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Abstract 
This theses concerns with deep learning methods applied to machine playing board games 
containing movement uncertainty. Reinforcement learning principles with main focus on 
Q-learning algorithms were studied, among which Deep Q-Network had been chosen and 
applied on simplified rules of the Scotland Yard board game. The final implementation 
was put to test against Alpha-Beta and Monte Carlo Tree Search. The results have shown 
that the hider driven by D Q N represented the hardest opponent for the other two methods, 
while the D Q N seekers did not manage to surpass past results. Although the implemented 
method did not reach better results than currently known methods, it proved to be the 
least demanding when considering computational resources and time needed to perform a 
given move, making it the most perspective to implement on original version of the game 
in the future. 

Abstrakt 
Táto práca sa zaoberá metódami hlbokého učenia, ktoré sú aplikovateľné na stolné hry s 
neurčitosťou. V rámci práce boli naštudované princípy učenia s posilňovaním, s hlavným 
zameraním na Q-learning algoritmy, spomedzi ktorých bol vybraný Deep Q-Network al
goritmus. Ten bol následne implementovaný na zjednodušených pravidlách stolnej hry 
Scotland Yard. Konečná implementácia bola porovnaná s metódami Alpha-Beta a Monte 
Carlo Tree Search. S výsledkov vyplinulo, že schovávaný hráč riadený D Q N algoritmom 
predstavoval pre ostatné metódy najťažšieho protihráča, narozdiel od hľadajúcich hráčov, 
ktorým sa nepodarilo zlepšiť existujúce riešenia. Napriek tomu, že implementovaná metóda 
nedosiahla lepšie výsledky oproti doposiaľ existujúcim metódam, ukázalo sa, že potrebuje 
najmenej výpočetných zdrojov a času na vykonanie daného ťahu. To ju robí najperspek
tívnejšou zo spomínaných metód na budúcu možnú implementáciu originálnej verzie danej 
hry. 

Keywords 
machine learning, deep learning, neural networks, reinforcement learning, Q-learning, D Q N , 
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Rozšířený abstrakt 

Úvod 

Strojové hranie hier je na scéne už dlhšiu dobu. V tomto odbore bolo dosiahnutých hned 
niekoľko míľnikov. Zatiaľ čo viac očivindým zámerom vyvíjania takto hratelných hier je 
redukovanie potreby fyzického spoluhráča, tento prežitok nie je jediným účelom tvorby 
takýchto systémov. Jedným z príkladov je fakt, že ak je možné naučiť umelú inteligenciu 
hranie hry na schovávačku, potom je možné tieto vedomosti využiť pri tvorbe systému 
schopného detekcie mín na mínovom poly. 

Hlboké učenie otvára dvere novým riešeniam pre strojové hranie hier. Pomocou 
neurónových sietí sa doposiaľ podarilo poriaziť hned niekoľko expertov v daných hrách, čo 
bolo inšpiráciou k vytvoreniu práce. Účelom tejto práce bolo narvhnúť a implementovat 
metódu hlbokého učenia pre kooperatívnu, strategickú stolnú hru Scotlad Yard a následne 
porovnať dosiahnuté výsledky s implementáciami metód Alpha-Beta a Monte Carlo Tree 
Search. Po naštudovaní problematiky a potrebných zdrojov, došlo k záveru zvoliť metódu 
Deep Q-learning, ktorá bola implementovaná za účelom strojového hrania zjednodušenej 
verzie hry Scotland Yard. 

Popis navrhnutého riešenia 

Z dvôvodu, že Scotland Yard je asymetrickou hrou a teda sú agenti poverení inou úlohou 
ako pán X , boli navrhnuté dva rozdielne modely, ktoré implementujú jednotlivé chovania 
hráčov. Agenti síce nie sú schopní vidieť presnú polohu pána X , pokiaľ ju práve v tom 
kole neodhalí, no na vstupe neurónovej siete dostávajú vyznačené políčka s percentuálnou 
možnosťou výskytu pána X . Agenti sú potom odmenení zakaždým ked počas tréningu na 
takéto poličko stupia, za účelom naučiť ich hľadať pána X práve na nich. 

Pán X je naopak odmenený za kažké kolo ktoré pretrvá bez toho, aby bol chytený agen-
tami. Experimenty ukázali, že pán X podáva najlepšie výsledky ked počas tréningu súperí 
proti agentom implementovaným oboma metódami a teda sa nenaučí len slepo vyhýbať 
jednej z metód odhalením jej stratégie. 

Ako pogramovací jazyk danej práce bol zvolený Python za účelom využitia hracieho 
prostredia implementovaného v tomto jazyku v rámci bakalárskej práce M . Sovu zo zámerom 
jednoduchšieho porovnania výkonnosti jednodlvých metód proti sebe. 

Experimenty 

Pre zvolený algoritmus bolo navrhnutých niekoľko experimentov s cieľom nastaviť jeho 
parametre tak, aby dosahoval čo najlepšie možné výsledky. Podrobnejšie opísané experi
menty v tejto práci opisujú proces výberu architektúry neurónovej siete využívanej algo
ritmom Deep Q-learning. Rovnaké architektúry boli testované na schovávajúcom pánovi X 
aj na hľadaúcich agentoch. Experimenty odhalili, že achritektúra schopná natrénovať na
jlepší možný model pre pána X nebola zhodná s najvýkonnejšou architektúrovu využívanou 
agentami. Ďalšie experimenty sa zamerali na výber metódy riadiacej pohyby protihráčov 
počas tréningu za účelom dosiahnuť čo možno najviac univerzálny model zvládajúci rov
nako dobre poraziť obe metódy. Experimenty potvrdili mienku, že takýto model je možné 
získať využitím náhodného výberu medzi oboma metódami. Posledný z rady experimentov 



sa zameral na spôsom odmeňovania agentov za ich akcie, kde došlo k záveru, že najlepšou 
stratégiou je odmeňovanie agenta len za jeho vlastné akcie a teda dostávať väčšiu odmenu 
len ked dojde k výhre jeho dočinením. 

Zhrnutie výsledkov a budúca práca 

Pomocou série spomínaných experimentov sa podarilo získať optimálne parametre pre 
trénovanie daných modelov ako aj najprospernejšie architektúry sietí a odmeňovacie funkcie. 
Výsledkom boli dva rôzne modely jeden využívaný pánom X a druhý agentami. Tie boli 
niekolkokrát přetrénované a ešte raz naposledy otestované proti metódam Alpha-Beta a 
Monte Carlo Tree Search. Výsledky ukázali, že model natrénovaný pomocou D Q N algo
ritmu v roly pána X predstavoval najťažšieho oponenta pre obe zo spomínaných metód. 
D Q N agenti nedosiahli rovnako pozitívne výsledky. Po pozorovaní štýlu ich hry však bolo 
viditeľné, že sa naučili stúpať na políčka hracej plochy o ktorých vedeli, že majú nejakú per-
centálnu šancu výskytu pána X . To, že angenti pochopili koncept danej hry sa preukázalo 
aj faktom, že sa im darilo vyhrať 98,60% hier proti náhodnému pánovi X . 

Výkonnosť agentov by sa v budúcnosti mohla zlepšiť využitím konvolučných sietí. Zároveň 
by sa už existujúca implementácia D Q N mohla rozšíriť na implementáciu algoritmu D D Q N 
spolu s metódou skoršieho zastavenia tréningu, aby sa vyhlo pretrénovaniu modelu hráčov. 
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Chapter 1 

Introduction 

Nowadays, teaching artificial intelligence to play games is not anything ground-breaking. 
When successfully teaching an A I to play a certain game, by playing against a computer, 
one can train themselves to improve their skills or simply enjoy playing the game without 
the need of human opponent. However, creating a human-like system is not an easy task 
to master. Many decision making methods might be efficient in game-play, but easily 
mastered by a human player after learning its strategy, thus becoming repetitive. The goal 
is to create such an opponent that will stay equally challenging to a human player even 
after a certain amount of games played. 

Although it might not seem like it at first, reducing the need of human opponent is not 
the only positive outcome. It also helps with discovering boundaries of technology. When 
addressing real-life problem solving done by AI , games can often be used as a starter point 
in early stages of testing the possibilities. 

