
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

DEEP LEARNING METHODS FOR MACHINE
PLAYING THE SCOTLAND YARD BOARD GAME
METODY HLUBOKÉHO UČENÍ PRO STROJOVÉ HRANÍ HRY SCOTLAND YARD

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ZUZANA HRKĽOVÁ
AUTOR PRÁCE

SUPERVISOR doc. Ing. FRANTIŠEK ZBOŘIL, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023



 

Ústav: Ústav inteligentních systémů (UITS)
 

Studentka: Hrkľová Zuzana
 

Program: Informační technologie
 

Specializace: Informační technologie
 

 

Kategorie: Umělá inteligence
 

Akademický rok: 2022/23
  

Zadání:
 

1. Seznamte se s pravidly deskových her, kde aktuální stav hry bývá pro hráče po většinu času
utajený. Inspirujte se hrou "Scotland Yard", kdy pozice jedné z figur bývá protihráčům ukázána jen
v některých kolech hry.

2. Navrhněte obdobnou hru, ve které herní pole může být oproti hře Scotland Yard zjednodušené,
ale zachovejte princip skrývání figury ve většině tahů.

3. Nalezněte způsob využítí metod hlubokého učení zahrnující neuronové sítě, který by zvýšil
schopnost stroje hrát hru určenou v předchozím bodě.

4. Pro jednotlivé role figur ve hře implementujte algoritmy řízení zahrnující tyto metody a ověřte jejich
schopnost hrát danou hru.

5. Vyhodnoťte úspěšnost obou stran hry pro různé míry zapojení metod strojového učení a diskutujte
zjištěné výsledky.

 

Literatura: 
1. Dash, T., Dambekodi, S.N., Reddy, P.N. et al. Adversarial neural networks for playing hide-and-

search board game Scotland Yard Neural Comput & Applic 32, 3149–3164, 2020
2. Russel, S., Norvig, P.: Artificial Intelligence, A Modern Approach, Pearson, 2009
3. J.P.A.M. NijssenMark H.M. WinandsMark H.M. Winands: Monte-Carlo Tree Search for the Game

of Scotland Yard,Computational Intelligence and Games (CIG), 2011

Při obhajobě semestrální části projektu je požadováno: 
První dva body zadání

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/
 

Vedoucí práce: Zbořil František, doc. Ing., Ph.D.
 

Vedoucí ústavu: Hanáček Petr, doc. Dr. Ing.
 

Datum zadání: 1.11.2022
 

Termín pro odevzdání: 10.5.2023
 

Datum schválení: 3.11.2022

Zadání bakalářské práce
144325

Metody hlubokého učení pro strojové hraní hry Scotland YardNázev:

Fakulta informačních technologií, Vysoké učení technické v Brně / Božetěchova 1/2 / 612 66 / Brno



Abstract
This theses concerns with deep learning methods applied to machine playing board games
containing movement uncertainty. Reinforcement learning principles with main focus on
Q-learning algorithms were studied, among which Deep Q–Network had been chosen and
applied on simplified rules of the Scotland Yard board game. The final implementation
was put to test against Alpha-Beta and Monte Carlo Tree Search. The results have shown
that the hider driven by DQN represented the hardest opponent for the other two methods,
while the DQN seekers did not manage to surpass past results. Although the implemented
method did not reach better results than currently known methods, it proved to be the
least demanding when considering computational resources and time needed to perform a
given move, making it the most perspective to implement on original version of the game
in the future.

Abstrakt
Táto práca sa zaoberá metódami hlbokého učenia, ktoré sú aplikovateľné na stolné hry s
neurčitosťou. V rámci práce boli naštudované princípy učenia s posilňovaním, s hlavným
zameraním na Q-learning algoritmy, spomedzi ktorých bol vybraný Deep Q-Network al-
goritmus. Ten bol následne implementovaný na zjednodušených pravidlách stolnej hry
Scotland Yard. Konečná implementácia bola porovnaná s metódami Alpha-Beta a Monte
Carlo Tree Search. S výsledkov vyplinulo, že schovávaný hráč riadený DQN algoritmom
predstavoval pre ostatné metódy najťažšieho protihráča, narozdiel od hľadajúcich hráčov,
ktorým sa nepodarilo zlepšiť existujúce riešenia. Napriek tomu, že implementovaná metóda
nedosiahla lepšie výsledky oproti doposiaľ existujúcim metódam, ukázalo sa, že potrebuje
najmenej výpočetných zdrojov a času na vykonanie daného ťahu. To ju robí najperspek-
tívnejšou zo spomínaných metód na budúcu možnú implementáciu originálnej verzie danej
hry.
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Rozšířený abstrakt

Úvod
Strojové hranie hier je na scéne už dlhšiu dobu. V tomto odbore bolo dosiahnutých hneď
niekoľko míľnikov. Zatiaľ čo viac očivindým zámerom vyvíjania takto hrateľných hier je
redukovanie potreby fyzického spoluhráča, tento prežitok nie je jediným účelom tvorby
takýchto systémov. Jedným z príkladov je fakt, že ak je možné naučiť umelú inteligenciu
hranie hry na schovávačku, potom je možné tieto vedomosti využiť pri tvorbe systému
schopného detekcie mín na mínovom poly.

Hlboké učenie otvára dvere novým riešeniam pre strojové hranie hier. Pomocou
neurónových sietí sa doposiaľ podarilo poriaziť hneď niekoľko expertov v daných hrách, čo
bolo inšpiráciou k vytvoreniu práce. Účelom tejto práce bolo narvhnúť a implementovať
metódu hlbokého učenia pre kooperatívnu, strategickú stolnú hru Scotlad Yard a následne
porovnať dosiahnuté výsledky s implementáciami metód Alpha-Beta a Monte Carlo Tree
Search. Po naštudovaní problematiky a potrebných zdrojov, došlo k záveru zvoliť metódu
Deep Q-learning, ktorá bola implementovaná za účelom strojového hrania zjednodušenej
verzie hry Scotland Yard.

Popis navrhnutého riešenia
Z dvôvodu, že Scotland Yard je asymetrickou hrou a teda sú agenti poverení inou úlohou
ako pán X, boli navrhnuté dva rozdielne modely, ktoré implementujú jednotlivé chovania
hráčov. Agenti síce nie sú schopní vidieť presnú polohu pána X, pokiaľ ju práve v tom
kole neodhalí, no na vstupe neurónovej siete dostávajú vyznačené políčka s percentuálnou
možnosťou výskytu pána X. Agenti sú potom odmenení zakaždým keď počas tréningu na
takéto poličko stúpia, za účelom naučiť ich hľadať pána X práve na nich.

Pán X je naopak odmenený za kažké kolo ktoré pretrvá bez toho, aby bol chytený agen-
tami. Experimenty ukázali, že pán X podáva najlepšie výsledky keď počas tréningu súperí
proti agentom implementovaným oboma metódami a teda sa nenaučí len slepo vyhýbať
jednej z metód odhalením jej stratégie.

Ako pogramovací jazyk danej práce bol zvolený Python za účelom využitia hracieho
prostredia implementovaného v tomto jazyku v rámci bakalárskej práce M. Sovu zo zámerom
jednoduchšieho porovnania výkonnosti jednodlvých metód proti sebe.

