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Abstract
This thesis deals with the recognition of various stress stages experienced by patients
from electroencephalogram (EEG). Various Support Vector Machine (SVM) and Long
Short-Term Memory (LSTM) models classifying EEG into three classes – not stressed, mod-
erate stressed, and very stressed were created. The process of implementing such a classifier
consisted of data preparation, extraction, and finally, classification. This solution also im-
plements augmentation of data. The highest accuracy achieved in this thesis was of 90 %
using the SVM model. The best LSTM model was a three-layer LSTM and achieved clas-
sification accuracy of 70 %.

Abstrakt
Tato závěrečná práce se věnuje rozpoznávání a klasifikaci různých úrovní psychické zátěže
z elektroencefalogramu (EEG). V rámci této práce bylo vytvořeno několik modelů SVM
a LSTM, které klasifikují EEG data do tří tříd odpovídajících mentální zátěži – nízká
mentální zátěže, střední mentální zátěž a vysoká mentální zátěž. Proces vedoucí k tvorbě
těchto modelů se skládal z kroků jako je úprava vstupního signálu, extrakce jeho vlastností
a implementace modelu pro samotnou klasifikaci. Toto řešení taktéž obsahuje augmentaci
dat. Nejvyšší dosažená přesnost klasifikace byla 90 %, a to s modelem SVM. Nejlepší LSTM
model obsahoval tři vrstvy LSTM a přesnost jeho výsledné klasifikace byla 70 %.
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Rozšířený abstrakt
Tato závěrečná práce se zabývá klasifikací různých stádií psychické zátěže pomocí strojového
učení. V posledních letech jsme svědky značného nárůstu psychických problémů napříč
celou populací. Důvodů může být hned několik a jedním z nich je právě chronický stres,
který má často kořeny v nadměrném tlaku na pracovní výkon. Chronický stres může neg-
ativně ovlivnit jak mentální, tak zdravotní stav jedince a může být jedním ze spouštěcích
faktorů úzkostných a depresivních stavů. Včasná diagnostika stavu chronického stresu
a jeho řešení by mohla být velkým přínosem pro zdraví člověka. Elektroencefalografie,
zkráceně EEG, je diagnostická metoda zaznamenávající elektrickou aktivitu mozku pomocí
elektrod přiložených na hlavu pacienta. Jedná se o neinvazivní a cenově dostupnou metodu,
která umožňuje detekovat řadu procesů zpracovávaných mozkem, a to včetně psychických
problémů, jako jsou deprese, úzkosti a stres. Signál změřený pomocí EEG je ovšem velmi
komplikovaný a jeho vyhodnocení bez použití moderních technologií je velmi náročné. Zde
přichází na řadu algoritmy strojového a hlubokého učení, které v této oblasti prokazují
dobré výsledky v klasifikačních úlohách.

Cílem této práce bylo vytvořit model strojového učení pro klasifikaci různých stádií
psychické zátěže. Důležitým aspektem této práce bylo také studium související tématiky
nezbytné pro její tvorbu. V teoretické části byla nejprve nastíněna architektura lidského
mozku a byl popsán mechanismus stresu a jednotlivá stádia stresové odpovědi organismu
na přitomnost stresoru v jeho okolí. Důležité bylo také prostudovat vlastnosti a principy
EEG, včetně jejích předností a nedostatků. Větší důraz byl potom kladen na studium
témat souvisejících s tvourbou samotného klasifikačního modelu. Byla probrána příprava
vstupního EEG signálu, metody extrakce a selekce jeho významných vlastností a především
samotné algoritmy strojového a hlubokého učení používané v pro klasifikační účely. Klíčové
bylo také získat přehled o stavu odborné literatury řešící tuto tématiku.

V rámci praktické části bylo implementováno několik architektur modelů klasifikujících
EEG signál do tří tříd podle pocitové úrovně mentální zátěže – nízká mentální zátěž,
střední mentální zátěž a vysoká mentální zátěž. Pro účely trénování a testování modelů
byl použit veřejně dostupný dataset SAM40. Tohle řešení nabízí řadu kombinací extraho-
vaných vlastností signálu, vstupních parametrů modelů a architektur modelů samotných,
které byly prozkoumány prostřednistvím experimentů. Klasifikační modely implementované
v rámci této práce jsou SVM, z anglického Support Vector Machine, a LSTM, z anglick-
ého Long Short-Term Memory. S modelem tvořeným kombinací tří vrstev LSTM a jedné
dropout vrstvy byla dosažena přesnost klasifikace 70 %. Tento výsledek nechává prostor
pro další vylepšení, kterého by mohlo být dosaženo, např. hledáním lepších hodnot tzv.
hyperparametrů nebo přidáním dalších vrstev. Nejvyšší přesnost byla dosažena s modelem
SVM, a to 90 %. Dle srovnání s literaturou se jedná o úspěšný výsledek.
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Chapter 1

Introduction

In recent years, we have witnessed a great increase in mental health issues among the whole
population, specifically among young people. It is proven that chronic stress has a very
negative influence on both the mental and physical health of the individual. It may even
be one of the triggering factors of anxiety and depression and can deepen mental health
issues that have already developed. Stress itself is a group of defense mechanisms of an or-
ganism that occur in response to the perception of physical or mental stressors. This state
is connected with severe unpleasant physiological symptoms. Stress can be divided into two
groups – acute stress and chronic stress. Acute stress is, at its core, a crucial evolution-
ary ability of the human body for survival and adaptation. Chronic stress corresponds
to a consistent feeling of pressure over a long period of time [9] and is the main factor neg-
atively influencing health. By early detection of chronic stress and subsequent resolving its
mitigation, we could prevent a range of mental health issues from burnout syndrome to de-
pression. This is where a method called Electroencephalography, abbreviated into EEG,
comes into account. EEG is a non-invasive and financially available method suitable for ex-
ploring brain activity through the so-called brain waves. Brain waves are electrical impulses
that can be detected on the scalp, and it has been proven that several processes of the brain,
including stress, can be analyzed through them. EEG is used in both scientific and medical
fields and is suitable for the detection of both mental and physiological processes, like blink-
ing, heart rate, etc. The effect of stress on the human brain is not yet fully understood.
EEG, in connection with a suitable machine learning or deep learning model, provides
a useful method that might contribute to a deeper understanding [65].

This thesis primarily aims to create a machine learning model that classifies a subject’s
mental stress stages based on EEG data. It also deals with topics relevant to the creation
process of machine learning or deep learning models and important facts to understanding
stress response itself. This thesis starts by delivering essential information about the archi-
tecture of the human brain, which is described in section 2.1. Section 2.2 focuses on describ-
ing the stress response mechanism and its phases. A brief introduction to EEG is provided
in section 2.3. The next important topic studied in the chapter 2.4 is the analysis of fea-
tures, including classification and validation. Finally, section 2.5 describes the current state
of research focused on this topic.
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Chapter 2

Literature Review

This chapter explains the key aspects needed to comprehend the studied topic. The aim
of this chapter is, firstly, to explain and discuss the anatomy of the human brain, the mech-
anism of stress, and how it manifests in the brain. Secondly, this chapter introduces the di-
agnostic method known as electroencephalography (EEG), which is nowadays widely used
and researched for both scientific and medical purposes. This thesis aims primarily to cre-
ate a machine learning model for stress stage recognition from EEG data, so the next
and the most important topic to be discussed in this chapter is feature analysis and its
individual sub-parts such as feature extraction, selection, and classification using machine
learning and deep learning techniques. Finally, this thesis could not have been conducted
without a proper understanding of the current state of research on this topic, which is there-
fore also considered in this chapter.

2.1 Human Brain Architecture
Not only is the brain the most complex part of the human body, but it is also the most
complex functioning system that is known. It is a complex network of neurons (neuronal
cells) and other cell types that controls the nervous system coordinates the human body,
controls behavior, controls the internal state of the human body, and processes sensory
information from the surrounding environment. The brain controls these activities through
thinking and cognition [6, 61].

The human brain is subdivided into many regions, and each of them is highly specialized
for certain functions. The main three brain regions that the brain is divided into are
the cerebrum, cerebellum, and brain stem [6, 61].

2.1.1 Cerebrum

The cerebrum is the largest unit of the human brain, located at the front and the top
of the brain. Two basic parts that the cerebrum is divided into are the cerebral cortex,
otherwise known as gray matter, which is laminated, and the cerebral nuclei, white matter,
which is mostly nonlaminated. It is a brain region responsible for a wide range of func-
tionalities, e.g., movement coordination, conscious thoughts, judgment, speech, emotions,
learning, problem-solving, sensory perception, and management, behavior, and personality,
etc. [6, 61].
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Figure 2.1: Three main regions of the human brain – cerebrum, cerebellum, and brain stem
[6].

2.1.2 Cerebellum

The cerebellum is located at the back of the brain and makes up around ten percent of its
total weight. Thanks to the dense arrangement of the cerebellar cortex granule cells, it also
has the highest concentration of neurons out of all the brain regions.

The outer part contains neurons while the inner area communicates with the cerebral
cortex. Functions such as voluntary muscle movement, coordination, maintaining posture,
balance, and body equilibrium are provided by this region. According to the latest studies,
the cerebellum might be involved in thinking, emotions, and social behavior as well
as in addictions, autism, and schizophrenia [6, 27, 61].

The cerebrum and cerebellum are divided into halves collectively referred to as the cere-
bral hemispheres. The left and right hemispheres are divided by a deep median longitudinal
fissure. The bundle of fibers located in the depth of this fissure called the Corpus Cal-
losum, forms a connection between the hemispheres, which provides signal transmission
between both sides. The left hemisphere controls the right part of the body and is con-
nected with creativity, emotions, intuition, art, etc. The right hemisphere, on the contrary,
controls the left part of the body and performs tasks like maths, reasoning, logic, etc. [6, 61].

Both hemispheres can be subdivided into Frontal, Parietal, Temporal, Occipital, Insular,
and Limbic lobes. Most of the brain functions are performed in cooperation of several brain
regions but certain functions are provided only by a specific lobe by itself. Tasks performed
by the individual lobes are described below [6, 61].

• Frontal Lobe
As the name suggests, this lobe is located behind the forehead, and it is connected
with higher executive functions, e.g., thinking, problem-solving, speech, emotional
regulation, voluntary movement, etc.
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• Parietal Lobe
The parietal lobe is located behind the frontal lobe on the posterior top of the head.
These areas are responsible for spatial orientation and integrating sensory information
such as touch, pressure, pain, temperature, and texture.

• Temporal Lobe
The temporal lobes lie on both sides of the head above the ears. These brain regions
are involved in processing sensory information, particularly hearing and speech per-
ception, as well as memory, learning, and emotions. The temporal lobes also include
areas responsible for visual processing.

• Occipital Lobe
The occipital lobe is found at the back of the head and is often called the visual cortex.
As the name suggests, the occipital lobe is responsible for vision and visual processes
such as reading. We can consider it the major visual processing center in the brain.

• Insular Lobe
The insular lobe lies deep within the brain as the part of the cerebrum above the brain
stem. It is involved in consciousness, regulation of the body’s homeostasis, as well
as in some of the emotions, pain experience, social emotions, emotional intelligence,
and multimodal sensory processing, e.g., during the combination of auditory and vi-
sual tasks.

• Limbic Lobe
The limbic lobe is the same as the insular lobe, located deep within the brain, beneath
the cerebrum, and above the brain stem. This system is involved in motivationally
driven and emotional behaviors, social skills, empathy, memory, learning, homeostatic
responses, etc. [6, 38, 8, 61].

Figure 2.2: Different lobes of the human brain and their functionality [6].