While successfully teaching A I a simple game of hide-and-seek might not seem as 
significant, it could very well be the first stage of creating an A I able to detect and disarm 
landmines. 

This work is discussing deep learning methods for machine playing Scotland Yard, which 
is a cooperative strategic board game. While choosing suitable deep learning method for 
the given game, factors such as uncertainty and ability for agents to cooperate needed to be 
taken into consideration. After thorough consideration Deep Q-Network has been chosen 
as a method of interest. 

Several bachelor thesis have been done at Brno University of Technology concerning 
different methods for machine playing the Scotland Yard board game, namely Alpha-Beta 
and Monte Carlo Tree Search, results of which are compared with the Deep Q-Network 
approach. 

While Alpha-Beta does have the best results when compared with the two remaining 
methods, its outcome is also the most predictable. Using Deep Q-Network might not have 
as good results compared to the two remaining methods on the other hand it is significantly 
faster and less demanding on computational resources thus making it easier to expand on 
a full-sized board, and in future potentially create original version of the game as all the 
experiments in this paper were performed on a simplified version of this game. 

The following chapter describes occurrence of hidden movement in board games while 
depicting it on specific examples. Thesis then continues with description of Scotland Yard's 
rules, strategy and currently existing techniques used to implement machine playing of 
this game. The reader is then presented with simplified rules of the Scotland Yard, which 
have been used in this thesis's implementation of D Q N . Reinforcement algorithms with 
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main focus on Q-learning are carefully described in the following chapter. The thesis then 
progresses with description of the final D Q N implementation resulting from experiments 
described in next chapter. The conclusion derived from presented experiments and com
parison of D Q N with other two mentioned methods is followed by suggested improvements 
for future work. 
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Chapter 2 

Hidden movement board games 

This chapter discusses what exactly hidden movement is and how imperfect information 
affects autonomous artificial intelligence made to play board games. Reader is presented 
with different types of board games containing movement uncertainty. 

2.1 Hidden movement 

As the name suggests, hidden movement occurs in a game when a movement or a certain 
action of a player is hidden from their opponent, thus putting opponent in a position of 
imperfect information about the move just made. 

Hidden movement introduces uncertainty to the game. The player cannot tell with 
100 percent accuracy in which direction their opponent moved or whether a certain action 
has been done. In order to win, without knowing the full extent of what happened in 
the opponent's move, player needs to use their deduction skills to narrow down opponent's 
possible location and adapt a strategy to increase their chance of winning. Therefore games 
with hidden movement are categorized as strategy games. 

When creating autonomous artificial intelligence created to play a certain board game, 
decision-making under imperfect information represents one of the biggest challenges in 
the process. Some methods implement the best-move strategy. Increased complexity of 
the game however increases computational time for the next move as well as demand on 
computational resources resulting from increased number of states game which could end up 
making it harder to find the best possible move. Partially solving this issue can be done by 
simplifying game rules, which can however lead to lower interest of game enthusiasts to play 
a given game. Moreover, the best-move strategy can quickly get repetitive for the human 
player as they are able to predict what will the A I driven engine do in the current or even 
next move. The game-play misses a small amount of uncertainty of a human opponent, 
such as whether or not they will make a specific action. 

2.2 Specific board games with movement uncertainty 

In this section there are three different game descriptions, each of them carefully chosen 
from a slightly different type of hidden movement games. 

Stratego has been chosen as a representative of a group of games where the placement of 
player's figures on the board is not hidden, however the identity of the figures is. Movement 
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uncertainty is thus present in the game not through the hidden direction of the moved figure 
but by not knowing which figure has been moved. 

Nuns On The Run is a classical hide-and-seek game where positions of all players, 
except the one who is in a role of seeker, are hidden. Lastly the Fury of Dracula together 
with Scotland Yard are the reverse hide-and-seek games where location of one player is 
hidden and the objective of other players is to find the hidden player. 

Each of the game descriptions is divided into three parts. Firstly, the reader is presented 
with brief rules overview to show what the game is about, followed by explanation of 
common strategies for the given games, finished by the summary of current state concerning 
the A I playing the given games. 

Stratego 

Stratego is a two-payer game consisting of a ten by ten board and 80 ranked game pieces 
in total. At the beginning of the game, each of the players gets 40 pieces and strategically 
places them on their half of the board, labeled side facing the player, leaving the middle 
two rows of the board empty. Players then alternate turns. 

Each player can decide whether they are going to move one of their pieces or attack. 
When chosen to move a piece, they can place it one tile up, down, left or right. In case of 
attacking, player's piece needs to stand adjacent space to opponent's piece. The two pieces 
reveal their rank and the piece with higher rank wins the attack and captures opponent's 
piece by removing it from the board and taking its position. Each player at the beginning 
of the game possesses 7 immovable pieces, 6 of them being bombs that cannot attack any of 
the opponent's pieces, but in the case of opponent's attack they win and remove opponent's 
piece from the board. The remaining immovable piece is a flag piece. 

The objective of the game is to capture opponent's flag piece. Once any of the players 
completes the objective, game ends and the player wins. In case a player cannot move any 
of their remaining pieces on the board or cannot attack any of the opponent's pieces, the 
game ends and they loose. 

Each of the players possesses 3 types of special movement characters: 8 Scouts, 5 Miners 
and one Spy. Scouts enable the player to move more than 1 piece across the board as well 
as attack in the same turn. When a Miner attacks opponent's bomb piece, the bomb is 
diffused and removed from the board. Last but not least, Spy is the only piece that can win 
an attack against Marshal, piece with the highest rank. However, when Spy is attacked by 
any of the opponent's pieces, he looses, and gets removed from the board. 

Full version of the rules along with strategy hints can be found here[19]. 
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Figure 2.1: Stratego game board displaying placement of the figures at the be
ginning of the game Source:[1] 

By not seeing the placement of opponent's pieces, game is filled with uncertainty and 
hidden moves as none of the players know which piece their opponent has just moved. 
Strategy needs to be established when placing the pieces on the board at the beginning 
of the game. Deduction skills are also a big part of the game. The player tries to narrow 
down which of the opponent's pieces could be the bombs and the flag by keeping track of 
all of the pieces the opponent has not moved throughout the game. The players also try to 
deduce what type of opponent's pieces are still on the board by knowing which ones have 
been removed and adjust the game-play accordingly. 

Concerning A I playing Stratego, there have been multiple attempts to solve this issue, 
resulting in solutions that were weak or mediocre at best. Only recently DeepMind released 
a paper [24] on a new autonomous agent called „DeepNash" that learned to play the game 
Stratego at the level of a human expert. 

Fury of Dracula 

Fury of Dracula is a cooperative 2 to 5 player board game. Since it was first designed by 
Stephen Hand in 1987 the game evolved and there are currently 4 different editions. While 
the rules vary slightly in each edition, they all keep the same concept of the original game. 
The rules £1X6 ctS follows: 

One of the players takes up a role of Dracula. A l l the remaining players are teamed up 
against him as hunters, each of them having one special ability. In case only two players 
engage in the game, one of the players plays for all four hunters in the game. Movement of 
Dracula is hidden from hunters and his position is revealed only when one of the hunters 
steps on the location Dracula currently occupies. During the day hunters can perform 
actions to prepare for taking down Dracula by moving around and obtaining items. When 
the night comes Dracula moves and sets up traps. The main objective of the hunters is 
to find and fight Dracula. Dracula's objective is to advance the influence track from zero 
to thirteen by creating vampires and defeating hunters. Once hunters or Dracula complete 
their objective, the game ends. 

Full version of the rules for the fourth edition can be found here[13]. 

G 



Figure 2.2: The Fury of Dracula game board Source:[31] 

Besides the usual challenge of hidden movement games, the Fury of Dracula has fairly 
elaborate rules making it harder for players to master. The key strategy of hunters to win 
the game is to cooperate with the rest of the team. Hunters are able to block more paths 
by spreading out on the board, leaving Dracula with less options of locations to move to. 
Another good strategy is trying to acquire items early in the game while teaming up with 
the other hunters when attacking Dracula instead of striking alone once they track him 
down. 

On the other hand Dracula aims for leaving behind as little clues about his location 
as possible and attacking hunters when they are by themselves not able to get help from 
another hunter. 

