
BRNO UNIVERSITY OF T E C H N O L O G Y
V Y S O K É U Č E N Í T E C H N I C K É V B R N Ě

FACULTY OF INFORMATION T E C H N O L O G Y
D E P A R T M E N T OF C O M P U T E R S Y S T E M S

F A K U L T A I N F O R M A Č N Í C H T E C H N O L O G I Í

ÚSTAV P O Č Í T A Č O V Ý C H S Y S T É M Ů

DATA LOADER FOR C O M P L E X TESTING OF O N - B O A R D S Y S T E M S
D A T A L O A D E R P R O K O M P L E X N Í T E S T O V Á N Í P A L U B N Í C H S Y S T É M Ů

M A S T E R ' S THESIS
DIPLOMOVÁ PRÁCE

A U T H O R Be. DAVID H R B E K
AUTOR PRÁCE

ADVISOR doc. Ing. RICHARD RŮŽIČKA, Ph.D., M B A
VEDOUCÍ PRÁCE

B R N O 2018

Zadáni diplomové práce/21296/2017/xhrbek03

Vysoké učení technické v Brně - Fakulta informačních technologií
Ústav počítačových systémů Akademický rok 2017/2018

Zadání d ip lomové práce
Řešitel: Hrbek David, Bc.
Obor: Počítačové a vestavěné systémy
Téma: Data loader pro komplexní testování palubních systémů

Data Loader for Complex Test ing of On-Board Systems
Kategorie: Vestavěné systémy

Pokyny:
1. Prostudujte problematiku současných palubních systémů letadel, zaměřte se na standardy ARINC

související s "data load", především ARINC 615A.
2. Seznamte se s jednotkou pro satelitní komunikaci Aspire 400 od firmy Honeywell. Analyzujte

softwarové konfigurace jednotky Aspire 400 pro testování i letový mód. Seznamte se s nástroji pro
přechod mezi softwarovými konfiguracemi jednotky Aspire 400.

3. Navrhněte pro jednotku Aspire 400 data loader, který umožní automatizované nahrávání všech
potřebných softwarových konfigurací.

4. Navržený data loader implementujte v souladu se standardem ARINC 615A.
5. Ověřte realizované řešení a demonstrujte funkčnost ve sledovaných aspektech.

Literatura:

• Dle pokynů vedoucího.

Při obhajobě semestrální části projektu je požadováno:
• Splnění bodů 1 a 2 zadání.

Podrobné závazné pokyny pro vypracování diplomové práce naleznete na adrese
http://www.fit.vutbr.cz/info/szz/

Technická zpráva diplomové práce musí obsahovat formulaci cíle, charakteristiku současného stavu, teoretická a odborná
východiska řešených problémů a specifikaci etap, které byly vyřešeny v rámci dřívějších projektů (30 až 40% celkového rozsahu
technické zprávy).

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické zprávy, úplnou
programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě budou uloženy na standardním
nepřepisovatelném paměťovém médiu (CD-R, DVD-R, apod.), které bude vloženo do písemné zprávy tak, aby nemohlo dojít k jeho
ztrátě při běžné manipulaci.

Vedoucí: Růžička Richard, doc. Ing. , Ph.D. , MBA, UPSY FIT VUT
Datum zadání: 1. listopadu 2017
Datum odevzdání: 23. května 2018 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta informačních technologií
Ústav počítačových systémů a sítí

61£.ffi Brno, Božetěchova 2

prof. Ing. Lukáš/Sekanina, Ph.D.
vedoucí ústavu

http://www.fit.vutbr.cz/info/szz/

A B S T R A C T

T h i s master 's thesis summar i zes theory on how to perform da ta load on to on -board compu te rs

of a i rcraf ts . Speci f ica l ly , how au toma ted da ta load of Honeywe l l ' s Asp i re 400 satel l i te da ta

unit is done. F i rs t part o f the text descr ibes requi rements and possib le ways o f the da ta load

process, i nc lud ing s tandards tha t are app l icab le to th is top ic in the aeronaut ica l industry. T h e

second part descr ibes the imp lemen ta t i on o f the da ta load process on the a forement ioned unit.

K E Y W O R D S

da ta load, Asp i re 400 satel l i te da ta unit , A R I N C s tandards

A B S T R A K T

T a t o d ip lomová práce shrnuje teori i ohledně nahrávání dat (da ta load) do palubních počí tačů

letadel , konkré tně do sate l i tn í da tové j edno tky Asp i r e 400 od f i rmy Honeywe l l . P rvn í část

tex tu popisuje požadavky kladené na proces nahrávání dat a možné způsoby jeho provedení.

Jsou zde také představeny s tandardy týka j íc í se toho to t é m a t u v leteckém průmys lu . Druhá

část se pak zabývá s a m o t n o u imp lemen tac í procesu nahrávání dat na zmíněné jedno tce .

K L Í Č O V Á S L O V A

nahrávání dat, sa te l i tn í da tová j edno t ka Asp i r e 400 , s tandardy A R I N C

H R B E K , D a v i d . Data Loader for Complex Testing of On-Board Systems. B r n o , 2018, 71 p.

M a s t e r ' s Thes i s . B r n o Univers i ty o f Technology, Facu l ty o f Informat ion Techno logy , Depar t

ment o f C o m p u t e r Sys tems . Adv i sed by doc . Ing. R ichard Růžička, P h . D . , M B A

DECLARATION

I declare tha t I have wr i t ten the M a s t e r ' s Thes is t i t led " D a t a Loader for C o m p l e x Tes t ing of

O n - B o a r d S y s t e m s " independent ly , under the gu idance o f the advisor and using exclus ively

the techn ica l references and o ther sources of in fo rmat ion c i ted in the thesis and l isted in the

comprehens ive b ib l iography at the end o f the thesis.

A s the au thor I fu r thermore declare that , w i th respect to the creat ion of th is M a s t e r ' s

Thes is , I have not infr inged any copyr igh t or v io la ted anyone 's personal a n d / o r ownersh ip

r ights. In th is contex t , I am ful ly aware o f the consequences of break ing Regu la t ion § 11 o f the

Copy r igh t A c t N o . 1 2 1 / 2 0 0 0 C o l l . of the C z e c h Repub l i c , as amended , and o f any breach of

r ights related to in te l lectual property or in t roduced w i th in a m e n d m e n t s to relevant A c t s such

as the Intel lectual P rope r t y A c t or the Cr im ina l C o d e , A c t N o . 4 0 / 2 0 0 9 C o l l . , Sec t i on 2, Head

V I , Par t 4.

B rno

author 's s ignature

A C K N O W L E D G E M E N T

I wou ld like to thank my superv isor , doc . Ing. R ichard Růžička, P h . D . , M B A , for his gu idance .

I wou ld also like to thank my superv isor at Honeywe l l , Be . Pe t r Ka r tous , for his insights on

the mat ter , and the c o m p a n y i tself for a l low ing me to use thei r fac i l i ty and equ ipmen t to work

on this thesis.

B rno

author 's s ignature

CONTENTS

1 Introduction 9

2 Data Load Definition 10

3 ARINC standards 11

3.1 A R I N C 429 12

3.2 A R I N C 600 14

3.3 A R I N C 615 15

3.4 A R I N C 615A 16

3.5 A R I N C 664 18

3.6 A R I N C 665 19

3.7 A R I N C 781 20

4 Aspire 400 22
4.1 S D U structure 22

4.1.1 M P C 23

4.1.2 D A B C 25

4.1.3 S C M 27

4.2 M P C Software Parts 28

4.2.1 F P G A Configurat ion 28

4.2.2 R C W 28

4.2.3 M i n i b o o t 28

4.2.4 U - B o o t 28

4.2.5 H B I T 29

4.2.6 Fl ight Code 30

4.3 D A B C Software Parts 30

4.3.1 F P G A Configuration 31

4.3.2 Loader Program 31

4.3.3 E B O O T 33

4.3.4 I B I T 33

4.3.5 S w i f t B B 33

4.4 A T E 33

5 Data Load Scenarios 35
5.1 M P C D a t a L o a d Scenarios 37

5.2 D A B C D a t a L o a d Scenarios 38

6 Loading low level software 40
6.1 Boundary Scan 40

6.2 In-system Programming 43

6.3 F lashing M P C 43

6.4 Flashing D A B C 44

7 M P C Data Load Using U-Boot 45
7.1 Requirements 45

7.2 Design 46

7.2.1 Settings F i le 47

7.2.2 Patterns F i l e 47

7.2.3 C a l l Options 48

7.2.4 Communica t ion Processing 48

7.2.5 User Cont ro l 49

7.2.6 Logging and Er ro r Handl ing 49

7.3 Implementation 49

7.4 Verification and Val ida t ion 51

8 DABC Data Load 54

9 ARINC 615A Compliant Data Load 56
9.1 Requirements 56

9.2 Design 57

9.2.1 S D U Side 57

9.2.2 F I N D Pro toco l 58

9.2.3 T F T P 59

9.2.4 Console Interface 61

9.2.5 G U I 61

9.2.6 TestStand Interface 62

9.3 Implementation 63

9.4 Verification and Val ida t ion 63

10 Conclusions 64

Bibliography 66

List of abbreviations 69

LIST OF FIGURES

3.1 A R I N C 600 connector on L R U backplane 14

4.1 Aspire 400 S D U loadable components and their interconnections 23

4.2 M P C processor block diagram 24

4.3 D A B C processor block diagram 27

4.4 D A B C applicat ion selection 32

5.1 Aspire 400 S D U lifecycle w i th data loads highlighted 36

6.1 Pr inc ip le of boundary scan testing and in-system programming 41

7.1 Sequence diagram of H B I T data load onto M P C processor 52

9.1 Sequence diagram of data load process ini t ia ted by DataLoader 60

1 INTRODUCTION

This master's thesis D a t a Loader for Complex Testing of O n - B o a r d Systems was imple

mented in cooperation wi th Honeywell company. The goal was to come up w i t h a way

of automated and reliable data load of Aspi re 400 satellite data unit (S D U) . Aspi re 400

is an aircraft on-board unit , currently under development at Honeywell . The unit has to

use various software configurations during its life cycle, therefore there were mult iple data

load scenarios that needed to be considered.

In this document, the data load process i n general is described (see chapter 2), in

cluding some of the important applicable standards used i n aeronautical industry (see

chapter 3). After this theoretical part, the Aspi re 400 product is described, w i th emphasis

on the key components, their software parts, and the equipment used i n the product ion

process (see chapter 4). Another chapter is devoted to possible data load scenarios (see

chapter 5). The description of the data load process and its implementat ion is split into

several subprocesses, starting wi th data load of the low level software parts (see chapter 6),

over the first t ime data load of the target software (see chapter 7 and chapter 8), to the

final A R I N C 615A compliant data load (see chapter 9). In the end, the results of this

thesis are summarized, together w i t h ideas for possible improvements (see chapter 10).

The main scope of the thesis were the data load scenarios used i n product ion on the

unit level. See Figure 5.1 i n chapter 5 for clarification. Implementation of these scenarios

is described i n chapter 7 and chapter 9.

Due to the commercial nature of the Aspire 400 project, this document is kept at

a higher level of abstraction where possible. O f course, details important to the data load

problematics are described as much as possible w i th compliance to Honeywell 's pol icy of

publishing information. Nevertheless, some of the information wi th in this document can

be regarded as Honeywell 's intellectual property and should be treated as such. A n y usage

of information about the Aspi re 400 project should be consulted wi th Honeywell .

9

2 DATA LOAD DEFINITION

D a t a load is a process of wr i t ing specific software onto some device, called the target

hardware. The software is usually low level, e.g. some k ind of firmware or lightweight

operating system. In the context of this document, the target hardware is an aeronautical

equipment, but generally, it can be any piece of hardware that needs some software for

operation.

D a t a load is performed using a data loader. D a t a loader can be some special hardware,

but it can also be an ordinary P C . The only requirements are the support of the required

interfaces, e.g. Ethernet, and software which is able to communicate w i t h the target

hardware.

D a t a loader can communicate w i th the target hardware directly, i.e. be connected

straight to i t , or it can be connected to a bus to which mult iple devices, including the

target hardware, are connected. In the latter case, data loader also needs to be able to

address the correct device or devices on the bus.

The goal of the data load process is to write the desired data into non-volatile memory

of the target hardware on appropriate addresses, so that the target hardware can boot

up and operate using the loaded software. The non-volatile memory is nowadays usually

electrically erasable programmable read-only memory (E E P R O M) or flash memory.

It is data loader's responsibili ty to ensure the data load process is carried out properly,

i.e. the data is wr i t ten onto the target hardware correctly and the target hardware operates

as expected. Therefore the data loader has to support at least error checking and should

preferably support also error handling. If the data load process is unsuccessful, the data

loader needs to clearly report this and should provide more information about the problem

to its operator. The data loader can also t ry to revert the target hardware's configuration

to the point it was i n before starting the data load process.

The term data load is sometimes used not only for wri t ing , or uploading, data onto

a device. It can also be used to describe the process of getting, or downloading, data from

the device. In the latter context, data loader can be used to get information about the

device it is connected to. For example information about the purpose, type, configuration

of the device, etc. can be obtained.

This is a general description of the data load process. It may seem to be quite vague,

but there is no precise definition. However, there are standards wi th more specific re

quirements for the target hardware and the data loader. These are described in the next

chapter.

10

3 ARINC STANDARDS

Aeronaut ical Radio , Incorporated (A R I N C) is a company which was founded in 1929 by

four starting Uni t ed States airline companies. The goal of the company was to serve the

communicat ion needs of the transportat ion industry (see [1], page i i) . T i l l 2007, A R I N C

was owned by shareholders, most of whom were airline companies, bo th U . S . and others.

In Ju ly 2007, A R I N C was bought from its shareholders by a private equity company

called The Car ly le Group (see [2]) and i n 2013 The Car ly le Group sold it to Rockwel l

Col l ins Inc. Since Rockwel l Col l ins does business i n avionics, it sold A R I N C ' s Industry

Standards Organizat ion subsidiary to avoid any conflict of interest. It was bought by S A E

International (see [3]). S A E originally stood for Society of Automot ive Engineers, but

nowadays it is a global association of engineers and technical experts in the aerospace,

automotive and commercial-vehicle industries. One of their goals is voluntary consensus

standards development (see [4]).

Therefore, the A R I N C standards are currently issued by S A E I T C (I T C stands for

Industry Technologies Consort ia) , more precisely by A R I N C Industry Act iv i t ies , an S A E

I T C program (see [5], page i i) . T h i s program organizes aviat ion industry committees,

one of them being the Air l ines Electronic Engineering Commit tee (A E E C) . A E E C is an

international body of airline technical professionals that leads the development of technical

standards for airborne electronic equipment, including avionics and in-flight entertainment

equipment-used in commercial , mil i tary, and business aviat ion. The A E E C establishes

consensus-based, voluntary form, fit, function, and interface standards that are published

and which are known as A R I N C standards (cited from [1], page i i) . A E E C is the body

that prepared the standards which are important for this thesis.

There are three classes of A R I N C standards (cited from [1], page i i) :

• A R I N C Characteristics, which define the form, fit, function, and interfaces of avion

ics and other airline electronic equipment. A R I N C Characteristics indicate to prospec

tive manufacturers of airline electronic equipment the considered and coordinated

opinion of the airline technical community concerning the requisites of new equip

ment including standardized physical and electrical characteristics to foster inter-

changeability and competi t ion.

• A R I N C Specifications, which are pr incipal ly used to define either the physical pack

aging or mounting of avionics equipment, data communicat ion standards, or a high-

level computer language.

• A R I N C Reports, which provide guidelines or general information found by the air

lines to be good practices, often related to avionics maintenance and support.

Below, mostly standards that are related to data load are briefly described. The

class of each of the standards is specified and there is also a l ink to the bibliography,

where information about the original documents can be found. In section 3.1, A R I N C

429 is described. In section 3.3, A R I N C 615 is described. In section 3.4, A R I N C 615A is

described. A n d in section 3.6, A R I N C 665 is described.

11

There are other A R I N C standards applicable to the data load process. The reason these

are not described i n greater detail here is that they are very outdated. For example A R I N C

report 603 (see [6]) sets expectations for data loader of airborne computers. However, this

standard was released i n 1985 and expects the data loader to transfer data from a tape

cartridge.

Two exceptions can be found in the listed standards, namely A R I N C 600, described i n

section 3.2, and A R I N C 781, described i n section 3.7. These standards are not data load

related, but they are important for this thesis. A R I N C 600 is important because it contains

specifications and requirements put onto units, such as Aspi re 400, in order for them to be

compatible w i th standard airplane racks. A n d A R I N C 781 sets characteristics of aviat ion

satellite communicat ion systems operating i n L-band . Aspi re 400 is such a system and

that is the reason why the standard is described in this document as well.

3.1 ARINC 429

A R I N C 429 is a four part A R I N C specification (see [7], [8], [9], and [10]) subti t led Digital

Information Transfer System (DITS) , or Mark 33 Digital Information Transfer System.

It defines a data bus widely used in avionics.

The standard describes physical and electrical interfaces of the bus, and also a protocol

supporting local area network (L A N) wi th in the aircraft. The term bus may be consid

ered to be misleading i n case of A R I N C 429, since bus usually supports mult idirect ional

transfers of data, while A R I N C 429 supports only one way transfers from one source to

up to 20 recipients. If the connected device needs both to transmit and receive, it has to

do so on separate lines. E a c h line constitutes of one twisted and shielded pair of wires.

Bi t s are being transmit ted using the bipolar return-to-zero modulat ion. This means

clocking is part of the transmission. W h e n transmitted, logical one has voltage of 10

i 1 V , logical zero has voltage of -10 ± 1 V . The bus supports two speeds of data transfer.

