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ABSTRACT

This master's thesis summarizes theory on how to perform data load onto on-board computers
of aircrafts. Specifically, how automated data load of Honeywell's Aspire 400 satellite data
unit is done. First part of the text describes requirements and possible ways of the data load
process, including standards that are applicable to this topic in the aeronautical industry. The
second part describes the implementation of the data load process on the aforementioned unit.
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ABSTRAKT

Tato diplomovéa prace shrnuje teorii ohledné nahravani dat (data load) do palubnich poéitadi
letadel, konkrétné do satelitni datové jednotky Aspire 400 od firmy Honeywell. Prvni ¢ast
textu popisuje pozadavky kladené na proces nahravani dat a mozné zpisoby jeho provedeni.
Jsou zde také predstaveny standardy tykajici se tohoto tématu v leteckém primyslu. Druha
Cast se pak zabyva samotnou implementaci procesu nahravani dat na zminéné jednotce.
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1 INTRODUCTION

This master’s thesis Data Loader for Complex Testing of On-Board Systems was imple-
mented in cooperation with Honeywell company. The goal was to come up with a way
of automated and reliable data load of Aspire 400 satellite data unit (SDU). Aspire 400
is an aircraft on-board unit, currently under development at Honeywell. The unit has to
use various software configurations during its life cycle, therefore there were multiple data
load scenarios that needed to be considered.

In this document, the data load process in general is described (see chapter 2), in-
cluding some of the important applicable standards used in aeronautical industry (see
chapter 3). After this theoretical part, the Aspire 400 product is described, with emphasis
on the key components, their software parts, and the equipment used in the production
process (see chapter 4). Another chapter is devoted to possible data load scenarios (see
chapter 5). The description of the data load process and its implementation is split into
several subprocesses, starting with data load of the low level software parts (see chapter 6),
over the first time data load of the target software (see chapter 7 and chapter 8), to the
final ARINC 615A compliant data load (see chapter 9). In the end, the results of this
thesis are summarized, together with ideas for possible improvements (see chapter 10).

The main scope of the thesis were the data load scenarios used in production on the
unit level. See Figure 5.1 in chapter 5 for clarification. Implementation of these scenarios
is described in chapter 7 and chapter 9.

Due to the commercial nature of the Aspire 400 project, this document is kept at
a higher level of abstraction where possible. Of course, details important to the data load
problematics are described as much as possible with compliance to Honeywell’s policy of
publishing information. Nevertheless, some of the information within this document can
be regarded as Honeywell’s intellectual property and should be treated as such. Any usage

of information about the Aspire 400 project should be consulted with Honeywell.



2 DATA LOAD DEFINITION

Data load is a process of writing specific software onto some device, called the target
hardware. The software is usually low level, e.g. some kind of firmware or lightweight
operating system. In the context of this document, the target hardware is an aeronautical
equipment, but generally, it can be any piece of hardware that needs some software for
operation.

Data load is performed using a data loader. Data loader can be some special hardware,
but it can also be an ordinary PC. The only requirements are the support of the required
interfaces, e.g. Ethernet, and software which is able to communicate with the target
hardware.

Data loader can communicate with the target hardware directly, i.e. be connected
straight to it, or it can be connected to a bus to which multiple devices, including the
target hardware, are connected. In the latter case, data loader also needs to be able to
address the correct device or devices on the bus.

The goal of the data load process is to write the desired data into non-volatile memory
of the target hardware on appropriate addresses, so that the target hardware can boot
up and operate using the loaded software. The non-volatile memory is nowadays usually
electrically erasable programmable read-only memory (EEPROM) or flash memory.

It is data loader’s responsibility to ensure the data load process is carried out properly,
i.e. the data is written onto the target hardware correctly and the target hardware operates
as expected. Therefore the data loader has to support at least error checking and should
preferably support also error handling. If the data load process is unsuccessful, the data
loader needs to clearly report this and should provide more information about the problem
to its operator. The data loader can also try to revert the target hardware’s configuration
to the point it was in before starting the data load process.

The term data load is sometimes used not only for writing, or uploading, data onto
a device. It can also be used to describe the process of getting, or downloading, data from
the device. In the latter context, data loader can be used to get information about the
device it is connected to. For example information about the purpose, type, configuration
of the device, etc. can be obtained.

This is a general description of the data load process. It may seem to be quite vague,
but there is no precise definition. However, there are standards with more specific re-
quirements for the target hardware and the data loader. These are described in the next

chapter.
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3 ARINC STANDARDS

Aeronautical Radio, Incorporated (ARINC) is a company which was founded in 1929 by
four starting United States airline companies. The goal of the company was to serve the
communication needs of the transportation industry (see [1], page ii). Till 2007, ARINC
was owned by shareholders, most of whom were airline companies, both U.S. and others.
In July 2007, ARINC was bought from its shareholders by a private equity company
called The Carlyle Group (see [2]) and in 2013 The Carlyle Group sold it to Rockwell
Collins Inc. Since Rockwell Collins does business in avionics, it sold ARINC’s Industry
Standards Organization subsidiary to avoid any conflict of interest. It was bought by SAE
International (see [3]). SAE originally stood for Society of Automotive Engineers, but
nowadays it is a global association of engineers and technical experts in the aerospace,
automotive and commercial-vehicle industries. One of their goals is voluntary consensus
standards development (see [4]).

Therefore, the ARINC standards are currently issued by SAE ITC (ITC stands for
Industry Technologies Consortia), more precisely by ARINC Industry Activities, an SAE
ITC program (see [5], page ii). This program organizes aviation industry committees,
one of them being the Airlines Electronic Engineering Committee (AEEC). AEEC is an
international body of airline technical professionals that leads the development of technical
standards for airborne electronic equipment, including avionics and in-flight entertainment
equipment-used in commercial, military, and business aviation. The AEEC establishes
consensus-based, voluntary form, fit, function, and interface standards that are published
and which are known as ARINC standards (cited from [1], page ii). AEEC is the body
that prepared the standards which are important for this thesis.

There are three classes of ARINC standards (cited from [1], page ii):

o ARINC Characteristics, which define the form, fit, function, and interfaces of avion-
ics and other airline electronic equipment. ARINC Characteristics indicate to prospec-
tive manufacturers of airline electronic equipment the considered and coordinated
opinion of the airline technical community concerning the requisites of new equip-
ment including standardized physical and electrical characteristics to foster inter-
changeability and competition.

o ARINC Specifications, which are principally used to define either the physical pack-
aging or mounting of avionics equipment, data communication standards, or a high-
level computer language.

o ARINC Reports, which provide guidelines or general information found by the air-

lines to be good practices, often related to avionics maintenance and support.

Below, mostly standards that are related to data load are briefly described. The
class of each of the standards is specified and there is also a link to the bibliography,
where information about the original documents can be found. In section 3.1, ARINC
429 is described. In section 3.3, ARINC 615 is described. In section 3.4, ARINC 615A is
described. And in section 3.6, ARINC 665 is described.
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There are other ARINC standards applicable to the data load process. The reason these
are not described in greater detail here is that they are very outdated. For example ARINC
report 603 (see [6]) sets expectations for data loader of airborne computers. However, this
standard was released in 1985 and expects the data loader to transfer data from a tape
cartridge.

Two exceptions can be found in the listed standards, namely ARINC 600, described in
section 3.2, and ARINC 781, described in section 3.7. These standards are not data load
related, but they are important for this thesis. ARINC 600 is important because it contains
specifications and requirements put onto units, such as Aspire 400, in order for them to be
compatible with standard airplane racks. And ARINC 781 sets characteristics of aviation
satellite communication systems operating in L-band. Aspire 400 is such a system and

that is the reason why the standard is described in this document as well.

3.1 ARINC 429

ARINC 429 is a four part ARINC specification (see [7], [8], [9], and [10]) subtitled Digital
Information Transfer System (DITS), or Mark 33 Digital Information Transfer System.
It defines a data bus widely used in avionics.

The standard describes physical and electrical interfaces of the bus, and also a protocol
supporting local area network (LAN) within the aircraft. The term bus may be consid-
ered to be misleading in case of ARINC 429, since bus usually supports multidirectional
transfers of data, while ARINC 429 supports only one way transfers from one source to
up to 20 recipients. If the connected device needs both to transmit and receive, it has to
do so on separate lines. FEach line constitutes of one twisted and shielded pair of wires.