Experimenty
Pre zvolený algoritmus bolo navrhnutých niekoľko experimentov s cieľom nastaviť jeho
parametre tak, aby dosahoval čo najlepšie možné výsledky. Podrobnejšie opísané experi-
menty v tejto práci opisujú proces výberu architektúry neurónovej siete využívanej algo-
ritmom Deep Q-learning. Rovnaké architektúry boli testované na schovávajúcom pánovi X
aj na hľadaúcich agentoch. Experimenty odhalili, že achritektúra schopná natrénovať na-
jlepší možný model pre pána X nebola zhodná s najvýkonnejšou architektúrovu využívanou
agentami. Ďalšie experimenty sa zamerali na výber metódy riadiacej pohyby protihráčov
počas tréningu za účelom dosiahnuť čo možno najviac univerzálny model zvládajúci rov-
nako dobre poraziť obe metódy. Experimenty potvrdili mienku, že takýto model je možné
získať využitím náhodného výberu medzi oboma metódami. Posledný z rady experimentov



sa zameral na spôsom odmeňovania agentov za ich akcie, kde došlo k záveru, že najlepšou
stratégiou je odmeňovanie agenta len za jeho vlastné akcie a teda dostávať väčšiu odmenu
len keď dojde k výhre jeho dočinením.

Zhrnutie výsledkov a budúca práca
Pomocou série spomínaných experimentov sa podarilo získať optimálne parametre pre
trénovanie daných modelov ako aj najprospernejšie architektúry sietí a odmeňovacie funkcie.
Výsledkom boli dva rôzne modely jeden využívaný pánom X a druhý agentami. Tie boli
niekoľkokrát pretrénované a ešte raz naposledy otestované proti metódam Alpha-Beta a
Monte Carlo Tree Search. Výsledky ukázali, že model natrénovaný pomocou DQN algo-
ritmu v roly pána X predstavoval najťažšieho oponenta pre obe zo spomínaných metód.
DQN agenti nedosiahli rovnako pozitívne výsledky. Po pozorovaní štýlu ich hry však bolo
viditeľné, že sa naučili stúpať na políčka hracej plochy o ktorých vedeli, že majú nejakú per-
centálnu šancu výskytu pána X. To, že angenti pochopili koncept danej hry sa preukázalo
aj faktom, že sa im darilo vyhrať 98,60% hier proti náhodnému pánovi X.

Výkonnosť agentov by sa v budúcnosti mohla zlepšiť využitím konvolučných sietí. Zároveň
by sa už existujúca implementácia DQN mohla rozšíriť na implementáciu algoritmu DDQN
spolu s metódou skoršieho zastavenia tréningu, aby sa vyhlo pretrénovaniu modelu hráčov.
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Chapter 1

Introduction

Nowadays, teaching artificial intelligence to play games is not anything ground-breaking.
When successfully teaching an AI to play a certain game, by playing against a computer,
one can train themselves to improve their skills or simply enjoy playing the game without
the need of human opponent. However, creating a human–like system is not an easy task
to master. Many decision making methods might be efficient in game–play, but easily
mastered by a human player after learning its strategy, thus becoming repetitive. The goal
is to create such an opponent that will stay equally challenging to a human player even
after a certain amount of games played.

Although it might not seem like it at first, reducing the need of human opponent is not
the only positive outcome. It also helps with discovering boundaries of technology. When
addressing real–life problem solving done by AI, games can often be used as a starter point
in early stages of testing the possibilities.

While successfully teaching AI a simple game of hide–and–seek might not seem as
significant, it could very well be the first stage of creating an AI able to detect and disarm
landmines.

This work is discussing deep learning methods for machine playing Scotland Yard, which
is a cooperative strategic board game. While choosing suitable deep learning method for
the given game, factors such as uncertainty and ability for agents to cooperate needed to be
taken into consideration. After thorough consideration Deep Q–Network has been chosen
as a method of interest.

Several bachelor thesis have been done at Brno University of Technology concerning
different methods for machine playing the Scotland Yard board game, namely Alpha-Beta
and Monte Carlo Tree Search, results of which are compared with the Deep Q–Network
approach.

While Alpha-Beta does have the best results when compared with the two remaining
methods, its outcome is also the most predictable. Using Deep Q–Network might not have
as good results compared to the two remaining methods on the other hand it is significantly
faster and less demanding on computational resources thus making it easier to expand on
a full–sized board, and in future potentially create original version of the game as all the
experiments in this paper were performed on a simplified version of this game.

The following chapter describes occurrence of hidden movement in board games while
depicting it on specific examples. Thesis then continues with description of Scotland Yard’s
rules, strategy and currently existing techniques used to implement machine playing of
this game. The reader is then presented with simplified rules of the Scotland Yard, which
have been used in this thesis’s implementation of DQN. Reinforcement algorithms with

2



main focus on Q-learning are carefully described in the following chapter. The thesis then
progresses with description of the final DQN implementation resulting from experiments
described in next chapter. The conclusion derived from presented experiments and com-
parison of DQN with other two mentioned methods is followed by suggested improvements
for future work.
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Chapter 2

Hidden movement board games

This chapter discusses what exactly hidden movement is and how imperfect information
affects autonomous artificial intelligence made to play board games. Reader is presented
with different types of board games containing movement uncertainty.

2.1 Hidden movement
As the name suggests, hidden movement occurs in a game when a movement or a certain
action of a player is hidden from their opponent, thus putting opponent in a position of
imperfect information about the move just made.

Hidden movement introduces uncertainty to the game. The player cannot tell with
100 percent accuracy in which direction their opponent moved or whether a certain action
has been done. In order to win, without knowing the full extent of what happened in
the opponent’s move, player needs to use their deduction skills to narrow down opponent’s
possible location and adapt a strategy to increase their chance of winning. Therefore games
with hidden movement are categorized as strategy games.

When creating autonomous artificial intelligence created to play a certain board game,
decision–making under imperfect information represents one of the biggest challenges in
the process. Some methods implement the best–move strategy. Increased complexity of
the game however increases computational time for the next move as well as demand on
computational resources resulting from increased number of states game which could end up
making it harder to find the best possible move. Partially solving this issue can be done by
simplifying game rules, which can however lead to lower interest of game enthusiasts to play
a given game. Moreover, the best-move strategy can quickly get repetitive for the human
player as they are able to predict what will the AI driven engine do in the current or even
next move. The game–play misses a small amount of uncertainty of a human opponent,
such as whether or not they will make a specific action.

2.2 Specific board games with movement uncertainty
In this section there are three different game descriptions, each of them carefully chosen
from a slightly different type of hidden movement games.

Stratego has been chosen as a representative of a group of games where the placement of
player’s figures on the board is not hidden, however the identity of the figures is. Movement
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uncertainty is thus present in the game not through the hidden direction of the moved figure
but by not knowing which figure has been moved.

Nuns On The Run is a classical hide–and–seek game where positions of all players,
except the one who is in a role of seeker, are hidden. Lastly the Fury of Dracula together
with Scotland Yard are the reverse hide–and–seek games where location of one player is
hidden and the objective of other players is to find the hidden player.

Each of the game descriptions is divided into three parts. Firstly, the reader is presented
with brief rules overview to show what the game is about, followed by explanation of
common strategies for the given games, finished by the summary of current state concerning
the AI playing the given games.

Stratego

Stratego is a two–payer game consisting of a ten by ten board and 80 ranked game pieces
in total. At the beginning of the game, each of the players gets 40 pieces and strategically
places them on their half of the board, labeled side facing the player, leaving the middle
two rows of the board empty. Players then alternate turns.

Each player can decide whether they are going to move one of their pieces or attack.
When chosen to move a piece, they can place it one tile up, down, left or right. In case of
attacking, player’s piece needs to stand adjacent space to opponent’s piece. The two pieces
reveal their rank and the piece with higher rank wins the attack and captures opponent’s
piece by removing it from the board and taking its position. Each player at the beginning
of the game possesses 7 immovable pieces, 6 of them being bombs that cannot attack any of
the opponent’s pieces, but in the case of opponent’s attack they win and remove opponent’s
piece from the board. The remaining immovable piece is a flag piece.

The objective of the game is to capture opponent’s flag piece. Once any of the players
completes the objective, game ends and the player wins. In case a player cannot move any
of their remaining pieces on the board or cannot attack any of the opponent’s pieces, the
game ends and they loose.

