
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

ADVANCED VISUALIZATION OF
NEURAL NETWORK TRAINING
POKROČILÁ VIZUALIZACE TRÉNOVÁNÍ NEURONOVÝCH SÍTÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR SAMUEL KUCHTA
AUTOR PRÁCE

SUPERVISOR Ing. KAREL BENEŠ
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Computer Graphics and Multimedia (UPGM)

Student: Kuchta Samuel

Programme: Information Technology

Specialization: Information Technology

Category: Artificial Intelligence

Academic year: 2022/23

Assignment:

1. Get acquinted with training of modern neural networks
2. Get acquinted with methods for visualization of training progress
3. Propose inspection-worthy aspects of the training
4. Visualize them using suitable data and model architectures
5. Evaluate the results

Literature:
Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep Learning. MIT Press, 2016.
Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe: Qualitatively characterizing neural network
optimization problems. 2015.

Requirements for the semestral defence:
1, 2 and partial work on 3 and 4

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Beneš Karel, Ing.

Head of Department: Černocký Jan, prof. Dr. Ing.

Beginning of work: 1.11.2022

Submission deadline: 17.5.2023

Approval date: 31.10.2022

Bachelor's Thesis Assignment
147671

Advanced Visualization of Neural Network TrainingTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This work aims to propose visualization methods and analyze with them the phenomena
arising during the training of neural networks, based on which new knowledge regarding
deep learning could be discovered. In this work, a program was created that tests the impact
of training using different techniques and visualizes the training results using different
methods. This work presents two methods of visualization of the training process. The
first method displays the area around the path of the trained model by averaging the
path’s points weighted by their distance from the displayed point. The second method is
to display step sizes during learning. The result of the work is represented by graphs and
a discussion of the phenomena captured by the visualizations.

Abstrakt
Cílem této práce je navrhnout metody vizualizace, a analyzovat nimi jevy vznikající během
trénování neuronových sítí, na základě kterých by mohly být zjištěny nové poznatky ohledně
hlubokého učení. V této práci byl vytvořen program, který testuje dopad na trénování za
použití různých technik, a vizualizuje výsledky trénování pomocí různých metod. Tato
práce představuje dvě metody vizualizace tréninkového procesu. První metoda je zobrazení
plochy okolo cesty trénovaného modelu pomocí průměrování bodů cesty váhovanými jejich
vzdáleností od zobrazovaného bodu. Druhá metoda je zobrazení velikosti kroků během
učení. Výsledek práce je znázorněn grafy, a diskuzí nad jevy zachycenými vizualizacemi.

Keywords
Neural networks, gradient size, machine learning, loss function.

Klíčová slova
Neuronové sítě, velikost gradientu, strojové učení, účelová funkce.

Reference
KUCHTA, Samuel. Advanced Visualization of Neural Network Training. Brno, 2023. Bach-
elor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Karel Beneš

Rozšířený abstrakt
Se vzrůstajícím výpočetním výkonem, objevováním efektivnějších algoritmů, a nasazením
do aplikací, je strojové učení populárnější než kdy předtím. I přes oblibu, se v oblasti
trénování vyskytuje mnoho nejasností.

Tato práce se zabývá trénováním neuronových sítí a vizualizací tréninkového procesu z
různých úhlů pohledu a pomocí různých metod. Tyto metody se poté porovnají a vybere se
vhodnoá metoda pro zobrazování průběhu trénování za účelem hlubšího zkoumání trénování
vybraných neuronových sítí.

Teoretická část začíná úvodem do neuronových sítí, včetně diskuze o algoritmech v stro-
jovém učení. Pozornost je pak věnována vizualizaci neuronových sítí. Práce představuje
různé metody pro vizualizaci průběhu trénování, a vizualizace konvolučních vrstev a jejich
výstupů, a navrhuje nové metody pro vizualizaci trénování neuronových sítí. Tyto vizual-
izace zahrnují analýzu účelové funkce kolem trénovací cesty, a zobrazení velikosti kroků
provedených během učení.

Experimentální část práce se zaměřuje na modely konvolučních neuronových sítí, trénování
pomocí stochastic gradient descent (SGD), a adaptive moment estimation (ADAM) algo-
ritmů, a využití regularizační techniky dropout.

Na základě tří-rozměrné metody vizualizace okolí kolem trénovací cesty zobrazené po-
mocí analýzy hlavních komponent (PCA), je navržena metoda pro zobrazení okolí cesty,
která co nejvěrněji kopíruje jak cestu trénování, tak dvou-dimenzionální vizualizaci lineární
interpolace parametrů mezi počátečním a koncovým bodem trénování. Tato metoda byla
úspěšně implementována s využitím průměrování bodů na cestě, kterou ušel trénovací algo-
ritmus, váhovanými jejich vzdáleností od vykreslovaného bodu, pro výpočet jeho parametrů,
nad kterými se počíta výsledek účelové funkce. Experiment potvrzuje nečekané chování
odvozené z menší míry vysvětlitelnosti pomocí PCA u ADAM algoritmu v porovnání s
SGD tím, že se porovná míra rozdílu vizualizace užitím dvou-dimenzionálních a mnoho-
dimenzionálních vzdáleností. Výsledky tohoto experimentu korespondují s výsledky vysvětlitel-
nosti variance pomocí PCA.

Další zkoumanou oblastí v průběhu trénování neuronové sítě je zkoumání velikosti kroků
během trénování. Běžné zobrazení ztráty (loss) nemusí vždy poskytovat dostatečný obraz
o problémech během trénování. Pomocí zobrazení velikosti kroků, případně její porovnání
se ztrátou, se přišlo na jevy, které umožňuji zefektivnit průběh trénování.

Experimenty ukázali korelaci mezi ztrátou (loss) a velikostí kroků, a možnost předběžně
předpovědět, jestli má model potenciál se dobře natrénovat. Taktéž se podařilo zefektivnit
trénování využitím znalosti velikosti kroků.

Advanced Visualization of Neural Network Train-
ing

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Ing. Karel Beneš. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Samuel Kuchta

May 16, 2023

Acknowledgements
My sincere gratitude goes to my supervisor, Ing. Karel Beneš, who has always been more
than willing to provide me with guidance, feedback and materials crucial to writing this
bachelor thesis. I also wish to thank my family for their continuous support.

Contents

1 Introduction 2

2 Neural Networks 3
2.1 Learning Techniques . 3
2.2 Neural Networks . 6
2.3 Neural Network Training . 9

3 Neural Network Training Techniques 11
3.1 Neural Network Optimization Algorithms 11
3.2 Neural Network Regularization . 13
3.3 Neural Network Normalization . 14

4 Neural Network Training Visualization 16
4.1 Convolutional Neural Network Training Visualization 17
4.2 Linear Path Interpolation . 18
4.3 Loss Surface Around Training Path . 19
4.4 Size of the Steps . 20

5 Implementation 21

6 Examining the Training Progress of Neural Networks 22
6.1 Architectures Used in Visualization Experiments 22
6.2 Datasets . 24
6.3 Preliminary Experiments . 25
6.4 Loss Surface Around Training Path . 26
6.5 Size of the Steps . 31

7 Conclusion 35

Bibliography 37

1

Chapter 1

Introduction

Visualization techniques are becoming increasingly popular in machine learning to improve
the understanding of these complex models by visually representing the model’s perfor-
mance over time, usually using plots and graphs. Neural network visualization has various
benefits, including assisting in understanding the network’s architecture, identifying and di-
agnosing problems, presenting the network’s complexity, pinpointing areas for improvement,
and providing opportunities for experimentation and exploration of network behaviour and
architectures. The history of neural networks dates back to the 1940s when Warren Mc-
Culloch and Walter Pitts proposed a model of artificial neurons which used thresholding
logic, meaning that the network’s output was binary 0 or 1 [16]. In the 1950s, researchers
began developing computational machines to simulate neural networks. In 1954, Farley
and Clark first used computational machines to simulate a Hebbian network [4]. It is based
on the idea that when two neurons are activated together, the connection between them
is strengthened. This is known as Hebb’s rule. Donald Hebb first proposed the theory in
1949 [8].

In 1958, Rosenblatt created the perceptron, an algorithm for pattern recognition [22].
In the 1960s and 1970s, researchers developed more complex neural network models, such
as the multi-layer perceptron. The backpropagation algorithm was applied in 1982 as a new
way to train these more complex models [27]. However, neural networks fell out of favour
in the 1980s due to their inability to solve complex problems. In the 1990s, researchers
developed new neural network architectures, such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), that could solve more complex problems.

The field of connectionism emerged in the 1980s [17], emphasizing the study of neural
networks and their ability to simulate human cognition. Researchers started exploring ways
to visualize the activation patterns of neurons and their connections to gain insights into
how the networks were functioning. As neural networks became more complex, visualization
techniques started to focus on understanding the internal representations learned by the
networks. In the 2010s [30, 29, 31, 20], deep learning experienced a resurgence in popularity
due to advancements in hardware and large-scale datasets. As deep neural networks with
numerous layers became more prevalent, there was an increased demand for visualization
techniques to interpret and understand their behaviour.

This study examines various methods for visualizing the neural network training process.
These techniques include plotting the training process using linear path interpolation, dis-
playing the region surrounding the path of the trained model through principal component
analysis, and presenting the step size during learning. The results show that visualiza-
tion of neural network training is valuable for understanding model behavior, identifying
phenomena during training, and improving neural network performance.

2

Chapter 2

Neural Networks

Neural networks are used in various applications, including image and speech recognition,
natural language processing, and autonomous vehicles. They are especially useful for tasks
that involve complex patterns and relationships in data, where traditional machine-learning
models may struggle to find meaningful insights.

Neural networks are a machine learning model inspired by the structure and function of
the human brain. They consist of layers of interconnected nodes or “neurons” that process
information in a way that allows the network to learn and make predictions based on the
input data.

Each neuron in a neural network receives input from neurons in the previous layer,
processes the input using a set of weights and biases, and then passes the output to the
next layer. This process continues until the last layer produces an output or prediction.