Bits are being transmitted using the bipolar return-to-zero modulation. This means
clocking is part of the transmission. When transmitted, logical one has voltage of 10
+ 1V, logical zero has voltage of -10 + 1 V. The bus supports two speeds of data transfer.
High speed is 100 kbps a low speed is in range of 12 to 14.5 kbps. Data are transfered
in 32 bit words. Words are separated on the bus by putting a gap of at least four bit
periods between them. New word starts with the first bit transmitted after this gap.
Most messages used on the bus consist of only one word, but packets of up to 512 words
are allowed.

Each 32 bit word has to have 1 parity bit (bit 32, the most significant one) and an 8 bit
label, which is stored in the 8 least significant bits (bits 8 to 1). The word is transmitted
from the least to the most significant bit, i.e. label first, parity bit last. The parity bit
allows simple error check at the receiver.

There are other bits that usually have set function within a word. Bits 10 and 9 can
represent the so called source / destination identifier, which is used when the word needs
to be addressed to a specific device. Bits 31 and 30, and in some cases also bit 29, represent
sign / status matrix, which is used to report the hardware status of the device, but it can

also be used to represent a predefined sign, e.g. plus / minus, north / south, east / west,
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right / left, etc. More detailed information about the word formats can be found in [7],
attachment 6 on pages 115 to 124.

The label is encoded as a 3 digit octal number, and its bits are actually flipped
significance-wise, so the 2 least significant bits of the word form the most significant digit
of the label, the next 3 least significant bits of the word form label’s second digit, and the
next 3 least significant bits of the word form label’s third digit. This representation allows
label to be in range of 0 to 377.

The label identifies the data type of the word, i.e. whether it is binary encoded,
binary coded decimal encoded, or represents discrete values, and it also identifies what
kind of information the data represent. For example, label with octal code 015 represents
information about wind speed in binary coded decimal.

Since the amount of equipment that needs to communicate data within an aircraft
increased a lot compared to the time the standard was first released, some labels are used
in different contexts. To determine the context, the transmitting device is identified by
the equipment ID. Equipment ID is encoded within a word as 3 hexadecimal digits, i.e.
on 12 bits. The combination of label and equipment ID should always identify a unique
type of message. The full list of these types can be found in [7], attachment 1 on pages 21
to H4.

Description of the binary encoded decimal labels and equipment IDs can be found in
[7], attachment 2A on pages 55 to 60. The description states value ranges and resolution
of the data, how many significant bits there are, in what units is the encoded number, etc.
The same description for the binary encoded data can be found in [7], attachment 2B on
pages 61 to 81. Definition of the words representing discrete values can be found in [§]
(the whole document).

The data carried by a word can represent either numeric value, alphanumeric data
encoded using ISO alphabet number 5, or graphic data. The last one is used to transfer
data which are rendered on a display, e.g. a map in an aircraft.

ARINC 429 standard also defines techniques for file data transfer. File data can be
transfered using either character oriented protocol, or bit oriented protocol, which is also
called Williamsburg protocol. Two versions of bit oriented protocol are used.

Version 1 is described in [9], section 2.5 on pages 5 to 24. The description explains the
concept of link data units (LDUs), which is used to split the data file into pieces that are
sent using the data words, and then reassembled again. By definition, 3 to 255 words make
up 1 LDU, and the size of the transmitted file should not exceed 255 LDUs. The protocol
also contains details about system address labels, word timing, types of words used to
manage the data transfer, e.g. request to send, start of transmission, end of transmission,
etc.

Version 2 is not used anymore. It has been superseded by version 3, which is derived
from version 1. Version 3 is IEEE 802 compliant MAC protocol using ISO/OSI data link
layer. Details about architecture of this version can be found in [9], chapter 3 on pages 26
to 51.

13



3.2 ARINC 600

ARINC 600 is an ARINC specification called Air Transport Avionics Equipment Interfaces

(see [11]). It defines mechanical, electrical, and environmental interfaces between the so

called line replaceable units (LRUs) and the racks or cabinets in which they are installed.

LRU is a term used in avionics for a piece of modular on-board equipment, which, in

case of its failure, can be quickly replaced. The malfunctioning module is simply replaced

with a working one, and the service time, during which the aircraft has to be grounded,

is reduced. This is beneficial, since it is very expensive for the aircraft’s operator to

have it grounded. The malfunctioning unit can be then
inspected and eventually repaired someplace else, e.g.
its manufacturer’s facility, and time is not so critical
anymore.

Besides the definition of aforementioned interfaces,
ARINC 600 also gives guidance for the design process
and acceptance process of these interfaces. And inter-
faces between the racks or cabinets and the aircraft
itself are covered in the same way, including control
and regulation of power applied to on-board equipment.
Interchangeability of LRUs and racks made by different
suppliers is also discussed. Following ARINC 600 guide-
lines provides (taken from [11], page 3):

e a system of modularized equipment
¢ a system of modularized installation in racks and
/ or cabinets
e a family of low or zero insertion force electrical
connectors to provide the electrical interface
between the equipment and the aircraft wiring
¢ a system of effective environmental control of the
equipment
The standard defines a so called modular concept
unit (MCU), which is the basic unit for the packaging
and installation concept of LRUs. MCU defines a fixed
height, length, and width. All LRUs following ARINC
600 specification should have this height and length,
and their width should be a multiple of width defined
by MCU, i.e. the smallest LRU should have width of
1 MCU and bigger ones can have width of 2 MCUs,
3 MCUs, etc. Maximum weight of LRUs is defined as
well.
Furthermore, ARINC 600 sets forth parameters for
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maximum LRU thermal dissipation, cooling of on-board equipment within the racks, and
requirements for attachment of LRUs to these racks, i.e. ways of physical mounting, forces
the attachment has to withstand (vibration, shock, acceleration), etc.

However, the most important thing from ARINC 600 for the topic of this thesis is the
definition of LRU’s connector properties. It also covers the largest part of the ARINC 600
document itself ([11], attachments 17 to 21 and appendices 3 to 5). In these parts, the
types of connectors that make up the whole ARINC 600 LRU connector are described, for
example properties of pins for discrete signals, connectors for Ethernet, etc. An example
of ARINC 600 connector can be found in Figure 3.1.

3.3 ARINC 615

ARINC 615 is an ARINC report called Airborne Computer High Speed Data Loader (see
[12]). The last release of this standard was made in 2002. Today, it is quite outdated
and it is described here mostly for legacy reasons and the description is not very detailed.
Nevertheless, some devices still try to be compliant with this standard. Some parts of
the standard are very similar to ARINC 615A standard, which is described in the next
subsection. Since ARINC 615A standard is more important for this thesis, the similar
parts are described there.

The standard sets guidelines for development of two types of data loaders. Portable
data loader (PDL), and airborne data loader (ADL). Physical requirements for these
devices are defined in the standard, same way they are defined for these devices in ARINC
615A.

The data loader is using ARINC 429 interface and should have at least two outputs
and four inputs. It should be able to operate at both high speed (100 kbps) and low speed
(12.5 to 14 kbps). The on-board computers should address it in the sent words using label
with octal code 226 for high speed and label with octal code 300 for low speed.

The media for storing the loadable data are 3.5 inch floppy discs. The exact properties
and format of a disc are described in [12], sections 3.2.1 and 3.2.2 on pages 7 and 8.

The standard describes two configurations files for the data loader. First is called
CONFIG.LDR, and second is called EXCONFIG.LDR. At least one of them has to be
present on the disc, and if there are both, CONFIG.LDR is processed first. The config-
uration file contains the physical parameters used for the communication with the target
device, settings for the initial action taken after the initialization of the bus, total number
of data discs required for the data load, sequence number of the current disc, etc. The
full description of both types of configuration files can be found in [12], section 3.2.3.1 on
pages 8 to 11, and section 3.2.3.2 on pages 11 and 12, respectively. If some of the required
configurations are not set properly, default values are used.

File transfers are compliant with the file data transfer defined in ARINC 429. They use
the so called command / response protocol. Three types of words are used in this protocol.

Initial words, which are used to start and maintain the communication, intermediate
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words, which carry the actual file data, and final words, which contain checksum used for
an error check and close the transmission. The whole scheme of the protocol is described

in detail in [12], section 3.5 on pages 21 to 29.