2.1.3 Brainstem

The brainstem is located in the middle of the brain and connects the cerebrum with the spinal
cord. The spinal cord, supported by the vertebrae, is the main path carrying messages be-
tween the brain and the rest of the body. Processes like breathing, heart rate, balance,
swallowing, and more are regulated by the brainstem [6].
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2.2 Stress
Stress is a natural reaction of the human body to a stressor. This beneficial protective
mechanism helps our organisms invoke fast reactions to changes and potential environmen-
tal and other external threatening conditions. As long as there are various types of stressors,
stress can be manifested by a whole range of symptoms. Psychological stress is mainly con-
sidered in this thesis. As mentioned before, stress is beneficial and essential in a whole range
of situations. However, the excessive amount of stress that a large number of the working-
age population faces today can easily develop into chronic stress that can be critical for both
body and mind and can be involved in several health issues. Beyond the health problems
connected with chronic stress, it is also manifested by unpleasant feelings of pressure, mental
overload, several aches, insomnia, weakness, distraction, and more. According to studies,
stress is one of the major factors contributing to chronic disorders. Therefore it is important
to take care of stress prevention, which can be achieved by a healthy lifestyle. Early diag-
nosis of chronic stress may, in some cases, be a key to mental and other illness prevention
[9, 65].

According to Vanhollebeke et al., [65], a stress response can be divided into three stress
phases – anticipatory, reactive, and recovery. The anticipatory phase begins the moment
when a person is aware of the stressor but is not yet directly exposed to it. During the reac-
tive phase, the subject is directly exposed to the stressor. The recovery phase, as the name
suggests, starts directly after the end of the stressor exposure and consists of the reversal
of psychological and physiological alterations caused by the stressor [65].

Figure 2.3: Three phases of the stress response [65].

2.2.1 Mechanism of a Stress Response

The first detection of a stressor in the brain occurs in regions called the amygdala (temporal
lobe) and prefrontal cortex (frontal lobe). The amygdala sends distress signals to release
the stress hormones from the adrenal glands. Hormones adrenaline and noradrenaline
activate the sympathetic nervous system (SNS), which manifests itself in an increased
heart rate, dilating of airways, redirecting blood flow to vital organs, increased blood flow
to the muscles and other physiological mechanisms to prepare the body for immediate ac-
tion known as the ”flight or fight“ response. The hypothalamus, a brain region located
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in the temporal lobe, simultaneously produces corticotropin-releasing hormone (CRH),
which activates the hypothalamic-pituitary-adrenal axis (HPA). The HPA axis then sig-
nals the release of adrenocorticotropic hormone (ACTH) from the pituitary gland, whose
presence stimulates the release of cortisol from the adrenal glands. Cortisol is another
important stress hormone, whose task is to mobilize the energy to cope with the stres-
sor. This is achieved by an increase in the body’s glucose metabolism. In addition, cortisol
simultaneously affects brain functions by influencing emotional regulation, memory, and at-
tention. High cortisol levels in the blood are a signal to the hypothalamus and pituitary
glands for a negative feedback loop. This loop inhibits further release of CRH and ACTH
[15, 41, 55, 63, 57].

In a summary, the stress response mechanism is a complicated process that allows
the organism to react quickly to the presence of a stressor, a potential danger. Stress
response typically consists of three phases: the anticipatory phase, the reactive phase, and
the recovery phase.

2.3 Electroencephalography (EEG)
The history of electroencephalography dates back to the last century. Hans Berger, the Ger-
man psychiatrist, did the first recording of the human brain’s electric field in the year
1924. Since then, the EEG has been used as a useful method to understand and diag-
nose mental and neurological disorders and to assess cognitive processes, e.g., memory
and perception. This neuroimaging technique consists of measurement of the brain’s re-
sponse to a stimulus (of a sensory, motor, or cognitive nature), so-called Event-Related
Potential (ERP), and is widely used in cognitive neuroscience research. The advantage
of using the EEG in comparison with other methods used in this scientific field is its good
temporal resolution and low price. The disadvantage of this method is the low spatial reso-
lution of the brain activity. EEG can also be integrated with other neuroimaging methods,
such as magnetic resonance imaging (MRI), functional near-infrared spectroscopy (fNIRS),
and positron emission tomography (PET) to obtain more comprehensive results [45].

2.3.1 EEG Signals

EEG is a non-invasive method studying amplified electrical signals caused by the syn-
chronous activity of the sum of thousands of millions of brain cells, i.e., neurons with a sim-
ilar spatial orientation measured with electrodes placed on a subject’s scalp. Such a record-
ing of neural oscillations is called the electroencephalogram and can be characterized by
the frequency, amplitude, and phase of the oscillation. EEG signals are typical for their
complexity, nonlinearity, and lack of conformity to a normal distribution. At the same time,
the signal waveform can be significantly influenced by individual factors, e.g., age, health,
testing environment, etc. Measured data usually contain unwanted signals caused, e.g.,
by eye and muscle movement called artifacts. Obtaining information from such complex
signals can be very challenging [45].

The main objects of study are five major brain waves varying in their frequency ranges:
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Delta Waves

Delta waves are neural oscillations with the highest amplitude and the lowest frequency
within the range of 0.5 to 4.0 Hz. Delta wave activity is associated with the NREM sleep
phase (deep sleep) [45].

Figure 2.4: Major brain waves varying in their frequency range [45].

Theta Waves

The frequency range of theta waves is 4 to 8 Hz. Among adults, theta waves are associated
with states of drowsiness, arousal, or meditation [45].
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Alpha Waves

Alpha waves lie within the frequency range of 8 to 13 Hz and are correlated with wakeful-
ness, effortlessness, alertness, and creativity. Alpha waves typically appear in the posterior
half of the head [45] According to studied literature, alpha power tends to decrease due
to the influence of stress [67, 53, 52].

Beta Waves

These are neural oscillations with a frequency range of 14 to 26 Hz. Beta wave activity
is related to active attention and thinking, critical problem solving, and focusing on the out-
side world. This type of brain wave typically appears in the frontal and central region
of the brain [45] According to the studied literature, beta power tends to decrease its value
due to the influence of stress [67, 53, 52].

Gamma Waves

The frequency range of gamma waves is 30 to 100 Hz. The appearance of gamma waves
in the human brain is rare and is related to the process of combining different senses (sound
and sight) [45].

As long as EEG reflects thousands of ongoing neural processes, it is challenging to iso-
late, assess, and analyze them. Specific information related to sensory, cognitive, and motor
events can be extracted using ERPs by repeating an event (e.g., visual stimulus) and its
EEG activity analysis [45].

2.4 Feature Analysis
The raw output of an EEG measurement is a signal recording changes in electrical poten-
tial on the experiment subject’s scalp. To obtain information, it is necessary to analyze
measured signals through their features. The methodology of EEG signal analysis can
be summarized in the so-called machine learning pipeline. The machine learning pipeline
is a series of steps to automate, standardize, and streamline machine learning model build-
ing, training, evaluating, and deploying. In the case of EEG analysis, a machine learning
pipeline typically consists of data acquisition, pre-processing (denoising), feature selection,
and classification [68, 59].

2.4.1 Time-Domain Feature Extraction

In the case of the time-domain feature extraction, the measured signals are analyzed with re-
spect to time. These techniques provide quantification of signal changes over time. Because
of its length, the time-domain signal typically requires segmentation and windowing pro-
viding extraction of local features [59].

Time domain analysis includes statistical features such as mean, median, variance, stan-
dard deviation, skewness, and kurtosis. Another simple feature is the so-called zero crossing
rate, which provides information about how often the signal crosses the horizontal axis.
In some cases, it can be appropriate to count separately the number of ”positive-going“
crossings, which are the crossings of the horizontal axis from negative to zero to positive,
and the number of opposite ”negative-going“ crossings [59].
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Entropies

Entropies are time-domain features based on the quantification of time series regularity
that express well the complexity of the signal. Entropies are widely used in this scientific
field because they allow successful feature extraction even with noisy and short recordings.
Extensively known are approximate entropy algorithm (AE) and sample entropy algorithm
(SE). These two algorithms determine the regularity of time series for similar epochs based
on the existence of patterns. The greater the data irregularity in the sequence is, the greater
the non-negative number is assigned to the sequence. [67, 14, 47].

Hjorth Parameters

The Hjorth Complexity describes deviance from the course of the sinus. The higher the value
of Hjorth Complexity is, the more complex the examined signal is. Hjorth Complexity
is calculated using three parameters – activity, mobility, and complexity. The activity
is derived as the variance of the EEG signal. The mobility is equal to the square root
of the variance of the first derivative of the EEG signal. The complexity parameter is equal
to the ratio of the mobility to the square root of the activity [46, 56].

Hurst Exponent

The Hurst Exponent is a time-domain feature of the trend persistence or the randomness.
It is calculated using the R/S method. First, the signal is divided into windows of dif-
ferent sizes. Then, the average and the standard deviation of the signal are calculated
for each window. The rescaled range R/S is calculated for each time window and it is de-
fined as the ratio of the difference between maximum and minimum values of the signal
and the standard deviation. Subsequently, the logarithm of the R/S is against the logarithm
of window size. The resulting Hurst exponent is equal to the slope of the linear regression
plot. The value of the Hurst Exponent can range between 0 to 1. The value of the Hurst
Exponent under 0.5 indicates that the signal tends to reverse its direction. On the contrary,
values above 0.5 indicate persistent behavior. Hurst Exponent that is equal to 0.5 suggests
an unpredictable course of the signal [64].

2.4.2 Frequency-Domain Feature Extraction

Five main brain waves that occur in the human brain and their frequencies were mentioned
in 2.3.1. For identification and classification of the brainwaves, it is necessary to analyze
the frequency spectrum of the recording [65]. Brain waves and their frequency bands are
summarized in table 2.1.

Wave Frequency band (Hz)
Delta 0.5 – 4.0
Theta 4.0 – 8.0
Alpha 8.0 – 13.0
Beta 13.0 – 26.0
Gamma 30.0 – 100.0

Table 2.1: Brain waves and their frequency bands [57].
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Power Spectral Density

A fundamental concept in frequency-domain analysis is the Power Spectral Density (PSD).
The PSD calculates the distribution of a signal’s power as a function of frequency. It can
be calculated, e.g., using the Fast Fourier Transform (FFT) or Welch’s method. Welch’s
method divides the signal into overlapping segments and, for each of them, computes
the squared root of the FFT. The resulting numbers are an estimation of the spectral
density, and their averaging is provided, resulting in PSD estimation. Welch’s method
provides a smoother frequency-domain spectrum than FFT [54, 57, 65].

Asymmetry

Another important concept in frequency-domain feature extraction is asymmetry. It is a rel-
ative measure of the difference in band powers between the right and left hemispheres
in a specified brain area, such as frontal asymmetry or cerebral asymmetry [5].

2.4.3 Connectivity Analysis

The processing of information in the brain is spatially distributed and involves both local
and distant brain regions. These regions are functionally connected and synchronized near
optimal. Analysis of brain connectivity can be useful for a deeper understanding of studied
processes and involved brain regions. Brain connectivity analysis focuses on three differ-
ent but related forms of connectivity – anatomical connectivity, functional connectivity,
and effective connectivity. Anatomical connectivity examines the connectomes, connecting
neuron pools in spatially distant brain regions connected through synaptic contacts between
neighboring neurons or fiber tracks. Functional connectivity is described as the temporal
dependency of neuronal activation patterns of anatomically separated brain regions. This
statistical concept relies on statistical measures like correlation, coherence, phase locking,
etc. Effective connectivity describes how one neuronal system affects another [36].