During training, the weights and biases of the neurons are adjusted based on the error
between the predicted output and the target output. This process allows the network to
learn and improve its predictions over time.

2.1 Learning Techniques
Learning is essential to machine learning because it allows machines to learn from data and
improve their performance over time. Neural Networks are used for tasks like regression
and classification. For these tasks, functions such as linear regression, logistic regression,
and softmax function are used. Three main learning techniques in Machine Learning are
supervised, unsupervised, and reinforcement learning.

3

Supervised Learning

In Supervised Learning, the machine is trained on labelled data, meaning the input data is
paired with a corresponding output or label. The goal is to learn the mapping between input
and output data so that the machine can accurately predict new, unseen data. Supervised
learning is often used for tasks such as image and speech recognition.

Linear regression is a well-known supervised learning algorithm that predicts a scalar
value 𝑦 based on an input vector x. The algorithm computes the output as an approximation
of 𝑦 through linear regression of the input. The formula for calculating the output is given
by

𝑦 = w𝑇x+ 𝑏, (2.1)

where 𝑏 is the bias term, w is the vector of weights, and x is the input vector. The weights
in the vector of parameters determine the contribution of each feature to the prediction.

Logistic regression serves as a classifier in machine learning, even though it is classified
as a statistical regression technique. Logistic regression enables the interpretation of feature
importance within a given dataset, with the number of inputs in the model equaling the
number of features in the dataset. Logistic regression is a generalized linear model for
predicting the probability of an instance belonging to a particular class in a classification
problem. The logistic function, also known as the sigmoid function, is defined as:

𝑃 (𝑦 = 1|𝑥) = 1

1 + 𝑒−(𝑧)
, (2.2)

where 𝑧 = w𝑇x+ 𝑏.

The softmax function is used in supervised learning for multi-class classification. It is
used to convert the output of a linear function into probabilities that can be used to classify
the input into one of the classes. Softmax function converts a vector of 𝐾 real numbers into
a probability distribution of 𝐾 possible outcomes. It is often used as the last activation
function of a neural network to convert the network output into a probability distribution
over predicted output classes. The softmax function is defined as follows:

softmax(z)𝑖 =
exp (𝑧𝑖)∑︀𝐾
𝑗=1 exp (𝑧𝑗)

, (2.3)

where z is a vector of K real numbers, and softmax(z)𝑖 is the i-th element of the resulting
probability distribution.

4

Unsupervised Learning

In unsupervised learning, the machine is trained on unlabeled data, meaning there are no
predefined labels for the input data. The goal is to find patterns or structures in the data,
such as clusters or groups of similar data points [6]. Unsupervised learning is used for
anomaly detection and data clustering.

Principal component analysis (PCA) is an unsupervised learning algorithm for multi-
variate data analysis. In such data, the observations are typically described by interde-
pendent quantitative variables. The main goal of PCA is to extract critical information
from a set of input data and represent it as a set of new orthogonal variables known as
principal components, thus creating a new coordinate system where the principal compo-
nents are derived as linear combinations of the original variables. This way, patterns of
similarity between observations and variables can be identified. The PCA method relies
on two mathematical techniques: eigendecomposition of positive semidefinite matrices and
singular decomposition of rectangular matrices.

PCA has several purposes, including simplifying and reducing the size of a dataset by
removing redundancy and keeping only the most relevant information while preserving as
much of the original variance in the data as possible, analyzing the structure of variables
and observations, and building predictive models. Neural networks can be initialized using
PCA [23].

function PCA(𝑋, 𝑘)
X̄← 𝑋 − 1

𝑛1𝑛(1𝑛)
⊤𝑋

𝐶 ← 1
𝑛X̄

⊤X̄
𝑌 ← X̄W
return 𝑌

end function
Where 𝑋 is the input dataset, 𝑘 is the number of principal components to be obtained,
X̄ is the mean-centered data matrix, 1𝑛 is a vector of length 𝑛 with all elements equal to
1, 𝐶 is the covariance matrix of X̄, W is the matrix of eigenvectors corresponding to the
𝑘 largest eigenvalues, 𝑌 is the projected data matrix representing the original data in a
lower-dimensional space spanned by the principal components.

PCA is a valuable data visualization tool because it can reduce high-dimensional data
to a lower dimension that can be plotted on a graph.

Reinforcement Learning

In reinforcement learning, the machine learns by trial and error. A machine is given a goal
or objective and takes action in the environment to achieve that goal. It receives feedback
in the form of rewards or penalties based on its actions, and the goal is to learn a policy
that maximizes cumulative reward over time. Reinforcement learning can be used with
deep neural networks to solve complex problems like game playing and robotics.

5

2.2 Neural Networks
The computational power of neural networks comes from the density and complexity of
their interconnections.

The input to a neuron is the dot product of two vectors: the inputs 𝑥 and the weights
𝑤. The output of the neuron is the value of its activation function:

𝑦 = 𝑓(w𝑇x+ 𝑏), (2.4)

where 𝑓 is the activation function, 𝑤 is the vector of weights, 𝑥 is the input data vector, and
𝑏 is the bias. Notice that the only difference between neural network and linear regression
is the usage of the activation function.

Figure 2.1: Model of an artificial neuron, where x is a set of inputs, w is a set of weights.
The input of the neuron is the dot product of these two vectors. 𝜙 is an activation function,
𝜃 is threshold and 𝑜 is the output [3].

Neurons are grouped into layers in a neural network. Activation functions are used to
propagate the output of one layer forward to the next layer. They take a scalar output
of a neuron and yield another scalar as an activation of the neuron. Activation functions
introduce nonlinearity into the model and define its behaviour.

4 2 0 2 4
x

0

1

2

3

4

5

Re
LU

(x
)

Figure 2.2: ReLU activation function

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

sig
m

oi
d(

x)

Figure 2.3: Sigmoid activation function

6

Feed-forward Neural Networks

A feed-forward neural network (FNN) is an artificial neural network where node connections
do not form a cycle. In this network, information moves forward from the input nodes,
through any hidden nodes, and to the output nodes.

A basic form of Feed-forward Neural Network (FNN) is a linear network that comprises
only one layer of output nodes. The inputs are directly connected to the outputs through
a set of weights.

FNNs can have multiple layers, with each layer consisting of multiple neurons. The
output of one layer serves as the input to the next layer. The last layer of neurons produces
the final output.

Figure 2.4: Feed forward neural network with two hidden layers. Where x represents
input data, 𝜌 represents hidden neurons, o represents the output. The arrows indicate the
direction of data flow inside the network.

matrix representation of the neural networks in Figure 2.4 might look as follows:

(︀
𝑥0 𝑥1 1

)︀⊤⎛⎜⎝Θ
(1)
00 Θ

(1)
01 Θ

(1)
02

Θ
(1)
10 Θ

(1)
11 Θ

(1)
12

Θ
(1)
20 Θ

(1)
21 Θ

(1)
22

⎞⎟⎠ 𝜙−→
(︁
𝜌
(2)
0 𝜌

(2)
1 𝜌

(2)
2 1

)︁⊤

⎛⎜⎜⎜⎝
Θ

(2)
00 Θ

(2)
01 Θ

(2)
02 Θ

(2)
03

Θ
(2)
10 Θ

(2)
11 Θ

(2)
12 Θ

(2)
13

Θ
(2)
20 Θ

(2)
21 Θ

(2)
22 Θ

(2)
23

Θ
(2)
30 Θ

(2)
31 Θ

(2)
32 Θ

(2)
33

⎞⎟⎟⎟⎠ 𝜙−→

𝜙−→
(︁
𝜌
(3)
0 𝜌

(3)
1 𝜌

(3)
2 𝜌

(3)
3 𝜌

(3)
4 1

)︁⊤

⎛⎜⎝Θ
(3)
00 Θ

(3)
10 Θ

(3)
20 Θ

(3)
30 Θ

(3)
40

Θ
(3)
01 Θ

(3)
11 Θ

(3)
21 Θ

(3)
31 Θ

(3)
41

Θ
(3)
02 Θ

(3)
12 Θ

(3)
22 Θ

(3)
32 Θ

(3)
42

⎞⎟⎠ 𝜙−→
(︀
𝑜0 𝑜1 𝑜2

)︀⊤

7

Recurrent Neural Network

A recurrent neural network (RNN) is an artificial neural network where node connections
can form a cycle, which allows output from some nodes to affect subsequent input to the
same nodes, allowing the network to exhibit temporal dynamic behaviour.

RNNs can use their internal state (memory) to process variable-length sequences of
inputs. This makes them applicable to unsegmented, connected handwriting or speech
recognition tasks [14].

x

h

o

U

V

W
Unfold

xt-1

ht-1

ot-1

U

W

xt

ht

ot

U

W

xt+1

ht+1

ot+1

U

W

VV V V... . . .

Figure 2.5: Recurrent neural network, and its representation unfolded in time [5].

ht = 𝑓(U · xt +V · ht−1 + b), (2.5)
ot = 𝑓(W · ht), (2.6)

where for each time step t, h is the hidden internal state vector, x is the input vector, U,
W and V are weight matrices, b is the bias vector, 𝑓 is the activation function.

Convolutional Neural Network

A convolutional Neural Network (CNN) is an artificial neural network commonly applied
to analyze visual imagery. CNNs use a mathematical operation called cross-correlation
instead of general matrix multiplication in at least one of their layers. They are specifically
designed to process pixel data and are used in image recognition and processing. CNNs have
applications in image and video recognition, recommender systems, image classification,
image segmentation, and medical image analysis.

Convolutional Neural Networks consist of convolutional, pooling, and fully connected
layers. The convolutional layers are responsible for extracting features from the input
images. In contrast, the pooling layers reduce the dimensionality of the feature maps, and
the fully connected layers perform the classification.

8

2D cross-correlation between two matrices is represented in equation 2.7.