H i g h speed is 100 kbps a low speed is i n range of 12 to 14.5 kbps. D a t a are transfered

in 32 bit words. Words are separated on the bus by put t ing a gap of at least four bit

periods between them. New word starts w i t h the first bit t ransmit ted after this gap.

Most messages used on the bus consist of only one word, but packets of up to 512 words

are allowed.

Each 32 bit word has to have 1 pari ty bit (bit 32, the most significant one) and an 8 bit

label, which is stored in the 8 least significant bits (bits 8 to 1). The word is t ransmit ted

from the least to the most significant bit, i.e. label first, pari ty bit last. The pari ty bit

allows simple error check at the receiver.

There are other bits that usually have set function wi th in a word. B i t s 10 and 9 can

represent the so called source / destination identifier, which is used when the word needs

to be addressed to a specific device. Bi t s 31 and 30, and in some cases also bit 29, represent

sign / status matr ix , which is used to report the hardware status of the device, but it can

also be used to represent a predefined sign, e.g. plus / minus, north / south, east / west,

12

right / left, etc. More detailed information about the word formats can be found i n [7],

attachment 6 on pages 115 to 124.

The label is encoded as a 3 digit octal number, and its bits are actually flipped

significance-wise, so the 2 least significant bits of the word form the most significant digit

of the label, the next 3 least significant bits of the word form label's second digit , and the

next 3 least significant bits of the word form label's th i rd digit . Th is representation allows

label to be i n range of 0 to 377.

The label identifies the data type of the word, i.e. whether it is binary encoded,

binary coded decimal encoded, or represents discrete values, and it also identifies what

k ind of information the data represent. For example, label w i th octa l code 015 represents

information about w ind speed in binary coded decimal.

Since the amount of equipment that needs to communicate data wi th in an aircraft

increased a lot compared to the t ime the standard was first released, some labels are used

in different contexts. To determine the context, the t ransmit t ing device is identified by

the equipment I D . Equipment I D is encoded wi th in a word as 3 hexadecimal digits, i.e.

on 12 bits. The combination of label and equipment ID should always identify a unique

type of message. The full list of these types can be found i n [7], attachment 1 on pages 21

to 54.

Descript ion of the binary encoded decimal labels and equipment IDs can be found i n

[7], attachment 2 A on pages 55 to 60. The description states value ranges and resolution

of the data, how many significant bits there are, i n what units is the encoded number, etc.

The same description for the binary encoded data can be found in [7], attachment 2B on

pages 61 to 81. Defini t ion of the words representing discrete values can be found i n [8]

(the whole document).

The data carried by a word can represent either numeric value, alphanumeric data

encoded using ISO alphabet number 5, or graphic data. The last one is used to transfer

data which are rendered on a display, e.g. a map in an aircraft.

A R I N C 429 standard also defines techniques for file data transfer. F i l e data can be

transfered using either character oriented protocol, or bit oriented protocol, which is also

called Wi l l i amsburg protocol. Two versions of bit oriented protocol are used.

Version 1 is described i n [9], section 2.5 on pages 5 to 24. The description explains the

concept of l ink data units (L D U s) , which is used to split the data file into pieces that are

sent using the data words, and then reassembled again. B y definition, 3 to 255 words make

up 1 L D U , and the size of the t ransmit ted file should not exceed 255 L D U s . The protocol

also contains details about system address labels, word t iming, types of words used to

manage the data transfer, e.g. request to send, start of transmission, end of transmission,

etc.

Version 2 is not used anymore. It has been superseded by version 3, which is derived

from version 1. Version 3 is I E E E 802 compliant M A C protocol using I S O / O S I data l ink

layer. Details about architecture of this version can be found i n [9], chapter 3 on pages 26

to 51.

13

3.2 ARINC 600

oooooooodo
oooooooooo

. 0 0 0 0 0 0 0 0 0 0
oooooooooo
oooooooooo
oooooooooo

0 0 0 0 0 0 0 0

A R I N C 600 is an A R I N C specification called A i r Transport Avionics Equipment Interfaces

(see [11]). It defines mechanical, electrical, and environmental interfaces between the so

called line replaceable units (L R U s) and the racks or cabinets in which they are installed.

L R U is a term used i n avionics for a piece of modular on-board equipment, which, i n

case of its failure, can be quickly replaced. The malfunctioning module is s imply replaced

wi th a working one, and the service t ime, dur ing which the aircraft has to be grounded,

is reduced. This is beneficial, since it is very expensive for the aircraft's operator to

have it grounded. The malfunctioning unit can be then

inspected and eventually repaired someplace else, e.g.

its manufacturer's facility, and time is not so cr i t ical

anymore.

Besides the definition of aforementioned interfaces,

A R I N C 600 also gives guidance for the design process

and acceptance process of these interfaces. A n d inter

faces between the racks or cabinets and the aircraft

itself are covered in the same way, including control

and regulation of power applied to on-board equipment.

Interchangeability of L R U s and racks made by different

suppliers is also discussed. Fol lowing A R I N C 600 guide

lines provides (taken from [11], page 3):

• a system of modular ized equipment

• a system of modularized instal lat ion in racks and

/ or cabinets

• a family of low or zero insertion force electrical

connectors to provide the electrical interface

between the equipment and the aircraft wir ing

• a system of effective environmental control of the

equipment

The standard defines a so called modular concept

unit (M C U) , which is the basic unit for the packaging

and instal lat ion concept of L R U s . M C U defines a fixed

height, length, and wid th . A l l L R U s following A R I N C

600 specification should have this height and length,

and their w i d t h should be a mult iple of w id th defined

by M C U , i.e. the smallest L R U should have w i d t h of

1 M C U and bigger ones can have wid th of 2 M C U s ,

3 M C U s , etc. M a x i m u m weight of L R U s is defined as

w e l L F i g . 3.1: A R I N C 600 connector
Furthermore, A R I N C 600 sets forth parameters for r n „ , n n

1 on L R U backplane

14

maximum L R U thermal dissipation, cooling of on-board equipment wi th in the racks, and

requirements for attachment of L R U s to these racks, i.e. ways of physical mounting, forces

the attachment has to withstand (vibration, shock, acceleration), etc.

However, the most important thing from A R I N C 600 for the topic of this thesis is the

definition of L R U ' s connector properties. It also covers the largest part of the A R I N C 600

document itself ([11], attachments 17 to 21 and appendices 3 to 5). In these parts, the

types of connectors that make up the whole A R I N C 600 L R U connector are described, for

example properties of pins for discrete signals, connectors for Ethernet, etc. A n example

of A R I N C 600 connector can be found in Figure 3.1.

3.3 ARINC 615

A R I N C 615 is an A R I N C report called Ai rborne Computer H i g h Speed D a t a Loader (see

[12]). The last release of this standard was made in 2002. Today, it is quite outdated

and it is described here mostly for legacy reasons and the description is not very detailed.

Nevertheless, some devices s t i l l t ry to be compliant w i th this standard. Some parts of

the standard are very similar to A R I N C 615A standard, which is described in the next

subsection. Since A R I N C 615A standard is more important for this thesis, the similar

parts are described there.

The standard sets guidelines for development of two types of data loaders. Portable

data loader (P D L) , and airborne data loader (A D L) . Phys ica l requirements for these

devices are defined in the standard, same way they are defined for these devices in A R I N C

615A.

The data loader is using A R I N C 429 interface and should have at least two outputs

and four inputs. It should be able to operate at both high speed (100 kbps) and low speed

(12.5 to 14 kbps). The on-board computers should address it i n the sent words using label

w i t h octal code 226 for high speed and label w i th octa l code 300 for low speed.

The media for storing the loadable data are 3.5 inch floppy discs. The exact properties

and format of a disc are described i n [12], sections 3.2.1 and 3.2.2 on pages 7 and 8.

The standard describes two configurations files for the data loader. F i r s t is called

CONFIG.LDR, and second is called EXCONFIG.LDR. A t least one of them has to be

present on the disc, and if there are both, CONFIG.LDR is processed first. T h e config

urat ion file contains the physical parameters used for the communicat ion wi th the target

device, settings for the in i t i a l action taken after the in i t ia l iza t ion of the bus, total number

of data discs required for the data load, sequence number of the current disc, etc. The

full description of both types of configuration files can be found in [12], section 3.2.3.1 on

pages 8 to 11, and section 3.2.3.2 on pages 11 and 12, respectively. If some of the required

configurations are not set properly, default values are used.

F i le transfers are compliant w i th the file data transfer defined i n A R I N C 429. They use

the so called command / response protocol. Three types of words are used i n this protocol.

Ini t ia l words, which are used to start and mainta in the communication, intermediate

15

words, which carry the actual file data, and final words, which contain checksum used for

an error check and close the transmission. The whole scheme of the protocol is described

in detai l i n [12], section 3.5 on pages 21 to 29.

3.4 ARINC 615A

A R I N C 615A is an A R I N C report called Software D a t a Loader Us ing Ethernet Interface

(see [1]). It describes a data load protocol implemented using Tr iv i a l F i l e Transfer Pro toco l

(T F T P) and Ethernet interface for the physical connection. It is the most important

standard regarding this thesis.

A R I N C 615A sets expectations for and gives guidance on development of software data

loading equipment. A s already mentioned, pr imary goal of data load is to upload software

onto the target hardware. Secondary goal can be to download information from the target

hardware.

Even though the standard is focusing on data load over Ethernet, other avionics buses

using elements of Ethernet protocol are also mentioned as possible physical connection for

implementation of A R I N C 615A data load protocol. Namely A R I N C 615A over A F D X

(see section 3.5) and A R I N C 615A over C A N bus are mentioned.

The standard defines three categories of data load functionality:

• Portable D a t a Loader (P D L) , which is a mobile device that can be used to perform

data load on the ground or brought on-board of an aircraft to perform data load

• Ai rborne D a t a Loader (A D L) , which is a device installed on an aircraft

• D a t a L o a d Funct ion (D L F) , which is a software performing the data load itself

The standard describes physical requirements for P D L and A D L , e.g. their size, weight,

controls and indicators, power supply and circuitry, non-operating and operating temper

ature spans, etc.

Some recommendations regarding the removable transport media for the loadable soft

ware are also made. The media include for example U S B sticks, C D s and D V D s , and legacy

carriers like 3.5 inch floppy disks.

The most important part of the standard is the definition of the load protocol. It

defines functions that are necessary to be implemented both on data loader side and the

target hardware side for them to be A R I N C 615A compliant.

The load protocol defines means to (cited from [1], page 22):

• upload A R I N C 665 software parts (see section 3.6) to target hardware

• download data from target hardware

• get configuration information from target hardware

• interrupt at any t ime any of the three previous operations (interruption request can

be made by the operator or by the target hardware)

• obtain subscriber information, such as M A C address, I P address, and target hard

ware identifier

16

To the last point, the subscriber information can be obtained using the F i n d Identifi

cation of Network Devices (F I N D) protocol. F I N D protocol allows its ini t ia tor (operator

using the data loader) to identify a l l available F I N D hosts (A R I N C 615A compliant tar

get hardware) on the network. The operator can then select the desired target hardware

device or devices from a list.

The implementat ion of the F I N D protocol is done using U D P datagrams on port 1001.

The ini t iator of the operation broadcasts or multicasts a request for a response from al l

available F I N D hosts on the network. T h e n it registers a l l val id responses that come

wi th in 3 seconds.

F I N D hosts respond wi th a unicast message to the data loader. Information about

host's M A C address and IP address are part of the U D P / I P datagram and other infor

mat ion about the host are part of the U D P pay load. F I N D protocol does not implement

any error handling. If the request or the response are not val id, they are ignored.

Two types of F I N D packets are defined. Information request (IRQ) and information

answer (I A N) . E a c h has a two byte header defining whether it is an I R Q packet (value

1) or I A N packet (value 2) and a variable length data. I R Q carries only one byte A S C I I

string terminator (value 0x00) and one byte packet terminator (value 0x10).

I A N carries information identifying the host. It contains five strings separated by the

one byte A S C I I string terminator. These strings are:

1. Target Hardware Identifier

2. Target Hardware Type Name

3. Target Hardware Posi t ion

4. L i t e ra l Name

5. Manufacturer Code

A l l the other operations defined by A R I N C 615A, excluding F I N D , are implemented

using T F T P protocol, i.e. they are based on downloading from or uploading files to the

T F T P server, which is part of the data loader. There are two types of files that are

exchanged between the data loader and the target hardware. F i rs t being protocol files

that are generated during the load process, and second being the files w i th the loaded

software itself. W h i l e standard T F T P port is 69, T F T P services for A R I N C 615A are

expected to run on port 59.

There are three types of operations defined i n the standard, which are implemented

using T F T P :

• Information Operat ion, dur ing which the data loader acquires information about the

configuration of the target hardware

• Uploading Operat ion, dur ing which the data loader uploads files to the target hard

ware

• Downloading Operat ion, dur ing which the data loader downloads file from the target

hardware

Accord ing to the standard, data loader has to implement a l l of the above operations,

plus the F I N D operation defined earlier, whereas target hardware does not necessarily

17

need to implement the download operation. Furthermore, the operations cannot run i n

parallel , and active operation can be aborted upon a request from the operator.

T F T P options may be implemented to gain higher efficiency of the file transfer. In

such case, the negotiation of these options has to be supported as well, though. If one side

does not support any of the options, standard settings have to be used for this option or

these options. Transfer should never fail due to non-implemented option.

Standard T F T P protocol is extended for the purpose of the load protocol. Wai t and

abort messages are defined by the load protocol. They are implemented using the T F T P

error message. This message is part of an error packet and contains an error code number,

and an A S C I I error message. Defined error codes are integers from 0 to 8. E r ro r code

0 definition is Not defined, see error message. L o a d protocol uses this error code and

utilizes its error message to define its own string encoded messages.

Wai t message contains error string WAIT:x, where x is the wait t ime in seconds. The

max imum wait t ime is 65 535 seconds. T h i s message can be generated in response to

a T F T P transfer request by either the data loader or the target hardware. The device

receiving this message should abort the T F T P transfer and init iate it again after the

specified delay.

A b o r t message contains error string ABORT:xxxx, where xxxx is string of four hex

adecimal digits containing a status code. The status code can for example mean that the

operation was aborted by the data loader, or by the operator.

A n y target hardware instance in an aircraft is defined by an identifier called

THW_ID_POS. THW_ID (target hardware identifier) is defined in A R I N C 665 stan

dard and POS (target hardware position) is represented by 0 to 8 alphanumeric characters.

B o t h these strings are part of the I A N packet pay load received upon a F I N D request.

The THW_ID_POS identifier is used as a name for the generated protocol files, using

different suffixes. The full list of the protocol files can be found i n the original A R I N C

615A document (see [1], table 6.4-1 on page 66). These files contain a l l the protocol

overhead information like the protocol version supported by the target hardware, status of

an ongoing operation, including a heartbeat signal of the target hardware, result indicators

of the finished operations, etc.

3.5 ARINC 664

A R I N C 664 is a seven part A R I N C specification (see [13], [14], [15], [16], [17], [18], and

[19]). It defines an Ethernet data network suitable for an aircraft instal lat ion. Each of the

aforementioned documents describes some area, e.g. system concepts, Ethernet physical

and data l ink layer, Internet-based protocols and services, etc.

Basically, the main goal of this standard is to set requirements and restrictions that

have to be met in order for the standard commercial Ethernet networks and Internet

protocols to be eligible for the use in aircrafts.

18

A R I N C 664 standard is not a key standard for this thesis, therefore it is not described

in greater detail here. However, A F D X network was mentioned in section 3.4 as a possible

layer, upon which A R I N C 615A standard can be implemented, hence at least a short

description of A F D X follows.

Avionics Fu l l -Duplex Switched Ethernet (A F D X) is a trademark of Ai rbus company.

Ai rbus has it patented for safety-critical applications. A F D X network is able to provide

deterministic quali ty of service (QoS) on a dedicated bandwidth.

There are two types of devices connected to an A F D X network. E n d systems and

switches. A F D X implements the so called v i r tua l l inks, which make an abstract layer and

simulate a bus similar to the one defined by A R I N C 429. Us ing v i r tua l l inks, one source

end system can create a unidirect ional logical l ink to one or more destination end systems.

Redundancy is used i n the background, which means end systems actually communicate

over mult iple independent networks. In case of switch or l ink failure i n one network, the

connection shall not be interrupted.

3.6 ARINC 665

A R I N C 665 is an A R I N C report called Loadable Software Standards (see [5]). It defines

the format of the loaded software. This definition includes the rules for part number

ing, content, labeling, and formatting of loadable software parts (LSPs) and media set

parts (M S P s) . Subset of L S P s are loadable software airplane / aircraft parts (L S A P s) .

Compliance wi th the A R I N C 665 standard assures, that software can be processed by

standardized data loaders.

Each L S P should have exactly one part number (P N) , which should be agreed upon

by the aircraft manufacturer and the software supplier. Whenever a change is made to an

L S P , P N should be changed as well . The P N format is defined as MMMCC-SSSS-SSSS,

where (cited from [5], page 6):

• MMM is a unique, upper-case alphanumeric identifier called manufacturer's code,

that is assigned to each software supplier

• CC are two check characters generated from the other characters in the P N

• SSSS-SSSS is a software supplier defined unique product identifier consisting of

upper-case alphanumeric characters, except for alpha characters /, O, Q, and Z.

However, A R I N C 615A compliant data loaders should not check the P N format i n

order to achieve higher backward compat ibi l i ty and flexibility.

A R I N C Industry Act iv i t ies assigns manufacturer's code upon applicat ion. It also ad

ministers the already existing codes and a list of them can be found on A R I N C Industry

Act iv i t ies website.

CC denotes 8 bit cyclic redundancy code (C R C) wri t ten as two hexadecimal digits.

