

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY

FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS

POSOUZENÍ DŘEVĚNÉ MOSTNÍ KONSTRUKCE NA ÚČINKY DYNAMICKÉHO ZATÍŽENÍ

AN ASSESSMENT OF A WOODEN BRIDGE CONSTRUCTION ON A DYNAMIC LOAD

DIPLOMOVÁ PRÁCE DIPLOMA THESIS

AUTOR PRÁCE

BC. ONDŘEJ SKORUNKA

VEDOUCÍ PRÁCE SUPERVISOR

doc. Ing. VLASTISLAV SALAJKA, CSc.

BRNO 2016

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ

Studijní program	N3607 Stavební inženýrství
Typ studijního programu	Navazující magisterský studijní program s prezenční formou studia
Studijní obor	3607T009 Konstrukce a dopravní stavby
Pracoviště	Ústav stavební mechaniky

ZADÁNÍ DIPLOMOVÉ PRÁCE

Diplomant	Bc. Ondřej Skorunka
Název	Posouzení dřevěné mostní konstrukce na účinky dynamického zatížení
Vedoucí diplomové práce	doc. Ing. Vlastislav Salajka, CSc.
Datum zadání diplomové práce	31. 3. 2015
Datum odevzdání diplomové práce	15. 1. 2016
V Brně dne 31. 3. 2015	

prof. Ing. Drahomír Novák, DrSc. Vedoucí ústavu prof. Ing. Rostislav Drochytka, CSc., MBA

Děkan Fakulty stavební VUT

Podklady a literatura

[1] ČSN EN 1991-2 Eurokód 1: Zatížení konstrukcí. Část 2: Zatížení mostů dopravou

[2] ČSN EN 1991-1-4 Eurokód 1: Zatížení konstrukcí - Část 1-4: Obecná zatížení - Zatížení větrem

[3] ČSN EN 1991-1-1 Eurokód 1: Zatížení konstrukcí - Část 1-1: Obecná zatížení - Objemové tíhy, vlastní tíha a užitné zatížení pozemních staveb

[4] ČSN EN 1995-1-1 Eurokód 5: Navrhování dřevěných konstrukcí - Část 1-1: Obecná pravidla - Společná pravidla a pravidla pro pozemní stavby a změna A1

[5] ČSN EN 1995-2 Navrhování dřevěných konstrukcí – Část 2: Mosty

[6] Dokumentace k programu ANSYS Release 12.1 a vyšší

[7] Výkresová dokumentace mostu

[8] Assessment of vibrational behaviour of footbridges under pedestrian loading, SETRA Footbridge Technical Guide, 2006

[9] Witte, T. H., Knill, K., Wilson, A. M. Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus), The Journal of Experimental Biology 207, 3639-3648, 2004

[10] Zienkiewicz, O. C., Taylor, R. L. Finite Element Method (5th Edition): Volume 1-3, Elsevier, 2000

Zásady pro vypracování

Prostudujte problematiku řešení odezvy lávek na působení dynamického zatížení. Navrhněte, popřípadě převezměte model buzení pohybem osob a koní. Pro vybranou mostní konstrukci lávky stanovte dynamickou odezvu na působení osob, koní a větru. Výpočty proveďte s využitím metody konečných prvků v programu ANSYS. Pro vybraný případ zatížení proveďte posouzení konstrukce na únavu.

Struktura bakalářské/diplomové práce

VŠKP vypracujte a rozčleňte podle dále uvedené struktury:

- 1. Textová část VŠKP zpracovaná podle Směrnice rektora "Úprava, odevzdávání, zveřejňování a uchovávání vysokoškolských kvalifikačních prací" a Směrnice děkana "Úprava, odevzdávání, zveřejňování a uchovávání vysokoškolských kvalifikačních prací na FAST VUT" (povinná součást VŠKP).
- 2. Přílohy textové části VŠKP zpracované podle Směrnice rektora "Úprava, odevzdávání, zveřejňování a uchovávání vysokoškolských kvalifikačních prací" a Směrnice děkana "Úprava, odevzdávání, zveřejňování a uchovávání vysokoškolských kvalifikačních prací na FAST VUT" (nepovinná součást VŠKP v případě, že přílohy nejsou součástí textové části VŠKP, ale textovou část doplňují).

doc. Ing. Vlastislav Salajka, CSc.

Vedoucí diplomové práce

Abstrakt

Diplomová práce se zabývá statickou a dynamickou analýzou dřevěné obloukové lávky pro pěší. Výpočtový model konstrukce byl vytvořen v programovém systému ANSYS 15. Dynamické síly od větru a koní byly aplikovány na model na základě modální analýzy. Účinky těchto sil při rezonanci byly vyhodnoceny pomocí harmonické analýzy.

Klíčová slova

Lávka pro pěší, harmonická analýza, modální analýza, statická analýza, vírová rezonance, dynamické zatížení chodci, dynamické zatížení koňmi, ANSYS

Abstract

Diploma thesis deals with static and dynamic analysis of a wooden arch footbridge. The computational model of the structure was created in ANSYS 15. Dynamic forces from wind and horses were applied to the model based on the modal analysis. The effects of these forces at resonance were evaluated by harmonic analysis.

Keywords

Footbridge, harmonic analysis, modal analysis, static analysis, vortex shedding, dynamic pedesterian loads, dynamic horse loads

•••

Bibliografická citace VŠKP

Bc. Ondřej Skorunka *Posouzení dřevěné mostní konstrukce na účinky dynamického zatížení*. Brno, 2016. 48 s., 2 s. příl. Diplomová práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav stavební mechaniky. Vedoucí práce doc. Ing. Vlastislav Salajka, CSc.

Prohlášení:

Prohlašuji, že jsem diplomovou práci zpracoval samostatně a že jsem uvedl všechny použité informační zdroje.

V Brně dne 15.1.2016

.....

podpis autora Bc. Ondřej Skorunka

PODĚKOVÁNÍ:

Chtěl bych poděkovat vedoucímu diplomové práce doc. Ing. Vlastislavu Salajkovi, CSc. za příkladné vedení, trpělivost, rady, věnovaný čas a vstřícný přístup v průběhu celého řešení diplomové práce.

V neposlední řadě bych chtěl poděkovat svým přátelům, přítelkyni a rodině za toleranci a podporu, bez které bych tuto práci nemohl vypracovat.

OBSAH

1	ÚVO	D		2
2	MOI	DEL K	ONSTRUKCE	3
	2.1	Popis	lávky	3
	2.2	Parai	metry modelu	5
	2.	2.1	Konečné prvky modelu	6
	2.	2.2	Nastavení materiálů	7
	2.	2.3	Nastavení vazeb	9
3	STA	TICKÂ	Á ANALÝZA 1	3
	3.1	Teori	e statické analýzy 1	3
	3.2	Zatěž	iovací stavy 1	4
	3.	2.1	Vlastní tíha 1	4
	3.	2.2	Vítr	4
	3.	2.3	Zatížení dopravou 1	6
	3.3	Kom	binace zatížení 1	.8
4	MOI	DÁLNÍ	Í ANALÝZA 2	1
	4.1	Teori	ie modální analýzy 2	1
	4.2	Výpo	čet vlastních frekvencí 2	2
5	HAR	RMON	ICKÁ ANALÝZA 2	4
	5.1	Teori	ie harmonické analýzy 2	4
	5.2	Odtr	hávání vírů	:5
	5.	2.1	Výpočet účinků od odtrháváním vírů	:6
	5.3	Pohy	b chodců3	1
	5.4	Pohy	b koní 3	2
6	POS	OUZE	NÍ NA ÚNAVU 3	4
	6.1	Ocelo	ové prvky3	4
	6.2	Dřev	ěné prvky 3	;5
7	ZÁV	'ĚR		<i>i</i> 6
8	POU	ŽITÁ	LITERATURA	;8
SEZ	NAM	TABU	LEK 4	10
SEZ	NAM	OBRÁ	ZKŮ4	1
SEZ	NAM	POUŽ	ITÝCH ZKRATEK A SYMBOLŮ 4	3
SEZ	NAM	PŘÍLO	DH 4	6
PŘÍI	ОНУ	<i>.</i>		7

1 ÚVOD

Diplomová práce se zabývá chováním dřevěné obloukové lávky pro pěší, která je namáhána dynamickým zatížením od větru, chodců a koní. Model konstrukce byl vytvořen na základě předběžného projektu lávky pro pěší přes průsakový kanál v obci Šamorín na Slovensku.

Obloukové mostní konstrukce patří mezi tradiční mostní konstrukce, které umožňují překlenout velká rozpětí. Hlavním prvkem těchto konstrukcí je převážně tlačený oblouk, který vynáší mostovku. Studovaná lávka má relativně podobné tuhosti mostovky a oblouku, což vede k vzájemně většímu ovlivňování těchto prvků, než u konstrukcí kde je tuhost jednoho prvku dominantní. Obecně u štíhlých konstrukcí platí, že velkou roli při posuzování konstrukcí hraje dynamické zatížení. Toto zatížení může konstrukci rozkmitat do nepřípustných výchylek, které omezují komfort pro použití, popřípadě může docházet k velkému únavovému namáhání konstrukce, čímž je snížena životnost konstrukce. Velký vliv na dynamické chováni konstrukcí má rozložení hmoty, tuhosti a útlumu použitých materiálů konstrukce. Zvláštností u této konstrukce je nutnost posouzení účinku přechodu koní přes lávku, protože se objekt nachází v blízkosti dostihového okruhu.

Model konstrukce byl vytvořen v programovém systému ANSYS 15 v rozhraní APDL. Byl kladen velký důraz na parametrizaci úlohy po stránce tvorby geometrie modelu i jednotlivých úloh. Tato parametrizace byla provedena pomocí programovacího jazyka APDL (ANSYS Parametric Design Language), který umožňuje veškerou činnost v programu provádět na úrovni jednotlivých příkazů. Dílčí bloky příkazů, které se starají o jednotlivé úlohy, byly sestaveny do maker, která umožňují jejich samotné volání a tím usnadňují práci v programu.

Druhá část je věnována popisu konstrukce a způsobu tvorby modelu. V třetí části práce je řešena statická odezva na vybraná zatížení podle aktuálních norem. Větší pozornost je věnována zatížení dopravou, kde byla automatizována tvorba zatěžovacích stavů na základě stabilitní analýzy, ze které byly určeny příčinkové plochy pro aplikaci zatížení. Čtvrtá část se zabývá modální analýzou, kde jsou nalezeny vlastní tvary a příslušné frekvence. V páté části je řešena ustálená odezva konstrukce harmonickou analýzou na dynamické zatížení odtrháváním vírů, chodci a koňmi. V každé kapitole jsou vyhodnoceny zjištěné výsledky. V šesté části je konstrukce posouzena ve vybraném zatěžovacím stavu na únavu.