𝑓 [𝑥, 𝑦] * 𝑔[𝑥, 𝑦] =
∑︁
𝑖

∑︁
𝑗

𝑓 [𝑖, 𝑗] · 𝑔[𝑥− 𝑖, 𝑦 − 𝑗], (2.7)

where the 𝑓 [𝑥, 𝑦] is original data sample, 𝑔[𝑥, 𝑦] is filter, the indices 𝑖 and 𝑗 represent the
coordinates within the matrices 𝑓 and 𝑔, respectively.

In the context of the convolutional layer, as depicted in Figure 2.6, an essential step
involves performing a multiplication operation between the input data values and a convo-
lutional kernel or filter. This multiplication yields a single value called an activation map
or feature map, which serves as the layer’s output. The network weights, represented by
the numbers within the filter, are updated after each optimizer step.

To construct the convolutional layer’s output, each filter’s feature maps are stacked
together along the depth dimension. Pooling layers are employed to reduce the dimension-
ality of the representation. These layers operate on each feature map individually, scaling
down its dimensionality. Typically, the pooling operation involves using the max function
to select the maximum value from the pooled vector. The size of the pooled vector is de-
termined by the kernel size, which is typically the same as the size of the kernel used in the
convolutional layer and the subsequent pooling layer.

0 0

0 1

0

2

0 1 1

4 0

0 0

0

0

0 0 -4

-8

Pooled Vector Kernel Destination Pixel0 0

0 1

0

2

0 1 1

0 0

1 1

0

2

1 1 1

1 0

0 0

0

1

0 1 1

0 0

1 1

0

0

1 1 1

Input Vector

Figure 2.6: Representation of a convolution operation in a convolutional layer [21].

2.3 Neural Network Training
Neural network training is the process of finding values of parameters in a neural network
that minimizes the error between the predicted output of the network and the target output.
The loss function measures the discrepancy between predicted and target outputs, while
the cost function evaluates the overall performance by averaging the loss functions. The
gradient, calculated through backpropagation, guides weight and bias updates to minimize
the loss function and improve the neural network’s performance.

9

Loss and Cost Functions

A loss function is a mathematical function that measures the difference between the pre-
dicted output of a neural network and the target output. The goal of training a neural
network is to minimize the loss function by adjusting the parameters of the network. Many
different types of loss functions can be used depending on the problem being solved.

The cost function averages all loss functions for all training examples. It is used to
evaluate the performance of a model over a training dataset by comparing its predictions
with the target values.

Gradient

The gradient is a vector of partial derivatives of a function with respect to its inputs. In
the context of neural networks, the gradient is used to update the weights and biases of the
network during training.

∇𝑓(w) =
(︀ 𝜕𝑓

𝜕𝑤1
,
𝜕𝑓

𝜕𝑤2
, ...,

𝜕𝑓

𝜕𝑤𝑛

)︀
, (2.8)

where 𝑓 is a function of 𝑛 variables and ∇𝑓(𝑥) is the gradient of 𝑓 at point w.

Backpropagation

Backpropagation is a method used to calculate the gradient of the loss function with respect
to each weight in the neural network, pointing in the direction of the value that maximizes
the loss function. Backpropagation relies on the chain rule of calculus to calculate the
gradient backwards through the layers of a neural network. The gradient is then used to
update every weight individually to gradually reduce the loss function over many training
iterations.

The algorithm involves first calculating the derivatives at layer 𝐿, which is the last
layer. These derivatives are an ingredient in the chain rule formula for layer 𝐿− 1, so they
can be saved and reused for the second-to-last layer. Thus, backpropagation works its way
backwards through the network from the last layer to the first layer:

𝑧(𝐿) = w(𝐿)𝑎(𝐿−1) + 𝑏(𝐿), (2.9)

𝑎(𝐿) = 𝑓(𝑧(𝐿)), (2.10)

𝜕𝐶

𝜕w(𝐿)
= w(𝐿) · 𝜕𝑎

(𝐿)

𝜕𝑧(𝐿)
· 𝜕𝐶

𝜕𝑎(𝐿)
, (2.11)

𝜕𝐶

𝜕𝑏(𝐿)
=

𝜕𝑎(𝐿)

𝜕𝑧(𝐿)
· 𝜕𝐶

𝜕𝑎(𝐿)
(2.12)

where w represents the weights, 𝑏 represents the bias, f represents the activation function,
𝑎 represents the output of the activation function of a neuron, and 𝐿 represents the layer,
𝐶 represents the cost1.

1https://www.3blue1brown.com/lessons/backpropagation-calculus

10

https://www.3blue1brown.com/lessons/backpropagation-calculus

Chapter 3

Neural Network Training
Techniques

Choosing an appropriate training technique for a given neural network can significantly
impact the model’s convergence rate and final performance. Different techniques may better
suit different data types, model architectures, and optimisation goals. It may be necessary
to experiment with multiple techniques to find the one that works best for a particular
problem. Overall, neural network training techniques are a crucial part of the machine
learning process. They play a vital role in enabling neural networks to learn from data and
improve their performance over time.

3.1 Neural Network Optimization Algorithms
The purpose of neural network training optimization algorithms such as SGD (Stochastic
Gradient Descent) or Adam is to find the optimal set of weights and biases that minimize
the loss function and improve the network’s performance. These algorithms iteratively
update the network’s parameters based on the gradient of the loss function, allowing the
network to converge toward a better solution during the training process.

Stochastic Gradient Descent

A commonly used optimisation algorithm is stochastic gradient descent (SGD). In each
iteration, SGD uses a randomly selected batch of data (also known as a “mini-batch”)
obtained from the dataset to compute the gradient of the loss function. It then updates the
parameters in the direction of a negative gradient that reduces the loss. One of the main
advantages of SGD is that it can be used to train large machine learning models on massive
datasets because it processes the data in small mini-batches rather than the entire dataset
at once, making it computationally efficient, although sensitive to the choice of learning
rate. Therefore, it may require careful tuning to achieve good performance.

11

Pseudo-code of SGD algorithm.:
function SGD(𝜃0, 𝑁 , D)

𝑡0 ← 0
while t != N do

𝐿← 𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑝𝑎𝑠𝑠(𝜃𝑡, 𝐷𝑡)
∇𝑓(𝜃𝑡)← 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝜃𝑡, 𝐿)
𝜃𝑡+1 ← 𝜃𝑡 − 𝛼∇𝑓(𝜃𝑡)
𝑡← 𝑡+ 1

end while
return 𝜃𝑡+1

end function
where 𝑁 is the number of iterations, 𝐷 is a dataset, 𝐷𝑡 is a batch of the dataset, 𝐿 is loss,
∇𝑓(𝜃𝑡) is the gradient of the loss function concerning parameters 𝜃, and 𝛼 is the learning
rate.

Adaptive Learning Rate Methods

Adaptive learning rate methods adjust the learning rate of the optimiser based on training
data using strategies such as momentum or learning rate decay.

Momentum accelerates the training process. It involves adding a momentum term to
the gradient descent update rule, which helps the optimisation algorithm to move more
efficiently through the weight space.

Learning rate decay improves the convergence of the optimisation algorithm. It involves
decreasing the learning rate over time, which can help the algorithm more reliably find a
good solution.

Several adaptive learning rate strategies are commonly used, and ADAM is one of the
most commonly used optimization algorithms using these strategies.

Adam

Adam (Adaptive Moment Estimation) is an optimisation algorithm used in machine learning
to update the parameters of a model. It is an extension of stochastic gradient descent that
uses moving averages of the parameters to provide a running estimate of the second raw
moments of the gradients; the term adaptive in the name refers to the fact that the algorithm
“adapts” the learning rates of each parameter based on the historical gradient information.

Adam was introduced in a 2014 [10]. It has become one of the most popular optimisation
algorithms for training deep learning models due to its efficiency and good performance.

Adam works by maintaining an exponentially decaying average of past gradient infor-
mation and an exponentially decaying average of past squared gradient information. The
algorithm uses these averages to adjust each parameter’s learning rate and helps prevent
oscillations and divergence of the model’s parameters. Adam also includes a bias correction
term to help the algorithm converge more quickly when the data is sparse.

12

Pseudo-code of ADAM algorithm [26].:
function ADAM(𝜃0, 𝑁 , D)

𝑚0 ← 0, 𝑣0 ← 0, 𝑚̂0 ← 0, 𝑣0 ← 0, 𝑡0 ← 0
while t != N do

𝐿← 𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑_𝑝𝑎𝑠𝑠(𝜃𝑡, 𝐷𝑡)
∇𝑓(𝜃𝑡)← 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛(𝜃𝑡, 𝐿)
𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1− 𝛽1)∇𝑓(𝜃𝑡)
𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1− 𝛽2)(∇𝑓(𝜃𝑡))2
𝑚̂𝑡 ← 𝑚𝑡

1−𝛽𝑡
1

𝑣𝑡 ← 𝑣𝑡
1−𝛽𝑡

2

𝜃𝑡+1 ← 𝜃𝑡 − 𝛼√
𝑣𝑡+𝜖

𝑚̂𝑡

𝑡← 𝑡+ 1
end while
return 𝜃𝑡+1

end function
where 𝑁 is the number of iterations, 𝐷 is a dataset, 𝐷𝑡 is a batch of the dataset, 𝐿 is
loss, 𝑚 and 𝑣 are the first and second moments of the gradient, respectively, 𝛽1 and 𝛽2 are
hyperparameters that control the decay rates of these moments, 𝜖 is a small constant to
avoid division by zero, ∇𝑓(𝜃𝑡) is the gradient of the loss function concerning parameters 𝜃,
𝑚̂ and 𝑣 are bias-corrected estimates of 𝑚 and 𝑣, and 𝛼 is the learning rate.