2.4.4 Feature Selection

Feature selection is a process of selecting relevant features that will act as input to a machine
learning model. In this process, the amount of noise in the data is reduced. In other words,
it is a method of reducing input data to its relevant components. This step is essential
for training a functional and accurate model. Feature selection ensures, that a machine
learning model does not capture the unimportant patterns and does not learn from noise.
Both supervised and unsupervised models are used for feature selection [22].

Principal Component Analysis (PCA)

PCA is a statistical procedure that reduces the dataset to its essential features by iden-
tifying its directions, in this case called principal components. The principal components
are a set of new uncorrelated variables that capture the maximum possible variability
in the data. It is based on a specifically chosen linear transformation that maximizes
the variance when projected onto the new axes. The transformation projects the original
data onto a lower-dimensional subspace by scaling and rotating the original feature space.
The vectors of the features are projected on the transformed subspace in relevant directions
[58, 7].
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Pearson Correlation Coefficient (PCC)

Analysis of a relationship between two variables can be done by calculating the Pearson Cor-
relation Coefficient. Key aspects for determining a casual linear relationship between vari-
ables are the correlation’s strength and the correlation’s direction. The value of the Pearson
Correlation Coefficient can range from minus one to plus one. Pearson Correlation Coef-
ficient value of zero is characteristic of no correlation between variables. On the contrary,
a value close to plus one is characteristic of a strong positive correlation, and a value close
to minus one for a strong negative correlation [48].

Variance

Variance is a statistical measure reflecting the dispersion of the data. In other words,
it is an indicator of how much the data is scattered around the mean. Variance is cal-
culated as the sum of the squared average distance from the mean divided by the count
of analyzed values. The main idea behind variance is to obtain information about how big
the spread of values from the average is, not the deviation of the individual. It is a useful
tool for the selection of features from the data. A threshold value is selected and all features
with variance lower than the defined threshold are removed [22].

Genetic Algorithms (GA)

These efficient techniques of optimization are based on natural evolutionary theory. Ma-
jor steps such as selection, crossover, mutation, and replacement are used. The principle
of these algorithms is based on the successive creation of generations, where each new gener-
ation generates a different solution to the optimization problem. The solution to the prob-
lem is improving with the evolving population. The first generation consists of randomly
generated individuals. The transformation from the first generation to the following gen-
erations is achieved by iterative repeating of stochastic reproduction of the individuals
into modified versions via crossover and mutation. Each iteration results in a greater ho-
mogenization of the population concerning the survivability of the individuals who adapted
to their environment [58].

2.4.5 Feature Classification

The following section describes selected machine learning and deep learning algorithms
widely used for feature classification. Classifiers typically use supervised, unsupervised,
or reinforcement learning algorithms. These algorithms control the learning process by ex-
ternal configurations, so-called hyperparameters. The value of the hyperparameters cannot
be estimated from the data and has to be specified beforehand. The process of the determi-
nation of the suitable hyperparameters can be greatly simplified by validation. The principle
of selected validation methods is described in 2.4.6 [33].

K-Nearest Neighbors (K-NN)

This supervised learning algorithm is one of the most popular schemes used for classifica-
tion tasks thanks to its simplicity and computational efficiency. First, the distance between
a given point, and its neighboring points in the training dataset is calculated. The dis-
tance between the given point and its neighbor is usually calculated using the Euclidean
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distance, but different approaches can be applied as well. The obtained values are subse-
quently sorted in increasing order and the K-nearest neighbors are selected for further use.
The classification of the given point is then determined based on the vote of its neighbors.
The given point is predicted to be of the class, that is the most common among the selected
K-nearest neighbors. Choosing the correct value of the K hyperparameter is a key step
to avoid overfitting or underfitting the model to the training dataset [3].

Support Vector Machine (SVM)

First, it is appropriate to describe the term margin. When analyzing data with two distinct
classes, we can determine a threshold, that lies between the closest data points belonging
to different classes. The margin is the distance between the nearest data point of a given
class and the threshold. The largest possible margin is selected for use in the SVM. This type
of classifier is called the maximum margin classifier. Unfortunately, a great disadvantage
of this classifier is a high sensitivity to outliers in the training data. The solution to this
problem is to allow misclassifications in the training data. In this context, the term soft
margin refers to the distance between the nearest data point and the threshold. The number
of allowed misclassifications is a hyperparameter, that can be optimized through cross-
validation. The support vector classifier uses the soft margin to determine the location
of a threshold. The observations on the edge and within the soft margin are called support
vectors. In the context of the observations, a threshold is represented as a point in a one-
dimensional space, as a line in a two-dimensional space, as a plane in a three-dimensional
space, and so forth. In summary, the SVM is a set of supervised learning algorithms,
that view data points as p-dimensional vectors. These algorithms move the data into
a higher dimension and find a support vector classifier. In other words, these algorithms try
to separate data points from different classes by (p-1)-dimensional hyperplane. The kernel
function enables one to do a computation in the higher dimension without a transformation.
This so-called kernel trick significantly reduces the computational demands of the SVM.
The radial kernel function computes the interactions between each pair of data points within
the specified dimension. The radial basis function kernel enables the discovery of support
vector machines in theoretically infinite dimensions. Beyond the polynomial and radial
function kernels, there are various other kernel functions, that can be used depending
on the data and the task [13, 50].

Figure 2.5: The most optimized hyperplane for the illustrated case of classification [21].
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Random Forest

The Random Forest is a powerful machine learning algorithm, that creates class predictions
using a collection of decision trees. The single decision tree involved in the classification task
results in an overfitting model, in other words, a model, that is highly sensitive to the train-
ing data. This problem can be avoided by using the collection of multiple random decision
trees, the so-called random forest. In the initial step known as bootstrapping, the new
collection of datasets is created by selecting random rows from the original dataset. It
is important to mention, that the algorithm does not train each decision tree with every
feature. The process of training is only done with a random subset of features. This ap-
proach reduces the correlation between the trees and prevents the increase in variance.
The Random Forest makes predictions by passing the data point through each decision
tree and noting the predictions individually. The resulting class is decided by aggregating
the predictions of the decision trees and choosing the class that receives the majority vote.
This process is called aggregation [39, 24].

Convolutional Neural Networks (CNN)

Convolutional Neural Networks, a specialized variant of feed-forward artificial neural net-
works, are a very popular tool in image analysis. However, their effectiveness is also appre-
ciated in other data analyses and classification problems. Convolutional Neural Networks
are specialized in pattern recognition. Compared with Multilayer Perceptron, the CNN
detects patterns using hidden layers otherwise called convolutional layers. Such a network
usually contains other non-convolutional layers and necessarily contains a non-linear acti-
vation function. Each convolutional layer receives input, transforms it with a convolutional
operation, and passes the transformed input to the next layer. A convolutional layer is com-
posed of a specified number of filters. A filter can be conceptualized as a relatively small
matrix. The size of this matrix is a hyperparameter. The values within this matrix are
initialized with random numbers. The filter convolves across each input element, resulting
in a matrix dot product. This new matrix of dot products is the output of the convolu-
tional layer. As we delve deeper into the network, the filters become more complex, enabling
the extraction of more sophisticated features from the input [23, 28].

Recurrent Neural Networks (RNN)

Recurrent Neural Networks stand apart from other neural networks due to their applica-
tion of feedback loops, in addition to weights, biases, hidden layers, and activation func-
tions. These feedback loops enable predictions with varying input values, even when dealing
with sequential data, such as time-series data [20].

In contrary with traditional neural networks, where the inputs and outputs of layers
are independent, the RNN feedback loops allow to influence the current step input by
the output from the previous step. A key feature of this network is a Hidden state, also
known as the Memory state. As the name suggests, this feature enables the RNN to re-
tain information about the previous sequence while processing inputs, a desirable property
for tasks such as predicting the next word in a sentence. This unique capability is provided
by a processing unit called the Recurrent Unit [20].

The tasks performed to produce the outputs on hidden layers are identical across all
units and the same parameters are passed for each input, reducing the complexity of the pa-
rameters. In an RNN, the weights are shared across all time steps in the network. Each
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Figure 2.6: The illustration of convolutional neural network with three hidden layers [4].

recurrent unit of the RNN is associated with a specific time step and has a fixed activation
function. The hidden state of the unit, representing accumulated information from the past,
is updated at each time step to reflect alternations in the network’s understanding of past
data [20].

The current state is calculated using the following formula

ℎ𝑡 = 𝑓(ℎ𝑡, 𝑥𝑡), (2.1)

where ℎ𝑡 represents the current state, ℎ𝑡−1 the previous state and 𝑥𝑡 the input state.
The activation function is applied to the current state with the formula

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ℎℎℎ𝑡−1 +𝑊 𝑥ℎ𝑥𝑡), (2.2)

where 𝑤ℎℎ is weight at the recurrent neuron and 𝑤𝑥ℎ is weight at the input neuron.
The output is subsequently computed with the formula

𝑦𝑡 = 𝑊 ℎ𝑦ℎ𝑡, (2.3)

where 𝑦𝑡 is the output and 𝑊 ℎ𝑦 is the weight at output layer. These parameters are
updated using backpropagation through time [20].

Long Short-Term Memory (LSTM)

LSTM is a neural network built on RNN. In comparison with RNN, LSTM is extended
with a memory cell, which is a container holding information about long-term dependen-
cies. This ability makes it well-suited for tasks like speech recognition, language translation,
and time series forecasting. Deep LSTM networks can learn very complex patterns and pro-
vide reliable results, but they do so at the cost of complicated and time-consuming tuning
of the training process, which is in part caused by a large number of hyperparameters [17].
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The operation of the memory cell is controlled by three gates – the input gate, the forget
gate, and the output gate. The chain of these three gates allows LSTM to selectively retain
or discard information [17].

Figure 2.7: The illustration of the LSTM memory cell – from left to right is the forget gate,
the input gate, and the output gate [17].

The forget gate removes information, that is no longer useful for the cell. This process
is described by the following equation

𝑓 𝑡 = (𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ), (2.4)
where 𝑊𝑓 represents the weight matrix of the forget gate, 𝑥𝑡 is the input at the particu-

lar time, ℎ𝑡−1 is the previous cell output, 𝑏𝑓 is the bias with the forget gate, and the 𝑠𝑖𝑔𝑚𝑎
parameter is the sigmoid activation function. The two inputs of the gate are multiplied
with weight matrices. The result is then summed with the bias and passed through an ac-
tivation function. The activation gives a binary output. If the output is zero, it means that
the information about the particular cell state is no longer useful and, therefore, has been
removed. For the output one, the information is retained [17].

The addition of new information to be retained by the cell is provided by the input
gate. The operation performed in the input gate is illustrated with the following equations
[17].

𝑖𝑡 = (𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2.5)

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (2.6)
Parameters 𝑥𝑡 and ℎ𝑡−1 represent the input at the particular time and the previous cell

output, similarly to the forget gate. The 𝑏𝑐 parameter represents the bias with the input
gate. First, the information is regulated using the sigmoid function – the values to be re-
membered are filtered in a similar way to the forget gate. Second, the 𝑡𝑎𝑛ℎ activation
function is applied in order to create a vector. The output value is in the range from minus
one to plus one and contains all positive values from the 𝑥𝑡 and ℎ𝑡−1. Then, the useful
information is obtained by multiplication of the vector values and the regulated values.
The prior state is multiplied by 𝑓𝑡, while the information we previously decided to overlook
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is not considered. Following that, the expression 𝑖𝑡 * 𝐶𝑡 is incorporated. This expression
signifies the revised candidate values, modified according to the degree to which we decided
to update each state value [17].