3.4 ARINC 615A

ARINC 615A is an ARINC report called Software Data Loader Using Ethernet Interface
(see [1]). It describes a data load protocol implemented using Trivial File Transfer Protocol
(TFTP) and Ethernet interface for the physical connection. It is the most important
standard regarding this thesis.

ARINC 615A sets expectations for and gives guidance on development of software data
loading equipment. As already mentioned, primary goal of data load is to upload software
onto the target hardware. Secondary goal can be to download information from the target
hardware.

Even though the standard is focusing on data load over Ethernet, other avionics buses
using elements of Ethernet protocol are also mentioned as possible physical connection for
implementation of ARINC 615A data load protocol. Namely ARINC 615A over AFDX
(see section 3.5) and ARINC 615A over CAN bus are mentioned.

The standard defines three categories of data load functionality:

o Portable Data Loader (PDL), which is a mobile device that can be used to perform
data load on the ground or brought on-board of an aircraft to perform data load
o Airborne Data Loader (ADL), which is a device installed on an aircraft

o Data Load Function (DLF), which is a software performing the data load itself
The standard describes physical requirements for PDL and ADL, e.g. their size, weight,

controls and indicators, power supply and circuitry, non-operating and operating temper-
ature spans, etc.

Some recommendations regarding the removable transport media for the loadable soft-
ware are also made. The media include for example USB sticks, CDs and DVDs, and legacy
carriers like 3.5 inch floppy disks.

The most important part of the standard is the definition of the load protocol. It
defines functions that are necessary to be implemented both on data loader side and the
target hardware side for them to be ARINC 615A compliant.

The load protocol defines means to (cited from [1], page 22):

« upload ARINC 665 software parts (see section 3.6) to target hardware

e download data from target hardware

e get configuration information from target hardware

o interrupt at any time any of the three previous operations (interruption request can
be made by the operator or by the target hardware)

e obtain subscriber information, such as MAC address, IP address, and target hard-

ware identifier
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To the last point, the subscriber information can be obtained using the Find Identifi-
cation of Network Devices (FIND) protocol. FIND protocol allows its initiator (operator
using the data loader) to identify all available FIND hosts (ARINC 615A compliant tar-
get hardware) on the network. The operator can then select the desired target hardware
device or devices from a list.

The implementation of the FIND protocol is done using UDP datagrams on port 1001.
The initiator of the operation broadcasts or multicasts a request for a response from all
available FIND hosts on the network. Then it registers all valid responses that come
within 3 seconds.

FIND hosts respond with a unicast message to the data loader. Information about
host’s MAC address and IP address are part of the UDP/IP datagram and other infor-
mation about the host are part of the UDP payload. FIND protocol does not implement
any error handling. If the request or the response are not valid, they are ignored.

Two types of FIND packets are defined. Information request (IRQ) and information
answer (IAN). Each has a two byte header defining whether it is an IRQ packet (value
1) or TAN packet (value 2) and a variable length data. IRQ carries only one byte ASCII
string terminator (value 0x00) and one byte packet terminator (value 0x10).

TAN carries information identifying the host. It contains five strings separated by the

one byte ASCII string terminator. These strings are:

1. Target Hardware Identifier
Target Hardware Type Name
Target Hardware Position

Literal Name

AN

Manufacturer Code

All the other operations defined by ARINC 615A, excluding FIND, are implemented
using TFTP protocol, i.e. they are based on downloading from or uploading files to the
TFTP server, which is part of the data loader. There are two types of files that are
exchanged between the data loader and the target hardware. First being protocol files
that are generated during the load process, and second being the files with the loaded
software itself. While standard TFTP port is 69, TFTP services for ARINC 615A are
expected to run on port 59.

There are three types of operations defined in the standard, which are implemented
using TFTP:

¢ Information Operation, during which the data loader acquires information about the
configuration of the target hardware

¢ Uploading Operation, during which the data loader uploads files to the target hard-
ware

e Downloading Operation, during which the data loader downloads file from the target

hardware

According to the standard, data loader has to implement all of the above operations,

plus the FIND operation defined earlier, whereas target hardware does not necessarily
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need to implement the download operation. Furthermore, the operations cannot run in
parallel, and active operation can be aborted upon a request from the operator.

TFTP options may be implemented to gain higher efficiency of the file transfer. In
such case, the negotiation of these options has to be supported as well, though. If one side
does not support any of the options, standard settings have to be used for this option or
these options. Transfer should never fail due to non-implemented option.

Standard TFTP protocol is extended for the purpose of the load protocol. Wait and
abort messages are defined by the load protocol. They are implemented using the TFTP
error message. This message is part of an error packet and contains an error code number,
and an ASCII error message. Defined error codes are integers from 0 to 8. FKError code
0 definition is Not defined, see error message. Load protocol uses this error code and
utilizes its error message to define its own string encoded messages.

Wait message contains error string WAIT:z, where z is the wait time in seconds. The
maximum wait time is 65535 seconds. This message can be generated in response to
a TFTP transfer request by either the data loader or the target hardware. The device
receiving this message should abort the TFTP transfer and initiate it again after the
specified delay.

Abort message contains error string ABORT:zrxx, where zxzr is string of four hex-
adecimal digits containing a status code. The status code can for example mean that the
operation was aborted by the data loader, or by the operator.

Any target hardware instance in an aircraft is defined by an identifier called
THW_ID_POS. THW__ID (target hardware identifier) is defined in ARINC 665 stan-
dard and POS (target hardware position) is represented by 0 to 8 alphanumeric characters.
Both these strings are part of the IAN packet payload received upon a FIND request.

The THW__ID_POS identifier is used as a name for the generated protocol files, using
different suffixes. The full list of the protocol files can be found in the original ARINC
615A document (see [1], table 6.4-1 on page 66). These files contain all the protocol
overhead information like the protocol version supported by the target hardware, status of
an ongoing operation, including a heartbeat signal of the target hardware, result indicators

of the finished operations, etc.

3.5 ARINC 664

ARINC 664 is a seven part ARINC specification (see [13], [14], [15], [16], [17], [18], and
[19]). It defines an Ethernet data network suitable for an aircraft installation. Each of the
aforementioned documents describes some area, e.g. system concepts, Ethernet physical
and data link layer, Internet-based protocols and services, etc.

Basically, the main goal of this standard is to set requirements and restrictions that
have to be met in order for the standard commercial Ethernet networks and Internet

protocols to be eligible for the use in aircrafts.
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ARINC 664 standard is not a key standard for this thesis, therefore it is not described
in greater detail here. However, AFDX network was mentioned in section 3.4 as a possible
layer, upon which ARINC 615A standard can be implemented, hence at least a short
description of AFDX follows.

Avionics Full-Duplex Switched Ethernet (AFDX) is a trademark of Airbus company.
Airbus has it patented for safety-critical applications. AFDX network is able to provide
deterministic quality of service (QoS) on a dedicated bandwidth.

There are two types of devices connected to an AFDX network. End systems and
switches. AFDX implements the so called virtual links, which make an abstract layer and
simulate a bus similar to the one defined by ARINC 429. Using virtual links, one source
end system can create a unidirectional logical link to one or more destination end systems.
Redundancy is used in the background, which means end systems actually communicate
over multiple independent networks. In case of switch or link failure in one network, the

connection shall not be interrupted.

3.6 ARINC 665

ARINC 665 is an ARINC report called Loadable Software Standards (see [5]). It defines
the format of the loaded software. This definition includes the rules for part number-
ing, content, labeling, and formatting of loadable software parts (LSPs) and media set
parts (MSPs). Subset of LSPs are loadable software airplane / aircraft parts (LSAPs).
Compliance with the ARINC 665 standard assures, that software can be processed by
standardized data loaders.

Each LSP should have exactly one part number (PN), which should be agreed upon
by the aircraft manufacturer and the software supplier. Whenever a change is made to an
LSP, PN should be changed as well. The PN format is defined as MMMCC-S5555-5555,
where (cited from [5], page 6):

e MMM is a unique, upper-case alphanumeric identifier called manufacturer’s code,
that is assigned to each software supplier

e (CC are two check characters generated from the other characters in the PN

e S5555-555S is a software supplier defined unique product identifier consisting of

upper-case alphanumeric characters, except for alpha characters I, O, @, and Z.

However, ARINC 615A compliant data loaders should not check the PN format in
order to achieve higher backward compatibility and flexibility.