2 MODEL KONSTRUKCE

2.1 POPIS LÁVKY

Jedná se o obloukovou lávku s mezilehlou mostovkou. Hlavní nosnou část konstrukce tvoří dva krajní oblouky, které se k sobě sbíhají pod úhlem 6°. Geometrie těchto oblouků je kruhová s poloměrem 29.22 m, vzepětí ve vlastní rovině oblouků je 7.74 m při rozpětí 39,9 m. Oblouky mají profil 440/880, uvažovaný materiál je lepené lamelové dřevo GL28c. Kotvení oblouků je provedeno kloubově do ŽB bloků na krajích kanálu. Spojení oblouků mezi sebou je provedeno pomocí ztužidel profilu 180/400 z materiálu GL28c. Mezi těmito ztužidly se nachází ocelové diagonály. V prvním krajním poli z ocelových trubek 114/8 a uvnitř ocelovými kulatinami průměru 20 mm. Poslední ztužující pole oblouku se nachází pod mostovkou, kde je umístěno ztužidlo z ocelového krabicového profilu 200/200/8, který slouží zároveň jako ztužidlo ale i jako podpora pro mostovku a k přenosu vodorovných sil z podélného směru mostovky. Doplněno je diagonálami z ocelových trubek 114/8, které jsou na druhém konci připevněny ke kotvení oblouků.

Mezi oblouky je zavěšena konstrukce mostovky. Závěsy jsou provedeny z ocelových trubek 76/8, je uvažováno působení v tahu i tlaku. Celková délka mostovky je 54 m. Uložení je uvažováno podélně posuvné na souřadnicích ±27 a ±21 m vzhledem ke středu lávky. Výjimkou je uložení na souřadnici +21 m, které je provedeno neposuvně. Toto uložení je uvažováno na krajních podélnících mostovky.

Mostovka šířky 3m je tvořena hlavními krajními podélníky profilu 240/600 stejně jako u oblouku materiálem GL28c. Mezi sebou jsou hlavní podélníky spojeny ocelovými příčníky z ocelového profilu IPE 270, přičemž jejich podélná vzdálenost je 3m. Ve styčných bodech hlavních podélníků a příčníků se nachází připojení ocelových závěsů, které jsou vyloženy 0,16m od kraje. Pro zvětšení příčné tuhosti mostovky je mezi příčníky provedeno příhradové ztužidlo z celkem tří druhů profilů. V oblasti připojení na oblouk je tento profil uvažován jako ocelová trubka 82.5/5, v poli pod obloukem z ocelových kulatin profilu 24 mm a v krajním poli průměru 20 mm. Na příčníky jsou uloženy čtyři vnitřní podélníky z lepeného lamelového dřeva GL24h profilu 160/240. Nášlapná vrstva je tvořena dubovými hranoly profilu 160/100 z dřeva D35. Příčný sklon těchto hranolů je 2% na obě strany od podélné osy mostovky. Na následujících obrázcích 2.1 a 2.2 je podle [1] konstrukce zobrazena.

Obrázek 2.2 Příčný řez lávkou [1]

2.2 PARAMETRY MODELU

Celá konstrukce byla idealizována pomocí prutových prvků. Tyto prvky byly modelovány bez excentricit ve vlastních těžišťových osách. Jejich vzájemné propojení bylo provedeno pomocnými prvky. Umístění modelu vzhledem ke globálnímu souřadnému systému je takové, že osa mostovky souhlasí s osou *X*, osa *Y* je v příčném směru a kladná poloosa *Z* směřuje vzhůru od mostovky k oblouku. Jak bylo uvedeno již v úvodu, tvorba geometrie byla parametrizována. Ve své podstatě se jedná souhru hlavních geometrických parametrů a vedlejších geometrických parametrů. Příkladem může být podle obrázku 2.3 příčné a výškové rozmístění profilů mostovky, kde šířka mostovky je hlavním geometrickým parametrem, parametry průřezů jsou vedlejší a nedefinovaným parametrem je stejná vzdálenost líců podélníků.

Obrázek 2.3 Uspořádání prvků mostovky

Podobný přístup je uvažován při tvorbě zbytku modelu. Mezi hlavní parametry patří: délka pole, šířka pole, počet polí, vzdálenost oblouků v patě a ve vrcholu, výška oblouků, hloubka uložení oblouků, počty ztužidel jednotlivých typů, počet závěsů a další. Výhodou této konstrukce je symetrie podle podélné a příčné roviny kolmé k mostovce, což umožňuje vytvořit ¼ konstrukce a příslušně ji zrcadlit. Makra použitá na generování konstrukce budou uvedena v elektronické příloze.

2.2.1 Konečné prvky modelu

BEAM 188

Jedná se o dvouuzlový 3D prutový prvek se šesti stupni volnosti v každém uzlu, tři stupně volnosti u_x , u_y , u_z odpovídají posunům uzlů a rot_x , rot_y , rot_z pootočení uzlů. Tento prvek je vhodný pro modelování prvků namáhaných kombinací ohybu a osové síly. V modelu jsou tyto prvky použity pro modelování oblouku a jeho ztužidel, podélníky a příčníky mostovky a jednotlivé trámky nášlapné plochy. Průřezové charakteristiky jednotlivých profilů jsou vypočteny programem na základě výběru geometrie průřezu a zadání jejich rozměrů. Prvek byl ponechán ve výchozím nastavení až na uvažované tvarové funkce, které byly přepnuty z lineárních na kubické. Dále byla vypnuta úprava průřezu na základě osové napjatosti (uplatnitelné jen při velkých deformacích).

Obrázek 2.4 BEAM188 [2]

LINK180

Jedná se o dvouuzlový 3D osový prvek se třemi stupni volnosti v každém uzlu, stupně volnosti u_x , u_y , u_z odpovídají posunům uzlů. Tento prvek je vodný pro modelování konstrukcí namáhaných jednoosým tahem či tlakem. V modelu je použit pro diagonály mostovky, diagonály ztužidla oblouku a závěsy. Prvek má jedinou průřezovou charakteristiku a to je plocha příčného řezu, která se zadává numericky. Podobně jako u prvku BEAM188 byla vypnuta úprava průřezu na základě osové napjatosti.

Obrázek 2.5 LINK180 [2]

BEAM44

Podobně jako prvek BEAM188 se jedná o 3D prutový prvek s šesti stupni volnosti v každém uzlu. Jde o starší prvek, který ve verzi ANSYS 15 není dokumentován a ani není podporován v grafických dialozích. Prvek však lze používat, je ale nutné ho nastavit pomocí příkazů. V modelu je tento prvek použit na řešení vazeb mezi ostatními prvky a to zejména kvůli tomu, že umožňuje uvolnění vybraných stupňů volnosti v každém uzlu (v osovém systému prvku). V modelu je tomuto prvku přisouzen materiál s velkou tuhostí. Průřezové charakteristiky byly nastaveny numericky: plocha 1m², momenty setrvačnosti 1m⁴, smykové deformace byly zanedbány. Při tomto nastavení je osová tuhost 20,5 krát větší než osově nejtužší prvek modelu, ohybově pak 317,7 krát větší. Z tohoto pohledu je považován za tuhý.

Obrázek 2.6 BEAM44 [2]

2.2.2 Nastavení materiálů

Uvažovaný materiálový model je pro všechny prvky izotropní, lineárně pružný. Každému materiálu je tedy nastaven Youngův modul pružnosti, součinitel příčné kontrakce a objemová hmotnost. Přehled nastavení je uveden v následující tabulce 2.1.

Č		Modul	Součinitel příčné	Objemová
CISIO	Materia	Pružnosti [MPa]	kontrakce [-]	hmotnost [kg.m ⁻³]
1	Ocel S235	210000	0.3	7850
2	LVL GL24h	11600	0.05	380
3	LVL GL28c	12600	0.05	420
4	Dub D35	12000	0.05	764
100	Tuhé prvky	100000	0.25	0

Tabulka 2.1 Materiálové charakteristiky

Pro výstižnost dynamické analýzy je nutné správné vystižení hmot konstrukce. Kvůli tomu byly na prvky oblouku, příčníku a hlavních podélníků, zadány přídavné hmoty zohledňující hmoty spojů. Do hlavních podélníků je také zahrnuta hmota zábradlí, které pro zjednodušení není jinak modelováno. Tyto přídavné hmoty jsou zadány na prvky na jednotku délky. Hodnoty těchto hmot byly dodány projektantem. V následující tabulce 2.2 jsou uvedeny jednotlivé přiřazení prvků k materiálům, profilům a v posledním sloupci jsou uvedeny celkové hmotnosti prvků v modelu.

Čí de	Dereite	- Drugel		Přídavná hmota	Hmotnost
Cisio	Popis	Profil	Material	[kg.m ⁻¹]	[kg]
1	Krajní podélníky	240/640	GL28c	100	17767.3
2	Vnitřní podélníky	160/240	GL24h		3151.9
3	Mostnice	160/100	D35		10598.2
4	Příčníky	IPE270	S235	30	3263.5
5	Diagonály mostovky 1	Ø20	S235		96.6
6	Diagonály mostovky 2	Ø24	S235		55.7
7	Diagonály mostovky 3	TR 82.5/5	S235		561.4
8	Diagonály mostovky 4	Ø20	S235		77.3
9	Oblouky	440/880	GL28c	15	15468.2
10	Ztužidlo oblouku horní	180/400	GL28c		862.3
11	Ztužidlo oblouku dolní	200/200/8	S235		437.5
12	Diagonály oblouku vnitřní	Ø20	S235		113.9
13	Diagonály oblouku krajní	TR 114/8	S235		405.0
14	Diagonály oblouku dolní	TR 114/8	S235		439.7
15	Závěsy 1 (nejdelší)	TR 76/8	S235		320.3
16	Závěsy 2	TR 76/8	S235		303.8
17	Závěsy 3	TR 76/8	S235		270.4
18	Závěsy 4	TR 76/8	S235		219.0
19	Závěsy 5 (nejkratší)	TR 76/8	S235		148.4
	A			Celková hmotnost:	54560.2

Tabulka 2.2 Přiřazení prvků k profilům a materiálům

2.2.3 Nastavení vazeb

Jak bylo uvedeno v kapitole 2.2.1, všechny nosné prvky byly modelovány ve vlastní těžišťové ose profilů a vzájemné spojení bylo provedeno pomocí tuhých prvků BEAM44. Obecně má tuhost spojů významný vliv na chování konstrukce a to jak po stránce statické i dynamické. Výstižný přístup definice spojů v modelu by zahrnovalo určení jejich jednotlivých tuhostí, které by se poté nastavily u příslušných prvků. Jelikož provedení spojů nebylo v dokumentaci uvedeno, bylo přistoupeno k zjednodušení, které vede na spoje dokonalé tuhé či kloubové ve vybraných směrech. Určení těchto vlastností vazeb bylo provedeno na základě chování konstrukce pod zatížení, z vlastních tvarů modální analýzy a podle citu zejména v porovnání rotačních kapacit jednotlivých profilů. V následující tabulce 2.3 jsou uvedeny uvažované uzlové uvolnění, kde uzel I odpovídá straně prvního prvku názvu vazby a uzel J druhé. Uzlová uvolnění byla uvažována pouze rotační. Až na vazbu oblouk horní ztužidlo (prvky natočeny do válcového systému) byly pro srozumitelnost tabulky uvolnění transformována do globálního souřadnicového systému.