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶𝑡 (2.7)

The last gate is the output gate, which determines what information from the current cell
state is going to be presented as the output. First, the 𝑡𝑎𝑛ℎ activation function is applied
to the cell input with the purpose of creating the vector. The input information is then
regulated to values between zero and one using the sigmoid activation function. The output
from the sigmoid function is then used to filter the values that need to be remembered.
Finally, the regulated values and the vector values are multiplied and sent as an output
of the output gate. This process can be described by the following equation

𝑜𝑡 = (𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), (2.8)

𝑜𝑡 is the output, 𝑊𝑡 is the weight matrix associated with the output gate, ℎ𝑡−1 is the pre-
vious cell output, 𝑥𝑡 is the input at the particular time and 𝑏𝑜 is the bias with the output
gate [17].

There is a variation of LSTM, so-called Bidirectional LSTM (BLSTM), that processes
input sequential data in both forward and backward directions – one LSTM layer does
so in the forward direction, the other in the backward direction. This feature enables
the attainment of even better results compared to basic forward LSTM [17].

2.4.6 Validation

Machine learning and deep learning algorithms learn to make predictions during a pro-
cess called training. The model learns to recognize important patterns in the training
dataset. The learning process, however, is not a straightforward task. There are sev-
eral steps, that have to be considered. The training process requires high-quality training
data. The noise, missing values, and incorrect labels can lead to poor performance because
the model can learn incorrect patterns. Choosing the right machine learning model itself
can also influence the performance. Finding a suitable model for the task and given data
is a complex process. Next, choosing an irrelevant or redundant feature as the model input
can negatively impact its performance. Another problem occurs when the model learns
the training dataset too well, so-called overfitting. Underfitting is the contrary situation
when the complexity of the model is too low to capture the structure of the data. Finally,
very time consuming can be fine-tuning of the model’s hyperparameters. Hyperparameters
define higher-level model structures and have to be set before the training process starts.
Validation is useful here to detect potential problems, especially overfitting. The following
lines discuss selected validation strategies [19].

Holdout Validation

The dataset is divided into two parts—the training set and the testing set. The training set
is used to build the model. The test set checks the model’s ability to generalize the new,
unseen data by calculating selected validation metrics, in other words, how the model
will be applicable in the real world. Unfortunately, this approach can lead to unstable
estimates. If the split does not accurately reflect the overall data distribution, it may result
in inconsistent estimations [19].
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K-Fold Cross-Validation

Another validation method, that may be used, is the K-Fold Cross-Validation. This tech-
nique is very popular because it ensures thorough learning across the entire dataset. Ini-
tially, the dataset is partitioned into K parts. The K-1 parts of the dataset are used
for the training, while the remaining part utilizes the testing process. The procedure
of training and testing is iterated until each part of the dataset has been used for the test-
ing [19].

Figure 2.8: Division of the dataset into the training and testing part within the 5 folds [19].

Stratified K-Fold Cross-Validation

The main idea of this validation method is to divide the dataset into K folds, where each
fold contains a representative proportion of each class. This ensures accurate learning
results across all classes even though the layout of classes in the dataset is imbalanced.
The input data is first shuffled and then partitioned into sub-parts. Each sub-part is then
used for training. The step ensures the shuffle is executed only once [19].

Leave-One-Out Cross-Validation (LOOCV)

As well as the previous methods, the LOOCV divides the entire dataset into folds. In this
case, every individual data point is treated as a separate test dataset, while the rest
of the dataset is used to train the model. Although LOOCV offers the most precise
performance evaluation from the described methods, in the case of large datasets, it can
be computationally expensive [19].
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Time Series Cross-Validation

As the name suggests, this cross-validation method is specialized for validation in time
series. The dataset is split into overlapping windows. The model undergoes training
on the training part of the dataset and then proceeds to evaluation on the subsequent testing
segment. It is important to emphasize that the dataset’s training set has to be in position
before the testing set because future data should not be used for training. After these two
steps, the window of the training set is expanded forward by a time step. The earliest
step of the format training data is dropped, and the validation set is expanded forward by
a one-time step. These steps are then repeated until the entire dataset is incorporated. This
approach’s great advantage is that it considers the inherent time dependencies in the data
series, which can increase the model’s ability to predict future data [19].

Validation Metrics

The choice of validation method is closely linked to the selection of the right metrics to eval-
uate model performance. The following lines describe only selected metrics used for evalu-
ation of the model implemented in this thesis, so-called classification-specific metrics.

• Accuracy
This metric provides information about the proportion between the number of correct
predicted classes and the total number of predictions [1].

• Precision
Precision is a metric, that quantifies how accurate the model is when predicting
the target class. More precisely it is equal to a ratio of true positive predictions
to the total number of positive predictions (both true and false positive predictions).
In this context, it is important to mention that a true positive prediction considers
a correct prediction of a given class, and a false positive prediction is an instance
that was incorrectly predicted as positive of a given class [1].

• Recall
Another useful metric used for learning model validation is recall. This metric quan-
tifies correct identifications of the true positives in ratio to all true positives and false
negatives in the dataset. In this case, false negative means the missed case of positive.
In other words, recall provides information on how often the model correctly identifies
positive instances from all the positive samples, that are present in the dataset [1].

• F1-Score
F1-score is an evaluation metric that combines the model’s precision and recall scores.
However, this metric can be unviable in datasets with imbalanced classes. The F1-
score value equals the harmonic mean of the precision and recall scores. The higher
the value of the F1-score is, the classifier is of the better quality [18].

2.5 Current State of Research
In recent years we have seen a rapid increase in mental health issues. Although the mod-
ern way of life brings many advantages and living is easier than it used to be, there are
some factors that can poorly influence an individual’s well-being, e.g., excessive consump-
tion of social media, bad work environment, loneliness, economic uncertainty, and above
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all, an increase of individual’s psychosocial stress. Stress is a factor that can significantly
catalyze the development of mental health issues. However, the influence of psychosocial
stress on brain activity is not yet completely understood. This is the point, where the elec-
troencephalography (EEG) comes into play. It is a non-invasive method that can be helpful
in stress diagnosis. Data obtained from stress-related EEG experiments can greatly con-
tribute to a deeper understanding of stress. This chapter summarizes the findings of selected
EEG stress-related studies [65].

Certain articles focus on stress response in its entirety, but some articles investigate
stress as a process that can be divided into three discrete phases – the anticipatory, the re-
active, and the recovery phase. Physiological processes, that are involved in stress response
and three discrete stress phases were described in section 2.2. The strength of the EEG
is its high temporal resolution, and therefore, most stress-related studies focus on the inves-
tigation of event-related potentials (ERPs). A whole range of EEG stress-related articles
also focus on the analysis of changes in signal oscillations through spectral analysis. ERP
analysis is not very suitable for the investigation of the whole neural response to stress
because ERP recordings are usually dependent on clearly defined stimuli, and the recov-
ery phase is usually not recorded at all. In this case, the spectral analysis yields better
results, because both stimulus-defined time windows and long continuous EEG recordings
can be performed [65].

According to studied articles, some EEG measures report stress phase-dependent be-
havior. On the other hand there are measures that are entirely stress phase independent.
According to the literature, stress response typically manifests in a significantly decreasing
trend of the alpha band power in the frontal lobe. As long as the alpha waves are con-
nected with a state of calmness and relaxation, the decreasing trend confirms that regardless
of the stress response phase, the subject is not experiencing comfort. Most of the studied
literature recorded a significant increase in the beta band power due to experienced psy-
chosocial stress. These changes occurred mainly in the frontal lobe. On the other hand,
two articles dealing with this measure report an insignificant decrease. Measures such
as delta and theta band power, relative gamma, and theta-alpha band power ratio report
stress phase dependency. However, deeper investigation of the stress phase dependence
of measures has many pitfalls as long as some pairs formed by measure and stress phase
are overrepresented in studies and others are completely absent [65].

According to the literature, the reactive stress phase is associated with an increase
in the delta band power [40]. On the other hand, during the recovery phase, when the body
starts to reverse the alterations caused by the stressor, the delta band power decreases
[49]. Additionally, two articles describe a significant increase in theta band power during
the reactive phase [35, 66]. However, another article describes a decrease in theta band
power in the recovery phase [40]. It is also noted, that theta-alpha power is significantly
higher during the reactive phase than during the recovery phase [29]. Interestingly, relative
gamma has a completely opposite flow. The reactive phase is associated with a significant
decrease in relative gamma, which significantly decreases during the recovery phase [43, 44].

Within this work, numerous articles discussing EEG stress stage classification were stud-
ied. I would like to mention the results of a few in the following lines. Varying stress stages
were classified using a model based on the Support Vector Machine algorithm. The best
results were obtained by combining fractal dimensions and statistical features. The au-
thors obtained an average accuracy of 67.07 % with the stress divided into four stages.
An accuracy of 75.22 % was obtained with three stress stages and an accuracy of 85.71 %
with the simple distribution of the dataset to stressed and non-stressed stages [30].
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Different researchers published stress stage classifiers using more sophisticated algo-
rithms like Recurrent Neural Networks and Random Forests with only a single feature
extracted – the Power Spectral Density. The RNN provided better classification accuracy
of value 87 % for arousal and 83 % for valence. For comparison, the Random Forest model
classified arousal with an accuracy of 83 % and valence with an accuracy of 75 % [34].

A wide range of research is focused on stress stage recognition using a multilayer Long
Short-Term Memory (LSTM) classifier. A two-layer LSTM with extracted Power Spectral
Density achieved a classification with 95 % accuracy [12].
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Chapter 3

Proposed Methodology

This chapter deals with the main components of the proposed learning pipeline, which was
designed to recognize stress stages from EEG data. The first step is to obtain suitable data
for the training and testing of the deep learning model. For this thesis, a publicly available
dataset was chosen. The subsequent step is pre-processing the data. In the context of my
implementation, this step was omitted since the used dataset contains both raw and already
pre-processed data. Thus, the dataset is ready for extraction of the relevant features.
The acquired features are finally loaded into the model and the training process can start.
The proposed steps are described in this chapter in more detail.

3.1 SAM40 Dataset
The SAM40 dataset provides EEG recordings of subjects experiencing varying stages
of short-term induced stress. The recordings were made with forty subjects, with a mean
age of 21.5 years, specifically fourteen females and twenty-six males. None of the subjects
had health issues. Each subject had to participate in a series of recordings, which consisted
of recordings of four different tasks repeated in three trials. In summary, 480 trials were
performed. Subjects have performed three different cognitive tasks – the Stroop color-word
test, the mirror image-recognition task, and the arithmetic problem-solving task. Each
of them has also participated in relaxation trials. The state of relaxation was achieved
by listening to relaxing music. The time duration of each trial was 25 s. Each trial was
followed by the subjects’ evaluation of the experienced stress stage on a scale of 1–10,
where one is equivalent to the minimal amount of experienced stress and then is equivalent
to the maximal amount of experienced stress [26].

The utilized EEG set is the Emotiv Epoc Flex gel kit, which contains 32 channels named
and located according to the international 1020 system. CMS and DRL electrodes were used
as a reference. The internal sampling frequency of the system is 1024 Hz. The sampling
frequency of the obtained data is 128 Hz [26].

The dataset contains raw data and also a preprocessed version. According to the au-
thors, first was applied a band-pass filter in the range of 0.5–45 Hz. Other artifacts,
such as eye movements, muscular activity, etc., were removed using the combination
of the Savitzky-Golay filter and wavelet thresholding [26].
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Figure 3.1: Electrode layout employed in recordings [26].

3.2 Data Preparation
Before feature extraction, the data preparation steps should be applied depending
on the data and the model. These steps will include data segmentation, interpolation,
and derivation.

3.2.1 Data Segmentation

fussy The first step is data segmentation, also known as windowing. This step comprises
splitting the time series data into overlapping or non-overlapping segments or windows.
Data segmentation can increase the model’s ability to learn from the data. It maintains
the temporal structure of the data and, at the same time, provides contextual informa-
tion about the sequence of data points. Windowing can also simplify data manipulation.
In the case of this thesis, the original data will be segmented into non-overlapping time
windows.