3.2 Neural Network Regularization
Regularisation is a technique used to improve the generalisation of a machine-learning model
by reducing the complexity of the model and preventing overfitting, thus making it perform
well not only on the training data but also on new, unseen data. Several types of regular-
isation techniques can be used to prevent overfitting, including L1 and L2 regularisation,
which add a penalty to the model’s loss function based on the absolute and squared values
of the model’s parameters, respectively, or data augmentation, which artificially increases
the size of the training dataset by generating new, synthesised data points from the existing
data. A commonly used regularisation technique is a dropout. Regularisation techniques
can be used alone or in combination, depending on the problem’s specific requirements and
the dataset’s characteristics.

Dropout

Dropout prevents co-adaptation1 of the units [25] by randomly dropping out (setting to
zero) a specified percentage of the model’s units (neurons) during each update of the train-
ing. This means that the units are used neither in the forward nor backward passes of
the model, and their weights are not updated during training. Dropout is being applied to
the network’s values; therefore, it can be applied to inputs, and most layers, such as fully
connected, convolutional, and recurrent layers.

1Interdependencies, where the activation of one neuron becomes highly correlated with the activation of
another.

13

It is vital to carefully tune the dropout rate, as a too-high dropout rate can lead to un-
derfitting, while a too-low dropout rate may not provide sufficient regularisation. Dropout
is typically used during training, although a technique called MC-dropout (Monte Carlo
Dropout) also allows dropout to be used during inference. It involves performing multi-
ple forwards passes through the network with dropout active and stochastically sampling
predictions at each pass. By averaging the predictions obtained from multiple passes, MC-
Dropout provides a way to estimate model uncertainty and obtain more robust predictions.

3.3 Neural Network Normalization
Normalization is a valuable preprocessing technique that helps ensure efficient and effective
training of neural networks, improves generalization and enhances the network’s ability to
handle varying input conditions by scaling and shifting data values to a standard range
without distorting differences in ranges or relationships among data. Normalisation meth-
ods can be classified into two main groups: data normalisation methods and activation
normalisation methods.

Activation normalisation techniques normalise activations of hidden units within the
model by scaling and shifting the values based on the mean and standard deviation. The
most well-known activation normalisation is Batch normalisation.

Batch Normalization

Batch normalisation is a technique used to normalise the activations of hidden units in a
deep learning model. It is often used as a regularisation method to improve model stability
and performance [9]. In batch normalisation, hidden unit activations are normalised for
each mini-batch of training data. This is done by scaling and shifting the activations based
on the mean and standard deviation of the activations in each mini-batch. The scaling and
shifting parameters are learned during training and are usually implemented as additional
parameters in the model. Using batch normalisation may have several benefits, including
[1]:

• Improved model stability: One of the main benefits of batch normalisation is that
it can help to stabilise the training of deep neural networks. Deep neural networks
are often susceptible to the initialisation of the weights and can be difficult to train.
Batch normalisation can help reduce this sensitivity and stabilise the training process.

• Improved model performance: Batch normalisation can help improve model general-
isation and reduce overfitting. It can also allow the model to use a higher learning
rate, which can speed up the training process.

• improve the training of Generative Adversarial Networks (GANs). GANs are difficult
to train, suffering from problems such as mode collapse and disturbing visual artefacts
[28]. Batch normalisation can help to stabilise the training of GANs and improve their
performance.

14

However, like any technique, it has its limitations and potential drawbacks:

• Increased computational cost: Batch normalisation requires the model to calculate
the mean and standard deviation of the activations in each mini-batch, which can add
additional computational cost to the model.

• Sometimes, the use of batch normalisation in GANs can also have some unintended
consequences. For example, batch normalisation can sometimes negatively impact
the quality of the trained model .

Batch normalisation is typically applied to the inputs of a layer, either before or after the
activation function. The general use case is batch normalisation between a network’s linear
and non-linear layers because it normalises the input to the activation function [9]. The
equation for Batch Normalization can be represented as follows:

Batch Normalization(x) = 𝛾 · x− 𝜇√
𝜎2 + 𝜖

+ 𝛽, (3.1)

where 𝑥 represents the input tensor or activations of a layer, 𝜇 is the mean of the batch,
calculated as the average of 𝑥 over the batch dimension, 𝜎2 is the variance of the batch,
calculated as the average of (𝑥− 𝜇)2 over the batch dimension, 𝜖 is a small constant added
for numerical stability to avoid division by zero, 𝛾 and 𝛽 are learnable parameters called
the scale and shift parameters respectively.

15

Chapter 4

Neural Network Training
Visualization

Visualisations can help understand how well the neural network is learning and identify any
issues or problems that may occur during training. Many techniques for visualizing network
behavior include heat maps, saliency maps, feature importance maps, and low-dimensional
projections. In machine learning, accuracy and loss are two standard metrics used to evalu-
ate model performance. Accuracy measures the model’s ability to make correct predictions
on the test set, while loss quantifies the discrepancy between the model’s predictions and
the target labels.

Various visualizations can be employed to comprehend the training process of a neural
network. The loss function plot displays the loss function value over time with the number
of training iterations or epochs on the x-axis, where a decreasing loss indicates efficient
learning. The accuracy plot shows the network’s accuracy on the training or validation
set over time, where increasing accuracy signifies effective learning. Plotting training and
validation loss, or training and validation accuracy, can show how well the model fits the
training data and generalizes to new data.

A confusion matrix is another helpful visualization to understand which classes the
model struggles with and where it is making mistakes. Lastly, the activation histogram is
a graph that illustrates the distribution of activations for a specific layer in the network.
These activations refer to the output of a particular neuron in the network and can help
understand the network’s behavior at different points during the training process.

Visual Representation of Accuracy and Loss During Training

A plot can be created to visualise the accuracy and loss of a model during the training
process, showing how the values of these metrics change over time as the model is trained.
Plotting the accuracy and loss through the training process shows how the model improves
over time, illustrated in Figure 4.1.

16

0 2 4 6 8 10
Epoch

0

20

40

60

80

100
Ac

cu
ra

cy

Training and Validation Accuracies
Train Accuracy
Validation Accuracy

Figure 4.1: Training accuracies

0 2 4 6 8 10
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Training and Validation Losses
Train Loss
Validation Loss

Figure 4.2: Training losses

4.1 Convolutional Neural Network Training Visualization
Most deep learning methods need more interpretability and explainability. Despite their
potential good performance on test and validation data, the poor understanding of the
internal processes leads to a lack of confidence in these methods. For the 2D image classifi-
cation, there are methods to highlight areas in the image that are of special interest for the
decision-making process of a convolutional neural network. These methods can generally be
categorised into gradient-based, perturbation-based, and other underlying mechanics [2].

We use Filter visualisation, feature maps, and saliency maps to visualise and analyse
the internals of a convolutional neural network (CNN). Each has slightly different purposes
and focuses on different aspects of the model.

Filter Visualisation and Feature Map

Filter visualisation is a technique used to visualise the learned filters in the convolutional
layers of a CNN. It can be used to understand how the model extracts and learns different
features from the input data.

Feature map, also known as activation map, represents each filter’s activations at each
position of the input image and can be used to visualise how the model is analysing and
interpreting the features in the image. Feature maps can be visualised by plotting the
activations of the neurons in the convolutional layers as images or heatmaps.

Saliency Map

Saliency maps are visualisations of the importance or relevance of different parts of an input
image to the model’s prediction. They are typically generated by computing the gradient
of the output of the model concerning the input to highlight the parts of the image that
have the greatest impact on the prediction by back-propagating a gradient from the end
of the network and projecting it onto an image plane [18]. Saliency maps can be used to
understand which parts of the image the model uses to predict and identify potential issues
with the model’s interpretation of the input data.

17

(a) Input
image

−→

(b) Filters

−→

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

0 10 20

0

5

10

15

20

25

(c) Feature maps

Figure 4.3: Visualisation of feature maps by propagating the input through filters.

(a) Original
image

−→

(b) Transformed image
as input

−→

(c) Saliency map

Figure 4.4: Visualisation of saliency map compared to the input image.

4.2 Linear Path Interpolation
Linear Path Interpolation [7] generates a slice of the loss function along the shortest path
possible represented by values on a line. By employing linear interpolation of the parame-
ters, it is possible to assess the contribution of each layer to the overall performance of the
network.

A neural network has to be already trained to perform Linear Path Interpolation. A
line is defined in the parameter space of the network, representing the path along which
interpolation will be performed. Two points on the line, typically the starting and ending
points, are chosen. Linear interpolation is performed between the network parameters at
these two points by linearly combining them to create new parameter values. The loss
function is evaluated using the interpolated parameters, providing the loss values along the
line. Finally, the loss values obtained from the interpolation are plotted, representing a
slice of the loss function along the shortest path possible.

18

4.3 Loss Surface Around Training Path
Loss surface [13] analysis around the training path of neural networks might help us:

• gain insights into the optimisation process and understand why specific algorithms
may perform better or worse on a particular neural network architecture or task.

• Understand the geometry of the space of the network’s parameters and how the op-
timisation algorithm navigates that space during training.

• Identify and diagnose problems with the optimisation process. For example, if the
loss surface has many local minima or saddle points, the optimisation algorithm may
get stuck and have difficulty finding the global minimum. We can identify these
problem areas by analysing the loss surface and modifying the optimisation algorithm
to navigate the space better.

• with the design and selection of appropriate hyperparameters. For instance, if the
loss surface has a high degree of curvature or contains many sharp minima, the opti-
miser might require a smaller or more aggressive learning rate scheduling to converge
appropriately. Conversely, suppose the loss surface is relatively smooth and has few
minima. In that case, the optimiser can use a higher learning rate or less aggressive
learning rate scheduling to converge more quickly.

• Understand the dynamics of the optimisation process and how different optimisation
algorithms or techniques affect the optimisation path. For example, by analysing
the loss surface and the gradients along the optimisation path, we can gain insights
into how momentum, weight decay, or other regularisation techniques affect the op-
timisation process and how different optimisation algorithms might be able to take
advantage of the geometry of the loss surface.