While the game itself is not that young it has not risen much interest in the field of 
game theory. In 2020 Nomad Games Limited [10] published digital version of the game 
along with the option of a single player to compete against AI . However the A I received 
negative criticism from most of the players. 

N u n s O n T h e R u n 

Nuns on the Run is a 2 to 8 player game filled with hidden movement. Game consists of 2 
guards and up to 6 novices. In case of 7 or less players, one of the players plays for both 
guards. Unlike in Scotland Yard and Fury of Dracula where all the players are trying to 
catch the same player here it is the other way around. Locations of all players taking up 
the role of a novice are hidden as well as their movement and the guards are trying to catch 
them. 

At the beginning of the game all the players are placed on their starting positions 
marked down on the board. Every novice obtains a secret wish card with a location of a 
key and an object she wishes to get. Their goal is to first get to the key then continue to 
the object they wish to get according to the card and safely return to their starting position 
on the board, all that without getting caught by one of the guards. When moving, players 
need to show a special card revealing how many places they moved on the board. The 
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movement card together with throwing a dice determine whether or not the guards heard 
the novice. In case a novice is heard she needs to mark on the board which direction is the 
sound coming from. 

Person playing the guards obtains card with a path marked down for each of the guards. 
When moving guards need to follow the path and the only time they can change direction 
is when they hear or see a novice. The novice is seen if she happens to stand or pass by the 
guard's field of view. Once the novice is caught she needs to return to her starting point 
leaving the wished object behind and try to obtain it again. 

The game ends and the guards win if novices do not succeed in getting their wished 
objects by the fifteenth round or the guards catch a novice as many times as there are 
novices in the ongoing game. A novice wins if she returns to her starting point on the 
board with the wished item. 

Official rules of the game can be found here [21] 

—— 
Figure 2.3: The game board of Nuns On The Run showing all novice players 
standing on their starting positions Source: [9] 

Nuns on the run is one of the easier hide-and-seek games which does not require complex 
strategy. The fact that most of the players are hidden makes it easier for them to distract 
the guards and run away without getting caught. In addition the cooperation of all the 
players is not as crucial as in Scotland Yard or Fury of Dracula. The best strategy for 
the novice players is to move as far as they can in the first rounds, making it harder for 
the guard player to determine direction of their movement. The rest is about correctly 
deducing where the guard's paths lead and to be able to avoid them in order to not get 
seen. 

The role of a guard requires some type of cooperation, however by having predetermined 
paths it turns out to be very limited. Guards not being able to move freely can hardly divide 
their forces or try to surround any of the novice players. 

Despite having multiple digital versions on several platforms, none of them supports the 
option of playing the game against AI . 
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Chapter 3 

The Scotland Y a r d board game 

Scotland Yard is a cooperative, asymmetric strategy board game created by the German 
game designer Werner Schlegelfirst. The game was first published and introduced on the 
market by Ravensburger in 1983 and in the same year won one of the most prestigious 
card and board game awards, Spiel des Jahres (Game of the Year). Several aspects of the 
games are considered when competing in Spiel des Jahres such as gameplay, game design, 
and overall presentation. 

Scotland Yard was an innovative game in its early days for bringing the concept of 
hide-and-seek on the board as well as including cooperation of the players in the game. 
Although not being the first ever created hide-and-seek game, it helped to popularise the 
genre and was an inspiration to many other well-known games such as Clue The Great 
Museum Caper, Fury of Dracula or Letters from Whitechapel. 

Since the original version turned out to be a huge success many alternative versions 
have been published. The versions vary in board designs featuring different cities or slight 
rule modifications. 

Next section explains the rules of the original version. Later in the chapter basic game 
strategy is described followed by a section concerned with currently known implementations 
of artificial intelligence playing the Scotland Yard board game. Last but not least, the reader 
is introduced to simplified rules of Scotland Yard used later on in the paper for own game 
implementation of A I playing Scotland Yard. 

3.1 The Scotland Yard rules 

The game Scotland Yard is named after Scotland Yard, the headquarters of the Metropoli
tan Police and its board depicts map of London. Mister X is a criminal who is trying to 
hide and the Scotland Yard's detectives are trying to find him within the streets of London. 

Game's board consists of 199 interconnected spaces representing public transport sta
tions. There are 3 different types of connections between stations differentiated by colors 
according to the type of transport they represent, yellow used for taxis, green for buses, 
red for undergrounds and black for boat routes. 

The game is played by 3 to 6 players where 1 player takes up a role of M r . X and the 
remaining players are detectives. Players are taking turns, starting with Mr . X . The goal 
of detectives is to cooperate and catch M r . X within 24 moves. If they will not succeed by 
then, M r . X wins the game. 
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At the beginning of the game each of the detectives gets 10 taxi, 8 bus and 4 underground 
tickets. The detectives use the tickets to move around the board. Once they have no 
remaining transport ticket to travel from the station they occupy, they need to stand there 
until the end of the game. 

Location of Mr . X is hidden and is revealed periodically throughout the game on the 
rounds 3, 8, 13, 18 and 24. While the detectives cannot see the exact location of M r . X , 
they see the type of transport he used to move around the board. At the beginning of the 
game, Mr . X gets 4 taxi, 2 bus and 3 underground tickets along with the 2 double move 
tickets and as many black tickets as there are detectives in the game. In addition every 
time detectives move, the ticket they use from that point on belongs to M r . X . Mr . X can 
use black tickets to travel by any type of transport on the board including the boat and 
thus giving the agents no clue whatsoever of where he went. Once M r . X uses a ticket it is 
removed from the game. 

Initial placement of each of the player's figures is given by randomly choosing a location 
card with the number of a given station. Players then take turns. Each turn starts with 
M r . X and is followed by all the detectives. If M r . X is supposed to be seen in the given 
round, he finishes his turn by moving to a chosen location and then reveals his whereabouts 
by placing M r . X figure on the occupied station. 

Full version of the rules can be studied even further here [4] 

Figure 3.1: Depiction of a part of Scotland Yard board showing different types 
of transport routs Source: [20] 
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3.2 Game strategy 

Strategy of Scotland Yard is dependent on cooperation of all detective players in the game. 
At the very beginning of the game detectives do not know anything about Mr .X ' s where
abouts. Therefore their goal should be to spread out on the map while trying to get to the 
strategic locations such as underground stations or longer bus routs. That way the detec
tive players are able to move larger distances towards M r . X once he reveals his location as 
well as blocking him escape routes in case any of the other detectives is close to him and 
he might want to transfer further away. By spreading across the board at least one of the 
players should always be relatively close to M r . X once seen he reveals his position. 

In order to win, players need to deduce which way M r . X moved by knowing his previous 
location and the type of transfer he used. Before moving the detective player should consider 
Mr .X ' s next possible moves, the types of transport tickets he holds and thus can use and 
the position of other players. Later on in the game it is important for detective player to 
keep track of their as well as other player's remaining transport tickets in order to avoid 
the situation where any of them gets stuck on a station which they are not able to move 
from. 

The detectives can take an advantage of the fact that the tickets used by them are given 
to M r . X . Therefore by strategically playing certain types of tickets they can affect the ways 
M r . X is going to be able to travel. 

M r . X on the other hand should be cautious of detective's locations and always think 
more steps ahead. He should prefer routes with more than one exit in case he gets sur
rounded by detectives. 

It is considered a good strategy to use taxi tickets over other types when playing as 
M r . X as it is the most common way of transportation making almost all of the stations on 
the board accessible by taxi. By using taxis M r . X reveals less about his direction of the 
move. 

Saving the black and double move tickets for the last rounds of the game is one of 
the best strategies to obtain when playing in a role of M r . X as the detectives start to 
struggle with tickets shortage. It makes it much easier to move further away from them 
using underground or boat. At that point detectives might correctly guess Mr.X 's location 
however they are usually unable to reach him. 

3.3 Current machine playing engines for the game of Scot
land Yard 

Scotland Yard has been center of study in several publications. Although it does not have 
complex rules, thanks to its properties such as imperfect information in a form of hidden 
movement, asymmetry or need for cooperation of detectives it represents great challenges 
in the game theory. 

