Do we need to further post-process the self-trained model by using the correctly tran­
scribed data?

• C a n we bui ld a simple generic recipe that is applicable to different data-sets?

In the thesis I worked wi th feed-forward neural networks w i th sigmoid units. It is
likely that the observations w i l l generalize to other types of networks, although we d id not
part icularly investigate this in detail .

T h e K a l d i 'nnet l ' recipe

Before the experiments w i th semi-supervised t raining were started, I have developed and
made publ ic ly available the D N N training recipe 'nnetl' as part of the toolkit Kaldft. The
design of this implementation was part ia l ly inspired by my previous project TNet9. B o t h
tool-kits are used by other researchers in various laboratories or companies from all over the
world.

The ' n n e t l ' recipe consists of Restricted Bo l t zmann Machine pre-training, the min i -
batch frame classification t raining and the sequence-discriminnative s M B R training. The
important aspects of the recipe are covered in chapter 3, which sources mainly from my
own publications. This recipe represents a solid basis upon which the semi-supervised
experiments are performed.

http: / / k a l d i - asr.org/doc/dun 1.html
'http: / / speech.fit.vutbr.cz/software/neural-network-trainer-tnet

8

http://asr.org/
http://speech.fit.vutbr.cz/

1.3 Original claims

1. In this thesis is performed an extensive study of semi-supervised t raining of D N N in
which we use confidences extracted from a single A S R system.

2. I have carefully compared the scenarios in which the confidences are extracted per-
sentence, per-word or per-frame. A l o n g the way are also compared other state-of-the-
art confidence measures, and it is shown that our preferred confidence is better.

3. F rom the results is apparent that standard 'sentence selection' approach provides only
l imited performance improvements. Better results are achieved either w i th selecting
smaller units (words, frames) or from the use of weighted t raining wi th some appro­
priate scaling mechanism.

4. I also identified a simple rule for setting an opt imal threshold i n word-selection, which
generalizes both for Babe l Vietnamese and Switchboard Engl ish . The amount of
words added in self-training is determined by word accuracy from development set.
Such simple system is not far from our best recipe, which involves a time-consuming
grid search over a hyper-parameter.

1.4 Structure of the thesis

This thesis is organized as follows: i n chapter 2 we introduce the theoretical view on speech
recognition and back-propagation algori thm. In chapter 3 we describe K a l d i ' n n e t l ' recipe
that we implemented, it is used as experimental framework in other chapters. A n important
part of chapter 3 is 3.1.3 which describes sequence-discriminative t raining [Veselý et al. ,
2013a], and 3.2 dealing wi th acceleration of D N N tra ining [Veselý et al . , 2010].

Then, i n chapter 4 are described the data-sets we worked wi th . In chapter 5 we start
discussing semi-supervised training, i n 5.2 we discuss the key design questions, and i n 5.3 is
a literature survey. In section 6.1 are presented our experiments from [Veselý et al . , 2013b],
being followed i n 6.2 by unpublished approximative cal ibrat ion of confidences.

In chapter 7 we perform a systematic search of best use of confidences i n semi-supervised
training. We experiment w i th per-sentence, per-word and per-frame confidences. Simulta­
neously, we compare data-selection and data-weighting. W i t h the data-weighting, we also
introduce cal ibrat ion of confidences, trained on development data. In al l setups we post-
process the model by re-training wi th manually transcribed data.

After the 'exploration' in chapter 8, we identify a recipe that generalizes across different
experimental setups. A selection of experiments from chapters 7 and 8 was published in
[Veselý et al . , 2017]. Final ly , in chapter 9 we experimented wi th two-system combination
for generating automatic labels, which d id not bring performance improvement. The thesis
is concluded by final remarks in chapter 10.

9

Chapter 2

Introduction to Neural Network
based speech recognition

In this chapter, we introduce the theory of speech recognition, the models that are used in the
recognizer and the derivation of the back-propagation algorithm for neural network training.
If the reader is already familiar with these topics, he/she may consider skipping this chapter.

2.1 The history of neural networks in speech recognition

In each epoch, the modeling techniques were adapted to the possibilities of the current com­
puting hardware. Originally, the speech recognition systems were based on vector quantiza­
t ion at phone center-marks [Jelinek, 19'] and a processing of strings of symbols represent­
ing the acoustic-units. Later on, the vector quantization was replaced by more demanding
Gaussian Mix tu re Models (G M M) and the Hidden Markov M o d e l decoder was introduced.
The G M M s were later refined by using context-dependent phonemes, which made both the
systems better and the models larger.

The idea of neural networks as acoustic models i n A S R systems is not a question of the
last decade, when it finally became popular. A lot of work has been done i n the late 80's
and in the first half of 90's in the laboratories at O G I , ICSI and I D I A P under supervision of
Herve Bour la rd and Nelson Morgan [Bourlard and Morgan, 1993]. A very interesting work
focused on recurrent neural networks was done at Cambridge by Tony Robinson [Robinson.

2]. However, the computers were slow and the acceleration of the t raining required to
develop a specialized hardware such as S P E R T - I I cards [Wawrzynek et al. , 1996]. A t that
time, better results were achieved wi th G M M s , which are easier to t ra in fast in parallel on
a cluster of computers.

A small renaissance of neural networks then came around year 2000, started by the
discovery that they can be successfully used to produce input features for G M M s [Sharma
et al . , 2000]. Initially, in the form of post-processed N N outputs, while i n 2007 [Grezl

] it was found that even better results can be obtained wi th bottleneck features
extracted from a narrow hidden-layer.

Final ly , the big success of neural networks came after year 2010 [Hinton et al . , 2012],
when it was shown that the D N N s can efficiently replace the G M M acoustic models, de­
creasing the word error rate by 1/3 compared to a G M M model trained on the same P L P
features [Seide et al . , 2011b]. However, this huge boost of performance, which attracted
a lot of attention, is not achieved when we replace G M M s by D N N applied on top of the

10

bottleneck features [Túske et al . , 2012].

Nowadays, the neural networks are the most common acoustic model i n speech recogni­
t ion applications. This would not be possible without an affordable way to accelerate the
t raining either by using the computat ion on the graphic cards (G P G P U) [Scanzio et al. ,
2010, Veselý et al . , 2010] or by dis t r ibut ing the t raining wi th in a cluster of computers [Dean
et al. , 2012] or by a combination of both [Povcy ct al. , 2014].

Because the neural networks have become popular, a lot of effort focused on experiments
w i th their internal structure and the t raining procedure. For example, the t radi t ional sig­
moid activation functions were replaced by rectified-linear units [Glorot et al . , 2010, Zeiler
et al . , 2013], max-out units [Goodfellow et al . , 2013, M i a o et al . , 2013, Swietojanski et al . ,

] or its more generic form called p-norm [Zhang ct al . , 20141)]. Another largely discussed
technique is drop-out [Wager et al . , 2013, Srivastava ct al . , 2014], where hidden-neuron
outputs get discarded randomly, which helps to avoid early co-adaptation of neurons and
over-fitting.

Another branch of experiments has focused on the recurrent neural networks, which
can transfer the inner state over t ime v i a recurrent connections. In the recent past, the
recurrent networks became popular for language modeling [Mikolov et al . , 2010], and later
also for acoustic modeling as the Long Short Term Memory (L S T M) networks [Hochreiter
and Schmidhuber, 1997, Gers et al . , 2000, Sak et al . , 2014, Senior et al . , 2015].

In this thesis, we l imi t our research to the feed-forward neural networks wi th sigmoid
activation function. We believe that the effectiveness of semi-supervised t raining is 'orthog­
onal ' to the changes i n the neural network structure, and it is very likely that the well
performing techniques w i l l generalize. A t the same time, our feed-forward networks have
st i l l quite competitive performance. The recipe was successfully used i n the B a b e l 1 evalua­
tions, where our D N N system was the best single system in the Babelon team in the years
2013, 2014 and 2015.

2.2 The problem of speech recognition

According to the theory of Au tomat i c Speech Recognition (A S R) , the problem is to correctly
recognize the sequence of words that corresponds to the 'observed' acoustic signal.

As i l lustrated in figure 2.1, the input is a speech signal, while the output is the recognized
text. The processing is subdivided into 3 stages.

Feature
extraction

Matching of
acoustic units

Decoding Recognized
text

Figure 2.1: Architecture of speech recognizer

The purpose of feature extraction is to compress the waveform i n a sequence of fixed-
length vectors of low dimension. Usually, we extract one vector per a 10 ms step from
25 ms long chunks of speech signal, i.e. the speech frames. The encoding must preserve the
information relevant for recognition and suppress the irrelevant information. For example, in
the case of speech recognition, we t ry to suppress the differences across speakers, genders,
dialects, microphones etc. The typical feature extraction is based on signal processing
techniques such as filtering and Discrete Fourier Transform. Usually, Fourier spectrum

1http://www.iarpa.gov/index.php/research-programs/babel

11

http://www.iarpa.gov/index.php/research-programs/babel

is post-processed to obtain a representation convenient for the machine-learning models.
Typical ly , the short-term spectrum is projected into a set of triangular filters, ' s i t t ing ' at
different frequency ranges, and some further processing steps are performed. The most
popular feature extraction methods for A S R are F B A N K s (log-Mel filterbanks), M F C C s
(Mel-frequency cepstral coefficients) and P L P s (Perceptual Linear Predict ion) .

In Match ing of acoustic units, we 'convert' the features into scores of some closed
set of acoustic units. For i l lustrat ion, one can think of phonemes as units. The acoustic
scores are computed by an acoustic model, usually a Gaussian Mix tu re M o d e l (G M M) or a
Deep Neural Network (D N N) . Formally, each score is a l ikel ihood P(x\s), i.e. the density
function value for the feature vector x given the identity of acoustic unit s. The acoustic
models i n general are trained on a set of speech recordings, the t raining is usually supervised
by manual transcriptions. Naturally, better models are obtained when more t raining data
is used. For a poor system, we need to have at least few transcribed hours, while up to
hundreds of thousands of hours are used in some companies. For the training, the feature
vectors need to be assigned to acoustic units. This is not done manually, but by using a
forced-alignment to reference transcripts w i th some existing model . If there is no model yet,
equal lengths are assigned to al l acoustic units in an utterance.

In Decoding, we search for the most l ikely word sequence W that corresponds to the
'observed' sequence of feature vectors X . This is done by a search i n a huge graph of al l
the possible hypothesis, where we combine the scores from the acoustic model, language
model and lexicon. A typical decoding algori thm is based on two ideas: token passing
and beam search. The idea of token passing is a frame-by-frame cycle advancing i n time
over the input features, and for the current frame we have a stack of tokens wi th part ia l
recognition paths. In the next frame, each token is expanded into many new tokens wi th
the possible continuations of the hypothesis. To avoid having too many tokens, some of
them are discarded. O n l y the tokens wi th scores wi th in some margin from the best token
survive; this is the idea of beam search. This local and greedy heuristic makes the speech
recognition fast enough for practical use, however it can lead to a search error, i f a more
accurate path is discarded because its token 'fell-out' of the beam. Practical ly, the beam-
wid th is the distance of the scaled log likelihoods of part ial recognition hypotheses, and we
should make sure the beam is large enough, so that its further extension does not improve
the recognition results.

2.3 Models in speech recognition and decoding

Mathematical ly, the decoding is formulated as finding the word string W w i th the maximal
a posteriori probabil i ty given the sequence of input feature vectors X = (x i , X 2 , . . . , X J V) :

where the prior term P(W) corresponds to the probabil i ty of the word sequence without
using any acoustic information. Practical ly, this score is obtained from a language model
(e.g. an n-gram) trained on a large text corpus. Then we have the l ikel ihood term P (X | W)

B y using Bayes rule we can rewrite this expression as:

W = arg max
w

P(X\W)P(W)
(2.2)

12

from the acoustic model, which is the score of the feature vector X given the word sequence
W. The l ikel ihood term P (X | W) involves the sum over a l l state sequences corresponding
to our word-string W, while P(x\s) are the likelihoods of the acoustic units i n those state-
sequences. The normalizat ion term P(X) can be ignored as it is constant for any word/state
sequence.

For practical reasons, the formulation i n K a l d i is simplified to the search of the most
likely state sequence S. Th is is mapped to the corresponding word sequence by the mapping
function 'wrds':

W = wrds (a r g max ^ ^ ^) • (2-3)

In other words, instead of getting the score of a word-string by marginalizing over al l its
possible state-sequences, only the best state sequence is considered in the decoding process.
The decoder becomes simpler and faster.

2.3.1 L a n g u a g e m o d e l

We begin wi th language model, which is the highest-level model i n speech recognition. The
role of language model is to assign a probabil i ty to any word sequence W = (u>i, W2, • • •, WM)
from the language. In the very popular N-gram language model, we model the probabil i ty
of a current word by considering a l imi ted history of the previous N — 1 words. In case of
t r igram model, the probabil i ty of a word w\ is P{wi\Wi-\, Wi-2). The model is trained on a
large text corpus, where we count the N-tuples of adjacent words (i.e. the N-grams). The
max imum likelihood estimate of N-gram probabil i ty is the fraction of the actual t r igram
count divided by the sum of trigrams counts sharing the same history:

P(Wi\Wi-i,Wi-2) = ^ 777 r • (2.4)
C{Wi-2,Wi-i,Wj)

The text corpus for the t raining should ideally cover the target area that the recognizer
w i l l be used for (similar topic, speaking style).

A s there w i l l always be val id combinations of words that do not appear i n the training
corpus, there is a mechanism to assign them non-zero probability, which is called smoothing.
In this case, we back-off to the model of a lower order (bigram, unigram), while part of
the probabil i ty mass is redistributed to the back-off model . For instance, the Kneser-Ney
smoothing [Cneser and Ney, 1995] is a popular method.

The term P(S) i n (2.3) includes the language model scores P{wi\Wi-\,Wi-2)- W i t h no
or l imi ted history available at the beginning, we use unigram score P(w\) or b igram score
P(w2\w1).

2.3.2 L e x i c o n

The lexicon is a mapping of words into strings of phonemes. It tells us how to bu i ld the
H M M of a word and it allows sharing of acoustic units among words. The H M M of a word
is buil t by connecting the H M M s of the acoustic units corresponding to the pronunciation
in the lexicon. It can contain mult iple pronunciations of the same word and their scores,
for example:

13

camera 1 k ae m r ax
camera 0.451613 k ae m ax r ax

In our experiments, the pronunciation probabilities are re-scaled wi th max-normalization
[Chen et al . , 2015], the score of the most l ikely variant is 1, the scores of other variants are
re-scaled accordingly.

If we fail to recognize a word because it is not in the lexicon, it is an Out of vocabulary
error (OOV). In this case, we can synthesize its pronunciation wi th a G 2 P model extracted
from the existing lexicon. The two most popular tools for this task are Sequitur [Bisani and
Ney, 2008] or Phonetisaurus [Novak et al . , 2016].

2.3.3 H i d d e n M a r k o v M o d e l

Each acoustic unit from the pronunciation lexicon is expanded into H M M model as in
figure 2.2. Because the durations of acoustic units differ and their pattern changes over
time, we represent each of them by 3 state Hidden Markov M o d e l (H M M) , where the 3
states model the beginning, the middle part and the end of the acoustic unit . Dur ing the

Figure 2.2: 3-state Hidden Markov Model, which models acoustic unit in ASR systems

decoding, the token is passed through all the states, while it is allowed to stay in the state
for several frames by traversing the self-loop transitions. Also note that the transitions
have associated transit ion probabilities aij, and the outgoing transit ion probabilities from
each state sum up to 1. A score of a path through the simple H M M i n figure 2.2 is the
product of al l the acoustic likelihoods P (x d s j) and the transit ion probabilities aij. In
a more complicated H M M called recognition network, the scores on H M M - l i n k s w i l l be a
product of transition probabilities, lexicon scores and language model scores.

2.3.4 H y b r i d acoustic m o d e l , context dependency , p r i o r t r i ck

A s can be seen i n a spectrogram (figure 2.3), speech is a continuum where one phoneme
changes into another one without a clear boundary between the phonemes. Moreover, the
realizations of phonemes are influenced by preceding and following phonemes, this influence
is called coarticulation.

Inspired by this, a more precise modeling in A S R system is achieved by having context
dependent phonemes, usually triphones. Each such unit is labeled as a triplet composed
of the preceding, current and the following phoneme. W i t h phone set size n, we get n3

triphones. Th is can be a lot. For example, w i th 40 phonemes there are 64k units. Moreover,

x = p(DDDis°>p(DDDDisi> p (D Q i s 2)

14

Figure 2.3: Spectrogram of a sample Vietnamese expression. Note the phone-alignment on
the top (from DNN).

each triphone is described by a 3-state H M M , which further increases the overall number of
context-dependent states. In practice, not a l l triphone combinations exist, and some may
be very rare. Therefore, it is better to cluster the HMM-s t a t e s corresponding to similar
sounds into so called tied-states, which leads to a model that is easier to t ra in . The tied-
state clustering [Young and Woodland, 1994] is obtained by training a decision tree. It is
trained by a top-down greedy spli t t ing, where, in each step, we add a split that maximal ly
increases the l ikelihood of data.

Coming back to the decoding formula (2.2), the term P (X | S I) is given as follows:

P(X\S)=iqL1P(xt\at), (2.5)

where st is the H M M state generating the feature frame x<.
In case of 'hybr id setup' (i.e. H M M decoding of N N outputs), the deep neural network

produces posterior probabilities of t ied states P (s | x) , while the formulation of maximum
a posteriori decoding expects the acoustic scores as likelihoods P(x\s). To convert the
posteriors into pseudo-likelihoods, we use:

P (x | .) = ^ , (2.6)

where P(s) is the prior probabil i ty of acoustic unit s. The P(s) can be estimated as relative
frequency of s in the set of t raining labels [Bourlard and Morgan, 1993]. Or alternatively by
marginalizing x from the posteriors by P(s) = £ 7 x [P (s | x)] on a representative set of t raining
data [Zhang et al . , 2014b].

2.3.5 C o m p i l i n g the recogni t ion network

The decoder in K a l d i is based on W F S T transducers [Mohri et al . , 2002], and it uses
a statically pre-compiled recognition network. The weights in W F S T are defined wi th
semiring K , which is an abstract algebra formed from a carrier set K, additive operator ®

15

and mult ipl icat ive operator ®. The elements of carrier set K can be real numbers, this is
used for recognition network. Or the elements can be tuples containing various types, which
is used to represent K a l d i lattices. The W F S T T over a semiring K is defined as 8-tuple:

T = (X,A,Q,l,T,E,\,p) , (2.7)

where:

E is finite set of input symbols,
A is finite set of output symbols,

Q is finite set of states,
1 is finite set of in i t ia l states, I C Q .

is finite set of final states, T C Q,
E is finite set of transitions, £ C Q x (E U {e}) x (A U {e}) x K x Q,

where e is an 'empty' symbol,
A is assignment of weights to in i t ia l states X —>• K.

P is assignment of weights to final states J- —>• K.

The finite set £ is a description links in W F S T . Each l ink has its source state q\ £ Q.
input symbol from (E U {e}), output symbol from (A U {e}), an element from carrier set of
semiring K (i.e. the 'weight') and a target state q2 G Q.

The theory of W F S T s describes following non-tr ivial operations: composition, deter-
minization, weight pushing and minimization. These are formally introduced i n [Mohri .
2004].

The recognition network is buil t by a composit ion of 4 graphs: H o C o L o G, where the
operator 'o' denotes W F S T composit ion. In the composit ion o, the output symbols from
the graph on the left are 'matched' w i th the input symbols of the graph on the right side,
and the weights are combined appropriately.

The grammar G is represented as a W F S T acceptor w i th word symbols and L M scores
on links (in acceptor the input and output symbols are the same). The standard A R P A
N-gram model can be converted to W F S T format in which each distinct N-gram history
w i l l have its W F S T state. Back-off states are also present i n the W F S T graph.

The lexicon L is represented as a transducer w i th phoneme input symbols and word
output symbols. The eventual homophones and the words pronounced the same as a prefix of
another word have appended disambiguation symbol after last phoneme, which is necessary
to have a determinizable L o G composition.

The graph C encodes the context dependency of phonemes: its input symbols are context
dependent phonemes, while the output symbols are the context independent phonemes
that were used i n the lexicon. We generate a l l the possible contexts and the composit ion
C o L o G 'selects' the existing combinations, which impl ic i t ly introduces cross-word context
dependency [Mohri et al . , 1998]. O n l y the silence 'phones' are always context independent.

The H transducer defines the H M M topologies for triphones, which consist of three
states connected by arcs w i th transit ion probabilities (see figure 2.2). The W F S T graph
contains H M M s for al l the triphones, connected in parallel by union. The output symbols are
triphones. In K a l d i , the input symbols are the transition-id's. Each transition id identifies
the phone, its particular H M M state and the corresponding probabil i ty dis tr ibut ion by
its pdf-id. The pdf-id corresponds to a G M M , N N output, or other source of 'acoustic
likelihoods' . The translation of transition-id to pdf-id is done outside of recognition network
in transition model. The transit ion model is usually embedded into the acoustic model file.

16

The preparation of H C L G decoding graph i n K a l d i is expressed as follows:

HCLG = asl(min(rds(det(tf o min(de t (C o min(de t (L o G)))))))) (2.8)

Note that each composit ion 'o' is followed by determinization det() and minimizat ion min()
steps. After the last composition, the disambiguation symbols are removed by rds() opera­
tor, and the H M M state self-loops are added into the graph by asl() operator.

2.3.6 R e w r i t i n g the decod ing f o r m u l a

To make the decoding formula (2.3) coherent w i th the implementation i n the K a l d i decoder,
we rewrite it as:

W = w r d s (a r g m a x P 4 M (X | 5) K P G (5) e), (2.9)

where the K is the 'acoustic scale' applied as exponent to the acoustic likelihoods
P A M (X | 5) and g is the 'language model scale' applied to the graph scores PG(S) (note
that PG(S) contains the language model scores P(W)). The scales K, Q are typical ly tuned
to provide the best recognition performance on a development set. Usually, g is fixed to 1.0
and the K is tuned i n range [0.05, 0.1].

Scaling down the acoustic score by a small K can be interpreted intui t ively as follows:
the durat ion of acoustic units usually spans over several time-steps of input features, and in
the decoding, we mul t ip ly the likelihoods of al l those frames. B y exponentiating the scores
wi th a small K = 1/K, we get the K-th root of the acoustic score, which can be seen as
the smooth version of taking the original unsealed scores from every K-th frame. From
empirical experience, it seems that the opt imal K is usually not too far from the average
duration of a syllable, which is 156.2 ms [Kuwabara, 1996].

The graph score PG(S) consists of al l scores on state sequence S except for the acoustic
ones: it involves language model scores Pi,M{wi\wi-\, Wi-2), the H M M t ransit ion probabil­
ities a S u S t + 1 and optionally the scores of pronunciation variants from lexicon PLEx(wi,v)'-

T-l |wrds(5)

pG(s) = n
t=l i=l

where S = (si, S2, • • •, ST) and wrds(5) = (wi,W2, • • •, WM)-

W h e n implemented in decoders, the scores are usually accumulated in log-domain, to
easily represent very small positive numbers arising from mult ip l icat ion of many probabil i­
ties.

2.3.7 Lat t i ces i n W F S T format

A s we w i l l be generating confidences based on lattice-posteriors, we w i l l describe them
together w i th some characteristics arising from the 'exact lattice' generation [Povey et al. ,
!012]. The lattice is a graph for representing alternative hypothesis of speech recognition

that is i n K a l d i represented by two types of W F S T s , which can be mutual ly converted.
The type Lat t ice is a trellis w i th per-frame arcs, here one H M M transit ion corresponds

to one arc i n the lattice. The input symbol is transition-id, output symbol is word-id or e,

17

and the W F S T weight is a tuple of acoustic score and graph score. Th is type is used mostly
as an internal representation i n the C + + code.

For storing lattices there is the type CompactLattice, it is a 'deterministic acyclic
weighted acceptor' i n which one arc corresponds to one word. Here, the input and out­
put symbols are identical words, and the W F S T 'weight' consists of: acoustic score, graph
score and a sequence of transition-id's that is obtained over the word's duration.

Due to the determinization algori thm described in 'Generating exact lattices' [Povey
et al. , 2012], each distinct word sequence is present in lattice only once (i.e. lattice is deter­
minist ic) , and wi th its best score. A s a side effect of weight pushing, the posit ioning of scores
and word-boundaries on a lattice path is not always properly synchronized i n time wi th the
original signal. The t iming can be fixed by K a l d i tool latt ice-al ign-words- lexicon.

2.3.8 F o r w a r d - b a c k w a r d a l g o r i t h m for latt ice

The forward-backward algori thm is used later for obtaining per-frame confidences of tied-
states from Latt ice . To get this, we first need to compute the 'responsibility' 7 (0 ?) rep­
resenting a condit ional probabil i ty of being in lattice-arc dj, given some lattice C. The
identity of lattice-ark a3- encodes impl ic i t ly t iming by length of any path leading to the arc,
as in Latt ice , each arc corresponds to one H M M transit ion. The tied-state of the arc is
identified from transition-id i n its input symbol.

The lattice l ink a,j is defined i n K a l d i type Lat t ice by following elements:

src(aj) source state in lattice from which the arc points out,
tgt(oj) target state in lattice into which the arc is pointing,
Sinput(a,j) input symbol (transition id),
S0utput(cij) output symbol (word id),
(PQ(O,J), PAM(O,J)) W F S T weight, tuple consisting of graph score and acoustic score

(already scaled wi th graph scale g and acoustic scale K).

The posterior probabil i ty 7 (0 ?) is then the total probability of crossing the arc a,j, computed
as a ratio of score-sum of al l paths that cross the arc (illustrated i n figure 2.4) over the
score-sum a n of al l paths i n the lattice:

7(0,-) = a s r c f e) a j / ? t g t f e) , (2.11)

where asrc^a.^ are forward statistics computed as the sum of scores on a l l paths TT in sub-
lattice jCxjSrc(aj) that spans between in i t ia l state X and the source state of our arc af

where a3- corresponds to the W F S T weights on our l ink a3:

o-i = pG(o-j)PAM(aj) , (2.13)

and where (3tgt(aj) a r e backward statistics computed as the sum of scores on all paths 7r
in sub-lattice £-tgt(aj),n that spans between the target state of our arc a3 and the final
super-state f i 2 :

2Because a WFST lattice can have more final states, we added final super-state Q (according to WFST
definition on page 16, the initial and final states have weights, other states have no weights).

18

Figure 2.4: Calculation of an arc-posterior 7(aj) in a lattice. Dynamic programming is used
to obtain the statistics a s r c (a i) , /3 t gt(a i) calculated for all nodes in the lattice. The statistics
represent the scores from all partial-paths leading into/from arc dj.

The efficient calculation of statistics a s r c (a i) , /?tgt(ai) is done for each state i n the lattice by
means of dynamic programming according to recursions, which sum over al l incoming arcs
a,i or outgoing arcs a&:

asrc(aj) = E otSRC(AI)PG{ai)PAM{ai) , (2.15)
a% S {a-i I tgt(a j) =src(aJ-)}

Agtfo) = E /3tgt(a f c)pG(afe)^AM(afe) • (2.16)
afce{afc|src(afe)=tgt(aJ)}

Recal l that, w i th K a l d i type Latt ice , the durat ion of each arc is exactly one data-point of
input features, hence the t ime info can be computed from number of traversed arcs. The
in i t ia l conditions for recursions are ax = 1 for in i t ia l state X , and /3n = 1 for terminal
super-state Q. The corresponding final alpha is:

« f l = E a / P c (/) (2.17)

where J- is set of a l l final states in the lattice, these have state weights PQ(/). The a n is
our normalizer term from (2.11).

A similar algori thm is used i n Baum-Welch t raining i n H T K - b o o k [Young et al . , 2002].
However, Baum-Welch algori thm considers a trellis of many H M M paths through a word,
while in our algorithm, we consider only the best H M M path of each word, as we use 'exact
lattice' generation [Povey et al. , 2012]. Other difference is that we defined the algorithm
for calculating posteriors of arcs, while the original H T K definition of Forward-Backward
algori thm produced posteriors of HMM-s ta t e s .

For the semi-supervised experiments we are pr imar i ly interested i n posterior probabil i ty
of acoustic units (tied-states) denoted as 7(t, s), meaning a posterior of tied-state s at t ime t.

19

We use transition model to convert the posteriors of arcs j(aj) to the posteriors of tied-
states j(t, s). If several arcs are mapped to same tied-state at t ime t, we sum the posterior
probabilities of al l such arcs.

In later chapters (for example 6.2), we wi l l use lattice-scale A. Its purpose is to have a
control over the 'uncertainty/sharpness' of the resulting lattice-posteriors. In our practical
implementation, we use A to simultaneously mul t ip ly the acoustic scale K and graphs scale
g. This effectively exponentiates the scores of whole lattice-paths, making them closer
or farther from the score of the best path, which translates to a change of 'sharpness' of
posteriors probabilities.