ARINC Industry Activities assigns manufacturer’s code upon application. It also ad-
ministers the already existing codes and a list of them can be found on ARINC Industry
Activities website.

CC denotes 8 bit cyclic redundancy code (CRC) written as two hexadecimal digits.
CRC is computed from the ASCII values of the rest of the PN characters.

An LSP counsists of a header file and one or more data files. Furthermore, it can contain

support files. Each file within an LSP should have a unique name with maximum length
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of 255 characters including an extension. The filename of the header file should start with
the three character manufacturer’s code and the rest should be unique for each LSP from
this manufacturer. Characters that can cause problems on some platforms, like spaces, *,
/, etc., are restricted. Also, the only difference between two filenames cannot be in the
use of uppercase and lowercase characters.

Fach type of LSP file should have an extension. For example, header filename should
end with .LUH, data filename should end with .LUP, etc. The full list of extensions for
all file types can be found in [5], table 3.2.2-1 on page 28. Support files can have any user
defined extension, as long as it does not conflict with the reserved ones.

The content of LSP header file is thoroughly described in [5], section 2.2.3.1 and its
subsections on pages 9 to 20. For the data files and support files there are no expectations
regarding their content or format. These types of files can optionally be compressed to
save space and speed up the loading process, or they can be encrypted.

The standard also defines batch file part (BFP), which can be utilized to predefine
a set of LSPs that should be loaded into one or more target hardware devices (positions).

MSPs in the context of ARINC 665 standard are the physical media, that are used to
transport LSPs, and eventually BFPs. They also have PNs. PN should be agreed upon
by the aircraft manufacturer and the software supplier. It should not be longer than 15
characters. The PN should uniquely identify the particular combination of physical media
and the software content.

Each member of an MSP is identifiable by MSP’s PN and the member sequence num-
ber, which should be from range of 1 to 255. Members of one MSP should use the same
physical media, e.g. USB sticks, CDs, etc. LSP files can be distributed over more MSP
members. However, individual files should never be split.

Fach member of an MSP has a list of all contained LSPs stored in LOADS.LUM
file, a list of all contained files stored in FILES.LUM file, and a list of all BFPs stored
in BATCHES.LUM file. These files should be stored in the root directory of the MSP
member. The full definition of the content and format of these files can be found in [5],
section 3.2.3.1 and its subsections on pages 28 to 32, section 3.2.3.2 and its subsections on
pages 32 to 37, and section 3.2.3.3 and its subsections on pages 37 to 40, respectively.

The standard also describes in detail the way MSPs should be labeled. Label should
for example contain the MSP’s PN, sequence number, content description, supplier iden-
tification, etc. The full description can be found in [5], section 3.3 and its subsections on

pages 42 to 44.

3.7 ARINC 781

ARINC 781 is an ARINC characteristic called Mark 3 Aviation Satellite Communication
Systems (see [20]). It sets forth the desired characteristics of satellite communication

systems which are using Inmarsat satellites and operate in L-band (band from 1518 MHz
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to 1559 MHz for reception and 1626.5 MHz to 1660.5 MHz and 1668 MHz to 1675 MHz
for transmission).

The communication system consists of multiple parts, which are individually described
in the standard. To simplify it, the system can be viewed as a satellite data unit (SDU), an
antenna system, and an SDU configuration module (SCM). The standard broadly discusses
the radio frequency (RF) parameters put onto the whole system and its individual parts
(e.g. frequency ranges, limits for RF output power, power of intermodulation products,
error vector magnitude, spurious emissions, etc.). Interfaces, both those provided by the
SDU for cockpit and cabin services, and those for interconnection of the system parts, are
also described, as well as the physical parameters, power supply, cooling, and many other
parameters.

The standard also explains Inmarsat services, their types (Classic Aero, Swift 64, Swift-
Broadband), parameters, etc. Services that should be provided by the SDU, for example
aircraft communications addressing and reporting system (ACARS), are discussed, too.

There is also a brief mention about the data load. ARINC 781 states, that the SDU
should be designed so that all embedded software components can be loaded through
industry standards ARINC 615 and ARINC 615A data loaders. It should also be possible
to download the owner requirements table (ORTs) from the SDU to a data loader. SDU
software files should be compliant with ARINC 665 (taken from [20], pages 70 and 71).
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4 ASPIRE 400

Aspire 400 is a satellite data unit (SDU) developed by Honeywell company. The target
market for this unit consists of small and medium aircrafts. The purpose of this unit is
to provide an aircraft with air-to-ground and ground-to-air connectivity. Basically, Aspire
400 can be viewed as a modem. Aspire 400 SDU is also a line replaceable unit (LRU,
defined in section 3.2).

In this chapter, the internal structure of the SDU is described in section 4.1. This
description is concerned with the structure that is important for the data load process.
In section 4.2 and section 4.3, software configurations used on the two keys components
of the unit are described. Possible data load scenarios tied with these configurations are
described in chapter 5. The testing environment used in production of Aspire 400 SDUs

is described in section 4.4.

4.1 SDU structure

Since Aspire 400 is currently an ongoing commercial project, the description of the SDU
below goes only into detail necessary for the matter of this thesis. The full hardware
structure of the components and their connections cannot be revealed, since these details
could be used by Honeywell’s competitors.

From the data load point of view, there are two important components in an SDU.
Multiprocessor Card (MPC) and Dual Aeronautical BGAN Card (DABC, BGAN stands
for Broadband Global Area Network). There is also an SDU Configuration Module (SCM),
a separate component outside of the SDU box, which contains some customer specific data.
These components are described below.

SDU provides multiple ways of connectivity, including ARINC 429 interface, RS-232
and RS-422 COM port serial interfaces, and Ethernet interface. These can be utilized in
the data load process. Most connectors of an SDU are physically placed on its backplane
in the ARINC 600 connector. Some of them are also accessible on the front panel.

Both MPC and DABC are connected to a so called backplane, which is another card
within the SDU. Its main purpose is simply to provide interconnections between MPC and
DABC and SDU’s ARINC 600 connector.

MPC, DABC, and backplane card are also sometimes called shop replaceable units
(SRUs). Like LRU, SRU is a term used in avionics. It denotes hardware on a lower level
than LRU. While LRU can be quite easily replaced in the field, piece for piece, SRU usually
has to be replaced in the LRU manufacturer’s facility, where the LRU is disassembled in
order to replace the SRU. Hence the name shop replaceable unit.

A simple visualization of the loadable components of an Aspire 400 SDU and their
interconnections can be found in Figure 4.1. It shows a simplified structure of the unit,

with emphasis on the information important for the data load.
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Fig. 4.1: Aspire 400 SDU loadable components and their interconnections

4.1.1 MPC

Main processor card (MPC) is the brain of Aspire 400 SDU. It has two processors that
require data load. These processors are identical from the hardware point of view. They

are both a system on chip with two 64 bit processor cores using Power Architecture
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instruction set architecture. They provide high-performance data path acceleration and
network and peripheral bus interfaces useful for aerospace applications. A block diagram
of the system can be found in Figure 4.2. The diagram is taken from the processor’s data

sheet, but it cannot be cited in order to keep the processor model undisclosed.
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Fig. 4.2: MPC processor block diagram

From the functional point of view, the processors have different tasks in the SDU.
However, their individual domains are not important for this thesis and therefore they
remain undisclosed. For the data load problematic, it is important to state that one of
the processors, hereafter referred to as primary processor, is booted first during the boot
up of the SDU and controls the other components, namely the other processor, hereafter
referred to as secondary processor, and the DABC.

Fach of MPC’s processors has four external memories. Three non-volatile and one
volatile. The non-volatile memories are one Micron 128 MB NOR flash, one Micron 1 GB
NAND flash, and one Microchip Technology 64 KB EEPROM. The first two memories are
connected to the processor via the Integrated Flash Controller (IFC) bus. This bus is 16
bit wide and clocked at 100 MHz. It provides a NOR flash controller, a NAND controller,
and a General Purpose Chip Select Machine (GPCM) controller (see [21], slide 4). The
EEPROM is connected via Enhanced Serial Peripheral Interface (eSPI) bus.

