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Abstract 
This thesis deals w i t h the recognition of various stress stages experienced by patients 
from electroencephalogram ( E E G ) . Various Support Vector Machine ( S V M ) and L o n g 
Short-Term Memory ( L S T M ) models classifying E E G into three classes - not stressed, mod­
erate stressed, and very stressed were created. The process of implementing such a classifier 
consisted of data preparation, extraction, and finally, classification. Th is solution also im­
plements augmentation of data. The highest accuracy achieved i n this thesis was of 9 0 % 
using the S V M model . The best L S T M model was a three-layer L S T M and achieved clas­
sification accuracy of 7 0 %. 

Abstrakt 
Tato závěrečná p r á c e se věnuje r o z p o z n á v á n í a klasifikaci r ůzných ú rovn í psychické zá těže 
z elektroencefalogramu ( E E G ) . V r á m c i t é t o p r á c e bylo v y t v o ř e n o někol ik m o d e l ů S V M 
a L S T M , k t e r é klasifikují E E G data do t ř í t ř í d odpovída j íc ích m e n t á l n í zá těž i - nízká 
mentální zátěže, střední mentální zátěž a vysoká mentální zátěž. Proces vedoucí k t v o r b ě 
t ě c h t o m o d e l ů se sk l áda l z k r o k ů jako je ú p r a v a v s t u p n í h o s ignálu , extrakce jeho v l a s tnos t í 
a implementace modelu pro samotnou klasifikaci. Toto řešení t a k t é ž obsahuje augmentaci 
dat. Nejvyšší d o s a ž e n á p řesnos t klasifikace byla 9 0 %, a to s modelem S V M . Nejlepší L S T M 
model obsahoval t ř i vrs tvy L S T M a p řesnos t jeho výs ledné klasifikace byla 7 0 %. 
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Rozšířený abstrakt 
Tato závěrečná p ráce se zabývá klasifikací r ůzných s t ád i í psychické zá těže p o m o c í s t ro jového 
učení . V pos ledn ích letech jsme svědky z n a č n é h o n á r ů s t u psychických p r o b l é m ů nap ř í č 
celou popu lac í . D ů v o d ů m ů ž e bý t hned několik a j e d n í m z nich je p rávě chron ický stres, 
k t e r ý m á čas to kořeny v n a d m ě r n é m t laku na p r aco v n í výkon . Chron i cký stres m ů ž e neg­
a t i v n ě ovl ivni t jak m e n t á l n í , tak z d r a v o t n í stav jedince a m ů ž e bý t j e d n í m ze spouš těc ích 
fak torů úzkos tných a depres ivn ích s t a v ů . V č a s n á diagnostika stavu chronického stresu 
a jeho řešení by mohla bý t ve lkým p ř í n o s e m pro zd rav í člověka. Elektroencefalografie, 
zk ráceně E E G , je d i agnos t i cká metoda zaznamenáva j í c í elektrickou ak t iv i tu mozku p o m o c í 
elektrod př i ložených na hlavu pacienta. J e d n á se o ne invazivní a cenově dostupnou metodu, 
k t e r á umožňu je detekovat ř a d u p rocesů zpracovávaných mozkem, a to vče tně psychických 
p rob l émů , jako jsou deprese, úzkos t i a stres. Signál z m ě ř e n ý p o m o c í E E G je ovšem velmi 
kompl ikovaný a jeho v y h o d n o c e n í bez použ i t í m o d e r n í c h technologi í je velmi n á r o č n é . Zde 
př icház í na ř a d u algori tmy s t ro jového a h l u b o k é h o učení , k t e r é v t é t o oblasti p rokazu j í 
d o b r é výs ledky v klasifikačních ú lohách . 

Cí lem t é t o p r á c e bylo vy tvo ř i t model s t ro jového učen í pro klasifikaci r ů z n ý c h s tád i í 
psychické zá těže . D ů l e ž i t ý m aspektem t é t o p r á c e bylo t a k é s tudium související t é m a t i k y 
n e z b y t n é pro její tvorbu. V teore t ické čás t i byla nejprve n a s t í n ě n a architektura l idského 
mozku a by l p o p s á n mechanismus stresu a j edno t l ivá s t á d i a s t resové odpověd i organismu 
na p ř í t o m n o s t stresoru v jeho okolí. Dů lež i t é bylo t a k é prostudovat vlastnosti a principy 
E E G , vče tně jej ích p ř e d n o s t í a n e d o s t a t k ů . Větš í d ů r a z b y l po tom kladen na s tudium 
t é m a t souvisejících s tvourbou s a m o t n é h o klasif ikačního modelu. B y l a p r o b r á n a p ř íp r ava 
v s t u p n í h o E E G signálu , metody extrakce a selekce jeho v ý z n a m n ý c h v l a s t n o s t í a p ř e d e v š í m 
s a m o t n é algori tmy s t ro jového a h l u b o k é h o učen í použ ívané v pro klasifikační účely. Klíčové 
bylo t a k é z ískat p řeh led o stavu o d b o r n é l i teratury řešící tuto t é m a t i k u . 

V r á m c i p r ak t i cké čás t i bylo i m p l e m e n t o v á n o několik architektur m o d e l ů klasifikujících 
E E G s ignál do t ř í t ř í d podle poc i tové ú rovně m e n t á l n í zá těže - nízká mentální zátěž, 
střední mentální zátěž a vysoká mentální zátěž. P r o účely t r énován í a t e s tován í m o d e l ů 
by l použ i t veřejně d o s t u p n ý dataset S A M 4 0 . Tohle řešení nab íz í ř a d u kombinac í extraho­
vaných v l a s tnos t í s ignálu , v s t u p n í c h p a r a m e t r ů m o d e l ů a architektur m o d e l ů s a m o t n ý c h , 
k t e r é byly p r o z k o u m á n y p r o s t ř e d n i s t v í m e x p e r i m e n t ů . Klasif ikační modely i m p l e m e n t o v a n é 
v r á m c i t é t o p r á c e jsou S V M , z angl ického Support Vector Machine, a L S T M , z anglick­
ého L o n g Short-Term Memory. S modelem t v o ř e n ý m kombinac í t ř í vrstev L S T M a j e d n é 
dropout vrs tvy byla d o s a ž e n a p řesnos t klasifikace 70 %. Tento výs ledek nechává prostor 
pro dalš í vylepšení , k t e r é h o by mohlo bý t dosaženo , n a p ř . h l e d á n í m lepších hodnot tzv. 
hyper p a r a m e t r ů nebo p ř i d á n í m dalš ích vrstev. Nejvyšší p ře snos t by la d o s a ž e n a s modelem 
S V M , a to 90 %. Dle s rovnán í s l i teraturou se j e d n á o ú s p ě š n ý výsledek. 
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Chapter 1 

Introduction 

In recent years, we have witnessed a great increase i n mental health issues among the whole 
population, specifically among young people. It is proven that chronic stress has a very 
negative influence on both the mental and physical health of the indiv idual . It may even 
be one of the triggering factors of anxiety and depression and can deepen mental health 
issues that have already developed. Stress itself is a group of defense mechanisms of an or­
ganism that occur in response to the perception of physical or mental stressors. Th is state 
is connected wi th severe unpleasant physiological symptoms. Stress can be divided into two 
groups - acute stress and chronic stress. Acute stress is, at its core, a crucial evolution­
ary abi l i ty of the human body for survival and adaptation. Chronic stress corresponds 
to a consistent feeling of pressure over a long period of t ime [9] and is the main factor neg­
atively influencing health. B y early detection of chronic stress and subsequent resolving its 
mit igat ion, we could prevent a range of mental health issues from burnout syndrome to de­
pression. T h i s is where a method called Electroencephalography, abbreviated into E E G , 
comes into account. E E G is a non-invasive and financially available method suitable for ex­
ploring brain act ivi ty through the so-called brain waves. B r a i n waves are electrical impulses 
that can be detected on the scalp, and it has been proven that several processes of the brain, 
including stress, can be analyzed through them. E E G is used in both scientific and medical 
fields and is suitable for the detection of both mental and physiological processes, like blink­
ing, heart rate, etc. The effect of stress on the human brain is not yet fully understood. 
E E G , in connection wi th a suitable machine learning or deep learning model, provides 
a useful method that might contribute to a deeper understanding [65]. 

This thesis p r imar i ly aims to create a machine learning model that classifies a subject's 
mental stress stages based on E E G data. It also deals w i th topics relevant to the creation 
process of machine learning or deep learning models and important facts to understanding 
stress response itself. This thesis starts by delivering essential information about the archi­
tecture of the human brain, which is described i n section 2.1. Section 2.2 focuses on describ­
ing the stress response mechanism and its phases. A brief int roduct ion to E E G is provided 
in section 2.3. The next important topic studied i n the chapter 2.4 is the analysis of fea­
tures, including classification and validation. F ina l ly , section 2.5 describes the current state 
of research focused on this topic. 
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Chapter 2 

Literature Review 

This chapter explains the key aspects needed to comprehend the studied topic. The a im 
of this chapter is, firstly, to explain and discuss the anatomy of the human brain, the mech­
anism of stress, and how it manifests in the brain. Secondly, this chapter introduces the d i ­
agnostic method known as electroencephalography ( E E G ) , which is nowadays widely used 
and researched for both scientific and medical purposes. This thesis aims pr imar i ly to cre­
ate a machine learning model for stress stage recognition from E E G data, so the next 
and the most important topic to be discussed in this chapter is feature analysis and its 
ind iv idua l sub-parts such as feature extraction, selection, and classification using machine 
learning and deep learning techniques. F ina l ly , this thesis could not have been conducted 
without a proper understanding of the current state of research on this topic, which is there­
fore also considered i n this chapter. 

2.1 Human Bra in Architecture 

Not only is the brain the most complex part of the human body, but it is also the most 
complex functioning system that is known. It is a complex network of neurons (neuronal 
cells) and other cell types that controls the nervous system coordinates the human body, 
controls behavior, controls the internal state of the human body, and processes sensory 
information from the surrounding environment. The brain controls these activities through 
th inking and cognition [6, 61]. 

The human brain is subdivided into many regions, and each of them is highly specialized 
for certain functions. The main three bra in regions that the brain is d ivided into are 
the cerebrum, cerebellum, and brain stem [6, 61]. 