C R C is computed from the A S C I I values of the rest of the P N characters.

A n L S P consists of a header file and one or more data files. Furthermore, it can contain

support files. E a c h file wi th in an L S P should have a unique name wi th m a x i m u m length

19

of 255 characters including an extension. The filename of the header file should start w i th

the three character manufacturer's code and the rest should be unique for each L S P from

this manufacturer. Characters that can cause problems on some platforms, like spaces, *,

/ , etc., are restricted. Also , the only difference between two filenames cannot be i n the

use of uppercase and lowercase characters.

Each type of L S P file should have an extension. For example, header filename should

end wi th .LUH, data filename should end w i t h .LUP, etc. The full list of extensions for

a l l file types can be found in [5], table 3.2.2-1 on page 28. Support files can have any user

defined extension, as long as it does not conflict w i th the reserved ones.

The content of L S P header file is thoroughly described i n [5], section 2.2.3.1 and its

subsections on pages 9 to 20. For the data files and support files there are no expectations

regarding their content or format. These types of files can optionally be compressed to

save space and speed up the loading process, or they can be encrypted.

The standard also defines batch file part (B F P) , which can be ut i l ized to predefine

a set of L S P s that should be loaded into one or more target hardware devices (positions).

M S P s i n the context of A R I N C 665 standard are the physical media, that are used to

transport L S P s , and eventually B F P s . They also have P N s . P N should be agreed upon

by the aircraft manufacturer and the software supplier. It should not be longer than 15

characters. The P N should uniquely identify the part icular combination of physical media

and the software content.

Each member of an M S P is identifiable by M S P ' s P N and the member sequence num

ber, which should be from range of 1 to 255. Members of one M S P should use the same

physical media, e.g. U S B sticks, C D s , etc. L S P files can be distr ibuted over more M S P

members. However, ind iv idua l files should never be split.

Each member of an M S P has a list of a l l contained L S P s stored in LOADS.LUM

file, a list of a l l contained files stored i n FILES.LUM file, and a list of a l l B F P s stored

in BATCHES.LUM file. These files should be stored i n the root directory of the M S P

member. The full definition of the content and format of these files can be found in [5],

section 3.2.3.1 and its subsections on pages 28 to 32, section 3.2.3.2 and its subsections on

pages 32 to 37, and section 3.2.3.3 and its subsections on pages 37 to 40, respectively.

The standard also describes in detail the way M S P s should be labeled. L a b e l should

for example contain the M S P ' s P N , sequence number, content description, supplier iden

tification, etc. The full description can be found i n [5], section 3.3 and its subsections on

pages 42 to 44.

3.7 ARINC 781

A R I N C 781 is an A R I N C characteristic called M a r k 3 Avia t ion Satellite Communica t ion

Systems (see [20]). It sets forth the desired characteristics of satellite communicat ion

systems which are using Inmarsat satellites and operate i n L-band (band from 1518 M H z

20

to 1559 M H z for reception and 1626.5 M H z to 1660.5 M H z and 1668 M H z to 1675 M H z

for transmission).

The communicat ion system consists of mult iple parts, which are indiv idual ly described

in the standard. To simplify it , the system can be viewed as a satellite data unit (S D U) , an

antenna system, and an S D U configuration module (S C M) . The standard broadly discusses

the radio frequency (R F) parameters put onto the whole system and its ind iv idua l parts

(e.g. frequency ranges, l imits for R F output power, power of intermodulat ion products,

error vector magnitude, spurious emissions, etc.). Interfaces, both those provided by the

S D U for cockpit and cabin services, and those for interconnection of the system parts, are

also described, as well as the physical parameters, power supply, cooling, and many other

parameters.

The standard also explains Inmarsat services, their types (Classic Aero, Swift 64, Swift-

Broadband) , parameters, etc. Services that should be provided by the S D U , for example

aircraft communications addressing and reporting system (A C A R S) , are discussed, too.

There is also a brief mention about the data load. A R I N C 781 states, that the S D U

should be designed so that a l l embedded software components can be loaded through

industry standards A R I N C 615 and A R I N C 615A data loaders. It should also be possible

to download the owner requirements table (ORTs) from the S D U to a data loader. S D U

software files should be compliant w i th A R I N C 665 (taken from [20], pages 70 and 71).

21

4 ASPIRE 400

Aspire 400 is a satellite data unit (S D U) developed by Honeywell company. The target

market for this unit consists of smal l and medium aircrafts. The purpose of this unit is

to provide an aircraft w i th air-to-ground and ground-to-air connectivity. Basically, Aspire

400 can be viewed as a modem. Aspi re 400 S D U is also a line replaceable unit (L R U ,

defined i n section 3.2).

In this chapter, the internal structure of the S D U is described in section 4.1. Th is

description is concerned wi th the structure that is important for the data load process.

In section 4.2 and section 4.3, software configurations used on the two keys components

of the unit are described. Possible data load scenarios t ied wi th these configurations are

described i n chapter 5. The testing environment used i n product ion of Aspire 400 S D U s

is described i n section 4.4.

4.1 SDU structure

Since Aspire 400 is currently an ongoing commercial project, the description of the S D U

below goes only into detail necessary for the matter of this thesis. The full hardware

structure of the components and their connections cannot be revealed, since these details

could be used by Honeywell 's competitors.

F rom the data load point of view, there are two important components in an S D U .

Mult iprocessor C a r d (M P C) and D u a l Aeronaut ica l B G A N C a r d (D A B C , B G A N stands

for Broadband G l o b a l A r e a Network) . There is also an S D U Configuration Modu le (S C M) ,

a separate component outside of the S D U box, which contains some customer specific data.

These components are described below.

S D U provides mult iple ways of connectivity, including A R I N C 429 interface, RS-232

and RS-422 C O M port serial interfaces, and Ethernet interface. These can be ut i l ized i n

the data load process. Most connectors of an S D U are physically placed on its backplane

in the A R I N C 600 connector. Some of them are also accessible on the front panel.

B o t h M P C and D A B C are connected to a so called backplane, which is another card

wi th in the S D U . Its ma in purpose is s imply to provide interconnections between M P C and

D A B C and S D U ' s A R I N C 600 connector.

M P C , D A B C , and backplane card are also sometimes called shop replaceable units

(SRUs) . L ike L R U , S R U is a te rm used i n avionics. It denotes hardware on a lower level

than L R U . W h i l e L R U can be quite easily replaced i n the field, piece for piece, S R U usually

has to be replaced in the L R U manufacturer's facility, where the L R U is disassembled i n

order to replace the S R U . Hence the name shop replaceable unit.

A simple visualizat ion of the loadable components of an Aspi re 400 S D U and their

interconnections can be found i n Figure 4.1. It shows a simplified structure of the unit,

w i th emphasis on the information important for the data load.

22

SCM

USIM USIM EEPROM

SDU

MPC

<

Primary
Processor

EEPROM

EEPROM

SDRAM

NOR flash

NANDf l ash

FPGA

Ethernet
Switch 1

D A B C

Channel 1

Ethernet
Switch 2

Protocol
Processor

NOR flash

N V R A M

SDRAM

DSP SDRAM

DSP S R A M

DSP S R A M

Secondary
Processor

EEPROM

SDRAM

NOR flash

NANDf lash

FPGA

Channel 2

1

Protocol
Processor

NOR flash

N V R A M

SDRAM

DSP SDRAM

F i g . 4 .1: Aspi re 400 S D U loadable components and their interconnections

4.1.1 M P C

M a i n processor card (M P C) is the brain of Aspire 400 S D U . It has two processors that

require data load. These processors are identical from the hardware point of view. They

are both a system on chip wi th two 64 bit processor cores using Power Archi tecture

23

instruction set architecture. They provide high-performance data path acceleration and

network and peripheral bus interfaces useful for aerospace applications. A block diagram

of the system can be found i n Figure 4.2. The diagram is taken from the processor's data

sheet, but it cannot be cited in order to keep the processor model undisclosed.

Security fuse processor

Security monitor

16b IFC

Power management

S D / e S D H C / e M M C

2x DUART

4 x l 2 C

eSPI, 4 x G P I O

2 x USB2.0 w /PHY

DIU

256 KB
backside
L2 cache

Security
5.4 Queue

(XoR, Manager
C R C)

Power Architecture®
e5500

32 KB
D-Cache

256 KB
platform cache

C o r e N e t ™ C o h e r e n c y F a b r i c

P A M U

Frame Manager

Parse, classify,
distribute

2x DMA

IÖG| [TGIIIGIIGI o o O

oJ oJ oJ
CO in CO
w (/i (0
0> 2? CD
CL Q. Q .
X X X

LU LU LU

Ü Ü Ü
Q_ Q_ Q_

4-lane, 10 G H z SerDes

F i g . 4.2: M P C processor block diagram

32/64-bit
DDR3L/4

memory controller

QUICC
Engine Real-time

debug

Watchpoint
cross
trigger

Pert
Monitor

Trace

Aurora

From the functional point of view, the processors have different tasks in the S D U .

However, their ind iv idua l domains are not important for this thesis and therefore they

remain undisclosed. For the data load problematic, it is important to state that one of

the processors, hereafter referred to as pr imary processor, is booted first dur ing the boot

up of the S D U and controls the other components, namely the other processor, hereafter

referred to as secondary processor, and the D A B C .

Each of M P C ' s processors has four external memories. Three non-volatile and one

volatile. The non-volatile memories are one M i c r o n 128 M B N O R flash, one M i c r o n 1 G B

N A N D flash, and one Mic roch ip Technology 64 K B E E P R O M . The first two memories are

connected to the processor v i a the Integrated F la sh Control ler (IFC) bus. Th is bus is 16

bit wide and clocked at 100 M H z . It provides a N O R flash controller, a N A N D controller,

and a General Purpose C h i p Select Machine (G P C M) controller (see [21], slide 4). The

E E P R O M is connected v i a Enhanced Serial Peripheral Interface (eSPI) bus.

The volatile memory is a 1 G B D R A M error-correcting code (E C C) protected D D R 3 L

S D R A M , namely two 512 M B M i c r o n chips are used. The L in D D R 3 L stands for low-

voltage (memory is operating at 1.35 V instead of standard 1.5 V) . E C C protection detects

and corrects a l l single-bit errors and detects a l l double-bit errors. The E C C is a 256 M B

M i c r o n chip, which is not user accessible. A l l memories are organized i n a v i r tua l address

space addressed wi th 32 bits for each processor.

In a typ ica l boot up scenario, when the power is turned on, the system starts execution

from a non-volatile memory (e.g. E E P R O M or N O R or N A N D flash). After that, the

24

code is copied from a persistent storage into R A M and execution continues from there

(see [21], slide 3). Therefore the processor needs to be able to communicate w i th the

non-volatile memory before any software configurations are made. In case of M P C , the

boot up process is started from the E E P R O M and N O R flash and the program data are

copied to R A M from the N O R flash.

There is one more Mic roch ip Technology 64 K B E E P R O M , which is a part of the

Standalone Identification System (SIS) interface. It is used to store the unit level configu

rat ion information. It is accessible both from the pr imary processor v ia an Inter-Integrated

Ci rcu i t (I 2 C) bus, and externally using the SIS interface. This interface allows user to check

the configuration stored i n its E E P R O M without the necessity to have the S D U powered

on. The SIS interface is made up by 8 pins. The connector is a 9 p in D-Sub connector

placed on the S D U ' s front panel. The SIS interface can only read out of the E E P R O M .

The pr imary processor has to be used in order to write data into it.

The pr imary processor provides an RS-232 port called M P C maintenance port and both

processor are reachable v ia Ethernet interfaces, either direct ly or v i a Ethernet switches

which are part of M P C as well . A l l these connectors are accessible on S D U ' s backplane

(they are part of the A R I N C 600 connector).

The pr imary processor and the secondary processor are interconnected v i a a serial l ink

which is realized by universal asynchronous receiver / t ransmitter (U A R T) using U C C 3

(Unified Communicat ions Controllers) through the Q U I C C Engine (see subsection 4.2.4).

The Ethernet switches on M P C are made by Atheros. The direct Ethernet connections

to M P C ' s processors are realized using P H Y chips (circuitry implementing physical layer of

the OSI model), namely serial gigabit media-independent interface (S G M I I) . The Ethernet

connections v i a switches are either S G M I I or reduced gigabit media-independent interface

(R G M I I) . B o t h switches and both P H Y s are controlled by the pr imary processor over

M D C / M D I O serial bus. The active device is selected by a 1:4 multiplexer.

M P C also contains a Microsemi F P G A , which is controlled by the pr imary processor

v i a the I F C bus. This F P G A , among other things, implements the A R I N C A429 interface,

and it also controls reset signals to other components in the S D U (the secondary processor

and D A B C) .

Other important parts of M P C are three p in header J T A G connectors, one for each

processor (16 pins) and one for the F P G A (10 pins). There are also another two 10

pin header connectors, one for each processor's E E P R O M . These connectors are used for

testing and data load, as described i n more detail i n chapter 5 and chapter 6.

4.1.2 D A B C

D u a l Aeronaut ica l Broadband G l o b a l A r e a Network C a r d (D A B C) is the modem part

of Aspire 400 S D U . This component is connected to an antenna mounted on an aircraft

and using this antenna serves as the transmitter and receiver of the radio frequency (R F)

signals. Based on the type of antenna, an amplifier might be also used, or it can be part

of the antenna itself.

25

D A B C also provides processing of R F signals, which includes modula t ion and demo

dulation, encoding and decoding, implementat ion of protocol stacks for Inmarsat

services, etc. Inmarsat's Swift Broadband (S B B) network is used for communicat ion. S B B

is a global IP-based packet-switched network providing aircraft connectivity wi th speed

up to 432 kbps per channel (see [22]). It uses Inmarsat satellites to operate.

D A B C , as the word D u a l in its name suggests, has two independent channels. E a c h

one has its hardware and is loaded separately. More information about the data load of

D A B C can be found i n chapter 8. D A B C is sometimes also called channel card (C C) ,

since its purpose is to provide R F communicat ion channels.

F rom the hardware point of view, which is again kept at a level necessary for the

data load process, D A B C has one F P G A common for both channels, each channel has

one general purpose processor, one channel has one D S P and the other channel has three

D S P s .

The F P G A is made by X i l i n x . A p a r t from other things, the so called control processor

is implemented for each D A B C ' s channel wi th in this F P G A . Its main purpose is to select

the applicat ion that is supposed to be started during D A B C ' s boot up process. The

control processor is commanded v ia an RS-232 control port . It is also connected to the

other components, which can be commanded v i a the control port as well.

The general purpose processor is a high performance low power system on chip based on

M I P S 3 2 instruction set. In D A B C , it is called a protocol processor, since its main purpose

is to run applications processing Inmarsat protocols. A block diagram of the system can

be found i n Figure 4.3. Same as w i th the M P C processor, the diagram was taken from the

processor's data sheet, but the document cannot be cited because it natural ly contains

the model name of the processor.

There are three memory chips connected to this processor. One non-volatile 32 M B

M i c r o n N O R flash connected v i a the S R A M controller, one volatile 32 M B M i c r o n S D R A M

connected v i a the S D R A M controller, and one 256 K B Cypress Semiconductor S R A M

connected v i a the S R A M controller. The last memory is volatile by nature, but in D A B C ,

a condenser is used to make the data i n it persistent. The condenser should last at least

one minute, but in reality, it can hold the data much longer. Anyway, the data are

persistent through a restart of the card, therefore this memory can be viewed as a sort of

N V R A M . The protocol processor is also connected to the RS-232 maintenance port and

to the Ethernet port.

The D S P s are made by Texas Instruments. The one used on both channels has a 128

M B M i c r o n D D R 2 S D R A M . It is connected to the protocol processor v ia Host Por t In

terface (HPI) bus and to the F P G A v i a G P I O lines. H P I is a parallel port through

which the protocol processor can directly access the memory space of the D S P , including

memory-mapped peripherals (see [23]). P ro toco l processor acts as a master on the bus.

The other D S P s used only on the first channel are identical and both have a 256 K B

Cypress Semiconductor S R A M , which is organized as 128K 16 bit words. These D S P s are

connected only to the F P G A v i a G P I O lines.

26

J"
SDRAM Controller

16KB
Enhanced Instruction
MIPS32® Cache
CPU Core Bus Units CPU Core

16KB
Data

Cache
32x16
MAC

16KB
Data

Cache

SRAM Controller

RTC (2)

Power Management

AC97 Controller

l 2S Controller

SSI (2)

Fast IrDA

EJTAG

DMA Controller

Ethernet MAC

LCD Controller

USB Host

USB Device

Interrupt Control

GPIO (48)

UART (3)

Secure Digital (2) 4 •

F i g . 4.3: D A B C processor block diagram

A 40 bit v i r tua l address space is used to map a l l D A B C components into it to simplify

the access to them.

Like M P C , D A B C also has J T A G lines which can be ut i l ized for testing and data load.

Unl ike M P C , on D A B C there is only one dedicated J T A G connector (for the R F part)

and other lines (for the channel 1 and channel 2 protocol processors and for the F P G A)

are part of D A B C ' s backplane connector, i.e. defined pins of this connector are dedicated

for this functionality.

4.1.3 S C M

S D U configuration module (S C M) is a separate module containing an E E P R O M memory

i n which some important unit-specific configuration data used by flight code are stored.

It contains for example serial number of the unit , information about both hardware and

software configuration and customer data. Customer data are stored in the so called owner

requirements table (O R T) .

S C M also contains slots for Universal Mobi le Telecommunications Service (U M T S)

Subscriber Identity Modules (U S I M) cards, which are used by Inmarsat to connect to its

Swift Broadband network. U S I M cards are necessary for the D A B C to be able to operate.