Three bachelor thesis on this topic have been done just within the Brno University of 
Technology alone, results which are compared to results achieved in this thesis. Two of 
these papers written by M . Sova[28] and M . Gerzafll] implement and discuss Monte Carlo 
Tree Search method applied to the game of Scotland Yard. The third paper written by A . 
Tulusak[30] has chosen Alpha-Beta aproach. Although both Alpha-Beta and Monte Carlo 
seem to bring satisfactory results they tend to be too predictable by a human player, thus 
easily mastered. 
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Another paper[22] from 2011, implementing Monte Carlo Tree Search(MCTS) shows 
impact of limiting the number of possible locations of M r . X by using information about 
Mr .X ' s moves along with their newly created technique called Location Categorization. By 
the end of the paper they prove that their implementation of M C T S can perform better 
compared to a commercial Scotland Yard program on the Nintendo DS. 

Concerning deep learning techniques there has been published a more recent paper[6] 
using adversarial neural networks combined with Q-learning. The performed investigation 
showed that the designed network driven detectives were able to grasp the concept of 
cooperation and, as the paper stated, by the end of training were making an effort to catch 
M r . X . 

Scientists from DeepMind made an effort to create more universal algorithm for A I 
player able to master both perfect and imperfect information games. They refer to the 
algorithm as Player of Game or PoG[26]. The algorithm defeated the state-of-the-art agent 
in Scotland Yard as well as reached great performance in chess, poker and Go. 

Another work[18] greatly inspired by Scotland Yard's concept of periodically reappear
ing M r . X and detectives trying to catch him tried to solve the same problem using a 
Gridworld game to contribute to inventing A I usable in real-world security system applica
tions. The game Gridworld used in the paper had similar board to the one that is being 
used in this thesis for playing the Scotland Yard and is shown in the next section. Attacker 
who was in similar role of Scotland Yard's M r . X was periodically seen every third move by 
the defenders who were trying to catch him. In the paper the idea of combining Q M D P 
and Bayesian inference into BayesQMDP has been introduced and tested on the mentioned 
game. 

3.4 Simplified rules of Scotland Yard board game 

Previous three mentioned bachelor's thesis[30][28][ll] worked with simplified rules of Scot
land Yard in order to reduce computational resources while testing performance of A l p h a -
Beta and Monte Carlo Tree Search methods on a Scotland Yard board game. In order to 
be able to compare the results from these three papers with the ones reached by using Deep 
Q-Network the same rules of the game were adapted. 

New rules were composed in a way to simplify the original game as much as possible 
while keeping the concept of hide-and-seek mechanics. To reduce the number of states 
instead of having 200 different stations, game board represents 5x5 grid resulting in 25 
different stations the players can stand on. 

Resized board however also meant smaller space for the player to play on which was the 
reason why number of players was reduced to three, two detectives and M r . X . The decision 
was based upon the fact that more detectives could put M r . X into disadvantage due to less 
options of stations he could use. On the other hand the detectives could overrule M r . X 
without making more effort thus not showing their full potential. 

Another difference from original rules of Scotland Yard is reduction of transport options. 
Instead of using four transport types with separate routs and being able to travel longer 
distances players are able to use only one type of transport allowing them to always move 
one space ahead. Board as small as the one proposed in the previous thesis would not 
make much use of more transports which however leaves a room for future expansions and 
studies. 

To sum it up the resulting rules are as follows. There are three players in total, one 
being M r . X and the remaining two are in a role of detectives. Board consists of a grid sized 
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5x5 spaces. Each of the players can move one space up, down, left or right. The players take 
turns always starting with M r . X who is then followed by the other two players-detectives. 
Position of Mr . X is hidden for the detectives and revealed on rounds 3, 6, 9, 12 and 15 
where the game ends and M r . X wins if not caught by agents by then. Positions of the 
players are chosen by random just as in original rules of Scotland Yard. 

move: 1 move: 2 move: 3 
| 0 | 1 | 2 | 3 1 4 1 | 0 | 1 | 2 1 3 | 4- | 1 3 | 1 | 2 | 3 | 4- | 

9 1 1 1 B 1 9 j 
1 1 1 1 1 1 1 1 1S| 

2 1 2 j | X | 2 I 1 2 j 
3 1 I X 3 | 1 2 3 | 

4 I 1 2 4 1 4 1 

Figure 3.2: Game played according to the simplified rules of Scotland Yard 

Figure 3.2 displays one complete game played by rules of Scotland Yard suggested in 
this section. The boards in the images show position of the players after both M r . X and 
detectives moved in the given round. Letter „S" in the rightmost image signifies position 
of M r . X as well as the fact that at that given time his position is visible for other players. 
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Chapter 4 

Reinforcement learning 

In machine learning it is needed to gather vast amount of data to train a model successfully. 
The amount of data required for training increases with increasing complexity of a problem. 
Added to that, collected data in such amounts can often contain missing or incorrect values 
affecting the final results of a trained model [3]. 

Reinforcement learning overcomes the mentioned problems by reducing the need for 
data to train. Instead it aims for finding an optimal solution by an agent interacting with 
the environment. Every action taken during the learning phase is evaluated. Actions can 
lead to either positive or negative rewards. Agent then tries to take an action based on 
previously received rewards in order to maximize the notion of cumulative reward which 
leads to discovering an optimal policy for the given environment. A n optimal policy is a 
policy that maximizes the expected total reward. 

At the beginning agent does not know any information about its environment and 
gains knowledge based on rewards received. Therefore as [25] states the principal issue 
is exploration. A n agent must experience as much as possible to learn how to behave 
within the environment. For this purposes Q-Learning for example, uses the exploration 
vs. exploitation trade-off in a form of e-greedy strategy, which is introduced in the following 
section. 

Reinforcement learning is a popular approach studied in game theory. Using Reinforce
ment Learning, computer algorithms such as Alpha Go and OpenAI Five have been able 
to achieve human level performance on games such as Go[27] and Dota 2[23]. 

One of the core concepts of Reinforcement Learning is the Deep Q-Learning algorithm 
that is described and implemented on a simplified version of Scotland Yard later on in this 
paper. 

4.1 Q—Learning 

Q-Learning is a model-free reinforcement learning algorithm used for learning the optimal 
policy in a Markov Decision Process. Its goal is to find an optimal policy by learning the 
optimal Q-values for each state-action pair. Q-Learning differs from other reinforcement 
learning algorithms by using off-policy method to separate the deferral policy from the 
learning policy [17]. In other words, to function, model first needs to undergo the learning 
process. 

During this process Q-value is computed for each state-action pair and stored in a 
Q-table where rows represent states and columns represent actions that can be taken. 
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At the beginning of the learning process all values in a Q-table are initialized to zero. 
Values in the Q-table are then iteratively updated throughout the learning process. By 
the end of the learning phase Q-table is filled with the optimal Q-values which is the final 
result of the learning. From that point on to determine the action from a given state the 
model uses the optimal values from the table. 

e-greedy strategy is used to determine which of the actions should be executed from a 
current state. The strategy is based on exploration vs. exploitation trade off. Exploration 
allows the agent to explore so far unknown state-action pairs by choosing the action ran
domly which possibly might lead to higher reward. Exploitation on the other hand chooses 
the action with the highest Q-value present in the Q-table, making use of known facts. 
As the learning process begins the agent does not know anything about the environment 
therefore it must explore it which is done by setting the e value to 1. The value of e gradu
ally decreases and exploitation is used more frequently as the time progresses and the agent 
gains knowledge. Further affects of e-greedy strategy are described and discussed here[12]. 

To update Q-value for a given state-action pair the key formula is as follows: 

Q(s, a) <— Q(s, a) + a(R(s) + rymaxQ(s', a) — Q(s, a)) 
a' 

where a is an action executed in state s resulting in state s'. a' represents the future 
action taken from the state s'. a stands for learning rate and its value ranges from 0 to 
1. R is the value of the reward received for taking an action o from the state s and 7 is a 
discount factor [25]. 

To break it down the expression states that the Q-value for a given state-action pair 
is a sum of the existing Q-value for the given pair and the equation which determines the 
best action in the current state. 

The goal is to bring the Q-value for the given state-action pair as close to the right 
hand side of the Bellman equation as possible. Q-value will eventually converge to the 
optimal Q-value q*. 