2.1.1 C e r e b r u m 

The cerebrum is the largest unit of the human brain, located at the front and the top 
of the brain. Two basic parts that the cerebrum is divided into are the cerebral cortex, 
otherwise known as gray matter, which is laminated, and the cerebral nuclei, white matter, 
which is mostly nonlaminated. It is a brain region responsible for a wide range of func­
tionalities, e.g., movement coordination, conscious thoughts, judgment, speech, emotions, 
learning, problem-solving, sensory perception, and management, behavior, and personality, 
etc. [6, 61]. 
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Figure 2 . 1 : Three main regions of the human brain - cerebrum, cerebellum, and bra in stem 
[6]. 

2.1.2 C e r e b e l l u m 

The cerebellum is located at the back of the brain and makes up around ten percent of its 
to ta l weight. Thanks to the dense arrangement of the cerebellar cortex granule cells, it also 
has the highest concentration of neurons out of a l l the bra in regions. 

The outer part contains neurons while the inner area communicates w i t h the cerebral 
cortex. Functions such as voluntary muscle movement, coordination, maintaining posture, 
balance, and body equi l ibr ium are provided by this region. Accord ing to the latest studies, 
the cerebellum might be involved in th inking, emotions, and social behavior as well 
as in addictions, autism, and schizophrenia [6, 27, 61]. 

The cerebrum and cerebellum are divided into halves collectively referred to as the cere­
bral hemispheres. The left and right hemispheres are divided by a deep median longi tudinal 
fissure. The bundle of fibers located i n the depth of this fissure called the Corpus C a l -
losum, forms a connection between the hemispheres, which provides signal transmission 
between both sides. The left hemisphere controls the right part of the body and is con­
nected w i t h creativity, emotions, intui t ion, art, etc. The right hemisphere, on the contrary, 
controls the left part of the body and performs tasks like maths, reasoning, logic, etc. [6, 61]. 

B o t h hemispheres can be subdivided into Frontal , Par ie ta l , Temporal , Occip i ta l , Insular, 
and L i m b i c lobes. Most of the brain functions are performed i n cooperation of several brain 
regions but certain functions are provided only by a specific lobe by itself. Tasks performed 
by the ind iv idua l lobes are described below [6, 61]. 

• Frontal Lobe 
A s the name suggests, this lobe is located behind the forehead, and it is connected 
wi th higher executive functions, e.g., th inking, problem-solving, speech, emotional 
regulation, voluntary movement, etc. 
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• Parietal Lobe 
The parietal lobe is located behind the frontal lobe on the posterior top of the head. 
These areas are responsible for spatial orientation and integrating sensory information 
such as touch, pressure, pain, temperature, and texture. 

• Temporal Lobe 
The temporal lobes lie on both sides of the head above the ears. These brain regions 
are involved i n processing sensory information, par t icular ly hearing and speech per­
ception, as wel l as memory, learning, and emotions. The temporal lobes also include 

responsible for visual processing. 

• Occipital Lobe 
The occipi ta l lobe is found at the back of the head and is often called the visual cortex. 
A s the name suggests, the occipi ta l lobe is responsible for vis ion and visual processes 
such as reading. We can consider it the major visual processing center i n the brain. 

• Insular Lobe 
The insular lobe lies deep wi th in the brain as the part of the cerebrum above the brain 
stem. It is involved i n consciousness, regulation of the body's homeostasis, as well 
as in some of the emotions, pain experience, social emotions, emotional intelligence, 
and mul t imoda l sensory processing, e.g., dur ing the combination of auditory and v i ­
sual tasks. 

• Limbic Lobe 
The l imbic lobe is the same as the insular lobe, located deep wi th in the brain, beneath 
the cerebrum, and above the brain stem. This system is involved i n motivat ional ly 
driven and emotional behaviors, social skills, empathy, memory, learning, homeostatic 
responses, etc. [6, 38, 8, 61]. 

Figure 2.2: Different lobes of the human brain and their functionality [6]. 

2.1.3 B r a i n s t e m 

The brainstem is located i n the middle of the brain and connects the cerebrum wi th the spinal 
cord. The spinal cord, supported by the vertebrae, is the main path carrying messages be­
tween the brain and the rest of the body. Processes like breathing, heart rate, balance, 
swallowing, and more are regulated by the brainstem [6]. 
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2.2 Stress 

Stress is a natural reaction of the human body to a stressor. Th is beneficial protective 
mechanism helps our organisms invoke fast reactions to changes and potential environmen­
ta l and other external threatening conditions. A s long as there are various types of stressors, 
stress can be manifested by a whole range of symptoms. Psychological stress is mainly con­
sidered in this thesis. A s mentioned before, stress is beneficial and essential i n a whole range 
of situations. However, the excessive amount of stress that a large number of the working-
age populat ion faces today can easily develop into chronic stress that can be cr i t ical for both 
body and mind and can be involved in several health issues. Beyond the health problems 
connected wi th chronic stress, it is also manifested by unpleasant feelings of pressure, mental 
overload, several aches, insomnia, weakness, distraction, and more. Accord ing to studies, 
stress is one of the major factors contr ibut ing to chronic disorders. Therefore it is important 
to take care of stress prevention, which can be achieved by a healthy lifestyle. E a r l y diag­
nosis of chronic stress may, i n some cases, be a key to mental and other illness prevention 
[9, 65]. 

According to Vanhollebeke et al . , [65], a stress response can be divided into three stress 
phases - anticipatory, reactive, and recovery. The anticipatory phase begins the moment 
when a person is aware of the stressor but is not yet directly exposed to i t . D u r i n g the reac­
tive phase, the subject is direct ly exposed to the stressor. The recovery phase, as the name 
suggests, starts directly after the end of the stressor exposure and consists of the reversal 
of psychological and physiological alterations caused by the stressor [65]. 

Start awareness of Start stressor End stressor 
upcoming stressor exposure exposure 

Ant ic ipatory React ive Recove ry 
phase phase phase T i m e 

Stressor 
exposu re 

Figure 2.3: Three phases of the stress response [65]. 

2.2.1 M e c h a n i s m of a Stress Response 

The first detection of a stressor i n the brain occurs i n regions called the amygdala (temporal 
lobe) and prefrontal cortex (frontal lobe). The amygdala sends distress signals to release 
the stress hormones from the adrenal glands. Hormones adrenaline and noradrenaline 
activate the sympathetic nervous system (SNS) , which manifests itself in an increased 
heart rate, d i la t ing of airways, redirecting b lood flow to v i t a l organs, increased blood flow 
to the muscles and other physiological mechanisms to prepare the body for immediate ac­
t ion known as the „flight or fight" response. The hypothalamus, a brain region located 
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i n the temporal lobe, simultaneously produces corticotropin-releasing hormone ( C R H ) , 
which activates the hypothalamic-pi tui tary-adrenal axis ( H P A ) . The H P A axis then sig­
nals the release of adrenocorticotropic hormone ( A C T H ) from the p i tu i tary gland, whose 
presence stimulates the release of Cortisol from the adrenal glands. Cor t i so l is another 
important stress hormone, whose task is to mobilize the energy to cope w i t h the stres­
sor. Th is is achieved by an increase i n the body's glucose metabolism. In addit ion, Cortisol 
simultaneously affects bra in functions by influencing emotional regulation, memory, and at­
tention. H i g h Cortisol levels in the b lood are a signal to the hypothalamus and pi tu i tary 
glands for a negative feedback loop. This loop inhibi ts further release of C R H and A C T H 
[15, 41, 55, 63, 57]. 

In a summary, the stress response mechanism is a complicated process that allows 
the organism to react quickly to the presence of a stressor, a potential danger. Stress 
response typical ly consists of three phases: the anticipatory phase, the reactive phase, and 
the recovery phase. 

2.3 Electroencephalography (EEG) 

The history of electroencephalography dates back to the last century. Hans Berger, the Ger­
man psychiatrist, d id the first recording of the human brain's electric field in the year 
1924. Since then, the E E G has been used as a useful method to understand and diag­
nose mental and neurological disorders and to assess cognitive processes, e.g., memory 
and perception. This neuroimaging technique consists of measurement of the brain's re­
sponse to a stimulus (of a sensory, motor, or cognitive nature), so-called Event-Related 
Potent ia l ( E R P ) , and is widely used in cognitive neuroscience research. The advantage 
of using the E E G in comparison wi th other methods used in this scientific field is its good 
temporal resolution and low price. The disadvantage of this method is the low spatial reso­
lut ion of the brain activity. E E G can also be integrated wi th other neuroimaging methods, 
such as magnetic resonance imaging ( M R I ) , functional near-infrared spectroscopy (fNIRS), 
and positron emission tomography ( P E T ) to obtain more comprehensive results [45]. 

2.3.1 E E G Signals 

E E G is a non-invasive method s tudying amplified electrical signals caused by the syn­
chronous act ivi ty of the sum of thousands of mill ions of brain cells, i.e., neurons w i t h a sim­
ilar spatial orientation measured wi th electrodes placed on a subject's scalp. Such a record­
ing of neural oscillations is called the electroencephalogram and can be characterized by 
the frequency, ampli tude, and phase of the oscil lation. E E G signals are typ ica l for their 
complexity, nonlinearity, and lack of conformity to a normal dis t r ibut ion. A t the same time, 
the signal waveform can be significantly influenced by ind iv idua l factors, e.g., age, health, 
testing environment, etc. Measured data usually contain unwanted signals caused, e.g., 
by eye and muscle movement called artifacts. Obta in ing information from such complex 
signals can be very challenging [45]. 

The main objects of study are five major bra in waves varying i n their frequency ranges: 

7 



Delta Waves 

Del ta waves are neural oscillations wi th the highest ampli tude and the lowest frequency 
wi th in the range of 0.5 to 4.0 H z . De l t a wave act ivi ty is associated wi th the N R E M sleep 
phase (deep sleep) [45]. 

0.0 0.2 0.-1 OA 0.8 IJO 
I ) r ' l l , l 11 .LVi * 

0.0 0,3 0..1 0 .6 0.8 X I 

T I l L t i l W J V D S 

0.0 0 ,2 U. - l 0 . 6 IJ .H IJO 

VI I -1 - i ^ i i V v H 

0.0 0 .2 OA 0 . 6 0.8 IJO 
( i . i i i i i i i , ! M . I I i 

0.0 0.2 O.-l 0 .6 0.8 IJO 
MLI V . - . I M ' S 

Figure 2.4: Major brain waves varying i n their frequency range [45]. 