3.2.2 Interpolation

The dataset will be interpolated to achieve a more accurate reconstruction of the original
signal, which can increase the model’s ability to understand the underlying patterns.
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3.2.3 Derivation

The derivation, which will be applied to the interpolated signal achieves quantification
of the changes in the signal. Multiple-order derivations will be calculated. The best fitting
order, based on the experiments will be used in the final model.

The dataset prepared in this way is finally ready for the extraction of relevant features,
which is described in the following section.

3.3 Feature Extraction
Extracting the relevant features is one of the crucial steps in achieving a well-trained model
with good classification results. Extracted features are the input that the learning model
learns from during the training process. I propose utilizing the following features:

3.3.1 Time-Domain Features

• statistical features – mean, variance, standard deviation, peak-to-peak amplitude,
skewness, kurtosis

• zero crossing rate

• entropies – approximate entropy, sampling entropy, spectral entropy, and singular
value decomposition entropy (SVD entropy)

• Hurst exponent

• Hjorth parameters

3.3.2 Frequency-Domain Features

• power spectral density (PSD)

• band energy

3.3.3 Connectivity Analysis

• phase locking value (PLV)

The above-mentioned features were described in the literature, where they achieved
good results in similar classification tasks and, therefore, will be used in models described
in this thesis [32].

3.4 Classification
This section describes the division of the dataset into classes evaluating the stress stages
experienced by the subjects and proposed classification models.
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3.4.1 Stress Stages Classes

First, the way of stress stage classification has to be decided. The dataset provides trials
with labels in the range from one to ten, where one is the minimum value of stress and ten
is the maximum value of stress. This thesis deals with the classification of stress into three
classes. The original labels will be distributed into the following classes describing the sub-
ject’s experiences – not stressed, moderate stressed, and very stressed. The not stressed
stage represents the original labels in the range from one to two. The moderate stressed
stage includes the original labels in the range from three to five and finally, the very stressed
stage symbolizes the original labels in the range from six to ten.

3.4.2 Classification Models

Classification task experiments will be performed with two different learning algorithms
to create the optimal classifier of the stress stage. First, the Support Vector Machine
(SVM), a machine learning algorithm, will be employed. The second algorithm utilized will
be the Long Short-Term Memory (LSTM), a deep learning algorithm. Different projects
that used these algorithms for stress stage classification tasks achieved accurate results.
More detailed information about the results of these projects is provided in section 2.5.
In both cases, experiments with varying models will be performed and compared.

SVM Models

• SVM with sigmoid kernel

• SVM with RBF kernel

• SVM with polynomial kernel

• SVM with linear kernel

Two-Layer and Three-Layer LSTM Model

Simple two-layer LSTM and three-layer LSTM models are proposed. Both LSTM layers
contain 40 neurons. The last LSTM layer of both of these models is followed by a dropout
layer with a dropout rate of 0.3. In both cases, the dropout is followed by a linear layer.
The last layer is the softmax layer, which outputs the probability of each class of the clas-
sifier. Both models are inspired by studied literature [51].
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Figure 3.2: The illustration of the model with a two-layer LSTM on the left and then
with a three-layer LSTM on the right.

Advanced LSTM Model

The third proposed LSTM model is more complex than the previous two. Because of these
reasons, it is called the advanced LSTM model. The base of this model is almost the same
as in the previous two-layer LSTM – two layers of LSTM with 40 neurons followed by
the dropout layer with a dropout rate of 0.5. The next layer is the sigmoid activation
function layer with 20 neurons, again followed by a dropout layer with a dropout rate
of 0.5. The following layer is the rectifier activation function (ReLU). The ReLU can
be very helpful when dealing with the vanishing gradient problem [62]. The last layer
is the same as in the previous two models – a softmax layer. This model is inspired by
a studied literature [60].
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Figure 3.3: The illustration of the more advanced model of the LSTM.

3.5 Validation
This section describes the employed methods of validation. First, the dataset will be split
into a training set and a testing set. The training set will be created as a randomly chosen
series of data formed by 80 % of the original dataset. The other 20 % will be later used
as the testing dataset. Another validation approach that will be used is the Stratified K-Fold
Cross-Validation. The purpose is to avoid potential problems with the underrepresentation
of any of the classes. The training dataset will be split into a number of folds. A new
model will be trained on each fold. The best of these models will be selected and used
for the final testing on the separated 20 % of the dataset, the testing set. A concise
illustration of the validation process is provided in figure 3.4.
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Figure 3.4: The scheme illustrating the validation process proposed in this thesis [11].
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Chapter 4

Implementation

This chapter focuses on further describing the implementation details. The solution was
created using Python programming language, which provides powerful libraries specialized
in implementing machine learning and deep learning algorithms, processing EEG data,
and other useful functionalities important for this thesis. It is necessary to mention the uti-
lized libraries and further describe the philosophy of this solution. The object-oriented
programming paradigm was employed. The implementation is based on the methodology,
that was proposed in chapter 3.

4.1 Data Augmentation
During the model training experiments, the SAM40 dataset turned out to be too small
to efficiently train on such complex data as EEG recordings. Further information about
the dataset is in section 3.1. The training process of deep learning models requires large
amounts of data. Therefore, it was decided to utilize data augmentation to achieve more
accurate results. This approach has proven to be successful. Three different methods
of data augmentation and a combination of them were applied to the dataset SAM40.

The first set of augmented data was achieved by shifting the original signals. Data from
all trials were separately shifted, either to the right or left, depending on the randomly
generated integer in the range of -50 to +50. The range of values used in randomization
was derived by experiments. The second set of augmented data was performed by adding
a Gaussian noise to the original signal. This method creates random samples from a Gaus-
sian distribution according to set parameters. The generated Gaussian noise had a mean
distribution of 0 and a standard deviation of 0.05. The third data augmentation was ac-
complished by a combination of the two previous techniques. The fourth and final set
of augmented data was created by scaling the original signal. The random scaling transfor-
mation was applied with a random scale factor between 0.8 and 1.2 [37].

In this manner, the original dataset with 480 trials was expanded to 2400 trials.

4.2 Object-Oriented Design
This section describes the object-oriented design utilized in the implementation. The object-
oriented paradigm was used to reach an easier orientation in the code and troubleshooting.
Another advantage is the possibility of comfortable editing and flexible replacement, re-
moval, or addition of modules if needed.
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This approach allows easy use of varying datasets and comfortable experimentation
with data preparation. Many different feature extractions can be used, and additional
ones can be implemented easily. The underlying learning algorithm can be easily swapped
for a new one.

Figure 4.1: Class diagram.

4.3 Data Loading
The files are loaded one by one from the original .mat format into the array using the glob()
function from glob library and loadmat() function from scipy library. The array pre-
serves the dimension of the input data to maintain the information about the time window
and the position of the EEG channel. According to the name of the .mat file, the corre-
sponding label is found in the .xls file with labels and assigned to one of the three classes
representing the stress stage. The new label is stored in the label array. The .xls file
is processed using the read_excel() function from pandas library.

4.4 Data Preparation
Data segmentation is the first step in preparing the dataset. The time duration of the single
time window is 1 s. According to the literature, using a window size shorter than 0.5 s can
corrupt the data patterns and degrade the performance of the model [2]. At the same time,
we want to keep the number relatively low to get as much training data as possible.
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Then, the data is interpolated. Since the EEG data is non-periodic, the B-spline,
which is the non-periodic interpolation function, is used to achieve the desired results. Uti-
lizing the interpolation, the sampling rate is increased to 300. Interpolation is implemented
using the make_interp_spline() function from interpolate module of scipy library.

The last step of data preparation is calculating the derivatives. Derivative of any order
can be computed. The best results were obtained with the first and second-order derivatives.
The second-order derivative is, therefore, incorporated in the implementation of the final
model. The derivatives are implemented using the gradient() function from numpy library.

4.5 Feature Extraction
Extraction of all proposed features in chapter 3 is implemented. For these pur-
poses is utilized the FeatureExtractor class from the feature_extraction module
of the mne_features library. This class provides a very elegant solution for extract-
ing features using the build-in mne_features module’s functions without a large num-
ber of repetitive code. The features to be extracted are specified as the input parameter
for the initialization of this class. This class expects the input parameter to be a list
with names of mne_features build-in functions designed for feature extraction. For sim-
plicity, an enumerator with the names of these functions was created. Since the library
is focused on the feature extraction of the EEG data, the dimension of the data array,
which maintains information about the EEG channel position and time window of the data,
does not have to be changed.

4.6 Classification
This section describes the necessary steps to load the dataset into the model, implement
the classifiers, and validate the model.

In cases of both SVM and LSTM classifiers, the same validation techniques are ap-
plied. The first step is to split the dataset into the training and the testing set using
the train_test_split() function from sklearn.model_selection module. The train-
ing set matches 80 % of the dataset. The remaining 20 % corresponds to the testing set.
The Stratified K-fold Cross-Validation technique (3.5) is applied to the training dataset.
The training dataset is split into 5 different folds. Varying numbers of folds were tried in ex-
periments, including the very common 10 folds in the literature, but the best results were
achieved with 5 folds. The effective number of folds corresponds with the size of the dataset.
The stratified k-fold cross-validation was implemented using the StratifiedKFold() func-
tion from the sklearn.model_selection module.

4.6.1 Support Vector Machine (SVM)

The SVM is the first model implemented in this solution (2.4.5). All models mentioned
in the proposed methodology chapter 3 were implemented and tested in numerous experi-
ments. Varying settings of the hyperparameters were applied and tested. The implementa-
tion of the model is realized using the SVM() function from sklearn.SVM module. The tun-
ing of the model’s hyperparameters is supported utilizing the GridSearchCV() function
from sklearn.model_selection module. This function provides a search for the optimal
hyperparameter setting of the specified model (SVM). The specific parameter grid contain-
ing the dictionary of hyperparameters to be applied has to be the input of this function
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and delivers an option to easily apply a whole range of hyperparameters. The optimization
is achieved by cross-validation grid-search over the parameter grid, specifically the stratified
k-fold cross-validation in the case of this solution. The hyperparameters, that are employed
in the SVM are the kernel function and the c parameter. The c parameter is balancing
the trade-off between the low training error and the potential of enabled misclassification
2.4.5. The best combination is applied in the final model.

4.6.2 Long Short-Term Memory (LSTM)

The layers applied in the LSTM model are further described in the proposed methodology
chapter 3.4.2. The LSTM model layers are implemented using the nn module from the torch
library, so the first step to achieving a classification model is to transform the input fea-
tures into data type, which is required by this library – tensors. Torch library provides
a whole range of functions that simplify the work with the data, such as TensorDataset,
which transforms the data into the tensor dataset format, and the DataLoader function,
which provides the easy loading of the dataset into the model.

The optimization algorithm used for the optimization of the weights of the LSTM
is the Adam optimizer from the torch.optim module. Other optimization algorithms were
tested in experiments, but the models using the Adam optimizer achieved better results.
Adam optimizer is computationally efficient and, at the same time, has low memory require-
ments. It minimizes the oscillations during gradient descent when approaching the global
minimum, and the step size is large enough to pass the local minimum [25].

The learning rate hyperparameter is tuned using the ExponentialLR() function
from the torch.optim.lr_scheduler module. This function provides a learning rate sched-
uler that supplies the exponential decrease of the learning rate value with every epoch [16].

The model’s performance is quantified using the torch.nn module CrossEntropyLoss()
function. This function measures the model’s performance based on the probabilities output
by the model and is suitable for multi-class classification [10].