S C M is connected to an S D U v ia RS-422 serial interface and power is also provided by

the S D U . The advantage of having S C M as a separate module is that it can stay i n the

aircraft while S D U s are swapped. W h e n a new S D U is used, O R T does not need to be

loaded again since it is part of the S C M , and U S I M s can also remain untouched.

27

4.2 M P C Software Parts

In this section, software used on M P C is described. There are mult iple possible software

configurations of M P C consisting of a combination of the software parts described below.

More information about these configurations can be found i n chapter 5.

4.2.1 F P G A Configuration

A file w i th data for the M P C ' s F P G A is necessary to program it . Microsemi flash pro

grammer allows usage of either P D B or S T P file formats. The file contains data for the

boundary scan test a the F P G A configuration.

4.2.2 R C W

M P C ' s processors use a mechanism called pre-boot loader (P B L) . P B L is automatical ly

executed when the processor is powered on and its main task is to load the reset configu

rat ion word (R C W) , which is stored in processor's E E P R O M . R C W is 512 bits long and

contains encoded information used to ini t ial ize the R C W status registers. The information

encoded wi th in R C W sets for example clock speed, R A M attributes, etc.

4.2.3 Miniboot

M i n i b o o t is a simple executable code that verifies the checksum of U - B o o t (see subsec

t ion 4.2.4). It is stored in processor's N O R flash and run after the processor is powered

on and R C W is loaded.

Min iboo t first tries to verify checksum of the pr imary U - B o o t image and if it is correct,

M i n i b o o t hands execution over to this U - B o o t image. If this checksum is not correct,

M i n i b o o t tries to verify checksum of the secondary U - B o o t image. If this image is correct,

M i n i b o o t starts its execution. If not, the S D U halts.

4.2.4 U-Boot

U - B o o t , or Universal Boot Loader, is an open source project, which provides firmware

for embedded systems. The core development is done by D E N X Software Engineering

company from Germany. The versions used i n Aspi re 400 project are customized at Hon

eywell. The purpose of U - B o o t is to perform hardware specific in i t ia l iza t ion and testing

(e.g. R A M test).

There are two main advantages of U-Boo t . F i r s t is that it can boot up a system

already loaded into the device's memory, and, unlike in most bootloaders, user can specify

the addresses in memory used by the boot commands.

The second is it provides a command line interface v i a RS-232 port . Th is interface

can be accessed when U - B o o t startup process is interrupted by a keystroke during the

prompted t ime period. The interface supports commands for wr i t ing to, or reading from

the memory, modification of the environment variables, transferring files over the RS-232

28

serial interface (using for example Y M O D E M file transfer protocol), or Ethernet interface

(using for example t r i v i a l file transfer protocol, i.e. T F T P) , etc.

O n M P C , there are two identical U - B o o t images for each processor stored in its N O R

flash. A s already described in subsection 4.2.3, one image is pr imary and the other one is

secondary. Integrity of an image is checked before it is started by computing its checksum.

Normally , only pr imary image is used (unless it is corrupted).

However, one exception to this dupl ic i ty exists. The environment variables are stored

in the so called U - B o o t environment memory space i n the N O R flash, and this space is

unique. The environment variables are loaded upon U-Boo t ' s startup and they contain

values which determine the behavior of U - B o o t . In case the U - B o o t environment is found

to be corrupted (again checked by a checksum), U - B o o t sets a l l environment variables to

default values. A n d i n case the U - B o o t image is found to be corrupted, this information

is stored i n the environment variables.

U - B o o t also loads two microcodes (sometimes also spelled as //codes). Each controls

behavior of a certain hardware block wi th in the processor. F i rs t is F M a n , or Frame

Manager, which processes Ethernet frames to provide classification and intelligent distr i

but ion and queuing for incoming traffic. Second is Q U I C C Engine, which serves for high-

performance mul t iprotocol processing, e.g. Unified Communicat ions Controllers (U C C) .

B o t h microcodes are provided by N X P , bo th are stored twice in the processor's N O R flash

and their checksums are checked by U-Boo t .

4.2.5 HBIT

Hardware bui l t - in test (H B I T) is a software specifically designed to allow testing of a l l the

components of an Aspi re 400 S D U . The target of this testing is to make sure the hardware

of the tested S D U is functioning correctly, i.e. a l l the components of the printed circuit

boards and their interconnections are i n place and are working as expected.

Basically, the purpose of H B I T is to provide an interface that allows setting or reading

out variables. A typica l test scenario is when a set of variables is set in a predefined

way, and another set of variables is read out to see i f the hardware reacts to the setup

as expected. There are many different variables to cover a l l the test scenarios. There are

discrete signals, analog signals, data sent over various buses, R F setups, etc.

H B I T is loaded onto M P C , but it also has the abi l i ty to control D A B C i n order to set

it up for the R F test scenarios.

For some tests, the environment outside of the tested unit also needs to be set up.

Most typically, voltages and currents are measured, so probes have to be set up correctly.

O r some inputs and outputs need to be looped, temperature has to changed for the test,

etc. Th is is not done by H B I T itself, but by the testing platform (see section 4.4).

H B I T also provides functionality called Continuous bui l t - in test (C B I T) . A s the name

suggests, C B I T is a version i n which testing is continuous, i.e. the tested variables are read

out w i th a defined frequency un t i l the process is stopped. Compared to that, in H B I T , the

29

variables are read out on demand. The tested values that are read out can be compared

programmatically, they can be logged, they can be visualized, etc.

4.2.6 Flight Code

Fl ight code is the full feature version of the software that is used on board of an aircraft.

P r io r to any regular in-flight usage, this software has acquire proper certification. It

undergoes the so called qualification process, dur ing which it is inspected and tested by

a l l the interested aviat ion authorities, and, i f it complies w i th a l l the requirements and

passes the tests, it is certified.

In case of Aspire 400 S D U , more precisely the M P C , flight code is a Linux-based

module system. Each module takes care of some specific functionality. It is basically

a process. The so called message event service (M E S) is implemented to provide an inter

process communicat ion between the modules. M E S also provides means for securing the

communication, i.e. encoding and decoding the messages.

Fl ight code modules are distr ibuted on M P C ' s processors. E a c h processor takes care

of different parts of the S D U ' s functionality. B u t the functional domains of flight code are

not important for the topic of this thesis, therefore they are not described further. O n l y

the modules important for this thesis, e.g. data load controller (D L C) , are described i n

greater detai l in chapter 9.

Fl ight code is released i n a form of flattened image tree (F I T) . It is an image of

the whole system, including a l l configurations. This image is part of the loadable package

compliant w i th A R I N C 665 standard. The standard in general was described i n section 3.6

and for its appl icat ion on Aspi re 400 project see chapter 9.

4.3 D A B C Software Parts

D A B C is commanded by the M P C . Nevertheless, different configurations for D A B C exist

and the code is loaded separately. Moreover, as mentioned earlier, D A B C has two separate

channels, and each of them is loaded separately as well .

The D A B C software is released i n a form of image files {.img suffix). Based on the

type of application, the file contains data for one or more of D A B C ' s components. The

applicat ion is usually loaded onto a l l D A B C components it uses during one instance of the

data load process. Th is ensures the software for ind iv idua l components is compatible. Bu t

it is also possible to load ind iv idua l components w i t h a specific combination of software

versions. Th i s is especially useful for some extensive debugging, when user can create

a customized software version for the component of interest and load just that one.

Mul t ip l e applications can coexist i n D A B C ' s non-volatile memory (protocol processor's

N O R flash) at the same time. The active one is picked during the boot up using the so

called loader program, which is described in the next subsection. Records about available

applications are kept i n a special table stored i n the N O R flash as well . Th is so called

30

P D B table contains names and versions of applications, together w i th their checksums

and addresses in the N O R flash.

Some environment variables can also be stored in protocol processor's N V R A M .

Factory values are stored i n the N O R flash and they are loaded from there to the N V R A M ,

where they can be modified. The reason for this approach is that the N O R flash always

holds the factory data as a form of a backup and when modified, the change is done i n

the N V R A M , so no writes to N O R flash are necessary. This reduces the number of writes

to this memory, which reduces its wear-off speed.

The list of D A B C applications i n this section is not exhaustive. Other types of D A B C

images, mainly for different testing purposes, also exist. However, these are not used

during product ion testing and therefore they are not listed here.

A proprietary language called B i n a r y C o m m a n d Language (B C L) is used to command

D A B C s . It is used to communicate w i th D A B C from any external device or component.

A l ibrary for translat ion of B C L commands into binary and vice versa has to be available

i n order to use i t . A l l of D A B C s functionality is accessible using B C L commands. The

commands can be sent either v i a control port or maintenance port (RS-232) or v i a Ethernet

(T C P / I P stack).

Each B C L message has mandatory header and optional data payload based on the

message type. The header contains information about sender (B C L address of the sending

component) and recipient (B C L address of the target component). It has also information

about the type of the message, its length, C R C , and other properties.

4.3.1 F P G A Configuration

Like on M P C , a file w i th data for the D A B C s F P G A is necessary to program it . O n D A B C ,

Serial Vector Format (S V F) file is used. This file contains instructions that perform the

boundary scan test a configure the F P G A into the desired state. S V F files are A S C I I

encoded.

4.3.2 Loader Program

After power is applied to D A B C and the reset signal is turned off, loader program is

ini t iated. This program reads the P D B table wi th information about a l l available appl i

cations mentioned above from the N O R flash and presents a list of available applications

v i a the control processor interface (control port RS-232). Selection is done using A S C I I

encoding, i.e. applicat ion is selected by typing its name over the control port, terminated

wi th a carriage return character. W h e n a correct applicat ion name is supplied, the loader

program copies the applicat ion from the N O R flash into R A M and hands over the control

to the applicat ion.

A l l applications can actually be twice i n the N O R flash. This is for security reasons.

W h e n applicat ion is loaded to D A B C (written to its N O R flash) a copy of it can be made.

It is used in case the pr imary image gets corrupted. Before the loader program copies

the appl icat ion into R A M , it computes C R C of the image it is about to copy to check

31

the image is correct. If the C R C does not check out w i th the one stored i n the P D B

table, user is informed about the error, but i f the secondary image is available, the loader

program tries to copy the applicat ion from there (it performs the C R C check again for

the secondary image). Secondary image is only used i f the pr imary is either not present

or its C R C is not correct. A flow chart of the loader program functionality is shown i n

Figure 4.4.

Power appl ied to DABC,
reset discrete turned off

DABC reads PDB table to get
a list of avai lable appl icat ions

DABC sends " D A B C SELECT: <list_of_apps>"
prompt via the contro l port RS-232

DABC sends "APPLICATION
N A M E NOT VALID"

DABC wai ts for response
o v e r t h e contro l port RS-232

Response received

DABC sends " L O A D I N G " and
checks pr imary image CRC

Yes

DABC sends " R U N N I N G "

c DABC starts image execut ion

DABC sends "FAILED"

DABC sends "LOADINGSEC" and
checks secondary image CRC

DABC sends "FAILEDSEC"

F i g . 4.4: D A B C applicat ion selection

32

4.3.3 E B O O T

Emergency boot (E B O O T) is an applicat ion which allows overwrit ing D A B C ' s N O R flash

using B C L . Hence data load can be performed when this appl icat ion is running on the

channel that is about to be loaded. E B O O T is using only the protocol processor to run.

E B O O T also supports duplicat ion of the other applications' images in the channel's

N O R flash, which was mentioned i n the previous subsection. W h e n the B C L command

to perform the duplicat ion is received by the protocol processor, E B O O T tries to copy

the other images present in the N O R flash from their pr imary posit ion to their backup

posit ion. It first checks to see if the duplicates are already present and are exactly the same

as the pr imary images. If so, no dupl icat ion is performed, both to speed up the process,

and to omit unnecessary writes to the N O R flash. If not, E B O O T either performs the

duplicat ion or returns an error message when something goes wrong, for example i f there

is not enough space for the duplicate i n its designated area in the N O R flash. There is

also a B C L command that performs the opposite action, i.e. wipes the duplicates out of

the N O R flash. E B O O T does not duplicate itself and it is the sole applicat ion that is able

to perform this dupl icat ion and / or wiping.

Also , in contrast w i th loader program, when an applicat ion is running (not only

E B O O T , but any), the channel can be controlled not just v ia control port RS-232, but

v i a maintenance port RS-232 and Ethernet port, too. Other than that, E B O O T does not

support any of D A B C ' s functionality.

4.3.4 IBIT

Initiated bu i l t - in test (IBIT) applicat ion is used for testing D A B C i n operational use. Th is

means that I B I T implements a l l functionality required to control D A B C ' s hardware. I B I T

is used during the product ion testing to command D A B C to transmit and / or receive

data v ia its R F module. B C L commands are used to achieve this.

4.3.5 SwiftBB

S w i f t B B , or Swift Broadband, abbreviated S B B , is the full feature flight code applicat ion

used i n an aircraft. It is designed to provide means of communicat ion over Inmarsat's

Broadband G l o b a l A r e a Network (B G A N) . It handles the R F signals, implements a l l the

necessary protocols, etc. In order to be able to use B G A N , the implementation of this

applicat ion has to comply wi th S B B protocols defined by Inmarsat.

4.4 A T E

Automated test equipment (A T E) is an apparatus used for product ion testing of S D U s .

The testing is as automated as possible to speed up the process. Ideally, an operator

only plugs the unit under test (U U T) into the A T E and starts testing. A l l tests should

be performed and evaluated automatically, including a l l necessary configurations of the

33

testing environment. The operator only needs to check the final status of the tested S D U

to see if it has passed or failed, and i f it has failed, the A T E should also give reasons of

failure, so the S D U can be possibly fixed.

A n A T E for Aspi re 400 project should support testing of two S D U s simultaneously.

The testing process is coordinated by a computer that is part of an A T E . T h i s computer

is running Microsoft Windows operating system and a program called TestStand from

Nat iona l Instruments is used to run and evaluate the test sequences.

TestStand has the abi l i ty to cal l various adapters and interfaces. Its advantage is

that it can unify calls into various libraries, programming languages, etc. Th is layer is

abstracted from A T E ' s operator, and he or she is presented only wi th quite simple and

clear interface showing which test sequences have passed or failed. TestStand also creates

a test report, can log the measured values into database, and more.

Other necessary tools are also installed on the A T E ' s computer. For example a T F T P

server enabling an S D U i n U - B o o t command line mode to download data from it.

In the product ion process, A T E also serves as the data loader for the load of H B I T

onto M P C and I B I T onto D A B C in the beginning of testing, and for the first-time load of

flight code after the testing is finished. U - B o o t has to be already present on M P C , as well

as E B O O T on D A B C , when the S D U it tested v ia A T E , since A T E tests S D U s (i.e. tests

at the box level), while these applications have to be loaded at the card level, as described

i n more detail i n chapter 6.

34

5 DATA LOAD SCENARIOS

Dur ing its lifetime, S D U has to go through mult iple software configurations. F i rs t , when

an S D U is produced, ind iv idua l components are manufactured, i.e. printed circuit boards

(P C B s) are made and assembled. Then some in i t i a l tests are performed on these com

ponents, for example automated opt ical inspection (A O I) , automated X - r a y inspection

(A X I) , in-circuit test (I C T) , boundary scan, etc. A t this t ime, the components are blank,

therefore it is necessary to load some software onto them i n order to use them. The soft

ware has mult iple layers, start ing wi th bootloaders at the lowest level. There can be more,

bui lding up on each other and extending the provided functionality. O n top of bootloader,

there is usually some operating system and at the top level, there are the final applications.

In production, the low level software is usually loaded by the component manufacturer.

Dur ing development, when changes even to the low level software might be required, or

the software might get corrupted by improper work wi th memory, it can be sometimes

necessary to flash the component at Honeywell , too. B u t in most cases, the software at

the lowest level is loaded once onto a blank component and does not need to be changed

further.

Once the ind iv idua l components are loaded wi th at least the low level software, the

unit could be theoretically assembled and shipped for S D U level product ion testing. Bu t

in order to make sure the components work correctly prior to the S D U assembly, software

designed specifically for testing of a l l required features is loaded onto them and functional

testing at the card level is performed. This testing software is H B I T for M P C and I B I T

for D A B C (these software parts were described i n subsection 4.2.5 and subsection 4.3.4,

respectively). O n l y after both M P C and D A B C pass, S D U is assembled and the testing

process goes further.

The S D U level product ion testing is performed at Honeywell and uses H B I T and I B I T

as well . It can happen that versions of these software parts used during the card level

testing are the same as versions required for the S D U level testing. In such case, testing

can proceed right ahead. However, it is more likely that the card manufacturer is provided

wi th a different version of H B I T and / or I B I T by Honeywell , and it is therefore necessary

to load these software parts once again.

If the unit passes the tests at the S D U level, the final software configuration (flight

code) is loaded onto i t . This configuration supports the full functionality and contains the

customer specific data, too. A t this moment, product ion is finished and the unit is shipped

to customer, ready for operation. O f course, there are also some possible post product ion

data load scenarios, namely update of the flight code version and error identification.

A flowchart of one S D U ' s lifecycle is visualized in Figure 5 .1. It is of course slightly

simplified. D a t a loads are highlighted in red. The dashed ones on the S D U level are those

that might not be necessary if correct versions of software parts are used for the card

level testing. There is also a blue box highlighting those that were in scope of this thesis

implementation. A l l the data load scenarios are also l isted per component i n the following

sections wi th more detailed description.