Each of the players possesses 3 types of special movement characters: 8 Scouts, 5 Miners
and one Spy. Scouts enable the player to move more than 1 piece across the board as well
as attack in the same turn. When a Miner attacks opponent’s bomb piece, the bomb is
diffused and removed from the board. Last but not least, Spy is the only piece that can win
an attack against Marshal, piece with the highest rank. However, when Spy is attacked by
any of the opponent’s pieces, he looses, and gets removed from the board.

Full version of the rules along with strategy hints can be found here[19].
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Figure 2.1: Stratego game board displaying placement of the figures at the be-
ginning of the game Source:[1]

By not seeing the placement of opponent’s pieces, game is filled with uncertainty and
hidden moves as none of the players know which piece their opponent has just moved.
Strategy needs to be established when placing the pieces on the board at the beginning
of the game. Deduction skills are also a big part of the game. The player tries to narrow
down which of the opponent’s pieces could be the bombs and the flag by keeping track of
all of the pieces the opponent has not moved throughout the game. The players also try to
deduce what type of opponent’s pieces are still on the board by knowing which ones have
been removed and adjust the game–play accordingly.

Concerning AI playing Stratego, there have been multiple attempts to solve this issue,
resulting in solutions that were weak or mediocre at best. Only recently DeepMind released
a paper[24] on a new autonomous agent called ”DeepNash“ that learned to play the game
Stratego at the level of a human expert.

Fury of Dracula

Fury of Dracula is a cooperative 2 to 5 player board game. Since it was first designed by
Stephen Hand in 1987 the game evolved and there are currently 4 different editions. While
the rules vary slightly in each edition, they all keep the same concept of the original game.
The rules are as follows:

One of the players takes up a role of Dracula. All the remaining players are teamed up
against him as hunters, each of them having one special ability. In case only two players
engage in the game, one of the players plays for all four hunters in the game. Movement of
Dracula is hidden from hunters and his position is revealed only when one of the hunters
steps on the location Dracula currently occupies. During the day hunters can perform
actions to prepare for taking down Dracula by moving around and obtaining items. When
the night comes Dracula moves and sets up traps. The main objective of the hunters is
to find and fight Dracula. Dracula’s objective is to advance the influence track from zero
to thirteen by creating vampires and defeating hunters. Once hunters or Dracula complete
their objective, the game ends.

Full version of the rules for the fourth edition can be found here[13].
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Figure 2.2: The Fury of Dracula game board Source:[31]

Besides the usual challenge of hidden movement games, the Fury of Dracula has fairly
elaborate rules making it harder for players to master. The key strategy of hunters to win
the game is to cooperate with the rest of the team. Hunters are able to block more paths
by spreading out on the board, leaving Dracula with less options of locations to move to.
Another good strategy is trying to acquire items early in the game while teaming up with
the other hunters when attacking Dracula instead of striking alone once they track him
down.

On the other hand Dracula aims for leaving behind as little clues about his location
as possible and attacking hunters when they are by themselves not able to get help from
another hunter.

While the game itself is not that young it has not risen much interest in the field of
game theory. In 2020 Nomad Games Limited[10] published digital version of the game
along with the option of a single player to compete against AI. However the AI received
negative criticism from most of the players.

Nuns On The Run

Nuns on the Run is a 2 to 8 player game filled with hidden movement. Game consists of 2
guards and up to 6 novices. In case of 7 or less players, one of the players plays for both
guards. Unlike in Scotland Yard and Fury of Dracula where all the players are trying to
catch the same player here it is the other way around. Locations of all players taking up
the role of a novice are hidden as well as their movement and the guards are trying to catch
them.

At the beginning of the game all the players are placed on their starting positions
marked down on the board. Every novice obtains a secret wish card with a location of a
key and an object she wishes to get. Their goal is to first get to the key then continue to
the object they wish to get according to the card and safely return to their starting position
on the board, all that without getting caught by one of the guards. When moving, players
need to show a special card revealing how many places they moved on the board. The
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movement card together with throwing a dice determine whether or not the guards heard
the novice. In case a novice is heard she needs to mark on the board which direction is the
sound coming from.

Person playing the guards obtains card with a path marked down for each of the guards.
When moving guards need to follow the path and the only time they can change direction
is when they hear or see a novice. The novice is seen if she happens to stand or pass by the
guard’s field of view. Once the novice is caught she needs to return to her starting point
leaving the wished object behind and try to obtain it again.

The game ends and the guards win if novices do not succeed in getting their wished
objects by the fifteenth round or the guards catch a novice as many times as there are
novices in the ongoing game. A novice wins if she returns to her starting point on the
board with the wished item.

Official rules of the game can be found here[21]

Figure 2.3: The game board of Nuns On The Run showing all novice players
standing on their starting positions Source:[9]

Nuns on the run is one of the easier hide–and–seek games which does not require complex
strategy. The fact that most of the players are hidden makes it easier for them to distract
the guards and run away without getting caught. In addition the cooperation of all the
players is not as crucial as in Scotland Yard or Fury of Dracula. The best strategy for
the novice players is to move as far as they can in the first rounds, making it harder for
the guard player to determine direction of their movement. The rest is about correctly
deducing where the guard’s paths lead and to be able to avoid them in order to not get
seen.

The role of a guard requires some type of cooperation, however by having predetermined
paths it turns out to be very limited. Guards not being able to move freely can hardly divide
their forces or try to surround any of the novice players.

Despite having multiple digital versions on several platforms, none of them supports the
option of playing the game against AI.
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Chapter 3

The Scotland Yard board game

Scotland Yard is a cooperative, asymmetric strategy board game created by the German
game designer Werner Schlegelfirst. The game was first published and introduced on the
market by Ravensburger in 1983 and in the same year won one of the most prestigious
card and board game awards, Spiel des Jahres (Game of the Year). Several aspects of the
games are considered when competing in Spiel des Jahres such as gameplay, game design,
and overall presentation.

Scotland Yard was an innovative game in its early days for bringing the concept of
hide–and–seek on the board as well as including cooperation of the players in the game.
Although not being the first ever created hide–and–seek game, it helped to popularise the
genre and was an inspiration to many other well–known games such as Clue The Great
Museum Caper, Fury of Dracula or Letters from Whitechapel.

Since the original version turned out to be a huge success many alternative versions
have been published. The versions vary in board designs featuring different cities or slight
rule modifications.

Next section explains the rules of the original version. Later in the chapter basic game
strategy is described followed by a section concerned with currently known implementations
of artificial intelligence playing the Scotland Yard board game. Last but not least, the reader
is introduced to simplified rules of Scotland Yard used later on in the paper for own game
implementation of AI playing Scotland Yard.

3.1 The Scotland Yard rules
The game Scotland Yard is named after Scotland Yard, the headquarters of the Metropoli-
tan Police and its board depicts map of London. Mister X is a criminal who is trying to
hide and the Scotland Yard’s detectives are trying to find him within the streets of London.

Game’s board consists of 199 interconnected spaces representing public transport sta-
tions. There are 3 different types of connections between stations differentiated by colors
according to the type of transport they represent, yellow used for taxis, green for buses,
red for undergrounds and black for boat routes.

The game is played by 3 to 6 players where 1 player takes up a role of Mr. X and the
remaining players are detectives. Players are taking turns, starting with Mr. X. The goal
of detectives is to cooperate and catch Mr. X within 24 moves. If they will not succeed by
then, Mr. X wins the game.
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At the beginning of the game each of the detectives gets 10 taxi, 8 bus and 4 underground
tickets. The detectives use the tickets to move around the board. Once they have no
remaining transport ticket to travel from the station they occupy, they need to stand there
until the end of the game.