4.7 Displaying the Results
The progress of the training process is monitored by printing the loss value. The classifica-
tion ability of the model is evaluated using the classification_report function, which cal-
culates the validation metrics, like accuracy, precision, f-1 score, etc., and with the con-
fusion_matrix function, which prints the confusion matrix. Both functions are from
the sklearn.metrics module. The matplotlib.pyplot module is employed to plot
the graphs. This solution also provides functionality that generates pictures of the topomaps
illustrating the changes of the specified extracted feature, e.g., PSD, of a specified brainwave
frequency band and a time. This functionality is implemented with the plot_topomap func-
tion from mne.viz module. Finally, this implementation provides a functionality, that cre-
ates a GIF from saved topomaps of a specified trial. For these purposes, the imageio library
is used.
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Chapter 5

Results

This chapter describes the results achieved with the proposed and subsequently imple-
mented classifier models. The achievements are compared with the results presented in the sci-
entific literature.

Regardless of the stress response phase, stress typically manifests in a decrease of alpha
power, and an increase of beta power, both especially in the frontal lobe. Stress also
manifests itself in other measures further described in 2.5. Figure 5.2 illustrates the alpha
band power spectrum from the frontal lobe EEG channels of subject n. 20 during the 1.
trial of the arithmetic task. This trial is classified as very stressed class. For comparison,
the figure 5.1 depicts the alpha band power spectrum from the frontal lobe EEG channels
of subject n. 1 during the 1. trial of the relaxation, which is classified as not stressed class.
A decrease in the alpha power when experiencing stress in comparison with relaxation
is evident just at a glance on plots of some EEG channels, e.g., Fp1 and Fp2 (both have
a green color of the line varying in shade).

Figure 5.1: The alpha band power spectrum from the frontal lobe EEG channels of the sub-
ject in a not stressed state – specifically subject n. 1, the 1. of the relaxation.

For a better illustration, the topomaps with the PSD of 3 time windows depicting
the corresponding trial are supplied in figures 5.3, 5.4, and 5.5. A decrease in alpha power
in time can be observed in several channels of the frontal and parietal lobes. It is important
to mention that this progression does not have to be observed in all time windows because
an electroencephalogram consists of highly dynamic data due to the other ongoing brain
processes and has to be judged more likely in its entirety.
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Figure 5.2: The alpha band power spectrum from the frontal lobe EEG channels of the sub-
ject in a very stressed state – specifically subject n. 20, the 1. trial of the arithmetic task.

Figure 5.3: Topomap
with the PSD of the 1.
time window (0 – 1 s)
of the arithmetic trial,
which is classified as a very
stressed.

Figure 5.4: Topomap
with the PSD of the 2.
time window (1 – 2 s)
of the arithmetic trial,
which is classified as a very
stressed.

Figure 5.5: Topomap
with the PSD of the 6.
time window (5 – 6 s)
of the arithmetic trial,
which is classified as a very
stressed.

A detailed study of stress phases in the EEG data is, however, not the purpose of this the-
sis, and therefore is not further discussed.

The following lines focus on the evaluation and the summary of the results achieved
with implemented classification models. All models proposed in chapter 3 were created.
A description of the implementation details is provided in chapter 4.

Finding a suitable setting for data preparation, training models with a number of ex-
tracted features one by one and in groups, and training varying classification models
with a whole range of hyperparameters that have to be tuned is quite a time-consuming pro-
cess. For these reasons, only certain combinations of input parameters were tested as a part
of the solution.

The first achieved results were not satisfactory. Even when using the parameter grid
for the tuning of the SVM hyperparameters, the best accuracy achieved was 41 %. Valida-
tion metrics are described in table 5.1 in more detail.
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classes precision (%) recall (%) f1-score (%) support (-)
not stressed 0.42 0.56 0.48 41
moderate stressed 0.36 0.36 0.36 36
very stressed 0.60 0.16 0.25 19
accuracy 0.41 96
macro avg 0.46 0.36 0.36 96
weighted avg 0.43 0.41 0.39 96

Table 5.1: Validation metrics achieved with the SVM model with the original dataset.
Extracted feature loaded into the model was PSD.

The results acquired with the LSTM models were just as problematic. As described
in the table 5.2, the best achieved accuracy was 44 %.

classes precision (%) recall (%) f1-score (%) support (-)
not stressed 0.39 0.41 0.40 32
moderate stressed 0.45 0.60 0.51 35
very stressed 0.50 0.28 0.36 29
accuracy 0.44 96
macro avg 0.45 0.43 0.42 96
weighted avg 0.45 0.44 0.43 96

Table 5.2: Validation metrics achieved with the two-layer LSTM model with 40 hidden
neurons using Hjorth parameters extracted from the original dataset as an input.

One of many problems these models’ had was the uneven distribution of classes in train-
ing and testing datasets and probably the insufficient quantity of training data. Even after
testing many combinations of hyperparameters, extracted features, ways of data prepara-
tion, and implementation of the stratified k-fold cross-validation, which solves the problem
of uneven class distribution, the results did not improve. That is when data augmenta-
tion, which was mentioned in the literature as a helpful solution when dealing with small
datasets, came into consideration. Data augmentation finally turned out to be the right
solution.

Experiments with varying features extracted from the original dataset revealed the best
results by using Hjorth parameters, power spectral density (PSD), and phase-locking value
(PLV). Therefore, further experiments with the augmented dataset were performed only
with these features.

Despite high expectations, the advanced LSTM model turned out to be the worst
of the proposed models. This model was inspired by the one introduced in the litera-
ture, where authors classify stress into four classes and achieved an accuracy of 93.27 %.
The best result achieved with this model within this solution is described in table 5.3.
There can be several reasons why this model was unsuccessful, starting with the excessive
complexity of the model in view of the dataset and the inappropriate setting of hyperparam-
eters, ending with issues caused by unsuitable combinations of layers according to different
studied literature. Another reason why the results of this model might be worse is because
of the less precise process of the hyperparameter tuning, which was not performed due
to time constraints.
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classes precision (%) recall (%) f1-score (%) support (-)
not stressed 0.52 0.59 0.55 152
moderate stressed 0.56 0.53 0.55 187
very stressed 0.52 0.49 0.50 141
accuracy 0.54 480
macro avg 0.53 0.53 0.53 480
weighted avg 0.54 0.54 0.53 480

Table 5.3: Validation metrics achieved with the advanced LSTM model using the Hjorth
parameters extracted from the augmented dataset.

Among the two-layer LSTM models, the best results were achieved with the two-layer
LSTM model with 40 hidden neurons. The accuracy earned by testing this model is 67 %.
Other validation metrics are depicted in table 5.5. The phase locking value (PLV) was
extracted from the second-order derivative values of the augmented dataset. The setting
of the LSTM hyperparameters is described in table 5.4. Information about incorporated
layers is in more detail described in section 3.4.2.

hyperparameter value
batch size 50
number of epochs 200
learning rate 0.0007
learning rate decay 0.999

Table 5.4: Setting of two-layer LSTM hyperparameters with the best results.

classes precision (%) recall (%) f1-score (%) support (-)
not stressed 0.67 0.69 0.68 159
moderate stressed 0.69 0.72 0.70 203
very stressed 0.62 0.55 0.58 118
accuracy 0.67 480
macro avg 0.66 0.65 0.66 480
weighted avg 0.67 0.67 0.67 480

Table 5.5: Validation metrics achieved with the best version of the two-layer LSTM model
with 40 hidden neurons in each layer. Phase locking value was extracted feature in this
model.

Extracting the phase-locking value (PLV) from the second-order derivative of the aug-
mented dataset achieved the best results among the three-layer LSTM models. The vali-
dation metrics achieved with the testing dataset are summarized in the table 5.7. Further
description of the model is provided in section 3.4.2. The setting of hyperparameters is de-
picted in table 5.6.

It was already mentioned before that this implementation uses a parameter grid as an in-
put with the hyperparameters for the SVM model. A more detailed description of the pa-
rameter grid and the GridSearchCV() function is in section 4.6.1. The best results of SVM
models were achieved with the parameter grid containing the list of c parameters and the list
of kernel functions set as in the following code snippet. The parameter grid is the illustrated
Python dictionary called svm_parameters.
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hyperparameter value
batch size 50
number of epochs 300
learning rate 0.0007
learning rate decay 0.999

Table 5.6: Setting of three-layer LSTM hyperparameters that achieved the best results.

classes precision (%) recall (%) f1-score (%) support (-)
not stressed 0.72 0.69 0.70 163
moderate stressed 0.72 0.75 0.74 179
very stressed 0.65 0.64 0.65 138
accuracy 0.70 480
macro avg 0.70 0.70 0.70 480
weighted avg 0.70 0.70 0.70 480

Table 5.7: Validation metrics achieved with the best version of the three-layer LSTM model
with 40 hidden neurons in each layer. The extracted feature in this model was the phase-
locking value (PSD).

svm_parameters = {
’C’ : [0.1,1,10,100,1000],
’kernel’ : [’sigmoid’, ’linear’, ’poly’, ’rbf’]

}

Next, Hjorth parameters were extracted from the first-order derivative values of the aug-
mented dataset. SVM model with this setting achieved an accuracy of 90 %, which is the best
classification result gained in this thesis. Other validation metrics are depicted in table 5.8.

classes precision (%) recall (%) f1-score (%) support (-)
not stressed 0.95 0.87 0.91 187
moderate stressed 0.82 0.96 0.89 171
very stressed 0.96 0.85 0.90 122
accuracy 0.90 480
macro avg 0.91 0.90 0.90 480
weighted avg 0.91 0.90 0.90 480

Table 5.8: Validation metrics achieved with the best version of the SVM model.

5.1 Summary
This section summarizes the results of the created classifiers and discusses them in compar-
ison with those found in the literature. The table 5.9 recapitulates the acquired validation
metrics of the proposed and implemented models in this thesis.

Research done as a part of this thesis found two articles dealing with the same topic,
using similar learning algorithms and the SAM40 dataset. The first of these articles de-
scribes a classifier of two stress stages, a stressed and not stressed class. This solution
is based on learning multi-variate weighted visibility graphs with Graph Signal Processing
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model accuracy (%) precision (%) recall (%) f1-score (%)
SVM 0.90 0.91 0.90 0.90
two-layer LSTM 0.67 0.66 0.65 0.66
three-layer LSTM 0.70 0.70 0.70 0.70
advanced LSTM 0.54 0.53 0.53 0.53

Table 5.9: Summary of the validation metrics achieved with implemented models – accuracy,
macro average precision, macro average recall, and macro average f1-score.

(GSP) techniques as feature extraction and subsequent classification using SVM. The results
achieved with this approach are comparable with those achieved in this thesis, but it is im-
portant to highlight that it was a classifier of two classes, not three. The accuracy that was
achieved was 93.38 % [42].

The second article represents a complex solution using the LSTM. First, the Discrete
Wavelet Transform and Particle Swarm Optimization (DWT-PSO) based pre-processing
was applied. The classification is based on the hybrid deep learning model using Grid Search
Hyperparameter Optimization (GSHPO) based stacked Bidirectional LSTM and LSTM.
According to the studied article, the accuracy of this binary classifier is remarkably 98.07 %.
The model described in this solution provides better results and, therefore, might be a bet-
ter solution for this classification task, but it is still only a binary classifier [31].