35

Card (SRU) Level

MPC Manufacturer/
Honeywell Facility

DABC Manufacturer/
Honeywell Facility

Backplane Manufacturer/
Honeywell Facility

SDU(LRU) Level

Honeywell Facility Customer /
Field Operation

(P C B m a n u f a c t u r i n g

and a s s e m b l y (P C B m a n u f a c t u r i n g \

and a s s e m b l y J (P C B m a n u f a c t u r i n g

and a s s e m b l y

R C W , M i n i b o o t , U -Boo t , and

FPGA conf igu ra t ion f las h ing

1
HBIT load o n t o M P C

Func t iona I t e s t i n g

L o a d e r p r o g r a m , E B O O T , and

F P G A c o n f i g u r a t i o n f l a sh ing

IBITIoad o n t o DABC

Func t i ona l t es t i ng

Scope of thes is i m p l e m e n t a t i o n

1]

X
HBIT load o n t o M P C j«-

: : : : : : : r " . : : : '
i

IBITIoad o n t o D A B C !

Func t iona I t e s t i n g

FC load us ing U - B o o t

1
FC load us ing DLC and

A R I N C 6 1 5 A da ta loader

C o m m i s s i o n i n g

O p e r a t e SDU

Load FC us ing DLC and

A R I N C 6 1 5 A d a t a loader

F i g . 5 .1: Aspire 400 S D U lifecycle w i th data loads highlighted

36

5.1 M P C Data Load Scenarios

The possible and meaningful data load scenarios for M P C are the following:

1. B lank M P C — • M P C wi th R C W , Min iboo t , and U - B o o t

2. U - B o o t — • U-Boo t

3. U - B o o t —> H B I T

4. H B I T —> H B I T

5. H B I T — • flight code

6. Fl ight code —> flight code

7. Fl ight code —> H B I T (and I B I T)

The first scenario has to be performed at the card level, i.e. before the S D U is

assembled, since the J T A G connectors need to be accessible in order to flash the M P C .

A s mentioned earlier, in normal production, this data load scenario is usually covered by

the M P C manufacturer. Once U - B o o t is present on M P C , more advanced ways of data

loading can be used. Nevertheless, it might be necessary to go over this scenario again i f

the R C W , Min iboo t , and / or both U - B o o t images get corrupted. In such case, the M P C

needs to be flashed again at the card level to ensure its correct functionality. Details of

how this scenario is carried out can be found in section 6.3.

The second scenario is not very l ikely to occur, but in case U - B o o t version needs to be

changed on an M P C already loaded wi th working U - B o o t , U - B o o t offers the capabil i ty to

reload itself. The way to do that is very similar to the way the next scenario is done and

it is mentioned i n chapter 7.

The th i rd scenario takes place after the unit is assembled and ready for the box level

testing. H B I T (see subsection 4.2.5) is an embedded software designed specifically for

testing the S D U ' s hardware functionality at the box level. How is this data load performed

is described in chapter 7. If H B I T gets corrupted, but U - B o o t and layers underneath do

not, H B I T can be reloaded i n the same manner. A l so if H B I T needs to be updated to

a different version, the same approach is taken.

The fourth scenario might be omit ted i f the H B I T version loaded in the th i rd scenario

is the same as the target version of this scenario. B u t if it is not, the original H B I T has

to be reloaded w i t h the required one. This is done exactly the same way as i f there was

no H B I T present on M P C .

The fifth scenario is done once the box level testing of the S D U is successfully finished.

H B I T is erased and flight code is loaded onto M P C . U - B o o t is used to do this yet again,

so details about this scenario are also i n chapter 7.

The s ix th scenario is necessary after the in i t i a l load of the flight code onto the S D U

i n production, as well as i f an update of flight code is released and the S D U needs to be

updated in the field. U - B o o t is only capable to load components based on M P C , but flight

code also needs correct version of software on D A B C and correct data in the S C M based

O R T table. U - B o o t cannot ensure this, but the data load controller (D L C) implemented

in flight code can. Therefore, flight code is first loaded only onto M P C using U - B o o t to

37

put D L C and its support ing components i n place. Once available, the D L C functionality,

in cooperation wi th an external A R I N C 615A compliant data loader, is used to load

D A B C and S C M wi th the required data. The external data loader can be for example

the DataLoader applicat ion developed as a part of this thesis. The approach using D L C

together w i th DataLoader is closely described i n chapter 9.

The seventh scenario might occur when a hardware error is found on an S D U . In such

case it is necessary to identify the error and whether it is possible to fix i t . Combina t ion

of H B I T and I B I T is the software configuration designated to identify hardware errors,

so these software parts are loaded onto the S D U again. The advantage of D L C is that is

is able to write to any memory address on M P C , D A B C , and / or S C M . Thus it is able

to reload H B I T onto M P C and I B I T onto D A B C (if the correct version of I B I T is not

already present), as well as it would be able to update U - B o o t i f needed. One setback is

that H B I T and flight code cannot coexist on M P C , so by the reload of H B I T , flight code

ceases to operate and after the error is identified and the S D U repaired, it needs to be

loaded again as described i n the fourth and the fifth scenario.

5.2 D A B C Data Load Scenarios

The possible and meaningful data load scenarios for D A B C are the following:

1. empty D A B C —> D A B C wi th loader program and E B O O T

2. E B O O T —> E B O O T

3. E B O O T —> I B I T

4. E B O O T —> S w i f t B B

Just like on M P C , the first scenario has to be performed at the card level. Even

though the necessary J T A G lines are available on the backplane connector, they cannot

be accessed at the box level. Aga in , i n normal production, this data load scenario is

usually covered by the D A B C manufacturer. Once the loader program and E B O O T are

present on D A B C , more advanced ways of data loading can be used. If the loader program

and / or E B O O T get corrupted for any reason, the D A B C needs to be flashed again at

the card level to ensure its correct functionality. Details of how to perform the flashing

can be found in section 6.4.

The second scenario does not happen very often, only when the E B O O T version has

to be changed. Then it reloads itself. The process is the same as if it was any other image

type and it is described in chapter 8.

The th i rd scenario takes place before the card level functional testing and might be

repeated after the S D U is assembled and ready for the box level testing. I B I T (see sub

section 4.3.4) can be viewed as a counterpart to H B I T on M P C . It is a software allowing

D A B C to be commanded to transmit and / or receive as requested. This is used by H B I T

to perform a l l the R F tests on the S D U level.

The fourth scenario is performed as a part of the flight code data load onto M P C ,

namely the second phase using the data load controller. D L C uses the so called chan-

38

nel card interface (C C I F) implemented on M P C , which also provides commands to load

a software image onto D A B C . This interface basically utilizes the same B C L commands

used to load any D A B C software.

Natural ly, any D A B C software image including those not mentioned i n this text can

be loaded either using directly the approach described in chapter 8, or the D A B C u p g r a d e

applicat ion described i n the same chapter. This appl icat ion wraps the raw B C L commands

approach.

39

6 LOADING LOW L E V E L SOFTWARE

In this chapter, the processes of loading the low level software parts onto both M P C and

D A B C are described. These loads are necessary after the cards are manufactured and

blank, or when the low level software parts get damaged for some reason.

The in i t i a l flashing (i.e. wr i t ing the low level software code into non-volatile memories)

is normally done as a part of the acceptance test procedure (A T P) for both M P C and

D A B C . The approach is quite similar for both cards, w i th only slight differences.

Apa r t from the product ion solutions, some engineering ways to perform the flashing

are also mentioned. However, these are not very suitable for the product ion process, where

the goal is to have the procedure as simple as possible, so that the operator can s imply

follow a checklist step by step and does not need to have any deeper knowledge about the

device. The engineering solutions are usually more complicated than that and there is

a risk they could cause more damage than good if used improperly.

The flashing is done using the so called in-system programming (ISP), which is a pro

cess u t i l iz ing a special J T A G interface, which has to be present on the targeted chip.

Therefore the process has to be supported on the hardware level and this has to be kept

i n m i n d while selecting the hardware parts for the final solution. Lucki ly , many chips

today provide the J T A G interface, since it is a de facto industry standard for the low level

testing.

There are more types of J T A G interfaces, however, the most known and the one used

both on M P C and D A B C is defined by the I E E E 1149.1 standard (see [24]). The hardware

principle of the J T A G interface, boundary scan, and ISP are described in the following

sections.

6.1 Boundary Scan

Boundary scan test is a s tructural test of the component u t i l iz ing special c i rcui t ry added

to the chips and the printed circuit board (P C B) . It is an alternative to testing using the so

called bed of nails fixture or flying probe. The bad of nails fixture is custom made fixture

for the tested component that has pins point ing exactly i n places where test points are

on the tested board. W h e n the component is put into this fixture, contacts are made i n

these places and logical values (voltage levels) can be injected or read out by the fixture's

pins. Using this approach, defined parts of the ci rcui t ry can be tested to see if they are

operating as expected.

The bad of nails fixture natural ly has its benefits and drawbacks. The benefit is that

the testing is rather fast and can be parallelized quite well . Drawbacks are that the fixture

is expensive to make, it can only serve the one P C B and i n case its design is changed, the

fixture needs to be changed as well . A n d since there are physical contacts between the

fixture and the tested board, they can wear-off. P lus there is a risk of damaging either the

fixture or the tested board wi th careless manipulat ion when put t ing the board i n place

or taking it out. In general, making the bed of nails fixture is more beneficial for testing

40

larger amounts of boards, because of the higher speed, and the high price is spread across

more units.

The flying probe improves some of the mentioned drawbacks of the bed of nails. It is

a moving a rm equipped wi th p in points, programmed to get over to the correct posit ion

on the board and make an on-demand connection. It is obvious that this solution is more

flexible in case any changes need to be made. O n the other hand, the testing is slower,

and the drawback of the need for having a physical connection stays. This is problematic

wi th modern day P C B s , where components get smaller and smaller and their density on

the board higher. Especia l ly w i th multi layer P C B s , it can get extremely hard to design

them to have a l l the required test points reachable.

A n alternative for the structural testing based on connections made v i a test points is

the boundary scan. Its principle can be found i n Figure 6.1. There are three chips, each

having 5 inputs and 5 outputs and some internal logic, and they are connected in a series.

The circui t ry providing the boundary scan functionality is highlighted in red.

Chip 1

Internal
logic

Support registers and
TAP controller

TCK-
TMS-
TRST-

Chip2

Internal
logic

Support registers and
TAP controller

Chip 3

Internal
logic

Support registers and
TAP controller

• TDO

F i g . 6.1: Pr inc ip le of boundary scan testing and in-system programming

The basic idea behind the boundary scan is quite simple. In between every input and

output p in of the tested chip, a special logic called boundary scan cell is inserted. There

are two multiplexers and two D flip-flops i n every boundary scan cell , providing this cell

w i t h 4 modes of operation:

1. N o r m a l

2. Capture

3. Update

4. Shift

In normal mode, the boundary scan cell only passes the data between the p in and the

internal logic of the chip as if it was not even there. Capture mode samples the normal

input data into the first register. Update mode puts the test input data on the normal

41

output (through the registers). A n d shift mode sends the bit on the test input to the test

output, which is test input of the next boundary scan cell.

A s can be seen i n Figure 6.1, the boundary scan cells are connected in a series, making

up a so called Boundary Scan Register. The shift operation allows any bit sequence to

be shifted into this register. Th is way, the cells on the inputs of the internal logic can be

filled w i th the desired bits (e.g. an instruction) and then these bits can be sent i n . They

can also be captured on the other side of the internal logic circuitry, be shifted out and

compared to the expected outcome.

Not only the internal logic of the chips having boundary scan support can be tested.

W h e n the boundary scan logic is connected in a daisy-chain like it is in the figure, the

wir ing between the components can be tested as well, when the test vector is inserted on

the output pins of one chip and captured on input pins of another chip. Even if some

logic is between components support ing boundary scan, it can be tested (at least to some

extent).

There are 4 mandatory signals and 1 optional signal defined by the I E E E 1149.1

standard as the interface for the boundary scan. This interface is called Test Access Port

(T A P) and the signals are:

. Test D a t a Input (TDI)

. Test D a t a Output (T D O)

. Test Clock (T C K)

. Test Mode Select (T M S)

. Test Reset (T R S T)

A l l of them except T D O are inputs. T R S T is opt ional and is not used neither on M P C

nor D A B C . The behavior of the boundary scan cells is synchronized using the T C K signal

and controlled using the T M S signal and a 16 state finite state machine called the T A P

Controller.

The support registers i n the red box on each chip i n Figure 6.1 are at least the In

struction Register and Bypass Register, but usually there are more. Based on the T M S

and the T A P Control ler state, T D I is directed to one of the registers. The Instruction

Register holds the current instruct ion for the test. Based on the instruction, data sent to

T D O are selected. For example if B Y P A S S is the active instruction, bits from T D I are

simply shifted through the Bypass Register to T D O .

T R S T is optional, and usually not implemented, because the test can be restarted

synchronously by the T A P Control ler i n at most 5 cycles of T C K .

The benefits of boundary scan are that circuits having the necessary hardware support

can be tested quite thoroughly, w i th focus on smaller blocks at a t ime. P lus there is no

need for physical access to any pins or test points, which can be a great advantage i n

dense, multi layer P C B s . O n l y the T A P interface is necessary.

O n the other hand, the boundary scan logic natural ly takes some place on the chip

and makes a bit more expensive. B u t since it is mostly serial the hardware overhead is

not so high. However, the serial nature of boundary scan makes it a bit slow, especially

42

for long test chains, where it takes many clock cycles to prepare the test data, read it

out, etc. Also the m a x i m u m T C K rate for the chip is usually much lower than i n normal

operation and the lowest one of a l l the chips i n the chain has to be used. N o r m a l T C K

rates are i n tens of M H z .

6.2 In-system Programming

The in-system programming (ISP), sometimes also called in-circuit serial programming

(ICSP) , is a method of wr i t ing data into memory (specifically non-volatile memory) used

usually after the P C B assembly, when the memory is blank. Some code for the processors

or F P G A configurations have to be stored i n the memory for the functional components

to be able to operate usefully.

ISP utilizes the boundary scan circui t ry described i n the previous section to achieve

this. It basically emulates the memory read and write operations on the memory bus the

way they would be performed normally, i.e. it addresses the memory cell , prepares the

data, and enables the write operation. O r it can read out the data to perform a check

that the data are correct.

B o t h M P C ' s and D A B C ' s low level software parts are programmed using ISP.

6.3 Flashing M P C

O n M P C , the following software parts are considered to be low level:

• F P G A configuration

. R C W

• Min iboo t

. U - B o o t

F P G A configuration is loaded onto the F P G A and the other parts are loaded onto

both processors, i.e. R C W is stored into the processor's E E P R O M and Min iboo t and

U - B o o t into its N O R flash. E a c h processor has 16 p in T A P interface and the F P G A has

a 10 p in one.

Ex te rna l hardware and software that is capable to drive the T A P signals correctly is

required. For example Code Warr ior T A P kit and CodeWarr ior I D E can be used for the

processors. B u t these tools are more suitable for development and debugging, rather than

production. For production, the tools listed in the next section for D A B C flashing are

better. F P G A can be programmed for example using a Microsemi F lashPro4 or F lashPro5

J T A G hardware programmer.

Once the software parts named above are present, it is possible to use the data load

methods described i n chapter 7. It is of course s t i l l possible to load other software parts

the way presented above, too. B u t it is not usual, nor convenient, since this method is

quite slow, it is necessary to have the J T A G controller, and once the S D U is assembled,

the J T A G connectors are not accessible. This applies for D A B C as well .

43

6.4 Flashing DABC

O n D A B C , the following software parts are considered to be low level:

• F P G A configuration

• loader program

. E B O O T

Like on M P C , F P G A configuration is loaded onto the F P G A and the other parts are

loaded onto protocol processors on both channels, i.e. stored i n their N O R flash. Since

D A B C has the T A P interface for a l l components (except R F) integrated into the backplane

connector, a special test j i g board wi th more standard J T A G p in header connectors is

used. This board is connected to the D A B C v i a the backplane connector and the J T A G

connectors are wired to the defined pins.

For example J T A G ' s J T 3 7 x 7 / T S I hardware controller and J T A G P r o V i s i o n software

can be used to perform the flashing. Once the software parts named above are present, it

is possible to use the data load methods described i n chapter 8 or chapter 9.

44

7 M P C DATA LOAD USING U-BOOT

In this chapter, the process of loading data onto M P C card using the U - B o o t console is

described. A s was mentioned in subsection 4.2.4, U - B o o t provides, among other things,

an interactive console controlled v ia RS-232 interface. A program called SerialParser was

developed to automate communicat ion wi th U - B o o t over RS-232 as a part of this thesis.

Us ing appropriate commands, U - B o o t can perform wr i t ing anywhere in the memory

space of the processor it is running on, including for example N O R flash. This is used when

loading both the pr imary processor and the secondary processor on M P C . It is impl ied

that U - B o o t is also capable to overwrite itself, which can be used w i t h advantage when

U - B o o t update is necessary. The current version of U - B o o t is running from R A M , as

was described in subsection 4.2.4, and after the processor is restarted, the new version is

loaded from the N O R flash to R A M and started.

Apa r t from commanding the processor using U - B o o t , some preconditions have to be

met on the ini t ia tor side for a successful data load. The ini t ia tor has to be able to transfer

the loaded data to the processor's R A M upon a request from U - B o o t . T F T P is used i n

most cases, which means the ini t ia tor has provide T F T P server that is able to serve the

U - B o o t requests. It is also necessary to have the correct Ethernet topology for T F T P to

work. Alternatives to T F T P also exist, for example Y M O D E M protocol over RS-232 can

be used, i n which case ini t iator has to support it .

In section 7.1, requirements for SerialParser and its implementat ion are la id down. In

section 7.2, the design of the program is presented. In section 7.3, the implementat ion

itself is described. A n d i n section 7.4, the procedure for verification and validat ion of the

program is described.

7.1 Requirements

One of the goals of the SerialParser development was to create a program that is reusable

for automation of any communicat ion over RS-232, not only U - B o o t . Another was to

provide not only the features necessary for this scenario, but features that were inspired

by RS-232 communicat ion scenarios on other projects, or features that were considered

nice-to-have, too.