This is achieved over time by iteratively comparing the loss between the Q-value and 
the optimal Q-value for the given state-action pair and updating the Q-value in a Q-table 
to reduce the loss every time when encountered with the same state-action pair. This is 
done in a following manner: 

<{s,a) - q(s,a) 

E Rt+i + •ymaxq*(s', E 
fc=0 

7 Rt+k+i 

loss 

loss 

As a part of their course Reinforcement Learning-Developing Intelligent Agents [7], 
DeepLizard explains the above principles of Q-Learning even further together with practical 
examples of the algorithm on a simple board game. 

Although the Q-Learning algorithm has proven as one of the most effective reinforce
ment learning approaches, its advantages vanish with increasing complexity of the envi
ronment. Q-Learning relies on Q-table containing all possible state-action pairs. As [17] 
explains, when encountering problem with large state and action space, the algorithm de
mands enormous amount of memory to be able to save all existing state-action values. 

Many Q-Learning algorithms, such as Deep Q-Learning, have been developed to solve 
the problem above while keeping the main concepts of the original algorithm described in 
this section. 
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4.2 Deep Q—Learning 

Deep Q-Learning uses the main concept of Q-Learning but extends its idea even further by 
replacing the Q-table with a deep neural network - Q-network instead making it faster and 
more efficient at solving problems with large state-spaces. By leaving the Q-table behind, 
Deep Q-Network (DQN) algorithm solves the issue with unbearable amount of memory 
desired by Q-Learning to solve complex problems. 

To achieve stability, D Q N algorithm uses experience replay also known as replay memory 
to store the trajectory of the Markov decision process. During each iteration experience 
in a form of information: state, action, next state and reward is stored in replay memory. 
Later in the process mini-batches of states, actions, next states and rewards are sampled 
from the memory and used as observations to train the Q-network. The goal of D Q N is to 
approximate the action-value function. 

To obtain an unbiased estimator of the mean-squared Bellman error, D Q N algorithm 
uses two separate neural networks [8]. It uses target network to obtain target value and 
Q-network which is using the obtained target value to learn, leading to reduction of corre
lations. This approach is called the target Q technique[17]. 

When implementing the D Q N algorithm, weights of the Q-network need to be initial
ized with random values. Target network is then initialized as the exact copy of Q-network. 
Iteration through epochs starts taking place. Each epoch represents one whole game. Dur
ing each step of the game current state is passed through Q-network after which the agent 
chooses an action based on e-greedy strategy described earlier. The action is then executed 
into the environment and the agent is rewarded for the chosen action. The information 
gathered during this process is stored in replay memory. In the next step mini-batches of 
information stored in replay memory are created processed and passed through the target 
network. Resulting values from target network are used to calculate loss based on which 
the Q-network gets updated. After set number of iterations Q-network weights are copied 
to target network[16]. 

4.3 Double Q—Learning 

Double Q-Learning is another variation of Q-Learning. It was introduced by Hado Hasselt[14] 
in order to solve the problem of Q-Learning not performing well in stochastic environment. 
The problem of Q-Learning is seeded in overestimation of action values. After certain time, 
original Q-Learning algorithm stops searching new optimal values. Instead, as described 
earlier, it repeatedly selects the highest action value from already existing values as an 
approximation for the maximum expected action value [17]. 

To avoid this, double Q-Learning uses two Q functions. Unlike in target Q technique 
used in deep Q-Learning, here both Q functions need to be learning from separate set of 
experiences and are both used for an action selection. This is done in order to avoid using 
the same set of values for both selection and evaluation of an action. 

The algorithm is as follows [15]: 

QA(s, a) <- QA(s, a) + a(s, a)(R + -iQB(s\ a') - QA(s, a)) 
QB(s, a) <- QB(s, a) + a(s, a)(R + jQA(s', a') - QB(s, a)) 
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Double Q-Learning can either make use of Q-tables or replace them with neural net
works just as deep Q-Learning does. As this paper describes deep learning methods, from 
this point on the method is described as a variant using neural networks. 

The main principle of the algorithm stays as described in deep Q-Learning section. 
However after weight initialization of Q-Networks A and B, current state s is passed through 
both networks. The network with the higher Q value is chosen and action is selected by 
applying e-greedy strategy. After executing the chosen action the reward and next state 
are observed and network update is performed. 

When it comes to updating the networks, during each calculated step only one of the 
two networks gets updated. The selection of the network that gets updated is done by 
random. To update the chosen network evaluation of the performed action needs to be 
done. During the evaluation process, the network that is not chosen to be updated is used 
as a target network to calculate target Q value which can be seen in the equations above. 

Step by step description of an algorithm along with code example is shown here [5]. 

4.4 Double Deep Q-Network 

Despite the fact that both Double Q-Learning and Deep Q-Learning algorithms advance 
the original Q-Learning, there is still a room for improvement. As Hasselt has shown in 
his later paper[15] combining the two approaches into Double Deep Q-Network has proven 
even more efficient. The paper among other things, contains performance comparison of 
Double Deep Q-Network and Double Q-Learning on multiple games proving the rise of 
performance using this algorithm. 

The Double Deep Q-Network (DDQN) algorithm uses two independent networks to 
choose the action from a given state in the same manner as Double Q-Network algorithm 
to avoid overestimation of action values. After performing the chosen action and observing 
its affect on the environment the networks need to be updated. In D D Q N both networks 
get updated each step, which is done in the same way as in Deep Q-Learning. 

Each of the two networks has its own target network used to estimate the target Q 
value needed for calculating the loss according to which the network gets updated. Target 
network is the exact copy of a network using its target values to update itself otherwise 
known as an online network. Target network gets updated periodically with online network 
weights each N steps. 
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Chapter 5 

Deep Q-Learning implementation 
of Scotland Yard 

After thorough research on a topic of A I algorithms known to be used to play Scotland Yard 
shown in section 3.3, Deep Q-network(DQN) approach had been chosen to implement and 
compare its results to other methods implementing this game. 

One of the decisive factors was based on the fact that D Q N is a foundation of Q learning 
algorithms, as it was explained in the previous chapter. Its results could thus, be considered 
a starting point in the future studies and easily build upon this paper. 

The final decision to use D Q N was inspired by T. Dash's study[6]. Unlike in his work, 
the implementation in this thesis is attempting to increase performance of the detectives by 
calculating all Mr .X ' s possible locations in a similar manner as it was originally proposed 
in the paper[22] using M C T S to solve autonomous game-play of Scotland Yard. 

Main interest of this chapter is to describe final implementation of D Q N algorithm on 
a simplified version of the Scotland Yard board game introduced in section 3.4. Firstly 
explaining the choice of used technologies the chapter then advances with walk-through the 
training parameters and used network layout together with its visuals. 

5.1 Used technologies 

The D Q N algorithm has been implemented using Python alongside with PyTorch frame
work. 

Part of M . Sova's thesis[28] contains an implementation of the environment for Scotland 
Yard written in Python. The very same environment has been slightly edited and used in 
implementation by M . Gerzafl l ] . As this paper aimed to compare the achieved results with 
all the three mentioned works the same game environment has been adapted which led to 
choosing Python as a programming language. 

5.2 D Q N implementation 

D Q N algorithm has been implemented as described in section 4.2. During the learning pro
cess, the detective agent is always paired up with the second detective using A.Tulusak's[30] 
implementation of agent movement. This decision was based on the assumption that the 
D Q N agent could learn from more skilled agents as well as he could get used to the other 
agent moving around him on the board. 
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The agent, thus learns in the following way. In each round of a game first M r . X makes 
his move using Alpha-Beta, M C T S or random combination of the two methods, choice of 
which is defined at the start of a program. After the first detective makes move by Alpha-
Beta method, the current state of an environment is processed and passed to the neural 
network, which outputs the Q value. 

The rest is a standard D Q N routine procedure of choosing the action by epsilon-gieedy 
policy, performing the chosen move, observing the next state, receiving the reward and 
finally updating the policy network all of which has been described in more details in 
section 4.2. 

5.3 Neural Network architecture 

Slightly different architectures have been used for training M r . X and the detective models. 
Reasoning behind structures of used network layouts can be seen in the upcoming chapter 6 
where the whole process is described on performed experiments. 