T h e t a Waves 

The frequency range of theta waves is 4 to 8 H z . A m o n g adults, theta waves are associated 
wi th states of drowsiness, arousal, or meditat ion [45]. 
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A l p h a Waves 

A l p h a waves lie wi th in the frequency range of 8 to 13 H z and are correlated wi th wakeful­
ness, effortlessness, alertness, and creativity. A l p h a waves typical ly appear i n the posterior 
half of the head [45] Accord ing to studied literature, alpha power tends to decrease due 
to the influence of stress [67, 53, 52]. 

Beta Waves 

These are neural oscillations w i th a frequency range of 14 to 26 H z . Be ta wave act ivi ty 
is related to active attention and thinking, cr i t ica l problem solving, and focusing on the out­
side world. Th is type of bra in wave typical ly appears i n the frontal and central region 
of the brain [45] Accord ing to the studied literature, beta power tends to decrease its value 
due to the influence of stress [67, 53, 52]. 

G a m m a Waves 

The frequency range of gamma waves is 30 to 100 H z . The appearance of gamma waves 
in the human brain is rare and is related to the process of combining different senses (sound 
and sight) [45]. 

A s long as E E G reflects thousands of ongoing neural processes, it is challenging to iso­
late, assess, and analyze them. Specific information related to sensory, cognitive, and motor 
events can be extracted using E R P s by repeating an event (e.g., v isual stimulus) and its 
E E G act ivi ty analysis [45]. 

2.4 Feature Analysis 

The raw output of an E E G measurement is a signal recording changes in electrical poten­
t i a l on the experiment subject's scalp. To obtain information, it is necessary to analyze 
measured signals through their features. The methodology of E E G signal analysis can 
be summarized i n the so-called machine learning pipeline. The machine learning pipeline 
is a series of steps to automate, standardize, and streamline machine learning model bui ld­
ing, t raining, evaluating, and deploying. In the case of E E G analysis, a machine learning 
pipeline typical ly consists of data acquisition, pre-processing (denoising), feature selection, 
and classification [68, 59]. 

2.4.1 T i m e - D o m a i n Feature E x t r a c t i o n 

In the case of the t ime-domain feature extraction, the measured signals are analyzed wi th re­
spect to t ime. These techniques provide quantification of signal changes over t ime. Because 
of its length, the t ime-domain signal typical ly requires segmentation and windowing pro­
v id ing extraction of local features [59]. 

T ime domain analysis includes statist ical features such as mean, median, variance, stan­
dard deviation, skewness, and kurtosis. Another simple feature is the so-called zero crossing 
rate, which provides information about how often the signal crosses the horizontal axis. 
In some cases, it can be appropriate to count separately the number of „posi t ive-going" 
crossings, which are the crossings of the horizontal axis from negative to zero to positive, 
and the number of opposite „negat ive-going" crossings [59]. 
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Entropies 

Entropies are t ime-domain features based on the quantification of t ime series regularity 
that express well the complexity of the signal. Entropies are widely used in this scientific 
field because they allow successful feature extraction even w i t h noisy and short recordings. 
Extensively known are approximate entropy algori thm ( A E ) and sample entropy algori thm 
(SE) . These two algorithms determine the regularity of t ime series for similar epochs based 
on the existence of patterns. The greater the data irregularity in the sequence is, the greater 
the non-negative number is assigned to the sequence. [67, 14, 47]. 

H j o r t h Parameters 

The Hjor th Complex i ty describes deviance from the course of the sinus. The higher the value 
of Hjor th Complex i ty is, the more complex the examined signal is. Hjor th Complex i ty 
is calculated using three parameters - activity, mobil i ty, and complexity. The act ivi ty 
is derived as the variance of the E E G signal. The mobi l i ty is equal to the square root 
of the variance of the first derivative of the E E G signal. The complexity parameter is equal 
to the ratio of the mobi l i ty to the square root of the act ivi ty [46, 56]. 

Hurst Exponent 

The Hurst Exponent is a t ime-domain feature of the trend persistence or the randomness. 
It is calculated using the R / S method. Fi rs t , the signal is d ivided into windows of dif­
ferent sizes. Then , the average and the standard deviat ion of the signal are calculated 
for each window. T h e rescaled range R / S is calculated for each t ime window and it is de­
fined as the ratio of the difference between m a x i m u m and m i n i m u m values of the signal 
and the standard deviation. Subsequently, the logar i thm of the R / S is against the logar i thm 
of window size. The resulting Hurst exponent is equal to the slope of the linear regression 
plot. The value of the Hurst Exponent can range between 0 to 1. The value of the Hurst 
Exponent under 0.5 indicates that the signal tends to reverse its direction. O n the contrary, 
values above 0.5 indicate persistent behavior. Hurs t Exponent that is equal to 0.5 suggests 
an unpredictable course of the signal [64]. 

2.4.2 F r e q u e n c y - D o m a i n Feature E x t r a c t i o n 

Five ma in brain waves that occur i n the human brain and their frequencies were mentioned 
i n 2.3.1. For identification and classification of the brainwaves, it is necessary to analyze 
the frequency spectrum of the recording [65]. B r a i n waves and their frequency bands are 
summarized in table 2.1. 

Wave Frequency band (Hz) 
Del ta 0.5 - 4.0 
The ta 4.0 - 8.0 
A l p h a 8.0 - 13.0 
Be ta 13.0 - 26.0 
G a m m a 30.0 - 100.0 

Table 2.1: B r a i n waves and their frequency bands [57]. 
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Power Spectral Density 

A fundamental concept i n frequency-domain analysis is the Power Spectral Densi ty ( P S D ) . 
The P S D calculates the dis t r ibut ion of a signal's power as a function of frequency. It can 
be calculated, e.g., using the Fast Fourier Transform ( F F T ) or Welch's method. Welch's 
method divides the signal into overlapping segments and, for each of them, computes 
the squared root of the F F T . The resulting numbers are an estimation of the spectral 
density, and their averaging is provided, resulting in P S D estimation. Welch's method 
provides a smoother frequency-domain spectrum than F F T [54, 57, 65]. 

A s y m m e t r y 

Another important concept i n frequency-domain feature extraction is asymmetry. It is a rel­
ative measure of the difference in band powers between the right and left hemispheres 
in a specified bra in area, such as frontal asymmetry or cerebral asymmetry [5]. 

2.4.3 C o n n e c t i v i t y A n a l y s i s 

The processing of information in the bra in is spatially distr ibuted and involves both local 
and distant bra in regions. These regions are functionally connected and synchronized near 
opt imal . Analys is of bra in connectivity can be useful for a deeper understanding of studied 
processes and involved bra in regions. B r a i n connectivity analysis focuses on three differ­
ent but related forms of connectivity - anatomical connectivity, functional connectivity, 
and effective connectivity. Ana tomica l connectivity examines the connectomes, connecting 
neuron pools i n spatially distant brain regions connected through synaptic contacts between 
neighboring neurons or fiber tracks. Funct ional connectivity is described as the temporal 
dependency of neuronal act ivat ion patterns of anatomically separated brain regions. This 
statist ical concept relies on statist ical measures like correlation, coherence, phase locking, 
etc. Effective connectivity describes how one neuronal system affects another [36]. 

2.4.4 Fea ture Select ion 

Feature selection is a process of selecting relevant features that w i l l act as input to a machine 
learning model . In this process, the amount of noise i n the data is reduced. In other words, 
it is a method of reducing input data to its relevant components. This step is essential 
for t ra ining a functional and accurate model . Feature selection ensures, that a machine 
learning model does not capture the unimportant patterns and does not learn from noise. 
B o t h supervised and unsupervised models are used for feature selection [22]. 

Princ ipal Component Analysis ( P C A ) 

P C A is a statist ical procedure that reduces the dataset to its essential features by iden­
tifying its directions, in this case called pr incipal components. The pr inc ipal components 
are a set of new uncorrelated variables that capture the m a x i m u m possible variabil i ty 
in the data. It is based on a specifically chosen linear transformation that maximizes 
the variance when projected onto the new axes. The transformation projects the original 
data onto a lower-dimensional subspace by scaling and rotat ing the original feature space. 
The vectors of the features are projected on the transformed subspace i n relevant directions 
[58, 7]. 
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Pearson Correlat ion Coefficient ( P C C ) 

Analysis of a relationship between two variables can be done by calculat ing the Pearson Cor­
relation Coefficient. K e y aspects for determining a casual linear relationship between vari­
ables are the correlation's strength and the correlation's direction. The value of the Pearson 
Correlat ion Coefficient can range from minus one to plus one. Pearson Correla t ion Coef­
ficient value of zero is characteristic of no correlation between variables. O n the contrary, 
a value close to plus one is characteristic of a strong positive correlation, and a value close 
to minus one for a strong negative correlation [48]. 

Variance 

Variance is a statist ical measure reflecting the dispersion of the data. In other words, 
it is an indicator of how much the data is scattered around the mean. Variance is cal­
culated as the sum of the squared average distance from the mean divided by the count 
of analyzed values. The ma in idea behind variance is to obtain information about how big 
the spread of values from the average is, not the deviat ion of the indiv idual . It is a useful 
tool for the selection of features from the data. A threshold value is selected and a l l features 
wi th variance lower than the defined threshold are removed [22]. 

Genetic Algori thms ( G A ) 

These efficient techniques of opt imizat ion are based on natural evolutionary theory. M a ­
jor steps such as selection, crossover, mutat ion, and replacement are used. The principle 
of these algorithms is based on the successive creation of generations, where each new gener­
ation generates a different solution to the opt imizat ion problem. The solution to the prob­
lem is improving wi th the evolving populat ion. The first generation consists of randomly 
generated individuals . The transformation from the first generation to the following gen­
erations is achieved by iterative repeating of stochastic reproduction of the individuals 
into modified versions v ia crossover and mutat ion. Each i teration results i n a greater ho-
mogenization of the populat ion concerning the survivabil i ty of the individuals who adapted 
to their environment [58]. 