Čísla			Uzel I		Uzel J			
Cislo	Cisio Vazba		<i>rot</i> _y	<i>rot</i> _z	rot_x	<i>rot</i> _y	<i>rot</i> _z	
100	Tuhá	0	0	0	0	0	0	
101	Krajní podélník - Mostnice	0	0	0	1	0	0	
102	Vnitřní podélník - Mostnice	0	0	0	0	0	1	
103	Vnitřní podélník - Příčník	0	0	0	1	0	1	
104	Krajní podélník - Příčník	0	0	0	0	0	1	
105	Vyložení závěsu	0	0	0	0	0	0	
106	Oblouk - Ztužidlo horní	0	0	0	0	0	1	
107	Oblouk - Ztužidlo dolní	0	0	0	1	1	0	
108	Krajní podélník - Ztužidlo dolní	0	0	0	1	1	1	

Poznámka:

0 = Tuhý spoj; 1 = Kloub

Vazby na mostovce byly uvažovány s následujícími myšlenkami. Uvolnění vazby krajního podélníku k příčníku je z důvodu přenesení větší části účinků do příhradového ztužidla, proti tomu je vnesena tuhost v úrovni mostovky neuvolněním vazby krajního podélníku a mostnice. Aby tuhost v úrovni mostovky nebyla moc velká, jsou rotační vazby vnitřních podélníku a mostnic v rovině XY uvolněny. U vazby vnitřních podélníku na příčník jsou uvolněny rotace, tak aby se podélník mohl volně pootáčet v rovině XY a XZ. V případě

horního ztužidla oblouku je uvolněna vazba, která umožňuje pootočení v rovině tečné k obloukům, čímž se zvyšuje namáhání příhradového ztužení.

Obrázek 2.7 Pohled na model bez zobrazených mostnic

Obrázek 2.8 Pohled na vazby modelu

Obrázek 2.9 Pohled na mostovku

Obrázek 2.10 Boční pohled

Obrázek 2.11 Příhradové ztužení v oblastí podepření

Obrázek 2.12 Pohled z mostu

3 STATICKÁ ANALÝZA

3.1 TEORIE STATICKÉ ANALÝZY

Pro lineární statickou analýzu při diskretizaci úlohy mechaniky kontinua metodou konečných prvků, je možné zapsat obecné rovnice rovnováhy dle [2] takto:

$$[K]{u} = {F} \tag{3.1}$$

Po rozepsání:

$$[K]{u} = {F^{a}} + {F^{r}}$$
(3.2)

Kde [K] je matice tuhosti konstrukce, $\{u\}$ je vektor zobecněných posunutí a rotací, $\{F^a\}$ je vektor aplikovaných zatížení a $\{F^r\}$ je zatěžovací vektor reakcí.

Celková matice tuhosti konstrukce se získá sečtením matic jednotlivých konečných prvků:

$$[K] = \sum_{m=1}^{N} [K_e]$$
(3.3)

Kde N je počet prvků a $[K_e]$ jsou matice tuhosti jednotlivých prvků.

Vektor aplikovaných zatížení $\{F^a\}$ jde dále rozepsat:

$$\{F^a\} = \{F^{nd}\} + \{F^{ac}\} + \sum_{i=1}^{N} (\{F_e^{th}\} + \{F_e^{pr}\})$$
(3.4)

Kde $\{F^{nd}\}$ je vektor uzlových zatížení, $\{F^{ac}\}$ je vektor zatížení od zrychlení, $\{F_e^{th}\}$ je vektor zatížení od teplotního zatížení a $\{F_e^{pr}\}$ je vektor zatížení od zadaných tlaků na prvky.

Vektor zatížení od zrychlení $\{F^{ac}\}$ se podle druhého Newtonova zákona vypočte:

$$\{F^{ac}\} = -[M]\{a_c\} \tag{3.5}$$

Kde $\{a_c\}$ je vektor zrychlení a [M] je celková matice hmotnosti konstrukce, která se vypočte součtem matic hmotností jednotlivých prvků:

$$[M] = \sum_{m=1}^{N} [M_e]$$
(3.6)

Kde N je počet prvků a $[M_e]$ jsou matice hmotnosti jednotlivých prvků.

13

3.2 ZATĚŽOVACÍ STAVY

Zatížení na konstrukci bylo určeno podle současně platných norem [3] [4] [5] [6]. Bylo zanedbáno zatížení teplotou a sněhem. Účelem statické analýzy není v rámci této práce zjištění namáhání konstrukce pro posouzení jednotlivých prvků, ale zjištění chování konstrukce. Pozornost je také věnována generování zatížení dopravou.

3.2.1 Vlastní tíha

Zatížení od vlastní tíhy je v modelu zavedeno zrychlením ve směru osy Z hodnotou 9,81m.s⁻². Programový systém ANSYS tato zatížení spočítá automaticky na základě objemových hmotností materiálů, geometrických charakteristik jednotlivých prvků a přídavných hmot. Pro tento zatěžovací stav byly dostupné výsledky reakcí ze softwaru RFEM, ve kterém byly provedeny výpočty projektantem. Pro porovnání uvádím tabulce 3.1 výsledky reakcí.

Dalaha		ANSYS		RFEM			
Polona	$f_X[\mathbf{N}]$	$f_{Y}[\mathbf{N}]$	$f_{Z}[N]$	$f_X[\mathbf{N}]$	$f_{Y}[\mathbf{N}]$	$f_{Z}[N]$	
$x = 27 \mathrm{m}$	0	-2480.6	7762.5	0	0	7586	
<i>x</i> = 21m	-114.12	-5426.8	22384	0	0	22643	
oblouk (rsys 0)	-133370	-15199	103660	-	-	-	
oblouk	-13548	-168940	-6180	-13636	-163580	-9375	

Tabulka 3.1 Porovnání reakcí od vlastní tíhy

3.2.2 Vítr

Pro danou lokalitu byla uvažována kategorie terénu I a větrná oblast II, maximální výška konstrukce nad terénem je 5m. Celkem bylo uvažováno šest zatěžovacích stavů od příčného větru. První je prostý tlak na konstrukci, druhý je se sáním a třetí s tlakem na mostovku. Další tři jsou symetricky zrcadlové, důvodem je symetrizace výsledků u obálek maxim a minim z těchto zatěžovacích stavů. Výpočet zatížení je proveden v následujících tabulkách 3.2 a 3.3.

Základní rychlost větru (10m)	V _{b,0}	=	26.00	ms ⁻¹
Hustota vzduchu	ρ	=	1.25	kg.m ⁻³
Součinitel směru větru	C _{dir}	=	1.00	-
Součinitel ročního období	c _{season}	=	1.00	-
Součinitel orografie	c ₀ (z)	=	1.00	-
Součinitel turbolence	k _I	=	1.00	-
Minimální výška	Z _{min}	=	2.00	m
Parametr drsnosti	Z ₀	=	0.01	m
Parametr drsnosti oblast II	Z _{0,II}	=	0.05	m
Výška	Z	=	5.00	m

Základní rychlost větru	v _b	=	26.00	m.s ⁻¹
Součinitel terénu	k _r	=	0.17	-
Součinitel drsnosti	c _r (z)	=	1.05	-
Střední rychlost větru	v _m (z)	=	27.43	m.s ⁻¹
Turbolence větru	σ	=	4.41	m.s ⁻¹
Intenzita turbolence	Iv	=	0.16	-
Dynamický tlak	$q_p(z)$	=	999.88	N.m ⁻²

Tabulka 3.2 Výpočet zatížení větrem

Tabulka 3.3 Zatížení mostovky a oblouku větrem

MOSTOVKA:							
Šířka	b	=	3	m			
Výška	d _{TOT}	=	2.24	m			
Poměr	b/d _{TOT}	=	1.34	-			
Součinitel síly (obr 8.3)	c _{f,X}	=	2.1	-			
Zatížení ve směru X	q _{w,x}	=	4703.42	N.m ⁻¹			
Součinitel síly (obr 8.6)	$c_{\mathrm{f,Z}}$	=	0.9	-			
Zatížení ve směru Z	q _{w,z}	=	899.89	N.m ⁻²			

OBLOUK:							
Šířka	b	=	0.88	m			
Hloubka	d	=	0.44	m			
Poměr	d/b	=	0.5	-			
Součinitel síly (obr 7.32)	c _f	=	2.32	-			
Zatížení ve směru X	q _{W,X}	=	2041.35	N.m ⁻¹			

Zatížení je v modelu aplikováno jako spojité zatížení na prut. Příčné zatížení mostovky je uvažováno s pásem chodců 1.5 m vysokým. Zadáno je zjednodušeně do osy krajního podélníku. Sání a tlak na mostovku je uvažován v celé šířce, zadán je na mostnice. Hodnota je rozpočítána podle počtu mostnic na metr čtvereční.