2.4 The Backpropagation training algorithm

The backpropagation algorithm is the standard algorithm for neural network training. It can
be found in the literature [Bishop, 2007], but we would like to explain it in our own illustrative
way.

The principle of backpropagation algori thm is shown on the computat ion of the update
(gradient) for a neural network wi th 1 hidden layer, while the extension to deeper networks
is simple. We consider a network wi th sigmoid non-linearity and the classification output
layer w i th softmax. The gradient is computed for single datapoint represented by an input
feature vector x and its target vector w i th 1-of-K encoding t = [o l o ... o]T, where the
element ' 1 ' identifies the N N output of the 'correct' class.

Neural network as a feed-forward function

A t first, we w i l l define the neural network as a structured function wi th trainable parameters.
Being a function, it maps the mult idimensional inputs to the outputs. It is organized into
'layers', and the typical feed-forward network consists of several alternating linear and non­
linear transformations. The smallest processing unit of a neural network is one neuron:

y

Figure 2.5: Functional scheme of one neuron

A s i l lustrated in figure 2.5, the neuron has vector of inputs x, and trainable parameters w
and b. Functionally, it computes the activation a as a weighted combination of the inputs
x T w plus bias term b. The output of the neuron y is obtained by transforming activation a
wi th a differentiable non-linear activation function / (.) , which can be defined i n many ways.
The single neuron wi th logistic sigmoid activation function is capable of binary classification.
The neural network is then composed of neurons going both into the wid th (parallel neurons
in single layer) and the depth (serially connected layers of neurons).

Now let's return to our example network. A s mentioned above, the activation of j-th

20

neuron in the first layer is given as:

aj = wjx + bj, (2.18)

each input feature Xi has its weight Wij, and a bias bj is added. For convenience, we can
group al l the neurons in the first layer and form a weight matr ix W^ 1) , i n which j - t h row
is our weight vector Wj. The biases are grouped into a vector Then, the activation
vector for al l neurons in first layer is:

a (i) = w (i) x + b (i) _ (2.19)

Here we should emphasize that the input vector x is the same for al l neurons in the first
layer.

The key element which gives the neural network higher representative power than simple
logistic regression is the nonlinearity i n the hidden layers. Wi thou t the non-linearities, we
could s imply mul t ip ly al l the weight matrices together to obtain the multi-class logistic
regression wi th no hidden layers. A very popular nonlinearity is logistic sigmoid, which
converts the numbers from interval (—00, 00) to probabil i ty-l ike numbers [0,1]. The sigmoid
is denoted wi th sigma a :

fi}) = M })) = — \ a) , (2 - 2 °)
1 + e x p (- a] ')

The output of the sigmoid is the hidden vector it can be seen as an intermediate
encoding of the input features, on the way towards the output of the neural network. Usual ly
we are not interested i n the actual values there, which is why we call the layers 'hidden' . It
is important that we can calculate the output of the neural network from these values.

Analogical ly to (2.19), the hidden vector h W is transformed wi th another affine trans­
form to the second layer activations a^2*1:

= w (2) h (1) + b (2) . (2.21)

F rom these, the posterior probabilities of classes yi are computed using the softmax function:

i (2 h _ e x p K)
y* - „ , (2) , ' y

E J e x p (a J

en+,J2vi = 1 (2-22)

A s i l lustrated i n (2.22), the softmax function ensures that we always obtain positive quan­
tities which sum-up to one.

To illustrate that our example neural network is one big structured function, we show the
forward-propagation formula i n which we compute the output y from the input vector x:

y = softmax (w (2) a f w (1) x + b (1)) + b (2)) (2.23)

A n alternative look at formula (2.23) is shown in figure 2.6, where the nodes represent
individual neurons and arcs the interconnections. The first layer of neurons produces the
hidden vector h , while the second layer produces the output y. The trainable parameters are
weight matrices W^1**, W^2*1 and bias vectors h^2\ In this example, al l the functions we
used are differentiable, so we can calculate the part ia l derivatives for the backpropagation

21

Figure 2.6: Structure of neural network, the nodes represent neuron outputs.

algori thm. In fact, the functions are also smooth, which is however not str ict ly required for
the t raining algorithm.

A related interesting question is: W h a t is the set of functions that can be represented by a
neural network? The studies from Cybenko [Cybenko, 1989] and Bar ron [Barron, 1993] show
that theoretically, they can approximate any continuous function wi th arbitrary precision, if
the neural network wi th one hidden layer has sufficient number of sigmoid neurons. A l though
this work does not say how to t ra in them, the statement is very promising.

From the practical experience, it is commonly agreed that it is advantageous to use many
hidden layers, which is the origin of the very frequently used term 'Deep Neural Networks'.
In our recipes, we usually use 6 hidden layers. A popular explanation is that w i th more
layers we better smooth out the feature variabil i ty that is irrelevant to the classification
task, and that the layers near the network output encode more complex features. However,
this intuit ive view is not easy to be validated practically.

Loss function, multi-class cross-entropy

Before we can derive the backpropagation training, we need to define a loss function to
optimize. For the classification of n- th data-point into 1-oi-K mutual ly exclusive classes,
the natural loss function is the multi-class cross-entropy (C E) :

K
£n(w) = - ^ t f c l n y f c . (2.24)

k=l

Recal l that vector t has 1-of-K encoding t = [o l o ... o]T, so that the sum picks-up the A;-th
element, which corresponds to the sole non-zero target. The loss value is always positive
and reaches zero min imum, i f the posterior vector y exactly matches the target vector t.
(note that in this section we denote t ime-id wi th subscript n to avoid confusion wi th training
labels t, i n other chapters t ime is denoted wi th t subscript)

In the more general case, when the 'soft' probabilistic targets are used (the l-of-.fr
encoding of t is replaced by a vector w i th positive values, which sum-up to one), it is
convenient to replace the cross-entropy wi th KL-divergence:

K
En(w) = DKL(t\\y) = - ^ i f e l n ^ (2.25)

k=i k

the difference is that the KL-divergence subtracts the entropy of the target labels and
reaches its zero min imum when y = t, while the cross-entropy would have a non-zero value

22

http://l-of-.fr

if tk $l {0,1}. W i t h targets t i n 1-of-K encoding, both functions become the same. The
derivatives wi th respect to neural network outputs are the same for both functions, and in
K a l d i ' n n e t l ' we implemented (2.25).

W h e n training on a data-set composed of T data-points, the overall loss is the sum of
the per-frame values:

T

E = Y,En- (2-26)
n=l

A n interesting value for the log-prints is the per-frame average E = E/T, which can be
converted to the geometrical-average posterior value of the correct class by pCOrr = exp(—E).
if we assume to have the 1-oi-K targets.

Stochastic gradient descent, update rule

The most popular t raining algori thm for neural networks is Stochastic Gradient Descent
(S G D) . The other frequent term 'backpropagation' refers to the way how the S G D gradient
is computed from the neural network.

The idea behind gradient descent t ra ining is to greedily minimize the loss by doing small
parameter steps in the direction of the opposite gradient, i.e. the direction of steepest
descent of the loss.

Stochastic Gradient Descent t ra ining is a gradient descent, i n which the model is updated
on-line after processing a single or a small group of randomly selected t raining data-points.
It is possible that, while the loss decreases on some samples, we can see a loss increase for
other samples. The overall t rend 'steers' the model towards the regions, where the loss is
low. Hence, the t raining progress is noisier and more 'exploratory' , and this lowers the risk
of converging to a poor local min imum.

Due to practical reasons, we usually do mini-batch S G D training, in which we calculate
the gradients for M data-points together (default M = 256). The data-points are grouped
into matrices where, for example, the matrix-vector mult ipl icat ion in (2.23) becomes matr ix-
matr ix mult ipl icat ion. This can better employ hardware by reusing data elements in cache
and better caching accelerates the passes through training data (i.e. epochs) considerably.

The update formula for the mini-batch S G D is:

M

w ^ ^ w W - ^ V K t w ^ 1) , (2.27)
n=l

where w (r) is a vector wi th a l l the trainable parameters, and V £ n (w ' T ') is the gradient
of En w.r.t. w^* 1 calculated on a single data-point x n . Note that we sum the gradients
from M data-points, and that r\ is learning-rate, i.e. a scalar controll ing step-size during
training. The suitable learning-rate value needs to be tuned carefully and depends on
many factors (network-type, non-linearity type, loss type, size of mini-batch, per-utterance
training, etc). B y the nature of S G D training, the updates of the parameters are 'noisy'
w i th a 'correct' global trend. Therefore, we can see the learning-rate as the temperature
of simulated annealing. B y controlled 'cooling' (i.e. decreasing) of the learning-rate, we
can reduce the exploration while approaching the end of the t raining and let the network
converge to a better solution.

Despite that S G D is a greedy first-order opt imizat ion method, it is known to converge
fast on the data-sets containing many similar t raining examples [Bishop, ' 7]. The final

23

Figure 2.7: Gradient descent, converging to different local optima depending on initialization.

set of parameters depends on the ini t ia l izat ion (illustrated in figure 2.7), and there typical ly
exist many weight permutations w i th identical functionality (swapped neurons). Hence, it
is a good practice to t ry several init ial izations to see the eventual differences in performance.

The size of mini-batch M should not be too small as it leads to a less efficient caching
(training run-time is slower), nor too large as it reduces the number of updates per epoch
(the overall progress of the t raining would become slower, more epochs wi l l be needed) a
good default value is 256 data-points.

Calculating the gradient by backpropagation

Now let's derive the gradient V E n (w ^) for a single data-point n from a mini-batch (the
gradient of mini-batch is a sum of the data-point gradients). We extensively use chain rule
to obtain Jacobian of function composit ion fog:

where / is the outer and g the inner function, while both functions are multi-dimensional.
The composit ion of Jacobians is linear, it is the product of two Jacobian matrices JfJg- In
Jg the row index corresponds to individual output of g, the column index corresponds to
input of g. The rule (2.28) can be used recursively, so that the Jacobian of the innermost
function appears on the right of the series of matr ix multiplications:

The reader might notice that we w i l l consistently use the 'numerator layout convention'
of matr ix calculus, in which the derivative keeps the orientation of numerator and flips the
orientation of denominator. The layout of 5^ is according to x T , layout of J^- is according

Derivative of output activations: Now let's apply the chain rule to gradient computa­
t ion. The Jacobian of the multi-class cross-entropy En (2.24) w.r.t. neural network outputs
y is a row vector:

(2.28)

•7/io/2o/3(a) = Jh(f2(h{a))) J/ 2 (/ 3 (a)) J/ 3(a) (2.29)

(2.30)

and the Jacobian of softmax function is a symmetric matrix:

Jsoftmax diag(y) - y y T . (2.31)
0a(2)

24

B y using the chain rule 2.28, we obtain the result:

= (- d i a g (y) - 1 t) T (diag(y) - yyT) = (y - tf (2.32)

It is not a coincidence that the derivative simplifies: the softmax is the inverse canonical
l ink function for the cross entropy loss. The same expression (y — t)T appears also for other
couples: the logistic sigmoid and two-class cross-entropy, and also for ' identity ' activation
and the mean square error.

Gradient of the parameters in the second layer: To calculate the gradient of loss En

w.r.t trainable parameters from the second layer W^ 2) b^2), we begin wi th their derivatives
from affine transform (2.21):

0a<2> (l) da?
hV —^ = 1, (2.33)

dwQ 1 dbf

B y using these in the chain rule, we get the following elements in gradient of loss:

dEn daf

dwl2) da(P dwl2)

dEn
dEn daf

daf dbf

(yj-t^hf (2.34)

(Vj - tj) 1 (2.35)

The same rewritten for the whole weight matr ix and bias vector:

0 E " h (1) (y - t f ^k = (y-t)T (2.36)
aw< 2> w ' dhW

Note that according to 'numerator layout convention', the derivatives have transposed ori­
entation compared to model parameters W^ 2) b^2).

Gradient of the parameters in the first layer: To calculate the gradient of trainable
parameters from the first layer W^ 1) b ^ , we need the Jacobian of loss derived w.r.t. acti­
vations a ^ . Recal l that a^2) is computed from a ^ by: a^2) = W ^ o ^ a ^) + b ^ , which
is a composite function created from the element-wise logistic sigmoid (2.20) and the affine
transform (2.21). Hence by substi tuting into the chain rule (2.29) we get:

dEn dEn <9a(2)
(2.37)

d a « <9a(2) dhW '

where the outer Jacobian is the already existing expression (2.32), the middle Jacobian comes
from the second layer affine transform (2.21), and the innermost Jacobian Ja corresponds
to activation function a (2.20). The Jacobian Ja is, for our logistic sigmoid, equal to:

J(j = d iag (h (1)) d i a g (l - h (1)) ,

and the middle Jacobian can be rewritten as:

da(2) d

dhW dhW
W (2) h (D + B (2) = W (2) J

(2.38)

(2.39)

25

hence we can rewrite the desired Jacobian of loss as:

dEn 8E,

9a(!) aa(2)
W(2) J . . (2.40)

Then, analogically to (2.33), the par t ia l derivatives of parameters b^1*1 from the first
affine transform (2.19) are:

da (i) da) (i)

dWJ-1) db{P
1 (2.41)

h3 J
so we can finally substitute (2.32) into (2.40) and apply the chain rule together w i th (2.41)
to get the gradients:

dEn

x (y - t f W(2) J c

dEn (y - t f W (2) J C T . (2.42)

Assembling the gradient for update rule: In update rule (2.27), the gradient V £ „ (w ' T ')
is represented as a single vector of part ia l derivatives w.r.t. al l model parameters w^T\ We
reshape the part ia l derivatives accordingly:

. r~\, / 0En dEn dEn dEn \ , ,

where the operation vec(.) concatenates the elements from al l its arguments into a single
vector.

Backpropagation, extension to L hidden layers

The idea of backpropagation is well i l lustrated i n formula (2.40): the error derivatives w.r.t.
activations in second layer are recomputed into derivatives w.r.t. activations i n preceding
layer. To support an arbitrary number of hidden layers, we can re-write this formula into a
generic version which converts the loss derivative from L - t h layer to (L — l) t h layer:

0 E " ° E ' 1 W ' " J C T . (2.44)

We use the formula iteratively from the last layer towards the first one. This computat ion
pattern of back-propagating the error derivatives is the origin of the term 'back-propagation'.
The gradients are then computed as:

dEn w l - i) 9En dEn _ dEn

dW(L) da(L) ' dh(L) daW '

where a^^ is the activation of the current layer and the h (i - 1) is the non-linearity output
from the previous layer, which becomes the input vector x for the first layer. Note that the
Jacobian J^gy is a row vector, as we use 'numerator layout convention'.

26

Alternative activation functions

In general, other activation functions can be used i n N N by changing its forward-propagation
formula and the corresponding Jacobian for the back-propagation.

In our example case, we would replace the logistic sigmoid (2.20) and its Jacobian
(2.38). The popular alternatives are Hyperbol ic tangent (Tanh), Rectified linear units
(R e L U) [Glorot et al . , 2010, Zeiler et al . , 2013], M a x i m u m output (MaxOut) [Goodfel-
low et al . , 2013, M i a o et al. , 2013, Swietojanski et al . , 2014], p-norm [Zhang et al. , 2014b] or
Identity function. The Identity function (i.e. the linear activation function y = x) is useful
for a 'narrow' bottleneck layer inside a neural network [Veselý et al. , 2011] or for factorizing
output layer [Sainath et al . , 2013].

Relation to logistic regression

If we compare the gradient of the last layer (2.36) w i th the form of gradient for multi-class
logistic regression in Bishop [Bishop, '. 37, page 209, eq. (4.109)], we see that they are
identical. Therefore, it is meaningful to perceive the neural network as a logistic regression,
in which the non-linear basis functions (i.e. the feature transformations) are parametrized by
the hidden layers of neurons. The difference is that for neural networks, the basis functions
are learned together w i th the classifier. In the case of the logistic regression, the non-linear
basis functions are typical ly pre-defined and fixed. Or , alternatively, we can see logistic
regression as a neural network wi th no hidden layer.

A t the same time, the logistic regression can perfectly classify only simpler problems,
where the classes are linearly separable. F rom this, we can infer that the hidden layers
should learn such feature representations, that become close to be linearly separable i n the
last hidden layer. However, the 'quali ty of separation' depends on the data-set, the similari ty
of classes and the overall difficulty of the task to be learned.

At this point, we end our introduction to the neural network based speech recognition.
The reader should already have an idea about the general structure of the system and the
principle of back-propagation training.

27

Chapter 3

Kaldi 'nnetl' D N N training recipe

After the introduction, we proceed with the description of the DNN training recipe that we
implemented into the open-source toolkit Kaldi. In this chapter, we first cover the general ex­
perimental setup and continue with sections describing RBM pre-training, mini-batch frame
cross-entropy training and sequence-discriminative sMBR training. The chapter ends with
notes on the scalability of the mini-batch training.

Acoustic units

A s mentioned earlier, the D N N acoustic model provides the posterior probabilities P (c | x)
for a closed set of acoustic units. The typical acoustic units are the clustered states from
3-state H M M s , which model the context-dependent (CD) phonemes. Such units are often
referred to as tied-states, CD-states or senones. The clustering is determined by a decision
tree, which is buil t by a greedy rule that adopts the splits w i th the best increase of the data
l ikelihood. Depending on the size of t raining set there are usually thousands of CD-states.

The neural network is trained to classify them exclusively, the Softmax function from
equation (2.22) i n the output layer ensures that the posteriors of al l the acoustic units
are non-negative and sum to one. For decoding, the posteriors are converted to pseudo-
likelihoods P (x | c) by d iv id ing them wi th priors P(c) as i l lustrated earlier i n equation (2.6).

Input features

There are many ways how to prepare the input features for a neural network, and new feature
extraction methods are published at every conference. Usually, the feature vectors on N N
input cover t ime period 150-300ms, and they are assembled from short-term feature vectors.
The short-term features are typical ly computed from 25ms frames of speech extracted wi th
10ms steps.

The features we use are the P L P - f M L L R speaker-adapted features. To produce them,
we need an in i t ia l G M M - H M M system, which is used to estimate the speaker specific linear
transform f M L L R .

The feature extraction pipeline i n figure 3.1 shows that we begin from the P L P + p i t c h
short-term features. Then, there are two stages, the first w i th a G M M model and the second
wi th D N N model.

The G M M - H M M features are obtained by splicing 9 frames of the 'short-term' feature
vectors (4 on each side from the 'current' frame). The short-term features are 13-dimensional
P L P s (including CO) extended by 3 Ka ld i -p i t ch features [Ghahremani et al . , 2014] (proba­
bi l i ty of voicing, pi tch, delta pitch), which are both mean-variance normalized by C M V N .

28

13 PLPs

3 kaldi -pitch J

CMVN 16 Splice
+/-4

L D A x
MLLT

40
fMLLR
—I

GMM

Splice
+/- 5

Norm.
E(X)=0

Var(X)=l

440
- V * DNN

Figure 3.1: Input features of the DNN.

Our telephone speech has 8kHz sampling frequency, so the P L P s are computed from the
frequency range 125-3800Hz and we use dithering. The spliced features were projected down
to 40 dimensions using a global L D A - M L L T linear transform and per-speaker f M L L R linear
transform. The f M L L R transform is obtained wi th a G M M trained i n the adapted feature-
space. For test data, the transformation is obtained by the multi-pass decoding wi th the
G M M model .

Then, for the D N N input, we splice 11 frames of the 40-dimensional f M L L R features
(5 on each side of the current frame), and we rescale them globally to have zero mean and
unit variance. The total dimension of D N N input is 11 x 40 = 440.

This setup is used i n most of the experiments, the exceptions are described locally
in the text. Eventually, we can obtain a small improvement i n recognition accuracy by
replacing the L D A + M L L T + f M L L R linear transform wi th a non-linear bottleneck network
and f M L L R . However this would make the analysis of semi-supervised D N N training more
difficult, so we keep using this simpler setup.

N N topology, initialization

The typical neural network we use i n this thesis has 6 hidden layers of 2048 Sigmoid neurons.
The neural network has 440 inputs (the spliced f M L L R features) and thousands of Softmax
outputs (for example for Vietnamese 4599 outputs).

There are three ways to init ial ize a neural network, either w i th a) small random num­
bers or by b) unsupervised pre-training wi th R B M s or by c) supervised discriminative pre-
training. In our recipe, we use the R B M pre-trainig, which allows us to use an 'universal'
topology and obtain good results for many training sets (except the really small ones for
which we need to use smaller network).

D a t a randomization, mini-batch training

The idea of Stochastic Gradient Descent t raining (S G D) is to randomly draw samples from
the dis tr ibut ion of the t raining data and perform small updates of model parameters in the
opposite direction of the gradient of a loss function, which decreases the loss.

Having a t raining data-set of finite size, the 'sampling' \s usually understood as random­
izing the order in which the data is used for t raining. Hence, we typical ly shuffle the list of
t raining sentences. Then, for the mini-batch t raining as introduced i n equation (2.27) and
also for the R B M pre-training, there is an addit ional frame-level shuffling mechanism inside
the t raining tools. We can use the fixed ' random' order for a l l the epochs, usually it has
l i t t le effect on the final results and the experiments become replicable.

For the recurrent networks, we need a different approach. We need to keep the continuity

29

of the sentence, so we cannot shuffle the speech frames. Instead, we can process several
sentences in parallel, which accelerates the t raining as more frames are processed in one
step.

3.1 Training the D N N acoustic model

The training recipe consists of RBM pre-training, frame classification training with cross-
entropy loss function and sequence discriminative training with sMBR loss function. All the
three steps are described in the following sections.

3.1.1 P r e - t r a i n i n g w i t h D e e p B e l i e f N e t w o r k (Res tr i c t ed B o l t z m a n n M a ­
chines)

The Deep Belief Networks (D B N) were a hot topic i n the D N N based speech recognition in
2010. The model and its theory were developed i n the laboratories of Geoffrey Hin ton [
ton et al . , 2006] and Yoshua Bengio [Bengio et al. , 2007]. We can see the D B N pre-training
as one of the regularization methods as it bo th reduces over-fitting and improves the re­
sults, when compared to the randomly ini t ia l ized network. A great source of D B N related
information is the 'Prac t ica l guide' from Geoff Hin ton [Hinton, !012], which we used as a
basis for our implementation.

Deep belief nets are probabilistic generative models that are composed of multiple layers of
stochastic, latent variables. The latent variables typically have binary values and are often
called hidden units or feature detectors. The top two layers have undirected, symmetric
connections between them and form an associative memory. The lower layers receive top-
down, directed connections from the layer above. The states of the units in the lowest layer
represent a data vector.

Scholarpedia1

According to this definition, D B N could be used to generate speech data. However, we
typical ly use it for the unsupervised ini t ia l izat ion of the hidden layer parameters. It learns
the structure of the data before we start the supervised training, in which only the output
layer is ini t ia l ized randomly. The theoretical backgrounds of generative D B N and discrim­
inative D N N are very different, however the neurons are organized in a 'compatible ' way,
which allows us to import them. Briefly, the R B M s (i.e. the 'layers' i n D B N) are trained by
lowering the 'energy' w i th the Contrastive Divergence algori thm [Hinton ct al . , 2006] based
on Gibbs sampling.

Thanks to pre-training a D B N , the over-fitting is less of a problem, which is part icularly
helpful for small t raining databases. For larger databases, we st i l l obtain a small improve­
ment, as i l lustrated i n table 3.1 in which we always see a gain from the D B N pre-training.
The W E R improvement for Switchboard is 0.3%, the A M I I H M improved by 0.4% as we
recently published i n [Veselý et al . , 2016, table 2]. The large gain of 1.7% for Babe l Vie t ­
namese L i m i t e d L P condit ion is caused both by smaller amount of t ra ining data and higher
error rate.

Other benefit of D B N pre-training is that it aleviates the gradient vanishing/explosion
problem [Hochreiter, 1991], which can easily happen if the random ini t ia l izat ion of the deep

x h t t p : //www. scholarpedia.org/article/Deep_belief_networks

30

http://scholarpedia.org/article/Deep_belief_networks

Table 3.1: Comparing randomly initialized NN and DBN pre-training. The topology of 6
sigmoid hidden layers, 2048 neurons each.

Training R a n d o m D B N
data ini t . pre-training

Switchboard (eval2000) 300 hours 19.0 18.7
A M I I H M (dev) 77 hours 26.4 26.0
A M I I H M (eval) 77 hours 27.0 26.6

Vietnamese (dev) 10 hours 62.5 60.8

model is not done carefully. The D B N pre-training is done layer-wise, while each t ime the
top-layer is seen as a Restricted Bo l t zmann Machine (R B M) . The layers below have 'fixed'
parameters, and only the top layer is being trained.

Restricted Bol tzmann Machine The Boltzmann Machine is a stochastic undirected
graphical model, in which each bidirectional l ink has a trainable weight. For now, we
are considering to have binary nodes, w i th two possible states {0,1} . The model was
introduced i n 1985 by Geoffrey Hin ton and Terry Sejnowski [Ackley et al. , 1985]. Restricted
Boltzmann Machine is a special form of a Boltzmann Machine w i th nodes organized as
a biparti te graph. The division into two disjoint sets of 'visible ' and 'hidden' nodes (i.e.
random variables) simplifies the inference i n the model, because the nodes wi th in each set
are condit ionally independent given the other set. The R B M was originally invented under
the name Harmonium by P a u l Smolensky i n 1986 [Smolensky, 1986], at the time wi th a
different t raining method.

The model is defined by joint probability that is assigned to particular values of 'visible '
and 'hidden' random variables that are stored in visible vector v and hidden vector h as
follows:

p(v,h) = - ! - e - E ^ (3 J)

where Z^v = Y ^ h Y ^ v e~E^v'^ is the normalizing par t i t ion function. For our R B M wi th
binary nodes, the energy function is defined as:

E(v, h) = - a T v - b T h - v T W h , (3.2)

which assigns 'energy' to each vector-pair (v, h), given the model parameters. This energy
function also defines the graphical model of R B M shown i n figure 3.2. The parameters to
optimize are the matr ix w i th the bidirectional weights W and the bias vectors a, b. Now
let's illustrate how simple the inference i n the model is. If we know the values of the visible

Figure 3.2: Structure of RBM

31

random variables v, the condit ional probabil i ty that binary hidden unit hi is set to one is
expressed as:

p (/ i j = l |v) = a ([W v + b] J) , (3.3)

where selects j-th element from vector i n brackets and a is logistic sigmoid y = 1+eJp^_x^ •
Having the Bernoul l i condit ional probabilities p{hi = l |v), we can sample them to get the
vector of values rig. Then, given hg, the conditional probabil i ty that the binary visible
nodes are set to one is analogical:

p (^ = l |hs) = a ([W T h s + a] .) , (3.4)

both steps are used in the Contrastive Divergence t raining algorithm.

Contrastive Divergence training In the training, we use the input features (or the
output of previous layer) as the visible vectors v. The true l ikelihood of the observed data
v would be:

T , e - s (v > h)
Pi-) = e - g (v M O > (3 ' 5)

which is not tractable. O n the other hand, the derivative of the log-likelihood wi th respect
to the bidirectional weight is simple:

<91ogp(v) , ,
d w i J = Wdata ~ (Vihj)model > ^

where the angle brackets denote the expectations under the distributions denoted by the
subscript. A s we can see, the derivative has two terms related to the l ikel ihood function
(3.5). The first term increases the numerator, by lowering the energy of configurations w i th
the fixed features v. The second term decreases the denominator by increasing the energy of
the 'other l ikely data ' generated by the model. The steepest ascent update rule for weights
is then:

Awy = v((vihj)data - (v'ih'3)model) , (3.7)

where r\ is the learning rate. Ge t t ing the first term {vihj), . is t r iv ia l as v are the 'observed'
values of visible variables and hj is the condit ional probabil i ty p(hj = l|v) from equation
(3.3). Us ing the condit ional probabil i ty p(hj = l|v) i n expectation {-) d a t a is better than
using samples hg, as it already is the expected value from a large populat ion of {hg|v}.

Obtain ing the expectation (v^h'A is more difficult. For this we should run Gibbs
\ / model

sampling wi th many steps.

In the Contrastive Divergence t raining (C D - I) , the Gibbs sampling is truncated to one
step, which makes the algori thm only poorly approximate max imum likel ihood training.
S t i l l , it is good enough to t ra in our R B M s and the t raining is fast [Hinton et al . , 2006].

The single-step Gibbs sampling wi th one data-point is i l lustrated i n algori thm 1, which
we also visualize i n figure 3.3. We take the 'visible ' vector v, and using by equation (3.3), we
calculate the vector of condit ional probabilities h p . F rom h p we sample a vector of binary
values hg. W i t h this, using equation (3.4), we calculate vector of condit ional probabilities
of values i n 'data reconstruction' v p . F rom v p we directly infer the vector of condit ional
probabilities of values i n hidden nodes h p by using equation 3.3. The outputs v, h p , v p , h p

are then used i n the expectations from update formula (3.7).