Considering 5x5 size of the game board, the network architecture used to train model for 
game-play of M r . X consists of 50 neurons input followed by two hidden layers of which the 
first is double the size of the input layer whereas the second comes back to using 50 neurons. 
Output layer consists of 4 final neurons outputting the Q value needed to determine the 
direction of the move. 

The size of a network is flexible and can be easily modified for play on bigger board by 
setting the input neurons size on n 2 * 2. The next hidden layer is then of size n 2 * 4 and 
followed by the last hidden layer back at using n 2 * 2 neurons. 

The network used by detective agents has identical layout of the one used by M r . X 
except keeping the last layer of a size 100 neurons or n 2 * 4. 

In both network architectures ReLu has been chosen as an activation function between 
all the layers besides the output layer where the linear activation has been kept. The choice 
of leaving linear activation function in the output layer over commonly used SoftMax acti
vation was based on the fact that Q-learning makes use of Q values described in section 4.1. 
Instead of letting the network output the percentage of the best possible action as it is often 
times implemented, Q-learning aims for Q values which are used in later calculations and 
thus converting them into probabilities could affect results. 

To speed up the learning process, instead of initializing weights of the network with 
random or zero values, Kaiming or also known as He initialization has been used. Opposite 
to inbuilt PyTorch initializer, the performance after using Kaiming uniform initialization 
has risen by 3%. 

The visual representation of both used network architectures can be seen in the following 
diagrams. 
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Hi 

Figure 5.1: Neural network architecture used to train M r . X model 
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Hi H2 

Figure 5.2: Neural network architecture used to train detective model 

Each current state of the game is first preprocessed into two separate grids obtained in 
one 3D array. The first grid is used for marking the location of M r . X and the second is 
indicating location of the detectives. 

To represent the player's locations needed for Mr .X ' s move calculation, his and the 
detective's positions are marked in a corresponding grids by 1. 

However, because the location of M r . X is most of the time hidden, to indicate the 
detectives his location, Mr .X ' s grid is filled with probability with which he is standing 
on each station on the board giving the detectives clues where to search. A l l of these 
information are then reshaped into ID array and passed to the neural network as an input. 
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1 0 1 1 1 2 1 3 | 4 I 0 1 1 1 2 | 3 1 4 | 1 0 1 1 | 2 1 3 | 4 | 

0 1 S | 0 1 1 - 1 0 1 1 - 1 
1 1 1 1 1 1 1 2 1 1 1 1 * 1 1 j 1 2 j 1 j 
2 j 1 2 1 2 1 2 1 1 * j 
3 | 3 1 3 j 
4 1 4 I 4 I 

[ [ [ O . 0 . 0 . 0 . 1 - ] [[[ 0 . 9 . 0 . 0 . 5 0 . ] [ [ [ 0 - 0 . 0 . 2 5 0 . 0 . 5 ] 

[ 0 . 3 . 0 . 0 . 0- ] 0 . 0 . 0 . 0 . 0 . 5 ] [ 0 - 0 . 0 . 0 . 0 . ] 

[ 9 . 0 . 0 . 0 . 0 - ] 0 . 0 . 0 . 0 . 0 . ] [ 0 - 0 . 0 . 0 . 0 . 2 5 ] 

[ 3 . 9 . 0 . 0 . 0 - ] 0 . 0 . 0 . 0 . 0 . ] [ 0 - 0 . 0 . 0 . 0 . ] 

[ B . 0 . 0 . 0 . 0 - ] ] 0 . 0 . 0 . 0 . 0 . ] ] [ 0- 0 . 0 . 0 . 0 . ] ] 

[ [ 0 . 0 . 0 . 0 . 0- ] [[ 0 . 0 . 0 . 0 . 0 . ] [ [ 0 - 0 . 0 . 0 . 0 . ] 

[ 0 . 1 0 . 0 . 0 . 0-1 0 . 1 . 1 0 . 0 . 0 . ] [ 0 - 0 . 1 . 1 0 . 0 . ] 

[ 0 . 1 . 0 . 0 . 0 - ] 0 . 0 . 0 . 0 . 0 . ] [ 0 - 0 . 0 . 0 . 0 . ] 

[ 0 . 0 . 0 . 0 . 0- ] 0 . 0 . 0 . 0 . 0 . ] [ 0 - 0 . 0 . 0 . 0 . ] 

[ 0 . 0 . 0 . 0 . 0 - ] ] ] 0 . 0 . 0 . 0 . 0- ] ] ] [ 0- 0 . 0 . 0 . 0- ] ] ] 

[ [ [ O . 0 . 0 . 0 . 1 - ] [[[ 0 . 0 . 0 . 0 . 5 0 . ] [ [ [ 0 - 0 . 0 . 2 5 0 . 0 . 5 ] 

[ 0 . 0 . 0 . 0 . 0- ] 0 . 0 . 0 . 0 . 0 . 5 ] [ 0 - 0 . 0 . 0 . 0 . ] 

[ 0 . 0 . 0 . 0 . 0-1 0 . 0 . 0 . 0 . 0 . ] [ 0 - 0 . 0 . 0 . 0 . 2 5 ] 

[ 0 . 0 . 0 . 0 . 0 - ] 0 . 0 . 0 . 0 . 0 . ] [ 0 - 0 . 0 . 0 . 0 . ] 

[ 0 . 0 . 0 . 0 . 0 - ] ] 0 . 0 . 0 . 0 . 0 . ] ] [ 0- 0 . 0 . 0 . 0 . ] ] 

[ [ 0 . 0 . 0 . 0 . 0- ] [[ 0 . 0 . 0 . 0 . 0 . ] [ [ 0 - 0 . 0 . 0 . 0 . ] 

[ 0 . 0 . 1 . 0 . 0-1 0 . 1 0 . 0 . 1 . 0 . ] [ 0 - 0 . 1 0 . 0 . 1 - ] 

[ 0 . 1 0 . 0 . 0 . 0 - ] 0 . 0 . 0 . 0 . 0 . ] [ 0 - 0 . 0 . 0 . 0 . ] 

[ 0 . 0 . 0 . 0 . 0- ] 0 . 0 . 0 . 0 . 0 . ] [ 0 - 0 . 0 . 0 . 0 . ] 

[ 0 . 0 . 0 . 0 . 0 - ] ] ] 0 . 0 . 0 . 0 . 0- ] ] ] [ 0- 0 . 0 . 0 . 0- ] ] ] 

Figure 5.3: Three consecutive rounds of game play visualizing input states for 
the neural network used for calculating next detective's action. The first row 
represents move made by M r . X . Second row shows preprocessed game state for the detective 
no . l . Finally the third row displays preprocessed state for the detective no.2 

Each column in the figure above shows one of the three consecutive rounds of a game 
play after M r . X took turn and agents are about to be moved. Below each board state there 
are two 3D arrays each of them used as an input state passed through neural network to 
calculate corresponding action for the first and the second detective. Top board visible in 
the 3D array depicts position of M r . X , whereas lower board represents detective's current 
positions. Detective for whom the action is calculated is labeled as 10 and the other 
detective that is currently not being moved as 1. 

5.4 Rewarding system 

As it was mentioned in the section 4 positive and negative reinforcement is what drives 
the Q-learning agents and teaches them how to improve their actions. In this thesis's 
implementation of D Q N several rewarding systems have been tested, two of which are 
discussed closer in section 6.2, however the rewarding system described in this section has 
proven to bring the best results. 

The detective gets rewarded with positive 1 if stepping on station that could possibly 
be current location of M r . X . In case he wins the game by either stepping on station M r . X 
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occupies or helps the other agent to surround M r . X in the corner of the board, he gets 
rewarded with 10 points. On the other hand if the detectives loose the game he is punished 
with negative 10 points. Awarding agent with negative reward when moving out of board 
space or stepping on a station that is occupied by the other detective has proven ineffective, 
thus in this case the reward value received by the agent is equal to 0. 

M r . X is rewarded 1 point each round he manages to avoid detectives and gets negative 
5 points if he gets caught and looses the game. In case M r . X agent chooses to move out of 
the game board his chosen move is abandoned and new move for the given round is chosen 
by random. If he survives such move without being caught by the detectives he is rewarded 
with 0, the same way detective agents are when encountering similar situation. 