Obrázek 3.1 Zatížení větrem

3.2.3 Zatížení dopravou

Zatížení dopravou je pro rozpětí mostu dané normou [6] v hodnotě 5 kN.m⁻². První zatěžovací stav byl uvažován v plném zatížení na celé ploše lávky. Další zatěžovací stavy jsou generovány na základě vlastních tvarů z řešení úlohy lineární stability. Při řešení úlohy lineární stability je hledán takový stav napjatosti konstrukce, při kterém může vzniknout deformace, aniž by bylo přidáno další zatížení [7]. Matematicky je tento problém formulován jako problém vlastních čísel [2] následovně:

$$([K] + \lambda_i [S])\{\psi_i\} = 0$$
 (3.7)

Kde [K] je matice tuhosti konstrukce, [S] je matice napjatosti z předchozího výpočtu statické úlohy, λ_i je vlastní číslo, které vyjadřuje násobitel zatížení z předcházející statické úlohy a $\{\psi_i\}$ je vlastní vektor posunů. Je hledáno netriviální řešení, tedy kdy vektor $\{\psi_i\}$ je nenulový, což je splněno když:

$$det([K] + \lambda_i[S]) = 0 \tag{3.8}$$

Pro řešení je použita bloková Lanczosova metoda s hledáním pouze kladných vlastních čísel. Motivací k tomuto přístupu je snaha vyvolat pokud možno co největší namáhání v místech, kde je konstrukce nejlabilnější ke ztrátě stability. Výchozí napjatost byla uvažována od vlastní tíhy.

Výběr zatížení prvků pro zatížení je proveden tak, že je načten vlastní tvar, přes uzly mostnic je vybrána zvlášť kladná část deformací ve směru posunů u_z a zvlášť záporná. K těmto výběrům jsou vybrány prvky mostnic, tyto výběry pak slouží k zatěžování. Z tohoto postupu plyne, že z každého vlastního tvaru jsou vygenerovány dva zatěžovací stavy. Procedura bude znázorněna na následujícím obrázku 3.2.

Obrázek 3.2 První stabilitní tvar a výběry prvků pro zatížení od dopravy

Bylo zjištěno, že pro vyvození maxim na obloucích a krajních podélnících je dostačující použít prvních pět vlastních tvarů, tedy dohromady jedenáct zatěžovacích stavů. U výpočtu tak jak naprogramován je možné zahrnout až 32 vlastních tvarů. Další stabilitní tvary jsou uvedeny na následujících obrázcích.

Obrázek 3.3 Druhý stabilitní tvar

Obrázek 3.5 Čtvrtý stabilitní tvar

Obrázek 3.6 Pátý stabilitní tvar

3.3 KOMBINACE ZATÍŽENÍ

Pro mezní stav únosnosti (MSÚ) bylo uvažováno podle normy [3] kombinační pravidlo 6.10 a pro mezní stav použitelnosti (MSP) charakteristické kombinační pravidlo 6.14b. Bylo uvažováno s pouze lineární statickou analýzou, která svojí podstatou umožňuje superpozici výsledků. Pro nalezení obálek celkových maxim a minim byly nalezeny zvlášť obálky pro zatěžovací stavy od větru a zvlášť od dopravy. Obálky těchto stavů jsou pak sčítány s příslušným vynásobením součiniteli kombinací, kde celková minima jsou součtem minim a celková maxima součtem maxim. Nevýhodou tohoto přístupu je ztráta informace o tom, která kombinace zatěžovacích stavů toto maximum vyvodila a možnost nahlížet pouze na sčitatelné veličiny výsledků. V následující tabulce 3.4 Jsou uvedeny použité kombinační součinitele.

Me	zní	Stálé za	atížení	Dop	orava	Ví	ítr	
sta	vy	příznivé	nepříznivé	příznivé	nepříznivé	příznivé	nepříznivé	
5	γ _G	1.35 1.00		-		-		
ISI	YQ	-		1.35	0.00	1.50	0.00	
4	ψ_0	-		0.	.40	0.30		
.	γ _G	1.00	1.00	-		-	-	
ASP	YQ	-		1.00	0.00	1.00	0.00	
2	ψ_0	-		0.	.40	0.30		

Tabulka 3.4 Kombinační součinitele

V další tabulce 3.5 jsou uvedeny uvažované kombinace obálek. Respektive pro každou kombinaci jsou zvlášť sečtena minima a maxima.

Číslo kombinace	Stálé zatížení	Vítr	Doprava
1	Р	NP	NP
2	NP	NP	NP
3	Р	Р	NP
4	NP	Р	NP
5	Р	NP	Р
6	NP	NP	Р
7	Р	P*ψ	Р
8	NP	P*ψ	Р
9	Р	Р	P*y
10	NP	Р	P*ψ

Tabulka 3.5 Kombinace obálek

Poznámka:

P = Příznivé; NP = nepříznivé; $P^*\psi = P$ říznivé vedlejší

Celý tento proces včetně definice a výpočtu zatěžovacích stavů je podobně jako tvorba modelu parametrizován, vytvořená makra budou uvedena v elektronické příloze. V následujících obrázcích jsou zobrazeny vybrané výsledky z obou mezních stavů.

Obrázek 3.7 Obálky minim a maxim posunů ve směru uz v MSP

Obrázek 3.8 Globální maxima posunů uz v MSP

Obrázek 3.9 Globální maxima ohybových momentů My na oblouku pro tři stabilitní tvary

Obrázek 3.10 Globální maxima ohybových momentů My na oblouku pro čtyři stabilitní tvary

4 MODÁLNÍ ANALÝZA

Modální analýza slouží k zjištění hlavních charakteristik volného netlumeného kmitání konstrukcí. Využívá se rozložení kmitavého děje do dílčích (modálních) příspěvků. Každý z těchto tvarů je charakterizován vlastní frekvencí a vlastním tvarem kmitu. Na základě této analýzy je dále určováno dynamické zatížení. Výsledky jsou důležité pro určení dynamického chovaní konstrukcí.

4.1 TEORIE MODÁLNÍ ANALÝZY

Volné kmitání netlumených soustav je popsáno pohybovými rovnicemi (rovnice rovnováhy) v maticové formě [2] zapsané:

$$[M]{\ddot{u}} + [K]{u} = 0 \tag{4.1}$$

Kde [M] je matice hmotnosti, [K] je matice tuhosti, $\{u\}$ je vektor posunů a $\{\ddot{u}\}$ je vektor zrychlení. Pro lineární systém se předpokládá harmonicky pohyb:

$$\{u\} = \{\varphi_i\}\cos(\omega_i t) \tag{4.2}$$

Pro zrychlení dvojitým derivováním podle času obdržíme:

$$\{\ddot{u}\} = -\omega_i^2 \{\varphi_i\} \cos(\omega_i t) \tag{4.3}$$

Kde $\{\varphi_i\}$ je vlastní vektor reprezentující vlastní tvar, ω_i je příslušná úhlová frekvence tvaru v $rad \cdot s^{-1}$ a *t* je čas. Po dosazení do rovnice 4.1 a úpravě dostáváme:

$$(-\omega_i^2[M] + [K])\{\varphi_i\} = 0 \tag{4.4}$$

Hledáme netriviální řešení $\{\varphi_i\} \neq \{0\}$, což je z matematického hlediska zobecněný problém vlastních hodnot, řešení je tedy splněno když:

$$\det([K] - \omega_i^2[M]) = 0 \tag{4.5}$$

Vypočtené vlastní úhlové frekvence a jejich příslušné tvary řadíme podle velikosti od nejmenšího po největší. Vlastní úhlovou frekvenci lze převést na vlastní frekvenci [8]:

$$f_i = \frac{\omega_i}{2\pi} \tag{4.6}$$

Kde f_i je vlastní frekvence v Hz.

4.2 VÝPOČET VLASTNÍCH FREKVENCÍ

Pro řešení byla použita bloková Lancozsova metoda. Bylo hledáno prvních 50 vlastních frekvencí a tvarů, které jsou později použity pro řešení harmonické odezvy metodou rozkladu podle vlastních tvarů kmitu. Byly uvažovány dva stavy konstrukce. První s hmotou rovné vlastní hmotě konstrukce a druhý s 25% přídavkem hmoty maximálního zatížení od dopravy. Druhý stav je řešen z důvodu zohlednění přídavku hmoty při pohybu dopravy po lávce během kmitání. Přídavek této hmoty je realizován patřičnou úpravou objemové hmotnosti materiálu mostnic následovně:

$$m_{ADD} = \frac{1}{4} \cdot \frac{F}{g} = \frac{L \cdot b \cdot q}{4 \cdot g} = \frac{54 \cdot 3 \cdot 5000}{4 \cdot 9.81} = 20642.2 \, kg \tag{4.7}$$

Kde m_{ADD} je přidaná hmota, F je celková působící síla, g je gravitační zrychlení, L je délka mostu, b je šířka mostu a q je užitné zatížení od dopravy. Nová objemová hmotnost je pak:

$$\rho_{ADD} = \rho_{MOST} \cdot \frac{m_{MOST} + m_{ADD}}{m_{MOST}} = 764 \cdot \frac{10598.2 + 20642.2}{10598.2} = 2252.04 \ kg \cdot m^{-3} \tag{4.8}$$

Kde ρ_{MOST} je objemová hmotnost mostnic a m_{MOST} je jejich celková hmotnost v modelu (Tabulka 2.2).

V následující tabulce 4.1 je uvedeno prvních 20 vlastních frekvencí pro oba uvažované stavy. Tabulka 4.1 Vlastní frekvence konstrukce

	Frekver	nce [<i>Hz</i>]	v	Frekver	nce [<i>Hz</i>]
Číslo frekvence	Vlastní hmotnost	Vlastní hmotnost a ¼ užitné hmotnosti	Číslo frekvence	Vlastní hmotnost	Vlastní hmotnost a ¼ užitné hmotnosti
1	2.861	2.851	11	14.134	11.849
2	3.278	2.901	12	15.302	12.213
2	4.099	3.250	13	16.570	13.569
4	4.717	4.697	14	16.778	13.831
5	6.252	5.401	15	17.252	15.824
6	8.704	6.893	16	18.360	16.631
7	9.515	8.973	17	19.241	16.861
8	11.875	10.083	18	19.258	17.922
9	11.970	10.407	19	21.487	18.209
10	13.050	11.343	20	22.061	18.782

Na následujících obrázcích je zobrazeno prvních osm vlastních tvarů kmitu varianty bez přidané hmoty. V tomto frekvenčním rozsahu nedochází k přeskakování jednotlivých tvarů u obou vypočtených stavů. Tvary jsou až na poměr výchylek mostovkové části podobné.

Obrázek 4.1 První tvar kmitu

Obrázek 4.3 Třetí tvar kmitu

Obrázek 4.5 Páty tvar kmitu

Obrázek 4.7 Sedmý tvar kmitu

Obrázek 4.2 Druhý tvar kmitu

Obrázek 4.4 Čtvrtý tvar kmitu

Obrázek 4.6 Šestý tvar kmitu

Obrázek 4.8 Osmý tvar kmitu

5 HARMONICKÁ ANALÝZA

Harmonická analýza konstrukce slouží k výpočtu ustálené odezvy konstrukce na harmonické buzení. Tato analýza umožňuje posouzení navrhovaných konstrukcí při cyklickém zatížení a to jak z hlediska určení přípustného kmitání z hlediska použitelnosti konstrukce, tak pro ověření odolnosti z hlediska únavových namáhání, která při tomto uvažovaném charakteru zatížení vznikají [2] [8].