32

< V i h j > °

o © o
< v i

, h j l > 1

© o
d a t a r e c o n s t r u c t i o n

Figure 3.3: Contrastive divergence, single-step Gibbs sampling

Algor i thm 1 Single step of Gibbs sampling i n R B M training
function G I B B S S T E P (W , a, b)

V <r
hp
h s

K

get visible vector from mini-batch

{hj\hj = <t([Wv + 6]j)}
samp l e (hp)

{u i|u i = <7([WThs + a]i)}
{/ij|/ij = a ([W v p + %)}

return (v , h p , v p , h p)
7: end function

> get condit ional probabilities p(hj l |v)
> convert probabilities to binary values.

> get cond. prob. of 'data reconstruction'
> get cond. prob. from 'expected reconstruction'

In the single-step Gibbs sampling, we have the 'positive statistics' (vihj) from its 0-th
step, which correspond to {•)ljiata- F rom its first step, we have the 'negative statistics' {vihj)1

which approximate the expectation { -) m o ^ - Each model update is done wi th expectations
(.) computed over a mini-batch of 100 data-points, and the S G D training has momentum
applied to al l R B M parameters W , a, b, while weight decay is applied only to the weight
matr ix W . The respective update formulas are:

A W - = / l A M T " 1 + v (< v [h p] T } ° - (vpfhpf) 1 - A W - 1) (3.8)

A a - = / x A a - 1 + r / ((v) ° - (v p > 1) , (3.9)

A b T = / x A b - 1 + V ((h p) ° - (hp) 1) , (3.10)

{W, a, b } r + 1 = {W, a, b} r + { A W , A a , A b } r , (3.11)

where \x is momentum constant (default 0.9), r\ learning rate (default 0.4) and A weight
decay constant (default 0.0002).

Also note that al l the statistics are computed from the 'soft' probabilities rather than
the 'hard ' binary values. Th is reduces the discretization noise and supports faster learning.
However, sampling of h p into binary values is essential, it introduces information bottleneck,
and the vector hg can encode at most n bits.

Monitor ing progress, stopping, initialization W h i l e training, we monitor the squared
distance between the input features and the reconstruction. Even though this is not a correct
objective function, we can use it as a sanity check. We should see a significant decrease of
the distance at the beginning of the t raining and a long and slowly decreasing plateau in

33

the later stage of training. A s a rule of a thumb, we stop the t raining after processing 100
hours of data, while for smaller data-sets, we swipe through the data-set several times.

The matr ix W is ini t ia l ized from A^(0,0.01). The in i t ia l hidden bias b is zero vector
and the in i t ia l visible bias a is set to logit of expected output from the previous layer.

Gaussian R B M The first R B M is special, up to now we have considered R B M s wi th
binary input random variables on the input, while the typical A S R features are Gaussian
random variables. To reflect this, the visible nodes in the first R B M have to represent
Gaussian random variables, and the reconstruction formula (3.4) produces a distr ibution:

p(Vi\h) = A A ([W T h + a] i , l) . (3.12)

Aga in , we do not sample it , but we use its expected value W T h + a as the reconstruction
vector. We also have to make sure that the visible vectors contain features normalized to
unit variance. The training wi th Gaussian input is less stable, so learning-rate is lowered
to 0.01 and we perform two times more swipes through the data. We also implemented a
stabil ization method i n which we compare the standard deviation of the features v and its
reconstruction v' wi th in a mini-batch. W h e n the reconstructed data have more than 2x
higher standard deviation than original features, it is a sign of oncoming weight-explosion.
In order to prevent i t , we scale down the model parameters W , a, b to achieve comparable
standard deviations. We also reset the update buffers { A W , A a , A b } T from eq. (3.11) to
zero and the learning rate is reduced temporarily. Th is ad-hoc stabil ization method was
never published, so we cannot reference it.

B u g which became a 'feature' A s a last R B M related topic, we would like to describe a
tr ick we found by serendipity. Originally, we intended to gradually increase the momentum
\x in (3.8), (3.9), (3.10) from 0.5 to 0.9, while simultaneously reducing the learning rate as
rj = rj (1 — fi). However, by accident, the momentum \x was fixed from the beginning to
the max imum \x = 0.9, and the learning rate rj was gradually reducing as we originally
intended from 0.5 to 0.1. Hence, the effective learning rate % / / . = Jy^jS w a s decreasing,
rather than being constant. In the subsequent experiment we realized that this bug was
important for achieving the W E R improvements from the R B M pre-training, so we kept it
in the implementation.

3.1.2 F r a m e classif ication m i n i - b a t c h t r a i n i n g

After the pre-training of the D B N , we append to it a randomly ini t ia l ized output layer
and continue wi th the frame classification t raining wi th multi-class cross-entropy (C E) loss
function from eq. (2.25) (actually, the cross-entropy is replaced wi th KL-divergence, which
has the same derivative and even loss value i n case of 1-of-K targets).

Al though we have already described the mathematical core of the mini-batch frame
classification t raining i n section 2.4, some practical parts were not yet covered and w i l l
be presented in this section. A s mentioned earlier, the idea behind mini-batch stochastic
gradient descent is to reduce the value of a loss function by updat ing the model parameters
wi th small noisy steps, which are taken i n the direction i n which the loss decreases the most
according its first order derivative (i.e. the opposite gradient). The gradient is each time
computed from a small group of randomly selected data-points (i.e. the mini-batch). The
individual updates are noisy, while we assume that the overall t rend of the updates w i l l
'steer' the model i n a good direction.

34

This supervised learning trains the model to classify the speech-frames (data-points) into
the correct classes (usually triphone states). For input vector x , it provides its posterior
probabil i ty p(s |x) . Each data-point is considered as an independent classification t r ia l w i th
an equal weight, regardless of the prior frequency of the classes.

Supervision

For a given sentence, the reference state-sequence is obtained by forced-alignment of some
existing model to the reference transcription. The existing model can be a G M M - H M M or
a D N N - H M M . In the forced-alignment, the decoding graph is compiled from the reference
transcription, and a decoder is used to determine the state-sequence that fits best the
acoustic observation given the model.

B y t raining from the D N N alignment instead of the G M M alignment, we usually obtain
a small performance gain, also the frame accuracy is usually better. However, the improve­
ment nearly vanishes after the sequence-discriminative t raining and the recipe wi th G M M
alignment is simpler.

In the case of untranscribed data, the alignment gets replaced by the best-path hypoth­
esis from the decoder.

Avoiding over-fitting

Over-fitting is a very common problem i n the frame-classification discriminative training.
The model w i th mill ions of parameters has a capacity to memorize the t raining data instead
of learning the smooth boundary that w i l l generalize well on unseen data. We should be
alert i f we see a big performance gap between the t raining data and held-out data, which
usually happens for small t raining databases.

• Ear ly stopping, to avoid over-fitting we use the early stopping algorithm: we monitor
the loss function value obtained on the held-out set (usually 10% of the t ra ining data),
and we accept only the models where the loss decreases. For historical reasons, we
sometimes incorrectly cal l the held-out set as a 'cross val idat ion ' set, but we are not
doing the K- fo ld cross-validation as one might expect.

• Learning rate annealing, simultaneously, we apply a learning rate scheduling algo­
rithm inspired by simulated annealing, where the learning rate represents the temper­
ature. The learning rate is on its in i t ia l value, as long as the relative loss improvement
from an epoch is larger than 1%. Then, for each next epoch, the learning rate is halved,
which helps to converge the t raining as the 'temperature' decreases. The training ends
if the relative improvement of loss falls below 0.1%. This scheme is a generalization
of the 'New-bob' 2 learning rate scheduling, in which the decisions were made from
absolute improvements of the frame accuracies.

The concept of ' temperature' applied to the Stochastic Gradient Descent represents
the level of j i t ter ing of the noisy exploration i n the parameter space, which arises from
opt imizing the loss locally from the mini-batches. B y lowering the learning rate, the
velocity gets smaller, and the loss value for the held-out set decreases dramatically,
because the model becomes less specialized to the recently seen data. W i t h a very
small level of j i t ter ing, the model parameters converge to a local min imum.

2Originally mentioned in: http://wwwl.icsi.berkeley.edu/Speech/faq/nn-train.html

35

http://wwwl.icsi.berkeley.edu/Speech/faq/nn-train.html

• Regularization, in the past, we experimented wi th L I and L2 regularization, these
were originally intended to be used for the batch methods. W h e n applied to mini-batch
S G D , the regularizer term is added to the loss of each mini-batch. In an unpublished
experiment wi th the small database T I M I T where over-fitting evidently happens, our
observation was that although the loss of held-out data decreased, this improvement
did not translate into the Phone error rate (P E R) reduction, which discouraged us
from its further use.

Another regularization method is Dropout [Srivastava et al . , 2014], i n which the out­
puts of neurons are randomly discarded. This introduces noise that prevents the
early co-adaptation of the neurons. This is part icularly helpful wi th Rectified linear
units [Zeiler et al . , 2013], which, i n our experience, overfit more strongly than sigmoid
networks. The dropout rate can be reduced abruptly or gradually wi th an annealing
algori thm [Rennie et al . , 2014].

W h e n we can't use mini-batch,

Not al l the network types are 'compatible ' w i th the random selection of indiv idual datapoints
to form a mini-batch. For example, the Sequence summary N N [Veselý et al . , 2016] can
be elegantly trained wi th per-sentence updates, while for the recurrent neural networks,
including L S T M s and B L S T M s , we need to prepare the data in mult iple streams so that
the adjacent rows i n the feature matr ix come from different sentences. For these cases, we
have specialized 'multi-stream' t raining binaries in the K a l d i ' nne t l ' .

Special topologies,

the ' n n e t l ' models are not l imi ted to a simple sequence of components. For example, the
<ParallelComponent> supports parallel processing of several nested neural networks. Or the
<SimpleSentenceAveragingComponent> allows to summarize a sentence by averaging the
outputs from the preceding component [Veselý et al. , 2016]. Somewhat more complicated
components are those which implement the recurrent L S T M and B L S T M layers ['
et al . , 2013]. The detailed discussion of these is however outside of scope of this thesis.

Monitor ing the progress of training

Dur ing the training, we are typical ly watching the progress of the loss function value, mea­
sured both on training set and held-out set. The loss value on the t raining set is usually
lower than on the held-out set. The learning rate annealing (i.e. halving) usually starts
around the 4th epoch, and the loss value on the held-out always decreases. W i t h reduced
learning-rate we may experience a m i l d increase of loss value for the t raining set, as we stop
over-fitting on consecutive mini-batches constructed from same buffer of utterances. The
loss value of t raining set is computed wi th model that changes parameters on-the-go.

3.1.3 Sequence-d i scr iminat ive t r a i n i n g , s M B R

This section is based on [Veselý et al, 2013a], where we studied the sequence-discriminative
DNN training with various objective functions.

Neural networks (NNs) for speech recognition are typical ly trained to classify indiv idual
frames based on a cross-entropy criterion, equation (2.24). Speech recognition, however, is

36

inherently a sequence classification problem. A s such, speech recognizers using the Gaussian
mixture model (G M M) as the emission density of an H M M achieve the state-of-the-art
performance when trained using the sequence-discriminative criteria like max imum mutual
information (M M I) [Bahl et al . , 1986], boosted M M I (B M M I) [Povey et al. , 2008], m in imum
phone error (M P E) [Povey, 2003] or m in imum Bayes risk (M B R) [Kaiser ct al . , 2000, Gibson
and Hain , 2006, Povey and Kingsbury, 2007]. It is possible to efficiently estimate the
parameters based on any of these criteria using the statistics collected from lattices [Povey,

The theory for sequence-discriminative t raining of neural networks was also developed in
the early literature [Bridle and Dodd , 1991, K r o g h and Ri i s , 1999]. In fact, the 'c lamped' and
'free' posteriors described in [Bridle and Dodd , 1991] are the same as the numerator and
denominator occupancies used i n discriminative t raining of G M M - H M M systems [Povey,

]. The idea to use this lattice-based framework for sequence-discriminative training
of N N s was explored in [Kingsbury, 2009]. It was shown that the sequence-discriminative
t raining can improve upon networks trained using the cross-entropy. Subsequent results
reported in [Wang and S im, 2011, Kingsbury et al . , 2012, Ja i t ly et al . , 2012] have also
shown consistent gains from sequence-discriminative t raining of N N s . However, there is
some disagreement about which of the criteria is suitable: [Kingsbury, 2009, Kingsbury
et al . , 2012] suggest using a state-level m i n i m u m Bayes risk (s M B R) criterion, while [Wang
and S im, 2011] finds M M I to work better than M P E , and [Jaitly et al. , 2012] only provide
results using M M I .

Needless to say, such empirical observations depend on the choice of the dataset and
specific details of the implementation. In our work, we presented a comparison of the
different t raining criteria for D N N s on the standard 300-hour Switchboard conversational
telephone speech task, which has also been used i n [Seide et al. , 2011a, Kingsbury et al. ,

The networks are trained to optimize a given training objective function using the stan­
dard error backpropagation procedure [Rumelhart et al . , 1986], and the opt imizat ion is done
through stochastic gradient descent (S G D) . For any given objective, the important quantity
to calculate is its gradient w i th respect to the activations at the output layer, replacing
the formula (2.32) on page 25. The gradients for a l l the parameters of the network can
be derived from this one quantity based on the back-propagation procedure described in
section 2.4.

M a x i m u m mutual information, M M I

The M M I criterion used in A S R [Bahl et al . , 1986] is the mutual information between the
distributions of the observation and word sequences. W i t h Ou = {o_i,. . . , O _ T_} as the
sequence of al l observations, and Wu as the reference word-sequence for utterance u, the
M M I criterion is:

where Su = {sui,... ,SUTU} is the sequence of states corresponding to Wu; and K is the
acoustic scaling factor. The sum i n the denominator should be evaluated over al l possible
word-sequences W, but practically, it is computed from al l paths through a denominator
lattice generated for utterance u. Differentiating (3.13) w.r.t. the log-likelihood logp(out\r)

].

2012].

(3.13)

37

for state r , we get:

QTMMI f KEw.sf=rP(Ou\SrP(W)

dlogp(out\r) , " r ' s - t EwP(Ou\S)«P(W) '

= < S r . S u t - 7 g E N (r)) , (3.14)

where Sr-Sut is the Kronecker delta function, which equals 1 for state r at reference state
sequence sut, and ryE

t

EN(r) is the posterior probabil i ty of being in state r at t ime t, computed
over the denominator lattices for utterance u. The required gradient w.r.t. the activations
is obtained as:

QTMMI \ - dJ^MMi d\ogp(out\r)
daut(s) <91ogp(o u i|r) daut(s)

= <8s;sut-lZEN(s)). (3.15)

Note that, i n this work, we have assumed that the reference state labels are obtained through
a forced alignment of the acoustics wi th the word transcript. More generally, one may use
forward-backward over the word reference to obtain the numerator occupancies JutUM(s)
instead of using 5S]Sut in equation (3.15).

M i n i m u m phone error, M P E / State min imum Bayes risk, s M B R

W h i l e min imiz ing TCE (2.24) minimizes expected frame-error, maximiz ing TMMI minimizes
expected sentence error. The M B R family of objectives are explici t ly designed to minimize
the expected error corresponding to different granularity of labels
[Gibson and Hain , 2006]:

where ^4(VF, Wu) is the raw accuracy, representing the number of correct phone labels (for
M P E) or state labels (for s M B R) . The raw accuracy is counted for a path from some
word sequence W that is compared wi th a path from the reference transcripts Wu. B y
differentiating (3.16) w.r.t. l o g p (o u i | r) , we get:

J : F M

(

B R \ \ = K ^ E N ^ ^ = R) - ^ > '

dlogp(out\r)

where Au{st = r) is the average accuracy of all paths i n the lattice for utterance u that
pass through state r at time t; AU is the average accuracy of all paths i n the lattice; and
7«f- B - R (r) is the M B R 'posterior' as defined for approximate M P E i n [Povey, 2003]. Like
before for FMMI, we get:

P ^ = ^ t B R (s) . (3.17) oaut{s)

Experiments

We report experiments on the 300 hour Switchboard conversational telephone speech task.
Specifically, we use Switchboard-1 Release 2 (LDC97S62) as the training set, together w i th

38

the Mississ ippi State t ranscripts 3 and the 30K-word lexicon released wi th those transcripts.
The lexicon contains pronunciations for al l words and word fragments in the training
data. We use the Hub5 '00 (LDC2002S09) data as the development set and Hub5 '01
(LDC2002S13) data as a separate test set. It is worth point ing out that the Hub5 '00 data
contain 20 conversations from Switchboard (S W B D) and 20 conversations from Cal lHome
Engl ish (C H E) . The Ca l lHome data tends to be harder to recognize, part ly due to a greater
proport ion of foreign-accented speech and more informal speaking style.

The acoustic models were trained on features similar to those described i n figure 3.1.
The P L P s were replaced by M F C C s , there were no pi tch features and the first splicing was
done wi th + / - 3 frames around the central frame. The details are described i n [Veselý et al . ,
2013a].

The baseline G M M - H M M systems are trained on the L D A + S T C + F M L L R , the models
trained on the full 300 hour t raining set contain 8859 tied triphone states and 200K Gaus-
sians. The leaves of the phonetic decision tree used for the G M M - H M M system correspond
to the output units of the respective D N N s .

The D N N s are trained on the same L D A + S T C + F M L L R features as the G M M - H M M
baseline, except that the features are globally normalized to have zero mean and unit vari­
ance. The F M L L R transforms are the same as those estimated for the G M M - H M M system
during t raining and testing. The network trained on the full 300 hour t raining set has 7
layers (that is, 6 hidden layers), where each hidden layer has 2048 neurons, the D N N has
8859 output units. The input to the network is an 11-frame (5 frames on each side of the
current frame) context window of the 40 dimensional features. The D N N is ini t ia l ized wi th
stacked restricted Bo l t zmann machines (R B M s) that are pretrained i n a greedy layerwise
fashion [Hinton et al . , 2006], following the recipe from the previous section 3.1.1.

Sequence-discriminative training of D N N s Just like w i th G M M - H M M systems, se­
quence-discriminative t raining of D N N s starts from a set of alignments and lattices that are
generated by decoding the t raining data w i th a unigram L M . For each training condition, the
alignments and lattices are generated using the corresponding D N N trained using frame-by-
frame cross-entropy training. The cross-entropy trained models are also used as the starting
point for the sequence-discriminative training.

Through in i t ia l benchmarking experiments w i th M M I as the objective function, we found
le-5 to be a suitable learning ra te 4 and that an exponentially decaying learning rate provided
no gains.

Figure 3.4 shows the results w i th M M I trained D N N s on Hub5 '00. The horizontal line
(CE realign) shows the results wi th C E training when starting wi th alignments from a C E
trained D N N instead of the alignments from a G M M system. This accounts for about half
of the improvements from M M I . We find the M M I objective to overfit after 2 iterations
(the W E R increase on the red curve). A detailed analysis revealed anomalous objective and
gradient values for utterances where the reference hypothesis is missing from the lattice.
This may be caused by search errors or by a poor match of the acoustics to the model or
even by errors in the reference transcription. However, only i n the first of these cases (i.e.
when there are search errors on the t raining data), it is reasonable to expl ici t ly add the
reference to the lattice. A s a result, we decided to remove such frames from the gradient

3Available from: http://www.isip.piconepress.com/
4 In our implementation, the gradients are not scaled by the acoustic scale K, but its effect is subsumed

in the learning rate. So, with K = 0.1, the effective learning rate is le-4.

39

http://www.isip.piconepress.com/

23.5

2_> I i i i i i i i I
0 1 2 3 4 5 6 7 8

iteration

Figure 3.4: Hub5 '00: DNNs trained with MMI on HOh set, with and without frame rejection
(FR).

computation, which reduces the amount of t raining data by 2.5%. The results in figure 3.4
show that this frame rejection (F R) heuristic leads to more stable learning. Nearly al l of
the reduction i n errors is on the Ca l lHome part, which is more mismatched to the training
data.

Next, comparing the different sequence-discriminative criteria in figure 3.5, we do not
find significant differences. A learning rate of le-5 was also found to work well for these
other criteria. In figure 3.6, we compare the results when the lattices are regenerated after
the first epoch. We see that regenerating lattices provides a small gain. However, this is
computationally expensive and regenerating lattices after the second epoch d id not produce
any further gains.

Final ly , table 3.2 summarizes the results of the different systems trained on the entire
300 hour t raining set. The results are presented on both the development set (Hub5 '00)
and the test set (Hub5 '01) and their respective subsets. We see that the C E trained D N N
models are better than the discriminatively trained G M M B M M I models. Then, the use
of the sequence-discriminative t raining criteria (incl. lattice re-generation after first epoch)
led to performance improvements wi th in the range of 1.2 — 1.8%, and a l i t t le better results
were achieved wi th the s M B R objective. The s M B R training was subsequently adopted as
the default sequence-discriminative objective i n the ' n n e t l ' t ra ining recipes in K a l d i .

23.5

o p
-Q
X

LU 22.5

BMMI FR
•SMBR
• M P E
•MMI FR

4
iteration

Figure 3.5: Hub5 '00: DNNs trained on HOh set, various criteria.

40

Figure 3.6: Hub5 '00, lattice regeneration after first epoch (indicated by 'lat' suffix).

Table 3.2: Results (% WER) of the DNNs trained on the full 300 hour training set us­
ing different criteria. The input features are always the same: MFCCs transformed by
LDA +MLL T+fMLLR.

Hub5 eval'00 Hub5 eval'01
System S W B C H E Total S W B S W B 2 P 3 S W B - C e l l Tota l
G M M 21.2 36.4 28.8 - - - -
G M M B M M I 18.6 33.0 25.8 18.9 24.5 30.1 24.6
D N N C E 14.2 25.7 20.0 14.5 19.0 25.3 19.8
D N N M M I 12.9 24.6 18.8 13.3 17.8 23.7 18.4
D N N s M B R 12.6 24.1 18.4 13.0 17.7 22.9 18.0
D N N M P E 12.9 24.1 18.5 13.2 17.7 23.4 18.2
D N N B M M I 12.9 24.5 18.7 13.2 17.8 23.5 18.3

Based on its formulation, the s M B R training is more robust to the annotation errors
than M M I . The s M B R gradient improves scores for lattice-paths where the approximate-
accuracy is better than the average. If al l the paths in the lattice are wrong, the accuracy
of al l the paths is the same, also the gradient is zero and the badly annotated sentence is
not deleterious. The s M B R accuracy function was later modified to map the silence states
to a single class, which improves the stabil i ty of the training.

3.2 Accelerating the D N N training

The acceleration of N N training was the main topic of my Master thesis [Veselý, 2010],
which was later summarized in [Veselý et al . , 2010]. A l though already six years passed and
the project T N e t was abandoned, the gained experience was important for designing the
' n n e t l ' t ra ining tools in K a l d i .

41

3.2.1 N N t r a i n i n g implementa t ions

SNet - distributed client-server training on C P U

The first neural network training tool implemented at B U T was SNet. Inspired by the
at-the-time very popular t raining tool Q u i c k N e t 5 , the author Stanislav Konta r used a dif­
ferent approach to the O O P design of the neural network. The single class representing the
whole network was replaced by a collection of simple 'component' classes and a container
class which assembled the network from the components. This modular design allowed to
construct complex on-the-fly feature expansions, which could even contain nested neural
networks.

The implemented mini-batch S G D training used B L A S l ibrary for fast matr ix mul t ip l i ­
cation. Further acceleration was achieved by data parallelization: The data-set was split
among workers, while a parameter server was used to synchronize the model by collecting
the gradients and sending the updated model parameters. The model updates could be
synchronous or asynchronous.

Synchronous model updates mimicked the non-parallel t raining, while each mini-batch
was split among all the workers. The parameters were updated only after a l l the
workers completed their port ion of the mini-batch.

Asynchronous model updates, in this case the parameters were updated immediately
after any worker completed its chunk of the data. It happened that the gradients
were computed from slightly outdated weights. Asynchronous t raining was used for
example i n Hogwi ld [Rccht ct al . , 2011], however in our experience the asynchronous
updates were causing performance degradations. Th is made the method unpractical
despite its good scalability.

In the synchronous training, the workers were idle while synchronizing the model w i th the
server over the relatively slow T C P - I P channel. Add i t iona l delay was caused by wait ing for
all the workers to complete its port ion of the mini-batch. A l l these factors combined led to
a rather poor scalability, as wi l l be seen later on the blue curve in figure 3.7.

T N e t - multi-threaded training on C P U

The next generation N N training tool was my T N e t 6 . It implemented the same 'data-
parallel ' scheme as SNet, while the parameter synchronization overhead was reduced by
using multi-threading. A l l threads share the same address space of memory, so no data
transfers are needed. The training is synchronized by two 'barriers' which separate the
gradient computat ion and model synchronization. The model synchronization is also mul t i ­
threaded, making each thread responsible for updat ing a disjoint part of the weight matrices.
For better caching, we used a single instance of model parameters for al l the worker threads.

The T N e t is wri t ten i n C + + . We designed an abstract interface Component w i th the
descendant classes implementing forward-propagation function and the transformation by
its Jacobian necessary for back-propagation. For components w i th trainable parameters,
we have a special interface UpdatableComponent, which also requires to specify the update
function. These abstract classes are present also in K a l d i ' nne t l ' . Aga in , we used the B L A S
library, specifically the G o t o B L A S .

5 h t t p : / / wwwl. i c s i .berkeley. edu/Speech/qn.html
6 h t t p : / / speech.fit.vutbr.cz/software/neural-network-trainer-tnet

42

http://speech.fit.vutbr.cz/

T N e t - G P U training, C U D A

A n acceleration technique complementary to the 'data parallelism' is the use of G P U . Our
code uses a single G P U , which typical ly has hundreds or even thousands of programmable
computational units. Also , the G P U memory is more than lOx faster than the R A M of the
'host' computer. The fast memory and high parallelism accelerate the t raining considerably,
while each new generation of G P U s boosts the performance.

T N e t uses separate code for C P U and G P U tools as well as for the underlying libraries
representing the matrices and neural networks; some code is shared (I / O functions, logging,
etc).

Dur ing the training, most of the t ime is spent on matr ix multiplications, which is imple­
mented efficiently in the C U B L A S l ibrary (part of the C U D A toolkit distr ibuted wi th the
'nvcc' compiler). For other operations, we implemented C U D A kernels (activation functions,
loss function, data shuffling, derivatives). Each kernel is defined by its thread function and
the grid and block dimensions. These produce the logical coordinates for which the threads
are executed. The kernels are called one after another from the 'host' process, and the
C U D A l ibrary is responsible for mapping the kernels to the multi-processors of the G P U .
Typical ly , we compile the assembly for several G P U architectures and we have a good expe­
rience wi th the high-end gaming cards, which are almost as fast as the much more expensive
Teslas in the 32bit float computations.

A separate G P U code is also used in the C + + l ibrary that implements matrices, vectors
and related operations, this is compiled wi th standard gcc. On ly the kernels are compiled
wi th the C U D A compiler nvcc, while the interfacing wi th the C + + code is done v ia A N S I
C wrapper functions.

K a l d i - nne t l , G P U training, C P U forwarding

M u c h of the code design from T N e t translated into K a l d i ' nne t l ' . Aga in , there is a separate
'cudamatrix ' l ibrary for C U D A vectors, matrices and related operations. However, in K a l d i ,
a single binary can compute both on G P U or C P U , as specified on the command line. To
allow this, the CuVector or CuMatrix contains a 'shadow' Vector or Matrix for the C P U
computation, and each method contains an ' i f testing if the G P U is active. K a l d i can be
also compiled without the C U D A code, which is supported by conditional compilat ion wi th
#ifdef macros.

In kaldi ' nne t l ' , the tools are more flexible than were in T N e t . There are several t raining
tools, and it is possible to look into the network and print statistics of activations, derivatives
and gradients, which are useful for debugging. There are also other tools for manipulat ing
the networks (init ial izing, converting, cutt ing, concatenating, pre-training). In the training
scripts, the network is first defined wi th a human-readable prototype, to be later ini t ial ized
wi th a binary tool . For more information, please see the documentation: h t t p : / / k a l d i -
a s r . o r g / d o c / d n n l .html

3.2.2 S p e e d measurements

The speed measurements wi th SNet, the multi-threaded T N e t and G P U T N e t were done in
2012. The performance of the G P U T N e t was evaluated wi th the following H W setup: Desk­
top P C wi th l x Intel Core2Duo E8400 3 .0GHz, 2 G B R A M and the N V i d i a G T X 285 G P U
wi th 240 shaders at 1.476GHz. The performances of SNet and C P U T N e t were evaluated
on a Blade server HS22 wi th 2x Intel Xeon X5675 3.07GHz 1 2 M B cache, 24 G B R A M .