5.5 Training parameters 

Based on the fact that neural networks learn by themselves, their behaviour varies each 
time when learning different task. Thanks to this, setting parameters of a given network 
is dependent on a problem it is meant to solve. Although knowledge of each parameter's 
purpose and its affect on learning process most certainly helps, because of unpredictability 
of neural network's behaviour, the parameters are many times tweaked into perfection by 
trial and error approach. 

The parameters that have been chosen for this thesis's D Q N implementation are pre
sented in this section. 

Batch size has been set to size of 512 samples suggested by paper[29], studying the 
accelerated methods for deep reinforcement learning, as the best behaving batch size for 
D Q N . 

The size of replay memory, from which batches were sampled while training, was set to 
15000. Among tested 10000, 15000 and 20000 sizes of memory, this value proved to be the 
optimum size for this work's implementation of D Q N . 

Learning rate was tweaked into 0,001 final value that showed the best results, whereas 
7 made use of 0,975 value. 

Policy network was set to update every step using HuberLoss function, used to calculate 
loss value needed for the update along with Adam optimizer. Its weight values are copied 
into target network every 100 steps. Besides HuberLoss function, Mean squared error (MSE) 
loss function has been tested, however results of the tests performed suggested HuberLoss 
was performing better within this thesis's implementation. 

Value of e is at the beginning of the training process equal to 1 representing 100 percent 
chance of random choice of action. The value updates after each game or otherwise called 
epoch, using this formula: e = e — 1/epochs until it reaches 0,01 which is the lowest value 
possible for this parameter. 
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Chapter 6 

Experiments 

To perfect the learning process in order to get the best possible results, multiple experiments 
had been run on networks of M r . X and detective separately. Used network architecture, 
rewarding system and D Q N hyper-parameters presented in chapter 5 were all results of 
performed experiments. 

This chapter describes the fine tuning process and tries to express reasoning behind the 
chosen network architectures, rewarding system and opponents used in the final version of 
implementation. 

A l l of the test results included in this section were product of 10000 game repetitions 
following manners of M . Gerzafll] who used the same game count for testing his M C T S 
implementation. 

M . Gerza's[ll] as well as A.Tulusak's[30] implementations were used during the process 
of training the models, leaving out M . Sova's[28] implementation as it implemented the 
same method as M . Gerza while achieving lower performance. 

A l l of the models presented in this chapter were trained on 10000 games. The amount 
of games needed to train the model was determined by training a model with the identical 
parameters for a period of 5000, 10000 and 20000 games. While 5000 games was not enough 
time to bring satisfactory results, 20000 games turned out to be more time than needed 
and the model started to retrain making the whole training process counterproductive. 

6.1 Experimenting on Mr .X 's network 

The first experiment included in this section was aimed to determine the best opponent to 
train Mr .X ' s model with in order to maximize his winning rate as well as to create the most 
universal opponent possible. 

The second experiment helped to define the most efficient architecture of a neural net
work used to train the model of M r . X . 

The last experiment tried to combine knowledge learned from the previous two experi
ments which led to achieving the best results and thus the strategy was applied in the final 
implementation. 

E x p e r i m e n t 1 

To determine which method represents the best opponent for M r . X to learn on, we proposed 
an experiment to test 3 different opponent types. The first model was trained using only 
Alpha-Beta while the second model used only M C T S method to play detective's moves 
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while training. The third training applied a random choice between the two mentioned 
types of methods reset before each game. 

A - B M O T S 2022 A - B & M C T S 
random 24,35% 23,09% 22,41% 
A - B 52,96% 75,2% 61,83% 
M O T S 80,4% 69,05% 69,61% 

Figure 6.1: Performance of trained models where columns represent method used 
to train each model and rows represent the method used while testing. 

As it can be seen in the table above, M r . X won the most games against A - B driven 
detectives when the network was trained using A - B detectives as an opponent. 

The same could be applied for M C T S as M r . X performed the best when trained against 
this method yet his performance dropped when playing against A - B . 

This was caused by the fact that M r . X learned a specific strategy to win against one 
type of method. However, the same strategy he acquired was not applicable to a different 
game style used by another method. 

Although the model trained using both methods did not reach the best results when 
compared to the models playing against the same methods they were trained on, it has 
been considered the best approach as it turned out to be the most universal. 

E x p e r i m e n t 2 

Another important aspect of the process was to determine the architecture of a neural 
network used by D Q N agent. For this purpose there had been suggested experiment to 
perform three sets of training each with the same D Q N parameters but modified architecture 
of neural network. 

The first architecture used two hidden layers, the first of a size 100 neurons and the 
second 50 neurons. 

The second architecture made use of one additional hidden layer of a size 100 neurons. 
Its full structure then consisted of 50 neurons in input layer followed by two 100 neuron 
hidden layers continuing with one more hidden layer made of 50 neurons and finished by 4 
neurons in output layer. 

Third and the last model used 4 hidden layers three of which consisted of 100 neurons 
each and the last one consisted of 50 neurons just as the two previously used models. 

A l l the three models have been trained using Alpha-Beta implementation of the de
tectives as an opponent as the experiment was taking place simultaneously with the first 
experiment which led to not being able to apply its results in use. 

2 hidden 3 hidden 4 hidden 
random detectives 22,04% 22,41% 21,76% 
A - B 2020 53,23% 61,83% 67,4% 
M C T S 2022 80,89% 69,61% 68,01% 

Figure 6.2: Performance of models trained using architectures consisting of dif
ferent number of hidden layers. Rows represent detective's method while testing. 
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The performed experiment revealed the architecture with the lowest number of hidden 
layers could produce model with the highest winning scores against the Alpha-Beta method 
which essentially was a method the model was trained on, thus it meant it could have the 
best learning potential. Therefore one additional experiment was proposed using network 
architecture similar to the best performing one at that time. 

The last network consisted of two hidden layers sized 100 neurons each. However, the 
results of model trained using this network layout did not surpass the performance of the 
models displayed in the table above therefore it was no longer used. 

E x p e r i m e n t 3 

The first experiment proved that the model learning next to mix of both Alpha-Beta and 
M C T S methods as training opponent received the best performance. However, from the 
second experiment it was still uncertain whether using two or three hidden layers in the 
network brought better results. 

Therefore, the third experiment was proposed. Training both architectures using mix 
of A - B and M C T S methods following the first experiment was supposed to reveal which of 
the two architectures could reach better overall performance. 

2 hidden layers 3 hidden layers 
random detectives 17,36% 22,41% 
A - B 2020 60,83% 61,83% 
M C T S 2022 62,05% 69,61% 

Figure 6.3: Performance comparison of M r . X models trained using network ar
chitecture consisting of two and three hidden layers. 

From results included in the table above, it was concluded the most efficient neural 
network architecture consisted of two hidden layers. Diagram of architecture chosen based 
on this experiment can be seen in section 5.1. 

6.2 Experimenting on detective's network 

Experiments in this section made use of knowledge gained by previous experiments per
formed on model for M r . X . A l l of the training sessions described in this section therefore 
used combination of both Alpha-Beta and M C T S methods to determine movement of M r . X 
on the board. 

While similar experiment was proposed to determine the method for the second detec
tive, as only one of them was driven by neural network during training, the experiment did 
not reach the successful end. Performing more than 5000 game iterations needed for model 
training on M C T S implementation while using only one of the detectives resulted in seg
mentation fault each time before it reached the end as the implementation was never meant 
to be used with one agent only. The decision was made to make use of A - B implementation 
instead, which was used in all the experiments. 

The first included experiment was targeted to find the best possible network architecture 
to train the detective agent with, whereas the second experiment aimed to express the 
reasoning behind the choice of rewarding system in the final implementation. 
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E x p e r i m e n t 1 

Experiment performed on Mr.X 's model revealed that the most efficient network layout 
used 2 hidden layers out of which the first one consisted of 100 and the second 50 neurons. 
However based on the fact that the objective of detective differs from the objective of M r . X 
it was decided to put into test three different layouts and observe the results. 

The first layout represented the architecture chosen in the final implementation 5.2 
of M r . X using 2 hidden layers, with the same size of 100 neurons. 

The second layout consisted of 2 hidden layers, one of a size 100 and second of 50 
neurons. 

The third layout was an extended version of the second layout using two 100 neuron 
layers and the third 50 neuron hidden layer. 