The volatile memory is a 1 GB DRAM error-correcting code (ECC) protected DDR3L
SDRAM, namely two 512 MB Micron chips are used. The L in DDR3L stands for low-
voltage (memory is operating at 1.35 V instead of standard 1.5 V). ECC protection detects
and corrects all single-bit errors and detects all double-bit errors. The ECC is a 256 MB
Micron chip, which is not user accessible. All memories are organized in a virtual address
space addressed with 32 bits for each processor.

In a typical boot up scenario, when the power is turned on, the system starts execution
from a non-volatile memory (e.g. EEPROM or NOR or NAND flash). After that, the
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code is copied from a persistent storage into RAM and execution continues from there
(see [21], slide 3). Therefore the processor needs to be able to communicate with the
non-volatile memory before any software configurations are made. In case of MPC, the
boot up process is started from the EEPROM and NOR flash and the program data are
copied to RAM from the NOR flash.

There is one more Microchip Technology 64 KB EEPROM, which is a part of the
Standalone Identification System (SIS) interface. It is used to store the unit level configu-
ration information. It is accessible both from the primary processor via an Inter-Integrated
Circuit (I12C) bus, and externally using the SIS interface. This interface allows user to check
the configuration stored in its EEPROM without the necessity to have the SDU powered
on. The SIS interface is made up by 8 pins. The connector is a 9 pin D-Sub connector
placed on the SDU’s front panel. The SIS interface can only read out of the EEPROM.
The primary processor has to be used in order to write data into it.

The primary processor provides an RS-232 port called MPC maintenance port and both
processor are reachable via Ethernet interfaces, either directly or via Ethernet switches
which are part of MPC as well. All these connectors are accessible on SDU’s backplane
(they are part of the ARINC 600 connector).

The primary processor and the secondary processor are interconnected via a serial link
which is realized by universal asynchronous receiver / transmitter (UART) using UCC3
(Unified Communications Controllers) through the QUICC Engine (see subsection 4.2.4).

The Ethernet switches on MPC are made by Atheros. The direct Ethernet connections
to MPC’s processors are realized using PHY chips (circuitry implementing physical layer of
the OSI model), namely serial gigabit media-independent interface (SGMII). The Ethernet
connections via switches are either SGMII or reduced gigabit media-independent interface
(RGMII). Both switches and both PHYs are controlled by the primary processor over
MDC/MDIO serial bus. The active device is selected by a 1:4 multiplexer.

MPC also contains a Microsemi FPGA, which is controlled by the primary processor
via the IFC bus. This FPGA, among other things, implements the ARINC A429 interface,
and it also controls reset signals to other components in the SDU (the secondary processor
and DABC).

Other important parts of MPC are three pin header JTAG connectors, one for each
processor (16 pins) and one for the FPGA (10 pins). There are also another two 10
pin header connectors, one for each processor’s EEPROM. These connectors are used for

testing and data load, as described in more detail in chapter 5 and chapter 6.

4.1.2 DABC

Dual Aeronautical Broadband Global Area Network Card (DABC) is the modem part
of Aspire 400 SDU. This component is connected to an antenna mounted on an aircraft
and using this antenna serves as the transmitter and receiver of the radio frequency (RF)
signals. Based on the type of antenna, an amplifier might be also used, or it can be part

of the antenna itself.
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DABC also provides processing of RF signals, which includes modulation and demo-
dulation, encoding and decoding, implementation of protocol stacks for Inmarsat
services, etc. Inmarsat’s SwiftBroadband (SBB) network is used for communication. SBB
is a global IP-based packet-switched network providing aircraft connectivity with speed
up to 432 kbps per channel (see [22]). It uses Inmarsat satellites to operate.

DABC, as the word Dual in its name suggests, has two independent channels. Each
one has its hardware and is loaded separately. More information about the data load of
DABC can be found in chapter 8. DABC is sometimes also called channel card (CC),
since its purpose is to provide RF communication channels.

From the hardware point of view, which is again kept at a level necessary for the
data load process, DABC has one FPGA common for both channels, each channel has
one general purpose processor, one channel has one DSP and the other channel has three
DSPs.

The FPGA is made by Xilinx. Apart from other things, the so called control processor
is implemented for each DABC’s channel within this FPGA. Its main purpose is to select
the application that is supposed to be started during DABC’s boot up process. The
control processor is commanded via an RS-232 control port. It is also connected to the
other components, which can be commanded via the control port as well.

The general purpose processor is a high performance low power system on chip based on
MIPS32 instruction set. In DABC, it is called a protocol processor, since its main purpose
is to run applications processing Inmarsat protocols. A block diagram of the system can
be found in Figure 4.3. Same as with the MPC processor, the diagram was taken from the
processor’s data sheet, but the document cannot be cited because it naturally contains
the model name of the processor.

There are three memory chips connected to this processor. One non-volatile 32 MB
Micron NOR flash connected via the SRAM controller, one volatile 32 MB Micron SDRAM
connected via the SDRAM controller, and one 256 KB Cypress Semiconductor SRAM
connected via the SRAM controller. The last memory is volatile by nature, but in DABC,
a condenser is used to make the data in it persistent. The condenser should last at least
one minute, but in reality, it can hold the data much longer. Anyway, the data are
persistent through a restart of the card, therefore this memory can be viewed as a sort of
NVRAM. The protocol processor is also connected to the RS-232 maintenance port and
to the Ethernet port.

The DSPs are made by Texas Instruments. The one used on both channels has a 128
MB Micron DDR2 SDRAM. It is connected to the protocol processor via Host Port In-
terface (HPI) bus and to the FPGA via GPIO lines. HPI is a parallel port through
which the protocol processor can directly access the memory space of the DSP, including
memory-mapped peripherals (see [23]). Protocol processor acts as a master on the bus.

The other DSPs used only on the first channel are identical and both have a 256 KB
Cypress Semiconductor SRAM, which is organized as 128K 16 bit words. These DSPs are
connected only to the FPGA via GPIO lines.
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Fig. 4.3: DABC processor block diagram

A 40 bit virtual address space is used to map all DABC components into it to simplify
the access to them.

Like MPC, DABC also has JTAG lines which can be utilized for testing and data load.
Unlike MPC, on DABC there is only one dedicated JTAG connector (for the RF part)
and other lines (for the channel 1 and channel 2 protocol processors and for the FPGA)
are part of DABC’s backplane connector, i.e. defined pins of this connector are dedicated

for this functionality.

4.1.3 SCM

SDU configuration module (SCM) is a separate module containing an EEPROM memory
in which some important unit-specific configuration data used by flight code are stored.
It contains for example serial number of the unit, information about both hardware and
software configuration and customer data. Customer data are stored in the so called owner
requirements table (ORT).

SCM also contains slots for Universal Mobile Telecommunications Service (UMTS)
Subscriber Identity Modules (USIM) cards, which are used by Inmarsat to connect to its
Swift Broadband network. USIM cards are necessary for the DABC to be able to operate.

SCM is connected to an SDU via RS-422 serial interface and power is also provided by
the SDU. The advantage of having SCM as a separate module is that it can stay in the
aircraft while SDUs are swapped. When a new SDU is used, ORT does not need to be

loaded again since it is part of the SCM, and USIMs can also remain untouched.
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4.2 MPC Software Parts

In this section, software used on MPC is described. There are multiple possible software
configurations of MPC consisting of a combination of the software parts described below.

More information about these configurations can be found in chapter 5.

4.2.1 FPGA Configuration

A file with data for the MPC’s FPGA is necessary to program it. Microsemi flash pro-
grammer allows usage of either PDB or STP file formats. The file contains data for the

boundary scan test a the FPGA configuration.

4.2.2 RCW

MPC’s processors use a mechanism called pre-boot loader (PBL). PBL is automatically
executed when the processor is powered on and its main task is to load the reset configu-
ration word (RCW), which is stored in processor’s EEPROM. RCW is 512 bits long and
contains encoded information used to initialize the RCW status registers. The information
encoded within RCW sets for example clock speed, RAM attributes, etc.

4.2.3 Miniboot

Miniboot is a simple executable code that verifies the checksum of U-Boot (see subsec-
tion 4.2.4). It is stored in processor’s NOR flash and run after the processor is powered
on and RCW is loaded.

Miniboot first tries to verify checksum of the primary U-Boot image and if it is correct,
Miniboot hands execution over to this U-Boot image. If this checksum is not correct,
Miniboot tries to verify checksum of the secondary U-Boot image. If this image is correct,
Miniboot starts its execution. If not, the SDU halts.