43

http://asr.org/

Scalability of data-parallel ANN training (synchronous)

_ 14
•o a CD
V 1 2

=)
Q_

^ 10

'I 8
CD Z C/3
o 6

— 3
Q.
? 2

•
tCPU
tCPU
tGPU

SNe
TNe

* TNe

tCPU
tCPU
tGPU

•
2 3 4 5 6 7 8 9 10 11 12

N, the order of parallelism (Scores or #threads)

Figure 3.7: Comparison of parallelization speedups on the example task.

The example 3-layer M L P wi th 730k parameters was trained on 4000 sentences from the
A M I corpus. We used an on-the-fly feature transformation, which consisted of temporal-
splicing followed by a Hamming window and Discrete Cosine Transform applied to the
temporal trajectory of each feature. The mini-batch size was fixed to 512 frames, and we
measured the t ime taken by training wi th 4000 sentences. A s a reference time, we decided
to use the single-core C P U training wi th SNet. In the data parallel C P U training, we split
the mini-batch among the computat ional units, each worker processes 512/ iV data-points
at once, where iV is the order of parallelism.
In figure 3.7 we see the 'arch-shaped' speed-up curves for both the C P U tools: SNet (blue)
and T N e t (red). The non-matching values for 1 worker are caused by using the A T L A S
l ibrary for SNet and the faster G o t o B L A S for T N e t . W i t h SNet, the peak performance
was achieved wi th 5 nodes, while for T N e t wi th 10 nodes. W i t h too many workers, the
performance decreases due to the increased overhead. B y comparing the peaks, we see that
the parallel T N e t is 3.6x faster then parallel SNet. The scalability of T N e t is better because
we removed the communicat ion overhead that was present in SNet. However, an even larger
speed-up can be achieved by training on a G P U (green star in figure 3.7), which is 1.8x
faster than C P U T N e t at its peak performance. The G P U training is 14x faster then the
run-time of the single-core SNet.

In 2016, we compared again the t raining speeds of 1 C P U - c o r e and 1 G P U wi th the
current hardware. This time, we used K a l d i ' n n e t l ' t ra ining of a D N N wi th 8 mi l l ion
parameters on 10k sentences from A M I corpus. The G P U model was G T X 9 8 0 and the
C P U was Intel Xeon E5-2670. We used the O p e n B L A S l ibrary for C P U training.

From table 3.3, we see that the speedup from using a G P U instead of 1 C P U - c o r e is
much higher than what we measured i n 2012 (60x vs. 14x). Th is practically shows that the

Table 3.3: Comparing the speeds of NN training with 1 CPU-core and 1 GPU. The reported
time is the average duration of 13 epochs with 10k sentences.

C P U - c o r e G P U Rat io
264 m i n 4.4 m i n 60x

44

'computation capabilities' of G P U s grew faster than those of C P U s . It is true, that we did
the comparison wi th slightly different conditions (different N N topology, front-end, t raining
toolki t) , on the other hand the typical neural networks we t ra in now are larger than those
in the past.

3.2.3 O t h e r implementa t ions in the l i terature

From the literature, we would like to mention the study of Asynchronous S G D method
called 'Hogwild! ' [Recht et al . , 2011], which was later scaled up by Google as training
tool 'Downpour S G D ' [Dean et al. , 2012]. F rom our experience, the Asynchronous S G D
causes performance hit, while this is compensated by being able to process larger amounts
of t raining data.

Another interesting option is to replace S G D by a Hessian Free algori thm (second order
method), and use a supercomputer w i th very fast Infiniband communicat ion [Sainath et al. ,

]. For universities, it is usually possible to get the access to such machine through a
public bidding for the computat ion hours on super-computers.

Or we can use the pre-conditioning of N N parameters and synchronize the models by
occasional weight averaging, which was proposed in the 'Na tura l Gradient ' method [Povey

1014]. In the same time the pre-conditioning requires addit ional computation, so
each node processes the same amount of t raining data 3x slower compared to using a sin­
gle G P U . O n the other hand this distr ibuted t raining scales linearly, which makes it very
attractive for t raining wi th 10 and more G P U s . The cost of synchronizing model parame­
ters can be reduced by using M P I [Su and Chen, 2015], which allows more frequent model
synchronizations.

Another family of implementations is considering back-propagation algori thm as in­
stance of reverse-mode automatic differentiation, for example Theano 7 . The benefit is that
the user specifies the forward-propagation function, while the back-propagation is derived
automatically. Usual ly the automatic solution creates a computat ional graph, which needs
to be further opt imized wi th non-tr ivial heuristics. This approach is also used in T o r c h 8 ,
TensorFlow 9 or K a l d i ' nne t3 ' 1 0 .

3.3 Summary

A t this point we end the description of ' n n e t l ' recipe that we implemented i n K a l d i . The
' n n e t l ' recipe wi l l serve as experimental environment in the later chapters of this thesis. Of
course, it would not be hard to find numerous ways how to extend the ' n n e t l ' recipe, for
example by m u l t i - G P U training. However, the t ime of any human being is l imited, so we
reserve it as a future direction of research for the time after the graduation.

Not al l of my publications were included in this section. If you are interested in more
of my work, please follow the l ink to the full publ icat ion list: http://www.fit.vutbr.cz/
"" ivese lyk/pubs .php The semi-supervised t raining w i l l be discussed i n next chapters.

7 h t t p : //deeplearning.net/sof tware/theano/
8 h t t p : //torch, ch/
9 h t t p s : //www.tensorflow.org/
°http: / / k a l d i - asr.org/doc/dnn3.html

45

http://www.fit.vutbr.cz/
http://www.tensorflow.org/
http://asr.org/doc/dnn3.html

Chapter 4

Data-sets

In this chapter we provide a brief description of the databases we will later use for the
experiments with the semi-supervised DNN training: Babel Vietnamese, some other Babel
languages (Assamese, Bengali, Haiti, Lao, Zulu) and Switchboard English. We also mention
some details about the experimental setups: language models, lexicons, phone-sets, 00V
rates.

4 .1 Babel Vietnamese

Most of the experiments w i th semi-supervised t raining were done wi th the Vietnamese
dataset 1 as provided wi th in the I A R P A Babe l program, release babell07b-v0.7. The train­
ing data consist of a large por t ion of conversational telephone speech and a small part of
prompted speech. For training, we used both types of data. The development set consists
of conversational speech only. The data come from various telephone channels: landlines,
different kinds of cellphones, or phones embedded i n vehicles. The sampling rate is 8000
H z .

Two scenarios are defined - Fu l l Language Pack (F u l l L P) , in which al l the collected data
is transcribed; and L i m i t e d Language Pack (L i m i t e d L P) , in which only a subset of the data
is transcribed, while the remaining part of the F u l l L P data can be used as 'untranscribed'
data for the semi-supervised training.

The overview of the data (i.e. numbers of speakers and amounts of speech data after re-
segmenting) is in table 4.1. We generated our segmentation, using our own M L P - b a s e d Voice
act ivi ty detection (V A D) wi th V i t e r b i smoothing [Ng et al. , 2012]. The speech segments
were extended by 300 milliseconds on both ends.

The provided Vietnamese lexicon uses 54 phonemes. There are 25 consonants and 29
vowels, while for Vietnamese, we distinguish 6 tones.

The corpus is composed of 4 dialects, the pronunciation of some graphemes is different

1Collected by Appen Butler Hill: http://www.appenbutlerhill.com

Table 4.1: Data analysis, numbers of speakers, amounts of annotated speech data after
resegmentation by VAD

Dataset F u l l L P L i m i t e d L P dev
speakers 991 121 120
size i n hours (reseg.) 84.8 10.8 9.8

4(3

http://www.appenbutlerhill.com

between dialects, a single grapheme can have 2-3 different vocalizations. Also , some of the
phonemes can be translated into graphemes in several different ways.

For the purpose of A S R training, the phone set consists of 29 phonemes, which are
marked wi th six different tones. The under-represented phones were merged manually. For
the triphone-tree clustering, we introduced a 'posit ion in a word ' feature, which leads to the
final phone-set w i th 350 items. We allow state sharing across phonemes.

The original syllabic lexicon provided by A p p e n was modified by reducing the number of
pronunciation variants. The F u l l L P lexicon contains 6k syllables and the L i m i t e d L P lexicon
contains 3k syllables.

The A S R outputs are syllables, which is natural for Vietnamese and which conveniently
avoids eventual errors from inconsistent word-segmentation. Also , there are no phonological
processes that cross syllable boundaries, such as consonantal assimilation, tone sandhi or
wordlevel stress. The consequence is that the O O V rate is very small , 0.21% for the F u l l L P
condition and 1.19% for the L i m i t e d L P condit ion (L i m i t e d L P is used in semi-supervised
training).

We used a t r igram language model wi th Kneser-Ney smoothing buil t on the syllabic
t raining transcripts, w i th 100k 3-grams and 200k 2-grams for F u l l L P , and wi th 12k 3-grams
and 47k 2-grams for L i m i t e d L P .

4.2 Other Babel languages

In section 6.2, we w i l l report experiments on other Babe l languages: Assamese, Bengali ,
Ha i t i , Lao and Z u l u 2 , which were provided in the second year of I A R P A Babe l program. The
training data consist of conversational telephone speech wi th a small amount of prompted
speech, both types of data were used for training. The development set consists of conver­
sational speech only. The data come from various telephone channels: landlines, different
kinds of cellphones, or phones embedded i n vehicles. The data were pre-processed to have
8kHz sampling rate.

We focus on the L imi t ed Language Pack (L i m i t e d L P) condit ion, which was the pr imary
condition i n the second year of the Babe l program. In the L i m i t e d L P condit ion we have
10 hours of transcribed speech and 70 hours of 'untranscribed' speech, which are in fact
transcribed for another condit ion. The dev set for each language contains around 7 hours
of speech.

The A p p e n phone sets were modified by merging some under-represented phones. For
the triphone-tree clustering, we introduced a 'posit ion in a word ' feature, which increases

2Collected by: http://www.appenbutlerhill.com

Table 4.2: Per-language system characteristics

Assamese Bengali H a i t i Lao Zu lu
phones 171 181 143 434 264
t ra in lexicon size 10k I l k 6k 6k 21k
dev O O V rate 8% 9% 4% 2% 22%
1 grams 9k 10k 5k 4k 15k

2grams 46k 51k 40k 38k 45k
3grams 4k 5k 9k 9k 3k

47

http://www.appenbutlerhill.com

the size of phone set 4x. Some languages have special features: Lao (6 tones) and Z u l u (word
stress). In table 4.2 we see the phone-set sizes for al l the languages. We allow tied-states to
be shared across phonemes in the decision tree clustering.

The A p p e n lexicon was extended by generating pronunciations of missing words from
the t raining data using Sequitur G 2 P . The lexicon sizes are in table 4.2 together w i th the
out-of-vocabulary (O O V) rate measured on the dev data. We used t r igram language model
w i th Kneser-Ney smoothing buil t on the t raining transcripts, the model sizes are also in
table 4.2.

4.3 Switchboard

The Switchboard database consists of Conversational Telephone Speech. The training set
is Switchboard-1 Release 2 (LDC97S62) , a collection of about 2,400 two-sided telephone
conversations among 543 speakers (302 male, 241 female) from all areas of the Uni ted
States. We used the Mississippi State transcripts and lexicon. The language model is buil t
by interpolating two 3-gram language models trained on Switchboard and Fisher transcripts
respectively.

Semi-supervised experiments For the semi-supervised experiments, the L M was built
purely on the Fisher transcripts. Note that we generate automatic transcripts for the train­
ing data, so the true transcripts of the Switchboard data have to be removed from the L M
corpus.

For the semi-supervised experiments, we split the K a l d i 'train_100k_nodup' lOOhour
set, from which we randomly selected 186 conversation sides as the transcribed set (14
hours), while the remaining 1165 conversation sides (96 hours) are the untranscribed data.

Evaluation set: Hub5-2000 (eval2000) The evaluation set consists of: a) 20 conversa­
tions from the Ca l lHome corpus, b) 20 conversations that were collected for the Switchboard
Corpus but not included in the original release. Most of the speakers i n these conversations,
appeared in the released Switchboard Corpus for the training.

In this thesis we report the performance on both subsets together, while the conference
articles from other laboratories usually report results for the b) subset. For more information
see: ht tp: / /www.itl.nist .gov/ iad/mig/tests/ctr/2000/h5_2000_vl.3.html

48

http://www.itl.nist.gov/iad/mig/tests/ctr/2000/h5_2000_vl.3.html

Chapter 5

Semi-supervised training

This chapter is a gentle introduction to the semi-supervised training. It explains the basic
pattern of improving the system with unlabeled data. We give an overview of the main
design questions that we address in the following chapters. We also show the principle of
frame-weighted mini-batch SGD training. The chapter is closed with a survey of the relevant
literature.

The practical value of semi-supervised t raining is that it allows us to bu i ld better systems
wi th an inexpensive untranscribed data, while we need to find a way how to use such data
efficiently.

5.1 Definition

The semi-supervised learning is a type of supervised learning, where both the labeled and
the unlabeled data are used. The goal of semi-supervised learning is to improve the system
performance by adding the unlabeled data into the t raining process (compared to the case
when only the labeled data are used).

We are using the heuristic approach called self-learning. In this 'seed system' is
built on the labeled data. The 'seed system' is then used to guess the labels for the unlabeled
data. Next, a new system is buil t using the augmented dataset, while we typical ly add only
the data where we are confident about the guessed labels.

App l i ed to A S R , we focus on semi-supervised t raining of Deep Neural Network acoustic
models, which was not yet studied extensively. The process of semi-supervised system
bui lding is shown in figure 5.1, and is described as follows: We use the transcribed data to
t ra in the seed system. Then we generate the automatic transcripts and their confidences for
the untranscribed data by decoding it w i th the seed system. The data w i th more reliable
automatic transcripts are selected for the system re-training, where the confidences can be
calculated i n many ways. Lastly, the process of decoding and re-training can be iterated
unt i l no further improvements are obtained. This was done for G M M - H M M s in [Wessel and
Ney, 2005].

Relation to active learning

Another technique related to semi-supervised t raining is Active Learning [Cohn et al. , 1994,
!010c]. For both techniques, we have the labeled and unlabeled data-sets, while

in the case of active learning, we use the in i t ia l system to select the problematic data for

49

Figure 5.1: General paradigm of Semi-supervised training for ASR.

manual annotation that is done by an expert. Act ive learning is part icularly interesting for
companies running speech-based services, which serve them as a source of new in-domain
training data. We do not consider using active learning in this thesis.

Word-error-rate recovery

A s the measure of success for the semi-supervised training, we use the 'Word error rate
recovery' Rwer, defined i n [Novotney and Schwartz, 2009] as the ratio:

A W E R s . , t

K w e r ~ A W E R o r a c Z e ' (5 ' i j

in which A W E R S S (is the W E R improvement from the semi-supervised t raining while
A W E R o m c / e is the W E R improvement obtained when the correct transcripts are used. The
idea of R w e r is to quantify the achieved proport ion from the possible improvement, which
allows us to compare the efficiency of the semi-supervised t raining starting from different
in i t ia l systems.

However, the ult imate measure for A S R performance is the Word error rate, defined as:

W E R = # S u l , + #Del + #I„S 1 0 Q

#Ref

where #Sub is number of substi tution errors, #Del number of deletions, j^Ins number
of insertions and # i ? e / is the number of words in the reference transcription. The W E R
is based on Levenshtein distance of reference word sequence and the hypothesis (i.e. the
recognized text).

5.2 The key questions of semi-supervised D N N training

W h e n th inking about the semi-supervised t raining for the D N N models, we first a im to
identify the questions, which help us establish the search space for finding a good semi-
supervised recipe.

50

5.2.1 G r a n u l a r i t y of confidence units

The first question is: „ W h a t should be the size of the unit for which we calculate the
confidence?" It can be a sentence, a word or a feature-frame (i.e. the smallest unit) .

Per-word confidence Cwq

There are many methods how to extract the per-word confidences. For example, C m a x

[Wessel et al . , 2001] is based on summing the posteriors of lattice-links that both correspond
to the same word and overlap i n time. W i t h i n the word-link, we take the value from such
time-slice for which the sum of posteriors is the highest. However, this seems to be less
necessary because we use 'exact lattice' generation [Povey et al . , 2012]. The lattice is
'deterministic': each distinct word string is present i n lattice only once and wi th its best
score.

The method that we are using i n our experiments is the calculation of statistics j(q, w)
taken from the M i n i m u m Bayes Risk (M B R) decoding [Xu et al . , 2011, section 7.1]. The
quantity 7(<7,u>) is the posterior probabil i ty of the word symbol w being aligned wi th the
position q i n a word sequence, given lattice C. In our case, we purposely fix word sequence
to be from the best path in lattice Ťt: W = wrds(7f) = (u>i, u>2, • • •, WM), and the confidence
score is eg, = 7((/,u>(?). This M B R confidence is the default word confidence implemented
in K a l d i .

Yet another method to obtain word-confidence is based on the averaging of the neu­
ral network log-posteriors selected wi th the one-best state-sequence corresponding to the
recognized word [Zhang et al . , 2014a].

Ideally, a well calibrated word-confidence should correspond to the probabil i ty that the
word is correctly recognized. The experiments w i th per-word confidences are in section 7.3.

Per-sentence confidence csent

In works of other authors, the sentence confidences are usually computed as arithmetic mean
of the per-word confidences [Novotney et al . , 2009, Novotney and Schwartz, 2009, Thomas
et al . , 2013, Zhang ct al . , 2014a]. It is better to think about it as the estimate of the word
accuracy i n the sentence, rather than the correctness of the whole sentence. The supporting
arguments for this interpretation are:

• a long sentence wi th one incorrect word can s t i l l be valuable for S S T

• the word accuracy is closely related to the word error rate, which is the main evaluation
metric for A S R systems

The experiments w i th per-sentence confidences are i n section 7.2.

Per-frame confidence Cgt

In our work [Veselý et al. , 2013b], we advocated for using frame-level confidence to do the
frame-selection i n mini-batch S G D training.

The per-frame confidence c§t is taken from the lattice posterior 7(t, s), which is obtained
by the forward-backward algori thm (see section 2.3.8). The posterior 7(t, s) corresponds to
the probabil i ty of being at time t in the tied-state s. Supposing that we have a sequence

51

of tied-states for the best-path S = (si, S2, • • •, sat), the confidence value for frame t is
extracted wi th its associated state St as:

The forward-backward algori thm over a lattice is the same as for calculating the denom­
inator posteriors in M M I discriminative training, which was discussed in chapter 3.1.3.

A n ideally calibrated frame-confidence should correspond to the probabil i ty that the
frame-label st is correct. The experiments w i th per-frame confidences are i n sections: 6.1 -
frame selection, 6.2 - frame weighting, and 7.4 - detailed analysis, exploring of calibration.

W h a t is best? It is very hard to predict which of the three types of confidence w i l l
be more useful. In some situations, it might be better to use the less specific sentence-
confidences, while w i th the per-word and per-frame confidences we can locally decide about
processing sub-chunks of utterances, which should be good as well. A n y guess at this point
would be a pure speculation, and we w i l l search for the answer experimentally.

5.2.2 T h e concept of ' ideal ' confidence

B y its nature, an opt imal ly calibrated confidence corresponds to the probabil i ty that the
label is correct. For word-confidence, it is the probabil i ty that the recognized word matches
its reference. In the case of frame-confidence, it is the probabil i ty that the hypothesized
tied-state is the same as the element in the forced-alignment.

Only the per-sentence confidence is an exception following a different pattern. Usual ly
we are not interested in the probabil i ty that the whole sentence is correct. Instead, we can
replace the ' ideal ' confidence value by the word accuracy i n the sentence.

This applies to confidences in general, however, when used i n semi-supervised training,
it is not clear if these ' ideally calibrated' confidences also lead to the best results. It can be
the case that addit ional processing of confidences is beneficial.

5.2.3 C a l i b r a t i o n of confidences

The 'raw' confidences usually require further processing to become closer to the ' ideal ' ones.

Calibrat ing confidences with logistic regression

The classical approach to cal ibrat ing confidences is to t ra in a binary logistic regression.
This requires a development set wi th transcribed data for t raining the model parameters.
In [Novotney et al . , 2009, Huang et al. , 2013], logistic regression is used to calibrate the word-
confidences, while analogically the cal ibrat ion can be trained also for the frame-confidences.
Logist ic regression produces calibrated confidence, which corresponds to the probabil i ty that
the label is correct. The experiments are in sections: 7.2.2 - per-sentence confidences, 7.3.2
- per-word confidences, and 7.4.3 - per-frame confidences.

Approximate calibration without training a model

If the confidences are values from the interval (0,1), we can warp them by exponential
scaling d = ca. W i t h this approach, one can approximately calibrate the confidence by
looking at a suitable scatter plot. Or the profile of calibrated confidence can be changes by

(5.3)

52

t ry ing several values of a i n a gr id search experiment. The exponential scale then becomes
a model hyper-parameter, ideally we would like to find a value that w i l l generalize to other
data-sets, i f such value exists. The scale a is tuned i n many experiments in chapter 7 and
later.

Yet another approach to approximate the cal ibrat ion is re-scaling the lattice weights
{PQI PAM) w i th A, which modifies the 'sharpness' of resulting posteriors (explained i n section
2.3.8 on page 20). This technique was used mainly in section 6.2. However, later, in table
7.16 we see the best results w i th 'default' A = 1, this suggested to stop using lattice-scale A.

5.2.4 U s e of confidences i n S G D

Selecting data by confidence

The simplest approach is to select the automatically transcribed training data by setting a
threshold on the confidence, or alternatively by setting the target fraction of data to accept.
The more reliable data are accepted (higher confidence), the less reliable data are discarded.
For data selection, we don't need calibration of confidences. W h a t matters is the ordering
of data according to confidences, the actual values of confidence are not important.

Confidence-weighted training

A n alternative approach is to weight the data by the confidence, where the weights cn

are applied to the N N gradients of the individual data-points VEn. The update rule of
mini-batch S G D (2.27) is slightly modified to:

M

w (r + 1) = W M — 77 ̂ c n V £ „ (w M) . (5.4)
n=l

The simple way to implement the gradient scaling is to use cn to scale the part ia l derivative
of loss function En w.r.t. network output y , that we had i n equation (2.30):

dE'n dEn

- 5 — = Cn-^— • (5.5)
dy dy

The re-scaled loss derivative is then back-propagated into the network. We can do this
because the back-propagation is a series of matr ix multiplications w i th the Jacobian matrices
corresponding to N N components. Therefore, scaling the loss derivative is equivalent to
scaling of the gradient itself.

We can also see the weighted t raining as a generalization of the data selection. In data
selection, the weights are constrained to be str ict ly binary (1 = include, 0 = discard). In
weighted training, we can include the data-points partially, in the sense that the network
w i l l have a chance to learn the input pattern, while giving it lower importance in calculating
the overall loss.

Aga in , it is not clear if the ' ideally calibrated confidence' is also the best weight for
the mini-batch S G D training. It is very likely that the ' ideal confidence' is a good starting
point, from which we should t ry going further and transform it in some convenient way, for
example by the exponential scaling wi th a.

The approaches of the 'data selection' or 'data weighting' are explored in almost al l later
chapters.

53

5.3 Summary of published works

In this summary, we mention the important works related to the semi-supervised D N N
training. The articles are organized into categories, while often we could assign them to
more than one category.

5.3.1 Semi - superv i sed t r a i n i n g of G M M - H M M systems

Self-training with confidence

The self-training of A S R systems was studied i n journal article [Wessel and Ney, 2005].
In the proposed training scenario, the per-word confidences are used to select the frames
corresponding to words for which the confidence is higher than a threshold. The G M M -
H M M model is trained by Maximum-l ike l ihood E M algori thm i n which the alignment of
automatic labels changes during the training.

The article demonstrates that word-confidences are helpful in semi-supervised training
starting from the seed systems trained on 1.2 - 5.6 hours of transcribed data. Also , the
iterative self-training is shown as helpful when starting from 1.2 hour seed system.

O u r comment: The situation might be different w i th neural network training, which are
trained to classify frames. In the case of G M M a few wrongly labeled data-points have low
effect to the overall shape of the distr ibution, while for S G D , the wrongly labeled data can be
more harmful. The data-sets in Wessel's article have similar sizes as ours (5.6h transcribed
and 66h untranscribed; our setup has lOh transcribed and 74h untranscribed). The article
uses dynamic alignment, while i n our setup, we work wi th a fixed best path from lattice.

T h e role of language model

[Novotney et al. , 2009, Novotney and Schwartz, 2009] is provide a different perspective to
self-training of H M M - G M M systems. The authors observed that a strong language model
improves the W E R recovery, while using a weak L M is s t i l l sufficient to improve the acoustic
model by self-training. The W E R recovery ranged between 40% - 80%, depending on the
size of the transcribed and untranscribed data-set and the language model t raining corpus.

A n interesting group of words are those that are present i n the untranscribed set, and
not in the transcribed one. The paper reports accuracy improvement 19%—^32% for such
words caused by the self-training.

The paper proposes confidence-based sentence selection, while the sentence confidence
is computed in two stages. Firs t , the per-word confidence is trained as logistic regression
on a development set w i th binary targets corresponding to word correctness. Second, the
sentence-level confidence is trained as a logistic regression wi th binary targets, where the two
classes group the sentences where W E R is below or above the average i n the development
set. Such confidence model is used to choose sentences wi th predicted better than average
error rate.

O u r comment: It w i l l be interesting to compare the W E R recoveries from the G M M -
H M M models w i th the recoveries from the D N N - H M M models. In our work, we do not
focus on the role of language model. We use a language model trained on the transcripts for
bui lding the seed model (Babel Vietnamese) or the Fisher t raining transcripts (Switchboard
setup).

54

We would also like to briefly mention other works on semi-supervised t raining of G M M -
H M M systems. In [Gollan et al . , 2007] the author performs word selection according to
'word-posterior confidence' or the 'allophone state posterior confidence'. In the thesis [Gol-

!014] the author further extends the topic by discussion of Automat ic learning (self-
learning) in Chapter 8. Yet another work [Fraga-Silva et al. , 2011] reports improvements
from self-training wi th soft-probabilistic targets, i.e. lattice-based training compared to 1-
best t raining without data filtering (we tr ied same idea for D N N training, but i n our setup
the data selection was better than the training wi th the 'soft targets').

5.3.2 Confidence methods based on single A S R system

In this section we summarize confidence methods based on a single A S R system. The
Cmax [Wessel et al . , 2001] confidence was combined wi th 'phone occurrence confidence' in
[Thomas et al. , 2013]. Later [Zhang et. al . , 2014a] shown that the neural network posterior
confidence Cpos is better than the 'phone occurrence confidence' alone, while we w i l l show
that the sentence confidence from M i n i m u m Bayes Risk decoding statistics is better than
CpOS (section 7.2.4).

Phone occurrence confidence

[Thomas et al . , 2013] has shown, how much can be achieved wi th l h of the transcribed
training data when training a Tandem system wi th bottleneck features and G M M - H M M
acoustic model, using the C a l l Home Engl ish data. The bottleneck feature extractor is
pre-trained both wi th mult i - l ingual data and selected semi-supervised data. Then it is re­
trained wi th the l h of correctly transcribed data. The G M M - H M M model is at first trained
wi th the l h dataset, while the automatically transcribed data are added. The absolute
W E R improvement is impressive 16% (W E R 71.2 —> 55.2, out of which 75% came from
improving the bottleneck features and 25% from the self-training of G M M - H M M model).

The actual confidence is a fusion of C m a x [Wessel et al . , 2001] and 'phone occurrence
confidence' Cocc. Cocc is based on matching the decoded word wi th the phone posteriors
from the output of the N N used to extract bottleneck features. The phone posteriors are
selected along the V i t e r b i pa th through the word, while calculating the ratio of frames in
which the selected posteriors were above a threshold.

However, we should be cautious about interpreting the article. For example, it does not
compare the following three confidences: a) C m a x , b) Cocc, c) f(Cmax,COCc)- So, we do
not know how important it was to include the confidence Cocc. Then, the article reports
a setup wi th speakers overlapping in the correctly transcribed and the untranscribed data,
which increases the l ikelihood, that the untranscribed data w i l l be recognized correctly.

Neural network posterior confidence

[Zhang et. al . , 20] studied semi-supervised t raining for meeting recognition (English).
The seed-system is trained either on matched data (scenario 'SI ') or on mismatched data
(scenario 'S2') . In the mismatched scenario, the seed system is trained on ICSI meeting
recordings (U.S. English) , while both the untranscribed and the test data are from A M I
meeting corpus wi th 'European ' , mostly non-native, Engl ish.