Location of Mr. X is hidden and is revealed periodically throughout the game on the
rounds 3, 8, 13, 18 and 24. While the detectives cannot see the exact location of Mr. X,
they see the type of transport he used to move around the board. At the beginning of the
game, Mr. X gets 4 taxi, 2 bus and 3 underground tickets along with the 2 double move
tickets and as many black tickets as there are detectives in the game. In addition every
time detectives move, the ticket they use from that point on belongs to Mr. X. Mr. X can
use black tickets to travel by any type of transport on the board including the boat and
thus giving the agents no clue whatsoever of where he went. Once Mr.X uses a ticket it is
removed from the game.

Initial placement of each of the player’s figures is given by randomly choosing a location
card with the number of a given station. Players then take turns. Each turn starts with
Mr.X and is followed by all the detectives. If Mr.X is supposed to be seen in the given
round, he finishes his turn by moving to a chosen location and then reveals his whereabouts
by placing Mr.X figure on the occupied station.

Full version of the rules can be studied even further here[4]

Figure 3.1: Depiction of a part of Scotland Yard board showing different types
of transport routs Source:[20]
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3.2 Game strategy
Strategy of Scotland Yard is dependent on cooperation of all detective players in the game.
At the very beginning of the game detectives do not know anything about Mr.X’s where-
abouts. Therefore their goal should be to spread out on the map while trying to get to the
strategic locations such as underground stations or longer bus routs. That way the detec-
tive players are able to move larger distances towards Mr. X once he reveals his location as
well as blocking him escape routes in case any of the other detectives is close to him and
he might want to transfer further away. By spreading across the board at least one of the
players should always be relatively close to Mr.X once seen he reveals his position.

In order to win, players need to deduce which way Mr.X moved by knowing his previous
location and the type of transfer he used. Before moving the detective player should consider
Mr.X’s next possible moves, the types of transport tickets he holds and thus can use and
the position of other players. Later on in the game it is important for detective player to
keep track of their as well as other player’s remaining transport tickets in order to avoid
the situation where any of them gets stuck on a station which they are not able to move
from.

The detectives can take an advantage of the fact that the tickets used by them are given
to Mr.X. Therefore by strategically playing certain types of tickets they can affect the ways
Mr.X is going to be able to travel.

Mr.X on the other hand should be cautious of detective’s locations and always think
more steps ahead. He should prefer routes with more than one exit in case he gets sur-
rounded by detectives.

It is considered a good strategy to use taxi tickets over other types when playing as
Mr.X as it is the most common way of transportation making almost all of the stations on
the board accessible by taxi. By using taxis Mr.X reveals less about his direction of the
move.

Saving the black and double move tickets for the last rounds of the game is one of
the best strategies to obtain when playing in a role of Mr.X as the detectives start to
struggle with tickets shortage. It makes it much easier to move further away from them
using underground or boat. At that point detectives might correctly guess Mr.X’s location
however they are usually unable to reach him.

3.3 Current machine playing engines for the game of Scot-
land Yard

Scotland Yard has been center of study in several publications. Although it does not have
complex rules, thanks to its properties such as imperfect information in a form of hidden
movement, asymmetry or need for cooperation of detectives it represents great challenges
in the game theory.

Three bachelor thesis on this topic have been done just within the Brno University of
Technology alone, results which are compared to results achieved in this thesis. Two of
these papers written by M. Sova[28] and M. Gerža[11] implement and discuss Monte Carlo
Tree Search method applied to the game of Scotland Yard. The third paper written by A.
Tulušák[30] has chosen Alpha–Beta aproach. Although both Alpha–Beta and Monte Carlo
seem to bring satisfactory results they tend to be too predictable by a human player, thus
easily mastered.
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Another paper[22] from 2011, implementing Monte Carlo Tree Search(MCTS) shows
impact of limiting the number of possible locations of Mr.X by using information about
Mr.X’s moves along with their newly created technique called Location Categorization. By
the end of the paper they prove that their implementation of MCTS can perform better
compared to a commercial Scotland Yard program on the Nintendo DS.

Concerning deep learning techniques there has been published a more recent paper[6]
using adversarial neural networks combined with Q–learning. The performed investigation
showed that the designed network driven detectives were able to grasp the concept of
cooperation and, as the paper stated, by the end of training were making an effort to catch
Mr.X.

Scientists from DeepMind made an effort to create more universal algorithm for AI
player able to master both perfect and imperfect information games. They refer to the
algorithm as Player of Game or PoG[26]. The algorithm defeated the state-of-the-art agent
in Scotland Yard as well as reached great performance in chess, poker and Go.

Another work[18] greatly inspired by Scotland Yard’s concept of periodically reappear-
ing Mr.X and detectives trying to catch him tried to solve the same problem using a
Gridworld game to contribute to inventing AI usable in real-world security system applica-
tions. The game Gridworld used in the paper had similar board to the one that is being
used in this thesis for playing the Scotland Yard and is shown in the next section. Attacker
who was in similar role of Scotland Yard’s Mr.X was periodically seen every third move by
the defenders who were trying to catch him. In the paper the idea of combining QMDP
and Bayesian inference into BayesQMDP has been introduced and tested on the mentioned
game.

3.4 Simplified rules of Scotland Yard board game
Previous three mentioned bachelor’s thesis[30][28][11] worked with simplified rules of Scot-
land Yard in order to reduce computational resources while testing performance of Alpha–
Beta and Monte Carlo Tree Search methods on a Scotland Yard board game. In order to
be able to compare the results from these three papers with the ones reached by using Deep
Q-Network the same rules of the game were adapted.

New rules were composed in a way to simplify the original game as much as possible
while keeping the concept of hide-and-seek mechanics. To reduce the number of states
instead of having 200 different stations, game board represents 5x5 grid resulting in 25
different stations the players can stand on.

Resized board however also meant smaller space for the player to play on which was the
reason why number of players was reduced to three, two detectives and Mr.X. The decision
was based upon the fact that more detectives could put Mr.X into disadvantage due to less
options of stations he could use. On the other hand the detectives could overrule Mr.X
without making more effort thus not showing their full potential.

Another difference from original rules of Scotland Yard is reduction of transport options.
Instead of using four transport types with separate routs and being able to travel longer
distances players are able to use only one type of transport allowing them to always move
one space ahead. Board as small as the one proposed in the previous thesis would not
make much use of more transports which however leaves a room for future expansions and
studies.

To sum it up the resulting rules are as follows. There are three players in total, one
being Mr.X and the remaining two are in a role of detectives. Board consists of a grid sized
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5x5 spaces. Each of the players can move one space up, down, left or right. The players take
turns always starting with Mr.X who is then followed by the other two players–detectives.
Position of Mr. X is hidden for the detectives and revealed on rounds 3, 6, 9, 12 and 15
where the game ends and Mr.X wins if not caught by agents by then. Positions of the
players are chosen by random just as in original rules of Scotland Yard.

Figure 3.2: Game played according to the simplified rules of Scotland Yard

Figure 3.2 displays one complete game played by rules of Scotland Yard suggested in
this section. The boards in the images show position of the players after both Mr.X and
detectives moved in the given round. Letter ”S“ in the rightmost image signifies position
of Mr.X as well as the fact that at that given time his position is visible for other players.
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Chapter 4

Reinforcement learning

In machine learning it is needed to gather vast amount of data to train a model successfully.
The amount of data required for training increases with increasing complexity of a problem.
Added to that, collected data in such amounts can often contain missing or incorrect values
affecting the final results of a trained model[3].

Reinforcement learning overcomes the mentioned problems by reducing the need for
data to train. Instead it aims for finding an optimal solution by an agent interacting with
the environment. Every action taken during the learning phase is evaluated. Actions can
lead to either positive or negative rewards. Agent then tries to take an action based on
previously received rewards in order to maximize the notion of cumulative reward which
leads to discovering an optimal policy for the given environment. An optimal policy is a
policy that maximizes the expected total reward.