• Understand the trade-offs between different network architectures and hyperparam-
eters. For instance, we can identify regions of the space that are associated with
lower loss but higher complexity or vice versa. This information can guide the design
of more efficient and effective neural network architectures. For example, if the loss
function around the minimum is rough, we can add residual layers.

• design more efficient optimisation algorithms. For example, if the loss surface has
specific desirable properties, such as being convex or having a low condition1 number,
we can design optimisation algorithms that take advantage of these properties and
converge faster or more reliably. Inversely, we can gain insights into the sources of non-
convexity and ill-conditioning2 in the optimisation problem and develop optimisation
algorithms that can more effectively navigate these challenges. This can lead to the
development of more efficient and robust optimisation algorithms for training deep
neural networks.

Although loss surface analysis along the training path of neural networks can provide valu-
able insights into the optimization process and the geometry of parameter space, its com-
putational complexity makes it impractical for practical usage.

1Small changes in the input or parameters lead to small changes in the output.
2Small changes in the input or parameters can lead to large changes in the output.

19

4.4 Size of the Steps
The step size or step length refers to the size of the change made to the neural network
parameters during each iteration of the optimisation algorithm. The step size is usually
determined by the learning rate, a hyperparameter that must be set before the training
begins. The learning rate determines the size of the step taken in the gradient direction
during each iteration of the optimisation algorithm.

The gradient refers to the vector of partial derivatives of the loss function concerning
the model parameters. The gradient indicates the direction of the steepest ascent of the
loss function and is used to update the model parameters during each iteration of the
optimisation algorithm.

If the learning rate is too high, the model parameters may overshoot the optimal solution
and diverge, whereas if the learning rate is too low, the convergence may be slow.

There are different strategies for choosing the learning rate during training, such as fixed
learning rate, adaptive learning rate, and annealing learning rate. In the fixed learning
rate strategy, the learning rate is set to a fixed value throughout the training process. In
the adaptive learning rate strategy, the learning rate is adjusted dynamically based on
the behaviour of the optimisation algorithm. In the annealing learning rate strategy, the
learning rate is decreased gradually over time to ensure convergence to the optimal solution
[15].

The size of the steps analysis allows us to monitor the size of the steps taken by the
optimization algorithm during training. This information can be used to adjust the learning
rate to ensure that the algorithm is converging to the optimal solution at an appropriate
rate. Additionally, the size of the steps analysis can provide insight into the behaviour of
the optimization algorithm, such as whether it oscillates or converges smoothly.

Furthermore, the size of the steps analysis can also help identify a problem with the
training process. For example, if the size of the steps becomes very small and the loss
function does not improve significantly, it could indicate that the optimization algorithm is
stuck in a local minimum or that the model is not powerful enough to fit the data. Similarly,
if the size of the steps becomes huge, it could indicate that the model is overshooting the
minimum and may not converge to the optimal solution. To perform the size of the steps
analysis, I plotted the average magnitudes of the steps during a training session.

20

Chapter 5

Implementation

This chapter presents a program’s design to visualise the neural network training process.
Subsequently, the technologies used and the outputs of selected program parts will be
discussed. The program’s main purposes are training and visualisation.

The training part of the program allows the user to choose from a set of Neural Networks,
datasets, optimisation algorithms, and regularisation techniques. Based on the parameters
used, the program will create a directory named after the parameters where the training
steps will be saved.

In the visualisation part, the user can choose from three visualisations: linear interpo-
lation of the network parameters, step size during training, and surface around the training
path. The user can choose to execute any of these visualisations.

The program is divided into multiple modules where every substantial part has its file
containing its functionality. Individual networks are represented as classes with the same
interface but different properties.

The program saves the progress of its components’ outputs so that when the user stops
executing the program, at the next execution, already computed parts will not be computed
again.

The implementation language chosen is Python because it provides high readability and
has many useful libraries for machine learning and data visualisation.

Neural networks have been implemented and trained using an open-source machine
learning library called PyTorch1, which provides optimised work with tensors, NVIDIA2

GPU utilisation using the torch.cuda module, and many more helpful modules.
Array computations and output saving and loading are primarily done using the Numpy3

library. Plotting the results is done using Matplotlib4 library.
The program layout and implementation are inspired by the code provided in a public

repository5 as supplementary material to the bachelor thesis authored by Silvie Němcová
[19]. The program can be executed on both Windows and Linux systems. The only system-
specific constraint is file system path, where the user has to write the workspace location of
the program in the __main__.py file or open the project using IDE in the parent directory
of ”src“.

The program source code is available on Github6.
1https://pytorch.org
2https://developer.nvidia.com/cuda-zone
3https://numpy.org
4https://matplotlib.org
5https://github.com/suzrz/vis_net_loss_landscape
6https://github.com/Samuel-2000/BP-NN_Visualisation

21

https://pytorch.org
https://developer.nvidia.com/cuda-zone
https://numpy.org
https://matplotlib.org
https://github.com/suzrz/vis_net_loss_landscape
https://github.com/Samuel-2000/BP-NN_Visualisation

Chapter 6

Examining the Training Progress
of Neural Networks

This thesis focuses mainly on inventing a new method of visualising a two-dimensional
loss surface around training path examination. It should find better results than analysis
using PCA directions from chosen point and its comparison with the one-dimensional linear
interpolation variant results.

Another goal is to provide insights into the consequences of step size change during
training various models.

These goals are achieved by examining the training progress of various networks and
datasets.

6.1 Architectures Used in Visualization Experiments
Experiments were performed on five different models to identify and confirm new phenom-
ena that may arise during visualisation experiments. The models are described in upcoming
subsections. The networks’ first and last layers might differ based on the dataset.

Lenet was used as a basepoint to model a compact variant called Modified-LeNet, which
was used in all visualisations.

Step-size visualisations were also performed on simpler models called TinyNN and Tiny-
CNN and a more robust model called VGG.

LeNet-5 and Modified-LeNet

LeNet-5 was initially designed for handwritten digit recognition, and it has been widely
used as a benchmark for other image classification tasks, such as object recognition and
face detection. The architecture is based on LeCun’s LeNet-5 architecture [12]. It has
also served as a starting point for developing more advanced CNN architectures, such as
AlexNet [11] and VGGNet [24]. Figure 6.1 illustrates the architecture of LeNet-5, featuring
convolutional layers with channel dimensions @ resolution, fully connected layers with a
specified number of neurons, no padding during convolution, and filters of size 3x3.

Modified-LeNet has three convolutional layers and only one fully-connected layer. Modified-
LeNet architecture is illustrated in Figure 6.2.

22

1@32x32
6@28x28 6@14x14

16@10x10 16@5x5
1x120

1x84

1x10

ConvolutionConvolution Max-Pool Max-Pool Fully Connected

Figure 6.1: LeNet-5 Architecture. Kernel size is 5x5, without padding.

1@32x32
5@30x30 5@15x15

10@13x13 10@6x6 10@4x4 10@2x2

1x10

Max-Pool Convolution ConvolutionConvolution Max-PoolMax-Pool FC

Conv Max-pool

Figure 6.2: Modified-LeNet Architecture. Kernel size is 3x3, without padding.

Tiny Networks and VGG

Two smaller networks, TinyNN and TinyCNN, and a larger VGG network were modeled
to verify the experiments.

TinyCNN adopts a similar structure to Modified-LeNet but utilizes only three channels
in its hidden layers. On the other hand, TinyNN is a shallow network that directly maps
the input to the output. The architecture of TinyNN is depicted in figure 6.3.

A more intricate network is constructed based on the Visual Geometry Group (VGG)
architecture, which incorporates multiple sequential convolutions followed by pooling oper-
ations. The VGG architecture, as illustrated in Figure 6.4, demonstrates this configuration.

Fully Connected

1@32x32 1x10

Figure 6.3: TinyNN Architecture.

1@32x32

16@32x32 16@32x32 16@16x16

32@16x16 32@16x16 32@8x8

64@8x8 64@8x8 64@4x4

1x10

Conv Max-Pool ConvConvConv ConvConv Max-PoolMax-Pool FC

Figure 6.4: VGG Architecture. Kernel size is 3x3, with the “same” padding.

23

6.2 Datasets
Datasets are essential to machine learning because they provide the necessary information
for training and evaluating machine learning models. Datasets used in experiments are
MNIST and CIFAR-10.

MNIST

The MNIST (Modified National Institute of Standards and Technology) dataset1 is an
extensive database of handwritten digits that is commonly used for training various image
processing systems. It has a training set of 60,000 examples and a test set of 10,000
examples. The images in the MNIST dataset are grayscale and have a resolution of 28x28
pixels, which were resized to 32x32 to train the models mentioned above.

Figure 6.5: MNIST dataset sample

Cifar-10 and Cifar-100

The CIFAR-102 contains 60,000 32x32 colour images in 10 different classes. The dataset
comprises five training subsets and one test subset, each with 10,000 images.

The CIFAR-100 dataset is a subset of the Tiny Images dataset and consists of 60,000
32x32 colour images in 100 classes. The 100 classes in the CIFAR-100 are grouped into 20
superclasses. There are 600 images per class. Each image comes with a “fine” label (the
class to which it belongs) and a “coarse” label (the superclass to which it belongs).

Figure 6.6: Cifar-10 dataset sample

1http://yann.lecun.com/exdb/mnist
2https://www.cs.toronto.edu/~kriz/cifar.html

24

http://yann.lecun.com/exdb/mnist
https://www.cs.toronto.edu/~kriz/cifar.html

6.3 Preliminary Experiments
Training process experiments to reach optimal training accuracy while minimising train-
ing time have been done in the bachelor thesis by Silvie Němcová [19]. Therefore, I was
experimenting with visualisation optimisation.

There were problems with the immense size of networks since saving every network
parameter value for every step, with different networks and parameters during training,
can take up much space.

The two proposed ideas to reduce the size were to minimise the network size or sample
the training path.