The structure of the A S R system is a Tandem consisting of NN-based features and G M M -
H M M acoustic model . The article studies the effect of replacing the NN-outpu t classes by:
tied-states, mono-phone states, mono-phones and grouped mono-phones (8 classes). In the

55

matched scenario ' S I ' , it was good to use the tied-states for the self-training of the NN-based
feature extractor, while for mismatched scenario 'S2' , it was better to use the mono-phones.

The proposed confidence Cpos is based on averaging the log-posteriors from the front-
end neural network along the V i t e r b i path of the decoded word. The sentence confidence
is the arithmetic mean of word confidences; sentence confidence is used for selecting the
sentences. The paper claims that the posterior confidence for sentences is better than the
'phone occurrence confidence' Cocc from [Thomas et al . , 2013]. However, the Cocc was
originally used in combination wi th C m a x , so it is not clear which article proposes better
confidence. Nevertheless, we w i l l compare Cpos w i th the M i n i m u m Bayes Risk decoding
statistics i n section 7.2.4 to show that the M B R statistics are better than Cpos.

Statistics from M i n i m u m Bayes Risk decoding

We already introduced this method i n section 'Per-word confidence' on page 51, where we
used it to assign confidences to words from best path i n lattice.

However, the method can also 'replace' words in the hypothesis: The M B R decoding
method from [Xu et al . , 2011] is used to decode the word (or state) sequence, which minimizes
expected word (or state) error rate, where the expectation is taken w.r.t. the decoded lattice.
A s shown in [Xu et al. , 2011, table 1], the decoding method leads to a better W E R than
both the Maximum-a-poster ior i decoding and Consensus-network decoding. It can also be
used as a powerful method for system combination. In [Xu et al . , 2011, table 4], we see that
it outperforms both R O V E R and the Confusion-network combination (C N C) . The system
combination by M B R decoding was also studied i n [Swietojanski et al. , 2013].

We use M B R decoding for combining two A S R systems i n chapter 9. The decoded
word-strings are used as automatic transcripts for semi-supervised training.

Calibrat ing confidences by logistic regression

The cal ibrat ion of per-word confidences is well described i n [Yu et al . , 2011]. It assumes a
situation of a developer who has no access to the A S R engine internals. The Max-entropy
model from the article is equivalent to training a logistic regression on the proposed input
features: polynomial expansion of continuous features (per-frame acoustic model score,
background model score, noise score, . . .) , word-identity as 1-of-M encoding and the context
expansion represented by confidences of the adjacent words. The a im of the paper is to
improve the confidences to make them closer to the ' ideal ' confidence. The paper does not
consider semi-supervised training. We wi l l t ry to use this to enhance the word confidences
in our experiments.

Out O f Vocabulary word detection

The use of per-frame confidences is reported rarely. A n exception is the detector of Out-of-
vocabulary words (OOVs) , developed for the J H U workshop in 2007 [Burget et al . , 2008].
Here, the core idea was to detect the O O V s from the discrepancy of per-frame phone pos­
teriors obtained from the lattices generated by a 'strongly constrained' word-based L V C S R
system and a 'weakly constrained' phone recognizer, while both systems use the same acous­
tic model. The 'raw' posteriors are combined by a small neural network, where adding the
temporal context to the input is helpful. The paper suggests to use the central frame and
2 side-frames wi th the offsets +6 and -6 frames. The network has 3 classes: silence, non-
O O V and O O V . It is shown that the O O V detector can be used as a generic detector of

56

recognition errors, not l imi ted only to O O V s .

O u r comment: In our case, we are not interested in O O V detection, but s t i l l the confi­
dences from the 'weakly constrained' system can be helpful. To simplify the setup, we can
first work wi th the per-frame confidences from the 'strongly constrained' L V C S R system,
which we w i l l do in section 6.1.

5.3.3 O t h e r m e t h o d s

Entropy minimization

Another family of the semi-supervised methods incorporates the uncertainty about the un­
labeled data into the objective function. The system is trained to reduce the entropy of
the probabilistic assignment which the decoder gives to untranscribed data. [
and Bengio, 2004, Huang and Hasegawa-Johnson, 2010, Y u et al. , 2010b, Manohar et al. ,
!015]. The entropy is computed from posteriors of lattice-paths. It becomes min imal , i f al l

probabil i ty mass is assigned to the strongest path from lattice.

Feature-space manifold

Yet another family of semi-supervised methods is based on the feature-space manifold as­
sumption using a graph-based framework [Malk in et al . , 2009], where the nearest supervised
data-point suggests the label. These methods rely on bui lding a large index wi th the fea­
tures. The index is used for searching the labeled data that are similar w i th the unlabeled
data.

Two-softmax semi-supervised training

A n interesting idea for D N N self-training is to use two softmax layers [Su and X u , 2015]
on the output. The first softmax output is trained by the transcribed data, the second
softmax is trained wi th the automatically transcribed data, while the hidden layers are
shared. The self-training is done without data selection or frame-weighting. The paper
proposes to discard the output layer and t ra in a new softmax output w i th the transcribed
data.

The paper also experiments w i th data selection, i n which the sentences wi th the top 20%
or bot tom 20% confidences are used. However according to importance sampling experiment
in [Huang et al . , 2013], the largest improvements are achieved by self-training wi th sentences
having 'middle ' confidence.

A similar setup wi th two softmaxes is described in [Manohar et al. , 2015]. In the self-
t raining without the data-filtering, it is beneficial to use the second softmax layer for the
t raining wi th the automatic labels, while lowering the weight of the unlabeled data. The
semi-supervised scenario is further extended to the sequence-discriminative t raining in which
s M B R objective is used for the transcribed data. The untranscribed sentences are trained to
maximize the Negative Condi t ional Entropy on the second softmax. The approach is very
interesting. However, the absolute W E R improvements from the semi-supervised training
were about 3x lower than what we achieved in [Veselý et al . , 2013b].

57

Mult i -system confidence re-calibration, importance sampling

The scenario i n [Huang et al . , 2013] uses thousands of hours of untranscribed data for semi-
supervised training. The importance sampling is implemented by spl i t t ing the untranscribed
data into 10 bins of 1 M sentences according to the re-calibrated confidence. Each b in is
used for the semi-supervised training. The best result is achieved wi th the middle-range of
confidences (5th bin) , which leads to better result than than selecting the b in wi th highest
confidences.

The confidence re-calibration is based on R O V E R system combination that is followed
by a round-robin of exponential re-calibration based on number of supplementary systems
that agree wi th the main system.

O u r comment: The importance sampling experiment showing that the most helpful data
are not those wi th the best confidence, but the middle ones, is interesting. The paper
suggests that re-calibrated confidence helps to select data w i th lower P E R , but it does not
explici t ly compare the original and re-calibrated confidences i n the self-training experiments.

Mult i -system automatic transcripts, Condit ion random fields (C R F)

The idea of multi-system semi-supervised t raining was recently re-explored i n [Li et al . ,
!016], i n which the automatic transcripts are combined from two systems by a hierarchy of

C R F models.

5.3.4 What we believe to be interesting

To summarize, there are many interesting ideas i n the literature. Here is a list of important
topics:

• different methods to obtain per-word confidences

• per-frame confidences

• calibration of confidences

• re-training wi th transcribed data

• importance sampling

• iterative semi-supervised training

• realigning automatic transcripts

• two-softmax semi-supervised training

• entropy minimiza t ion semi-supervised training

• multi-system automatic transcripts and confidences

Clearly, we cannot re-explore al l these ideas. Instead, in the spirit of the Occam's razor,
we w i l l t ry to bu i ld the simplest possible system that w i l l work well i n practice. W i t h
this literature survey, we broadened our know-how of semi-supervised t raining and we also
created the context to situate our experiments into.

58

Chapter 6

Initial experiments with
semi-supervised training

6.1 Frame selection by confidence (ASRU2013)

This chapter is based on our first article about the semi-supervised training
[Veselý et al., 2013b]. The key idea was to use two types of confidences (per-sentence, per-
frame), to be able to perform 'smart' data-selection in SGD training. At this point we are
using the uncalibrated 'raw' confidences, which are easy to obtain and good enough for the
data selection. In this section we use Babel Vietnamese setup described in section 4-1-

In our scenario, we use lOh of transcribed data and 74h of untranscribed data. For seed­
ing, we use a state-of-the-art D N N system buil t by R B M pre-training, frame-classification
training and s M B R training as we previously introduced i n section 3. In this section we use
the Babe l Vietnamese database, from which we take the L i m i t e d L P condition.

6.1.1 Confidence measures

In general, it is beneficial to incorporate some form of confidence measure into the semi-
supervised training. In self-training, we decode using the seed system and treat the hypoth­
esis as a reference. If we had a number that tells us how certain the decoder was about the
decoded hypothesis, we could use it to pre-select the data and remove hypotheses which are
more l ikely to contain errors. However, it is not clear on which level the confidence scores
should be extracted.

A popular approach [Huang et al . , 2013, Thomas et al . , 2013] is to compute word-level
confidences, which are then used to derive sentence-level confidences. However, in our in i t ia l
experiments, we use the frame-level confidence.

As we already introduced on page 51, the per-frame confidence c§t is taken from the
lattice posterior j(t,s), which is obtained by the forward-backward algori thm (see section
2.3.8). The posterior j(t, s) corresponds to the probabil i ty of being at t ime t in the tied-state
s. Supposing that we have a sequence of tied-states for the best-path S = (š i , Š 2 , . . . , ŠN),

the confidence value for frame t is extracted wi th its associated state s~t as:

The values of this confidence measure reside in interval (0,1), they can be used either
for threshold-driven data selection or t raining wi th weighted data, as introduced on page 53.

59

6.1.2 Seed system

Feature extraction, auxiliary G M M - H M M system

For the paper [Veselý et al . , 2013b] we used the P L P - f M L L R features, which were described
in section 3. A t that time, the K a l d i pi tch extractor d id not exist, instead we used a
pitch algori thm described i n [Talkin, 1995], while the 'raw' pi tch was mean-normalized per
speaker and the non-voiced parts were bridged-over by linear interpolation. A l l the input
features were then processed by speaker-based mean/variance normalizat ion. The baseline
G M M - H M M system wi th 2300 cross-word triphone tied states and 10 Gaussians per state
is used to prepare L D A + S T C + f M L L R features.

For the supervised data, we compute f M L L R transforms from forced-alignments. For the
unsupervised data we compute f M L L R from lattices by using two passes of decoding. The
G M M - H M M system is also used to produce D N N training targets by forced-alignment to
the transcription, these triphone-state targets are used for the frame-classification training.
The D N N triphone tree is inherited from the baseline G M M - H M M system.

D N N - H M M seed system

The D N N training procedure and topology were described in section 3.1. The D N N has 6
hidden layers of 2048 sigmoidal neurons, there is 440 dimensional input and 2.3k dimensional
softmax output. The 40 dimensional f M L L R features are spliced by + / - 5 frames and re-
normalized for the D N N input.

We use generative R B M pre-training [Hinton et al . , 2006] to init ial ize the 6 hidden layers.
The next step is frame-classification t raining t i l l the convergence, re-alignment of triphone
tied-state target labels, and second run of the training. Final ly , the network is fine-tuned
by sequence-discriminative t raining wi th s M B R objective. A s proposed i n [Veselý et al. ,
!013a], we re-generate the lattices and reference alignment after the first epoch, running 1

+ 4 epochs while using a fixed small learning rate of le-5.

6.1.3 Supervised experiments

A s described in previous section, the seed model is trained i n several stages. The auxil iary
G M M - H M M model is trained by mixing-up max imum likel ihood training, where the last
stage produces L D A + S T C + f M L L R features. Then a D N N is buil t on top of f M L L R features
by using layer-wise pre-training, two runs of frame-classification t raining and 1+4 iterations
of sequence-discriminative training.

We applied the above described training procedure to both the L i m i t e d L P and F u l l L P
conditions. B y looking at table 6.1, we see system performance at individual stages of the
training. In the last stage, the L i m i t e d L P system (that is later used as seed model) has
13.6% worse W E R than the F u l l L P system. This large difference is not solely due to lower
amount of acoustic model t raining data, but also due to smaller lexicon, language model
trained on smaller set of transcripts, different segmentation and smaller number of triphone
states. In F u l l L P condit ion the op t imum was 4800 states, while for L i m i t e d L P it was 2300.

In order to get an idea how much a D N N can improve by unsupervised self-training
from the seed model, knowing the correct transcripts, we performed an ' S S T w. oracle r e f .
The rest of the L i m i t e d L P system was the same as before (L M , lexicon, G M M s , f M L L R
features). The W E R we obtained is 57.0%, we w i l l consider this to be the upper bound
performance for the semi-supervised t raining and the calculation of W E R recovery.

60

Table 6.1: Baseline performance of LimitedLP system trained on lOh data (2% of low-
confident segments removed); upper bound FullLP performance

Dataset [WER] L i m i t e d L P F u l l L P
(transcribed hrs.) (10.8 hours) (84.8 hours)
G M M (f M L L R) 69.0 58.6
D N N 63.1 50.4
(+ S S T w. oracle ref.) (57.0) -
D N N - s M B R 60.6 47.0

6.1.4 Semi-supervised experiments

Our objective is to make such use of unannotated in-domain speech data, that the W E R
performance of D N N A S R system improves. In this section, we w i l l search for an opt imal
strategy to achieve this goal.

R B M pre-training

A s the first experiment, we tried to add data to the R B M pre-training; this is t r iv ia l since
the Contrastive Divergence algori thm does not need any labels. A s can be seen in table 6.2,

Table 6.2: Adding more data to unsupervised RBM pre-training

Pre-training ; data [h] 10.8 84.8
Pre-training ; iterations 10 3
Fine-tuning data [h] 10.8 10.8
W E R 63.8 63.8

we tr ied pre-training wi th more iterations on smaller set and less iterations on larger set,
which contains both the annotated and unannotated data. In both cases, the fine-tuning
(frame-classification training) was performed wi th the same annotated dataset. However,
there is no W E R difference between the two systems, hence adding the untranscribed data
to R B M pre-training is not helpful. Th i s is consistent w i th the observations previously
published in [Yu et al . , 2010a, Swietojanski et al . , 2012].

Frame-classification training (cross-entropy)

A s the pre-training is not promising, we focus on frame-classification training. In the first
experiment, we add all the sentences of unannotated data. Due to mini-batch S G D training,
the annotated and unannotated data are mixed together. A s can be seen i n table 6.3,
we obtain significantly better results by s imply adding all the automatically transcribed
segments 1.

Due to the large disproportion between the amount of annotated and unannotated data
(~1:7), we tr ied to include the annotated data several times to the t raining set. This leads

1 In [Veselý et al., 2013b], we worked with a premise that the per-sentence confidences are not helpful
for the semi-supervised training. This was suggested by [Veselý et al., 2013b, table 4]. After repeating the
same experiment later, we realized that a small improvement can be achieved by removing 30-50% of the
sentences (table 7.4). However, the frame-selection still leads to better results than sentence selection.

61

Table 6.3: Adding unannotated segments (based on table 4 in [Veselý et al., 2013b])

Added segments 0% 100%
W E R 63.1 62.0

to stronger focus on transcribed data during the S G D training. In table 6.4, we see that a
slight W E R improvement can be achieved by including the annotated data 3 x 2 .

Table 6.4: Including several copies of annotated data, while using 100% unannotated seg­
ments

No. copies l x 2x 3x 4x 5x
W E R 62.0 62.0 61.7 61.8 61.9

A s we believed that per-sentence confidences are not helpful, we experimented wi th the
data selection based on the per-frame confidences. B y doing the data-selection on the frame-
level, we are able to discard the frames (i.e. data-points), where the decoder was uncertain.
The results in table 6.5 indicate that we can achieve significant W E R improvement by using
the frame-selection. Aga in , the W E R is relatively insensitive wi th in the interval of high
thresholds.

Table 6.5: Dropping frames from unannotated part according to threshold on per-frame
confidence, while using 100% unannotated segments and including annotated part 3x

Threshold
Removed frames

0.0
0%

0.5
11%

0.7
18%

0.8
23%

0.9
28%

0.95
32%

W E R 61.7 61.2 60.9 60.9 61.0 61.0

In the last experiment, we performed frame-weighted training. We used the per-frame
confidences, i.e. the posteriors of being in the correct state, to re-scale the vectors w i th error
derivatives that are used for backpropagation. A s the gradient depends linearly on error
derivative through Jacobians, scaling the derivatives is equivalent to scaling of gradients.
We combine the frame-weighting and frame-selection. The results i n table 6.6 show, that
wi th threshold 0.5, there is a small W E R improvement compared to the same threshold
in table 6.5. However, w i th threshold 0.7, which corresponds to the best system, there
was no W E R difference, therefore frame-weighting and frame-selection do not seem to be
complementary 3 .

The overall absolute W E R improvement coming from semi-supervised frame-classification
training is 2.2%, from which 1.1% is caused by adding al l the unannotated segments and
1.1% comes from thresholded frame-selection. This corresponds to W E R recovery [Novotney
and Schwartz, 2009] of 36%.

2Later, we found that adding the copies of transcribed data is not always helpful. Particularly, when the
we tune the exponential scale of confidences, the W E R improvement from several copies disappears (the
confidences scale SGD gradients).

3 A s the confidence was not calibrated, we should be cautious and perform further investigation.

62

Table 6.6: Frame-weighting by a confidence, while using 100% unannotated segments, in­
cluding annotated part 3x and using thresholded frame-selection

Frame-selection
W E R

threshold
W E R

0.0 61.3
0.5 60.9
0.7 60.9

Sequence-discriminative training (s M B R)

So far, we have observed W E R improvements from the semi-supervised frame cross-entropy
training, on the other hand our seed system was trained using sequence-discriminative cri­
terion (s M B R) . To outperform the seed system, we need to apply sequence-discriminative
t raining as well.

It is not clear whether the strategy based on thresholded frame-selection wi l l be efficient
also for the s M B R training. A t first, we t ry to outperform the seed system by applying
the supervised sequence-discriminative t raining to the best self-trained D N N , using the 10.8
hours of the correctly transcribed data. A s can be seen in table 6.7, the W E R improvement
slightly lowered, it was 2.2% after the frame cross-entropy training, and it became 1.8%
after the s M B R training.

Table 6.7: Supervised sequence-discriminative training of the best self-trained DNN

baseline
semi-

supervised
cross-entropy data 10.8h 84.8h
s M B R data 10.8h 10.8h

W E R W E R abs. improvement
cross-entropy training 63.1 60.9 2.2
s M B R training 60.6 58.8 1.8

Our intui t ion is that further improvements are possible by using the semi-supervised
sequence-discriminative training. However, we d id not succeed to create a plausible sequence-
discriminative recipe that would use the untranscribed data and that would also lead to a
better performance. Hence, we keep on using s M B R wi th the correctly transcribed data after
the semi-supervised frame-classification t raining is finished. We can see it as a 'fine-tuning'
w i th the data that have the correct labels.

Summary

In this section, based on our conference article [Veselý et al . , 2013b], we experimented
wi th the semi-supervised frame-classification training. We found out that frame selection
according to the per-frame confidence leads to reasonable results. However, we d id not yet
consider the possibili ty of post-processing the confidences. For s M B R training, we use the
correctly transcribed data.

63

6.2 Re-scaling the frame posteriors

By looking again at table 6.5, we see that the confidences are not calibrated. For example,
with the threshold 0.5 we discard only 11% of frames, while with the calibrated confidence
we should discard 50% frames. In this section we will present a simple technique which
approximately calibrates the confidences, making it more suitable for the frame-weighted
training. Here, we use Babel Bengali and other languages described in section 4-2.

6.2.1 Analyzing the per-frame confidences

In section 6.1, we suggested to use the per-frame confidence to select reliable frames for the
mini-batch S G D training. The per-frame confidence is the lattice posterior c§t = j(t, st), of
t ied states S = (si, s~2, • • •, ST) obtained from best path i n lattice. The state sequence S is
used as target labels for N N training. The per-frame confidences Cgt are in the interval (0,1),
and we w i l l use them both for the frame selection and the confidence-weighted t raining.

Intuitively, an ideal confidence can be seen as the probabil i ty that the automatically
generated label is correct. To see how well the frame-confidence matches the label accuracy,
we created figure 6.1. Here, the 'state-accuracy' is the percentage of matching elements in
tied-state sequences, comparing the best-path i n lattice and forced-alignment.

Figure 6.1: Tied-state accuracy as function of confidence. By lowering the lattice-scale A
the curve becomes closer to the 'ideal confidence'. - - We split the data into 100 bins, each
bin has frames of similar confidence. Then, each point on the curve is the frame accuracy
of one bin. The data contains 48% of 'correct' frames (after removing silence frames, 35%).
Created from Babel Bengali data.

In figure 6.1 we see that the original frame-confidence (the dark blue curve) is far beneath
the dashed line which represents the ' ideal confidence'. This means that the confidence is
too 'optimist ic ' : for many frames, the confidence is much higher than the actual frame
accuracy. To reduce the mismatch, we apply the lattice-scale A both to the acoustic and
graph scores:

(PAM(X\W)KPG(Wr)x. (6.2)

This controls the 'sharpness' of lattice-posteriors from forward-backward algorithm. The
lattice-scale A was previously discussed on page 20.

(34

The curves for different lattice-scales A in figure 6.1 show that as the scaling factor gets
lower, the curves get closer to the dashed line representing the ideal confidence, while the
curves do not change much for scales 0.1 and lower. The A = 1.0 corresponds to the original
scaling (the acoustic scale of K = 0.1 and graph scale g = 1.0).

As changing the lattice-scale A affects the dis tr ibut ion of confidences, we plot it i n figure
6.2, and we realize that w i th the lower scales the confidences become more uniform.

Figure 6.2: Distribution of the per-frame confidences, when the lattice-scale A is applied.
Low scales lead to a more uniform distribution.

Lastly, it is interesting to realize how the lattice-scale A affects the posteriors of paths
through the lattice. W i t h low scales, the posteriors of al l the paths get closer. Let 's illustrate
the effect on the following example: suppose we have a lattice w i th 3 paths having posteriors
pi = 0.9, p2 = 0.09, P3 = 0.01. We apply scaling factor 0.1 and re-normalize to sum up to
one. W h a t we get is p\ = {pi)QA/Z = 0.35, p'2 = (p2)°-1/Z = 0.33, p'3 = {pz)QA/Z = 0.32.
It is very likely that the actual scores in the lattice become less important than the 'depth'
of the lattice, which explains the non-changing curves for A = 0.1 and lower i n figure 6.1.

6.2.2 The seed system

In this section, we use Babe l Bengali and the 'Other Babe l languages': Assamese, Ha i t i ,
Zu lu and Lao. The experimental setup for both the 'seed systems' and 'semi-supervised
systems' was described in section 4.2.

Feature extraction, auxiliary G M M - H M M system The setup is similar to the de­
scription i n section 6.1.2. The differences are that here, the P L P features are extended by
the 3-dimensional K a l d i pi tch features [Ghahremani ct al . , 2014], which replace the former
pitch algori thm. We also increased the number of tied-states in the G M M - H M M from 2000
to 4000, which leads to roughly 7 Gaussians per state. Also , the f M L L R transforms are
obtained by three passes of lattice generation and f M L L R estimation, previously there were
two passes.

W i t h the final G M M - H M M system, we produce the in i t ia l labels for the D N N training
and the binary decision tree for the tied-state clustering.

65

D N N - H M M system The D N N training procedure is the same as we previously described
in section 6.1.2. The only difference is that here, we removed the <unk> words from the
frame-CE and s M B R training. The <unk> words are: O O V s , words from other languages
and incomprehensible words.

6.2.3 Experiments with lattice-scale A, frame-weighted training

Motiva ted by promising analysis, we tested the approximate confidence cal ibrat ion method
based on tuning the lattice-scale A. In table 6.8, we see the f rame-CE training results. For
scale A = 0.02, we obtained 0.3% lower W E R , compared to the original A 1.0, while the
other A scales 0.5, 0.1 and 0.001 lead to the results that are almost as good as w i th the scale
0.02.

Table 6.8: Tuning the lattice-scale A in weighted frame-CE training. We use 100% of
automatically transcribed segments and the manually transcribed data are included Ix.

lattice-scale A: 1.0 0.5 0.3 0.1 0.02 0.001
W E R (Bengali) 61.3 61.1 61.2 61.1 61.0 61.1

In next set of experiments, we fixed the scale A to 0.02, and we combined the weighted
training wi th the data selection according to confidence threshold. In table 6.9, we see
that the W E R performance is relatively insensitive to the confidence-threshold. In case of
Bengali , we get 0.1% better result w i th threshold 0.5, however, this improvement d id not
repeat for Zulu . If we t ra in on a l l the frames (i.e. without frame selection), there seems to
be no significant hit i n performance and the recipe becomes simpler.

Table 6.9: Tuning frame rejection threshold, while using lattice-scale A = 0.02, and including
manually transcribed part lx. We train only with frames whose confidence is above threshold.

Rejection threshold: 0.0 0.25 0.5 0.75 1.0
W E R (Bengali)
W E R (Zulu)

61.0
67.6

61.1
67.8

60.9
67.8

61.7
68.0

63.6
69.1

In section 6.1, we saw that repeating the manually transcribed data 3x helps. However,
here, the same repeating of data (3x) caused a l i t t le degradation 61.0 —>• 61.2 (Babel Bengali) .
Hence, it is sufficient to include the manually transcribed data l x , which again simplifies
the setup.

W i t h the best setup for Bengali , we achieved a W E R recovery of 49%. The related
performances are i n table 6.10, i n which the last line is the replica of the best recipe from
[Veselý et al . , 2013b] applied to Bengali (frame selection wi th threshold 0.7, repeating tran­
scribed data 3x). We see that frame-weighting is on-par w i th the frame-selection, that we
used previously (but we'll show later in section 7.4 that the weighted-training becomes a little
better, after we introduce the exponential scale a).

Final ly , table 6.11 shows the W E R improvements for the L i m i t e d L P condit ion of the five
development languages from the second year of Babe l program. We obtain consistent W E R
improvements for al l the languages ranging 2.0-3.0% absolute, when comparing the 'seed
model ' and the '+ s M B R ' system. The improvement is coming from the semi-supervised
frame Cross-Entropy training, using our new strategy based of frame-weighted S G D training,
which uses re-scaled lattice-posteriors as the weights (lattice-scale A = 0.02). After the semi-

66

Table 6.10: Performance of semi-supervised training for Bengali, frame Cross-Entropy
training. The WER recovery is 49%.

system W E R abs. improvement
No data added 63.6 -
Semi-sup ervised 60.9 2.7
Oracle transcripts 58.1 5.5
A S R U 1 3 Recipe 60.9 2.7

supervised training, we continue wi th the s M B R training, for which we use the smaller lOh
set of manually transcribed data.

Table 6.11: Semi-supervised training for five languages from the second year of Babel pro­
gram.

W E R Assamese Bengali H a i t i Zu lu Lao
seed model (s M B R) 60.1 62.0 57.4 67.4 53.2
per-frame baseline 62.0 63.6 58.6 68.6 54.5
+ semi-supervised 59.6 61.0 55.5 66.5 52.0
+ s M B R 57.9 59.8 54.4 65.4 50.8
overall abs. improvement 2.2 2.2 3.0 2.0 2.4

6.2.4 Summary

We have proposed a simple heuristic to approximately calibrate the frame confidences,
based on re-scaling the lattice-posteriors w i th lattice-scale A. This simple tr ick removes a
big por t ion of the distance to the ' ideal confidence'.

The refined confidences are then used i n semi-supervised mini-batch S G D training, where
the frames are weighted wi th the confidence. The experiments have shown that we no longer
need to tune the frame-selection threshold. Also , the duplicat ion of transcribed data is no
longer needed. This simplifies the semi-supervised recipe we have previously proposed in
section 6.1, while the W E R performance is on-par for both approaches.

However, later we found that the 'ideally calibrated confidence' is not guaranteed to be
the best possible confidence for semi-supervised training with weighted data-points. Later, in
table 7.16 on page 82 will be shown that the results are better with the 'default' A = 1.0 and
the tuned a = 5.0. Also, the lattice scale A = 0.02 did not generalize to Switchboard recipe
(table 8.1 on page 89). Therefore, the technique is not suitable for practical use, but it was
an important 'stop' on the way to more systematic study, which is in next chapter.

67

Chapter 7

What is the best granularity of
confidences?