The requirements for the SerialParser were gathered wi th these goals i n mind . P r io r

to design and implementation, the following requirements were set:

1. SerialParser shall monitor given C O M port for a predefined pattern (R X pattern,

e.g. login prompt) and once detected, reply wi th a predefined response (T X pattern,

e.g. username)

2. SerialParser shall provide an option to define an empty T X pattern

3. SerialParser shall control a number of replies for each pattern, support ing infinite

processing (e.g. one R X pattern can be processed only once, while another R X

pattern can be processed every t ime it comes)

45

4. SerialParser shall provide an option to define mult iple T X patterns assigned to the

same R X pattern (in this case it would be assumed the first pattern pair would only

be processed a finite number of times)

5. SerialParser shall provide an opt ion to exit or continue on each R X pattern

6. SerialParser shall display the communicat ion (both R X and T X patterns) to a G U I

element (window)

7. SerialParser shall provide an option to display or hide the window when started

8. SerialParser shall provide an option for the user to enter commands (T X patterns)

from the window (it is expected the R X pattern processing w i l l be on hold i n this

case)

9. SerialParser shall provide an option to exit on a command from the user

10. SerialParser shall implement a command to init iate the user control as a security

precaution (e.g. a predefined key has to be pressed prior to al lowing the user to

enter commands)

11. SerialParser shall store the entire communicat ion history to a log file (including the

user-entered T X patterns)

12. SerialParser shall provide control over the type of line endings (carriage return and

line feed, or line feed only)

13. SerialParser shall provide error handling (return appropriate error codes and

messages) and timeouts (to exit i n case the exit pattern is not found)

Dur ing the design and implementation, these requirements were followed. Some of

them were a bit vague. In such cases, the decision on their final implementat ion was taken

in the development process. Some of the requirement were covered in a broader way, while

some were found to be unnecessarily demanding and were reconsidered.

7.2 Design

The design of the SerialParser applicat ion is described in this section. The description

is split into mult iple functional parts. The design covers the requirements defined in the

previous section and the implementat ion is based on this design.

The basic flow of the SerialParser applicat ion is the following:

1. L o a d settings (if not passed as parameters)

2. Open log file

3. L o a d patterns

4. Open C O M port

5. Wai t for input data

6. Check for R X patterns in the input data

7. Rep ly wi th T X pattern if R X pattern is found

8. Stop on exit pattern or timeout, otherwise go to step 5

9. Perform cleanup (close C O M port, close log file, deallocate dynamic memory)

SerialParser runs i n a console window. This covers requirement 6.

46

7.2.1 Settings File

SerialParser requires a couple parameters which make up its settings. These parameters

can be passed to it i n form of an INI file. INI file should contain predefined sections and

tags wi th values, based on which SerialParser sets itself up. These parameters cover the

C O M port settings (port number, baud rate, data bits, parity, and stop bits), logging

settings (if logging is allowed both to console and a log file, where the log file should

be stored), console window vis ib i l i ty setting (this covers requirement 7), timeout setting

(global timeout for the whole application), and path to X M L file w i th patterns.

7.2.2 Patterns File

X M L format was chosen to describe patterns. The patterns X M L file has to contain

a patterns root element, which can have any number of pattern chi ld elements. E a c h

pattern element can have the following attributes:

• repeat
• repeat_every
• s k i p _ f i r s t
• exit
• timeout

These attributes are not mandatory and if they are not defined, default values defined

below are used.

Fi rs t at tr ibute sets the number of times reply is sent when the given R X patten is

found. It can also be set to i n f , which means this R X pattern w i l l be replied infinitely

(default value). Th is covers requirement 3.

Second attr ibute makes the parser reply only to some occurrences of the given R X

pattern, for example every second, th i rd , or fifth occurrence. B y default, every R X pattern

is responded (value is 1).

T h i r d attr ibute causes the first n occurrences of R X pattern to be ignored, where n is

the number defined by the parameter. B y default, no occurrences are ignored (value is 0).

Four th at tr ibute can be set to true or false. If it is true, SerialParser stops execution

if the given R X pat tern is found (it replies first). B y default, SerialParser does not exit

on patterns (value is false). Th is covers requirement 5.

F i f th at tr ibute sets the t imespan in which the R X pattern has to be found after its

parent R X pattern was found. This is explained in greater detail further in this subsection.

B y default, no timeout is set (value is 0).

Apa r t from these attributes, pattern element has to contain rx chi ld element and

may contain tx chi ld element. These elements contain the R X and T X pattern strings.

If tx element is not defined or it is empty, no reply is sent by SerialParser when the

corresponding R X pattern is found. This covers requirement 2. In case rx element is

empty, SerialParser gives warning when parsing the patterns and this pattern is ignored.

47

To allow user full control over the pattern strings, they are parsed as i f they were

C strings, i.e. escape sequences defined by two characters (e.g. ' V and 'n') are replaced

by real escape sequences ('\n' for the given example). Since user has control over each

and every character i n the pattern, requirement 12 is covered.

SerialParser allows for mult iple patterns to have the same R X pattern. Rep ly ing to

such patterns is compliant w i t h their setup given by the aforementioned attributes. It is

possible for different T X patterns to be replied to one R X pattern immediately after each

other. In such case, the order of replies is not defined. It is upon user to control this

behavior and decide whether it is desired or set the attributes to the patterns so that they

never overlap. This covers requirement 4.

pattern element can also have another pattern element as a chi ld . If it does and its

R X pattern is found, from that moment on, SerialParser starts looking only for the R X

pattern of the chi ld pattern element. Th is allows for the patterns to be defined recursively

and timeouts can be used. A s was mentioned, each pattern element can have timeout
attribute, which sets i n how many seconds this R X pattern has to found after its parent

R X pattern. If it is not found wi th in this t ime, SerialParser exits. Timeouts can be used

for any pattern, which is defined deeper than in the patterns root element. They can

prevent SerialParser from getting stuck i f the expected flow of patterns is broken. Together

wi th the global timeout, which is started when SerialParser starts wait ing for the input

data, this par t ia l ly covers requirement 13.

7.2.3 Call Options

The usage of SerialParser on Aspire 400 project is realized v i a the TestStand applicat ion

from Nat iona l Instruments, which calls SerialParser as a dynamic l ink l ibrary (D L L) .

SerialParser D L L provides two entry point functions wi th defined interfaces.

Fi rs t requires only one input parameter, which is the path (absolute or relative) to the

INI file w i th settings. Second does not require the INI file, but it takes a l l the settings

as parameters. The latter option makes it easier, i f the settings for the SerialParser are

created dynamically.

SerialParser can be also called from console as a standard executable. Th i s case is

basically the same as when cal l ing the first D L L function. One parameter, the path to the

INI file, is expected.

7.2.4 Communication Processing

The incoming input data from the C O M port are read character by character and R X

patterns are searched for w i th prefix matching. This means that i f the current input

character matches some R X pattern's first character, an instance of possible R X pattern

match is created. W h e n the next input character comes, it is checked whether it matches

the second character of R X pattern. If so, next input character is checked again the same

way. If not, the instance of possible match is dropped. This is done for every possible

match instance wi th every input character.

'18

If a l l characters in the R X pattern are matched, the pattern is processed based on its

attributes. If this occurrence is supposed to be replied to, corresponding T X pattern is

wri t ten to the C O M port. A n d i f the pattern is an exit pattern, the processing is stopped

and SerialParser exits. Th is covers requirement 1.

7.2.5 User Control

User can take control over the communicat ion by pressing the F 4 key in the SerialParser

console window. This covers requirement 10. Processing of incoming input data is paused

i n such case, which could theoretically lead to data loss if the input data buffer overflows.

However, the assumption is that user only wants to take control when the device on the

other side of the C O M port is wai t ing for some input, i.e. it is not t ransmit t ing.

W h e n user has control, he can send any message, w i th one exception, to the C O M port

by typing it and pressing Enter . This covers requirement 8. The message is sent including

the newline character. The exception is when user types the predefined word ("exitsp")
to exit the applicat ion. In this case, SerialParser stops execution and exits, rather than

sending this string to the C O M port. Th is cover requirement 9.

7.2.6 Logging and Error Handling

Logging can be turned on and off by a setting. W h e n on, info messages about the Serial-

Parser in i t ia l iza t ion and found R X patterns and sent replies are printed to the console

window, as well as the log file, i f it is allowed. Every info message starts w i th a t imestamp.

If logging is turned of, only input data from the C O M port are printed. Th is covers

requirement 11.

A s far as error handling goes, there are not many possible ways how to do this for the

communicat ion over C O M port itself. Possible problems during SerialParser in i t ia l iza t ion

are of course checked and reported. However, when wait ing for the input data, the only

way to check that input is correct is using the timeouts. If the expected input is not parsed

in the given time, it is derived that an error occurred. This covers requirement 13.

It is definitely better to give enough margin to the timeouts, since there is no control

over the device on the other side of the C O M port and therefore the communicat ion is not

exactly precise time-wise.

SerialParser returns error code and i f called from D L L also the corresponding error

message. Warnings are only logged.

7.3 Implementation

The SerialParser was pr imar i ly designed to be used on A T E during product ion testing.

Therefore Windows are the targeted operation system, and as was mentioned i n section 4.4,

the TestStand applicat ion from Nat iona l Instrument is used at the top level to run the

product ion tests. Therefore L a b W i n d o w s / C V I I D E (version 2015) by the same developer

was picked for the implementat ion of the SerialParser.

49

This I D E contains an A N S I C compiler capable of compil ing the source code into either

executable {.exe file) or dynamic- l ink l ibrary {.dll file). It also provides libraries, some

of which were ut i l ized in the SerialParser, namely the RS-232 library, the INI file library,

and the C V I X M L library.

The RS-232 l ibrary contains functions to open and close C O M port, as well as read

data from it or write data to i t .

The INI file l ibrary provides functions to parse an INI file. It can load the file into an

internal structure and then parse ind iv idua l sections and their tag, value pairs. It is used

to get the settings values stored in the INI file.

The C V I X M L l ibrary provides functions to parse a standard X M L file. In SerialParser,

it is used to parse the X M L file w i th patterns, which are then stored i n an internal structure

in memory.

Otherwise the implementat ion is very straightforward, based on the described design.

The D L L entry point functions are called StartParser and StartParserlni. F i r s t ex

pects the settings to be passed as parameters, the latter expects path to an INI file, from

which it loads the settings.

W h e n SerialParser is started using the normal executable, main function is the entry

point as i n any C program. Since it expects the same input parameter as the second D L L

entry point function, the StartParserlni D L L function is just a wrapper that calls main
the ma in function.

Cus tom structures are used to store various data and a few macros were defined to

make logging and error handling easier. After getting the settings from the INI file (if

SerialParser is not called from D L L wi th parameters given), X M L patterns are loaded and

C O M port is opened.

Then the program loops i n the main loop, where it awaits input data, user action, and

/ or t imeout. A s was already mentioned, input data are processed character by character.

Th is is done i n another loop which is active un t i l there are data available in the C O M port

input buffer or a predefined number of characters was processed. The second condit ion

is to keep SerialParser interactive, because i f data were coming continuously a l l the time,

SerialParser would be processing them and would not check for user actions and / or

timeouts. O f course it would be possible to resolve this by using mult iple threads and

callbacks or signals. B u t since the applicat ion is not t ime cr i t ical , this solution seems

overly complicated and error prone. Actual ly , SerialParser is suspended i n every i teration

of the main loop by put t ing it to sleep for a short t ime. This is to prevent it from taking

too much C P U time while wait ing for the input data.

In the first version, the input data were not processed character by character, but as

strings read out from the C O M port input buffer. However, this solution was found to be

problematic, because when testing wi th a real S D U , it was discovered that it generates

a lot of nu l l characters (' \ 0 ') . N u l l characters are also string terminators i n C , therefore

when the input C O M port buffer contained useful data, then some nul l characters, and

then useful data again, when it was read out as a string, only the first part of the useful

50

data was obtained and the second part was lost. Th is problem was not discovered when

testing only i n simulated environment. W h e n processing the input one character at a time,

nul l characters are ignored.

The program stops execution of the main loop once an exit pattern is found, user takes

control and sends the exit command, or either the global or pattern timeout runs out.

Timeouts are checked by comparing difference between current t imestamp and t imestamp

taken when the main loop was started (for global timeout) and t imestamp taken when the

last R X pattern was found (for pattern t imeout).

W h e n the program is out of the main loop, it deallocates a l l allocated memory, releases

a l l other resources (log file, C O M port) , and returns wi th appropriate error code (0 for

success). If called from D L L , it also copies the error message to an output parameter.

The cleanup phase is done always, even if an error occurs during the ini t ia l izat ion phase

and the program does not even start the main loop.

7.4 Verification and Validation

For development, an environment s imulat ing the communicat ing device was used. This

environment consisted of a C O M port emulator and a simple P y t h o n script mimick ing the

target device. The open-source Nul l -modem emulator (comOcom) was used for the C O M

port emulation (see [25]). This tool can create a pair of v i r tua l C O M ports l inked to each

other. SerialParser was then commanded to connect to one of these C O M ports and the

P y t h o n script to the other.

The P y t h o n script generates defined output, which server as an input for the Serial-

Parser. The X M L patterns are made up to test a l l features provided by the SerialParser

(e.g. repeat, repeat_every, s k i p _ f i r s t , and exit attributes, timeouts, etc.). The log

from SerialParser is parsed by the P y t h o n script to check the SerialParser behaved as

expected.

The functionality was also validated by using the SerialParser to load H B I T onto both

M P C processors. In Figure 7.1, a sequence diagram wi th expected R X patterns coming

from the M P C processor and the T X pattern replies from the SerialParser is shown. The

sequence is the same for both the pr imary and the secondary processor. The patterns

are numbered and a short explanation for each of them can be found i n the list following

the figure. They are defined recursively, i.e. each R X pattern is looked for after the

previous R X pattern is found. E a c h pattern also has a defined timeout, therefore when

the communicat ion does not go down as expected, the SerialParser times out and reports

on which pattern it happened, i.e. which R X pattern was not found. This helps user w i th

debugging of the problem.

51

SerialParser
i

x
MPC processor

i
i

i

1. "Hit any key to stop autoboot"

4. "setenvethprime <pri me_eth>\n"

5. "=>"

6. "tftp <HBIT_fil e_name>\n"

7. "Bytes transferred"

8. "=>"

• S ^ r o t e c t o f f <N0R_f 1 a sh_add ress> +$fj|es ize\n"

10. "Un-Protected"

11. "=>

12. "erase <N0R_fl a sh_add ress> +Sfilesize\n"

13. "Erased"

J5^£P^RAM_£d^ss><N0R_f l a sh.add ress> $fi les ize\n"

16. "done"

J g . "protecton <N0R^f i a S h a d H r a . . > +$filesize\n"

19. "Protected"

20. "=>••

21. "setenv bootcmd go <boot_address>\n"

22. "=>

23. "saveenv\n"

24. "Protected"

25. "=>

26. "boot\n"

27. "HBIT is up and running successfully"

F i g . 7.1: Sequence diagram of H B I T data load
onto M P C processor

52

1. U - B o o t boot sequence is wait ing for an interruption

2. Interrupt U - B o o t boot sequence by sending an 'a' key

3. U - B o o t prompt is wait ing for a command

4. C o m m a n d to set the pr imary Ethernet interface is issued (to make sure T F T P works

properly)

5. U - B o o t prompt is wait ing for a command

6. T F T P command to download the H B I T binary into M P C processor's R A M is issued

7. Check the T F T P download was performed (string "Bytes transferred" appears

as a part of the output upon a successful operation)

8. U - B o o t prompt is wait ing for a command

9. C o m m a n d to un-protect a block of N O R flash memory where the H B I T binary shall

be copied is issued

10. Check the memory was un-protected (string "Un-Protected" appears as a part of

the output upon a successful operation)

11. U - B o o t prompt is wait ing for a command

12. C o m m a n d to erase the block of the N O R flash memory is issued

13. Check the memory was erased (string "Erased" appears as a part of the output

upon a successful operation)

14. U - B o o t prompt is wait ing for a command

15. C o m m a n d to copy the H B I T binary from R A M to N O R flash memory is issued

16. Check the binary was copied (string "done" appears as a part of the output upon

a successful operation)

17. U - B o o t prompt is wait ing for a command

18. C o m m a n d to protect the block of N O R flash memory is issued

19. Check the memory protection was turned on (string "Protected" appears as a part

of the output upon a successful operation)

20. U - B o o t prompt is wait ing for a command

21. C o m m a n d to set the new boot start address is issued

22. U - B o o t prompt is wait ing for a command

23. C o m m a n d to save the environmental variables is issued

24. Check the environmental variables were saved, i.e. the N O R flash memory block

where the environmental variables are stored was un-protected, erased, wr i t ten to,

and protected again (string "Protected" appears as a part of the output upon

a successful operation, but this t ime the SerialParser has to look for the second

occurrence of this string, since it first occurs i n the string "Un-Protected")
25. U - B o o t prompt is wait ing for a command

26. Boot command is issued for U - B o o t to run the booting sequence w i t h the new setup

27. Check that H B I T was booted (string "HBIT i s up and running successfully"
appears as a part of the output upon success)

53

8 D A B C DATA LOAD

A s already mentioned i n section 4.3, D A B C ' s applicat ion is selected using the loader

program. The loader program is loaded onto D A B C v i a a J T A G programmer as described

in chapter 6, namely section 6.4.

To load other appl icat ion images, D A B C needs to run the E B O O T application, which

allows the usage of a set of B C L commands that write into the protocol processor's N O R

flash. Therefore the first step of the data load process is to reboot the D A B C ' s channel

that is about to be loaded into E B O O T . There are two hardware ways and one software

way to achieve reboot into E B O O T .