2.4.5 Fea ture Class i f icat ion 

The following section describes selected machine learning and deep learning algorithms 
widely used for feature classification. Classifiers typical ly use supervised, unsupervised, 
or reinforcement learning algorithms. These algorithms control the learning process by ex­
ternal configurations, so-called hyperparameters. The value of the hyperparameters cannot 
be estimated from the data and has to be specified beforehand. The process of the determi­
nation of the suitable hyperparameters can be greatly simplified by val idat ion. The principle 
of selected val idat ion methods is described in 2.4.6 [33]. 

if-Nearest Neighbors ( i f -NN) 

This supervised learning algori thm is one of the most popular schemes used for classifica­
t ion tasks thanks to its s implic i ty and computat ional efficiency Fi rs t , the distance between 
a given point, and its neighboring points i n the t raining dataset is calculated. The dis­
tance between the given point and its neighbor is usually calculated using the Eucl idean 

12 



distance, but different approaches can be applied as well . The obtained values are subse­
quently sorted in increasing order and the i ř -nea res t neighbors are selected for further use. 
The classification of the given point is then determined based on the vote of its neighbors. 
The given point is predicted to be of the class, that is the most common among the selected 
i ř -nea res t neighbors. Choosing the correct value of the K hyperparameter is a key step 
to avoid overfitting or underfitting the model to the t ra ining dataset [3]. 

Support Vector Machine ( S V M ) 

Firs t , it is appropriate to describe the term margin. W h e n analyzing data w i th two distinct 
classes, we can determine a threshold, that lies between the closest data points belonging 
to different classes. The margin is the distance between the nearest data point of a given 
class and the threshold. The largest possible margin is selected for use i n the S V M . This type 
of classifier is called the m a x i m u m margin classifier. Unfortunately, a great disadvantage 
of this classifier is a high sensitivity to outliers in the t ra ining data. The solution to this 
problem is to allow misclassifications i n the t ra ining data. In this context, the term soft 
margin refers to the distance between the nearest data point and the threshold. The number 
of allowed misclassifications is a hyperparameter, that can be opt imized through cross-
validat ion. The support vector classifier uses the soft margin to determine the location 
of a threshold. The observations on the edge and wi th in the soft margin are called support 
vectors. In the context of the observations, a threshold is represented as a point in a one-
dimensional Sp£tC6, ctS cl line i n a two-dimensional space, as a plane in a three-dimensional 
space, and so forth. In summary, the S V M is a set of supervised learning algorithms, 
that view data points as p-dimensional vectors. These algorithms move the data into 
a higher dimension and find a support vector classifier. In other words, these algorithms t ry 
to separate data points from different classes by (p-1)-dimensional hyperplane. The kernel 
function enables one to do a computat ion i n the higher dimension without a transformation. 
This so-called kernel tr ick significantly reduces the computat ional demands of the S V M . 
The radial kernel function computes the interactions between each pair of data points wi th in 
the specified dimension. The radial basis function kernel enables the discovery of support 
vector machines i n theoretically infinite dimensions. Beyond the polynomia l and radial 
function kernels, there are various other kernel functions, that can be used depending 
on the data and the task [13, 50]. 

Figure 2.5: The most opt imized hyperplane for the i l lustrated case of classification [21]. 

X2 
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R a n d o m Forest 

The R a n d o m Forest is a powerful machine learning algori thm, that creates class predictions 
using a collection of decision trees. The single decision tree involved in the classification task 
results i n an overfitting model, i n other words, a model, that is highly sensitive to the train­
ing data. Th is problem can be avoided by using the collection of mult iple random decision 
trees, the so-called random forest. In the in i t i a l step known as bootstrapping, the new 
collection of datasets is created by selecting random rows from the original dataset. It 
is important to mention, that the a lgori thm does not t ra in each decision tree wi th every 
feature. The process of t ra ining is only done wi th a random subset of features. Th is ap­
proach reduces the correlation between the trees and prevents the increase i n variance. 
The R a n d o m Forest makes predictions by passing the data point through each decision 
tree and noting the predictions individual ly . The resulting class is decided by aggregating 
the predictions of the decision trees and choosing the class that receives the majority vote. 
Th is process is called aggregation [39, 24]. 

Convolutional Neural Networks ( C N N ) 

Convolut ional Neura l Networks, a specialized variant of feed-forward artif icial neural net­
works, are a very popular tool i n image analysis. However, their effectiveness is also appre­
ciated i n other data analyses and classification problems. Convolut ional Neura l Networks 
are specialized in pattern recognition. Compared w i t h Mul t i layer Perceptron, the C N N 
detects patterns using hidden layers otherwise called convolutional layers. Such a network 
usually contains other non-convolutional layers and necessarily contains a non-linear acti­
vation function. Each convolutional layer receives input, transforms it w i t h a convolutional 
operation, and passes the transformed input to the next layer. A convolutional layer is com­
posed of a specified number of filters. A filter can be conceptualized as a relatively small 
matr ix . The size of this mat r ix is a hyperparameter. The values wi th in this mat r ix are 
ini t ia l ized wi th random numbers. The filter convolves across each input element, resulting 
in a matr ix dot product. Th is new mat r ix of dot products is the output of the convolu­
t ional layer. A s we delve deeper into the network, the filters become more complex, enabling 
the extraction of more sophisticated features from the input [23, 28]. 

Recurrent Neural Networks ( R N N ) 

Recurrent Neura l Networks stand apart from other neural networks due to their applica­
t ion of feedback loops, in addi t ion to weights, biases, hidden layers, and act ivation func­
tions. These feedback loops enable predictions wi th varying input values, even when dealing 
wi th sequential data, such as time-series data [20]. 

In contrary wi th t radi t ional neural networks, where the inputs and outputs of layers 
are independent, the R N N feedback loops allow to influence the current step input by 
the output from the previous step. A key feature of this network is a Hidden state, also 
known as the Memory state. A s the name suggests, this feature enables the R N N to re­
ta in information about the previous sequence while processing inputs, a desirable property 
for tasks such as predicting the next word i n a sentence. This unique capabil i ty is provided 
by a processing unit called the Recurrent Un i t [20]. 

The tasks performed to produce the outputs on hidden layers are identical across a l l 
units and the same parameters are passed for each input, reducing the complexity of the pa­
rameters. In an R N N , the weights are shared across a l l t ime steps in the network. Each 
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Figure 2.6: The i l lustrat ion of convolutional neural network wi th three hidden layers [4]. 

recurrent unit of the R N N is associated wi th a specific t ime step and has a fixed activation 
function. The hidden state of the unit , representing accumulated information from the past, 
is updated at each t ime step to reflect alternations i n the network's understanding of past 
data [20]. 

The current state is calculated using the following formula 

ht = f(ht,xt), (2.1) 

where ht represents the current state, ht-\ the previous state and xt the input state. 
The activation function is applied to the current state w i t h the formula 

ht = tanh(Whhht-i + Wxhxt), (2.2) 

where Whh is weight at the recurrent neuron and wxh is weight at the input neuron. 
The output is subsequently computed wi th the formula 

Vt = Whyht, (2.3) 

where yt is the output and Why is the weight at output layer. These parameters are 
updated using backpropagation through time [20]. 

Long Short -Term M e m o r y ( L S T M ) 

L S T M is a neural network buil t on R N N . In comparison wi th R N N , L S T M is extended 
wi th a memory cell , which is a container holding information about long-term dependen­
cies. This abi l i ty makes it well-suited for tasks like speech recognition, language translation, 
and t ime series forecasting. Deep L S T M networks can learn very complex patterns and pro­
vide reliable results, but they do so at the cost of complicated and time-consuming tuning 
of the t ra ining process, which is in part caused by a large number of hyperparameters [17]. 
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The operation of the memory cell is controlled by three gates - the input gate, the forget 
gate, and the output gate. The chain of these three gates allows L S T M to selectively retain 
or discard information [17]. 

Figure 2.7: The i l lustrat ion of the L S T M memory cell - from left to right is the forget gate, 
the input gate, and the output gate [17]. 

The forget gate removes information, that is no longer useful for the cell . Th is process 
is described by the following equation 

ft = (Wf[ht-i,xt] + bf), (2.4) 

where Wf represents the weight mat r ix of the forget gate, xt is the input at the part icu­
lar t ime, ht — 1 is the previous cell output, 6/ is the bias w i th the forget gate, and the sigma 
parameter is the sigmoid act ivation function. The two inputs of the gate are mult ipl ied 
wi th weight matrices. The result is then summed wi th the bias and passed through an ac­
t ivat ion function. The act ivation gives a binary output. If the output is zero, it means that 
the information about the part icular cell state is no longer useful and, therefore, has been 
removed. For the output one, the information is retained [17]. 

The addi t ion of new information to be retained by the cell is provided by the input 
gate. The operation performed i n the input gate is i l lustrated w i t h the following equations 
[17]. 

it = (Wi[ht-1,xt] + bi) (2.5) 

Čt = tanh(Wc[ht-i,xt] + bc) (2.6) 

Parameters x% and ht-\ represent the input at the part icular t ime and the previous cell 
output, s imilar ly to the forget gate. The bc parameter represents the bias w i th the input 
gate. F i r s t , the information is regulated using the sigmoid function - the values to be re­
membered are filtered i n a similar way to the forget gate. Second, the tanh activation 
function is applied in order to create a vector. The output value is i n the range from minus 
one to plus one and contains a l l positive values from the xt and ht-i- Then , the useful 
information is obtained by mul t ip l ica t ion of the vector values and the regulated values. 
The prior state is mul t ip l ied by ft, while the information we previously decided to overlook 
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is not considered. Fol lowing that, the expression it * Ct is incorporated. T h i s expression 
signifies the revised candidate values, modified according to the degree to which we decided 
to update each state value [17]. 

Ct = ftCt-i + itCt (2.7) 

The last gate is the output gate, which determines what information from the current cell 
state is going to be presented as the output. F i r s t , the tanh act ivat ion function is applied 
to the cell input w i th the purpose of creating the vector. The input information is then 
regulated to values between zero and one using the sigmoid activation function. The output 
from the sigmoid function is then used to filter the values that need to be remembered. 
Final ly , the regulated values and the vector values are mul t ip l ied and sent as an output 
of the output gate. Th is process can be described by the following equation 

ot = (W0[ht-i,xt]+b0), (2.8) 

ot is the output, Wt is the weight mat r ix associated wi th the output gate, ht-\ is the pre­
vious cell output, xt is the input at the part icular t ime and bQ is the bias w i t h the output 
gate [17]. 

There is a variat ion of L S T M , so-called Bidi rec t ional L S T M ( B L S T M ) , that processes 
input sequential data i n both forward and backward directions - one L S T M layer does 
so i n the forward direction, the other i n the backward direction. This feature enables 
the attainment of even better results compared to basic forward L S T M [17]. 