5.1 TEORIE HARMONICKÉ ANALÝZY

Pohybová rovnice pro řešení harmonické odezvy konstrukce má tento tvar:

$$[M]{\ddot{u}} + [C]{\dot{u}} + [K]{u} = {F^a}$$
(5.1)

Kde [M], { \ddot{u} }, [K], {u} byly již definovány dříve. [C] je matice tlumení, { \dot{u} } je vektor uzlových rychlostí a { F^a } je vektor zatížení.

Při ustálené odezvě harmonicky zatížené konstrukce kmitají všechny její body stejnou frekvencí. Tato frekvence odpovídá frekvenci zatížení. Obecně tyto body kmitají s rozdílnou fází. Tento jev se nazývá fázový posun a je způsoben tlumením konstrukce.

Vektor uzlových posunů je definován ve tvaru:

$$\{u\} = \{u_{max}e^{i\varphi}\}e^{i\Omega t} \tag{5.2}$$

Kde u_{max} je amplituda posunů, φ je fázový posun, Ω je úhlová frekvence zatížení, t je čas a $i = \sqrt{-1}$. Amplituda a fázový posun jsou v tomto případě neznámé. Pomocí Eulerova vztahu lze vztah přepsat do tvaru:

$$\{u\} = \{u_{max}(\cos\varphi + i\sin\varphi)\}e^{i\Omega t}$$
(5.3)

Výhodnější je přejít do tvaru vyjádřeném v reálné a imaginární složce posunů:

$$\{u\} = \{\{u_1\} + i\{u_2\}\}e^{i\Omega t}$$
(5.4)

Kde $\{u_1\}$ je vektor reálných posunů a $\{u_2\}$ je vektor imaginárních posunů. Amplituda je poté dána vztahem:

$$u_{max} = \sqrt{u_1^2 + u_2^2} \tag{5.5}$$

24

Fázový posun:

$$\varphi = \tan^{-1} \frac{u_2}{u_1} \tag{5.6}$$

Pro zatěžovací vektor lze postupovat obdobně jako u vektoru posunů:

$$\{F\} = \{F_{max}e^{i\psi}\}e^{i\Omega t} \tag{5.7}$$

$$\{F\} = \{F_{max}(\cos\psi + i\sin\psi)\}e^{i\Omega t}$$
(5.8)

$$\{F\} = \{\{F_1\} + i\{F_2\}\}e^{i\Omega t}$$
(5.9)

Kde F_{max} je amplituda sil, $\{F_1\}$ je vektor reálných sil, $\{F_2\}$ je vektor imaginárních sil a ψ je fázový posun sil.

Derivací vztahu (5.4) podle času, zpětným dosazením do rovnice (5.1) a zkrácením členu $e^{i\Omega t}$ získáváme [2] [8]:

$$([K] - \Omega^2[M] + i\Omega[C])\{\{u_1\} + i\{u_2\}\} = \{\{F_1\} + i\{F_2\}\}$$
(5.10)

Pro harmonickou analýzu modelu konstrukce byla zvolena výpočetní metoda rozkladu do vlastních tvarů kmitu. Tlumení konstrukce bylo zavedeno konstantním poměrným útlumem, který je pro dřevěné konstrukce uvažován v rozsahu 0.01-0.02 [5]. Byla uvažována hodnota 0.02.

5.2 ODTRHÁVÁNÍ VÍRŮ

Při obtékání některých těles (profilů) se vytvářejí víry, které se za vhodných podmínek oddělují střídavě na obou stranách, takže vzniklá periodická příčná síla má snahu těleso rozkmitat v rovině kolmé ke směru větru. Jev pozoroval a popsal koncem 19. století na napjatých strunách Čeněk Strouhal, počátkem 20. století jej pro případ obtékání válce odvodil Theodor von Karmán [9].

Pokud k tomuto jevu dochází při frekvenci blízké vlastní frekvenci konstrukce, vzniká rezonance a tudíž velký nárůst výchylek. Z tohoto důvodu je nutné konstrukce při takovýchto zatíženích analyzovat a zaručit jejich spolehlivou funkci.

Současně platný eurokód pro zatížení větrem [5] přistupuje k řešení problematiky metodou náhradních setrvačných sil, které po jejich výpočtu lze na model aplikovat jako

statická zatížení a tím získat výchylky a namáhání při kmitání. Při testování této metody na modelech spojitých nosníku a jednoduchých rámů bylo dosaženo shody ve výpočtu maximálních výchylek dle přílohy E.1 [5] a výsledkům z modelů v rozmezí ±0.3%. Problémy nastaly při pokusu aplikovat tuto metodu na model oblouku, kdy se hodnoty výchylek lišily až o 15%. Z důvodů nejistot vzniklých na základě tohoto testování a nedostatečných informací ze strany normy bylo od této metody ustoupeno. Místo této metody byl zvolen přístup ze starší normy ČSN 73 0035 [10] v kombinaci s předběžnou normou [11] a platnou normou [5].

5.2.1 Výpočet účinků od odtrháváním vírů

Bylo uvažováno zatížení odtrháváním vírů na oblouky a mostovku konstrukce, kde u mostovky bylo počítáno s variantou neprodyšného a prodyšného zábradlí. Kritická rychlost větru, při které je frekvence odtrhávání vírů stejná jako vlastní frekvence konstrukce se vypočte:

$$v_{crit,i} = \frac{b \cdot n_{i,y}}{St} \tag{5.11}$$

Kde $v_{crit,i}$ je kritická rychlost *b* je referenční šířka průřezu, $n_{i,y}$ je vlastní frekvence při ohybovém kmitání kolmo ke směru větru a *St* je Strouhalovo číslo. Pro mostovku bylo Strouhalovo číslo převzato z tabulky C.1 [11] v hodnotě 0.154. Pro profil oblouku bylo Strouhalovo číslo určeno z obrázku E.1 [5] v hodnotě 0.12.

Náhradní dynamické zatížení při rezonančním kmitání bylo uvažováno dle [10] :

$$w_i = \frac{v_{crit,i}^2}{1,6} \cdot c_{lat} \cdot b \tag{5.12}$$

Kde číslo 1,6 vychází z dosazení hustoty vzduchu (1,25 kg.m⁻³) do vzorce pro budící zatížení [9] :

$$w_{lat} = \frac{1}{2}\rho \cdot v_{crit}^{2} \cdot c_{lat} = \frac{1}{2} \cdot 1,25 \cdot v_{crit}^{2} \cdot c_{lat} = \frac{v_{crit}^{2}}{1,6} \cdot c_{lat}$$
(5.13)

Kde c_{lat} je součinitel aerodynamické budící síly, jehož výpočet je uveden v tabulkách C.1 a C.2 normy [11]. Tabulka C.2 má s sobě zahrnuto i to, že výpočet vírové rezonance se dle norem [5] [11] nemusí uvažovat když je splněna podmínka :

$$v_{crit,i} > 1.25 \cdot v_{m,Lj}$$
 (5.14)

Kde $v_{m,Lj}$ je střední rychlost větru ve výšce středu efektivní korelační délky. Tato rychlost byla uvažována dle výpočtu zatížení větrem v kapitole 3.2.2 hodnotou 27.43 m.s⁻¹. Korelační délka byla uvažována hodnotou šesti šířek profilu. Výsledná budící síla, která se umisťuje do kmiten jednotlivých tvarů je dána:

$$F_i = w_i \cdot 6 \cdot b \tag{5.15}$$

Výpočet zatížení pro model bez přidané hmoty je uveden v následujících tabulkách.

i	<i>f</i> _{<i>i</i>} [H z]	<i>b</i> [m]	<i>d</i> [m]	<i>St</i> [-]	v _{CRIT} [m.s ⁻¹]	<i>v_M</i> [m.s ⁻¹]	с _{LAT,0} [-]	с _{LAT} [-]	<i>w_i</i> [N.m ⁻¹]	<i>F</i> _i [N]
1	2.861	1.840	3.000	0.154	34.178	27 420	0.196	0.002	2.496	27.55
2	3.278	1.840	3.000	0.154	39.165	21.429	0.196	0.000	0.000	0.00

Tabulka 5.1 Výpočet zatížení pro mostovku bez přidané hmoty ve variantě s neprodyšným zábradlím

;	f_i	b	d	St	V _{CRIT}	v _M	C _{LAT,0}	c _{LAT}	w _i	F_i
I	[Hz]	[m]	[m]	[-]	[m.s ⁻¹]	[m.s ⁻¹]	[-]	[-]	[N.m ⁻¹]	[N]
1	2.861	0.740	3.000	0.154	13.745		0.486	0.486	42.511	188.75
2	3.278	0.740	3.000	0.154	15.751		0.486	0.486	55.821	247.85
3	4.099	0.740	3.000	0.154	19.694	27 420	0.486	0.486	87.268	387.47
4	4.717	0.740	3.000	0.154	22.667	27.429	0.486	0.486	115.606	513.29
5	6.252	0.740	3.000	0.154	30.041		0.486	0.181	75.428	334.90
6	8.704	0.740	3.000	0.154	41.825		0.486	0.000	0.000	0.00

Tabulka 5.2 Výpočet zatížení pro mostovku bez přidané hmoty ve variantě s prodyšným zábradlím

Tabulka 5.3 Výpočet zatížení pro oblouk bez přidané hmoty

i	f_i	b	d	St	<i>v_{CRIT}</i>	v _M	C _{LAT,0}	<i>c</i> _{LAT}	w _i	F _i
	[Hz]	[m]	[m]	[•]	[m.s ⁻¹]	[m.s ⁻¹]	[•]	[•]	[N.m ⁻¹]	[N]
1	2.861	0.880	0.440	0.120	20.977		1.100	1.100	266.230	1405.69
2	3.278	0.880	0.440	0.120	24.038	27 420	1.100	0.986	313.480	1655.17
3	4.099	0.880	0.440	0.120	30.056	27.429	1.100	0.407	202.313	1068.21
4	4.717	0.880	0.440	0.120	34.593		1.100	0.000	0.000	0.00

Jak je z výsledků patrné, varianta s neprodyšným zábradlím se ve výpočtu neuplatní z důvodu vysoké kritické rychlosti. První a třetí tvar (Obrázek 4.1 a Obrázek 4.3) nejsou ohybové, tudíž ve výpočtu nebyly uvažovány. Zelené řádky v tabulkách představují řešené

stavy buzení. Pro variantu bez přidané hmoty jsou uvažovány čtyři zatěžovací stavy, které jsou označeny postupně ZS1a, ZS2a, ZS3a, ZS4a. Pro zatěžovací stav ZS2a, který je pro kroutivý tvar kmitu (Obrázek 4.4), je zatěžovací síla pro jednu kmitnu rozdělena do dvou polovičních protisměrných. Zatížení na model a výsledky amplitud zrychlení ve směru Z při rezonanci jednotlivých zatížení jsou uvedeny na následujících obrázcích.