Fi rs t hardware way is to t u r n off and back on the power supply. Th is restarts both

channels of D A B C and each starts the loader program, in which E B O O T can be selected

over the control port. Second hardware way is to use a restart discrete signal. W h e n the

discrete is turned on, the channel is stopped and when the discrete is turned off again, the

channel starts the loader program. Each channel has its own restart discrete. Inside an

S D U , both the power supply and restart discretes of D A B C are controlled by M P C . The

software way to reboot D A B C is using B C L command which tells D A B C to reboot itself

into the specified application.

Once i n E B O O T , wr i t ing into the N O R flash can be performed. F i rs t , B C L command

asking to unlock the N O R flash for wr i t ing is sent. T h e n B C L commands to program

indiv idua l blocks of memory are issued. These commands contain the address of the target

block, length of data, computed C R C for a security check, number of allowed repetitions

in case of an error, and the data itself. B C L responses are generated for these commands.

Fi rs t when the command is accepted (or declined wi th a reason) and then once the wr i t ing

into memory is finished (or fails, i n which case error code is returned). Para l le l wr i t ing

into mult iple memory blocks can be ut i l ized to speed up the process. This is especially

useful when using fast transport l ink to transfer the data (e.g. Ethernet) .

A l l applications are stored in the protocol processor's N O R flash, since it is the only

non-volatile memory on D A B C . Even code for the D S P s (if the appl icat ion uses them),

is stored there. Th is code is copied to the D S P ' s R A M (S D R A M or S R A M) during the

applicat ion startup.

Like w i th the data load on M P C using U - B o o t , the data can be loaded v i a C O M port

(RS-232), or over Ethernet (T C P or U D P) . The same advantages and disadvantages apply

for both these possibilities, as on M P C (i.e. using RS-232 is slower but more reliable i n

extreme conditions).

Besides using the B C L commands directly, there is a Honeywell proprietary applicat ion

called D A B C u p g r a d e , which can be used for the data load as well . Th is applicat ion wraps

the communicat ion described above and provides a simple command line interface. Some

of the possible command line arguments are:

• <path_to_image_f ile>, which specifies absolute or relative path to the .img file

• -image <name>, where <name> specifies the image name to be used (useful i n case

there are mult iple images packed wi th in one .img file)

54

• -menu <option>, where <option> specifies the menu option to be used (some

applications contain code for mult iple components and the menu option picks whether

al l the code or only parts of it should be loaded)

• -confirm, which tells D A B C u p g r a d e to skip the confirmation prompt and the final

screen (useful for full automation)

• -com<number>, where <number> specifies the C O M port number over which data

load should be performed

• -tcpip <ip>: <port>, which tells D A B C u p g r a d e to perform data load over Ethernet

(T C P) using the specified <ip> and <port>
• -udp <ip>:<port>, which tells D A B C u p g r a d e to perform data load over Ethernet

(U D P) using the specified <ip> and <port>

Using a proper combination of these arguments can simplify the D A B C data load

process to one cal l of D A B C u p g r a d e . It also returns code based on the result of the

operation. Th is code can be checked and it gives more information i n case of an error.

A wizard-like window applicat ion called D A B C w i n u p g r a d e also exists. It provides the

same functionality as the command line version, but uses text input fields, select lists,

buttons, etc., so it is not that suitable for automated use.

55

9 ARINC 615A COMPLIANT DATA LOAD

This chapter describes the process of data load compliant w i th A R I N C 615A standard

(see section 3.4) and its implementat ion that was done as a part of this thesis. A s was

mentioned i n subsection 4.2.6 and section 5.1, flight code software for Aspire 400 S D U s is

going to implement the functionality for data loading according to A R I N C 615A standard.

B u t to be able to uti l ize this functionality, a data loader compliant w i th this standard has

to be used.

There are some ready made commercial data loaders available on the market. However,

these tools are quite expensive. A n d the testing department at Honeywell needs such

a tool for almost every test station they bui ld . Therefore it was decided that it would

be beneficial to come up w i t h a Honeywell in-house solution, i.e. a data loader, or data

load function (D L F) to be more precise, that is capable of cooperation wi th the data load

functionality implemented i n flight code. Th i s solution should be following A R I N C 615A

standard, even though not a l l the functionality is necessary at the t ime being, hence it

can be a bit more lightweight than the offered commercial solutions.

The developed applicat ion was named s imply DataLoader . Its goal is to provide user

w i th means to perform data load of A R I N C 665 compliant packages onto A R I N C 615A

compliant devices. In case of Aspi re 400, the data package usually contains the flight code

F I T image and the O R T table wi th customer specific data.

Us ing the terminology of the standard, S D U is the target hardware, A T E used i n pro

duction is the data loader (neither portable nor airborne), and the DataLoader appl icat ion

is D L F .

9.1 Requirements

The DataLoader applicat ion has been developed as an engineering solution so far, therefore

no formal requirements for it were made. The scope of the appl icat ion is loosely defined

by A R I N C 615A standard, al though not a l l the properties discussed i n this standard

apply nor for the DataLoader , nor the A T E . For example the physical parameters and the

transport media types defined by A R I N C 615A for the data loader are not considered.

A s in case of the SerialParser application, the pr imary goal of the DataLoader applica

t ion is for it to be usable on the Aspi re 400 A T E by calls from the TestStand application.

However, possibil i ty of reusing it on other projects w i th no or only minor modifications

was kept in m i n d during the design, as this was a requirement. In order to achieve greater

usability, the applicat ion provides not only an interface for TestStand, but also a console

interface and a simple G U I .

Some of the formal requirements from the Honeywell 's requirements database for the

data load functionality inside of the Aspi re 400 flight code were also considered during the

design and implementat ion of the DataLoader to make these tools coherent.

56

9.2 Design

The design of the DataLoader applicat ion is described i n this section. The description is

divided into several main areas that were needed to be considered.

The typica l flow of the DataLoader applicat ion is the following:

1. Search L A N for available S D U s (if specific I P address is not supplied)

2. Get SDU(s) information

3. Initiate the uploading operation as defined by A R I N C 615A wi th the selected S D U

and software parts for loading

4. Moni to r the ongoing uploading operation (abort is supported)

5. Report the result of the uploading operation upon finish

9.2.1 SDU Side

A s was already stated, A R I N C 615A data loading functionality is implemented in flight

code on S D U side. Unfortunately, due to changes made to the original schedule, version

of Aspi re 400 flight code wi th this functionality is not yet released. O n l y the design and

par t ia l functionality of some components are currently at hand. The DataLoader imple

mentation that was done as a part of this thesis is based on the available documentation,

requirements, the fact that the interface should be standardized, and on other older flight

code implementations for different Honeywell projects that also deal w i th data loading

according to A R I N C 615A. It cannot be ruled out that some changes w i l l need to be made

to the DataLoader to work wi th Aspire 400 flight code correctly. However, the core design

should stay the same, only minor tweaks are expected.

Accord ing to the flight code design, data load shall be implemented by the so called

data load controller (D L C) module. This module implements the external interface of

A R I N C 615A defined services and cooperates w i th other flight code modules to perform

the data load. A very brief description of the S D U internal functionality follows. However,

it cannot go into much detai l in order to keep sensitive information undisclosed.

A so called load installer module, which shall actually perform the wr i t ing of loaded

data into the component's non-volatile memory, is going to be implemented for each of the

loadable components. Th is module w i l l provide an interface ut i l ized by D L C . Since the

data load process is driven by M P C and other components need to be loaded as well, flight

code needs to provide means of communicat ion wi th these components. For example for

D A B C , there is the so called channel card interface (C C I F) , which translates a l l commands

for D A B C into B C L and vice versa, including the commands the load installer module

shall use. For S C M , i n which pr imary O R T tables w i th customer data are stored, its load

installer module shall uti l ize the so called O R T controller. A n d D L C is also going to use

the SIS interface on M P C to update the software version numbers in SIS E E P R O M after

a successful data load.

Apa r t from the installer modules, D L C is also going to cooperate w i th S D U controller,

through which it shall check that data load is allowed (S D U is i n a data load mode) and

57

through which it shall reboot the S D U during the data load process, too. A l l mentioned

inter-modular communications are going to use the message event service (M E S) .

For the A R I N C 615A interface, D L C shall run a separate thread that shall control

a socket on port 1001, where it is going to wait for F I N D protocol requests, which are de

scribed i n the next subsection. If any request comes, this thread shall issue an answer. For

the rest of the data load process, D L C needs to act as both T F T P server and T F T P client.

On ly upload of data onto the S D U is planned to be supported at this t ime. Download

operation, also defined by A R I N C 615A, but only as optional, shall not be implemented.

D L C is also going to be responsible for receiving the A R I N C 665 data package,

unpacking it , verifying i t , and dis t r ibut ing the data to appropriate load installer modules.

F r o m that moment on, the loading itself shall be performed by load installer modules and

D L C shall only send the periodic upload information status to the external data loader

(e.g. the DataLoader applicat ion). Once the load installer modules shall be done, D L C

is going to validate the loaded software parts and inform the external data loader of the

result.

9.2.2 FIND Protocol

F i n d Identification of Network Devices (F I N D) is a protocol defined by A R I N C 615A and

serves to discover A R I N C 615A compliant devices on a local network. It was already

described i n section 3.4, but the key points are summarized here as well . It uses dedicated

port 1001 and U D P datagrams to exchange the protocol packets. There are two types

of packets. Information request (IRQ) broadcasted by the data loader, and information

answer (I A N) . I A N contains some information that identifies the device, namely the tar

get hardware identifier (T H W _ I D) , target type name, target posit ion, l i teral name, and

manufacturer code. A n d of course the IP address is known from the packet, too. After

broadcasting I R Q , the data loader gathers a l l I A N s that come wi th in 3 seconds.

DataLoader uses F I N D operation to discover S D U s available for data load. It first gets

a list of Ethernet adapters of the computer it is running on. Then it sends the I R Q packet

to the broadcast address of each of the adapters. A callback function processes any I A N

packet that comes wi th in the defined timespan. The packet is parsed and the properties

of the device are stored i n an S D U object. This way a list of S D U objects ready for data

load is created.

There is another supported way of in i t ia t ing F I N D operation i n the DataLoader , when

an IP address is passed as a parameter. In such case, the I R Q packets are not broadcasted

onto a l l local networks, but only one is sent (using unicast) to the given address. Th is

approach is not defined by the A R I N C 615A standard, yet it is quite useful dur ing the

product ion testing, when I P addresses of the S D U s connected to A T E should be known.

I R Q packet is sent to the IP address where an S D U should reside and I A N response gives

assurance that the S D U is indeed i n place, ready for other operations, and the S D U object

w i th its information is created.

58

9.2.3 T F T P

Apar t from the F I N D protocol, a l l A R I N C 615A data load functionality is implemented

using T F T P services. T F T P (at least the core functionality) is specified by R F C 1350

(see [26]). Other R F C s enhancing the original functionality are l inked from wi th in this

document.

The data load process is called upload operation by the A R I N C 615A standard and it

is based upon exchange of files defined both by the A R I N C 615A and A R I N C 665. The

T F T P read and write requests (R R Q s and W R Q s) are issued for the files i n defined order,

and they are transferred using data packets after the request is acknowledged by an A C K

packet, or the operation is terminated by an error packet. B o t h transaction sides (i.e. the

DataLoader and flight code) have to support the role of bo th T F T P client and T F T P

server. Thei r current role depends on the state of the data load process.

A minimal is t ic data load sequence is shown i n the sequence diagram i n Figure 9.1. It

captures the packets exchanged between the data loader (e.g. the DataLoader application)

and the target hardware (e.g. the D L C implemented i n S D U ' s flight code). The packets

are numbered and briefly explained in the following list:

1. F I N D information request is issued by the DataLoader to the S D U (either by broad

cast or unicast)

2. F I N D information answer containing S D U parameters is sent by S D U ' s D L C

3. T F T P read request for load uploading in i t ia l iza t ion (.LUI) file is issued by the

DataLoader (T F T P client at this moment)

4. The request is acknowledged by D L C (T F T P server at this moment)

5. T F T P transfer of the load uploading in i t ia l iza t ion file from D L C to the DataLoader

is done

6. T F T P write request for load uploading status (.LUS) file is issued by D L C (T F T P

client at this moment)

7. The request is acknowledged by the DataLoader (T F T P server at this moment)

8. T F T P transfer of the load uploading status file from D L C to the DataLoader is done

and the DataLoader checks the status provided wi th in the file

9. T F T P write request for load uploading request (. LUR) file is issued by the

DataLoader (T F T P client at this moment)

10. The request is acknowledged by D L C (T F T P server at this moment)

11. T F T P transfer of the load uploading request file from the DataLoader to D L C is

done

12. T F T P write request for load uploading status (.LUS) file is issued by D L C (T F T P

client at this moment)

13. The request is acknowledged by the DataLoader (T F T P server at this moment)

14. T F T P transfer of the load uploading status file from D L C to the DataLoader is done

and the DataLoader checks the status provided wi th in the file

15. T F T P read request for load upload header (. LUH) file is issued by D L C (T F T P client

at this moment)

59

Data Loader
I

x
1. FIND IRQ

2. FIND IAN
•

4
3. TFTP RRQfor <THW_ID_P0S>. LUI

4. TFTP ACK
•

4

5. TFTP transfer of <THW_ID_P0S>. LUI

<
6. TFTP WRQfor <THW_ID_P0S>. LUS

7. TFTP ACK

8. TFTP transfer of <THW_ID_P0S>.LUS

4
9. TFTP WRQfor <THW_ID_P0S>. LUR

10. TFTP ACK
•

4

11. TFTP transfer of <THW_ID_P0S>. LUR

12. TFTP WRQfor <THW_ID_P0S>. LUS
•

4
13. TFTP ACK

14. TFTP transfer of <THW_ID P0S>. LUS •
•*

15. TFTP RRQfor <header_f i l e>. LUH

16. TFTP ACK

17. TFTP transfer of <hea der_fi 1 e>. LUH •
18. TFTP RRQfor <data_fi 1 e>. LUP

•
4

19. TFTP ACK

20. TFTP transfer of <dat a_fi 1 e>. LUP
•

21. TFTP WRQfor <THW_ID_P0S>. LUS
•

4
22. TFTP ACK

23. TFTP transfer of <THW_ID_P0S>. LUS •
4

Flight CodeDLC
I

X

F i g . 9.1: Sequence diagram of data load process ini t ia ted by DataLoader

60

16. The request is acknowledged by the DataLoader (T F T P server at this moment)

17. T F T P transfer of the load upload header file from the DataLoader to D L C is done

18. T F T P read request for load upload part (.LUP) file is issued by D L C (T F T P client

at this moment)

19. The request is acknowledged by the DataLoader (T F T P server at this moment)

20. T F T P transfer of the load upload part file from the DataLoader to D L C is done

21. T F T P write request for load uploading status (.LUS) file is issued by D L C (T F T P

client at this moment)

22. The request is acknowledged by the DataLoader (T F T P server at this moment)

23. T F T P transfer of the load uploading status file from D L C to the DataLoader is done

and the DataLoader checks the status provided wi th in the file

The sequence is minimal is t ic , because more information might be exchanged during

the upload operation. Namely the <THW_ID_P0S>.LUS files can be pushed by the target

hardware to the data loader more often, since they serve not only to give status after

an operation is finished, but also as a heart beat signal let t ing the data loader know the

target hardware is s t i l l working on the current operation. These heart beats are made

wi th a predefined periodicity.

Another th ing that could occur during the upload operation is an abort by user,

propagated to the target hardware v ia the data loader. If an abort request occurs, the

data loader does not reply w i t h an A C K packet upon the next <THW_ID_P0S>.LUS write

request. Instead, it refuses the transfer w i th a T F T P error packet w i th error code 0 and

an abort error message, which was described in section 3.4. The target hardware then

tries to send the <THW_ID_P0S>.LUS file again, this t ime to let the data loader know that

the abort request was acknowledged and fulfilled. In the DataLoader applicat ion, user is

allowed to abort an ongoing loading sequence from any applicat ion interface.

A s was mentioned i n section 3.4, the <THW_ID_P0S> variable used in the file names is set

by the A R I N C 615A standard and is created by concatenation of the target hardware iden

tifier, underscore, and the target hardware posit ion. The other filenames (<header_f ile>
and <data_file>) can be arbitrary, including even the extensions. The .LUH and .LUP

are only recommended by the A R I N C 665 standard.

9.2.4 Console Interface

DataLoader supports mult iple interfaces. W h e n started as a standard executable (.exe

file) without any parameters, the G U I interface is presented. If parameters are supplied,

DataLoader is started as a console applicat ion. It depends on the combination of the pa

rameters, whether the console is interactive (i.e. requires user inputs), or tries to complete

the whole data load process on its own.

9.2.5 GUI

To make the DataLoader appl icat ion more user-friendly in case of its manual usage, it also

provides a simple G U I . This G U I consists of the ma in applicat ion window, where there

61

are buttons which allow user to init iate the F I N D operation (either standard one, or an

IP address can be supplied v i a a text box), open a file explorer window where user can

pick the . LUH header file that should be used for the data load, start the upload operation

or abort an ongoing one, and show a new window wi th log outputs.

Apa r t from these functional buttons, G U I has a list of upload operation phases wi th

a smal l light next to each phase. These light indicate the operation status. There is also

a progress bar w i t h a text box where the overall result of the data load is showed once it

is finished.

9.2.6 Test Stand Interface

One of the adapters for cal l ing external programs that TestStand provides is the . N E T

adapter. W h e n there is a compiled . N E T application, either as an executable {.exe file)

or a dynamic l ink l ibrary {.dll file), this adapter allows TestStand to invoke any public

method wi th in this applicat ion.