4.2.4 U-Boot

U-Boot, or Universal Boot Loader, is an open source project, which provides firmware
for embedded systems. The core development is done by DENX Software Engineering
company from Germany. The versions used in Aspire 400 project are customized at Hon-
eywell. The purpose of U-Boot is to perform hardware specific initialization and testing
(e.g. RAM test).

There are two main advantages of U-Boot. First is that it can boot up a system
already loaded into the device’s memory, and, unlike in most bootloaders, user can specify
the addresses in memory used by the boot commands.

The second is it provides a command line interface via RS-232 port. This interface
can be accessed when U-Boot startup process is interrupted by a keystroke during the
prompted time period. The interface supports commands for writing to, or reading from

the memory, modification of the environment variables, transferring files over the RS-232
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serial interface (using for example YMODEM file transfer protocol), or Ethernet interface
(using for example trivial file transfer protocol, i.e. TFTP), etc.

On MPC, there are two identical U-Boot images for each processor stored in its NOR
flash. As already described in subsection 4.2.3, one image is primary and the other one is
secondary. Integrity of an image is checked before it is started by computing its checksum.
Normally, only primary image is used (unless it is corrupted).

However, one exception to this duplicity exists. The environment variables are stored
in the so called U-Boot environment memory space in the NOR flash, and this space is
unique. The environment variables are loaded upon U-Boot’s startup and they contain
values which determine the behavior of U-Boot. In case the U-Boot environment is found
to be corrupted (again checked by a checksum), U-Boot sets all environment variables to
default values. And in case the U-Boot image is found to be corrupted, this information
is stored in the environment variables.

U-Boot also loads two microcodes (sometimes also spelled as pcodes). Each controls
behavior of a certain hardware block within the processor. First is FMan, or Frame
Manager, which processes Ethernet frames to provide classification and intelligent distri-
bution and queuing for incoming traffic. Second is QUICC Engine, which serves for high-
performance multiprotocol processing, e.g. Unified Communications Controllers (UCC).
Both microcodes are provided by NXP, both are stored twice in the processor’s NOR flash
and their checksums are checked by U-Boot.

4.2.5 HBIT

Hardware built-in test (HBIT) is a software specifically designed to allow testing of all the
components of an Aspire 400 SDU. The target of this testing is to make sure the hardware
of the tested SDU is functioning correctly, i.e. all the components of the printed circuit
boards and their interconnections are in place and are working as expected.

Basically, the purpose of HBIT is to provide an interface that allows setting or reading
out variables. A typical test scenario is when a set of variables is set in a predefined
way, and another set of variables is read out to see if the hardware reacts to the setup
as expected. There are many different variables to cover all the test scenarios. There are
discrete signals, analog signals, data sent over various buses, RF setups, etc.

HBIT is loaded onto MPC, but it also has the ability to control DABC in order to set
it up for the RF test scenarios.

For some tests, the environment outside of the tested unit also needs to be set up.
Most typically, voltages and currents are measured, so probes have to be set up correctly.
Or some inputs and outputs need to be looped, temperature has to changed for the test,
etc. This is not done by HBIT itself, but by the testing platform (see section 4.4).

HBIT also provides functionality called Continuous built-in test (CBIT). As the name
suggests, CBIT is a version in which testing is continuous, i.e. the tested variables are read

out with a defined frequency until the process is stopped. Compared to that, in HBIT, the
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variables are read out on demand. The tested values that are read out can be compared

programmatically, they can be logged, they can be visualized, etc.

4.2.6 Flight Code

Flight code is the full feature version of the software that is used on board of an aircraft.
Prior to any regular in-flight usage, this software has acquire proper certification. It
undergoes the so called qualification process, during which it is inspected and tested by
all the interested aviation authorities, and, if it complies with all the requirements and
passes the tests, it is certified.

In case of Aspire 400 SDU, more precisely the MPC, flight code is a Linux-based
module system. Each module takes care of some specific functionality. It is basically
a process. The so called message event service (MES) is implemented to provide an inter-
process communication between the modules. MES also provides means for securing the
communication, i.e. encoding and decoding the messages.

Flight code modules are distributed on MPC’s processors. Each processor takes care
of different parts of the SDU’s functionality. But the functional domains of flight code are
not important for the topic of this thesis, therefore they are not described further. Only
the modules important for this thesis, e.g. data load controller (DLC), are described in
greater detail in chapter 9.

Flight code is released in a form of flattened image tree (FIT). It is an image of
the whole system, including all configurations. This image is part of the loadable package
compliant with ARINC 665 standard. The standard in general was described in section 3.6

and for its application on Aspire 400 project see chapter 9.

4.3 DABC Software Parts

DABC is commanded by the MPC. Nevertheless, different configurations for DABC exist
and the code is loaded separately. Moreover, as mentioned earlier, DABC has two separate
channels, and each of them is loaded separately as well.

The DABC software is released in a form of image files (.#mg suffix). Based on the
type of application, the file contains data for one or more of DABC’s components. The
application is usually loaded onto all DABC components it uses during one instance of the
data load process. This ensures the software for individual components is compatible. But
it is also possible to load individual components with a specific combination of software
versions. This is especially useful for some extensive debugging, when user can create
a customized software version for the component of interest and load just that one.

Multiple applications can coexist in DABC’s non-volatile memory (protocol processor’s
NOR flash) at the same time. The active one is picked during the boot up using the so
called loader program, which is described in the next subsection. Records about available

applications are kept in a special table stored in the NOR flash as well. This so called
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PDB table contains names and versions of applications, together with their checksums
and addresses in the NOR flash.

Some environment variables can also be stored in protocol processor’s NVRAM.
Factory values are stored in the NOR flash and they are loaded from there to the NVRAM,
where they can be modified. The reason for this approach is that the NOR flash always
holds the factory data as a form of a backup and when modified, the change is done in
the NVRAM, so no writes to NOR flash are necessary. This reduces the number of writes
to this memory, which reduces its wear-off speed.

The list of DABC applications in this section is not exhaustive. Other types of DABC
images, mainly for different testing purposes, also exist. However, these are not used
during production testing and therefore they are not listed here.

A proprietary language called Binary Command Language (BCL) is used to command
DABCs. It is used to communicate with DABC from any external device or component.
A library for translation of BCL commands into binary and vice versa has to be available
in order to use it. All of DABC’s functionality is accessible using BCL commands. The
commands can be sent either via control port or maintenance port (RS-232) or via Ethernet
(TCP/IP stack).

Each BCL message has mandatory header and optional data payload based on the
message type. The header contains information about sender (BCL address of the sending
component) and recipient (BCL address of the target component). It has also information

about the type of the message, its length, CRC, and other properties.

4.3.1 FPGA Configuration

Like on MPC, a file with data for the DABC’s FPGA is necessary to program it. On DABC,
Serial Vector Format (SVF) file is used. This file contains instructions that perform the
boundary scan test a configure the FPGA into the desired state. SVF files are ASCII

encoded.

4.3.2 Loader Program

After power is applied to DABC and the reset signal is turned off, loader program is
initiated. This program reads the PDB table with information about all available appli-
cations mentioned above from the NOR flash and presents a list of available applications
via the control processor interface (control port RS-232). Selection is done using ASCII
encoding, i.e. application is selected by typing its name over the control port, terminated
with a carriage return character. When a correct application name is supplied, the loader
program copies the application from the NOR flash into RAM and hands over the control
to the application.

All applications can actually be twice in the NOR flash. This is for security reasons.
When application is loaded to DABC (written to its NOR flash) a copy of it can be made.
It is used in case the primary image gets corrupted. Before the loader program copies

the application into RAM, it computes CRC of the image it is about to copy to check
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the image is correct. If the CRC does not check out with the one stored in the PDB
table, user is informed about the error, but if the secondary image is available, the loader
program tries to copy the application from there (it performs the CRC check again for
the secondary image). Secondary image is only used if the primary is either not present

or its CRC is not correct. A flow chart of the loader program functionality is shown in

Figure 4.4.
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reset discrete turned off
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Fig. 4.4: DABC application selection
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4.3.3 EBOOT

Emergency boot (EBOOT) is an application which allows overwriting DABC’s NOR flash
using BCL. Hence data load can be performed when this application is running on the
channel that is about to be loaded. EBOQOT is using only the protocol processor to run.