Previously, in section 5.2, we 'layed-out' the area for our semi-supervised training experi­
ments. The key questions were: A) "Should we work with per-sentence, per-word or per-frame
confidences?" B) "Should we use data selection or data weighting?" C) "Should we cali­
brate the confidence?" In this chapter we explore these questions systematically. We begin
with 'oracle' experiments, followed by three sections with confidence-types from question A).
We also introduce re-training with manually transcribed data, which is necessary to better
decide which semi-supervised setup is preferable. Here, we returned to our Babel Vietnamese
setup (LimitedLP) from section 4-1

Seed system The seed system is buil t w i th full recipe as described i n chapter 3. It includes
the t raining of in i t ia l G M M - H M M system to produce P L P - p i t c h - f M L L R features. Then the
recipe continues wi th R B M pre-training, frame cross-entropy training and s M B R training.
The seed system is buil t w i th 10 hours of transcribed Babe l Vietnamese L i m i t e d L P data,
the performance of the seed system is 59.6% (in section 6.1 we had 60.6, the difference is
caused by improved pi tch features [Ghahremani ct al . , 2014]. We also increased the number
of tied-states i n the f M L L R - G M M from 2000 to 4000, which improves the oracle results, but
does not change seed system performance dramatically.) The performance of intermediate
stages is i n table 7.1.

Table 7.1: Performance of seed system we use in this chapter for semi-supervised experi­
ments. The initial fMLLR-GMM system was used to produce input features, the CE-DNN
was trained with frame cross-entropy loss, then it was re-trained with sMBR objective.

f M L L R - G M M C E - D N N s M B R - D N N
W E R 66.1 61.7 59.6

Semi-supervised training Aga in , we do f rame-CE semi-supervised t raining wi th inter­
mixed automatically and manually transcribed data. The automatic labels for N N training
are the tied-states S = (s i , S 2 , • • • ,ST) from the best-path i n lattice C, which was gener­
ated wi th s M B R - D N N seed system. The specific confidences and the way they are used is
described later i n the chapter.

68

7.1 Oracle experiments

To better understand the effect of calculating confidences for smaller or larger units, we
designed the oracle experiments which use the 'ground t ru th ' transcripts of the untranscribed
data. The transcripts are used to mark the correct words in the recognized text by using the
word-alignment from scoring, or to mark the correct frames i n the best state-sequence S by
comparing it wi th the forced-alignment to transcripts. We create the 'oracle' confidences in
the following way:

Per-sentence confidence is related to the estimate of word accuracy in the sentence,
rather than the correctness of the whole sentence. The oracle value is the word-
accuracy i n the automatically transcribed sentence. The D N N self-training is done
wi th the sentences scaled by their word-accuracies, which are post-processed by tuning
the exponential scale a (see table 7.2).

Per-word confidence is related to the probabil i ty that the word is correct. Here, ac­
cording to the word-alignment from scoring, the correct words get oracle confidence
1 and incorrect 0, this confidence is then assigned to the frames of the word. The
confidences for silence frames on sentence ends or between words are filled w i th linear
interpolation (35% of al l frames).

Per-phone confidence would be the probabil i ty of labeling a frame wi th the correct
phone. For the oracle confidence, we compare the phones on the best-path from
lattice w i th the phones i n forced-alignment. The frames where the phones match get
confidence 1, otherwise 0. The self-training is done wi th these per-frame weights. For
the sake of comparison, we simplified the Vietnamese phone-set not to consider the
tones or the posit ion i n the word.

Tied-state confidence is similar to the per-phone confidence, w i th the difference that we
are comparing the sequence of acoustic model classes (i.e. pdfs, tied-states). Aga in , we
compare the lattice best-path wi th the forced-alignment. The frames wi th the same
tied-states have confidence 1, otherwise 0. We t ra in wi th weighting the frames by
these confidences, which in fact selects the 'correct' frames from the forced alignment
of the untranscribed data-set. This oracle confidence is thus very optimistic.

Table 7.2: Per-sentence oracle confidences, the sentences are weighted by word accuracy
(scaled exponentially by a: c' = ca). Although the WER of seed systems with sMBR training
was 59.6%, we should also compare to CE-DNN baseline with WER 61.7%. The results in
table are from frame-CE training.

Scale a 0.5 1.0 1.5 2.0 2.5 3.0
W E R 59.4 59.0 58.9 58.8 58.7 59.2

T h e results

A s can be seen i n table 7.3, the oracle confidences br ing nice improvements. The first two
lines in the table show the performance of the baseline C E - D N N system and the s M B R - D N N ,
which is our seed system. The next two lines compare the systems wi th no untranscribed
data added, or the case when we s imply add al l the untranscribed data without using any

69

confidences. The system 'No untranscribed' is better than 'Baseline system', because we
replaced the t raining labels from G M M - a l i g n m e n t w i th a 'Seed system' alignment. The
group of four lines wi th the proposed oracle confidences of different granularity is i n the
middle. The last line in the table is the best possible oracle, where we trained wi th the
correct transcripts of the 'untranscribed' data.

Table 7.3: DNN self-training with oracle confidences (optimizing frame Cross-Entropy)

W E R
W E R

recovery
Basline system (C E - D N N) 61.7 -
Seed system (with s M B R) 59.6 -
No untranscribed 60.8 0
A l l untranscribed, no confidence 60.1 8
Oracle confidences:
Per-sentence confidence 58.7 25
Per-word confidence 57.7 36
Per-phone confidence 56.1 55
Tied-state confidence 55.3 64
W i t h correct transcripts 52.3 100

From the results i n table 7.3 we see that:

1. al l the oracle confidences are better than using no confidence

2. the results improve as the confidence unit becomes smaller
(sentence —> word —> frame)

This oracle experiment suggests that the tied-state confidences are the most promising.
However, the method d id not consider the actual confidence values that w i l l be available.
In the real world scenario we do not know which frames are correct. Inevitably, the training
set w i l l contain some wrongly labeled frames, while we w i l l miss some of the correct frames.
The actual results w i l l be certainly worse than in this oracle experiment.

Also , we have to perform the real experiments w i th the sentence-level and word-level
confidences. O n l y a careful comparison across techniques can verify if the frame confidences
are the best.

7.1.1 Analyzing tied-state frequencies in the best path of lattice

After realizing that frame confidences are promising, we compare the label frequencies in
the data that are a) automatically transcribed (best-path of lattices) and b) manually tran­
scribed (forced-alignment to transcripts).

Figure 7.1 shows the log-scale frame counts of tied-states. The thick black curve corre­
sponds to tied-state counts in the alignment. The green points around are the counts of the
matching tied-states in the best-path from lattice.

We see that the frequencies are well matched for the more represented tied-states (> 10 3

frames), while the point cloud deviates from the black curve for the low-represented tied-
states (< 10 3 frames). The extra frames, at tr ibuted to the low-represented states seem to be

70

Figure 7.1: Tied-state frequencies in Babel Vietnamese, comparison of the alignment and
the best-path in lattice. (The WER of the seed system was 59.6%.)

Figure 7.2: Tied-state frequencies in Switchboard, comparison of alignment and best-path in
lattice. (The WER of the seed system was 26.9%.)

taken from the silence states as there are not many other states wi th a significant decrease
of the frame count.

We also generated the same plot for the Switchboard setup (figure 7.2). Here, the cloud
of green points closely follows the black curve, regardless of the t ied state frequency. There
certainly is a difference between the two databases. We w i l l continue working wi th the
Vietnamese setup, which is more challenging (the W E R s are higher). There is more space
for improvement and it is more l ikely that the good techniques w i l l generalize to easier
databases than the other way round.

7.2 Per-sentence confidences

In this section we will experiment with the per-sentence confidences based on the MBR statis­
tics or based on the NN-posteriors. We will address data selection, weighted training and
confidence calibration. Finally we show that it is beneficial to further re-train the acoustic
model with the correctly transcribed data.

71

7.2.1 Minimum-Bayes risk confidence

A s mentioned earlier i n section 5.2.1, the sentence-level confidence csent is calculated as the
average word confidence wi th in a sentence: csent = JJ YliLi °wq- The per-word probabilities
Cwq are the posteriors 7(5, tu g) from the M i n i m u m Bayes Risk decoding [Xu et al . , 2011,
section 7.1], where we fixed the word sequence W = (wi,W2, • • • ,WT) to the best path in
lattice W = wrds(5). The confidences Cwq were extracted wi th the scales that were used to
generate the lattices (i.e. the acoustic scale n = 0.1, graph scale g = 1.0).

Data-selection, no weighting

The simplest experiment, which can be done wi th the per-sentence confidences, is the data-
selection, i n which we gradually add sentences ranked by the confidence.

Table 7.4: Data selection by per-sentence confidence.

Added sentences 0% 30% 50% 70% 90% 100% Oracle
W E R 60.9 60.1 59.8 59.8 60.0 60.1 58.7

F rom table 7.4, we see that it is good to leave out 30-50% of sentences, which brings a 0.3%
W E R improvement compared to adding 100% sentences. The oracle W E R 58.7 achieved
by weighting the sentences wi th their re-scaled true word accuracy indicates that there is a
space for further improvement.

Weighting the sentences by confidence

To make our setup more similar to the oracle experiment, we should weight the sentences
in the S G D training. Before doing it, it is good to show how well the confidence matches
the word accuracy.

The scatter plot of confidence and accuracy i n figure 7.3a revealed that the confidence is
more optimist ic than the actual word-accuracy, as the blue cloud is far beneath the dashed
line representing the ideal match. The steep section of red curve indicates that majority of
words comes from sentences wi th confidence ranging from 0.6 to 0.8.

If the confidence gets closer to the word accuracy, we should also get closer to the oracle
performance. For a better match, we can warp the confidence by an exponential scale a as
follows: c'sent = c"ent. B y a grid search over a in table 7.5, we found the best a = 3.5. From
the results, we see that the distance to Oracle shrank from 1.1% to 0.6% W E R .

Using the tuned a = 3.5, we regenerated the confidence-accuracy scatter plot. In figure
7.3b, we clearly see that large part of mismatch is removed, as the blue cloud nearly overlaps
wi th the dashed line.

Also the red curve indicates that a majori ty of words now comes from sentences wi th
confidence below 0.4, the sentence weights became smaller. In other words, the scaling by
a can have a similar effect as the repetit ion of the transcribed data i n table 6.4: in the first
case we decreased the weight of the untranscribed data, while i n the second case the weight
of transcribed data is increased by repeating them. A s the repetit ion was helpful in section
6.1 and unhelpful i n section 6.2, we no longer consider using it , which simplifies the recipe.

We also combined the weighted-training wi th data-selection, the grid search of scale a
was repeated while we added the top 90% 70% and 50% of the automatically transcribed

72

x x one point represents l /1000t

— c u m m u l a t i v e distr ibution of w

- - ideal conf idence

l of data (74

ord-count

utts)

»
y ;

M

confidence of an utterance

x x one point represents l /1000th of data {74 utts)

— cummulat i ve distr ibution of word -count

- - ideal conf idence \ , '

__; y'i

^ ***** K * X S J . _
#*>*xx*xx

**:
X x

" " i s

* x X
* * x x

«

confidence of an utterance

(a) Scale a = 1.0 (b) Scale a = 3.5

Figure 7.3: Sentence-confidence from MBR statistics for weighted training.

Table 7.5: Weighted training with sentence-confidence from MBR statistics (scaled expo­
nentially by a, keeping all the sentences)

Scale a 1.0 2.0 2.5 3.0 3.5 4.0 Oracle
W E R 59.8 59.6 59.6 59.5 59.3 59.5 58.7

sentences. In table 7.6, we found a further drop by 0.1% W E R , i n case of adding 90% wi th
confidence scale a = 4.0.

7.2.2 Calibration of confidences

A common approach to calibrate confidences is to t ra in a logistic regression on the annotated
development data, which are disjoint bo th from the t raining set of A S R seed-model and the
untranscribed data [Yu et al . , 2011]. In this section we verify if such cal ibrat ion of the per-
word M B R statistics can improve the efficiency of semi-supervised t raining wi th weighted
sentences.

Training the logistic regression The t raining targets are obtained from the Levenshtein
alignment that is done as part of the scoring. The logistic regression is trained for a two-
class problem wi th label 1 for correct words and 0 for incorrect words. The model is
trained globally on all the words i n the hypothesis for the development data (9.8 hours for
Babe l Vietnamese). The model contains only a small number of trainable parameters (934
parameters), it was trained by L - B F G S algorithm.

Table 7.6: Weighted training with sentence-confidence from MBR statistics (scaled expo­
nentially by a, adding portion of top N% of untranscribed sentences)

Scale a 1.0 2.0 2.5 3.0 3.5 4.0 4.5 A d d e d sentences
59.8 59.6 59.6 59.4 59.3 59.2 59.3 90%

W E R 59.6 59.5 59.5 59.4 59.5 59.2 59.3 70%
59.6 59.6 59.5 59.6 59.5 59.5 59.5 50%

73

confidence of an utterance confidence of an utterance

(a) Scale a = 1.0 (b) Scale a = 3.0

Figure 7.4: Sentence-confidence from calibrated MBR statistics (per-word).

Input features of the logistic regression A s the input features, we used:

1. logit of the M B R posterior Cwq of the word wq (the 'raw' M B R statistics, which reside
in the interval (0,1)),

2. logari thm of the number of phonemes i n the word wq.

3. unigram log-probabili ty of the word wq from the language model,

4. indicator of word identity wi th 1-of-K encoding; words wi th >20 examples have own
classes, the less frequent words are pooled. This allows the model to have a word-
specific bias, a majori ty of trainable parameters is here.

From the re-calibrated M B R statistics, the per-sentence confidence is again the arith­
metic mean of per-word confidences: csent = jjYliLicwq,cai- Now, our confidence corre­
sponds to the word-accuracy in the sentence, see verification i n figure 7.4a. S t i l l , we d id a
grid search over the exponential scales a applied as c'sent = c^ent, and surprisingly the results
in table 7.7 are favoring by 0.2% W E R the scales around a = 3.0, for which the confidence
scatter is shown i n figure 7.4b. Perhaps, the cause is the imperfect cal ibrat ion in figure
7.4a, where the lower left ta i l of the cloud is deviating from the dashed line representing the
ideally calibrated confidence. A n alternative hypothesis is that a = 3.0 is preferred because
it makes the confidences generally smaller as indicated by the red curve in figure 7.4b.

As we achieved the same best performance i n tables 7.5 and 7.7, we can conclude that
the calibration did not lead to a performance improvement in the semi-supervised training
wi th the weighted sentences.

Table 7.7: Weighted training with per-sentence confidence from the calibrated word-
confidences (derived from 'raw' MBR statistics, scaled exponentially by a, keeping all the
sentences)

Scale a 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Oracle
W E R 59.5 59.5 59.4 59.3 59.3 59.3 59.4 59.6 58.7

74

7.2.3 N N posterior-based confidence

For comparison, we experimented also wi th the best confidence from [Zhang et al . , 2014a]:
CpOS(u) based on neural network posteriors. The confidence is extracted i n two stages, at
first the word-confidences are calculated by accumulating the N N log-posteriors from the
frames of the hypothesized word Wi, while the state-sequence of the word is used to select
the NN-outputs s~t-

1 t e

Cpos(wi, ts, te) = l°SP(.t^ St) , (7.1)
t e t s + 1 t=ts

second, the per-sentence confidence is obtained as the arithmetic mean of the word confi­
dences:

1 K

Cpos(u) = — ^ ^ Cpos(wi, ts>i, te^i) (7-2)
i=l

For our experiments, we exponentiated the value as exp(Cpos(u)), which is not in the original
formulation. This converts the confidence from log-domain back to the interval (0,1). The
order of sentences sorted by confidence remains the same.

In [Zhang ct al . , 2014a], the confidence was used to select the top 70% of the sentences
for t raining the H M M - G M M system and its bottleneck feature extractor. In our scenario,
we weight the sentences for t raining a D N N - H M M system, which worked for us better than
the simple sentence selection.

Aga in , we searched for the opt imal scaling of the sentence confidence by tuning the
parameter a, applied as Cpos(u)' = exp(Cpos(u))a. This t ime the opt imal scale is a = 0.25
as shown i n table 7.8. The confidence scatter plots for the default scale 1.0 and for the
tuned scale 0.25 are in figure 7.5. B y comparing the best results from tables 7.8 and 7.5 we
see that the weighted semi-supervised t raining wi th NN-posterior based confidence (59.4%)
is a l i t t le worse than the sentence confidences from MBR-s ta t i s t i c s (59.3%).

Table 7.8: Training with NN-posterior based confidence.

Scale a 1.0 0.5 0.33 0.25 0.20 Oracle
W E R 59.7 59.8 59.7 59.4 59.7 58.7

7.2.4 Summary

In this section, we compared three types of per-sentence confidence based on 1) M B R -
decoding statistics, 2) calibrated M B R decoding-statistics, 3) neural network posteriors.
Firs t , we found that weighted t raining leads to better results than simple data selection
(W E R % 59.8 —> 59.3). However, for weighted training, we need a 'probabil ist ic ' confidence,
which we further tune by an exponential scale a , and this tuning is t ime consuming.

The best results for the three different confidence methods are summarized i n table 7.9,
where we see that the cal ibrat ion of M B R statistics by logistic regression d id not improve
the system and the confidence from NN-posteriors [Zhang et al. , 2014a] was a l i t t le worse
than the M B R based confidences.

Apar t from bui lding the A S R models, we can compare the confidences by how well they
select the sentences that contain less errors. The 3 methods are compared in figure 7.6, where
we are adding sentences (horizontal axis) and observe the W E R i n the selection (vertical

75

Figure 7.5: Sentence-confidence from NN-posteriors for weighted training.

Table 7.9: Weighted SGD training with various sentence confidences.

Confidence method W E R
M B R statistics 59.3
Cal ibra ted M B R statistics 59.3
NN-posteriors 59.4
Oracle 58.7

axis). The best selection is done wi th the blue curve, which shows that the cal ibrat ion
was done properly. The second best is the red curve, which represents the confidence from
uncalibrated M B R statistics. The th i rd is the green curve corresponding to the NN-posterior
confidence. Note that the curves are invariant to the scale a, the shape depends only on
the order of sentences.

It is slightly disturbing that although there clearly is a difference i n the quali ty of the
confidences (seen i n figure 7.6), the results in table 7.9 revealed that al l three methods lead
to similar performance when applied as sentence weights i n the semi-supervised training.

Final ly , we achieved addit ional 0.1% W E R improvement by a combination of data-
selection (top 90% sentences) and data-weighting (by average M B R statistics, scaled by a =
4.0), see table 7.6. We got close to the oracle performance (59.2 vs. 58.7 for oracle), while,
in the oracle experiment, we weighted the sentences by their word-accuracy exponentiated
by a = 2.5. S t i l l , the oracles wi th confidences for smaller units (words, frames) indicated
even more promising results. We w i l l explore them i n the following sections.

7.2.5 Re-training with transcribed data

In literature, we can find that it is beneficial to post-process the model trained wi th the
inter-mixed transcribed and untranscribed data. In [Thomas et al . , 2013], the D N N output
layer was discarded and trained again from random ini t ia l izat ion, by using only the correctly
transcribed data.

We also tr ied an alternative scenario in which we keep the output layer 'as-is' and
continue t raining wi th the 10 hours of correctly transcribed data, while using a smaller

76

— NN posteriors
— MBR statistics
— Calibrated MBR statistics -
— - lower bound

"JI ''
— NN posteriors
— MBR statistics
— Calibrated MBR statistics -
— - lower bound

J /

— NN posteriors
— MBR statistics
— Calibrated MBR statistics -
— - lower bound

ji L 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 5 0 0 0 0 0 6 0 0 0 0 0 7 0 0 0 0 0 8 0 0 0 0 0

w o r d s f r o m a u t o m a t i c t r a n s c r i p t s

Figure 7.6: WER as function of word-count of the selected data. The 'lower bound' curve is
obtained by selecting sentences sorted by WER.

learning rate (init ial learning rate 0.001 instead of the original value 0.008). The model
post-processing i n this spirit was described in [Grézl and Karaf iá t , 2014] as 'fine-tuning'.

To verify that the per-sentence confidences are helpful, we post-process these two ' in i t i a l
models':

1. no confidence: the in i t ia l model was buil t by adding all the automatically labeled
sentences, no confidences are used

2. best per-sentence confidence: the in i t ia l model is buil t by t raining wi th weighted
sentences (a = 4.0), while 90% sentences are added (the best result from table 7.6).

The difference of these two scenarios is the improvement from using the per-sentence confi­
dences. The results in table 7.10 show the post-processing by both the 'frame C E ' t raining
and the subsequent ' s M B R ' training. B o t h is done wi th the 10 hours of correctly transcribed
data.

If we focus on 'frame C E ' numbers, we see that re-training wi th the correctly transcribed
data improves the results i n al l the cases, while we were picking the best in i t ia l learning
rate from 0.008, 0.001 and 0.0001.

Table 7.10: Re-training the 'initial model' with 10 hours of correctly transcribed data.

W E R
no confidence
(added 100%

sentences)

best per-sentence
confidence (added 90%

sentences, a = 4.0)

initial model
(semi-supervised)

60.1 59.2 frame C E initial model
(semi-supervised) 58.3 57.6 s M B R

(A) discard
last layer

58.7 (Irate 0.008) 58.7 (hate 0.008) frame C E (A) discard
last layer 57.5 57.6 s M B R

(B) re-train the
in i t ia l model

58.7 (Irate 0.008) 58.3 (Irate 0.001) frame C E (B) re-train the
in i t ia l model 57.6 57.2 s M B R

77

Then, if we (A) discard the output layer, there is no difference whether the in i t ia l model
was buil t w i th confidences or not, see the 'frame C E ' line.

If we (B) re-train the in i t ia l model, it is better to start from the model trained wi th the
best per-sentence confidences, see the 'frame C E ' line.

This improvement i n (B) persists also after the s M B R training (last row i n table 7.10.
3rd column). Based on this s M B R result, we can conclude that it is good to introduce the
'frame C E ' re-training before the s M B R training. B y skipping it, the performance would
degrade by 0.4%, from 57.2 to 57.6.

Also , we can conclude that the use of per-sentence confidences is beneficial. The best
result without confidences is 57.5, while w i th the confidences we obtained 57.2.

7.3 Per-word confidences

In this section, we will use the Minimum Bayes Risk statistics Cwq = l(q-,wq) directly as
the word-confidences. Primarily, we are interested to decide if the confidences are more effi­
cient when used per-sentence or per-word. The literature presents both approaches (per-word
[Wessel and Ney, 2005], per-sentence [Novotney et al., 2009]), but we have not seen a direct
comparison. Per-sentence confidences are used more frequently, probably because of their
simpler use. The oracle experiment in chapter 7.1 was favoring the per-word confidences
over the per-sentence confidences.

The experiments w i l l be conducted following a similar pattern as in the previous section
7.2. The behavior can be different if the processing decisions are done on the word-level
basis.

7.3.1 M i n i m u m Bayes Risk confidence

Again , we start from the non-calibrated M B R statistics; we' l l use them for word-selection or
word-weighting. Previously, w i th the per-sentence confidences, 'weighting' was better than
'selecting'.

Word-selection, no weighting

In this experiment, we are adding words into the frame CE t raining, starting from the
highest confidence. The frames at the selected words have t raining weight 1, while the
frames of rejected words have weight 0. The weights i n eventual silence gaps between words
are filled by linear interpolation.

In table 7.11, we tune the fraction of added words. We directly got to W E R 59.1, which
is a l i t t le better than the best performance achieved wi th per-sentence confidences (see table
7.6). Th is indicates that the per-word confidences are at least as good as the per-sentence
ones.

Table 7.11: Data selection by per-word confidence, Babel Vietnamese.

Added words [9 o] W o r d Seed
0 20 30 40 50 60 70 100 oracle system

W E R 60.9 59.5 59.2 59.1 59.2 59.3 59.6 60.1 57.7 59.6

78

Previously, in table 7.6, we used training wi th weighted sentences, while table 7.11
was prepared wi th simple hard-selection of words. It is also remarkable that the opt imal
amount of added words seem to coincide wi th the word-accuracy of the seed system, which
is (100 — 59.6 = 40.4). We w i l l re-visit this later i n chapter 8 wi th a different experimental
setup.

Weighting words by confidence

Next, we replace the data selection wi th weighted S G D training. The confidence of a word
is used to scale the gradients over its time-span. Aga in , the silences are bridged by linear
interpolation of the confidences from the adjacent words. We extend the frame CE t raining
set w i th al l the untranscribed data, while we tune the exponential scale a applied to word-
confidences: c'yjq = (cwq)a- The 'raw' word confidences were generated wi th the lattice-scale
A = 1.0 (i.e. wi th default scaling from lattice generation by n = 0.1, g = 1.0).

Table 7.12: Weighted training with MBR statistics (uncalibrated per-word confidence, scaled
exponentially by a, all words were added)

Scale a 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Oracle
W E R 59.5 59.2 59.2 59.1 59.0 59.0 59.1 57.7

Scale a 8.0 9.0 10.0 11.0 12.0 13.0 14.0 Oracle
W E R 58.9 59.0 59.0 58.9 58.8 58.9 59.0 57.7

In table 7.12, we see that the best alpha 12.0 leads to W E R 58.8%, which is by 0.3%
better than we had wi th the word-selection in table 7.11. The W E R s seem to fluctuate
between 59.1 and 58.8. The best exponent value 12.0 is relatively high, we can see it
as a soft version of data selection. For example, the words wi th confidence 0.68 get a
t raining weig ht Cyjq = 0 .68 1 2 - 0 = 0.01, which in our case almost removed 43% words from
the training. Another evidence which supports this view is the experiment i n which we
combined the word-selection and word-weighting. In table, 7.13 we see that the a = 12.0
is no longer the best value, after we remove some of the words. We also see that there is
no gain from introducing the word-selection in combination wi th the word-weighting, which
would happen i f the weighting already 'contained' the selection.

Table 7.13: Weighted training with MBR statistics (uncalibrated per-word confidence, scaled
exponentially by a, adding portion of top N% words)

Scale a 1.0 2.0 3.0 3.5 4.0 4.5 6.0 8.0 12.0 A d d e d words
59.5 59.2 59.2 59.1 59.1 59.1 59.0 58.9 58.8 100%

WT?"R 59.3 59.2 59.1 59.0 59.1 59.0 58.8 59.0 59.0 70%
VV Hitx 59.1 59.0 59.0 59.1 58.9 59.0 59.0 58.9 59.1 50%

59.1 59.0 59.1 59.0 59.1 59.1 59.1 59.0 59.1 40%

7.3.2 Weighting words by calibrated confidence

In section 7.2.2, we calibrated the M B R statistics by logistic regression. We re-used the
same calibrated per-word confidences for experiment i n table 7.14. The best alphas 2.0, 3.0

79

lead to W E R 58.8. Here also, the calibration of confidence d id not br ing a performance
improvement (same best result i n tables 7.12 and 7.14).

Table 7.14: Weighted training with calibrated word-confidence, (calibration by logistic re­
gression, exponential scaling by a, keeping all the words)

Scale a 0.5 1.0 1.6 2.0 2.5 3.0 4.0 5.0 6.0 Oracle
W E R 59.6 59.4 59.1 58.8 59.0 58.8 58.9 59.1 59.3 57.7

Figure 7.7: Calibrated word-confidences, each blue point represents 750 words of similar
confidence (in previous plots from section 7.2 the points were groups of sentences). The point
cloud reasonably copies the ideal confidence (dashed black line). The cumulative distribution
(red curve) shows that the distribution of confidences is not too far from uniform.

However, i n figure 7.7, we see that the calibration is done properly, as the confidences
nicely match wi th the word accuracy.

7.3.3 What happens in data selection?

To demonstrate that the data selection done per-word is better than per-sentence, we created
figure 7.8, where we compare the W E R as function of number of selected words. We see
that by selecting the indiv idual words, we can create a subset w i th lower W E R (blue curve)
than if we select whole sentences (red curve). W i t h the 'un-weighted' data selection, the
W E R was the following: 59.8 for per-sentence confidences (table 7.4), 59.1 for per-word
confidence (table 7.11). W i t h the weighted training, the difference shrank from 0.7 to 0.4,
as we had 59.2 w i th per-sentence confidences and 58.8 w i th per-word confidences.

7.3.4 Re-training with transcribed data

Similar ly to the previous section, we take the best 'initial model' and post-process it by
re-training wi th the 10 hour set of the correctly transcribed data. A s we found earlier, we

80

80

70 -

Figure 7.8: WER in subset of data selected by the confidence, starting from the highest. The
per-word confidences (blue curve) allow us to select data with lower WER, than the per-
sentence confidences (red curve). The calibration by logistic regression further improves the
data selection (green curve). However, the better calibration did not translate into improve­
ment of the semi-supervised training. All the confidences are based on Minimum Bayes Risk
decoding statistics. The WER on this plot is without deletions and we normalized by the
length of the hypothesis, as we cannot select a 'deleted' word from the automatic transcripts.

first re-train by 'frame C E ' t raining and continue wi th ' s M B R ' training. A s a sanity check
we also compare wi th the s M B R done directly from the in i t ia l model.

The results i n table 7.15 show that the final s M B R W E R 56.9 is by 0.3% better than we
previously obtained wi th the per-sentence confidences. This makes the per-word confidences
better than the per-sentence confidences. We believe that this explicit comparison has not
been shown in any study yet.