Minimising the Network Size

I have done experiments to find a more efficient version of LeNet-5. The final version of
the network is aforementioned Modified-LeNet, which uses about 30x fewer parameters, yet
accuracy change concerning visualisation experiments is hardly recognizable 6.7. LeNet-5
has an accuracy of 98.6 %, while Modified-LeNet has an accuracy of 97.4 % on the MNIST
dataset using SGD during 13 training epochs with the mini-batches of size 64.

Sampling the Training Path

Another experiment visually compared the sampled and whole paths on the loss surface
visualisation. Using only 123 samples of the path yielded almost identical visual results as
rendering the path using all 12,195 samples 6.7. Even though this optimisation provided
100x data savings, it had to be abandoned, as the step-size experiments would provide
incorrect results since if we measure the distance from the starting point to the endpoint of
a curve, the resulting value would be smaller compared to a straight line of the same size.

1 0 1 2 3
PC1: 83.21%

0.5

0.0

0.5

1.0

1.5

2.0

PC
2:

 1
1.

36
%

0.06

0.30

0.54

0.78

1.02

1.26

1.50

1.74

1.98

2.22

(a) LeNet-5

1 0 1 2 3
PC1: 79.73%

0.5

0.0

0.5

1.0

1.5

2.0

PC
2:

 1
5.

26
%

0.18

0.42

0.66

0.90

1.14

1.38

1.62

1.86

2.10

2.34

(b) Modified-LeNet

1 0 1 2 3
PC1: 79.34%

0.5

0.0

0.5

1.0

1.5

2.0

PC
2:

 1
5.

66
%

0.18

0.42

0.66

0.90

1.14

1.38

1.62

1.86

2.10

2.34

(c) Sampled Modified-LeNet

Figure 6.7: Comparison of LeNet-5 vs. Modified Lenet vs. Sampled Modified Lenet

Loss Surface Visualisation Speed Optimisation

Loss Surface computation is a very computationally demanding and time-consuming task
since the network loss must be computed for every point on the two-dimensional grid. To
achieve the most accurate results, the loss has to be computed over the whole training
dataset and with a big resolution, which is computationally demanding. Therefore an
optimal resolution and dataset chunk size had to be found to make the experiments feasible.

After experimenting with the resolution, dataset chunk size parameters, and visual com-
parisons of the experiments, I have found the optimal settings where increasing resolution

25

or data samples would yield almost the same visual results. The resolution has been set
to a grid of 19x19, and the loss is computed on 10000 training data samples instead of the
whole dataset of 60000 samples.

The dataset optimization results in a linear six-fold increase in speed, while the resolu-
tion optimization leads to a quadratic improvement in speed.

The purpose of the visualization is to provide a general overview of the loss landscape
rather than precise numerical accuracy. Using a representative subset of the data, the main
characteristics of the loss surface can still be captured without compromising its validity.
Lower resolution can still capture the essential features, and trends of the loss surface can
still be observed and analyzed effectively, allowing for meaningful insights and comparisons.

6.4 Loss Surface Around Training Path
The experiments described in the subsequent text aim to explore different methods of visu-
alizing and analyzing the loss surface around the training path and use it to find phenomena
in the training process.

Making of Grid and Path

2D path and interpolation directions were made using the sklearn package.

from sklearn.decomposition import PCA
pca = PCA(n_components=2)
path_2d = pca.fit_transform(path) # path on 2D graph
x_dir, y_dir = pca.components_ # direction of multidimensional vectors

2D Grid coordinates were created around a centre point of the training path.
Moving through x and y coordinates is equivalent to moving through x_dir and y_dir.
for each grid point, we need to find the corresponding model weights state. Methods of
finding and interpolating weights are discussed in the subsections below. Loss is computed
using model weights for each point.

PCA

This method approximates parameters (state of the network in each grid point) by calcu-
lating the distance from the centre point to the interpolated point (2D) and multiplying
the distance by multidimensional vectors in both directions.

𝜃pca = 𝜃c + d ·M, (6.1)

where 𝜃𝑐 represents the parameters at the centre point, the vector 𝑑 represents the two-
dimensional distance from the centre point to the point on the grid, 𝑀 is the matrix with
x_dir and y_dir as its columns and · denotes the dot product operation.

Based on the “PCA” image 6.8, it is evident that this method lacks sufficient accuracy.

Sampled

Considering that PCA directions from the centre point typically do not intersect with the
training path points, I have suggested a method that involves selecting the closest point

26

from the path to the grid point. This selected point will then be interpolated using PCA
directions.

The Sampled method involves selecting the closest point from the training path to the
point on the grid and then interpolating with PCA directions. Let the closest point on
the path be represented by the vector 𝑞, and let the vector from this point to the point
on the grid be represented by 𝑑. The parameters for this point on the grid can then be
approximated as follows:

𝜃sampled = 𝜃q + d ·M, (6.2)

where 𝜃𝑞 represents the parameters at the closest point on the path, 𝑀 is the matrix with
x_dir and y_dir as its columns, and · denotes the dot product operation.

Based on the “Sampled” image 6.8, it is evident that this method encounters difficulties
when selecting points from the training path in regions where the loss surface is steep and
the steps are large. Consequently, this leads to a jagged area filled with local extremes.

I suggest two methods to enhance the visualization. The first method involves interpo-
lating the closest path point with the centre point. The second method entails averaging
all the path points instead of selecting just one.

Sampled and PCA Parameters L2 Distance

In order to calculate and visualize the influence of each component on the final image during
interpolation between Sampled and PCA values, a way of calculating and visualising how
much each component affects the final image needs to be established.

Firstly, it is necessary to determine the grid points for which interpolation is required
by determining if it falls within a convex area of the path. The center point should not be
considered if the grid point is located behind the path.

To interpolate the centre point 𝐶 with a path point 𝑃 , weights based on the distance
from the grid point need to be computed, where a smaller distance corresponds to a larger
weight.

The conditional statement in the code can be represented mathematically as follows:

𝑤𝐶 =

{︃
0 if 𝑓 < 0

𝑑𝑃
𝑑𝐶+𝑑𝑃

if 𝑓 ≥ 0
𝑤𝑃 =

{︃
1 if 𝑓 < 0

𝑑𝐶
𝑑𝐶+𝑑𝑃

if 𝑓 ≥ 0
, (6.3)

where 𝑓 represents whether the interpolated grid point is inside the convex part of the path,
𝑑𝑃 is the Euclidean distance between interpolated grid point 𝐺 and a path point 𝑃 , 𝑑𝐶 is
the Euclidean distance between interpolated grid point 𝐺 and a centre point 𝐶.

The computed weights of distances are utilized in the equation for interpolating the
parameters of the grid point.

𝜃sampled_pca = 𝑤𝑃 · 𝜃sampled + 𝑤𝐶 · 𝜃pca (6.4)

Before computing the loss, it is beneficial to visualize the L2 distances between the param-
eters for each point in space. This allows for an understanding of the interpolation process.
The image 6.8 titled “Sampled and Sampled with PCA parameters L2 distance” effectively
showcases the successful interpolation.

27

Sampled with PCA

Now that an understanding of how each method affects the image have been gained, the
loss can be computed. From the “Sampled with PCA” image 6.8, it is noticeable that the
middle of the contour exhibits a larger loss. This observation explains the path around it
and addresses the issue of rapidly changing path points. However, it is important to note
that the loss between the starting point and endpoint does not correspond to the output
of the one-dimensional interpolation (where the loss should strictly decrease). Based on
these observations, it can be concluded that this method is not explanatory since it does
not accurately explain the loss function around the centre.

Averaged

To address the problem of rapidly changing path points on nearby grid points, an alternative
method is proposed, which involves averaging all the path points. Let 𝜃𝑎𝑣𝑔 denote the
interpolated grid point, and 𝑃 represents the set of path points. The L2 distances from
𝜃𝑎𝑣𝑔 to each path point are calculated and stored in 𝐷.

The softmax function is applied to the inverted distances to assign weights to each path
point. This ensures that closer points have higher weights. The weights are computed as
follows:

wi =
𝑒−𝑑𝑖∑︀𝑛
𝑗=1 𝑒

−𝑑𝑗
, (6.5)

where 𝑑𝑖 represents the L2 distance between the 𝑖-th path point and the current grid point,
and 𝑛 is the total number of path points in 𝑃 .

Finally, the weighted average is computed using the weights:

𝜃avg =
𝑛∑︁

𝑖=1

𝑤𝑖𝜃i, (6.6)

where 𝜃𝑖 represents the parameters of the 𝑖-th path point.
The image 6.8 titled “Averaged” demonstrates significantly improved results compared

to “Sampled with PCA.” It accurately corresponds to both the actual path and the one-
dimensional interpolation path. As a result, the averaging method has been chosen as the
most suitable candidate for subsequent experiments.

Averaged with Multidimensional Distances

When calculating point distances from two-dimensional coordinates, there is a potential for
evaluation errors that could result in slightly incorrect distances compared to the correct
distances in higher dimensions. These errors may not be readily apparent when using
stochastic gradient descent (SGD), as PCA explains it with 95 % accuracy. However, it
might improve visualisation using ADAM, which PCA explains with only 65 % accuracy.

The visualizations 6.9 labeled as “Multidimensional” indicate that the ADAM algo-
rithm’s difference in two-dimensional and multidimensional distances is visually more dif-
ferent than that of the SGD algorithm, which correlates to the lower PCA explainability.

Considering that ADAM incorporates momentum, which should theoretically result in a
smoother and more straightforward path, it is perplexing that the experiment demonstrates
the opposite effect.

28

1 0 1 2 3
PC1: 79.73%

0.5

0.0

0.5

1.0

1.5

2.0

PC
2:

 1
5.

26
%

0.18

0.42

0.66

0.90

1.14

1.38

1.62

1.86

2.10

2.34

(a) PCA

1 0 1 2 3
PC1: 79.73%

0.5

0.0

0.5

1.0

1.5

2.0

PC
2:

 1
5.

26
%

0.06

0.30

0.54

0.78

1.02

1.26

1.50

1.74

1.98

2.22

(b) Sampled

1 0 1 2 3
PC1: 79.73%

0.5

0.0

0.5

1.0

1.5

2.0

PC
2:

 1
5.