Obrázek 5.1 Zatížení a amplitudy zrychlení při rezonanci ve směru Z pro ZS1a

Obrázek 5.2 Zatížení a amplitudy zrychlení při rezonanci ve směru Z pro ZS2a

Obrázek 5.3 Zatížení a amplitudy zrychlení při rezonanci ve směru Z pro ZS3a

Obrázek 5.4 Zatížení a amplitudy zrychlení při rezonanci ve směru Z pro ZS4a

Výpočet zatížení pro model s přidanou hmotou je uveden v následujících tabulkách, varianta s neprodyšným zábradlím je vynechána z důvodu velkých kritických rychlostí.

:	f_i	b	d	St	V _{CRIT}	V _M	C _{LAT,0}	c _{LAT}	Wi	F_i
1	[Hz]	[m]	[m]	[-]	[m.s ⁻¹]	[m.s ⁻¹]	[-]	[-]	[N.m ⁻¹]	[N]
1	2.851	0.740	3.000	0.154	13.699		0.486	0.486	42.224	187.47
2	2.901	0.740	3.000	0.154	13.939		0.486	0.486	43.715	194.10
3	3.250	0.740	3.000	0.154	15.617		0.486	0.486	54.874	243.64
4	4.697	0.740	3.000	0.154	22.571	27.429	0.486	0.486	114.626	508.94
5	5.401	0.740	3.000	0.154	25.954		0.486	0.355	110.501	490.62
6	6.893	0.740	3.000	0.154	33.123		0.486	0.050	25.133	111.59
7	8.973	0.740	3.000	0.154	43.116		0.486	0.000	0.000	0.00

Tabulka 5.4 Výpočet zatížení pro mostovku s přidanou hmotou ve variantě s prodyšným zábradlím

Tabulka 5.5 Výpočet zatížení pro oblouk s přidanou hmotou

i	f_i	b	d	St	V _{CRIT}	v _M	c _{LAT,0}	c _{LAT}	Wi	F _i
1	[Hz]	[m]	[m]	[-]	[m.s ⁻¹]	[m.s ⁻¹]	[-]	[-]	[N.m ⁻¹]	[N]
1	2.851	0.880	0.440	0.120	20.906		1.100	1.100	264.432	1396.20
2	2.901	0.880	0.440	0.120	21.272	27 420	1.100	1.100	273.770	1445.51
3	3.250	0.880	0.440	0.120	23.833	27.429	1.100	1.006	314.319	1659.60
4	4.697	0.880	0.440	0.120	34.446		1.100	0.000	0.000	0.00

Pro variantu s přidanou hmotou jsou uvažovány čtyři zatěžovací stavy, které jsou označeny postupně ZS1b, ZS2b, ZS3b, ZS4b. Vyobrazení těchto stavů nebude provedeno z důvodu téměř identického charakteru. Výsledky amplitud posunů, rychlostí a zrychlení na úrovni mostovky budou ze všech stavů shrnuty v následující tabulce.

Stov	Frekvence	Po	suny [mr	n]	Ryc	hlosti [m	.s ⁻¹]	Zrychlení [m.s ⁻²]		
Slav	[Hz]	u_x	u_y	<i>u</i> _z	v_x	v_y	v _z	a_x	a_y	a_z
ZS1a	3.277	0.075	0.001	1.069	0.002	0.000	0.022	0.032	0.000	0.453
ZS1b	2.900	0.059	0.001	0.840	0.001	0.000	0.015	0.020	0.000	0.279
ZS2a	4.716	0.003	0.029	0.061	0.000	0.001	0.002	0.003	0.025	0.053
ZS2b	4.696	0.003	0.038	0.065	0.000	0.001	0.002	0.003	0.033	0.057
ZS3a	6.251	0.024	0.001	0.450	0.001	0.000	0.018	0.037	0.002	0.694
ZS3b	5.400	0.035	0.002	0.668	0.001	0.000	0.023	0.040	0.002	0.769
ZS4a	3.277	1.162	0.011	16.524	0.024	0.000	0.340	0.493	0.005	7.006
ZS4b	2.900	1.014	0.014	14.457	0.018	0.000	0.263	0.337	0.005	4.801

T = 1 = 11 = C = C = 1 = 11	1. 1	0	11 1/	11 /		Y 1/1 / / /	/ 0
Tabulka 5 6 Vysledk	vamplifud	nosiinii r	vchlosti a zr	vchleni na	mostovce n	ri odfrhavani	VITI
rubulka 5.0 v ysteak	y ampinua	posuna, r	yemosu a Zi	y child ind	mostovec p.	11 Ouuna vam	VIIU

Z pohledu normy [3] je pro komfort přechodu chodci dán limit maximálního svislého zrychlení 0.7 m.s⁻². Jak je z předchozí tabulky vidět, tak zatěžovací stav ZS3a a ZS3b se pohybují velmi blízko této hranice. Je však nutno podotknout, že rychlost větru pro vznik rezonančního kmitání je pro tyto případy 93.43 km.h⁻¹ a 108.14 km.h⁻¹. Při těchto rychlostech větru bude pravděpodobně chůze nebo jakýkoliv pobyt na otevřeném prostranství velice obtížný.

Pro zatěžovací stavy ZS4a a ZS4b je překročen hygienický limit kmitání, který je dán nařízením vlády 272/2011 [12], tento limit je 3.55 m.s⁻². Tuto situaci lze považovat za nevyhovující. Pro zatěžovací stav ZS4a jde téměř o dvounásobné překročení. Opět je však nutné podotknout, že se jedná o rychlosti 76.58 km.h⁻¹ a 86.54 km.h⁻¹.

Norma [5] v dodatku E.1 uvádí vzorec pro výpočet počtu zatěžovacích cyklů od odtrhávání vírů:

$$N = 2 \cdot T \cdot n_y \cdot \varepsilon_0 \cdot \left(\frac{v_{crit}}{v_0}\right)^2 \cdot e^{-\left(\frac{v_{crit}}{v_0}\right)^2}$$
(5.16)

Kde *T* je životnost konstrukce v sekundách (100 let = $3,16 \cdot 10^9 s$), n_y je frekvence při odtrhávání vírů, ε_0 je součinitel šířky pásma rychlostí větru při kmitání způsobené odtrháváním vírů (0.3-) a v_0 je $\sqrt{2}$ násobek módu rozdělení rychlosti větru aproximovaný pomocí střední rychlostí $v_0 = \frac{v_m}{5}$. Na základě toho výpočtu bude v následující tabulce určen počet cyklů zatížení, který poslouží k výběru zatěžovacího stavu pro posouzení na únavu v kapitole 6.

Stay	Frekvence	V _{CRIT}	V _M	v ₀	Počet
Slav	[Hz]	[m.s ⁻¹]	[m.s ⁻¹]	[m.s ⁻¹]	cyklů
ZS1a	3.277	15.751			1.345E+07
ZS1b	2.900	13.939			5.570E+07
ZS2a	4.716	22.667			5.867E+03
ZS2b	4.696	22.571	27.420	5 496	6.695E+03
ZS3a	6.251	30.041	27.429	5.486	3.362E-02
ZS3b	5.400	25.954			4.352E+01
ZS4a	3.277	24.038			5.462E+02
ZS4b	2.900	21.272			2.435E+04

Tabulka 5.7 Počet cyklů zatížení od odtrhávání vírů

Z těchto výsledků lze usoudit, že konstrukce za svou životnost bude na účinky ze stavů ZS2 až ZS4 vystavena za svou životnost v podstatě výjimečně. Pro posouzení na únavu byl zvolen zatěžovací stavy ZS1b pro největší počet cyklů.

5.3 POHYB CHODCŮ

V současně platném eurokódu není dynamické zatížení chodci přesně specifikováno. Při průzkumu alternativního přístupu dynamického zatížení chodci bylo dle [13] zjištěno, že redukční součinitele pro svislé a příčné zatížení chodci je dle následujícího obrázku:

Obrázek 5.5 Redukční součinitele pro příčné a svislé zatížení chodci [13]

Při úvaze vypočteného frekvenčního spektra (Tabulka 4.1), bylo od výpočtu účinků zatížení chodci ustoupeno, neboť redukční součinitel dle [13] je v případě analyzovaného modelu nulový pro svislé i příčné zatížení.

5.4 POHYB KONÍ

Jelikož se konstrukce má nacházet poblíž dostihového závodiště v obci Šamorín, bylo nutné vzít v úvahu možnost přechodu koní přes lávku. Nebyla nalezena žádná platná norma, která by problematiku přechodu koně či skupiny koní řešila. Z tohoto důvodu bylo přistoupeno k alternativě řešení zatížení převzetím výsledků studie [14].

Obrázek 5.6 Naměřené hodnoty sil přenášené na podložku při chůzi(A), cvalu (B) a běhu (C) [14]

Z grafu A je patrné, že průběh zatížení jde převést v úseku a-b na statické zatížení o hodnotě 2,5 kN a výkmity lze přibližně popsat funkcí sinus s amplitudou 0,5 kN. Pro graf B a C je možno postupovat obdobně, kde statické zatížení odpovídá střední hodnotě přibližně 3 kN a výkmit je možné popsat sinovou vlnou s amplitudy 3 kN. Z těchto hodnot je tedy možné určit náhradní harmonické zatížení pro chůzi koně jako:

$$F_A = 500 \cdot \sin(2\pi \cdot f \cdot t) \tag{5.17}$$

Kde f je frekvence chůze koně a t je čas. Pro zatížení při cvalu či běhu pak analogicky:

$$F_{BC} = 3000 \cdot \sin(2\pi \cdot f \cdot t) \tag{5.18}$$

Frekvenci lze z grafu určit v rozmezí 2-4 Hz. Z těchto závěrů plyne, že zatížení bude použito na druhý vlastní tvar kmitu (Obrázek 4.2) v místě maximální výchylky. Je nutno podotknout, že tento přístup je velice konzervativní, neboť kůň se bude po lávce pohybovat a nebude stát na jednom místě a poskakovat. Skupina koní nebude řešena, jelikož nelze očekávat takové rozmístění a příslušnou souhru tak, aby příslušně konstrukci budily. Zatížení bude uplatněno na model bez přidané hmoty, protože nejde předpokládat současný pohyb koní a lidí zároveň. Stav pro zatížení při chůzi koně bude dále označován jako ZS5a a pro cval a běh ZS5b. Výsledky přechodu koní budou zpracovány obdobně jako pro odtrhávání vírů.