In comparison with the literature, the SVM model created in this thesis provides good
ternary classification results with an accuracy of 90 %. The three-layer LSTM model
provides relatively good results with an accuracy of 70 %, which leaves space for future
work on tuning the hyperparameters.
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Chapter 6

Conclusion

This thesis aimed to create a machine learning classifier that detects a patient’s stage
of stress based on EEG recordings. Given the increase of mental health issues in the pop-
ulation observed in recent years, the topic of this thesis is very relevant. It is proven
that chronic stress can significantly worsen the state of patients with mental health issues
and can also be a triggering factor for depression, anxiety, or burnout syndrome. There-
fore, early detection of chronic stress among patients might be very beneficial. Electroen-
cephalography (EEG), in connection with machine learning and deep learning algorithms,
provides a cheap, non-invasive, and effective solution to this problem.

This thesis explored the basics of EEG and outlined the architecture of the human brain
on a level relevant to this study. Furthermore, it studied the mechanism of stress and, above
all, the analysis of EEG features, specifically feature extraction, selection, and machine
learning and deep learning algorithms used for classification. An overview of the current
state of research was also provided.

This thesis successfully implemented and tested various ternary classification models us-
ing Support Vector Machine (SVM) – a machine learning algorithm, and Long Short-Term
Memory (LSTM) – a deep learning algorithm. The best results were achieved through
the application of data augmentation techniques and extraction of Hjorth parameters
and of a phase locking value (PLV). An accuracy of 90 % was achieved using the SVM
model. The advantage of this model is a ternary classification. In comparison, a previ-
ously published article achieved comparable results but only with a binary classifier [42].
The best LSTM model implemented within this thesis was a three-layer LSTM, which
achieved a ternary classification accuracy of 70 %. This result leaves potential for further
improvements by tuning the hyperparameters, or modifying the architecture of the model’s
layers themselves.

39



Bibliography

[1] Accuracy vs. precision vs. recall in machine learning: what’s the difference? [online].
Evidently AI Team [cit. 2024-4-3]. Available at:
https://www.evidentlyai.com/classification-metrics/accuracy-precision-recall.

[2] Atyabi, A. and Powers, D. M. W. The impact of segmentation and replication on
non-overlapping windows: An EEG study. In: 2012 IEEE International Conference
on Information Science and Technology. 2012, p. 668–674. DOI:
10.1109/ICIST.2012.6221730.

[3] Bablani, A., Edla, D. R. and Dodia, S. Classification of EEG Data using
k-Nearest Neighbor approach for Concealed Information Test. Procedia Computer
Science. 2018, vol. 143, p. 242–249. DOI: 10.1016/j.procs.2018.10.392. ISSN
1877-0509. 8th International Conference on Advances in Computing &
Communications (ICACC-2018). Available at:
https://www.sciencedirect.com/science/article/pii/S1877050918320891.

[4] Baheti, P. A Comprehensive Guide to Convolutional Neural Networks [online]. June
2021 [cit. 2024-4-10]. Available at:
https://www.v7labs.com/blog/convolutional-neural-networks-guide.

[5] Berretz, G., Packheiser, J., Wolf, O. T. and Ocklenburg, S. Acute stress
increases left hemispheric activity measured via changes in frontal alpha
asymmetries. IScience. 2022, vol. 25, no. 2, p. 103841. DOI:
https://doi.org/10.1016/j.isci.2022.103841. ISSN 2589-0042. Available at:
https://www.sciencedirect.com/science/article/pii/S2589004222001110.

[6] Brain Anatomy and How the Brain Works [online]. Johns Hopkins Medicine, Jul
2021 [cit. 2023-11-15]. Available at: https:
//www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-of-the-brain.

[7] Buzzell, G. A., Niu, Y., Aviyente, S. and Bernat, E. A practical introduction to
EEG Time-Frequency Principal Components Analysis (TF-PCA). Developmental
Cognitive Neuroscience. 2022, vol. 55, p. 101114. DOI: 10.1016/j.dcn.2022.101114.
ISSN 1878-9293. Available at:
https://www.sciencedirect.com/science/article/pii/S1878929322000573.

[8] Cechetto, D. F. and Topolovec, J. C. Cerebral Cortex. In: Ramachandran,
V., ed. Encyclopedia of the Human Brain. New York: Academic Press, 2002,
p. 663–679. DOI: https://doi.org/10.1016/B0-12-227210-2/00087-X. ISBN
978-0-12-227210-3. Available at:
https://www.sciencedirect.com/science/article/pii/B012227210200087X.

40

https://www.evidentlyai.com/classification-metrics/accuracy-precision-recall
https://www.sciencedirect.com/science/article/pii/S1877050918320891
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.sciencedirect.com/science/article/pii/S2589004222001110
https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-of-the-brain
https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-of-the-brain
https://www.sciencedirect.com/science/article/pii/S1878929322000573
https://www.sciencedirect.com/science/article/pii/B012227210200087X


[9] Chronic Stress [online]. Yale Medicine, august 2022 [cit. 2023-11-15]. Available at:
https://www.yalemedicine.org/conditions/stress-disorder.

[10] Contributors, P. CrossEntropyLoss [online]. 2023 [cit. 2024-5-1]. Available at:
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html.

[11] developers, S. learn. Cross-validation: evaluating estimator performance [online].
[cit. 2024-4-26]. Available at:
https://scikit-learn.org/stable/modules/cross_validation.html.

[12] Dhake, D., Gaikwad, K., Gunjal, S. and Walunj, S. LSTM Algorithm for the
Detection of Mental Stress in EEG. 2023, p. 1–6. DOI:
10.1109/CONIT59222.2023.10205636.

[13] Gaikwad, P. and Paithane, A. N. Novel approach for stress recognition using EEG
signal by SVM classifier. 2017, p. 967–971. DOI: 10.1109/ICCMC.2017.8282611.

[14] Garcia, B., Martinez Rodrigo, A., Zangroniz, R., Pastor García, J. M.
and Alcaraz, R. Application of Entropy-Based Metrics to Identify Emotional
Distress from Electroencephalographic Recordings. Entropy. june 2016, vol. 18,
p. 221. DOI: 10.3390/e18060221.

[15] García Bueno, B., Caso, J. R. and Leza, J. C. Stress as a neuroinflammatory
condition in brain: Damaging and protective mechanisms. Neuroscience &
Biobehavioral Reviews. 2008, vol. 32, no. 6, p. 1136–1151. DOI:
10.1016/j.neubiorev.2008.04.001.

[16] GeeksforGeeks. Cross Validation in Machine Learning [online]. December 2023
[cit. 2024-4-3]. Available at:
https://www.geeksforgeeks.org/cross-validation-machine-learning/.

[17] GeeksforGeeks. Deep Learning | Introduction to Long Short Term Memory
[online]. December 2023 [cit. 2024-4-2]. Available at: https:
//www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/.

[18] GeeksforGeeks. F1 Score in Machine Learning [online]. December 2023 [cit.
2024-4-3]. Available at:
https://www.geeksforgeeks.org/f1-score-in-machine-learning/.

[19] GeeksforGeeks. Impact of learning rate on a model [online]. July 2023 [cit.
2024-5-1]. Available at:
https://www.geeksforgeeks.org/impact-of-learning-rate-on-a-model/.

[20] GeeksforGeeks. Introduction to Recurrent Neural Network [online]. March 2023
[cit. 2024-4-2]. Available at:
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/.

[21] GeeksforGeeks. Support Vector Machine (SVM) Algorithm [online]. June 2023
[cit. 2024-4-10]. Available at:
https://www.geeksforgeeks.org/support-vector-machine-algorithm/.

41

https://www.yalemedicine.org/conditions/stress-disorder
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://www.geeksforgeeks.org/cross-validation-machine-learning/
https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/
https://www.geeksforgeeks.org/deep-learning-introduction-to-long-short-term-memory/
https://www.geeksforgeeks.org/f1-score-in-machine-learning/
https://www.geeksforgeeks.org/impact-of-learning-rate-on-a-model/
https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/support-vector-machine-algorithm/


[22] GeeksforGeeks. Feature Selection Techniques in Machine Learning [online]. March
2024 [cit. 2023-12-10]. Available at: https:
//www.geeksforgeeks.org/feature-selection-techniques-in-machine-learning/.

[23] GeeksforGeeks. Introduction to Convolution Neural Network [online]. March 2024
[cit. 2024-4-10]. Available at:
https://www.geeksforgeeks.org/introduction-convolution-neural-network/.

[24] GeeksforGeeks. Random Forest Algorithm in Machine Learning [online]. February
2024 [cit. 2024-3-25]. Available at:
https://www.geeksforgeeks.org/random-forest-algorithm-in-machine-learning/.

[25] GeeksforGeeks. What is Adam Optimizer? [online]. March 2024 [cit. 2024-4-29].
Available at: https://www.geeksforgeeks.org/adam-optimizer/.

[26] Ghosh, R., Deb, N., Sengupta, K., Phukan, A., Choudhury, N. et al. SAM 40:
Dataset of 40 subject EEG recordings to monitor the induced-stress while performing
Stroop color-word test, arithmetic task, and mirror image recognition task. Data in
Brief. 2022, vol. 40, p. 107772. DOI: 10.1016/j.dib.2021.107772. ISSN 2352-3409.
Available at:
https://www.sciencedirect.com/science/article/pii/S2352340921010465.

[27] Glickstein, M. What does the cerebellum really do? Current Biology. 2007,
vol. 17, no. 19, p. R824–R827. DOI: https://doi.org/10.1016/j.cub.2007.08.009. ISSN
0960-9822. Available at:
https://www.sciencedirect.com/science/article/pii/S096098220701785X.

[28] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A. et al. Recent advances in
convolutional neural networks. Pattern Recognition. 2018, vol. 77, p. 354–377. DOI:
10.1016/j.patcog.2017.10.013. ISSN 0031-3203. Available at:
https://www.sciencedirect.com/science/article/pii/S0031320317304120.

[29] Holm, A., Lukander, K., Korpela, J., Sallinen, M. and Müller, K. Estimating
Brain Load from the EEG. TheScientificWorldJournal. february 2009, vol. 9,
p. 639–51. DOI: 10.1100/tsw.2009.83.

[30] Hou, X., Liu, Y., Sourina, O., Tan, Y. R. E., Wang, L. et al. EEG Based Stress
Monitoring. 2015, p. 3110–3115. DOI: 10.1109/SMC.2015.540.

[31] Jadhav, A., Malviya, L., Shandilya, S. K. and Mal, S. Human Stress Detection
from SWCT EEG Data Using Optimised Stacked Deep Learning Model. In:. June
2023, p. 183–196. DOI: 10.1007/978-981-99-3478-2_17. ISBN 978-981-99-3477-5.

[32] Katmah, R., Al Shargie, F., Tariq, U., Babiloni, F., Al Mughairbi, F. et al.
A Review on Mental Stress Assessment Methods Using EEG Signals. Sensors. july
2021, vol. 21. DOI: 10.20944/preprints202107.0255.v1.

[33] Ketkar, N. and Moolayil, J. Introduction to Machine Learning and Deep
Learning. In: Deep Learning with Python. Berkeley, CA: Apress, 2021, chap. 1,
p. 1–25. DOI: 10.1007/978-1-4842-5364-9_1. Available at:
https://doi.org/10.1007/978-1-4842-5364-9_1.

42

https://www.geeksforgeeks.org/feature-selection-techniques-in-machine-learning/
https://www.geeksforgeeks.org/feature-selection-techniques-in-machine-learning/
https://www.geeksforgeeks.org/introduction-convolution-neural-network/
https://www.geeksforgeeks.org/random-forest-algorithm-in-machine-learning/
https://www.geeksforgeeks.org/adam-optimizer/
https://www.sciencedirect.com/science/article/pii/S2352340921010465
https://www.sciencedirect.com/science/article/pii/S096098220701785X
https://www.sciencedirect.com/science/article/pii/S0031320317304120
https://doi.org/10.1007/978-1-4842-5364-9_1


[34] Khan, M. R. and Ahmad, M. Mental Stress Detection from EEG Signals Using
Comparative Analysis of Random Forest and Recurrent Neural Network. 2024,
p. 1–6. DOI: 10.1109/iCACCESS61735.2024.10499496.