Table 7.15: Re-training the best 'initial models' with 10 hours of correctly transcribed data.
The 'initial models' are obtained by three variants of semi-supervised training: a) no con­
fidences at all, b) best per-sentence confidences and c) best setup with per-word confidences
(weighted training with uncalibrated per-word confidences, exponential scale a = 12.0, added
all the words.

W E R a) no confidence
b) best sentence

confidence
c) best word

confidence

initial model 60.1 59.2 58.8 frame C E
(semi-supervised) 58.3 57.6 57.4 s M B R

re-train the 58.7 58.3 58.2
frame C E

in i t ia l C E (hate 0.008) (Irate 0.001) (Irate 0.001)
frame C E

model 57.6 57.2 56.9 s M B R

81

7.4 Tied-state confidences

In this section, we return to the frame confidences c§t = j(t,st), which we previously
introduced on page 51 and explored i n sections 6.1 and 6.2. In section 6.2, we have shown
that the lattice posteriors for states from best path can be used as frame confidence in
weighted mini-batch S G D training. We observed that it is beneficial to tune the 'lattice-
scale' A by rescaling both the acoustic and graph scores i n the lattice, which shifts the
confidences closer to the ideal confidence (probability that the label is correct). In this
section, we w i l l extend this approach in two directions:

• we further introduce the exponential scale a that is applied to the extracted frame
confidences (i.e. the frame posterior from lattice at states on the best path). The
ideal confidence may not be the best weight for the S G D training, so we 'bend' the
distr ibution of the confidences by exponential scaling c'St = {cgt)a.

• we introduce the per-pdf calibration, assuming that the confidences behave differently
across tied-states. The cal ibrat ion helps to select data-points w i th less annotation
errors than i f we used the global calibration.

In this section we want to see i f the tied-state confidences lead to better results than we
obtained wi th the per-word confidences.

7.4.1 Tuning confidence scale a in frame-weighted S G D training

Table 7.16: Weighted training with per-frame confidences (the tied-state posteriors from
lattice for the state on the best path). The confidences were extracted with the lattice scales
A = {1.0,0.3,0.02} (applied both to acoustic and graph scores in the lattice). After the
extraction, the frame confidences were re-scaled by exponential scale a.

Scale a 1.0 2.0 3.0 4.0 5.0 6.0 Lat t ice scale A
59.4 59.1 59.0 59.1 58.9 59.0 1.0

W E R 59.2 59.0 59.0 59.2 59.3 59.3 0.3
59.1 59.1 59.2 59.4 59.4 59.5 0.02

In table 7.16, we see that for any lattice scale, we can always tune such alpha for which
the W E R becomes similar regardless of the in i t ia l lattice scale. We decided to fix the lattice-
scale to A = 0.3 for further experiments, as it reasonably pre-calibrates the confidences and
the scale is not too far from A = 1.0 (see red curve in figure 6.1 on page 64).

7.4.2 Per-phoneme analysis of the frame confidences

So far, we have been analyzing the confidences for the whole untranscribed data-set. To
get an idea how the confidences differ for indiv idual phonemes, we show them separately in
figure 7.9 (frame-accuracy as function of confidence).

In the graphs, we see that the curves of phonemes wi th similar frame counts look similar.
The curves of highly represented phonemes are smooth, while the curves for low-represented
phonemes are noisy. Then we see that the curves of the 5 most represented phonemes (vowels
a, e, i, o and n) begin wi th higher frame-accuracies than the other phonemes. We also see
that silence, which is the most represented label, has both high confidence and high accuracy.

82

unca l ib rated , p e r - p h o n e m e curves , la t t ice -sca le 0 .3

Figure 7.9: Per-phoneme frame-accuracy as function of confidence (uncalibrated), from
lattice-posteriors with scaling A = 0.3. Here, a frame is considered correct when the phoneme
label matches both in the alignment and the best-path from lattice. The curves are sorted by
frame-count of phonemes, which are marked in the legend.

This is understandable, it is harder to confuse the silence wi th a phone than to confuse two
phones.

It would be good to use the plots for suggestions to the experiments, however it is not
clear how exactly. We can confirm that there definitely are differences among the phoneme
curves, these wi l l be reduced by our calibration.

7.4.3 Calibration by logistic regression

Because we saw i n figure 7.9 that there are differences among the accuracy curves of the
individual phonemes, we can apply a pool of cal ibrat ion models to reduce the differences.
Each model is a simple logistic regression wi th 2-parameters (scale, bias) for each class of
acoustic model (pdf, tied-state), the set of models is trained on the transcribed development
set. Yes, we do not bu i ld a per-phoneme model, but a per-tied-state one (i.e. we have a
model per neural network class). Note that the oracle results i n table 7.3 were the best for
the per-pdf confidences.

A s we saw i n figure 7.1, the pdf's are represented by various amounts of data. For some
pdf's, there is too l i t t le data for reliable estimation of calibration model parameters. To
solve this, we adopted a three-level hierarchy of models: a) per-pdf models, b) per-phoneme
models and c) a global model. In case, there is not enough data for a given unit , we switch
to higher-level model a) —> b) —> c). B y observing their loss function values, we found that
for a m i n i m u m of 100 data-points, the logistic regressions are already trained reasonably.
The per-pdf models 'a)' were used for 91.5% frames, the per-phoneme models 'b) ' for 8%
frames, the the global model 'c) ' for 0.5% frames. We started from the lattice posterior
frame confidences wi th the lattice-scale A = 0.3.

83

Figure 7.10: Frame selection according to frame-confidence with or without the calibration
(hierarchical three-level calibration). The minimum number of data-points for training a
calibration model (logistic regression) was 100. We see that the calibrated confidences allow
us to select frames with less errors (red curve) than without the calibration (blue curve).
The benefit comes from training the calibration models per-pdf (tied-state), which changes
the overall ranking of the frames.

In figure 7.10, we see how our three-level cal ibrat ion changes the gradual selection of
frames, starting from the highest confidence. The gap between the curves is promising as it
means that w i th the calibration, we can select data-points containing less wrong labels.

Frame selection experiments

In the first set of experiments, we perform the 'data-selection', starting from the highest
confidence: the weights are either 0 (dropped frame) or 1 (selected frame).

Table 7.17: Data selection by per-frame confidence, WER.

Added frames: 0% 20% 40% 50% 60% 70% 80% 100%
Uncalibrated conf.
three-level cal ibrat ion

60.9
60.9

61.0
60.3

60.1
59.4

59.4
59.1

59.1
58.9

59.3
58.8

59.2
59.0

60.1
60.1

In table 7.17, we see that the cal ibrat ion helped a lot when selecting 40% of data, where
the gap between curves in figure 7.10 was large. The best results are obtained when selecting
60% or 70% frames, where the confidence cal ibrat ion brought a W E R improvement of 0.3%.

Frame weighted experiments

In the next experiment, we use the calibrated confidences for frame-weighting:
In table 7.18 we obtained the best result so far for semi-supervised t raining wi th mixed

data (transcribed and untranscribed).
The hierarchical three-level cal ibrat ion improved the results by 0.3% W E R . Previously,

the calibration of the per-word confidences, was not bringing improvements (see sections
7.2.2 and 7.3.2). A detailed look at the calibration (frame-accuracy curves per phoneme,

84

3- level ca l ibrat ion, p e r - p h o n e m e curves , la t t ice -sca le 0.3

Q> 1 1 1 1 1 0^ 1 1 1 1 1 Q> 1 1 1 1 1 Q k 1 1 ' 1 1

0 . 0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0 .4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
f rame conf idence f r a m e conf idence f r a m e conf idence f r a m e conf idence

0 . 0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0 .4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
f rame conf idence f r a m e conf idence f r a m e conf idence f r a m e conf idence

Figure 7.11: Calibrated version of figure 7.9. Frame-confidences calibrated with three-levels
of logistic regression models trained a) per-pdf, b) per-phone, c) global model. We see that
the gaps between curves are smaller and many curves look very similar.

Table 7.18: Weighted training with calibrated per-frame confidences. The calibration is a
three-level hierarchy of calibration models. The calibrated confidences are scaled exponentially
by a.

Scale a 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 Oracle
W E R 59.6 59.1 59.0 58.6 58.6 59.0 59.0 59.2 59.4 55.3

figure 7.11) show that the cal ibrat ion worked well as the curves are very similar (except the
few under-represented phonemes at the bottom-right plots).

The performance obtained wi th the frame-weighted t raining is by 0.2% W E R better than
the frame-selection, bo th for the calibrated and uncalibrated confidences (see the tables 7.16
and 7.18).

Frame selection and weighting experiments

We also tried a combination of frame-selection and frame-weighting, however the results
in table 7.19 show no performance improvement from dropping the frames wi th lowest
confidence.

Table 7.19: Training with both data-selection and data-weighting done per-frame. The
calibration is a three-level hierarchy of calibration models. The calibrated confidences are
scaled exponentially by a.

Scale a 0.5 1.0 1.5 2.0 2.5 3.0 4.0 Selected frames

W E R
59.6
58.8

59.1
58.8

59.0
58.7

58.6
58.8

58.6
58.8

59.0
58.9

59.0
58.8

100%
80%

85

7.4.4 Re-training with transcribed data

A s we d id in the previous sections, we further re-train the 'initial model' that was trained
wi th a mix of transcribed and untranscribed data. The re-training is done wi th the 10-hour
set of correctly transcribed data. We first re-train by 'frame C E ' t raining to continue wi th
' s M B R ' t raining. A s a sanity check we also compare wi th s M B R done directly from the
ini t ia l model.

Table 7.20: Re-training the best 'initial model' with 10 hours of correctly transcribed data,
after 'frame CE' training with the mixed data (transcribed and untranscribed). We compare
four scenarios of semi-supervised training: a) no confidences at all, b) best per-sentence
confidences, c) best setup with per-word confidences and d) best setup with per-frame confi­
dences (frame confidences extracted with lattice-scale A = 0.3, re-calibrated by three-levels of
logistic regressions and post-processed by exponential scale a = 2.0, weighted SGD training).
The 'frame-CE' re-training is followed by 'sMBR'

b) best c) best d) best
W E R a) no sentence word frame

confidence confidence confidence confidence

initial model 60.1 59.2 58.8 58.6 frame C E
(semi-supervised) 58.3 57.6 57.4 57.1 s M B R

re-train the in i t ia l 58.7 58.3 58.2 58.0
frame C E

C E model w i th (Irate 0.008) (Irate 0.001) (Irate 0.001) (Irate 0.001)
frame C E

true transcripts 57.6 57.2 56.9 57.0 s M B R

The re-training result i n table 7.20 for 'frame C E ' objective shows that the calibrated
per-frame confidences are the best, wi th W E R of 58.0. F r o m the s M B R results, we see that
the best model remained the word-confidence D N N wi th W E R 56.9. The s M B R results from
the 'best frame confidence' column reveal that, now, there is almost no difference between
the s M B R training from the ' in i t i a l model ' 57.1 and the re-trained model 57.0, which we
did not see i n other columns.

86

7.5 Summary
The observations from this chapter, which was focused on granularity of confidences, can
be summarized as follows:

• We found it important to re-tune the model with a small amount of correctly
transcribed data. The re-tuning is done wi th smaller learning rate 0.001 (table 7.10,
otherwise the in i t ia l learning rate is 0.008).

• Also , it is beneficial to go beyond simple sentence selection, which can often be
seen i n the literature (see table 7.21). The very simple, but s t i l l powerful approach is
to select frames corresponding to the N % words wi th the best confidence.

• If we compare the results i n 'data-selection' table 7.21 wi th the results in the first
column from the 'data-weighting' table 7.22, we see that 'data-weighting' leads
to better results than 'data-selection'. A l o n g the way, we also noticed that
data 'weighting' and 'selection' are not complementary. However, the data-
selection is more straightforward to tune-up, as we can use 'raw' confidences in
it.

• For getting better results, we had to introduce a hyper-parameter that is expen­
sive to tune: the N % amount of added data for data selection, or the exponential
scale a for approximate cal ibrat ion of 'raw' confidences i n role of frame weights.

• For 'proper' confidence cal ibrat ion wi th logistic regression, we introduced dependency
on the correctly transcribed development set. In some cases, there was no improvement
from the confidence cal ibrat ion (per-sentence, per-word confidences). W i t h the per-
frame confidences, we obtained 0.3% W E R improvement, this was however absorbed
by the re-tuning wi th f rame-CE training and then by s M B R training. Based on
this evidence, we can form a conclusion that the confidence calibration is not
necessary for semi-supervised training.

• Despite the in i t ia l opt imism from the oracle results (table 7.3), where the tied-state
confidence oracle dropped deeply to 55.3% (but this oracle completely ignored the
confidence values, as it just selected the frames wi th correct labels), the final gains
from semi-supervised t raining were more modest, leading to 58.0% W E R after re­
training wi th the correctly transcribed data. The final best WER-recovery was 33%.

• In the end, there were small differences between using the per-sentence, per-
word or per-frame confidences, especially after re-tuning wi th the 'frame C E ' and
' s M B R ' objectives using the correctly transcribed data. S t i l l , it is clearly beneficial
to use the confidences in the semi-supervised training (see the last line i n table
7.22).

87

Table 7.21: Data selection, summary. Each time we added the optimal amount of data, the
amount of data is the only hyper-parameter we needed to tune manually. The two results
for the 'frame-selection' refer to 'uncalibrated/calibrated' confidences.

W E R taken from
Sentence selection 59.8 table 7.4
W o r d selection 59.1 table 7.11
Frame selection 59.1/58.8 table 7.17

Table 7.22: Data weighting, summary. Each time we re-scaled the confidences by tuning the
exponential scale a. The frame confidences were calibrated, the sentence and word confi­
dences were better without calibration. The results are from table 7.20.

W E R (re-tuned) (re-tuned + s M B R)
Sentence weighting 59.2 58.3 57.2
W o r d weighting 58.8 58.2 56.9
Frame weighting 58.6 58.0 57.0
no confidence 60.1 58.7 57.6

In our case, the results for word-confidences and frame-confidences are very similar.
Hence, to decide which approach is the best, we w i l l use the Occam's razor. The setup wi th
per-word confidences is simpler as it requires less storage for confidence values. The system
without 'proper' calibration of confidences does not depend on development set. The only
hyper-parameter we need to tune is the exponential scale a for weighted t raining or the N %
of added words for data-selection.

88

Chapter 8

Finding generic semi-supervised
training approach

Ideally, we are interested i n finding such semi-supervised t raining recipe, that w i l l be efficient
for a broad range of scenarios. U n t i l now, we explored the behavior for Babe l languages
(mainly Vietnamese) and one scenario (10 hours are transcribed, ~ 7 0 hours are untran-
scribed).

Actual ly , in chapter 6.2, we evaluated the self-training for 5 languages (table 6.11). Bu t
all the 5 languages were from the second year of Babe l program, and the word error rates
of al l the seed systems were around 60% (between 53.2% and 67.4%).

Therefore, we chose Switchboard (described i n section 4.3), to test the techniques in a
very different setup. A s the first step, we applied the procedure from section 6.2 (weighted
training wi th frame-posteriors c§t extracted wi th lattice-scale A = 0.02) and we obtained a
disappointing result. In table 8.1 we see that, for Switchboard, we get the same W E R 24.8
both wi th and without using the confidences.

Table 8.1: Weighting by approximately calibrated frame confidences did not generalize to our
custom Switchboard English setup, the result is the same as if we add all the data and use
no confidence. The frame confidences c§ t were generated with lattice-scale A = 0.02.

W E R Vietnamese Bengali Switchboard
The seed system 59.6 62.9 26.9
added 0% data 60.8 64.2 28.0
added 100%, no confidences 60.1 63.2 24.8
weighting wi th frame confidence (scale 0.02) 58.9 62.3 24.8
O r a c l e l (adding the correctly decoded words) 57.7 - 23.5
Oracle2 (use of true transcripts) 52.3 58.4 22.0

Of course we can re-tune the lattice-scale A or the exponential scale a. However, if we
are searching for a universal recipe without a computat ionally expensive hyper-parameter
tuning, we need to look for a different approach. In section 7.3.1, we saw that the best
percentage of added words seems to correspond to the word accuracy of the seed system (in
table 7.11 it was good to add 40% words, while the W E R of the seed system was 59.6%, i.e.
the word accuracy was 40.4%).

A closer look on word-selection is in figure 8.1. We split the automatically transcribed
Vietnamese words into 10 bins wi th same amount of words, while the words wi th similar

89

confidence are i n the same b in . We see that i n the first 4 bins there are more correct
words than wrong ones, while by adding the fifth and next bins, we would introduce more
incorrectly labeled words than correct ones. In the selection of 40% words, there is 27%
W E R as can be read from blue curve in figure 7.8 on page 81.

100

25

Erorrs
Correct words

0 - 1 0 % 1 0 - 2 0 % 2 0 - 3 0 % 3 0 - 4 0 % 4 0 - 5 0 % 5 0 - 6 0 % 6 0 - 7 0 % 7 0 - 8 0 % 8 0 - 9 0 % 9 0 - 1 0 0 %
words sorted from best confidence

Figure 8.1: Automatic transcripts of Vietnamese sorted from best word-confidence, split into
10 bins with same word-count. See the correspondence of the bars with results in table 7.11
on page 78 and blue curve in figure 7.8 on page 81.

Now, let's check if our word selection rule based on word accuracy Wacc of seed system
generalizes to other databases. F r o m results of Babe l Bengali in table 8.2 and Switchboard
in table 8.3 we see that the same rule holds.

Table 8.2: Data selection by per-word confidence, babel Bengali.

Added words 0% 20% 30% 40% 50% 60% 70% 100% Seed W a c c

W E R 64.2 62.9 62.5 62.3 62.3 62.4 62.5 63.2 37.1

Table 8.3: Data selection by per-word confidence. Our Switchboard setup has 14 hours
transcribed, 95 hours are untranscribed. The LM is trained on Fisher transcripts. The
results are for HUB5-2000 (Switchboard + CallHome), further description of the setup is in
section 4-3.

Added words 0% 50% 60% 70% 80% 90% 100% Seed W a c c

hub5 W E R 28.0 25.3 25.1 24.4 24.7 24.5 24.8 73.1

For example, for Switchboard in table 8.3, the Wacc of the seed system was 73.1%, while
the opt imal amount of added words was 70%, so the word accuracy of the seed system was
the right amount of words to add. Such simple rule works reasonably well for such different
setups as the Babe l Vietnamese, Babe l Bengali or even for Switchboard data.

The bar-graph showing word-selection for Switchboard is in figure 8.2. We see that
there is certain amount of incorrect words wi th high confidence, while the biggest port ion
of wrong words is located i n the last three bins. The selection of top 70% words has a W E R
of 7.4%.

The only external information we needed for our word selection rule is the W E R of the
seed system calculated on some development set, while we assume that the untranscribed
data and development data are similar. We are aware that it is not rigorously 'guaranteed'

90

100

5 50

Erorrs
Correct words

0 - 1 0 % 1 0 - 2 0 % 2 0 - 3 0 % 3 0 - 4 0 % 4 0 - 5 0 % 5 0 - 6 0 % 6 0 - 7 0 % 7 0 - 8 0 % 8 0 - 9 0 % 9 0 - 1 0 0 %
words sorted from best confidence

Figure 8.2: Automatic transcripts of Switchboard sorted from best word-confidence, split into
10 bins with same word-count. See the correspondence of the bars with results in table 8.3.

that it w i l l always lead to best possible results, in the same time, it w i l l often be a good fit
for its simplicity.

8.1 Repeating experiments, Switchboard

In this section, we repeat some of the previously explored methods, this t ime applied on
Switchboard task.

8.1.1 Word-weighted training

A t first, we t ry to replace the word-selection wi th word-weighting, to see if we can achieve
better performance. The word confidences are the uncalibrated M B R statistics.

Table 8.4: WER from weighted training with MBR statistics (uncalibrated per-word confi­
dence, lattice scales A = {1.0, 0.3} ; re-scaled exponentially by a. We added all untranscribed
data.

lattice-
scale A 0.5 0.7 1.0 2.0

Sea
3.0

e a
4.0 5.0 6.0 7.0 8.0

Oracle

1.0
0.3 24.7

24.7
24.6

24.6
24.7

24.6
24.8

24.5
24.9

24.5
25.1

24.5 24.5 24.4 24.6
23.5

In table 8.4, we see that here, the word-weighting is equally as good as word-selection.
It also seems to be important to use the lattice-scale A = 1.0, as the lattice-scale A = 0.3
was responsible for 0.2% worse result. In summary, for Switchboard, the word-weighting
was not better than the word-selection, which is preferable as it is simpler.

8.1.2 Calibrated frame-weights

Another method we replicate is the three-level cal ibrat ion of frame-confidences c§t. Th is
time, we used the 4 hour held-out set train_dev for t raining the calibration model.

The results in 8.5 show that it is better to calibrate the posteriors generated wi th lattice-
scale A = 1.0. However, the per-pdf cal ibrat ion d id not br ing a performance improvement
compared to the simple word-selection (see best results in tables 8.3 and 8.5).

91

W i t h the min imum number of 100 frames for t raining the per-pdf logistic regression.
50% of frames were calibrated by per-pdf models and the other 50% by the per-phoneme
calibration models. B y further reducing from 100 to 50 the lowest frame-number for training
a per-pdf logistic regression, the results became worse.

Table 8.5: Weighted training with calibrated per-frame confidences. The calibration is a
three-level hierarchy of calibration models. The calibrated confidences are scaled exponentially
by a.

lattice- scale a
min-frame

lattice-
min-frame

scale A 0.5 1.0 1.5 2.0 2.5 3.0 4.0
min-frame

1.0 24.5 24.6 24.4 24.5 24.7 24.7 24.8 100
0.3 24.7 24.5 24.7 28.8 24.9 25.0 25.3 100
0.3 24.8 24.8 24.8 24.7 24.9 25.0 25.2 50

Aga in , the simple word-selection method is preferable. It leads to the same result, and it
does not rely on training a cal ibrat ion model.

8.2 Re-tuning with correctly transcribed data, Switchboard

A s , for Switchboard, we found word-selection to be as good as word-weighting, we take these
two systems and proceed wi th re-tuning. For the final comparison, we re-tune the ' in i t i a l
models' wi th the small 14hour set of the correctly transcribed data. We re-tune first by
training wi th 'frame C E ' objective and then wi th ' s M B R ' . For comparison, we also run the
s M B R training directly from the in i t ia l model.

Table 8.6: Switchboard, re-training the 'initial models' with 14 hours of correctly transcribed
data. The 'initial models' are obtained by three variants of semi-supervised training: a) no
confidences at all, b) best training with weighted words (a = 7.0, A = 1.0) and c) best word
selection (selected top 70% of words)

W E R , seed 26.9 a) no confidence
b) best word

weighting
c) best word

selection

initial model 24.8 24.4 24.4 frame C E
(semi-supervised) 24.0 23.6 23.9 s M B R

re-train the 24.3 24.1 24.2
frame C E

in i t ia l C E (hate 0.001) (Irate 0.001) (Irate 0.001)
frame C E

model 23.7 23.5 23.7 s M B R

For Switchboard (table 8.6), the final s M B R result for word-selection c) was 23.7, which
is by 0.2% W E R worse than wi th the word-weighting b). A n d the s M B R result of c) is the
same as i f no confidences were used i n a). We see that the word-selection d id not br ing an
improvement, while it also was not harmful. The W E R recovery of the system c) is 63%,
which is much higher than we had for Vietnamese (33%), which can be explained by lower
W E R in automatic transcripts from Switchboard seed system.

The same set of experiments done for Babe l Vietnamese is in table 8.7; here the degra­
dation between word-selection c) and the word-weighting b) is 57.1 — 56.9 = 0.2, while the
word-selection c) is better than the system without confidences a) by 0.5% W E R .

92

Table 8.7: Babel Vietnamese, re-training the 'initial models' with 10 hours of correctly tran­
scribed data. The 'initial models' are obtained by three variants of semi-supervised training:
a) no confidences at all, b) best per-word weighted training (a = 12.0, A = 1.0) and c) best
word selection (selected 40% words)

W E R , seed 59.6 a) no confidence
b) best word

weighting
c) best word

selection

initial model 60.1 58.8 59.1 frame C E
(semi-supervised) 58.3 57.4 57.6 s M B R

re-train the 58.7 58.2 58.4
frame C E

in i t ia l C E (Irate 0.008) (Irate 0.001) (Irate 0.001)
frame C E

model 57.6 56.9 57.1 s M B R

If the 'simple word-selection' causes either an improvement or no harm, it is s t i l l a
preferable technique. It it is much faster than the careful tuning of the exponential scale a
by a grid search of N N trainings, while such careful tuning brought only a small 0.2% W E R
improvement.

8.3 Final summary, simple word-selection

The final summary of the W E R improvements we obtained wi th our preferred simple word-
selection technique is i n table 8.8. We see that the overall absolute W E R improvement
between the seed system and the final s M B R systems is 2.5% for Babe l Vietnamese, 2.3%
for Babe l Bengali and 3.2% for Switchboard. For Bengali and Vietnamese the W E R in
the automatic transcripts was higher, so the absolute W E R improvement from the semi-
supervised t raining is smaller than i n the case of Switchboard. A t the same time, the use of
confidences was more important for Vietnamese (with higher W E R) , than for Switchboard
(with smaller W E R) .

Table 8.8: Final WER performance of the semi-supervised training based on 'simple word-
selection'. The initial model is trained with the mixed data (transcribed and untranscribed),
the re-training is done with the smaller set of correctly transcribed data.

W E R Vietnamese Bengali Switchboard
seed system (s M B R) 59.6 62.9 26.9
ini t ial-model (mixed data) 59.1 62.3 24.4
+ re-trained (frame C E) 58.4 61.6 24.2
+ re-trained (s M B R) 57.1 60.6 23.7
abs. W E R improvement 2.5 2.3 3.2

93

Chapter 9

Two system combination as the seed
system

In several articles, good results are reported wi th a system combination as the seed system
[Huang et al. , 2013, L i et al . , 2016] for the self-training. It is not difficult to t ry such approach
wi th our 'simple word-selection' method. The recipe consists of the following steps:

1. System combination is done based on weighted union of lattices which is then decoded
by Minimum-Bayes risk decoding to get the word-sequence W = 1B2, • • •, WM) and
per-word confidences Cwq = 7(9, wq) (this t ime the word-sequence is updated, it is no
longer the best path from the lattice).

2. We align the decoded word-sequence W to generate the targets for N N training (we
update the word-boundaries for the words and their confidences).

3. We t ra in wi th the mix of manually and automatically transcribed data, while adding
N % of the most reliable words from the automatic transcripts.

We t ry this recipe wi th our custom Switchboard system described in section 4.3.

Combining D N N - s M B R and f M L L R - G M M as seed system

In the first experiment, we combine the D N N - s M B R system wi th the f M L L R - G M M system
that we previously used to generate the f M L L R features. The opt imal weights for combining
lattices are 0.8 for the D N N and 0.2 for the G M M . The fusion improved the results from
26.9 to 26.6 (the W E R of the f M L L R - G M M system was 35.3).

Table 9.1: Fusion of the DNN and the GMM used as the seed system, we do the 'simple
word-selection'. The performance is worse than we had with the single seed system.

Added words: 60% 70% 80% 90% 100%
W E R 25.2 25.2 24.7 24.8 25.0

From the results i n table 9.1, we see that the self-training is worse than we previously
obtained wi th the single D N N system (24.4%, i n table 8.3). The secondary f M L L R - G M M
system has however much worse performance than the pr imary D N N system. We need to
t ry the fusion wi th other systems wi th better performance.

94

Combining D N N - s M B R and T a n d e m - G M M as seed system In the second experi­
ment, we combine the D M M - s M B R system wi th the T a n d e m - G M M system, which is based
on Stack-bottleneck features [Grézl and Karaf iá t , 2010, Veselý et al. , 2011] that are post-
processed by per-speaker f M L L R . O n top of the f M L L R features we t ra in a B M M I - G M M
model, which is used to produce the second set of lattices. This system is very different and
more complementary, the opt imal weights for combining lattices are 0.7 for the D N N and
0.3 for the T a n d e m - G M M . The fusion improved the results 26.9 —> 26.1 (the W E R of the
T a n d e m - G M M system was 32.5).

Table 9.2: Fusion of the DNN-sMBR system and the Tandem-GMM system (Stacked bot­
tleneck features + fMLLR + BMMI) that we used as the seed system. We do the 'simple
word-selection'. The performance is the same we had with the single seed system.

A d d e d words: 60% 70% 80% 90% 100%
W E R 25.0 24.6 24.4 24.7 24.9

From the results i n table 9.2, we see that the self-training from the fusion leads to the
same performance 24.4 as we had wi th the single D N N system (table 8.3). According to the
red curve in figure 9.1, the fusion output leads to word-selection wi th less errors, however
the difference was not sufficient to improve the performance of the semi-supervised training.