2.4.6 V a l i d a t i o n 

Machine learning and deep learning algorithms learn to make predictions dur ing a pro­
cess called t raining. The model learns to recognize important patterns in the t raining 
dataset. The learning process, however, is not a straightforward task. There are sev­
eral steps, that have to be considered. The t ra ining process requires high-quality t raining 
data. The noise, missing values, and incorrect labels can lead to poor performance because 
the model can learn incorrect patterns. Choosing the right machine learning model itself 
can also influence the performance. F i n d i n g a suitable model for the task and given data 
is a complex process. Next , choosing an irrelevant or redundant feature as the model input 
can negatively impact its performance. Another problem occurs when the model learns 
the t ra ining dataset too well, so-called overfitting. Underfi t t ing is the contrary si tuation 
when the complexity of the model is too low to capture the structure of the data. F ina l ly , 
very t ime consuming can be fine-tuning of the model's hyperparameters. Hyperparameters 
define higher-level model structures and have to be set before the t raining process starts. 
Val ida t ion is useful here to detect potential problems, especially overfitting. The following 
lines discuss selected val idat ion strategies [19]. 

Holdout Val idation 

The dataset is d ivided into two parts—the t ra ining set and the testing set. The t ra ining set 
is used to bu i ld the model . The test set checks the model's abi l i ty to generalize the new, 
unseen data by calculat ing selected validat ion metrics, i n other words, how the model 
w i l l be applicable i n the real world. Unfortunately, this approach can lead to unstable 
estimates. If the split does not accurately reflect the overall data dis t r ibut ion, it may result 
i n inconsistent estimations [19]. 
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K - F o l d Cross-Validation 

Another val idat ion method, that may be used, is the K - F o l d Cross-Val idat ion. This tech­
nique is very popular because it ensures thorough learning across the entire dataset. Ini­
t ially, the dataset is part i t ioned into K parts. The K - l parts of the dataset are used 
for the training, while the remaining part utilizes the testing process. The procedure 
of t ra ining and testing is iterated un t i l each part of the dataset has been used for the test­
ing [19]. 

Figure 2.8: Div i s ion of the dataset into the t ra ining and testing part wi th in the 5 folds [19]. 

Stratified K - F o l d Cross-Validation 

The main idea of this val idat ion method is to divide the dataset into K folds, where each 
fold contains a representative proport ion of each class. This ensures accurate learning 
results across a l l classes even though the layout of classes i n the dataset is imbalanced. 
The input data is first shuffled and then part i t ioned into sub-parts. E a c h sub-part is then 
used for t raining. The step ensures the shuffle is executed only once [19]. 

Leave-One-Out Cross-Validation ( L O O C V ) 

A s well as the previous methods, the L O O C V divides the entire dataset into folds. In this 
case, every ind iv idua l data point is treated as a separate test dataset, while the rest 
of the dataset is used to t ra in the model . A l t h o u g h L O O C V offers the most precise 
performance evaluation from the described methods, i n the case of large datasets, it can 
be computat ional ly expensive [19]. 
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T i m e Series Cross-Validation 

A s the name suggests, this cross-validation method is specialized for val idat ion in time 
series. The dataset is split into overlapping windows. The model undergoes t raining 
on the t raining part of the dataset and then proceeds to evaluation on the subsequent testing 
segment. It is important to emphasize that the dataset's t ra ining set has to be i n posit ion 
before the testing set because future data should not be used for t raining. After these two 
steps, the window of the t ra ining set is expanded forward by a t ime step. The earliest 
step of the format t ra ining data is dropped, and the val idat ion set is expanded forward by 
a one-time step. These steps are then repeated unt i l the entire dataset is incorporated. This 
approach's great advantage is that it considers the inherent t ime dependencies i n the data 
series, which can increase the model's abi l i ty to predict future data [19]. 

Validation Metr ics 

The choice of val idat ion method is closely l inked to the selection of the right metrics to eval­
uate model performance. The following lines describe only selected metrics used for evalu­
ation of the model implemented i n this thesis, so-called classification-specific metrics. 

• Accuracy 
This metric provides information about the proport ion between the number of correct 
predicted classes and the to ta l number of predictions [1]. 

• Precision 
Precision is a metric, that quantifies how accurate the model is when predicting 
the target class. More precisely it is equal to a ratio of true positive predictions 
to the to ta l number of positive predictions (both true and false positive predictions). 
In this context, it is important to mention that a true positive prediction considers 
a correct prediction of a given class, and a false positive predict ion is an instance 
that was incorrectly predicted as positive of a given class [1]. 

• Recal l 
Another useful metric used for learning model val idat ion is recall. This metric quan­
tifies correct identifications of the true positives i n ratio to a l l true positives and false 
negatives i n the dataset. In this case, false negative means the missed case of positive. 
In other words, recall provides information on how often the model correctly identifies 
positive instances from a l l the positive samples, that are present i n the dataset [1]. 

. F l - S c o r e 
Fl-score is an evaluation metric that combines the model's precision and recall scores. 
However, this metric can be unviable in datasets w i t h imbalanced classes. The F l -
score value equals the harmonic mean of the precision and recall scores. The higher 
the value of the F l - score is, the classifier is of the better quali ty [18]. 

2.5 Current State of Research 

In recent years we have seen a rapid increase in mental health issues. A l though the mod­
ern way of life brings many advantages and l iv ing is easier than it used to be, there are 
some factors that can poorly influence an individual 's well-being, e.g., excessive consump­
t ion of social media, bad work environment, loneliness, economic uncertainty, and above 
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al l , an increase of individual 's psychosocial stress. Stress is a factor that can significantly 
catalyze the development of mental health issues. However, the influence of psychosocial 
stress on brain act ivi ty is not yet completely understood. This is the point, where the elec­
troencephalography ( E E G ) comes into play. It is a non-invasive method that can be helpful 
i n stress diagnosis. D a t a obtained from stress-related E E G experiments can greatly con­
tribute to a deeper understanding of stress. Th is chapter summarizes the findings of selected 
E E G stress-related studies [65]. 

Cer ta in articles focus on stress response i n its entirety, but some articles investigate 
stress as a process that can be divided into three discrete phases - the anticipatory, the re­
active, and the recovery phase. Physiological processes, that are involved i n stress response 
and three discrete stress phases were described i n section 2.2. The strength of the E E G 
is its high temporal resolution, and therefore, most stress-related studies focus on the inves­
t igat ion of event-related potentials ( E R P s ) . A whole range of E E G stress-related articles 
also focus on the analysis of changes i n signal oscillations through spectral analysis. E R P 
analysis is not very suitable for the investigation of the whole neural response to stress 
because E R P recordings are usually dependent on clearly defined s t imuli , and the recov­
ery phase is usually not recorded at a l l . In this case, the spectral analysis yields better 
results, because both stimulus-defined t ime windows and long continuous E E G recordings 
can be performed [65]. 

According to studied articles, some E E G measures report stress phase-dependent be­
havior. O n the other hand there are measures that are entirely stress phase independent. 
Accord ing to the literature, stress response typical ly manifests in a significantly decreasing 
trend of the alpha band power i n the frontal lobe. A s long as the alpha waves are con­
nected wi th a state of calmness and relaxation, the decreasing trend confirms that regardless 
of the stress response phase, the subject is not experiencing comfort. Mos t of the studied 
literature recorded a significant increase i n the beta band power due to experienced psy­
chosocial stress. These changes occurred mainly in the frontal lobe. O n the other hand, 
two articles dealing wi th this measure report an insignificant decrease. Measures such 
as delta and theta band power, relative gamma, and theta-alpha band power ratio report 
stress phase dependency. However, deeper investigation of the stress phase dependence 
of measures has many pitfalls as long as some pairs formed by measure and stress phase 
are overrepresented in studies and others are completely absent [65]. 

According to the literature, the reactive stress phase is associated wi th an increase 
in the delta band power [40]. O n the other hand, dur ing the recovery phase, when the body 
starts to reverse the alterations caused by the stressor, the delta band power decreases 
[49]. Addi t ional ly , two articles describe a significant increase i n theta band power during 
the reactive phase [35, 66]. However, another article describes a decrease i n theta band 
power i n the recovery phase [40]. It is also noted, that theta-alpha power is significantly 
higher during the reactive phase than dur ing the recovery phase [29]. Interestingly, relative 
gamma has a completely opposite flow. The reactive phase is associated wi th a significant 
decrease in relative gamma, which significantly decreases during the recovery phase [43, 44]. 

W i t h i n this work, numerous articles discussing E E G stress stage classification were stud­
ied. I would like to mention the results of a few i n the following lines. Vary ing stress stages 
were classified using a model based on the Support Vector Machine algori thm. The best 
results were obtained by combining fractal dimensions and statistical features. The au­
thors obtained an average accuracy of 67.07 % wi th the stress divided into four stages. 
A n accuracy of 75.22 % was obtained wi th three stress stages and an accuracy of 85.71 % 
w i t h the simple dis t r ibut ion of the dataset to stressed and non-stressed stages [30]. 
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Different researchers published stress stage classifiers using more sophisticated algo­
rithms like Recurrent Neura l Networks and R a n d o m Forests w i th only a single feature 
extracted - the Power Spectral Density. The R N N provided better classification accuracy 
of value 87 % for arousal and 83 % for valence. For comparison, the R a n d o m Forest model 
classified arousal w i th an accuracy of 83 % and valence wi th an accuracy of 75 % [34]. 

A wide range of research is focused on stress stage recognition using a multi layer L o n g 
Short-Term Memory ( L S T M ) classifier. A two-layer L S T M wi th extracted Power Spectral 
Density achieved a classification wi th 95 % accuracy [12]. 
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Chapter 3 

Proposed Methodology 

This chapter deals w i th the main components of the proposed learning pipeline, which was 
designed to recognize stress stages from E E G data. The first step is to obtain suitable data 
for the t ra ining and testing of the deep learning model . For this thesis, a publ ic ly available 
dataset was chosen. The subsequent step is pre-processing the data. In the context of my 
implementation, this step was omit ted since the used dataset contains both raw and already 
pre-processed data. Thus, the dataset is ready for extraction of the relevant features. 
The acquired features are finally loaded into the model and the t ra ining process can start. 
The proposed steps are described i n this chapter i n more detail . 