First layout Second layout Third layout 
random detectives 96,65% 93,94% 86,15% 
A - B 2020 27,5% 27,08% 9,2% 
M O T S 2022 29,8% 23,07% 11,23% 

Figure 6.4: Performance comparison of detective models trained using network 
architecture consisting of two and three hidden layers. 

This experiment revealed that the architecture achieving the best results while training 
model of M r . X did not reach the same best results while training detective model. On the 
other hand the first design of network architecture which performed weak when training 
M r . X turned out to bring the best results in detective's training. 

E x p e r i m e n t 2 

While determining rewarding system for M r . X was a straight forward process, there were 
more options of rewarding the detective for his action. Two of these possible rewarding 
systems were chosen and put to test in this section. 

Both of the rewarding systems shared 1 point reward for detective agent stepping on a 
station with possible occurrence of M r . X . This was done in order to teach the agent that 
such stations were more desirable for him to search through. 

The systems also shared -10 reward for loosing the game as it was important to teach 
the agent to avoid such situation. 

The systems differed in following ways. 
The first system rewarded the agent with 10 points when the detectives won the 

game not taking into consideration whether the agent who won the game used D Q N or 
A - B implementation. The idea behind this was to teach the agent cooperation with the 
other agent and let him know he is not the only one interacting with the environment. 
Inspiration for this approach came from OpenAI's paper[2] where they successfully taught 
neural network agents to play the game of hide-and-seek. 

The second system rewarded the agent with 10 points when the detectives the game 
but the D Q N detective contributed to the win to see if the agent would start to rely on the 
other agent less and tried to win a game by himself. 
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First system Second system 
random detectives 92,30% 96,31% 
A - B 2020 10,49% 21,13% 
M O T S 2022 12,41% 18,78% 

Figure 6.5: Performance of models trained using different types of rewarding 
systems 

The performed experiment proved D Q N agent was able to learn better strategy when 
rewarded only for his actions. However, rewarding the D Q N agent when helping A B agent 
to surround M r . X in a corner of the game board, making it impossible for him to run away 
did achieved success of teaching the D Q N agent somewhat cooperation. 

6.3 Results 

After the first training of both M r . X and detectives models by using final D Q N implementa
tion described in section 5, models were retrained multiple times each time getting slightly 
better results. When retraining a given model, e value has been set to 0.20 in order to 
allow the retraining model to use gained knowledge while leaving 20% chance of discovering 
better strategy by random movement. 

The best achieved results were compared to the performance of the other already existing 
methods by running 10000 game iterations. 

The value of simulation time needed by M T C S implementations was set to 0,05 in 
an attempt to fasten the process as the other two used methods needed less computation 
time. This time reduction however showed not to have significant implact on method's 
performance. 

D Q N 2023 M O T S 2022 M O T S 2021 A - B 2020 
D Q N Hrkl'ova 2023 - 39,88% 88,89% 33,79% 
M O T S Gerza 2022 62,05% - 93,83% 66,02% 
M O T S Sova 2021 25,11% 24,39% - 17,86% 
A - B Tulusak 2020 60,03% 87,39% 99,1% -

Figure 6.6: Performance comparison of final D Q N implementation. Rows represent 
method applied on detectives, columns represent method used for M r . X movement. 

The overall results showed that detectives and M r . X using D Q N were able to grasp the 
main concept of a proposed game. As it can be seen in the table 6.6 D Q N M r . X succeeded 
to overcome both M C T S and Alpha-Beta method's M r . X and represented the toughest 
opponent for the two methods. 

The detectives on the other hand managed to surpass only one of the existing imple
mentations. However by playing against random M r . X and reaching 98,60% winning rate 
it is more than safe to say the agents understood the rules and concept of the game. 

The experiment from section 6.1 proved it was possible to reach better performance 
against each of the models presented in the table by training the model against one certain 
type of method. By training M r . X using Alpha-Beta agents it was possible to lower their 
learning rate to 53,23% chance of winning only after first training of the given model. 
However, the aim of this thesis was to create the most possible universal model for both 
detectives and M r . X . 
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6.4 Suggestions for future improvement 

This thesis proved that by using the most basic form of Q-learning combined with neural 
network in the form of Deep Q-learning (DQN), the detectives were able to understand 
rules of the game presented to them as well as they would make an effort to win the game 
by trying to search through location of possible occurrences of M r . X . 

This discovery led to the conclusion that the results achieved in this thesis could be 
greatly improved by one of the presented modifications of D Q N presented in chapter 4. 

In addition, the D Q N implementation could possibly bring much better results by mak
ing use of convolutional neural networks instead of the linear layers used in this thesis's 
implementation. 

By implementing the algorithm using convolutional neural network(CNN) the game 
could be possibly expanded to a version closer to the original Scotland Yard by adding 
at least one type of different transport, making it more interesting to play and thus more 
appealing to real-life players. 
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Chapter 7 

Conclusion 

The aim of this thesis was to acquaint myself with deep learning methods used in game 
theory and apply the gained knowledge on the simplified rules of the Scotland Yard board 
game in order to improve performance of already existing methods implemented for this 
game. 

In the early stages it was crucial to fully grasp the concept of uncertainty in a form of 
hidden movement present in the game of Scotland Yard. Therefore several board games 
with the mentioned mechanism were studied 2. Each game was broken down and looked 
at from three different angles; its rules, game strategy and research of existing artificial 
intelligence able to play described games. 

After that thorough research of the Scotland Yard board game 3 had been performed 
to learn its rules, strategy of game-play, but most importantly currently known techniques 
used to design machine learning agents for this game. 

After proposing simplified rules of Scotland Yard 3.4 used in this thesis's implementation 
of the given game, research of deep learning methods had been done with the main focus 
on Q-learning algorithms 4. 

Deep Q-Network(DQN) algorithm had been chosen and implemented to play the men
tioned board game. The decision was made, based on the fact that D Q N algorithm repre
sented the basis of Q-learning. Thus, in the future it could be easily expandable into one 
of the other forms of Q-learning algorithms mentioned in section 4 while using this thesis 
to build upon. 

There were several experiments 6 performed on the proposed implementation to im
prove training process of the models used to determine next move of the players placed 
on the board. The experiments described in this thesis included description of designing 
the architecture of neural network used in the final implementation as well as process of 
choosing the opponents to train both models on. 

In order to serve this thesis's purpose of becoming a good starting point of extended 
Q-learning studies, the final implementation of D Q N had been fully described in section 5. 

The final trained models were put to test and their results were compared with three 
existing implementations of two different methods namely Alpha-Beta and Monte Carlo 
Tree Search 6.3. 

While the experiments have shown that the algorithm was able to train better per
forming models by training them using one of the mentioned methods only, the goal set at 
the beginning was to create the most universal model possible in order to achieve better 
game experience to human player. Therefore, both methods were used during training the 
final models, which led to better overall performance. The results showed that final M r . X 
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represented the toughest opponent for both M . Gerza's and A . Tulusak's implementations 
of detectives. However, when tried to play against human opponent it was visible that the 
implementation still had a lot to improve. 

Model used by detectives managed to surpass only one of the three implementations it 
was tested on. However, from observing its game-play and move choices it was visible that 
the detectives tried to search for M r . X in the places with certain amount of probability of 
his occurrence. 

The biggest advantages of D Q N opposite to other methods turned out to be compu
tational resources and time needed to perform a given move running 10000 games against 
random player under 4 minutes, making it the most perspective method to implement on 
original rules of Scotland Yard in the future. 

Making use of convolutional neural networks could greatly improve performance of the 
implemented D Q N algorithm alongside with upgrading the algorithm to Double Deep Q-
Network. 
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Appendix A 

Contents of the included storage 
media 

• src/ - Folder with source files 

• latex/ - Folder with I^TgKsource files of this thesis 

. README.md - R E A D M E file for the project 

• thesis.pdf - Thesis report file 

• thesis-print .pdf - Thesis report file for print 

src/ folder besides source files implementing D Q N algorithm further contains: 

• AT_2020/ - Folder with source files implementing Alpha-Beta by A . Tulusak 

• MC_2022/ - Folder with source files implementing M C T S by M . Gerza 

• MS_2021/ - Folder with source files implementing M C T S by M . Sova 

• trained_models/ - Folder with pretrained models 
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