At the beginning agent does not know any information about its environment and
gains knowledge based on rewards received. Therefore as [25] states the principal issue
is exploration. An agent must experience as much as possible to learn how to behave
within the environment. For this purposes Q–Learning for example, uses the exploration
vs. exploitation trade–off in a form of 𝜖–greedy strategy, which is introduced in the following
section.

Reinforcement learning is a popular approach studied in game theory. Using Reinforce-
ment Learning, computer algorithms such as Alpha Go and OpenAI Five have been able
to achieve human level performance on games such as Go[27] and Dota 2[23].

One of the core concepts of Reinforcement Learning is the Deep Q-Learning algorithm
that is described and implemented on a simplified version of Scotland Yard later on in this
paper.

4.1 Q–Learning
Q–Learning is a model-free reinforcement learning algorithm used for learning the optimal
policy in a Markov Decision Process. Its goal is to find an optimal policy by learning the
optimal Q-values for each state-action pair. Q–Learning differs from other reinforcement
learning algorithms by using off–policy method to separate the deferral policy from the
learning policy [17]. In other words, to function, model first needs to undergo the learning
process.

During this process Q–value is computed for each state–action pair and stored in a
Q–table where rows represent states and columns represent actions that can be taken.
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At the beginning of the learning process all values in a Q–table are initialized to zero.
Values in the Q–table are then iteratively updated throughout the learning process. By
the end of the learning phase Q–table is filled with the optimal Q–values which is the final
result of the learning. From that point on to determine the action from a given state the
model uses the optimal values from the table.

𝜖–greedy strategy is used to determine which of the actions should be executed from a
current state. The strategy is based on exploration vs. exploitation trade off. Exploration
allows the agent to explore so far unknown state–action pairs by choosing the action ran-
domly which possibly might lead to higher reward. Exploitation on the other hand chooses
the action with the highest Q–value present in the Q–table, making use of known facts.
As the learning process begins the agent does not know anything about the environment
therefore it must explore it which is done by setting the 𝜖 value to 1. The value of 𝜖 gradu-
ally decreases and exploitation is used more frequently as the time progresses and the agent
gains knowledge. Further affects of 𝜖–greedy strategy are described and discussed here[12].

To update Q-value for a given state–action pair the key formula is as follows:

𝑄(𝑠, 𝑎)← 𝑄(𝑠, 𝑎) + 𝛼(𝑅(𝑠) + 𝛾𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎))

where 𝑎 is an action executed in state 𝑠 resulting in state 𝑠′. 𝑎′ represents the future
action taken from the state 𝑠′. 𝛼 stands for learning rate and its value ranges from 0 to
1. 𝑅 is the value of the reward received for taking an action 𝑎 from the state 𝑠 and 𝛾 is a
discount factor [25].

To break it down the expression states that the Q–value for a given state–action pair
is a sum of the existing Q–value for the given pair and the equation which determines the
best action in the current state.

The goal is to bring the Q–value for the given state–action pair as close to the right
hand side of the Bellman equation as possible. Q-value will eventually converge to the
optimal Q-value 𝑞*.

This is achieved over time by iteratively comparing the loss between the Q–value and
the optimal Q–value for the given state–action pair and updating the Q–value in a Q–table
to reduce the loss every time when encountered with the same state–action pair. This is
done in a following manner:

𝑞*(𝑠, 𝑎)− 𝑞(𝑠, 𝑎) = 𝑙𝑜𝑠𝑠

𝐸
[︁
𝑅𝑡+1 + 𝛾𝑚𝑎𝑥

𝑎′
𝑞*(𝑠

′, 𝑎′)
]︁
− 𝐸

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1

]︃
= 𝑙𝑜𝑠𝑠

As a part of their course Reinforcement Learning–Developing Intelligent Agents [7],
DeepLizard explains the above principles of Q–Learning even further together with practical
examples of the algorithm on a simple board game.

Although the Q–Learning algorithm has proven as one of the most effective reinforce-
ment learning approaches, its advantages vanish with increasing complexity of the envi-
ronment. Q–Learning relies on Q–table containing all possible state–action pairs. As [17]
explains, when encountering problem with large state and action space, the algorithm de-
mands enormous amount of memory to be able to save all existing state–action values.

Many Q–Learning algorithms, such as Deep Q–Learning, have been developed to solve
the problem above while keeping the main concepts of the original algorithm described in
this section.
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4.2 Deep Q–Learning
Deep Q–Learning uses the main concept of Q–Learning but extends its idea even further by
replacing the Q–table with a deep neural network – Q–network instead making it faster and
more efficient at solving problems with large state–spaces. By leaving the Q–table behind,
Deep Q–Network (DQN) algorithm solves the issue with unbearable amount of memory
desired by Q–Learning to solve complex problems.

To achieve stability, DQN algorithm uses experience replay also known as replay memory
to store the trajectory of the Markov decision process. During each iteration experience
in a form of information: state, action, next state and reward is stored in replay memory.
Later in the process mini–batches of states, actions, next states and rewards are sampled
from the memory and used as observations to train the Q–network. The goal of DQN is to
approximate the action-value function.

To obtain an unbiased estimator of the mean-squared Bellman error, DQN algorithm
uses two separate neural networks[8]. It uses target network to obtain target value and
Q–network which is using the obtained target value to learn, leading to reduction of corre-
lations. This approach is called the target Q technique[17].

When implementing the DQN algorithm, weights of the Q–network need to be initial-
ized with random values. Target network is then initialized as the exact copy of Q–network.
Iteration through epochs starts taking place. Each epoch represents one whole game. Dur-
ing each step of the game current state is passed through Q–network after which the agent
chooses an action based on 𝜖–greedy strategy described earlier. The action is then executed
into the environment and the agent is rewarded for the chosen action. The information
gathered during this process is stored in replay memory. In the next step mini–batches of
information stored in replay memory are created processed and passed through the target
network. Resulting values from target network are used to calculate loss based on which
the Q–network gets updated. After set number of iterations Q–network weights are copied
to target network[16].

4.3 Double Q–Learning
Double Q–Learning is another variation of Q–Learning. It was introduced by Hado Hasselt[14]
in order to solve the problem of Q–Learning not performing well in stochastic environment.
The problem of Q–Learning is seeded in overestimation of action values. After certain time,
original Q–Learning algorithm stops searching new optimal values. Instead, as described
earlier, it repeatedly selects the highest action value from already existing values as an
approximation for the maximum expected action value[17].

To avoid this, double Q–Learning uses two Q functions. Unlike in target Q technique
used in deep Q-Learning, here both Q functions need to be learning from separate set of
experiences and are both used for an action selection. This is done in order to avoid using
the same set of values for both selection and evaluation of an action.

The algorithm is as follows[15]:

𝑄𝐴(𝑠, 𝑎)← 𝑄𝐴(𝑠, 𝑎) + 𝛼(𝑠, 𝑎)(𝑅+ 𝛾𝑄𝐵(𝑠′, 𝑎′)−𝑄𝐴(𝑠, 𝑎))

𝑄𝐵(𝑠, 𝑎)← 𝑄𝐵(𝑠, 𝑎) + 𝛼(𝑠, 𝑎)(𝑅+ 𝛾𝑄𝐴(𝑠′, 𝑎′)−𝑄𝐵(𝑠, 𝑎))
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Double Q–Learning can either make use of Q–tables or replace them with neural net-
works just as deep Q–Learning does. As this paper describes deep learning methods, from
this point on the method is described as a variant using neural networks.

The main principle of the algorithm stays as described in deep Q–Learning section.
However after weight initialization of Q–Networks A and B, current state 𝑠 is passed through
both networks. The network with the higher Q value is chosen and action is selected by
applying 𝜖–greedy strategy. After executing the chosen action the reward and next state
are observed and network update is performed.

When it comes to updating the networks, during each calculated step only one of the
two networks gets updated. The selection of the network that gets updated is done by
random. To update the chosen network evaluation of the performed action needs to be
done. During the evaluation process, the network that is not chosen to be updated is used
as a target network to calculate target Q value which can be seen in the equations above.