[35] Kortink, E., Weeda, W., Crowley, M., Moor, B. and Molen, M. van der.
Community structure analysis of rejection sensitive personality profiles: A common
neural response to social evaluative threat? Cognitive Affective & Behavioral
Neuroscience. april 2018, vol. 18. DOI: 10.3758/s13415-018-0589-1.

[36] Lang, E., Tomé, A., Keck, I., Gorriz, J. and Puntonet, C. Brain Connectivity
Analysis: A Short Survey. Computational intelligence and neuroscience. october
2012, vol. 2012, p. 412512. DOI: 10.1155/2012/412512.

[37] Lashgari, E., Liang, D. and Maoz, U. Data Augmentation for
Deep-Learning-Based Electroencephalography. Journal of Neuroscience Methods.
july 2020, vol. 346, p. 108885. DOI: 10.1016/j.jneumeth.2020.108885.

[38] Lobes of the brain [online]. The University of Queensland Australia, Jul 2021 [cit.
2023-11-17]. Available at: https://qbi.uq.edu.au/brain/brain-anatomy/lobes-brain.

[39] Malviya, L., Mal, S. and Lalwani, P. EEG Data Analysis for Stress Detection.
2021, p. 148–152. DOI: 10.1109/CSNT51715.2021.9509713.

[40] Manlin, Y., Lei, Y., Li, P., Ye, Q., Liu, Y. et al. Shared Sensitivity to Physical
Pain and Social Evaluation. The Journal of Pain. november 2019, vol. 21. DOI:
10.1016/j.jpain.2019.10.007.

[41] Mariotti, A. The effects of chronic stress on Health: New Insights Into the
molecular mechanisms of brain–body communication. Future Science OA. 2015,
vol. 1, no. 3. DOI: 10.4155/fso.15.21.

[42] Mathur, P., Kaistha, S. and Chakka, V. K. Mental Task Induced Stress
Detection using Multi-Variate Weighted Visibility Graph (MV-WVG) from EEG
Signals. In: 2023 IEEE 20th India Council International Conference (INDICON).
2023, p. 1265–1270. DOI: 10.1109/INDICON59947.2023.10440952.

[43] Minguillon, J., Lopez, M. and Pelayo, F. Stress Assessment by Prefrontal
Relative Gamma. Frontiers in Computational Neuroscience. september 2016, vol. 10.
DOI: 10.3389/fncom.2016.00101.

[44] Minguillon, J., Lopez, M., Renedo Criado, D., Sanchez Carrion, M.
and Pelayo, F. Blue lighting accelerates post-stress relaxation: Results of a
preliminary study. PLOS ONE. october 2017, vol. 12, p. e0186399. DOI:
10.1371/journal.pone.0186399.

[45] Nidal, K. and Malik, A. S. EEG/ERP Analysis: Methods and Applications. 1st ed.
CRC Press, 2014. ISBN 9780429170836.

[46] Oh, S.-H., Lee, Y.-R. and Kim, H.-N. A novel EEG feature extraction method using
Hjorth parameter. International Journal of Electronics and Electrical Engineering.
2014, p. 106–110. DOI: 10.12720/ijeee.2.2.106-110.

43

https://qbi.uq.edu.au/brain/brain-anatomy/lobes-brain


[47] Olbrys, J. and Majewska, E. Approximate entropy and sample entropy algorithms
in financial time series analyses. In:. 2022, vol. 207, p. 255–264. DOI:
https://doi.org/10.1016/j.procs.2022.09.058. ISSN 1877-0509. Knowledge-Based and
Intelligent Information & Engineering Systems: Proceedings of the 26th International
Conference KES2022. Available at:
https://www.sciencedirect.com/science/article/pii/S1877050922009310.

[48] Pawan and Dhiman, R. Electroencephalogram channel selection based on pearson
correlation coefficient for motor imagery-brain-computer interface. Measurement:
Sensors. 2023, vol. 25, p. 100616. DOI: 10.1016/j.measen.2022.100616. ISSN
2665-9174. Available at:
https://www.sciencedirect.com/science/article/pii/S2665917422002501.

[49] Perrin, S., Jay, S., Vincent, G., Sprajcer, M., Lack, L. et al. Waking qEEG to
assess psychophysiological stress and alertness during simulated on-call conditions.
International Journal of Psychophysiology. 2019, vol. 141, p. 93–100. DOI:
10.1016/j.ijpsycho.2019.04.001. ISSN 0167-8760. Available at:
https://www.sciencedirect.com/science/article/pii/S0167876018310924.

[50] Pisner, D. A. and Schnyer, D. M. Chapter 6 - Support vector machine. In:
Mechelli, A. and Vieira, S., ed. Machine Learning. Academic Press, 2020,
p. 101–121. DOI: 10.1016/B978-0-12-815739-8.00006-7. ISBN 978-0-12-815739-8.
Available at:
https://www.sciencedirect.com/science/article/pii/B9780128157398000067.

[51] Rastgoo, M. N., Nakisa, B., Maire, F., Rakotonirainy, A. and Chandran, V.
Automatic driver stress level classification using multimodal deep learning. Expert
Systems with Applications. 2019, vol. 138, p. 112793. DOI:
https://doi.org/10.1016/j.eswa.2019.07.010. ISSN 0957-4174. Available at:
https://www.sciencedirect.com/science/article/pii/S0957417419304890.

[52] Roy, S., Islam, M., Yusuf, M. S. U. and Jahan, N. EEG based stress analysis
using rhythm specific spectral feature for video game play. Computers in Biology and
Medicine. 2022, vol. 148, p. 105849. DOI:
https://doi.org/10.1016/j.compbiomed.2022.105849. ISSN 0010-4825. Available at:
https://www.sciencedirect.com/science/article/pii/S0010482522006023.

[53] Saffari, F., Norouzi, K., Bruni, L. E., Zarei, S. and Ramsøy, T. Z. Impact of
varying levels of mental stress on phase information of EEG Signals: A study on the
frontal, Central, and parietal regions. Biomedical Signal Processing and Control.
2023, vol. 86, p. 105236. DOI: 10.1016/j.bspc.2023.105236.

[54] Same, M. H., Gandubert, G., Gleeton, G., Ivanov, P. and Landry, R.
Simplified welch algorithm for spectrum monitoring. Applied Sciences. 2020, vol. 11,
no. 1, p. 86. DOI: 10.3390/app11010086.

[55] Sanford, L. D., Wellman, L. L., Adkins, A. M., Guo, M.-L., Zhang, Y. et al.
Modeling integrated stress, sleep, fear and neuroimmune responses: Relevance for
understanding trauma and stress-related disorders. Neurobiology of Stress. 2023,
vol. 23, p. 100517. DOI: 10.1016/j.ynstr.2023.100517.

44

https://www.sciencedirect.com/science/article/pii/S1877050922009310
https://www.sciencedirect.com/science/article/pii/S2665917422002501
https://www.sciencedirect.com/science/article/pii/S0167876018310924
https://www.sciencedirect.com/science/article/pii/B9780128157398000067
https://www.sciencedirect.com/science/article/pii/S0957417419304890
https://www.sciencedirect.com/science/article/pii/S0010482522006023


[56] Sanggarini, H., Wijayanto, I. and Hadiyoso, S. Hjorth Descriptor as Feature
Extraction for Classification of Familiarity in EEG Signal. In: 2019 International
Conference on Information and Communications Technology (ICOIACT). 2019,
p. 306–309. DOI: 10.1109/ICOIACT46704.2019.8938532.

[57] Seo, S. H. and Lee, J.-T. Stress and EEG. In:. March 2010. DOI: 10.5772/9651.
ISBN 978-953-307-068-1.

[58] Shon, D., Im, K., Park, J.-H., Lim, D.-S., Jang, B. et al. Emotional stress state
detection using genetic algorithm-based feature selection on EEG Signals.
International Journal of Environmental Research and Public Health. 2018, vol. 15,
no. 11, p. 2461. DOI: 10.3390/ijerph15112461.

[59] Singh, A. K. and Krishnan, S. Trends in EEG signal feature extraction
applications. Frontiers in Artificial Intelligence. 2023, vol. 5. DOI:
10.3389/frai.2022.1072801. ISSN 2624-8212. Available at:
https://www.frontiersin.org/articles/10.3389/frai.2022.1072801.

[60] Sundaresan, A., Penchina, B., Cheong, S., Grace, V., Valero Cabré, A.
et al. Evaluating deep learning EEG-based mental stress classification in adolescents
with autism for breathing entrainment BCI. Brain Informatics. december 2021,
vol. 8. DOI: 10.1186/s40708-021-00133-5.

[61] Swanson, L. W. Brain Architecture: Understanding the Basic Plan. 1st ed. Oxford
University Press, 2002. ISBN 978-0195105056.

[62] Tan, H. H. and Lim, K. H. Vanishing Gradient Mitigation with Deep Learning
Neural Network Optimization. In: 2019 7th International Conference on Smart
Computing & Communications (ICSCC). 2019, p. 1–4. DOI:
10.1109/ICSCC.2019.8843652.

[63] Tong, R. L., Kahn, U. N., Grafe, L. A., Hitti, F. L., Fried, N. T. et al. Stress
circuitry: Mechanisms behind nervous and immune system communication that
influence behavior. Frontiers in Psychiatry. 2023, vol. 14. DOI:
10.3389/fpsyt.2023.1240783.

[64] Torres García, A. A., Mendoza Montoya, O., Molinas, M., Antelis, J. M.,
Moctezuma, L. A. et al. Pre-processing and feature extraction. Biosignal
Processing and Classification Using Computational Learning and Intelligence. 2022,
p. 59–91. DOI: 10.1016/b978-0-12-820125-1.00014-2.

[65] Vanhollebeke, G., De Smet, S., De Raedt, R., Baeken, C., Mierlo, P. van
et al. The neural correlates of Psychosocial Stress: A systematic review and
meta-analysis of spectral analysis EEG studies. Neurobiology of Stress. 2022, vol. 18,
p. 100452. DOI: 10.1016/j.ynstr.2022.100452.

[66] Veen, F. van der, Molen, M. van der, Molen, M. van der and Franken, I.
Thumbs up or thumbs down? Effects of neuroticism and depressive symptoms on
psychophysiological responses to social evaluation in healthy students. Cognitive,
Affective, & Behavioral Neuroscience. may 2016, vol. 16. DOI:
10.3758/s13415-016-0435-2.

45

https://www.frontiersin.org/articles/10.3389/frai.2022.1072801


[67] W Azlan, W. A. and Low, Y. F. Feature extraction of electroencephalogram
(EEG) signal - A review. In: 2014 IEEE Conference on Biomedical Engineering and
Sciences (IECBES). 2014, p. 801–806. DOI: 10.1109/IECBES.2014.7047620.

[68] What Is a Machine Learning Pipeline? [online]. 2023 [cit. 2023-11-20]. Available at:
https://www.ibm.com/topics/machine-learning-pipeline.

46

https://www.ibm.com/topics/machine-learning-pipeline


Appendix A

Contents of the Included Storage
Media

Directory Description
objects/ Directory with .py scripts implementing classes.
SAM40/ Directory with data_augmentation.py script

where should be placed the SAM40 dataset,
specifically scales.xls and filtered_data folder.

docs/ Directory with .tex files and other content of the thesis.

Table A.1: Directories of the included storage media.

The root directory also contains __main__.py script, Makefile, README.md,
requirements.txt and thesis.pdf with the bachelor’s thesis text.
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