26
%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) L2 parameters interpolation distance

1 0 1 2 3
PC1: 79.73%

0.5

0.0

0.5

1.0

1.5

2.0

PC
2:

 1
5.

26
%

0.06

0.30

0.54

0.78

1.02

1.26

1.50

1.74

1.98

2.22

(d) Sampled with PCA

1 0 1 2 3
PC1: 79.73%

0.5

0.0

0.5

1.0

1.5

2.0

PC
2:

 1
5.

26
%

0.06

0.30

0.54

0.78

1.02

1.26

1.50

1.74

1.98

2.22

(e) Averaged

1 0 1 2 3
PC1: 79.73%

0.5

0.0

0.5

1.0

1.5

2.0

PC
2:

 1
5.

26
%

0.06

0.30

0.54

0.78

1.02

1.26

1.50

1.74

1.98

2.22

(f) Multidimensional Average

Figure 6.8: Comparison of methods to compute the loss surface around the training path.

Loss Comparison using Linear Interpolation Visualisation

It is challenging to determine whether the new contours accurately represent the reality of
the loss surface far away from the path. However, one way to assess this is by drawing a
straight line connecting the beginning and end points and comparing the resulting loss with
that obtained from the Linear Path Interpolation experiment. By examining the curvature

29

of the loss in both cases, we can gain insights into the similarity or dissimilarity between
them. This comparison can provide valuable information regarding the accuracy of the new
contours in capturing the characteristics of the loss surface.

2 1 0 1 2 3 4
PC1: 79.37%

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

PC
2:

 1
4.

41
%

0.12

0.36

0.60

0.84

1.08

1.32

1.56

1.80

2.04

(a) SGD Dropout MNIST

2 1 0 1 2 3 4
PC1: 79.37%

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

PC
2:

 1
4.

41
%

0.12

0.36

0.60

0.84

1.08

1.32

1.56

1.80

2.04

(b) Multidimensional SGD Dropout MNIST

2 1 0 1 2 3
PC1: 83.42%

1.0

0.5

0.0

0.5

1.0

PC
2:

 1
2.

02
%

1.35

1.47

1.59

1.71

1.83

1.95

2.07

2.19

2.31

(c) SGD Cifar-10

2 1 0 1 2 3
PC1: 83.42%

1.0

0.5

0.0

0.5

1.0

PC
2:

 1
2.

02
%

1.350

1.475

1.600

1.725

1.850

1.975

2.100

2.225

2.350

(d) Multidimensional SGD Cifar-10

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
PC1: 56.12%

4

2

0

2

4

6

PC
2:

 1
6.

01
%

1.26

1.34

1.42

1.50

1.58

1.66

1.74

1.82

1.90

(e) Adam Cifar-10

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
PC1: 56.12%

4

2

0

2

4

6

PC
2:

 1
6.

01
%

1.28

1.36

1.44

1.52

1.60

1.68

1.76

1.84

1.92

(f) Multidimensional Adam Cifar-10

Figure 6.9: Comparison of averaged ann multi-dimensional averaged over many experiments
to verify ADAM’s behaviour.

30

6.5 Size of the Steps
This experiment aims to investigate the effects of optimization algorithms on the training
dynamics of neural networks. Specifically, I will analyze the step sizes during training to
gain insights into the behavior and performance of various optimization methods.

I aim to compare the step sizes during training using Adam, SGD, and dropout regular-
ization. I will analyze the patterns and dynamics of step sizes across different optimization
algorithms. Additionally, I will examine how optimization algorithms affect training effec-
tiveness on different datasets, namely MNIST and CIFAR.

To ensure compatibility with the neural network architecture, I will apply standard
preprocessing steps to the data, including normalization and reshaping. I will individually
train the neural network on the MNIST and CIFAR datasets for each optimization algorithm
while monitoring and recording the step sizes during training.

To analyze and compare the step sizes obtained from different optimization algorithms.
Furthermore, I will assess the training effectiveness by measuring loss curves for each opti-
mization algorithm and dataset combination.

I anticipate observing distinct patterns in step sizes during training with different opti-
mization algorithms. Results are visualised in figure 6.10.

Derivation and Confirmation of Phenomena From the Graphs

0 20 40 60 80 100
Averaged step index

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
er

ag
ed

 st
ep

 si
ze

Modified_LeNet_Adam_dropout_MNIST
Modified_LeNet_Adam_MNIST

Modified_LeNet_SGD_dropout_MNIST
Modified_LeNet_SGD_MNIST

(a) MNIST

0 20 40 60 80 100
Averaged step index

0.00

0.02

0.04

0.06

0.08

0.10

Av
er

ag
ed

 st
ep

 si
ze

Modified_LeNet_Adam_CIFAR-10
Modified_LeNet_Adam_dropout_CIFAR-10

Modified_LeNet_SGD_CIFAR-10
Modified_LeNet_SGD_dropout_CIFAR-10

(b) CIFAR

Figure 6.10: Step size differences of Modified-LeNet using different training techniques on
two different datasets.

When comparing the Modified-LeNet architecture, the visualized step sizes during neu-
ral network training reveal interesting patterns for different optimization methods.

The Adam optimizer exhibits larger step sizes compared to SGD. In the case of effective
training on the MNIST dataset, the step sizes show a continuous climb. However, during
ineffective training on CIFAR, the step sizes tend to remain almost constant.

On the other hand, SGD demonstrates a hill-like pattern at the beginning of training. As
training progresses effectively on MNIST, the step sizes continuously decline. Conversely,
during ineffective training on CIFAR, the step sizes continuously climb.

When incorporating dropout regularization, SGD initially results in a smaller hill-
shaped pattern. Furthermore, when ADAM is utilized, it reduces the speed of the climb

31

during training. Similar to SGD, during ineffective training on CIFAR, the step sizes still
exhibit a continuous climb.

These observations highlight the differences in step size dynamics among the optimiza-
tion methods and provide insights into their behavior during neural network training.

Verification of the Results

This experiment aims to verify and extend the results obtained from the previous anal-
ysis by comparing the step size dynamics of different optimization algorithms on neural
networks with varying sizes. Specifically, I will investigate the behavior and performance
of optimization methods on three network architectures: TinyNN, TinyCNN, and VGG.
Results are visualised in figure 6.11. Results show that the more complex the network is,
the more prominent the bump using SGD.

Loss and Gradients Comparison Experiment

From the results above, if the SGD gradients decrease, the network will train poorly (have
low accuracy) and vice versa. Therefore I will try a comparison with loss. Results are
shown in figure 6.12, confirming the hypothesis.

Learning Rate Experiment

Given the presence of a bump in the SGD training process, I will attempt to set the
learning rate in accordance with the observed graph to assess whether this adjustment
leads to improvements in the training performance.

Figure 6.13 demonstrates that leveraging the awareness of the bump’s presence resulted
in more efficient training of the network.

32

0 20 40 60 80 100
Averaged step index

0.00

0.05

0.10

0.15

0.20

Av
er

ag
ed

 st
ep

 si
ze

TinyNN_Adam_dropout_MNIST
TinyNN_Adam_MNIST

TinyNN_SGD_dropout_MNIST
TinyNN_SGD_MNIST

(a) TinyNN MNIST

0 20 40 60 80 100
Averaged step index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
ed

 st
ep

 si
ze

TinyNN_Adam_CIFAR-10
TinyNN_Adam_dropout_CIFAR-10

TinyNN_SGD_CIFAR-10
TinyNN_SGD_dropout_CIFAR-10

(b) TinyNN CIFAR

0 20 40 60 80 100
Averaged step index

0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
ed

 st
ep

 si
ze

TinyCNN_Adam_dropout_MNIST
TinyCNN_Adam_MNIST

TinyCNN_SGD_dropout_MNIST
TinyCNN_SGD_MNIST

(c) TinyCNN MNIST

0 20 40 60 80 100
Averaged step index

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Av
er

ag
ed

 st
ep

 si
ze

TinyCNN_Adam_CIFAR-10
TinyCNN_Adam_dropout_CIFAR-10

TinyCNN_SGD_CIFAR-10
TinyCNN_SGD_dropout_CIFAR-10

(d) TinyCNN CIFAR

0 20 40 60 80 100
Averaged step index

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
ed

 st
ep

 si
ze

VGG_Adam_dropout_MNIST
VGG_Adam_MNIST

VGG_SGD_dropout_MNIST
VGG_SGD_MNIST

(e) VGG MNIST

0 20 40 60 80 100
Averaged step index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
ed

 st
ep

 si
ze

VGG_Adam_dropout_CIFAR-10
VGG_Adam_CIFAR-10

VGG_SGD_dropout_CIFAR-10
VGG_SGD_CIFAR-10

(f) VGG CIFAR

Figure 6.11: Verification of the step sizes by utilizing other networks.

33

0 20 40 60 80 100
Averaged step index

0.00

0.01

0.02

0.03

0.04

0.05

0.06

St
ep

 si
ze

0.0

0.5

1.0

1.5

2.0

Av
er

ag
ed

 Tr
ai

ni
ng

 L
os

s

(a) MNIST

0 20 40 60 80 100
Averaged step index

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

St
ep

 si
ze

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
ed

 Tr
ai

ni
ng

 L
os

s

(b) Dropout MNIST

0 20 40 60 80 100
Averaged step index

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

St
ep

 si
ze

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
ed

 Tr
ai

ni
ng

 L
os

s

(c) TinyCNN CIFAR

0 20 40 60 80 100
Averaged step index

0.000

0.005

0.010

0.015

0.020

0.025

St
ep

 si
ze

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
ed

 Tr
ai

ni
ng

 L
os

s

(d) Dropout CIFAR

Figure 6.12: Comparison of Modified_LeNet step size development using SGD, and its
consequences on minimum loss prediction.