3.1 S A M 4 0 Dataset 

The S A M 4 0 dataset provides E E G recordings of subjects experiencing varying stages 
of short-term induced stress. The recordings were made wi th forty subjects, w i th a mean 
age of 21.5 years, specifically fourteen females and twenty-six males. None of the subjects 
had health issues. E a c h subject had to participate i n a series of recordings, which consisted 
of recordings of four different tasks repeated i n three trials. In summary, 480 trials were 
performed. Subjects have performed three different cognitive tasks - the Stroop color-word 
test, the mirror image-recognition task, and the ari thmetic problem-solving task. Each 
of them has also part icipated in relaxation trials. The state of relaxation was achieved 
by listening to relaxing music. The t ime durat ion of each t r i a l was 25 s. Each t r i a l was 
followed by the subjects' evaluation of the experienced stress stage on a scale of 1-10, 
where one is equivalent to the min ima l amount of experienced stress and then is equivalent 
to the max ima l amount of experienced stress [26]. 

The ut i l ized E E G set is the E m o t i v E p o c F lex gel ki t , which contains 32 channels named 
and located according to the international 1020 system. C M S and D R L electrodes were used 
as a reference. The internal sampling frequency of the system is 1024 H z . The sampling 
frequency of the obtained data is 128 H z [26]. 

The dataset contains raw data and also a preprocessed version. Accord ing to the au­
thors, first was applied a band-pass filter in the range of 0.5-45 H z . Other artifacts, 
such as eye movements, muscular activity, etc., were removed using the combination 
of the Savi tzky-Golay filter and wavelet thresholding [26]. 
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A 

Figure 3.1: Electrode layout employed i n recordings [26]. 

3.2 Data Preparation 

Before feature extraction, the data preparation steps should be applied depending 
on the data and the model . These steps w i l l include data segmentation, interpolation, 
and derivation. 

3.2.1 D a t a Segmenta t ion 

fussy The first step is data segmentation, also known as windowing. Th i s step comprises 
spl i t t ing the t ime series data into overlapping or non-overlapping segments or windows. 
D a t a segmentation can increase the model's abi l i ty to learn from the data. It maintains 
the temporal structure of the data and, at the same time, provides contextual informa­
t ion about the sequence of data points. Windowing can also simplify data manipulat ion. 
In the case of this thesis, the original data w i l l be segmented into non-overlapping time 
windows. 

3.2.2 In terpo la t ion 

The dataset w i l l be interpolated to achieve a more accurate reconstruction of the original 
signal, which can increase the model's abi l i ty to understand the underlying patterns. 
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3.2.3 D e r i v a t i o n 

The derivation, which w i l l be applied to the interpolated signal achieves quantification 
of the changes i n the signal. Mult iple-order derivations w i l l be calculated. The best fitt ing 
order, based on the experiments w i l l be used in the final model. 

The dataset prepared i n this way is finally ready for the extraction of relevant features, 
which is described in the following section. 

3.3 Feature Extraction 

Ext rac t ing the relevant features is one of the crucial steps in achieving a well-trained model 
w i th good classification results. Ex t rac ted features are the input that the learning model 
learns from during the t ra ining process. I propose u t i l iz ing the following features: 

3.3.1 T i m e - D o m a i n Features 

• statist ical features - mean, variance, standard deviation, peak-to-peak amplitude, 
skewness, kurtosis 

• zero crossing rate 

• entropies - approximate entropy, sampling entropy, spectral entropy, and singular 
value decomposition entropy ( S V D entropy) 

• Hurst exponent 

• Hjor th parameters 

3.3.2 F r e q u e n c y - D o m a i n Features 

• power spectral density (PSD) 

• band energy 

3.3.3 C o n n e c t i v i t y A n a l y s i s 

• phase locking value ( P L V ) 

The above-mentioned features were described i n the literature, where they achieved 
good results in s imilar classification tasks and, therefore, w i l l be used i n models described 
in this thesis [32]. 

3.4 Classification 

This section describes the divis ion of the dataset into classes evaluating the stress stages 
experienced by the subjects and proposed classification models. 
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3.4.1 Stress Stages Classes 

Firs t , the way of stress stage classification has to be decided. The dataset provides trials 
w i th labels i n the range from one to ten, where one is the m i n i m u m value of stress and ten 
is the m a x i m u m value of stress. Th is thesis deals w i th the classification of stress into three 
classes. The original labels w i l l be distr ibuted into the following classes describing the sub­
ject's experiences - not stressed, moderate stressed, and very stressed. The not stressed 
stage represents the original labels in the range from one to two. The moderate stressed 
stage includes the original labels i n the range from three to five and finally, the very stressed 
stage symbolizes the original labels i n the range from six to ten. 

3.4.2 Class i f i cat ion M o d e l s 

Classification task experiments w i l l be performed wi th two different learning algorithms 
to create the op t imal classifier of the stress stage. F i rs t , the Support Vector Machine 
( S V M ) , a machine learning algori thm, w i l l be employed. The second algori thm ut i l ized w i l l 
be the L o n g Short-Term Memory ( L S T M ) , a deep learning algori thm. Different projects 
that used these algorithms for stress stage classification tasks achieved accurate results. 
More detailed information about the results of these projects is provided i n section 2.5. 
In bo th cases, experiments w i th varying models w i l l be performed and compared. 

S V M Models 

• S V M wi th sigmoid kernel 

. S V M w i t h R B F kernel 

• S V M wi th polynomia l kernel 

• S V M wi th linear kernel 

Two-Layer and Three-Layer L S T M M o d e l 

Simple two-layer L S T M and three-layer L S T M models are proposed. B o t h L S T M layers 
contain 40 neurons. The last L S T M layer of both of these models is followed by a dropout 
layer w i th a dropout rate of 0.3. In both cases, the dropout is followed by a linear layer. 
The last layer is the softmax layer, which outputs the probabil i ty of each class of the clas­
sifier. B o t h models are inspired by studied literature [51]. 
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Figure 3.2: The i l lustrat ion of the model w i t h a two-layer L S T M on the left and then 
wi th a three-layer L S T M on the right. 

Advanced L S T M M o d e l 

The th i rd proposed L S T M model is more complex than the previous two. Because of these 
reasons, it is called the advanced L S T M model . The base of this model is almost the same 
as i n the previous two-layer L S T M - two layers of L S T M wi th 40 neurons followed by 
the dropout layer w i th a dropout rate of 0.5. The next layer is the sigmoid activation 
function layer w i th 20 neurons, again followed by a dropout layer w i th a dropout rate 
of 0.5. The following layer is the rectifier activation function ( R e L U ) . The R e L U can 
be very helpful when dealing wi th the vanishing gradient problem [62]. The last layer 
is the same as i n the previous two models - a softmax layer. Th is model is inspired by 
a studied literature [60]. 
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Figure 3.3: The i l lustrat ion of the more advanced model of the L S T M . 

3.5 Validation 

This section describes the employed methods of val idat ion. F i rs t , the dataset w i l l be split 
into a t raining set and a testing set. The t ra ining set w i l l be created as a randomly chosen 
series of data formed by 80 % of the original dataset. The other 20 % w i l l be later used 
as the testing dataset. Another val idat ion approach that w i l l be used is the Stratified K - F o l d 
Cross-Val idat ion. The purpose is to avoid potential problems wi th the underrepresentation 
of any of the classes. The t ra ining dataset w i l l be split into a number of folds. A new 
model w i l l be trained on each fold. The best of these models w i l l be selected and used 
for the final testing on the separated 20 % of the dataset, the testing set. A concise 
i l lustrat ion of the validat ion process is provided i n figure 3.4. 
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Figure 3.4: The scheme i l lustrat ing the val idat ion process proposed in this thesis [11]. 
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Chapter 4 

Implementation 

This chapter focuses on further describing the implementat ion details. The solution was 
created using P y t h o n programming language, which provides powerful libraries specialized 
in implementing machine learning and deep learning algorithms, processing E E G data, 
and other useful functionalities important for this thesis. It is necessary to mention the ut i ­
l ized libraries and further describe the philosophy of this solution. The object-oriented 
programming paradigm was employed. The implementat ion is based on the methodology, 
that was proposed i n chapter 3. 

4.1 Data Augmentation 

Dur ing the model t ra ining experiments, the S A M 4 0 dataset turned out to be too small 
to efficiently t ra in on such complex data as E E G recordings. Further information about 
the dataset is in section 3.1. The t ra ining process of deep learning models requires large 
amounts of data. Therefore, it was decided to uti l ize data augmentation to achieve more 
accurate results. Th is approach has proven to be successful. Three different methods 
of data augmentation and a combination of them were applied to the dataset S A M 4 0 . 

The first set of augmented data was achieved by shifting the original signals. D a t a from 
al l trials were separately shifted, either to the right or left, depending on the randomly 
generated integer i n the range of -50 to +50. The range of values used in randomizat ion 
was derived by experiments. The second set of augmented data was performed by adding 
a Gaussian noise to the original signal. This method creates random samples from a Gaus­
sian dis t r ibut ion according to set parameters. The generated Gaussian noise had a mean 
dis tr ibut ion of 0 and a standard deviation of 0.05. The th i rd data augmentation was ac­
complished by a combinat ion of the two previous techniques. The fourth and final set 
of augmented data was created by scaling the original signal. The random scaling transfor­
mat ion was applied w i t h a random scale factor between 0.8 and 1.2 [37]. 

In this manner, the original dataset w i t h 480 trials was expanded to 2400 trials. 

4.2 Object-Oriented Design 

This section describes the object-oriented design ut i l ized i n the implementation. The object-
oriented paradigm was used to reach an easier orientation i n the code and troubleshooting. 
Another advantage is the possibil i ty of comfortable edit ing and flexible replacement, re­
moval, or addi t ion of modules if needed. 
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This approach allows easy use of varying datasets and comfortable experimentation 
wi th data preparation. M a n y different feature extractions can be used, and addi t ional 
ones can be implemented easily. The underlying learning algori thm can be easily swapped 
for a new one. 
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Figure 4.1: Class diagram. 

4.3 Data Loading 

The files are loaded one by one from the original . mat format into the array using the glob () 
function from glob l ibrary and loadmatO function from scipy l ibrary. The array pre­
serves the dimension of the input data to mainta in the information about the t ime window 
and the posit ion of the E E G channel. Accord ing to the name of the .mat file, the corre­
sponding label is found in the .xls file w i th labels and assigned to one of the three classes 
representing the stress stage. The new label is stored i n the label array. The .xls file 
is processed using the read_excel() function from pandas l ibrary. 