EBOOT also supports duplication of the other applications’ images in the channel’s
NOR flash, which was mentioned in the previous subsection. When the BCL command
to perform the duplication is received by the protocol processor, EBOOT tries to copy
the other images present in the NOR flash from their primary position to their backup
position. It first checks to see if the duplicates are already present and are exactly the same
as the primary images. If so, no duplication is performed, both to speed up the process,
and to omit unnecessary writes to the NOR flash. If not, EBOOT either performs the
duplication or returns an error message when something goes wrong, for example if there
is not enough space for the duplicate in its designated area in the NOR flash. There is
also a BCL command that performs the opposite action, i.e. wipes the duplicates out of
the NOR flash. EBOOT does not duplicate itself and it is the sole application that is able
to perform this duplication and / or wiping.

Also, in contrast with loader program, when an application is running (not only
EBOOT, but any), the channel can be controlled not just via control port RS-232, but
via maintenance port RS-232 and Ethernet port, too. Other than that, EBOOT does not
support any of DABC’s functionality.

4.3.4 1IBIT

Initiated built-in test (IBIT) application is used for testing DABC in operational use. This
means that IBIT implements all functionality required to control DABC’s hardware. IBIT
is used during the production testing to command DABC to transmit and / or receive

data via its RF module. BCL commands are used to achieve this.

4.3.5 SwiftBB

SwiftBB, or SwiftBroadband, abbreviated SBB, is the full feature flight code application
used in an aircraft. It is designed to provide means of communication over Inmarsat’s
Broadband Global Area Network (BGAN). It handles the RF signals, implements all the
necessary protocols, etc. In order to be able to use BGAN, the implementation of this

application has to comply with SBB protocols defined by Inmarsat.

4.4 ATE

Automated test equipment (ATE) is an apparatus used for production testing of SDUs.
The testing is as automated as possible to speed up the process. Ideally, an operator
only plugs the unit under test (UUT) into the ATE and starts testing. All tests should

be performed and evaluated automatically, including all necessary configurations of the
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testing environment. The operator only needs to check the final status of the tested SDU
to see if it has passed or failed, and if it has failed, the ATE should also give reasons of
failure, so the SDU can be possibly fixed.

An ATE for Aspire 400 project should support testing of two SDUs simultaneously.
The testing process is coordinated by a computer that is part of an ATE. This computer
is running Microsoft Windows operating system and a program called TestStand from
National Instruments is used to run and evaluate the test sequences.

TestStand has the ability to call various adapters and interfaces. Its advantage is
that it can unify calls into various libraries, programming languages, etc. This layer is
abstracted from ATE’s operator, and he or she is presented only with quite simple and
clear interface showing which test sequences have passed or failed. TestStand also creates
a test report, can log the measured values into database, and more.

Other necessary tools are also installed on the ATE’s computer. For example a TFTP
server enabling an SDU in U-Boot command line mode to download data from it.

In the production process, ATE also serves as the data loader for the load of HBIT
onto MPC and IBIT onto DABC in the beginning of testing, and for the first-time load of
flight code after the testing is finished. U-Boot has to be already present on MPC, as well
as EBOOT on DABC, when the SDU it tested via ATE, since ATE tests SDUs (i.e. tests
at the box level), while these applications have to be loaded at the card level, as described

in more detail in chapter 6.
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5 DATA LOAD SCENARIOS

During its lifetime, SDU has to go through multiple software configurations. First, when
an SDU is produced, individual components are manufactured, i.e. printed circuit boards
(PCBs) are made and assembled. Then some initial tests are performed on these com-
ponents, for example automated optical inspection (AOI), automated X-ray inspection
(AXI), in-circuit test (ICT), boundary scan, etc. At this time, the components are blank,
therefore it is necessary to load some software onto them in order to use them. The soft-
ware has multiple layers, starting with bootloaders at the lowest level. There can be more,
building up on each other and extending the provided functionality. On top of bootloader,
there is usually some operating system and at the top level, there are the final applications.

In production, the low level software is usually loaded by the component manufacturer.
During development, when changes even to the low level software might be required, or
the software might get corrupted by improper work with memory, it can be sometimes
necessary to flash the component at Honeywell, too. But in most cases, the software at
the lowest level is loaded once onto a blank component and does not need to be changed
further.

Once the individual components are loaded with at least the low level software, the
unit could be theoretically assembled and shipped for SDU level production testing. But
in order to make sure the components work correctly prior to the SDU assembly, software
designed specifically for testing of all required features is loaded onto them and functional
testing at the card level is performed. This testing software is HBIT for MPC and IBIT
for DABC (these software parts were described in subsection 4.2.5 and subsection 4.3.4,
respectively). Only after both MPC and DABC pass, SDU is assembled and the testing
process goes further.

The SDU level production testing is performed at Honeywell and uses HBIT and IBIT
as well. It can happen that versions of these software parts used during the card level
testing are the same as versions required for the SDU level testing. In such case, testing
can proceed right ahead. However, it is more likely that the card manufacturer is provided
with a different version of HBIT and / or IBIT by Honeywell, and it is therefore necessary
to load these software parts once again.

If the unit passes the tests at the SDU level, the final software configuration (flight
code) is loaded onto it. This configuration supports the full functionality and contains the
customer specific data, too. At this moment, production is finished and the unit is shipped
to customer, ready for operation. Of course, there are also some possible post production
data load scenarios, namely update of the flight code version and error identification.

A flowchart of one SDU’s lifecycle is visualized in Figure 5.1. It is of course slightly
simplified. Data loads are highlighted in red. The dashed ones on the SDU level are those
that might not be necessary if correct versions of software parts are used for the card
level testing. There is also a blue box highlighting those that were in scope of this thesis
implementation. All the data load scenarios are also listed per component in the following

sections with more detailed description.
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Fig. 5.1: Aspire 400 SDU lifecycle with data loads highlighted
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5.1 MPC Data Load Scenarios

The possible and meaningful data load scenarios for MPC are the following:

1. Blank MPC — MPC with RCW, Miniboot, and U-Boot
U-Boot — U-Boot

U-Boot — HBIT

HBIT — HBIT

HBIT — flight code

Flight code — flight code

Flight code — HBIT (and IBIT)

NS e N

The first scenario has to be performed at the card level, i.e. before the SDU is
assembled, since the JTAG connectors need to be accessible in order to flash the MPC.
As mentioned earlier, in normal production, this data load scenario is usually covered by
the MPC manufacturer. Once U-Boot is present on MPC, more advanced ways of data
loading can be used. Nevertheless, it might be necessary to go over this scenario again if
the RCW, Miniboot, and / or both U-Boot images get corrupted. In such case, the MPC
needs to be flashed again at the card level to ensure its correct functionality. Details of
how this scenario is carried out can be found in section 6.3.

The second scenario is not very likely to occur, but in case U-Boot version needs to be
changed on an MPC already loaded with working U-Boot, U-Boot offers the capability to
reload itself. The way to do that is very similar to the way the next scenario is done and
it is mentioned in chapter 7.

The third scenario takes place after the unit is assembled and ready for the box level
testing. HBIT (see subsection 4.2.5) is an embedded software designed specifically for
testing the SDU’s hardware functionality at the box level. How is this data load performed
is described in chapter 7. If HBIT gets corrupted, but U-Boot and layers underneath do
not, HBIT can be reloaded in the same manner. Also if HBIT needs to be updated to
a different version, the same approach is taken.

The fourth scenario might be omitted if the HBIT version loaded in the third scenario
is the same as the target version of this scenario. But if it is not, the original HBIT has
to be reloaded with the required one. This is done exactly the same way as if there was
no HBIT present on MPC.

The fifth scenario is done once the box level testing of the SDU is successfully finished.
HBIT is erased and flight code is loaded onto MPC. U-Boot is used to do this yet again,
so details about this scenario are also in chapter 7.

The sixth scenario is necessary after the initial load of the flight code onto the SDU
in production, as well as if an update of flight code is released and the SDU needs to be
updated in the field. U-Boot is only capable to load components based on MPC, but flight
code also needs correct version of software on DABC and correct data in the SCM based
ORT table. U-Boot cannot ensure this, but the data load controller (DLC) implemented
in flight code can. Therefore, flight code is first loaded only onto MPC using U-Boot to
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put DLC and its supporting components in place. Once available, the DLC functionality,
in cooperation with an external ARINC 615A compliant data loader, is used to load
DABC and SCM with the required data. The external data loader can be for example
the DatalLoader application developed as a part of this thesis. The approach using DLC
together with Datal.oader is closely described in chapter 9.