Step by step description of an algorithm along with code example is shown here[5].

4.4 Double Deep Q–Network
Despite the fact that both Double Q–Learning and Deep Q-Learning algorithms advance
the original Q-Learning, there is still a room for improvement. As Hasselt has shown in
his later paper[15] combining the two approaches into Double Deep Q–Network has proven
even more efficient. The paper among other things, contains performance comparison of
Double Deep Q–Network and Double Q–Learning on multiple games proving the rise of
performance using this algorithm.

The Double Deep Q–Network (DDQN) algorithm uses two independent networks to
choose the action from a given state in the same manner as Double Q–Network algorithm
to avoid overestimation of action values. After performing the chosen action and observing
its affect on the environment the networks need to be updated. In DDQN both networks
get updated each step, which is done in the same way as in Deep Q–Learning.

Each of the two networks has its own target network used to estimate the target Q
value needed for calculating the loss according to which the network gets updated. Target
network is the exact copy of a network using its target values to update itself otherwise
known as an online network. Target network gets updated periodically with online network
weights each N steps.
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Chapter 5

Deep Q-Learning implementation
of Scotland Yard

After thorough research on a topic of AI algorithms known to be used to play Scotland Yard
shown in section 3.3, Deep Q–network(DQN) approach had been chosen to implement and
compare its results to other methods implementing this game.

One of the decisive factors was based on the fact that DQN is a foundation of Q learning
algorithms, as it was explained in the previous chapter. Its results could thus, be considered
a starting point in the future studies and easily build upon this paper.

The final decision to use DQN was inspired by T. Dash’s study[6]. Unlike in his work,
the implementation in this thesis is attempting to increase performance of the detectives by
calculating all Mr.X’s possible locations in a similar manner as it was originally proposed
in the paper[22] using MCTS to solve autonomous game-play of Scotland Yard.

Main interest of this chapter is to describe final implementation of DQN algorithm on
a simplified version of the Scotland Yard board game introduced in section 3.4. Firstly
explaining the choice of used technologies the chapter then advances with walk-through the
training parameters and used network layout together with its visuals.

5.1 Used technologies
The DQN algorithm has been implemented using Python alongside with PyTorch frame-
work.

Part of M. Sova’s thesis[28] contains an implementation of the environment for Scotland
Yard written in Python. The very same environment has been slightly edited and used in
implementation by M. Gerža[11]. As this paper aimed to compare the achieved results with
all the three mentioned works the same game environment has been adapted which led to
choosing Python as a programming language.

5.2 DQN implementation
DQN algorithm has been implemented as described in section 4.2. During the learning pro-
cess, the detective agent is always paired up with the second detective using A.Tulušák’s[30]
implementation of agent movement. This decision was based on the assumption that the
DQN agent could learn from more skilled agents as well as he could get used to the other
agent moving around him on the board.
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The agent, thus learns in the following way. In each round of a game first Mr.X makes
his move using Alpha-Beta, MCTS or random combination of the two methods, choice of
which is defined at the start of a program. After the first detective makes move by Alpha-
Beta method, the current state of an environment is processed and passed to the neural
network, which outputs the Q value.

The rest is a standard DQN routine procedure of choosing the action by 𝑒𝑝𝑠𝑖𝑙𝑜𝑛-greedy
policy, performing the chosen move, observing the next state, receiving the reward and
finally updating the policy network all of which has been described in more details in
section 4.2.

5.3 Neural Network architecture
Slightly different architectures have been used for training Mr.X and the detective models.
Reasoning behind structures of used network layouts can be seen in the upcoming chapter 6
where the whole process is described on performed experiments.

Considering 5x5 size of the game board, the network architecture used to train model for
game–play of Mr.X consists of 50 neurons input followed by two hidden layers of which the
first is double the size of the input layer whereas the second comes back to using 50 neurons.
Output layer consists of 4 final neurons outputting the Q value needed to determine the
direction of the move.

The size of a network is flexible and can be easily modified for play on bigger board by
setting the input neurons size on 𝑛2 * 2. The next hidden layer is then of size 𝑛2 * 4 and
followed by the last hidden layer back at using 𝑛2 * 2 neurons.

The network used by detective agents has identical layout of the one used by Mr.X
except keeping the last layer of a size 100 neurons or 𝑛2 * 4.

In both network architectures ReLu has been chosen as an activation function between
all the layers besides the output layer where the linear activation has been kept. The choice
of leaving linear activation function in the output layer over commonly used SoftMax acti-
vation was based on the fact that Q–learning makes use of Q values described in section 4.1.
Instead of letting the network output the percentage of the best possible action as it is often
times implemented, Q–learning aims for Q values which are used in later calculations and
thus converting them into probabilities could affect results.

To speed up the learning process, instead of initializing weights of the network with
random or zero values, Kaiming or also known as He initialization has been used. Opposite
to inbuilt PyTorch initializer, the performance after using Kaiming uniform initialization
has risen by 3%.

The visual representation of both used network architectures can be seen in the following
diagrams.
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Figure 5.1: Neural network architecture used to train Mr.X model
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Figure 5.2: Neural network architecture used to train detective model

Each current state of the game is first preprocessed into two separate grids obtained in
one 3D array. The first grid is used for marking the location of Mr.X and the second is
indicating location of the detectives.

To represent the player’s locations needed for Mr.X’s move calculation, his and the
detective’s positions are marked in a corresponding grids by 1.

However, because the location of Mr.X is most of the time hidden, to indicate the
detectives his location, Mr.X’s grid is filled with probability with which he is standing
on each station on the board giving the detectives clues where to search. All of these
information are then reshaped into 1D array and passed to the neural network as an input.
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Figure 5.3: Three consecutive rounds of game play visualizing input states for
the neural network used for calculating next detective’s action. The first row
represents move made by Mr.X. Second row shows preprocessed game state for the detective
no.1. Finally the third row displays preprocessed state for the detective no.2

Each column in the figure above shows one of the three consecutive rounds of a game
play after Mr.X took turn and agents are about to be moved. Below each board state there
are two 3D arrays each of them used as an input state passed through neural network to
calculate corresponding action for the first and the second detective. Top board visible in
the 3D array depicts position of Mr.X, whereas lower board represents detective’s current
positions. Detective for whom the action is calculated is labeled as 10 and the other
detective that is currently not being moved as 1.

5.4 Rewarding system
As it was mentioned in the section 4 positive and negative reinforcement is what drives
the Q–learning agents and teaches them how to improve their actions. In this thesis’s
implementation of DQN several rewarding systems have been tested, two of which are
discussed closer in section 6.2, however the rewarding system described in this section has
proven to bring the best results.

The detective gets rewarded with positive 1 if stepping on station that could possibly
be current location of Mr.X. In case he wins the game by either stepping on station Mr.X
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occupies or helps the other agent to surround Mr.X in the corner of the board, he gets
rewarded with 10 points. On the other hand if the detectives loose the game he is punished
with negative 10 points. Awarding agent with negative reward when moving out of board
space or stepping on a station that is occupied by the other detective has proven ineffective,
thus in this case the reward value received by the agent is equal to 0.

Mr.X is rewarded 1 point each round he manages to avoid detectives and gets negative
5 points if he gets caught and looses the game. In case Mr.X agent chooses to move out of
the game board his chosen move is abandoned and new move for the given round is chosen
by random. If he survives such move without being caught by the detectives he is rewarded
with 0, the same way detective agents are when encountering similar situation.

5.5 Training parameters
Based on the fact that neural networks learn by themselves, their behaviour varies each
time when learning different task. Thanks to this, setting parameters of a given network
is dependent on a problem it is meant to solve. Although knowledge of each parameter’s
purpose and its affect on learning process most certainly helps, because of unpredictability
of neural network’s behaviour, the parameters are many times tweaked into perfection by
trial and error approach.