0 20 40 60 80 100
Averaged step index

0.00

0.01

0.02

0.03

0.04

0.05

0.06

St
ep

 si
ze

0.0

0.5

1.0

1.5

2.0

Av
er

ag
ed

 Tr
ai

ni
ng

 L
os

s

(a) Fixed learning rate.

0 20 40 60 80 100
Averaged step index

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

St
ep

 si
ze

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
ed

 Tr
ai

ni
ng

 L
os

s

(b) Learning rate equal to original step
sizes.

Figure 6.13: Modified-LeNet using SGD on MNIST without dropout. Training efficiency
comparison.

34

Chapter 7

Conclusion

This thesis aimed to visualise and examine the training progress of neural networks. The
neural network training progress is computationally demanding, with many unexplained
phenomena. The implemented program provides various methods to visualise the training
progress.

The loss function surface visualisation using PCA directions was successfully replicated.
The PCA directions projection allows visualisation of the path taken by the algorithm
during the training. A new method of surface visualisation around the training path using
multiple path points was implemented to evaluate the phenomena of the ADAM algorithm,
previously hypothesised by its PCA variance explainability.

The exploration of alternative distance metrics, such as Manhattan distance or Maha-
lanobis distance, could be valuable in improving the accuracy of the interpolation, consid-
ering that the current approach relies on Euclidean distance as the primary measure for
determining the nearest path point.

To enhance the visualization of the loss surface, it would be beneficial to investigate
adaptive resolution techniques that dynamically adjust the grid resolution based on the
complexity or curvature of the loss surface. This adaptive approach could provide more
precise representations in areas of interest while reducing computational requirements in
less critical regions.

One aspect that the thesis needs to address is uncertainty estimation. Incorporating
techniques such as bootstrapping, Bayesian inference, or dropout-based uncertainty esti-
mation would enable quantifying confidence or variability in the visualization results. This
additional information would facilitate more informed interpretations of the loss surface by
researchers and practitioners.

Expanding the experiments to include other model architectures and datasets beyond
Modified LeNet, MNIST, and CIFAR-10 would contribute to assessing the generalizability
and robustness of the visualization techniques. This broader evaluation would help to
comprehensively understand how the loss surface behaves across different neural network
architectures and datasets.

In addition to visual comparisons, incorporating quantitative metrics to assess the in-
terpolated surfaces’ accuracy, fidelity, or smoothness would result in a more comprehensive
evaluation. Measures like the structural similarity index could be employed to compare the
quality of the interpolated surfaces.

While contour plots serve as the primary visualization method in the thesis, exploring
alternative visualization techniques, such as interactive visualizations, would offer diverse

35

perspectives and enable more profound insights into the characteristics of the loss land-
scapes.

To enhance the credibility of the results, empirical experiments could be conducted to
validate the findings presented in the thesis, complementing the visual comparisons and
interpretations of the loss surface with empirical evidence.

The step size was visualised to find new ways of training optimisation. Observations
were made and used in further experiments. Utilizing the bump at the start helped train the
network more effectively, while comparing loss to gradients provided a way to tell whether
the network could train to give good results.

The implemented program is published under an MIT license on GitHub.

36

Bibliography

[1] Balestriero, R. and Baraniuk, R. G. Batch Normalization Explained. 2022.

[2] Bayer, J., Münch, D. and Arens, M. A Comparison of Deep Saliency Map
Generators on Multispectral Data in Object Detection. 2021. Available at:
https://arxiv.org/abs/2108.11767.

[3] Chrislb. Artificial Neuron Model. 2005 [cit. 2023-03-17]. Available at:
https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png.

[4] Farley, B. and Clark, W. Simulation of self-organizing systems by digital
computer. Transactions of the IRE Professional Group on Information Theory. 1st
ed. 1954, vol. 4, no. 4, p. 76–84. DOI: 10.1109/TIT.1954.1057468.

[5] fdeloche. Recurrent Neural Network. 2017 [cit. 2023-04-27]. Available at:
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg.

[6] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning. 1st ed. MIT
Press, 2016. ISBN 978-0-262-33743. Available at: http://www.deeplearningbook.org.

[7] Goodfellow, I. J., Vinyals, O. and Saxe, A. M. Qualitatively characterizing
neural network optimization problems. 2015.

[8] Hebb, D. The organization of behavior: a neuropsychological theory. Psychology
Press. 1stth ed. J. Wiley; Chapman & Hall. 1949. ISBN 978-0805843002.

[9] Ioffe, S. and Szegedy, C. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. CoRR. 2015, abs/1502.03167.
Available at: http://arxiv.org/abs/1502.03167.

[10] Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. 2017.

[11] Krizhevsky, A., Sutskever, I. and Hinton, G. E. ImageNet Classification with
Deep Convolutional Neural Networks. In: Pereira, F., Burges, C., Bottou, L.
and Weinberger, K., ed. Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2012, vol. 25. Available at: https://proceedings.neurips.cc/
paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[12] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE. 1998, vol. 86, no. 11,
p. 2278–2324. Available at: https://ieeexplore.ieee.org/document/726791.

37

https://arxiv.org/abs/2108.11767
https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
http://www.deeplearningbook.org
http://arxiv.org/abs/1502.03167
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://ieeexplore.ieee.org/document/726791

[13] Li, H., Xu, Z., Taylor, G., Studer, C. and Goldstein, T. Visualizing the Loss
Landscape of Neural Nets. 2018. Available at: https://proceedings.neurips.cc/
paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

[14] Li, X. and Wu, X. Constructing Long Short-Term Memory based Deep Recurrent
Neural Networks for Large Vocabulary Speech Recognition. CoRR. 2014,
abs/1410.4281. Available at: http://arxiv.org/abs/1410.4281.

[15] Li, Y., Wei, C. and Ma, T. Towards Explaining the Regularization Effect of Initial
Large Learning Rate in Training Neural Networks. CoRR. 2019, abs/1907.04595.
Available at: http://arxiv.org/abs/1907.04595.

[16] McCulloch, W. S. and Pitts, W. A Logical Calculus of the Ideas Immanent in
Nervous Activity. The Bulletin of Mathematical Biophysics. 1943, vol. 5, no. 4,
p. 115–133. ISBN 9780262267137.

[17] Medler, D. A. A brief history of connectionism. Neural Computing Surveys. 1998,
vol. 1.

[18] Mundhenk, T. N., Chen, B. Y. and Friedland, G. Efficient Saliency Maps for
Explainable AI. CoRR. 2019, abs/1911.11293. Available at:
http://arxiv.org/abs/1911.11293.

[19] Němcová, S. Neural Network Training Progress Visualization. Brno, CZ, 2021.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Available at: https://www.fit.vut.cz/study/thesis/23446/.

[20] Olah, C., Mordvintsev, A. and Schubert, L. Feature Visualization. Distill.
2017. DOI: 10.23915/distill.00007. https://distill.pub/2017/feature-visualization.

[21] O’Shea, K. and Nash, R. An Introduction to Convolutional Neural Networks.
CoRR. 2015, abs/1511.08458. Available at: http://arxiv.org/abs/1511.08458.

[22] Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain. Psychological Review. 1958, vol. 65, no. 6, p. 386–408.
DOI: 10.1037/h0042519.

[23] Seuret, M., Alberti, M., Ingold, R. and Liwicki, M. PCA-Initialized Deep
Neural Networks Applied To Document Image Analysis. CoRR. 2017,
abs/1702.00177. Available at: http://arxiv.org/abs/1702.00177.

[24] Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2015.

[25] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.
and Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research. 2014, vol. 15, no. 56,
p. 1929–1958. Available at: http://jmlr.org/papers/v15/srivastava14a.html.

[26] Textbook, C. U. C. O. O. Adam [online]. 2021 [cit. 2022-12-16]. Available at:
https://optimization.cbe.cornell.edu/index.php?title=Adam.

38

https://proceedings.neurips.cc/ paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.
https://proceedings.neurips.cc/ paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.
http://arxiv.org/abs/1410.4281
http://arxiv.org/abs/1907.04595
http://arxiv.org/abs/1911.11293
https://www.fit.vut.cz/study/thesis/23446/
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1702.00177
http://jmlr.org/papers/v15/srivastava14a.html
https://optimization.cbe.cornell.edu/index.php?title=Adam

[27] Werbos, P. J. Applications of advances in nonlinear sensitivity analysis. In:
Drenick, R. F. and Kozin, F., ed. System Modeling and Optimization. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1982, p. 762–770. ISBN 978-3-540-39459-4.

[28] Xiang, S. and Li, H. On the Effects of Batch and Weight Normalization in
Generative Adversarial Networks. 2017.

[29] Yosinski, J., Clune, J., Nguyen, A. M., Fuchs, T. J. and Lipson, H.
Understanding Neural Networks Through Deep Visualization. CoRR. 2015,
abs/1506.06579. Available at: http://arxiv.org/abs/1506.06579.

[30] Zeiler, M. D. and Fergus, R. Visualizing and Understanding Convolutional
Networks. CoRR. 2013, abs/1311.2901. Available at:
http://arxiv.org/abs/1311.2901.

[31] Zintgraf, L. M., Cohen, T. S., Adel, T. and Welling, M. Visualizing Deep
Neural Network Decisions: Prediction Difference Analysis. CoRR. 2017,
abs/1702.04595. Available at: http://arxiv.org/abs/1702.04595.

39

http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1702.04595

	Introduction
	Neural Networks
	Learning Techniques
	Neural Networks
	Neural Network Training

	Neural Network Training Techniques
	Neural Network Optimization Algorithms
	Neural Network Regularization
	Neural Network Normalization

	Neural Network Training Visualization
	Convolutional Neural Network Training Visualization
	Linear Path Interpolation
	Loss Surface Around Training Path
	Size of the Steps

	Implementation
	Examining the Training Progress of Neural Networks
	Architectures Used in Visualization Experiments
	Datasets
	Preliminary Experiments
	Loss Surface Around Training Path
	Size of the Steps

	Conclusion
	Bibliography