TestStand can pass parameters to the methods and receive the return values or output

parameters i n a standard way. TestStand supports numbers, strings, booleans, and their

arrays as types of variables. O n top of that, it allows user to create custom types, most

typical ly containers holding a combination of the standard types. W h e n the . N E T method

uses these standard types as either input or output, TestStand can work wi th them as wi th

any other variables.

TestStand also has an object reference type, which is basically a pointer to memory.

This type can be used to hold reference to a . N E T object, which is created by a ca l l to its

constructor. W i t h this object reference, its methods can be invoked and the instance can

also be passed to any other method that takes object of the given type as a parameter.

TestStand has to use the . N E T methods to perform any operation wi th the object, e.g.

use ToStringO method to get the object represented as a string.

Us ing TestStand to control a . N E T applicat ion is in its core actually very much like

programming it normal ly i n V i s u a l Studio. P u b l i c classes and their public methods are

accessible, methods are called, and objects are created and cleared by the . N E T garbage

collector when reference to them ceases to exist.

To make access to the DataLoader functionality from TestStand as easy as possible,

a special static class serving as an interface was designed. This class uses overloaded

methods to provide the following functionality:

• F I N D operation

• Upload operation

• A b o r t of an ongoing upload operation

The F I N D operation can be ini t ia ted either w i th no parameters, in which case F I N D

IRQs are broadcasted v ia a l l Ethernet adapters of the computer where the DataLoader is

running, or w i th a string containing IP address at which S D U should be looked for. A s

a result, either an array of S D U objects, or an array of strings containing IP addresses of

available S D U s is returned to TestStand.

62

The second group of methods starts and performs the upload operation itself. It is

more convenient to run this step in the TestStand sequence i n a new thread, because the

operation is blocking (i.e. it returns control after the data load is finished). To start an

upload operation, TestStand needs to supply the DataLoader w i t h either the S D U object

or a str ing w i t h S D U ' s I P address, and a string wi th locat ion of the . LUH header file. U p o n

completion, error code and an error message string are returned to TestStand.

The abort of the upload operation can be ini t ia ted from TestStand by cal l ing the

method and supplying either an S D U object or a str ing w i t h I P address. The DataLoader

checks whether there is an ongoing upload operation for the given S D U and if there is, it

aborts it and returns error code and error message string back to TestStand.

9.3 Implementation

The DataLoader applicat ion was developed i n Microsoft V i s u a l Studio I D E (version 2010),

using C# programming language. The implementat ion follows the design described above,

so there is not much to be discussed in this section.

A ready made implementat ion of T F T P service from another project was used. O th

erwise, standard . N E T libraries were ut i l ized. G U I was created using Microsoft 's Fo rm

Designer tool .

Threading was used where it was necessary, for example for monitor ing an abort request

to an ongoing upload operation, or the G U I interface i n order to keep it responsive at a l l

times.

9.4 Verification and Validation

Since appropriate version of flight code software for Aspi re 400 was not yet available at

the t ime this report was wri t ten, verification and validat ion could be done only partially,

using another type of A R I N C 615A compliant S D U from a different Honeywell project.

DataLoader was verified and validated on this S D U , nevertheless, the process shall be

repeated wi th Aspi re 400 S D U once it can be done.

In the verification and validat ion process using the other S D U , the already present

flight code was first deleted and then loaded using U - B o o t as if it would be i n a standard

product ion process. After that, flight code was reloaded using the DataLoader and its

functionality was confirmed by running a set of bui l t - in tests.

Initially, there was a p lan to do the early verification and val idat ion i n a simulated

environment like w i th the SerialParser. B u t in contrast w i th the SerialParser, where the

C O M port emulation and data generated on this v i r tua l connection were fairly easy to

provide, s imulat ing an A R I N C 615A compliant S D U has proved to be quite complex and

complicated, hence this idea was dropped.

63

10 CONCLUSIONS

In this chapter, the results of this thesis are summarized, w i th emphasis on the benefits for

Honeywell company. The implementat ion that was done is also discussed, including some

problems that occurred dur ing the development, known issues, and possible improvements.

To summarize the outcomes of the thesis, the official assignment was met to the extent

allowed by the circumstances. It was for example not possible to test the implemented

DataLoader appl icat ion w i t h the Aspire 400 S D U due to replanning of priorities in the

Aspire 400 flight code development, where version fully implementing the data load func

t ional i ty was not released yet. Therefore the functionality of the DataLoader appl icat ion

could only be tested on an A R I N C 615A compliant S D U from another Honeywell project.

Even though the t ransi t ion to the Aspi re 400 S D U should be easy, there is a slight risk

some issues w i l l rise i n the process as they d id wi th the SerialParser.

The t iming of the thesis also turned out to be problematic, because the plans for the

Aspire 400 project changed significantly after the assignment was made. Since the data

load functionality is more important i n the later phases, more urgent issues, for example

on the product ion A T E , were priori t ized, and work on the data loads was postponed.

A s was already mentioned, lacking both hardware and software for the real operational

testing was another problem. Since Aspi re 400 is s t i l l under development, only a few

engineering S D U s are available and none was available in Brno for a long time. Once

the SerialParser was tested on a real S D U , problem wi th the way the data are read from

the C O M port mentioned in section 7.3 was revealed and the implementat ion had to be

changed. The problem didn ' t occur during the previous testing neither in the simulated

environment, nor using the M P C card i n a special test j ig .

B u t these problems aside, this thesis has significant positive impact on the way data

loading is done during the product ion process. The designed applications are helping to

automate data loads in an easy and reliable way, making the product ion process faster and

more robust. B o t h are planned to be integrated i n the TestStand sequences for product ion

testing on Aspire 400. The applications should also be easily reusable, so other projects

can benefit from them as well . A n d the theoretical part of the thesis can serve as a quick

guide into the data load problematics on a l l levels.

There is natural ly some space for improvement of the applications, too. Add i t i ona l

functionality could be added. For example for the SerialParser, it would be useful i n some

situations to have an abi l i ty to branch the flow of recursive patterns based on the incoming

data, i.e. make a sort of condit ional patterns. One use case where this could be handy

is when some setup needs to be checked prior to following actions. W i t h the condit ional

patterns, the SerialParser could for example check the value of an environmental variable

and if it would not be set as expected, parser could issue a command to set the value

correctly. A t this moment, parser needs to do the setting step always i n order to make

sure the value is correct.

Another idea to improve the patters for the SerialParser would be to allow their def

in i t ion using regular expressions. Us ing such an extension, it would be easily possible to

64

search for R X pattern wi th variable substrings i n i t . Such R X pattern has to be currently

split into mult iple shorter and static R X patterns.

The plans for the near future of the DataLoader are to test it throughly wi th Aspire

400, once a l l the necessary equipment is available. The full support for the downloading

operation could also be implemented i f required. A t the t ime being, its support is not

planned in Aspire 400 flight code, therefore the DataLoader has no reason to support it

either. B u t this could of course change in the future.

It is also planned for the DataLoader to serve the data load needs of other projects,

hence it w i l l be necessary to test the appl icat ion wi th other types of S D U s and their related

equipment and fix any eventual bugs.

65

BIBLIOGRAPHY

[1] Air l ines Electronic Engineering Commit tee . (2007). ARINC Report 615A-3: Software

Data Loader Using Ethernet Interface. Annapol is , M a r y l a n d , U S A : Aeronaut ica l R a

dio, Inc.

[2] K a r p , A . (2007, Ju ly 5). Car ly le Group to buy A R I N C from airline shareholders.

Air Transport World. Retr ieved January 2, 2018, from http://atwonline.com/
operations/carlyle-group-buy-arinc-airline-shareholders

[3] Haber, G . (2013, December 24). Ar inc ' s new owner to sell off two subsidiaries. Balti

more Business Journal. Retr ieved January 2, 2018, from https: //www. biz journals.
com/baitimore/news/2013/12/24/arincs-new-owner-to-sell-off-two .html

[4] About SAE International, (n.d.) Retr ieved January 2, 2018, from

http://www.sae.org/about/

[5] Air l ines Electronic Engineering Commit tee . (2016). ARINC Report 665-4-' Loadable

Software Standards. Bowie, M a r y l a n d , U S A : S A E Industry Technologies Consort ia .

[6] Air l ines Electronic Engineering Commit tee . (1985). ARINC Report 603-1: Airborne

Computer Data Loader. Annapol i s , M a r y l a n d , U S A : Aeronaut ical Radio , Inc.

[7] Air l ines Electronic Engineering Commit tee . (2012). ARINC Specification 429P1-18:

Digital Information Transfer System (DITS) - Part 1 - Functional Description, Elec

trical Interfaces, Label Assignments and Word Formats. Annapol i s , M a r y l a n d , U S A :

Aeronaut ical Radio , Inc.

[8] Air l ines Electronic Engineering Commit tee . (2004). ARINC Specification 429P2-16:

Mark 33 Digital Information Transfer System (DITS) - Part 2 - Discrete Word Data

Standards. Annapol i s , Mary l and , U S A : Aeronaut ica l Radio , Inc.

[9] Air l ines Electronic Engineering Commit tee . (2009). ARINC Specification 429P3-19:

Mark 33 Digital Information Transfer System (DITS) - Part 3 - File Data Transfer

Techniques. Annapol is , M a r y l a n d , U S A : Aeronaut ica l Radio , Inc.

[10] Air l ines Electronic Engineering Commit tee . (2012). ARINC Specification 429P4-' Dig

ital Information Transfer System (DITS) - Part 4 ~ Archive of ARINC 429 Supple

ments. Annapol i s , M a r y l a n d , U S A : Aeronaut ica l Rad io , Inc.

[11] Air l ines Electronic Engineering Commit tee . (2017). ARINC Specification 600-20: Air

Transport Avionics Equipment Interfaces. Bowie, M a r y l a n d , U S A : S A E Industry

Technologies Consort ia .

[12] Air l ines Electronic Engineering Commit tee . (2002). ARINC Report 615-4'- Airborne

Computer High Speed Data Loader. Annapol i s , M a r y l a n d , U S A : Aeronaut ica l Radio ,

Inc.

66

http://atwonline.com/
http://www.sae.org/about/

[13] Air l ines Electronic Engineering Commit tee . (2006). ARINC Specification 664PI: Air

craft Data Network - Part 1 - Systems Concepts and Overview. Annapol i s , M a r y l a n d ,

U S A : Aeronaut ica l Radio , Inc.

[14] Air l ines Electronic Engineering Commit tee . (2009). ARINC Specification 664P2-2:

Aircraft Data Network - Part 2 - Ethernet Physical and Data Link Layer Specifica

tion. Annapol i s , M a r y l a n d , U S A : Aeronaut ica l Radio , Inc.

[15] Air l ines Electronic Engineering Commit tee . (2009). ARINC Specification 664P3-2:

Aircraft Data Network - Part 3 - Internet-Based Protocols and Services. Annapol is ,

M a r y l a n d , U S A : Aeronaut ica l Radio , Inc.

[16] Air l ines Electronic Engineering Commit tee . (2007). ARINC Specification 664P4-2:

Aircraft Data Network - Part 4 - Internet-Based Address Structure & Assigned Num

bers. Annapol i s , M a r y l a n d , U S A : Aeronaut ica l Radio , Inc.

[17] Air l ines Electronic Engineering Commit tee . (2005). ARINC Specification 664P5: Air

craft Data Network - Part 5 - Network Domain Characteristics and Interconnection.

Annapol is , M a r y l a n d , U S A : Aeronaut ica l Radio , Inc.

[18] Air l ines Electronic Engineering Commit tee . (2009). ARINC Specification 664P7-1:

Aircraft Data Network - Part 7 - Avionics Full-Duplex Switched Ethernet Network.

Annapol is , M a r y l a n d , U S A : Aeronaut ica l Radio , Inc.

[19] Air l ines Electronic Engineering Commit tee . (2010). ARINC Specification 664P8-I:

Aircraft Data Network - Part 8 - Interoperation with Non-IP Protocols and Services.

Annapol is , M a r y l a n d , U S A : Aeronaut ica l Radio , Inc.

[20] Air l ines Electronic Engineering Commit tee . (2017). ARINC Characteristic 781-7:

Mark 3 Aviation Satellite Communication Systems. Bowie, M a r y l a n d , U S A : S A E

Industry Technologies Consort ia .

[21] Zhongcai Z . (2012, June). Introduction to Integrated Flash Controller Freescale Tech

nology Forum. Available at https://www.nxp.com/files-static/training_pdf/
FTF/2012/americas/WBNR_FTF12_NET_F0109.pdf

[22] SwiftBroadband. (n.d.) Retr ieved January 3, 2018, from

https://www.inmarsat.com/service-collection/swiftbroadband/

[23] Texas Instruments. (2006). TMS320C6000 DSP Host Port Interface (HPI) Reference

Guide. Texas Instruments.

[24] I E E E Computer Society. (2013). IEEE Standard for Test Access Port and Boundary-

Scan Architecture. New York , New York , U S A : The Institute of Elec t r ica l and Elec

tronics Engineers, Inc.

[25] Null-modem emulator, (n.d.) Retrieved M a y 6, 2018, from https://sourcef orge.
net/projects/comOcom/

67

https://www.nxp.com/files-static/training_pdf/
https://www.inmarsat.com/service-collection/swiftbroadband/
https://sourcef

[26] Sollins, K (1992, Ju ly) . The TFTP Protocol (Revision 2). Retr ieved M a y 20, 2018,

from https://tools.ietf.org/html/rf c l 3 5 0

(i.N

https://tools.ietf.org/html/rfcl350

LIST OF ABBREVIATIONS

A C A R S Aircraft Communicat ions Addressing and Repor t ing System

A C K Acknowledgment

A D L Ai rborne D a t a Loader

A F D X Avionics Fu l l -Duplex Switched Ethernet

A O I Automated Op t i ca l Inspection

A X I Automated X - r a y Inspection

A R I N C Aeronaut ical Radio , Incorporated

A S C I I Amer ican Standard Code for Information Interchange

A T E Automated Test Equipment

A T P Acceptance Test Procedure

B C L B ina ry C o m m a n d Language

B F P Ba tch F i l e Par t

B G A N Broadband G l o b a l A r e a Network

C A N Controller A r e a Network

C B I T Continuous B u i l t - i n Test

c c Channel C a r d

C C I F Channel C a r d Interface

C P U Centra l Processing U n i t

C R Carriage Re tu rn

C R C Cyc l i c Redundancy Code

D A B C D u a l Aeronaut ica l B G A N card

D D R Double D a t a Rate

D I T S Dig i t a l Information Transfer System

D L C D a t a L o a d Controller

D L F D a t a L o a d Funct ion

D L L Dynamic L i n k L ib ra ry

D S P Dig i t a l Signal Processor

E C C Error-Correc t ing Code

E E P R O M Elect r ica l ly Erasable Programmable Read-Only Memory

eSPI Enhanced Serial Per ipheral Interface

F C Fl ight Code

F I N D F i n d Identification of Network Devices

F I T Flat tened Image Tree

F P G A Field-Programmable Gate A r r a y

G P C M General Purpose C h i p Select Machine

G P I O General-Purpose Input / Output

H B I T Hardware B u i l t - i n Test

H P I Host Por t Interface

I 2 C Inter-Integrated Ci rcu i t

I A N Information Answer

69

I B I T Init iated B u i l t - i n Test

I C S P In-Circui t Serial Programming

I C T In-Circui t Test

I D E Integrated Development Environment

I E E E Institute of Elec t r ica l and Electronics Engineers

I F C Integrated F lash Controller

I R Q Information Request

ISO International Standards Organizat ion

ISP In-System Programming

J T A G Joint Test A c t i o n Group

L A N L o c a l A r e a Network

L D U L i n k D a t a Un i t

L F Line Feed

L R U Line Replaceable Un i t

L S A P Loadable Software Ai rp lane / Aircraf t Par t

L S P Loadable Software Par t

L U H L o a d Upload Header

L U I L o a d Uploading Ini t ia l izat ion

L U P L o a d Upload Par t

L U R L o a d Uploading Request

L U S L o a d Uploading Status

M A C M e d i a Access Cont ro l

M C U Modu la r Concept Un i t

M D C Management D a t a Clock

M D I O Management D a t a Input / Output

M E S Message Event Service

M P C M a i n Processor C a r d

M S P M e d i a Set Par t

N V R A M Non-Volat i le R a n d o m Access Memory

O R T Owner Requirements Table

OSI Open Systems Interconnection

P B L Pre-Boot Loader

P B L Pre-Boot Loader

P C B Pr in ted Ci rcu i t B o a r d

P D L Portable D a t a Loader

P N Par t Number

P R O M Programmable Read-Only Memory

QoS Qual i ty of Service

R A M R a n d o m Access Memory

R C W Reset Configurat ion W o r d

R F Rad io Frequency

70

R F C Request For Comments

R G M I I Reduced Gigabi t Media-Independent Interface

R R Q Read Request

S B B Swift Broadband

S D R A M Synchronous Dynamic R a n d o m Access M e m o r y

S D U Satellite D a t a Un i t

S G M I I Serial Gigabi t Media-Independent Interface

SIS Standalone Identification System

SPI Serial Peripheral Interface

S R A M Static R a n d o m Access Memory

S R U Shop Replaceable Uni t

S V F Serial Vector Format

T A P Test Access Port

T C K Test Clock

T D I Test D a t a Input

T D O Test D a t a Output

T F T P T r i v i a l F i l e Transfer P ro toco l

T M S Test M o d e Select

T R S T Test Reset

U A R T Universal Asynchronous Receiver / Transmitter

U C C Unified Communicat ions Controllers

U M T S Universal Mobi le Telecommunications Service

U M T S U M T S Subscriber Identity Modules

U U T U n i t Under Test

W R Q Wri te Request

71