The parameters that have been chosen for this thesis’s DQN implementation are pre-
sented in this section.

Batch size has been set to size of 512 samples suggested by paper[29], studying the
accelerated methods for deep reinforcement learning, as the best behaving batch size for
DQN.

The size of replay memory, from which batches were sampled while training, was set to
15000. Among tested 10000, 15000 and 20000 sizes of memory, this value proved to be the
optimum size for this work’s implementation of DQN.

Learning rate was tweaked into 0,001 final value that showed the best results, whereas
𝛾 made use of 0,975 value.

Policy network was set to update every step using HuberLoss function, used to calculate
loss value needed for the update along with Adam optimizer. Its weight values are copied
into target network every 100 steps. Besides HuberLoss function, Mean squared error (MSE)
loss function has been tested, however results of the tests performed suggested HuberLoss
was performing better within this thesis’s implementation.

Value of 𝜖 is at the beginning of the training process equal to 1 representing 100 percent
chance of random choice of action. The value updates after each game or otherwise called
epoch, using this formula: 𝜖 = 𝜖− 1/𝑒𝑝𝑜𝑐ℎ𝑠 until it reaches 0,01 which is the lowest value
possible for this parameter.
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Chapter 6

Experiments

To perfect the learning process in order to get the best possible results, multiple experiments
had been run on networks of Mr.X and detective separately. Used network architecture,
rewarding system and DQN hyper-parameters presented in chapter 5 were all results of
performed experiments.

This chapter describes the fine tuning process and tries to express reasoning behind the
chosen network architectures, rewarding system and opponents used in the final version of
implementation.

All of the test results included in this section were product of 10000 game repetitions
following manners of M. Gerža[11] who used the same game count for testing his MCTS
implementation.

M. Gerža’s[11] as well as A.Tulušák’s[30] implementations were used during the process
of training the models, leaving out M. Sova’s[28] implementation as it implemented the
same method as M. Gerža while achieving lower performance.

All of the models presented in this chapter were trained on 10000 games. The amount
of games needed to train the model was determined by training a model with the identical
parameters for a period of 5000, 10000 and 20000 games. While 5000 games was not enough
time to bring satisfactory results, 20000 games turned out to be more time than needed
and the model started to retrain making the whole training process counterproductive.

6.1 Experimenting on Mr.X’s network
The first experiment included in this section was aimed to determine the best opponent to
train Mr.X’s model with in order to maximize his winning rate as well as to create the most
universal opponent possible.

The second experiment helped to define the most efficient architecture of a neural net-
work used to train the model of Mr.X.

The last experiment tried to combine knowledge learned from the previous two experi-
ments which led to achieving the best results and thus the strategy was applied in the final
implementation.

Experiment 1

To determine which method represents the best opponent for Mr.X to learn on, we proposed
an experiment to test 3 different opponent types. The first model was trained using only
Alpha-Beta while the second model used only MCTS method to play detective’s moves
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while training. The third training applied a random choice between the two mentioned
types of methods reset before each game.

A–B MCTS 2022 A–B&MCTS
random 24,35% 23,09% 22,41%
A–B 52,96% 75,2% 61,83%
MCTS 80,4% 69,05% 69,61%

Figure 6.1: Performance of trained models where columns represent method used
to train each model and rows represent the method used while testing.

As it can be seen in the table above, Mr.X won the most games against A–B driven
detectives when the network was trained using A–B detectives as an opponent.

The same could be applied for MCTS as Mr.X performed the best when trained against
this method yet his performance dropped when playing against A–B.

This was caused by the fact that Mr.X learned a specific strategy to win against one
type of method. However, the same strategy he acquired was not applicable to a different
game style used by another method.

Although the model trained using both methods did not reach the best results when
compared to the models playing against the same methods they were trained on, it has
been considered the best approach as it turned out to be the most universal.

Experiment 2

Another important aspect of the process was to determine the architecture of a neural
network used by DQN agent. For this purpose there had been suggested experiment to
perform three sets of training each with the same DQN parameters but modified architecture
of neural network.

The first architecture used two hidden layers, the first of a size 100 neurons and the
second 50 neurons.

The second architecture made use of one additional hidden layer of a size 100 neurons.
Its full structure then consisted of 50 neurons in input layer followed by two 100 neuron
hidden layers continuing with one more hidden layer made of 50 neurons and finished by 4
neurons in output layer.

Third and the last model used 4 hidden layers three of which consisted of 100 neurons
each and the last one consisted of 50 neurons just as the two previously used models.

All the three models have been trained using Alpha-Beta implementation of the de-
tectives as an opponent as the experiment was taking place simultaneously with the first
experiment which led to not being able to apply its results in use.

2 hidden 3 hidden 4 hidden
random detectives 22,04% 22,41% 21,76%
A–B 2020 53,23% 61,83% 67,4%
MCTS 2022 80,89% 69,61% 68,01%

Figure 6.2: Performance of models trained using architectures consisting of dif-
ferent number of hidden layers. Rows represent detective’s method while testing.
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The performed experiment revealed the architecture with the lowest number of hidden
layers could produce model with the highest winning scores against the Alpha-Beta method
which essentially was a method the model was trained on, thus it meant it could have the
best learning potential. Therefore one additional experiment was proposed using network
architecture similar to the best performing one at that time.

The last network consisted of two hidden layers sized 100 neurons each. However, the
results of model trained using this network layout did not surpass the performance of the
models displayed in the table above therefore it was no longer used.

Experiment 3

The first experiment proved that the model learning next to mix of both Alpha–Beta and
MCTS methods as training opponent received the best performance. However, from the
second experiment it was still uncertain whether using two or three hidden layers in the
network brought better results.

Therefore, the third experiment was proposed. Training both architectures using mix
of A–B and MCTS methods following the first experiment was supposed to reveal which of
the two architectures could reach better overall performance.

2 hidden layers 3 hidden layers
random detectives 17,36% 22,41%
A–B 2020 60,83% 61,83%
MCTS 2022 62,05% 69,61%

Figure 6.3: Performance comparison of Mr.X models trained using network ar-
chitecture consisting of two and three hidden layers.

From results included in the table above, it was concluded the most efficient neural
network architecture consisted of two hidden layers. Diagram of architecture chosen based
on this experiment can be seen in section 5.1.

6.2 Experimenting on detective’s network
Experiments in this section made use of knowledge gained by previous experiments per-
formed on model for Mr.X. All of the training sessions described in this section therefore
used combination of both Alpha-Beta and MCTS methods to determine movement of Mr.X
on the board.

While similar experiment was proposed to determine the method for the second detec-
tive, as only one of them was driven by neural network during training, the experiment did
not reach the successful end. Performing more than 5000 game iterations needed for model
training on MCTS implementation while using only one of the detectives resulted in seg-
mentation fault each time before it reached the end as the implementation was never meant
to be used with one agent only. The decision was made to make use of A–B implementation
instead, which was used in all the experiments.

The first included experiment was targeted to find the best possible network architecture
to train the detective agent with, whereas the second experiment aimed to express the
reasoning behind the choice of rewarding system in the final implementation.
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Experiment 1

Experiment performed on Mr.X’s model revealed that the most efficient network layout
used 2 hidden layers out of which the first one consisted of 100 and the second 50 neurons.
However based on the fact that the objective of detective differs from the objective of Mr.X
it was decided to put into test three different layouts and observe the results.

The first layout represented the architecture chosen in the final implementation 5.2
of Mr.X using 2 hidden layers, with the same size of 100 neurons.

The second layout consisted of 2 hidden layers, one of a size 100 and second of 50
neurons.

The third layout was an extended version of the second layout using two 100 neuron
layers and the third 50 neuron hidden layer.