4.4 Data Preparation 

D a t a segmentation is the first step i n preparing the dataset. The t ime durat ion of the single 
t ime window is 1 s. Accord ing to the literature, using a window size shorter than 0.5 s can 
corrupt the data patterns and degrade the performance of the model [2]. A t the same time, 
we want to keep the number relatively low to get as much t ra ining data as possible. 
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Then, the data is interpolated. Since the E E G data is non-periodic, the B-spline, 
which is the non-periodic interpolation function, is used to achieve the desired results. U t i ­
l iz ing the interpolation, the sampling rate is increased to 300. Interpolation is implemented 
using the make_interp_spline () function from interpolate module of scipy l ibrary. 

The last step of data preparation is calculat ing the derivatives. Derivative of any order 
can be computed. The best results were obtained wi th the first and second-order derivatives. 
The second-order derivative is, therefore, incorporated i n the implementat ion of the final 
model. The derivatives are implemented using the gradient () function from numpy l ibrary. 

4.5 Feature Extraction 

Ext rac t ion of a l l proposed features in chapter 3 is implemented. For these pur­
poses is ut i l ized the FeatureExtractor class from the feature_extraction module 
of the mne_f eatures l ibrary. Th is class provides a very elegant solution for extract­
ing features using the bui ld- in mne_features module's functions without a large num­
ber of repetitive code. The features to be extracted are specified as the input parameter 
for the in i t ia l iza t ion of this class. Th is class expects the input parameter to be a list 
w i th names of mne_f eatures bu i ld- in functions designed for feature extraction. For sim­
plicity, an enumerator w i th the names of these functions was created. Since the l ibrary 
is focused on the feature extraction of the E E G data, the dimension of the data array, 
which maintains information about the E E G channel posit ion and time window of the data, 
does not have to be changed. 

4.6 Classification 

This section describes the necessary steps to load the dataset into the model, implement 
the classifiers, and validate the model. 

In cases of both S V M and L S T M classifiers, the same validat ion techniques are ap­
plied. The first step is to split the dataset into the t ra ining and the testing set using 
the t r a i n _ t e s t _ s p l i t ( ) function from sklearn.model_selection module. The train­
ing set matches 80 % of the dataset. The remaining 20 % corresponds to the testing set. 
The Stratified K - f o l d Cross-Val idat ion technique (3.5) is applied to the t raining dataset. 
The t ra ining dataset is split into 5 different folds. Va ry ing numbers of folds were tr ied i n ex­
periments, including the very common 10 folds in the literature, but the best results were 
achieved wi th 5 folds. The effective number of folds corresponds wi th the size of the dataset. 
The stratified k-fold cross-validation was implemented using the S t r a t i f iedKFoldO func­
t ion from the sklearn.model_selection module. 

4.6.1 S u p p o r t V e c t o r M a c h i n e ( S V M ) 

The S V M is the first model implemented i n this solution (2.4.5). A l l models mentioned 
in the proposed methodology chapter 3 were implemented and tested in numerous experi­
ments. Va ry ing settings of the hyper parameters were applied and tested. The implementa­
t ion of the model is realized using the SVM() function from sklearn.SVM module. The tun­
ing of the model's hyperparameters is supported u t i l iz ing the GridSearchCVO function 
from sklearn.model_selection module. Th is function provides a search for the opt imal 
hyper parameter setting of the specified model ( S V M ) . The specific parameter gr id contain­
ing the dict ionary of hyperparameters to be applied has to be the input of this function 
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and delivers an option to easily apply a whole range of hyperparameters. The opt imizat ion 
is achieved by cross-validation grid-search over the parameter grid, specifically the stratified 
k-fold cross-validation i n the case of this solution. The hyperparameters, that are employed 
in the S V M are the kernel function and the c parameter. The c parameter is balancing 
the trade-off between the low tra ining error and the potential of enabled misclassification 
2.4.5. The best combination is applied i n the final model. 

4.6.2 L o n g S h o r t - T e r m M e m o r y ( L S T M ) 

The layers applied i n the L S T M model are further described i n the proposed methodology 
chapter 3.4.2. The L S T M model layers are implemented using the nn module from the torch 
library, so the first step to achieving a classification model is to transform the input fea­
tures into data type, which is required by this l ibrary - tensors. Torch l ibrary provides 
a whole range of functions that simplify the work wi th the data, such as TensorDataset, 
which transforms the data into the tensor dataset format, and the DataLoader function, 
which provides the easy loading of the dataset into the model. 

The opt imizat ion algori thm used for the opt imizat ion of the weights of the L S T M 
is the A d a m optimizer from the torch.optim module. Other opt imizat ion algorithms were 
tested in experiments, but the models using the A d a m optimizer achieved better results. 
A d a m optimizer is computat ional ly efficient and, at the same time, has low memory require­
ments. It minimizes the oscillations during gradient descent when approaching the global 
min imum, and the step size is large enough to pass the local m i n i m u m [25]. 

The learning rate hyperparameter is tuned using the ExponentialLRO function 
from the torch. optim. lr_scheduler module. This function provides a learning rate sched­
uler that supplies the exponential decrease of the learning rate value wi th every epoch [16]. 

The model's performance is quantified using the torch .nn module CrossEntropyLoss () 
function. Th is function measures the model's performance based on the probabilities output 
by the model and is suitable for multi-class classification [10]. 

4.7 Displaying the Results 

The progress of the t ra ining process is monitored by pr int ing the loss value. The classifica­
t ion abi l i ty of the model is evaluated using the c l a s s i f ication_report function, which cal­
culates the validat ion metrics, like accuracy, precision, f-1 score, etc., and wi th the con-
fusion_matrix function, which prints the confusion matr ix . B o t h functions are from 
the sklearn.metrics module. The matplotlib.pyplot module is employed to plot 
the graphs. Th is solution also provides functionality that generates pictures of the topomaps 
i l lustrat ing the changes of the specified extracted feature, e.g., P S D , of a specified brainwave 
frequency band and a time. This functionality is implemented wi th the plot_topomap func­
t ion from mne. v i z module. Final ly , this implementat ion provides a functionality, that cre­
ates a G I F from saved topomaps of a specified t r ia l . For these purposes, the imageio l ibrary 
is used. 
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Chapter 5 

Results 

This chapter describes the results achieved wi th the proposed and subsequently imple­
mented classifier models. The achievements are compared wi th the results presented in the sci­
entific literature. 

Regardless of the stress response phase, stress typical ly manifests i n a decrease of alpha 
power, and an increase of beta power, bo th especially in the frontal lobe. Stress also 
manifests itself i n other measures further described i n 2.5. Figure 5.2 illustrates the alpha 
band power spectrum from the frontal lobe E E G channels of subject n . 20 during the 1. 
t r i a l of the ari thmetic task. This t r i a l is classified as very stressed class. For comparison, 
the figure 5.1 depicts the alpha band power spectrum from the frontal lobe E E G channels 
of subject n . 1 during the 1. t r ia l of the relaxation, which is classified as not stressed class. 
A decrease in the alpha power when experiencing stress i n comparison wi th relaxation 
is evident just at a glance on plots of some E E G channels, e.g., F p i and Fp2 (both have 
a green color of the line varying in shade). 

EEG 
135 -r 

B.O 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 
Frequency (Hz) 

Figure 5.1: The alpha band power spectrum from the frontal lobe E E G channels of the sub­
ject i n a not stressed state - specifically subject n . 1, the 1. of the relaxation. 

For a better i l lustrat ion, the topomaps wi th the P S D of 3 t ime windows depicting 
the corresponding t r i a l are supplied i n figures 5.3, 5.4, and 5.5. A decrease i n alpha power 
in t ime can be observed i n several channels of the frontal and parietal lobes. It is important 
to mention that this progression does not have to be observed i n a l l t ime windows because 
an electroencephalogram consists of highly dynamic data due to the other ongoing brain 
processes and has to be judged more likely in its entirety. 

33 



EEG 

130 -130 -

A ^ ' t o ? 
120 -120 -

110 -

100 " 
Vi V 

\/ V ' iWi \''N[f 
' \ / w 

90 90 

B.O 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 
Frequency (Hz) 

Figure 5.2: The alpha band power spectrum from the frontal lobe E E G channels of the sub­
ject i n a very stressed state - specifically subject n . 20, the 1. t r i a l of the ari thmetic task. 

Figure 5.3: Topomap 
wi th the P S D of the 1. 
t ime window (0 - 1 s) 
of the ari thmetic t r ia l , 
which is classified as a very 
stressed. 

Figure 5.4: Topomap 
wi th the P S D of the 2. 
t ime window (1 - 2 s) 
of the ari thmetic t r ia l , 
which is classified as a very 
stressed. 

Figure 5.5: Topomap 
wi th the P S D of the 6. 
t ime window (5 - 6 s) 
of the ari thmetic t r ia l , 
which is classified as a very 
stressed. 

A detailed study of stress phases i n the E E G data is, however, not the purpose of this the­
sis, and therefore is not further discussed. 

The following lines focus on the evaluation and the summary of the results achieved 
wi th implemented classification models. A l l models proposed in chapter 3 were created. 
A description of the implementat ion details is provided i n chapter 4. 

F ind ing a suitable setting for data preparation, t ra ining models w i th a number of ex­
tracted features one by one and i n groups, and t ra ining varying classification models 
w i th a whole range of hyperparameters that have to be tuned is quite a t ime-consuming pro­
cess. For these reasons, only certain combinations of input parameters were tested as a part 
of the solution. 

The first achieved results were not satisfactory. Even when using the parameter grid 
for the tuning of the S V M hyperparameters, the best accuracy achieved was 41 %. Va l ida­
t ion metrics are described in table 5.1 in more detail . 
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classes precision (%) recall (%) fl-score (%) support (-) 
not stressed 0.42 0.56 0.48 41 
moderate stressed 0.36 0.36 0.36 36 
very stressed 0.60 0.16 0.25 19 
accuracy 0.41 96 
macro avg 0.46 0.36 0.36 96 
weighted avg 0.43 0.41 0.39 96 

Table 5.1: Val ida t ion metrics achieved wi th the S V M model w i th the original dataset. 
Ext rac ted feature loaded into the model was P S D . 