The seventh scenario might occur when a hardware error is found on an SDU. In such
case it is necessary to identify the error and whether it is possible to fix it. Combination
of HBIT and IBIT is the software configuration designated to identify hardware errors,
so these software parts are loaded onto the SDU again. The advantage of DLC is that is
is able to write to any memory address on MPC, DABC, and / or SCM. Thus it is able
to reload HBIT onto MPC and IBIT onto DABC (if the correct version of IBIT is not
already present), as well as it would be able to update U-Boot if needed. One setback is
that HBIT and flight code cannot coexist on MPC, so by the reload of HBIT, flight code
ceases to operate and after the error is identified and the SDU repaired, it needs to be

loaded again as described in the fourth and the fifth scenario.

5.2 DABC Data Load Scenarios

The possible and meaningful data load scenarios for DABC are the following:

1. empty DABC — DABC with loader program and EBOOT
2. EBOOT — EBOOT

3. EBOOT — IBIT

4. EBOOT — SwiftBB

Just like on MPC, the first scenario has to be performed at the card level. Even
though the necessary JTAG lines are available on the backplane connector, they cannot
be accessed at the box level. Again, in normal production, this data load scenario is
usually covered by the DABC manufacturer. Once the loader program and EBOOT are
present on DABC, more advanced ways of data loading can be used. If the loader program
and / or EBOOT get corrupted for any reason, the DABC needs to be flashed again at
the card level to ensure its correct functionality. Details of how to perform the flashing
can be found in section 6.4.

The second scenario does not happen very often, only when the EBOOT version has
to be changed. Then it reloads itself. The process is the same as if it was any other image
type and it is described in chapter 8.

The third scenario takes place before the card level functional testing and might be
repeated after the SDU is assembled and ready for the box level testing. IBIT (see sub-
section 4.3.4) can be viewed as a counterpart to HBIT on MPC. It is a software allowing
DABC to be commanded to transmit and / or receive as requested. This is used by HBIT
to perform all the RF tests on the SDU level.

The fourth scenario is performed as a part of the flight code data load onto MPC,

namely the second phase using the data load controller. DLC uses the so called chan-

38



nel card interface (CCIF) implemented on MPC, which also provides commands to load
a software image onto DABC. This interface basically utilizes the same BCL commands
used to load any DABC software.

Naturally, any DABC software image including those not mentioned in this text can
be loaded either using directly the approach described in chapter 8, or the DABCupgrade
application described in the same chapter. This application wraps the raw BCL commands

approach.
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6 LOADING LOW LEVEL SOFTWARE

In this chapter, the processes of loading the low level software parts onto both MPC and
DABC are described. These loads are necessary after the cards are manufactured and
blank, or when the low level software parts get damaged for some reason.

The initial flashing (i.e. writing the low level software code into non-volatile memories)
is normally done as a part of the acceptance test procedure (ATP) for both MPC and
DABC. The approach is quite similar for both cards, with only slight differences.

Apart from the production solutions, some engineering ways to perform the flashing
are also mentioned. However, these are not very suitable for the production process, where
the goal is to have the procedure as simple as possible, so that the operator can simply
follow a checklist step by step and does not need to have any deeper knowledge about the
device. The engineering solutions are usually more complicated than that and there is
a risk they could cause more damage than good if used improperly.

The flashing is done using the so called in-system programming (ISP), which is a pro-
cess utilizing a special JTAG interface, which has to be present on the targeted chip.
Therefore the process has to be supported on the hardware level and this has to be kept
in mind while selecting the hardware parts for the final solution. Luckily, many chips
today provide the JTAG interface, since it is a de facto industry standard for the low level
testing.

There are more types of JTAG interfaces, however, the most known and the one used
both on MPC and DABC is defined by the IEEE 1149.1 standard (see [24]). The hardware
principle of the JTAG interface, boundary scan, and ISP are described in the following

sections.

6.1 Boundary Scan

Boundary scan test is a structural test of the component utilizing special circuitry added
to the chips and the printed circuit board (PCB). It is an alternative to testing using the so
called bed of nails fixture or flying probe. The bad of nails fixture is custom made fixture
for the tested component that has pins pointing exactly in places where test points are
on the tested board. When the component is put into this fixture, contacts are made in
these places and logical values (voltage levels) can be injected or read out by the fixture’s
pins. Using this approach, defined parts of the circuitry can be tested to see if they are
operating as expected.

The bad of nails fixture naturally has its benefits and drawbacks. The benefit is that
the testing is rather fast and can be parallelized quite well. Drawbacks are that the fixture
is expensive to make, it can only serve the one PCB and in case its design is changed, the
fixture needs to be changed as well. And since there are physical contacts between the
fixture and the tested board, they can wear-off. Plus there is a risk of damaging either the
fixture or the tested board with careless manipulation when putting the board in place

or taking it out. In general, making the bed of nails fixture is more beneficial for testing
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larger amounts of boards, because of the higher speed, and the high price is spread across
more units.

The flying probe improves some of the mentioned drawbacks of the bed of nails. It is
a moving arm equipped with pin points, programmed to get over to the correct position
on the board and make an on-demand connection. It is obvious that this solution is more
flexible in case any changes need to be made. On the other hand, the testing is slower,
and the drawback of the need for having a physical connection stays. This is problematic
with modern day PCBs, where components get smaller and smaller and their density on
the board higher. Especially with multilayer PCBs, it can get extremely hard to design
them to have all the required test points reachable.

An alternative for the structural testing based on connections made via test points is
the boundary scan. Its principle can be found in Figure 6.1. There are three chips, each
having 5 inputs and 5 outputs and some internal logic, and they are connected in a series.

The circuitry providing the boundary scan functionality is highlighted in red.

Chip 1 Chip 2 Chip 3

Internal Internal Internal

logic logic logic

.. | Support registers and | Supportregisters and | Supportregisters and > 00
TAP controller TAP controller TAP controller
* A A * [ A * [ f
1 [
o I N I N | :
™S ™ ™ i
TRST ========-==-=--------- i s !

Fig. 6.1: Principle of boundary scan testing and in-system programming

The basic idea behind the boundary scan is quite simple. In between every input and
output pin of the tested chip, a special logic called boundary scan cell is inserted. There
are two multiplexers and two D flip-flops in every boundary scan cell, providing this cell

with 4 modes of operation:

1. Normal

2. Capture

3. Update

4. Shift

In normal mode, the boundary scan cell only passes the data between the pin and the
internal logic of the chip as if it was not even there. Capture mode samples the normal

input data into the first register. Update mode puts the test input data on the normal
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output (through the registers). And shift mode sends the bit on the test input to the test
output, which is test input of the next boundary scan cell.

As can be seen in Figure 6.1, the boundary scan cells are connected in a series, making
up a so called Boundary Scan Register. The shift operation allows any bit sequence to
be shifted into this register. This way, the cells on the inputs of the internal logic can be
filled with the desired bits (e.g. an instruction) and then these bits can be sent in. They
can also be captured on the other side of the internal logic circuitry, be shifted out and
compared to the expected outcome.

Not only the internal logic of the chips having boundary scan support can be tested.
When the boundary scan logic is connected in a daisy-chain like it is in the figure, the
wiring between the components can be tested as well, when the test vector is inserted on
the output pins of one chip and captured on input pins of another chip. Even if some
logic is between components supporting boundary scan, it can be tested (at least to some
extent).

There are 4 mandatory signals and 1 optional signal defined by the IEEE 1149.1
standard as the interface for the boundary scan. This interface is called Test Access Port
(TAP) and the signals are:

o Test Data Input (TDI)
o Test Data Output (TDO)
Test Clock (TCK)

o Test Mode Select (TMS)

o Test Reset (TRST)

All of them except TDO are inputs. TRST is optional and is not used neither on MPC
nor DABC. The behavior of the boundary scan cells is synchronized using the TCK signal
and controlled using the TMS signal and a 16 state finite state machine called the TAP

Controller.

The support registers in the red box on each chip in Figure 6.1 are at least the In-
struction Register and Bypass Register, but usually there are more. Based on the TMS
and the TAP Con