First layout Second layout Third layout
random detectives 96,65% 93,94% 86,15%
A–B 2020 27,5% 27,08% 9,2%
MCTS 2022 29,8% 23,07% 11,23%

Figure 6.4: Performance comparison of detective models trained using network
architecture consisting of two and three hidden layers.

This experiment revealed that the architecture achieving the best results while training
model of Mr.X did not reach the same best results while training detective model. On the
other hand the first design of network architecture which performed weak when training
Mr.X turned out to bring the best results in detective’s training.

Experiment 2

While determining rewarding system for Mr.X was a straight forward process, there were
more options of rewarding the detective for his action. Two of these possible rewarding
systems were chosen and put to test in this section.

Both of the rewarding systems shared 1 point reward for detective agent stepping on a
station with possible occurrence of Mr.X. This was done in order to teach the agent that
such stations were more desirable for him to search through.

The systems also shared -10 reward for loosing the game as it was important to teach
the agent to avoid such situation.

The systems differed in following ways.
The first system rewarded the agent with 10 points when the detectives won the

game not taking into consideration whether the agent who won the game used DQN or
A–B implementation. The idea behind this was to teach the agent cooperation with the
other agent and let him know he is not the only one interacting with the environment.
Inspiration for this approach came from OpenAI’s paper[2] where they successfully taught
neural network agents to play the game of hide-and-seek.

The second system rewarded the agent with 10 points when the detectives the game
but the DQN detective contributed to the win to see if the agent would start to rely on the
other agent less and tried to win a game by himself.
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First system Second system
random detectives 92,30% 96,31%
A–B 2020 10,49% 21,13%
MCTS 2022 12,41% 18,78%

Figure 6.5: Performance of models trained using different types of rewarding
systems

The performed experiment proved DQN agent was able to learn better strategy when
rewarded only for his actions. However, rewarding the DQN agent when helping AB agent
to surround Mr.X in a corner of the game board, making it impossible for him to run away
did achieved success of teaching the DQN agent somewhat cooperation.

6.3 Results
After the first training of both Mr.X and detectives models by using final DQN implementa-
tion described in section 5, models were retrained multiple times each time getting slightly
better results. When retraining a given model, 𝜖 value has been set to 0.20 in order to
allow the retraining model to use gained knowledge while leaving 20% chance of discovering
better strategy by random movement.

The best achieved results were compared to the performance of the other already existing
methods by running 10000 game iterations.

The value of simulation time needed by MTCS implementations was set to 0,05 in
an attempt to fasten the process as the other two used methods needed less computation
time. This time reduction however showed not to have significant implact on method’s
performance.

DQN 2023 MCTS 2022 MCTS 2021 A–B 2020
DQN Hrkľová 2023 – 39,88% 88,89% 33,79%
MCTS Gerža 2022 62,05% – 93,83% 66,02%
MCTS Sova 2021 25,11% 24,39% – 17,86%
A–B Tulušák 2020 60,03% 87,39% 99,1% –

Figure 6.6: Performance comparison of final DQN implementation. Rows represent
method applied on detectives, columns represent method used for Mr.X movement.

The overall results showed that detectives and Mr.X using DQN were able to grasp the
main concept of a proposed game. As it can be seen in the table 6.6 DQN Mr.X succeeded
to overcome both MCTS and Alpha-Beta method’s Mr.X and represented the toughest
opponent for the two methods.

The detectives on the other hand managed to surpass only one of the existing imple-
mentations. However by playing against random Mr.X and reaching 98,60% winning rate
it is more than safe to say the agents understood the rules and concept of the game.

The experiment from section 6.1 proved it was possible to reach better performance
against each of the models presented in the table by training the model against one certain
type of method. By training Mr.X using Alpha-Beta agents it was possible to lower their
learning rate to 53,23% chance of winning only after first training of the given model.
However, the aim of this thesis was to create the most possible universal model for both
detectives and Mr.X.
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6.4 Suggestions for future improvement
This thesis proved that by using the most basic form of Q–learning combined with neural
network in the form of Deep Q-learning (DQN), the detectives were able to understand
rules of the game presented to them as well as they would make an effort to win the game
by trying to search through location of possible occurrences of Mr.X.

This discovery led to the conclusion that the results achieved in this thesis could be
greatly improved by one of the presented modifications of DQN presented in chapter 4.

In addition, the DQN implementation could possibly bring much better results by mak-
ing use of convolutional neural networks instead of the linear layers used in this thesis’s
implementation.

By implementing the algorithm using convolutional neural network(CNN) the game
could be possibly expanded to a version closer to the original Scotland Yard by adding
at least one type of different transport, making it more interesting to play and thus more
appealing to real-life players.
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Chapter 7

Conclusion

The aim of this thesis was to acquaint myself with deep learning methods used in game
theory and apply the gained knowledge on the simplified rules of the Scotland Yard board
game in order to improve performance of already existing methods implemented for this
game.

In the early stages it was crucial to fully grasp the concept of uncertainty in a form of
hidden movement present in the game of Scotland Yard. Therefore several board games
with the mentioned mechanism were studied 2. Each game was broken down and looked
at from three different angles; its rules, game strategy and research of existing artificial
intelligence able to play described games.

After that thorough research of the Scotland Yard board game 3 had been performed
to learn its rules, strategy of game-play, but most importantly currently known techniques
used to design machine learning agents for this game.

After proposing simplified rules of Scotland Yard 3.4 used in this thesis’s implementation
of the given game, research of deep learning methods had been done with the main focus
on Q-learning algorithms 4.

Deep Q-Network(DQN) algorithm had been chosen and implemented to play the men-
tioned board game. The decision was made, based on the fact that DQN algorithm repre-
sented the basis of Q–learning. Thus, in the future it could be easily expandable into one
of the other forms of Q-learning algorithms mentioned in section 4 while using this thesis
to build upon.

There were several experiments 6 performed on the proposed implementation to im-
prove training process of the models used to determine next move of the players placed
on the board. The experiments described in this thesis included description of designing
the architecture of neural network used in the final implementation as well as process of
choosing the opponents to train both models on.

In order to serve this thesis’s purpose of becoming a good starting point of extended
Q-learning studies, the final implementation of DQN had been fully described in section 5.

The final trained models were put to test and their results were compared with three
existing implementations of two different methods namely Alpha-Beta and Monte Carlo
Tree Search 6.3.

While the experiments have shown that the algorithm was able to train better per-
forming models by training them using one of the mentioned methods only, the goal set at
the beginning was to create the most universal model possible in order to achieve better
game experience to human player. Therefore, both methods were used during training the
final models, which led to better overall performance. The results showed that final Mr.X
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represented the toughest opponent for both M. Gerža’s and A. Tulušák’s implementations
of detectives. However, when tried to play against human opponent it was visible that the
implementation still had a lot to improve.

Model used by detectives managed to surpass only one of the three implementations it
was tested on. However, from observing its game-play and move choices it was visible that
the detectives tried to search for Mr.X in the places with certain amount of probability of
his occurrence.

The biggest advantages of DQN opposite to other methods turned out to be compu-
tational resources and time needed to perform a given move running 10000 games against
random player under 4 minutes, making it the most perspective method to implement on
original rules of Scotland Yard in the future.

Making use of convolutional neural networks could greatly improve performance of the
implemented DQN algorithm alongside with upgrading the algorithm to Double Deep Q-
Network.
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Appendix A

Contents of the included storage
media

• src/ – Folder with source files

• latex/ – Folder with LATEXsource files of this thesis

• README.md – README file for the project

• thesis.pdf – Thesis report file

• thesis-print.pdf – Thesis report file for print

src/ folder besides source files implementing DQN algorithm further contains:

• AT_2020/ – Folder with source files implementing Alpha–Beta by A. Tulušák

• MC_2022/ – Folder with source files implementing MCTS by M. Gerža

• MS_2021/ – Folder with source files implementing MCTS by M. Sova

• trained_models/ – Folder with pretrained models
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