Obrázek 5.7 Zatížení a amplitudy zrychlení při rezonanci ve směru Z pro ZS5a

Obrázek 5.8 Zatížení a amplitudy zrychlení při rezonanci ve směru Z pro ZS5a

Stav	Frekvence	Posuny [mm]			Ryc	hlosti [m	.s ⁻¹]	Zrychlení [m.s ⁻²]		
	[Hz]	u_x	u_y	<i>u</i> _z	v_x	v_y	<i>v</i> _z	a_x	a_y	a_z
ZS5a	3.277	0.076	0.001	1.077	0.002	0.000	0.022	0.032	0.000	0.457
ZS5b	3.277	0.455	0.004	6.465	0.009	0.000	0.133	0.193	0.002	2.741

Tabulka 5.8 Výsledky amplitud posunů, rychlostí a zrychlení na mostovce při přechodu koně

Jak je z výsledků vidět, oba stavy vyhovují na limitní zrychlení z hlediska nařízení vlády [12], které udává limit 3.55 m.s⁻². Z pohledu normy [3] je překročen u stavu ZS5b limit zrychlení ve svislém směru, který má hodnotu 0.7 m.s⁻². Jak bylo uvedeno již dříve, nepředpokládá se společný pohyb lidí a koní po lávce zároveň, navíc ke špičkovým zrychlením nedochází v celé ploše lávky.

6 POSOUZENÍ NA ÚNAVU

Z hlediska únavy bývá pro konstrukce rozhodující únavové namáhání dílčích částí spojů, pro které platí přísnější omezení rozkmitů napětí. Jelikož provedení spojů nebylo ve výkresové dokumentaci blíže specifikováno, bylo rozhodnuto, že budou posouzeny pouze hlavní nosné prvky konstrukce. Pro posouzení byl vybrán zatěžovací stav ZS1b s počtem cyklů při odtrhávání vírů 5.57·10⁸.

6.1 OCELOVÉ PRVKY

Posouzení je provedeno podle normy ČSN EN 1993-1-9 [15]. Z ocelových prvků je nejvíce namáháno dolní ztužidlo oblouku. Předpokládá se konstantní amplituda rozkmitu. Kategorie detailu 160 s únavovou pevností při daném počtu cyklů:

 $\Delta \sigma_{c} = \left(\frac{2}{5}\right)^{1/3} \Delta \sigma_{c} = 0.737 \cdot 160 = 117.89 MPa$ $\Delta \sigma = 6.2 MPa$ $\lambda_{i} = 1.0$ $\gamma_{Ff} = 1.0$ $\gamma_{Mf} = 1.35$ $\Delta \sigma_{E2} = \lambda_{1} \lambda_{2} \lambda_{3} \dots \lambda_{i}$ $\Delta \sigma_{E2} = 1.0 \cdot \Delta \sigma = 6.2 MPa$ $\frac{\gamma_{Ff} \cdot \Delta \sigma_{E2}}{\Delta \sigma_{c} / \gamma_{Mf}} \leq 1.0$ $\frac{1.0 \cdot 6.2}{117.89 / 1.35} = 0.071$

6.2 DŘEVĚNÉ PRVKY

Posouzení je provedeno podle normy ČSN EN 1995-2 [16]. Z prvků materiálu GL28c je nejvíce namáhán krajní podélník mostovky v oblasti neposuvné podpory. Norma uvádí vztah, podle kterého lze účinky únavového namáhání zanedbat pro prvky namáhané ohybem nebo tahem:

 $\kappa \leq 0.2$

$$\kappa = \frac{\left|\sigma_{d,max} - \sigma_{d,min}\right|}{\frac{f_k}{\gamma_{M,fat}}}$$
$$\left|\sigma_{d,max} - \sigma_{d,min}\right| = 0.237 MPa$$
$$f_k = f_{m,k} = 28 MPa$$
$$\gamma_{M,fat} = 1.0$$
$$\kappa = \frac{0.237}{\frac{28}{1.0}} = 0.008 \le 0.2$$

Prvek není nutné posuzovat na únavu.

Analogický postup platí pro posouzení vnitřních podélníků z materiálu GL24h:

$$|\sigma_{d,max} - \sigma_{d,min}| = 0.134 MPa$$

 $f_k = f_{m,k} = 24 MPa$
 $\kappa = \frac{0.134}{\frac{24}{1.0}} = 0.004 \le 0.2$

Prvek není nutné posuzovat na únavu.

Ve zvoleném zatěžovací stavu konstrukce vyhovuje z hlediska únavy materiálů.

7 ZÁVĚR

Cílem práce bylo stanovit dynamickou odezvu konstrukce dřevěné obloukové lávky na zatížení od působení větru, chodců a koní. Pro určení této odezvy byla zvolena harmonická analýza. Z výsledků této analýzy byla konstrukce posouzena z pohledu komfortu a hygienických předpisů při užívání chodci. Pro vybraný stav z této analýzy byla konstrukce posouzena na únavu dle platných norem.

Na základě výkresové dokumentace objektu byl sestaven prutový numerický model s využitím metody konečných prvků. Model byl sestaven v programovém systému ANSYS verze 15. Při tvorbě modelu bylo přistoupeno k parametrizaci řešení dílčích úloh včetně tvorby geometrie. Celkem bylo sepsáno 1700 řádek kódu včetně hrubé dokumentace jednotlivých skupin příkazů. Tato makra byla rozdělena na hlavní a zásuvné. Hlavní makra řeší jednotlivé analýzy, zásuvná makra nejsou samostatně funkční, plní funkci podprogramů, jsou tedy volána a nastavována prostřednictvím hlavních maker. Všechna vytvořená makra jsou k dispozici v elektronické příloze.

V práci byla řešena statická analýza. Velká pozornost byla věnována využití generování zatížení od dopravy prostřednictvím výsledků stabilitní analýzy. Tento přístup byl zvolen na základě myšlenky zatížit extrémně konstrukci v místech vykazující nejmenší stabilitu. Byly spočteny obálky výsledků pro mezní stav použitelnosti a mezní stav únosnosti. Posouzení konstrukce na mezní stavy nebylo předmětem práce.

Práce se dále zabývá zjištěním hlavních dynamických charakteristik modelu. Pomocí modální analýzy bylo spočteno 20 vlastních tvarů kmitu a frekvencí. Byly uvažovány dvě varianty, jedna s vlastní hmotou konstrukce a druhá s přídavkem 25% hmoty od užitného zatížení. Důvodem druhé varianty bylo zjištění odezvy konstrukce při přitížení od dopravy. Vypočtené frekvence byly pro první variantu od 2.861 Hz do 22.061 Hz. Pro druhou variantu byly vypočtené frekvence v rozsahu od 2.851 Hz do 18.782 Hz.

Harmonickou analýzou byla zjištěna ustálená odezva modelu na účinky zatížení od odtrhávání vírů. Odezva byla řešena metodou rozkladu vlastních tvarů kmitu, přičemž bylo počítáno s 50 vlastními tvary kmitu. Tlumení bylo uvažováno zjednodušeně konstantním poměrným útlumem, který pro dřevěné konstrukce odpovídá hodnotě 0.02. Na základě výsledků modální analýzy bylo odstoupeno od řešení odezvy od dynamického zatížení chodci. Z dostupných informací byl převzat dynamický model zatížení koněm. Z výsledků

analýz bylo zjištěno, že konstrukce v mnoha případech překračuje limity pro komfort chodců. V extrémních případech konstrukce nevyhovuje ani z hlediska hygienických požadavků. Maximální svislé zrychlení v úrovni mostovky bylo 7.006 m.s⁻², toto zrychlení překračuje hygienický limit, který je 3.55 m.s⁻². Je však nutné podotknout, že tento jev teoreticky nastává při rychlosti větru 86.54 km.h⁻¹, navíc se jedná o stav s celkovým počtem 546 cyklů za životnost 100 let. Při frekvenci kmitání 3,277 Hz tento jev během 100 let trvá pouze 167 sekund. Konstrukce vyhověla z hlediska platných norem pro dřevěné a ocelové konstrukce na únavu od zatížení odtrháváním vírů ve stavu s největším počtem cyklů za životnost.

Za nejnáročnější, ale zároveň nejzajímavější díl práce, považuji vytvoření maker, která řeší jednotlivé úlohy. Tento způsob zpracování by nebyl možný bez rozsáhlé a skvěle vytvořené dokumentace, kterou programový systém ANSYS obsahuje.