Another difficulty is that the word-boundaires i n forced-alignment are not always the
same as those from M B R decoding, which probably affected the semi-supervised training.

— 1-system seed (DNN-sMBR
— 2-system seed (DNN-sMBR + Tandem-GMM)

11 1 1 1 1 1 1
0 200000 400000 600000 800000 1000000 1200000

#words from automatic transcripts

Figure 9.1: WER in subset of data selected by the confidence, starting from highest. We
compare two seed systems: a) single DNN-sMBR system, b) combination of DNN-sMBR
and Tandem-GMM. The system combination selects words to a subset which contains less
errors.

Summary Based on our experiments, the system combination d id not improve our semi-
supervised t raining recipe. Despite that the system combination outperformed the single
system in W E R , this d id not translate into a better semi-supervised D N N training.

95

Chapter 10

Final remarks

Initial chapters In this thesis we in i t ia l ly presented a quick introduct ion to the theory
of speech recognition and neural network training, along wi th our NN- t ra in ing implemen­
tat ion available as the ' n n e t l ' t ra ining recipe in K a l d i . The recipe is composed of R B M
pre-training, mini-batch frame Cross-Entropy training, and sequence-discriminative s M B R
training.

Semi-supervised training, what we searched for? Then we switched to the main
topic, which is the semi-supervised t raining of DNN-based A S R systems. Inspired by the
literature survey and our in i t ia l experiments, we investigated several questions: Firs t ly ,
whether the confidences are better to be calculated per-sentence, per-word or per-frame.
Then, if the confidences should be used for the data-selection or the data-weighting, which
is bo th compatible w i th the weighted mini-batch S G D training. It was also not clear whether
the confidence calibration can improve the performance of the semi-supervised training. We
also investigated how the model should be re-tuned wi th the correctly transcribed data.
A n d finally we searched for a simple recipe, avoids a gr id search over hyper-parameter and
that is pract ical for general use wi th any dataset.

W h a t we found out The performance differences of the systems wi th various confidences
were relatively small , while it was easier to obtain good results w i th word-confidences and
frame-confidences. The data-weighting (with a tuned scale a as exponent) led to a litt le
better results than the data-selection. The confidence cal ibrat ion led to min imal or no
performance improvements. A n d the re-training wi th correctly transcribed data is better to
be done first w i th the 'frame Cross Entropy ' objective and then wi th the ' s M B R ' objective.

F ina l ly a practical recipe without a computat ionally expensive hyper-parameter tun­
ing is following: Use the best-path from lattice as NN training targets. From the best-path,
select the words whose confidence is in top N%, where the N% is given by word-accuracy of
seed system in the development set. The word confidences are extracted as the 'posteriors'
from the MBR decoding, in which the word-sequence is fixed to the words obtained from best-
path in lattice. The frames of selected words have weight 1, the frames of other words get
weight 0. Such model is first re-trained by 'frame Cross Entropy ' objective (with reduced
learning rate 0.001 instead of 0.008) and then wi th the ' s M B R ' objective (standard learning
rate). The two-system combination as the seed system d id not lead to improvements, when
compared to a single seed system.

90

W h a t we did not cover, what is to be explored later Due to both the space and
time l imitations, we d id not explore some areas which would be interesting. We could for
example re-place the feed-forward D N N model wi th a B L S T M , or replace the P L P - p i t c h
features wi th bottleneck features. However, intentionally, we kept on using the standard
D N N recipe, so that the experiments are comparable.

We also tr ied the two-softmax 'frame C E ' t raining and the 'entropy-minimization' for
untranscribed sentences in sequence-discriminative training. However these d id not bring
further improvements on top of our existing system, and we d id not include the experiments
in this thesis.

Fina l conclusion We found it quite difficult to further improve the performance of the
semi-supervised training. S t i l l , we believe, that our findings w i l l be perceived to have
practical value. The untranscribed data are abundant and easy to obtain, while our proposed
solution brings solid W E R improvements (see table 8.8 on page 93) and is not difficult to
replicate.

The main results from this thesis were recently published i n [Veselý et al. , 2017].

97

Bibliography

[Ackley et al . , 1985] Ackley, D . H . , Hin ton , G . E . , and Sejnowski, T . J . (1985). A Learning
Algo r i t hm for Bo l t zmann Machines. Cognitive Science, 9(1):147-169.

[Bahl et al . , 1986] B a h l , L . R. , Brown, P. F . , de Souza, P. V . , and Mercer, R . L . (1986).
M a x i m u m mutual information estimation of hidden Markov model parameters for
speech recognition. In Proc. IEEE ICASSP, volume 1, pages 49-52.

[Barron, 1993] Barron , A . R . (1993). Universal approximation bounds for superpositions
of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930-945.

[Bengio et al . , 2007] Bengio, Y . , Lambl in , P., Popovic i , D . , Larochelle, H . , Montreal ,
U . D . , and Quebec, M . (2007). Greedy layer-wise t raining of deep networks. In In
NIPS. M I T Press.

[Bisani and Ney, 2008] Bisani , M . and Ney, H . (2008). Joint-sequence models for
grapheme-to-phoneme conversion. Speech Communication, 50:434-451.

[Bishop, 2007] Bishop, C . M . (2007). Pattern Recognition and Machine Learning.
Information Science and Statistics. Springer, 1st ed. 2006. corr. 2nd pr int ing edition.

[Bourlard and Morgan, 1993] Bour lard , H . A . and Morgan , N . (1993). Connectionist
Speech Recognition: A Hybrid Approach. Kluwer Academic Publishers, Norwell , M A ,
U S A .

[Bridle and Dodd , 1991] Br id le , J . S. and Dodd , L . (1991). A n Alphanet approach to
optimising input transformations for continuous speech recognition. In Proc. IEEE
ICASSP, volume 1, pages 277-280.

[Bürget et al . , 2008] Bürge t , L . , Schwarz, P. , Matě jka , P. , Hannemann, M . , Rastrow, A . ,
Whi t e , C . , Khudanpur , S., H e ř m a n s k ý , H . , and Gernocký , J . (2008). Combina t ion of
strongly and weakly constrained recognizers for reliable detection of O O V s . In Proc. of
ICASSP.

[Chen et al . , 2015] Chen, C , X u , H . , W u , M . , Povey, D . , and Khudanpur , S. (2015).
Pronunciat ion and silence probabil i ty modeling for A S R . In INTERSPEECH 2015, 16th
Annual Conference of the International Speech Communication Association, Dresden,
Germany, September 6-10, 2015, pages 533-537.

[Cohn et al . , 1994] Cohn , D . A . , At las , L . E . , and Ladner, R . E . (1994). Improving
generalization wi th active learning. Machine Learning, 15(2):201-221.

[Cybenko, 1989] Cybenko, G . (1989). Approx imat ion by superpositions of a sigmoidal
function. MCSS, 2(4):303-314.

98

[Dean et al. , 2012] Dean, J . , Corrado, G . , Monga , R. , Chen, K . , Devin , M . , Le, Q . V . ,
Mao , M . Z . , Ranzato, M . , Senior, A . W . , Tucker, P. A . , Yang, K . , and Ng , A . Y . (2012).
Large scale distr ibuted deep networks. In Proc. of NIPS.

[Fraga-Silva et al. , 2011] Fraga-Silva, T . , Gauvain , J . , and Lamel , L . (2011). Lattice-based
unsupervised acoustic model t raining. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011, May 22-21,
2011, Prague Congress Center, Prague, Czech Republic.

[Gers et al . , 2000] Gers, F . A . , Schmidhuber, J . , and Cummins , F . A . (2000). Learning to
forget: Cont inual prediction wi th L S T M . Neural Computation, 12(10):2451-2471.

[Ghahremani et al . , 2014] Ghahremani , P. , B a b a A l i , B . , Povey, D . , Riedhammer, K . ,
Trmal , J . , and Khudanpur , S. (2014). A pi tch extraction algori thm tuned for automatic
speech recognition. In Proceedings of ICASSP.

[Gibson and Hain , 2006] Gibson, M . and Ha in , T . (2006). Hypothesis spaces for min imum
Bayes risk t raining i n large vocabulary speech recognition. In Proc. INTERSPEECH.
pages 2406-2409.

[Glorot et al . , 2010] Glorot , X . , Bordes, A . , and Bengio, Y . (2010). Deep sparse rectifier
neural networks. In Proc. AISTATS'10, volume 15 (draft) of W&CP. J M L R .

[Gollan, 2014] Gol lan , C . (2014). Efficient Setup of Acoustic Models for Large Vocabulary
Continuous Speech Recognition. P h D thesis, R W T H Aachen University, Computer
Science Department, R W T H Aachen University, Aachen, Germany.

[Gollan et al . , 2007] Gol lan , C , Hahn, S., Schlü ter , R . , and Ney, H . (2007). A n improved
method for unsupervised t raining of L V C S R systems. In INTERSPEECH 2001, 8th
Annual Conference of the International Speech Communication Association, Antwerp,
Belgium, August 21-31, 2001.

[Goodfellow et al. , 2013] Goodfellow, I. J . , Warde-Farley, D . , M i r z a , M . , Courvi l le , A . C ,
and Bengio, Y . (2013). Maxout Networks. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013.
pages 1319-1327.

[Grandvalet and Bengio, 2004] Grandvalet, Y . and Bengio, Y . (2004). Semi-supervised
learning by entropy minimizat ion . In Proc. of NIPS.

[Graves et al . , 2013] Graves, A . , Jait ly, N . , and Mohamed, A . (2013). H y b r i d speech
recognition wi th deep bidirectional L S T M . In 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding, Olomouc, Czech Republic, December 8-12, 2013.
pages 273-278.

[Grézl and Karaf iá t , 2014] Grézl , F . and Karaf iá t , M . (2014). Combinat ion of mult i l ingual
and semi-supervised t raining for under-resourced languages. In INTERSPEECH 2014,
15th Annual Conference of the International Speech Communication Association,
Singapore, September 14-18, 2014-

[Grézl and Karaf iá t , 2010] Grézl , F . and Karaf iá t , M . (2010). Hierarchical neural net
architectures for feature extraction in asr. In Proc. INTERSPEECH'10.

99

[Grézl et al . , 2007] Grézl , F . , Karaf iá t , M . , K o n t á r , S., and Černocký, J . (2007).
Probabi l is t ic and Bottle-neck Features for L V C S R of Meetings. In Proc. ICASSP'07,
pages 757-760.

[Hinton et al . , 2012] Hinton, G . , Deng, L . , Y u , D . , Dah l , G . , Mohamed, A . , Jait ly, N . ,
Senior, A . , Vanhoucke, V . , Nguyen, P. , Sainath, T . , and Kingsbury, B . (2012). Deep
neural networks for acoustic modeling in speech recognition. Signal Processing
Magazine, pages 14-22.

[Hinton, 2012] Hinton , G . E . (2012). A Prac t ica l Guide to Tra in ing Restricted Bo l t zmann
Machines. In Neural Networks: Tricks of the Trade - Second Edition.

[Hinton et al . , 2006] Hinton, G . E . , Osindero, S., and Teh, Y . (2006). A fast learning
algori thm for deep belief nets. Neural Computation, 18:1527-1554.

[Hochreiter, 1991] Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen
netzen. Master's thesis, Institut fur Informatik, Technische Universität, München.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J . (1997). Long
short-term memory. Neural Computation, 9(8): 1735-1780.

[Huang and Hasegawa-Johnson, 2010] Huang, J . -T . and Hasegawa-Johnson, M . (2010).
Semi-supervised t raining of Gaussian mixture models by condit ional entropy
minimizat ion. In Proc. of INTERSPEECH, pages 1353-1356.

[Huang et al. , 2013] Huang, Y . , Y u , D . , Gong, Y . , and L i u , C . (2013). Semi-supervised
G M M and D N N acoustic model t raining wi th multi-system combination and confidence
re-calibration. In Proc. of INTERSPEECH.

[Jaitly et al . , 2012] Jaitly, N . , Nguyen, P., Senior, A . , and Vanhoucke, V . (2012).
Appl ica t ion of pretrained deep neural networks to large vocabulary speech recognition.
In Proc. INTERSPEECH.

[Jelinek, 1976] Jelinek, F . (1976). Continuous Speech Recognit ion by Statist ical Methods.
In Proceedings of the IEEE 64, pages 532-556.

[Kaiser et al . , 2000] Kaiser , J . , Horvat, B . , and Kačič , Z . (2000). A novel loss function for
the overall risk criterion based discriminative t raining of H M M models. In Proc. ICSLP,
volume 2, pages 887-890.

[Kingsbury, 2009] Kingsbury, B . (2009). Lattice-based opt imizat ion of sequence
classification criteria for neural-network acoustic modeling. In Proc. IEEE ICASSP,
pages 3761-3764.

[Kingsbury et al . , 2012] Kingsbury, B . , Sainath, T . N . , and Soltau, H . (2012). Scalable
min imum Bayes risk t raining of deep neural network acoustic models using distributed
Hessian-free opt imizat ion. In Proc. INTERSPEECH.

[Kneser and Ney, 1995] Kneser, R . and Ney, H . (1995). Improved backing-off for m-gram
language modeling. In 1995 International Conference on Acoustics, Speech, and Signal
Processing, ICASSP '95, Detroit, Michigan, USA, May 08-12, 1995, pages 181-184.

100

[Krogh and Ri i s , 1999] Krogh , A . and Ri i s , S. K . (1999). Hidden neural networks. Neural
Computation, l l (2) :541-563.

[Kuwabara, 1996] Kuwabara , H . (1996). Acoust ic properties of phonemes i n continuous
speech for different speaking rate. In Proceedings of ICSLP, 1996.

[Li et al . , 2016] L i , S., A k i t a , Y . , and Kawahara , T . (2016). Semi-supervised acoustic
model t raining by discriminative data selection from mult iple A S R systems' hypotheses.
IEEE/ACM Trans. Audio, Speech & Language Processing, 24(9):1524-1534.

[Malkin et al . , 2009] M a l k i n , J . , Subramanya, A . , and Bilmes, J . (2009). O n the
semi-supervised learning of multi-layered perceptrons. In Proc. of INTERSPEECH,
pages 660-663.

[Manohar et al . , 2015] Manohar , V . , Povey, D . , and Khudanpur , S. (2015).
Semi-supervised max imum mutual information t raining of deep neural network acoustic
models. In INTERSPEECH 2015, 16th Annual Conference of the International Speech
Communication Association, Dresden, Germany, September 6-10, 2015, pages
2630-2634.

[Miao et al. , 2013] M i a o , Y . , Metze, F . , and Rawat, S. (2013). Deep maxout networks for
low-resource speech recognition. In Proc. ASRU 2013.

[Mikolov et al . , 2010] Mikolov , T . , Karaf iá t , M . , Bü rge t , L . , Cernocký , J . , and Khudanpur ,
S. (2010). Recurrent neural network based language model. In Proc. INTERSPEECH
2010.

[Mohri , 2004] M o h r i , M . (2004). Weighted Finite-State Transducer Algorithms. An
Overview, pages 551-563. Springer Ber l in Heidelberg, Ber l in , Heidelberg.

[Mohri et al . , 2002] M o h r i , M . , Pereira, F . , and Riley, M . (2002). Weighted finite-state
transducers i n speech recognition. Computer Speech & Language, 16(l):69-88.

[Mohri et al . , 1998] M o h r i , M . , Riley, M . , Hindle, D . , Ljolje, A . , and Pereira, F . C . N .
(1998). Fu l l expansion of context-dependent networks in large vocabulary speech
recognition. In Proceedings of the 1998 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP '98, Seattle, Washington, USA, May 12-15, 1998.

[Ng et al . , 2012] Ng , T. , Zhang, B . , Nguyen, L . , Matsoukas, S., Zhou, X . , Mesgarani, N . ,
Veselý, K . , and Matě jka , P. (2012). Developing a Speech A c t i v i t y Detection System for
the D A R P A R A T S Program. In Proc. of INTERSPEECH 2012.

[Novak et al . , 2016] Novak, J . R. , Minematsu , N . , and Hirose, K . (2016). Phonetisaurus:
Exp lor ing grapheme-to-phoneme conversion wi th joint n-gram models i n the W F S T
framework. Natural Language Engineering, 22(6):907-938.

[Novotney and Schwartz, 2009] Novotney, S. and Schwartz, R . M . (2009). Analys is of
low-resource acoustic model self-training. In Proc. of INTERSPEECH, pages 244-247.

[Novotney et al . , 2009] Novotney, S., Schwartz, R . M . , and M a , J . Z . (2009). Unsupervised
acoustic and language model t raining wi th small amounts of labelled data. In Proc. of
IEEE ICASSP, pages 4297-4300.

101

[Povey, 2003] Povey, D . (2003). Discriminative Training for Large Vocabulary Speech
Recognition. P h D thesis, Universi ty of Cambridge, Cambridge, U K .

[Povey et al. , 2012] Povey, D . , Hannemann, M . , Boulianne, C , Bürge t , L . , Ghoshal , A . ,
Janda, M . , Karaf iá t , M . , Kombr ink , S., Motl icek, P. , Qian , Y . , Riedhammer, K . , Veselý,
K . , and V u , N . T . (2012). Generating exact lattices i n the W F S T framework. In 2012
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
2012, Kyoto, Japan, March 25-30, 2012.

[Povey et al. , 2008] Povey, D . , Kanevsky, D . , Kingsbury, B . , Ramabhadran, B . , Saon, G . ,
and Visweswariah, K . (2008). Boosted M M I for model and feature-space discriminative
training. In Proc. IEEE ICASSP, pages 4057-4060.

[Povey and Kingsbury, 2007] Povey, D . and Kingsbury, B . (2007). Evaluat ion of proposed
modifications to M P E for large scale discriminative training. In Proc. IEEE ICASSP,
volume 4, pages I V - 3 2 1 - I V - 3 2 4 .

[Povey et al. , 2014] Povey, D . , Zhang, X . , and Khudanpur , S. (2014). Paral lel t raining of
deep neural networks wi th natural gradient and parameter averaging. CoRR,
abs/1410.7455.

[Recht et al . , 2011] Recht, B . , Re, C , Wright , S. J . , and N i u , F . (2011). Hogwild : A
lock-free approach to parallelizing stochastic gradient descent. In Proceedings of NIPS.

[Rennie et al. , 2014] Rennie, S. J . , Goel , V . , and Thomas, S. (2014). Annealed dropout
t raining of deep networks. In 2014 IEEE Spoken Language Technology Workshop, SLT
2014, South Lake Tahoe, NV, USA, December 7-10, 2014.

[Robinson, 1992] Robinson, T . (1992). A real-time recurrent error propagation network
word recognition system. Acoustics, Speech, and Signal Processing, IEEE International
Conference on, 1:617-620.

[Rumelhart et al . , 1986] Rumelhart , D . E . , Hinton, G . E . , and Wi l l i ams , R . J . (1986).
Learning representations by back-propagating errors. Nature, 323:533-536.

[Sainath et al . , 2014] Sainath, T . N . , Chung, I., Ramabhadran, B . , Picheny, M . , Gunnels,
J . A . , Kingsbury, B . , Saon, G . , Aus te l , V . , and Chaudhar i , U . V . (2014). Paral le l Deep
Neural Network training for L V C S R tasks using Blue G e n e / Q . In Proceedings of
INTERSPEECH 2014.

[Sainath et al . , 2013] Sainath, T . N . , Kingsbury, B . , Sindhwani, V . , Arisoy, E . , and
Ramabhadran, B . (2013). Low-rank matr ix factorization for deep neural network
training wi th high-dimensional output targets. In IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May
26-31, 2013, pages 6655-6659.

[Sak et al . , 2014] Sak, H . , Senior, A . W . , and Beaufays, F . (2014). Long short-term
memory based recurrent neural network architectures for large vocabulary speech
recognition. CoRR, abs/1402.1128.

[Scanzio et al . , 2010] Scanzio, S., Cuman i , S., Gemello, R. , F . , M . , and Laface, P. (2010).
Paral lel implementation of artificial neural network training. In Proc. ICASSP'10.

102

[Seide et al . , 2011a] Seide, F . , L i , G . , Chen, X . , and Y u , D . (2011a). Feature engineering
in context-dependent deep neural networks for conversational speech transcription. In
Proc. IEEE ASRU, pages 24-29.

[Seide et al . , 2011b] Seide, F . , L i , C , and Y u , D . (2011b). Conversational speech
transcription using context-dependent deep neural networks. In Proc. of
INTERSPEECH.

[Senior et al . , 2015] Senior, A . W . , Sak, H . , and Shafran, I. (2015). Context dependent
phone models for L S T M R N N acoustic modell ing. In Proc. ICASSP 2015.

[Sharma et al . , 2000] Sharma, S., E l l i s , D . , Kajarekar, S., Ja in , P. , and Hermansky, H .
(2000). Feature extraction using non-linear transformation for robust speech recognition
on the A u r o r a database. In Proc. ICASSP 2000, Turkey.

[Smolensky, 1986] Smolensky, P. (1986). Paral lel distr ibuted processing: Explorat ions in
the microstructure of cognition, vol . 1. chapter Information Processing i n Dynamica l
Systems: Foundations of Harmony Theory, pages 194-281. M I T Press, Cambridge, M A ,
U S A .

[Srivastava et al . , 2014] Srivastava, N . , Hin ton , G . , Krizhevsky, A . , Sutskever, I., and
Salakhutdinov, R . (2014). Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15:1929-1958.

[Su and Chen, 2015] Su, H . and Chen, H . (2015). Experiments on parallel t raining of deep
neural network using model averaging. CoRR, abs/1507.01239.

[Su and X u , 2015] Su, H . and X u , H . (2015). Mult i -sof tmax deep neural network for
semi-supervised training. In INTERSPEECH 2015, 16th Annual Conference of the
International Speech Communication Association, Dresden, Germany, September 6-10,
2015, pages 3239-3243.

[Swietojanski et al . , 2012] Swietojanski, P. , Ghoshal , A . , and Renals, S. (2012).
Unsupervised cross-lingual knowledge transfer in DNN-based L V C S R . In Proc. of IEEE
SLT, pages 246-251.

[Swietojanski et al . , 2013] Swietojanski, P. , Ghoshal , A . , and Renals, S. (2013). Revis i t ing
hybr id and G M M - H M M system combination techniques. In Proc. of IEEE ICASSP.

[Swietojanski et al . , 2014] Swietojanski, P. , L i , J . , and Huang, J . (2014). Investigation of
maxout networks for speech recognition. In Proc. ICASSP 2014-

[Talkin, 1995] Ta lk in , D . (1995). A robust algori thm for pi tch tracking (R A P T) . In Kle i jn ,
W . B . and Pal iwal , K . , editors, Speech Coding and Synthesis, New York . Elseviever.

[Thomas et al. , 2013] Thomas, S., Seltzer, M . L . , Church, K . , and Hermansky, H . (2013).
Deep neural network features and semi-supervised t raining for low resource speech
recognition. In Proceedings of ICASSP, pages 6704-6708.

[Trmal et al . , 2010] Trmal , J . , Prazak, A . , Loose, Z . , and Psutka, J . (2010). Onl ine T V
captioning of Czech Parl iamentary Sessions. In Proceedings of TSD 2010.

103

[Tüske et al. , 2012] T ü s k e , Z . , Schlü ter , R. , Ney, H . , and Sundermeyer, M . (2012).
Context-Dependent M L P s for L V C S R : T A N D E M , H y b r i d or Both? In Proceedings of
INTERSPEECH'12.

[Veselý et al . , 2017] Veselý, K . , Bürge t , L . , and Cernocký, J . H . (2017). Semi-supervised
D N N training wi th word-selection for A S R . In Proceedings of INTERSPEECH 2017.

[Veselý et al . , 2011] Veselý, K . , Karaf iá t , M . , and Grézl , F . (2011). Convolut ive bottleneck
network features for L V C S R . In Proceedings of ASRU 2011, pages 42-47.

[Vesely et al . , 2011] Veselý, K . , Karaf iá t , M . , and Grez l , F . (2011). Convolut ive bottleneck
network features for L V C S R . Proc. of ASRU 2011, pages 42-47.

[Veselý et al . , 2016] Veselý, K . , Watanabe, S., Zmolíková, K . , Karaf iá t , M . , Bü rge t , L . ,
and Cernocký, J . H . (2016). Sequence summarizing neural network for speaker
adaptation. In Proceedings of ICASSP'16.

[Veselý, 2010] Veselý, K . (2010). Parallel Training of Neural Networks for Speech
Recognition. Brno Universi ty of Technology (master thesis).

[Veselý et al . , 2010] Veselý, K . , Bürge t , L . , and Grézl , F . (2010). Paral lel t raining of
neural networks for speech recognition. In Proc. INTERSPEECH'10, pages 2934-2937.

[Veselý et al . , 2013a] Veselý, K . , Ghoshal , A . , Bürge t , L . , and Povey, D . (2013a).
Sequence-discriminative t raining of deep neural networks. In Proc. of
INTERSPEECH'13.

[Veselý et al . , 2013b] Veselý, K . , Hannemann, M . , and Bürge t , L . (2013b). Semi-supervised
training of deep neural networks. In Proceedings of ASRU, pages 267-272.

[Wager et al . , 2013] Wager, S., Wang, S. I., and Liang , P. (2013). Dropout t raining as
adaptive regularization. In Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 351-359.

[Wang and S im, 2011] Wang, G . and S im, K . C . (2011). Sequential classification criteria
for N N s in automatic speech recognition. In Proc. INTERSPEECH, pages 441-444.

[Wawrzynek et al . , 1996] Wawrzynek, J . , Asanovic , K . , Kingsbury, B . , Johnson, D . , Beck,
J . , and Morgan , N . (1996). Spert-II: A Vector Microprocessor System,
h t t p : / / w w w l . i c s i . b e r k e l e y . e d u / S p e e c h / s p e r t / c o m p u t e r _ s p e r t . p d f . Accessed:
2015-11-11.

[Wessel and Ney, 2005] Wessel, F . and Ney, H . (2005). Unsupervised t raining of acoustic
models for large vocabulary continuous speech recognition. IEEE Transactions on
Speech and Audio Processing, 13(1):23-31.

[Wessel et al . , 2001] Wessel, F . , Schlüter , R . , Macherey, K . , and Ney, H . (2001).
Confidence measures for large vocabulary continuous speech recognition. IEEE
Transactions on Speech and Audio Processing, 9(3):288-298.

[Xu et al . , 2011] X u , H . , Povey, D . , Mangu , L . , and Zhu, J . (2011). M i n i m u m Bayes Risk
decoding and system combination based on a recursion for edit distance. Computer
Speech & Language, 25(4):802-828.

104

http://wwwl.icsi.berkeley.edu/Speech/spert/computer_spert.pdf

[Young et al . , 2002] Young, S., Jansen, J . , Odel l , J . , Ollason, D . , and Woodland, P.
(2002). The HTK book. Entropies Cambridge Research Lab . , Cambridge, U K .

[Young and Woodland, 1994] Young, S. J . and Woodland, P. C . (1994). State clustering in
hidden markov model-based continuous speech recognition. Computer Speech &
Language, 8(4):369-383.

[Yu et al. , 2010a] Y u , D . , Deng, L . , and Dahl , G . (2010a). Roles of pre-training and
fine-tuning i n context-dependent D B N - H M M s for real-world speech recognition. In
Proc. of NIPS.

[Yu et al. , 2011] Y u , D . , L i , J . , and Deng, L . (2011). Cal ibra t ion of confidence measures in
speech recognition. IEEE Transactions on Audio, Speech, and Language Processing,
19(8):2461 - 2473.

[Yu et al. , 2010b] Y u , D . , Varadarajan, B . , Deng, L . , and Acero, A . (2010b). Act ive
learning and semi-supervised learning for speech recognition: A unified framework using
the global entropy reduction maximizat ion criterion. Computer Speech & Language,
24(3):433-444.

[Yu et al. , 2010c] Y u , K . , Gales, M . J . F . , Wang, L . , and Woodland, P. C . (2010c).
Unsupervised t raining and directed manual transcription for L V C S R . Speech
Communication, 52(7-8):652-663.

[Zeiler et al . , 2013] Zeiler, M . D . , Ranzato, M . , Monga , R. , Mao , M . Z . , Yang, K . , Le,
Q. V . , Nguyen, P., Senior, A . W . , Vanhoucke, V . , Dean, J . , and Hinton , G . E . (2013).
O n rectified linear units for speech processing. In Proc. ICASSP 2013.

[Zhang et al . , 2014a] Zhang, P. , L i u , Y . , and Hain , T . (2014a). Semi-supervised D N N
training in meeting recognition. In 2014 IEEE Spoken Language Technology Workshop,
SLT 2014, South Lake Tahoe, NV, USA, December 7-10, 2014, pages 141-146.

[Zhang et al . , 2014b] Zhang, X . , Trmal , J . , Povey, D . , and Khudanpur , S. (2014b).
Improving deep neural network acoustic models using generalized maxout networks. In
Proc. ICASSP 2014.

105