The results acquired w i t h the L S T M models were just as problematic. A s described 
in the table 5.2, the best achieved accuracy was 44 %. 

classes precision (%) recall (%) fl-score (%) support (-) 
not stressed 0.39 0.41 0.40 32 
moderate stressed 0.45 0.60 0.51 35 
very stressed 0.50 0.28 0.36 29 
accuracy 0.44 96 
macro avg 0.45 0.43 0.42 96 
weighted avg 0.45 0.44 0.43 96 

Table 5.2: Val ida t ion metrics achieved wi th the two-layer L S T M model w i th 40 hidden 
neurons using Hjor th parameters extracted from the original dataset as an input. 

One of many problems these models' had was the uneven dis t r ibut ion of classes i n train­
ing and testing datasets and probably the insufficient quantity of t ra ining data. Even after 
testing many combinations of hyperparameters, extracted features, ways of data prepara­
t ion, and implementat ion of the stratified k-fold cross-validation, which solves the problem 
of uneven class dis t r ibut ion, the results d id not improve. Tha t is when data augmenta­
t ion, which was mentioned in the literature as a helpful solution when dealing wi th small 
datasets, came into consideration. D a t a augmentation finally turned out to be the right 
solution. 

Experiments w i th varying features extracted from the original dataset revealed the best 
results by using Hjor th parameters, power spectral density ( P S D ) , and phase-locking value 
( P L V ) . Therefore, further experiments w i th the augmented dataset were performed only 
wi th these features. 

Despite high expectations, the advanced L S T M model turned out to be the worst 
of the proposed models. This model was inspired by the one introduced i n the litera­
ture, where authors classify stress into four classes and achieved an accuracy of 93.27 %. 
The best result achieved wi th this model wi th in this solution is described in table 5.3. 
There can be several reasons why this model was unsuccessful, s tart ing wi th the excessive 
complexity of the model i n view of the dataset and the inappropriate setting of hyperparam­
eters, ending w i t h issues caused by unsuitable combinations of layers according to different 
studied literature. Another reason why the results of this model might be worse is because 
of the less precise process of the hyperparameter tuning, which was not performed due 
to t ime constraints. 
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classes precision (%) recall (%) fl-score (%) support (-) 
not stressed 0.52 0.59 0.55 152 
moderate stressed 0.56 0.53 0.55 187 
very stressed 0.52 0.49 0.50 141 
accuracy 0.54 480 
macro avg 0.53 0.53 0.53 480 
weighted avg 0.54 0.54 0.53 480 

Table 5.3: Val ida t ion metrics achieved wi th the advanced L S T M model using the Hjor th 
parameters extracted from the augmented dataset. 

A m o n g the two-layer L S T M models, the best results were achieved wi th the two-layer 
L S T M model w i th 40 hidden neurons. The accuracy earned by testing this model is 67 %. 
Other val idat ion metrics are depicted i n table 5.5. The phase locking value ( P L V ) was 
extracted from the second-order derivative values of the augmented dataset. The setting 
of the L S T M hyperparameters is described i n table 5.4. Information about incorporated 
layers is in more detai l described in section 3.4.2. 

hyperparameter value 
batch size 50 
number of epochs 200 
learning rate 0.0007 
learning rate decay 0.999 

Table 5.4: Sett ing of two-layer L S T M hyperparameters w i th the best results, 

classes precision (%) recall (%) fl-score (%) support (-) 
not stressed 0.67 0.69 0.68 159 
moderate stressed 0.69 0.72 0.70 203 
very stressed 0.62 0.55 0.58 118 
accuracy 0.67 480 
macro avg 0.66 0.65 0.66 480 
weighted avg 0.67 0.67 0.67 480 

Table 5.5: Val ida t ion metrics achieved wi th the best version of the two-layer L S T M model 
w i th 40 hidden neurons i n each layer. Phase locking value was extracted feature i n this 
model. 

Ex t rac t ing the phase-locking value ( P L V ) from the second-order derivative of the aug­
mented dataset achieved the best results among the three-layer L S T M models. The vali­
dation metrics achieved wi th the testing dataset are summarized i n the table 5.7. Further 
description of the model is provided in section 3.4.2. The setting of hyperparameters is de­
picted i n table 5.6. 

It was already mentioned before that this implementat ion uses a parameter gr id as an in­
put w i th the hyperparameters for the S V M model . A more detailed description of the pa­
rameter gr id and the GridSearchCVO function is i n section 4.6.1. The best results of S V M 
models were achieved wi th the parameter gr id containing the list of c parameters and the list 
of kernel functions set as in the following code snippet. The parameter gr id is the il lustrated 
P y t h o n dict ionary called svm_parameters. 
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hyperparameter value 
batch size 50 
number of epochs 300 
learning rate 0.0007 
learning rate decay 0.999 

Table 5.6: Sett ing of three-layer L S T M hyperparameters that achieved the best results. 

classes precision (%) recall (%) fl-score (%) support (-) 
not stressed 0.72 0.69 0.70 163 
moderate stressed 0.72 0.75 0.74 179 
very stressed 0.65 0.64 0.65 138 
accuracy 0.70 480 
macro avg 0.70 0.70 0.70 480 
weighted avg 0.70 0.70 0.70 480 

Table 5.7: Val ida t ion metrics achieved wi th the best version of the three-layer L S T M model 
w i th 40 hidden neurons in each layer. The extracted feature in this model was the phase-
locking value ( P S D ) . 

svm_parameters = { 
' C : [ 0 . 1 , 1 , 1 0 , 1 0 0 , 1 0 0 0 ] , 
'kernel' : ['sigmoid', 'linear', 'poly', ' r b f ] 

} 

Next , Hjor th parameters were extracted from the first-order derivative values of the aug­
mented dataset. S V M model w i th this setting achieved an accuracy of 90 %, which is the best 
classification result gained i n this thesis. Other val idat ion metrics are depicted i n table 5.8. 

classes precision (%) recall (%) fl-score (%) support (-) 
not stressed 0.95 0.87 0.91 187 
moderate stressed 0.82 0.96 0.89 171 
very stressed 0.96 0.85 0.90 122 
accuracy 0.90 480 
macro avg 0.91 0.90 0.90 480 
weighted avg 0.91 0.90 0.90 480 

Table 5.8: Val ida t ion metrics achieved wi th the best version of the S V M model. 

5.1 Summary 

This section summarizes the results of the created classifiers and discusses them i n compar­
ison w i t h those found in the literature. The table 5.9 recapitulates the acquired validat ion 
metrics of the proposed and implemented models i n this thesis. 

Research done as a part of this thesis found two articles dealing w i t h the same topic, 
using similar learning algorithms and the S A M 4 0 dataset. The first of these articles de­
scribes a classifier of two stress stages, a stressed and not stressed class. This solution 
is based on learning multi-variate weighted vis ib i l i ty graphs wi th G r a p h Signal Processing 
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model accuracy (%) precision (%) recall (%) fl-score (%) 
S V M 0.90 
two-layer L S T M 0.67 
three-layer L S T M 0.70 
advanced L S T M 0.54 

0.91 
0.66 
0.70 
0.53 

0.90 
0.65 
0.70 
0.53 

0.90 
0.66 
0.70 
0.53 

Table 5.9: Summary of the validat ion metrics achieved wi th implemented models - accuracy, 
macro average precision, macro average recall, and macro average fl-score. 

( G S P ) techniques as feature extraction and subsequent classification using S V M . The results 
achieved wi th this approach are comparable w i th those achieved in this thesis, but it is im­
portant to highlight that it was a classifier of two classes, not three. The accuracy that was 
achieved was 93.38 % [42]. 

The second article represents a complex solution using the L S T M . F i rs t , the Discrete 
Wavelet Transform and Part ic le Swarm Opt imiza t ion ( D W T - P S O ) based pre-processing 
was applied. The classification is based on the hybr id deep learning model using G r i d Search 
Hyper parameter Opt imiza t ion ( G S H P O ) based stacked Bidi rec t ional L S T M and L S T M . 
Accord ing to the studied article, the accuracy of this binary classifier is remarkably 98.07 %. 
The model described in this solution provides better results and, therefore, might be a bet­
ter solution for this classification task, but it is s t i l l only a binary classifier [31]. 

In comparison wi th the literature, the S V M model created i n this thesis provides good 
ternary classification results w i th an accuracy of 90 %. The three-layer L S T M model 
provides relatively good results w i t h an accuracy of 70 %, which leaves space for future 
work on tuning the hyper parameters. 
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Chapter 6 

Conclusion 

This thesis aimed to create a machine learning classifier that detects a patient's stage 
of stress based on E E G recordings. G iven the increase of mental health issues i n the pop­
ulat ion observed in recent years, the topic of this thesis is very relevant. It is proven 
that chronic stress can significantly worsen the state of patients w i th mental health issues 
and can also be a triggering factor for depression, anxiety, or burnout syndrome. There­
fore, early detection of chronic stress among patients might be very beneficial. Electroen­
cephalography ( E E G ) , i n connection wi th machine learning and deep learning algorithms, 
provides a cheap, non-invasive, and effective solution to this problem. 

This thesis explored the basics of E E G and outl ined the architecture of the human brain 
on a level relevant to this study. Furthermore, it studied the mechanism of stress and, above 
al l , the analysis of E E G features, specifically feature extraction, selection, and machine 
learning and deep learning algorithms used for classification. A n overview of the current 
state of research was also provided. 

This thesis successfully implemented and tested various ternary classification models us­
ing Support Vector Machine ( S V M ) - a machine learning algori thm, and L o n g Short-Term 
Memory ( L S T M ) - a deep learning algori thm. The best results were achieved through 
the applicat ion of data augmentation techniques and extraction of Hjor th parameters 
and of a phase locking value ( P L V ) . A n accuracy of 90 % was achieved using the S V M 
model. The advantage of this model is a ternary classification. In comparison, a previ­
ously published article achieved comparable results but only wi th a binary classifier [42]. 
The best L S T M model implemented wi th in this thesis was a three-layer L S T M , which 
achieved a ternary classification accuracy of 70 %. This result leaves potential for further 
improvements by tuning the hyper parameters, or modifying the architecture of the model's 
layers themselves. 
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Appendix A 

Contents of the Included Storage 
Media 

Directory Description 
objects/ Directory wi th .py scripts implementing classes. 
S A M 4 0 / Directory wi th data_ augment at i on. py script 

where should be placed the S A M 4 0 dataset, 
specifically scales.xls and filtered_data folder. 

docs/ Directory wi th .tex files and other content of the thesis. 

Table A . l : Directories of the included storage media. 

The root directory also contains main .py script, Makefile, README.md, 
requirements.txt and thesis.pdf w i th the bachelor's thesis text. 
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