8 POUŽITÁ LITERATURA

[1] Projektová dokumentace

[2] Dokumentace k programu ANSYS Release 12.1

[3] Eurokód 0 : Zásady navrhování konstrukcí, ČSN EN 1990 ed.2, únor 2011

[4] Eurokód 1: Zatížení konstrukci. Část 1-1: Obecná zatížení - Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb, ČSN EN 1991-1-1, březen 2004

[5] Eurokód 1: Zatížení konstrukci. Část 1-4: Obecná zatížení - Zatížení větrem, ČSN EN 1991-1-1 ed.2, duben 2013

[6] Eurokód 1: Zatížení konstrukci. Část 2: Zatížení mostů dopravou, ČSN EN 1991-1-1, červenec 2005

[7] Doc. Ing. Ivan Němec, CSc.: *Nelineární mechanika – Modul 0D7 – M01*, VUT Brno,
 FAST, Ústav stavební mechaniky, studijní opora, Brno 2006

[8] Doc. Ing. Vlastislav Salajka, CSc.: *Dynamika stavebních konstrukcí*. Přednáškový materiál pro kurz Stavební dynamika. Nebylo oficiálně vydáno

[9] PIRNER, Miroš a Ondřej FISCHER. Zatížení staveb větrem. 1. vyd. Praha: Informační centrum ČKAIT, 2003, 256 s. ISBN 80-86769-10-0

[10] ČSN 73 0035. Zatížení stavebních konstrukcí. Praha: Vydavatelství úřadu pronormalizaci a měření, 1986

[11] Eurokód 1: Zásady navrhování a zatížení konstrukcí - Část 2-4: Zatížení konstrukcí - Zatížení větrem, ČSN P ENV 1991-2-4, srpen 1997

[12] Nařízení vlády: *o ochraně zdraví před nepříznivými účinky hluku a vibrací*. In: Sbírka zákonů č. 272/2011. 2011. Dostupné z: portal.gov.cz/app/zakony/zakon?q=272/2011

[13] SÉTRA. *Footbridges: Assessment of vibrational behaviour of footbridges underpedestrian loading.* Sétra. France, 2006. Dostupné z: www.setra.equipement.gouv.fr

[14] T. H. Witte, K. Knill and A. M. Wilson: *Determination of peak vertical ground reaction force from duty factor in the horse (Equus caballus)*, The Journal of Experimental Biology 207, 3639-3648, červenec 2004, Dostupné z:

http://jeb.biologists.org/content/jexbio/207/21/3639.full.pdf

[15] Eurokód 3: Navrhování ocelových konstrukcí. Část 1-9: Únava, ČSN EN 1993-1-9, září 2006

[16] Eurokód 5: Navrhování dřevěných konstrukcí. Část 2: Mosty, ČSN EN 1995-2, prosinec
2006

SEZNAM TABULEK

Tabulka 2.1 Materiálové charakteristiky
Tabulka 2.2 Přiřazení prvků k profilům a materiálům8
Tabulka 2.3 Rotační uvolnění vazeb9
Tabulka 3.1 Porovnání reakcí od vlastní tíhy14
Tabulka 3.2 Výpočet zatížení větrem15
Tabulka 3.3 Zatížení mostovky a oblouku větrem15
Tabulka 3.4 Kombinační součinitele19
Tabulka 3.5 Kombinace obálek19
Tabulka 4.1 Vlastní frekvence konstrukce 22
Tabulka 5.1 Výpočet zatížení pro mostovku bez přidané hmoty ve variantě s neprodyšným zábradlím
Tabulka 5.2 Výpočet zatížení pro mostovku bez přidané hmoty ve variantě s prodyšným zábradlím
Tabulka 5.3 Výpočet zatížení pro oblouk bez přidané hmoty27
Tabulka 5.4 Výpočet zatížení pro mostovku s přidanou hmotou ve variantě s prodyšným zábradlím
Tabulka 5.5 Výpočet zatížení pro oblouk s přidanou hmotou
Tabulka 5.6 Výsledky amplitud posunů, rychlostí a zrychlení na mostovce při odtrhávání vírů
Tabulka 5.7 Počet cyklů zatížení od odtrhávání vírů
Tabulka 5.8 Výsledky amplitud posunů, rychlostí a zrychlení na mostovce při přechodu koně

SEZNAM OBRÁZKŮ

Obrázek 2.1 Půdorys a pohled na lávku [1]4
Obrázek 2.2 Příčný řez lávkou [1]4
Obrázek 2.3 Uspořádání prvků mostovky5
Obrázek 2.4 BEAM188 [2] 6
Obrázek 2.5 LINK180 [2]6
Obrázek 2.6 BEAM44 [2]7
Obrázek 2.7 Pohled na model bez zobrazených mostnic10
Obrázek 2.8 Pohled na vazby modelu10
Obrázek 2.9 Pohled na mostovku11
Obrázek 2.10 Boční pohled11
Obrázek 2.11 Příhradové ztužení v oblastí podepření12
Obrázek 2.12 Pohled z mostu12
Obrázek 3.1 Zatížení větrem
Obrázek 3.2 První stabilitní tvar a výběry prvků pro zatížení od dopravy 17
Obrázek 3.3 Druhý stabilitní tvar18
Obrázek 3.4 Třetí stabilitní tvar
Obrázek 3.5 Čtvrtý stabilitní tvar
Obrázek 3.6 Pátý stabilitní tvar
Obrázek 3.7 Obálky minim a maxim posunů ve směru uz vMSP 19
Obrázek 3.8 Globální maxima posunů u _z v MSP 20
Obrázek 3.9 Globální maxima ohybových momentů M _Y na oblouku pro tři stabilitní tvary 20
Obrázek 3.10 Globální maxima ohybových momentů M _Y na oblouku pro čtyři stabilitní tvary
Obrázek 4.1 První tvar kmitu
Obrázek 4.2 Druhý tvar kmitu
Obrázek 4.3 Třetí tvar kmitu
Obrázek 4.4 Čtvrtý tvar kmitu

SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ

a_{x}, a_{y}, a_{z}	složky zrychlení
u_{x}, u_{y}, u_{z}	složky posunů
V_{xy} , V_{yy} , V_{z}	složky rychlostí
$rot_{x}, rot_{y}, rot_{z}$	složky rotací
f_{xx}, f_{yy}, f_z	složky reakcí
	vektor zrychlení
h h	číška
	suičinitel směru větru
C _{dir}	součinitel dranosti
C _r	
Cseason	
c ₀	
Cj	
$C_{f,x}$	souchinter sny ve smeru x
$C_{f,z}$	soucimitel silv ve smeru z
Clat	
a	
a _{TOT}	vyska mostovky
f	frekvence
8	gravitačni zrychleni
k _I	součinitel turbolence
k _r	součinitel terénu
m_{ADD}	přidaná hmota
<i>m_{MOST}</i>	hmotnost mostnic
n	vlastní frekvence
$q_{w,x}$	zatížení od větru ve směru x
$q_{w,z}$	zatížení od větru ve směru z
q_p	dynamický tlak větru
t	čas
u	vektor uzlových posunů
<i>ù</i>	vektor uzlových rychlostí
ü	vektor uzlových zrychlení
u_I	vektor reálných posunů
u_2	vektor imaginárních posunů

u_{max}	amplituda posunů
$v_{b,0}$	základní rychlost větru v 10m
v_b	základní rychlost větru
V _{crit}	kritická rychlost větru
v_m	střední rychlost větru
$ u_0$	rozdělení rychlosti větru
W	dynamické zatížení
z	výška
Z _{min}	minimální výška
z_0	parametr drsnosti
Z.0,11	parametr drsnost, oblast II
X,Y,Z	osy globálního souřadného systému
Κ	matice tuhosti
K _e	matice tuhosti prvku
М	matice hmotnosti
M_e	matice hmotnosti prvku
C	matice tlumení
S	matice napjatosti
F	zatěžovací vektor
\mathbf{F}_1	vektor reálných zatížení
F_2	vektor imaginárních zatížení
F^{a}	vektor aplikovaných zatížení
F _A	zatížení při chůzi koně
F _{BC}	zatížení při běhu koně
\mathbf{F}^{r}	vektor reakcí
F^{nd}	vektor uzlových zatížení
F ^{ac}	vektor zatížení od zrychlení
F^{th}	vektor zatížení od teplotního zatížení
F^{pr}	vektor zatížení od tlaků na prvky
Ν	počet cyklů
L	délka
I_V	intenzita turbolence
St	Strouhalovo číslo
Т	životnost konstrukce

MSÚ	mezní stav únosnosti
MSP	mezní stav použitelnosti
MKP	metoda konečných prvků
$\sigma_{ m V}$	turbolence větru
$\gamma_{ m G}$	součinitel stálého zatížení
γ _Q	součinitel proměnného zatížení
λ	vlastní číslo
Ψ	vlastní vektor
ψ0	kombinační součinitel
ω	úhlová frekvence
φ	fázový posun
ρ	hustota vzduchu
ρ_{ADD}	upravená objemová hmotnost
ρ _{MOST}	objemová hmotnost mostnic
Ω	úhlová frekvence zatížení
ϵ_0	součinitel šířky pásma rychlostí větru
$\Delta\sigma$	rozkmit napětí
$\Delta\sigma_{\rm C}$	referenční únavová pevnost
$\Delta\sigma_{ m E}$	ekvivalentní rozkmit napětí

SEZNAM PŘÍLOH

Příloha A. Popis funkce maker

Příloha B. Kompaktní disk

PŘÍLOHY **A: POPIS FUNKCE MAKER**

Pro správnou funkci maker je potřeba všechny uložit do složky s databází. Spuštění makra lze

prostřednictvím příkazu s názvem makra. Doporučuji spouštět pouze hlavní makra !

HLAVNÍ MAKRA:

 $dp_.mac$:

Parametry geometrie, průřezů, materiálů, vazeb. Vygeneruje model konstrukce, nastaví rozhraní.

msumsp.mac :

Nastavení kombinačních součinitelů, zatížení. Vytvoří a vypočte zatěžovací stavy, vypočte obálky mezních stavů a uloží je do výsledkového souboru.

modal1.mac:

Vypočte modální analýzu pro nominální hmotnost konstrukce, vykreslí a uloží obrázky vlastních tvarů kmitu, uloží výpis z řešiče.

modal2.mac :

Vypočte modální analýzu pro přidanou hmotnost konstrukce, vykreslí a uloží obrázky vlastních tvarů kmitu, uloží výpis z řešiče.

vitr_dyn.mac :

Vypočte harmonickou analýzu pro zatížení větrem. Uloží výsledky do souboru most1.rst, most2.rst, obl1.rst, obl2.rst. (nutno potvrdit přepsání polí frk a load data, celkem 3x)

kun_dyn.mac :

Vypočte harmonickou analýzu pro zatížení koněm. Uloží výsledky do souboru kun1.rst, kun2.rst . (nutno potvrdit přepsání polí frk a load_data)

ZÁSUVNÁ MAKRA:

dp build.mac : Generování modelu a podepření. *dp_draw.mac* : Uložení obrázku do souboru. dp dyn mod.mac : Modální analýza pro řešení metodou rozkladu vlastních tvarů kmitu. dp_dyn_solu.mac : Harmonická odezva metodou rozkladu vlastních tvarů kmitu. dp_set.mac : Nastavení rozhraní programu. *dp_static_combi.mac* : Výpočet obálky pro statickou analýzu. dp static load.mac :

Generování a výpočet zatížení pro statickou analýzu.

dp_static_load_buck.mac : Stabilitní analýza a generování zatěžovacích stavů od dopravy. data_kun1.mac, data_kun2.mac, data_most1.mac, data_most2.mac, data_obl1.mac, data_obl2.mac : Zatěžovací data pro řešení harmonické odezvy.

B: KOMPAKTNÍ DISK

Kompaktní disk obsahuje makra z přílohy A.

Elektronická příloha práce obsahuje makra přílohy A.