

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

MODELOVÁNÍ VLASTNOSTÍ PŘENOSOVÉHO KANÁLU U XDSL SYSTÉMŮ

MODELLING OF THE PROPERTIES OF TRANSMISSION CHANNEL FOR XDSL SYSTEMS

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE

PAVEL NEPOVÍM

VEDOUCÍ PRÁCE SUPERVISOR ING. ONDŘEJ KRAJSA

BRNO 2009

Abstract

Cílem práce je objasnit čtenáři problematiku modelování přenosových vlastností metalických symetrických vedení, které jsou stále nejběžnějším přenosovým médiem v přístupových sítích, kde jsou nasazovány digitální účastnické přípojky xDSL (Digital Subscriber Line).

Nejdříve jsou uvedeny konstrukční prvky metalických symetrických vedení, jejich přenosové parametry (primární a sekundární) a modely modelující tyto parametry. Dále jsou popsány ABCD přenosové parametry, které charakterizují vedení jako dvojbran, a pomocí kterých je získána výsledná přenosová funkce vedení.

Ověření teoretických poznatků poskytuje aplikace vytvořená v prostředí Matlab. Tato aplikace umožňuje zvolit charakter vedení a získanou přenosovou funkci tohoto vedení aproximovat pomocí IIR filtrů.

Klíčová slova

xDSL Metalické symetrické vedení ABCD parametry Přenosová funkce IIR Yulewalk

Abstract

The aim of the thesis is introduce problems of the modelling transmission properties of the metallic symetric cables that are always the most often transmission cables on access networks where the xDSL systems are installed.

At first the structual features of the metallic symetric cables, theirs transmission properties (primary and secondary) and models of these parametres are shown. Then the ABCD transmission parameters that characterized the transmission line as a two-port network are described, by force of that the transfer function is obtained.

The aplication which was created in Matlab offers to check of the theoretical knowledges . This aplication makes it possible to choose the character of transmission line and to approximate the obtained transfer function of this transmission line.

Key words

xDSL Metallic symetric cables ABCD parameters Transfer function IIR Yulewalk

NEPOVÍM, P. *Modelování vlastností přenosového kanálu u xDSL systémů.* Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2009. 45 s. Vedoucí bakalářské práce Ing. Ondřej Krajsa.

Prohlášení o původnosti práce

Prohlašuji, že svou bakalářskou práci na téma Modelování vlastností přenosového kanálu u xDSL systémů jsem vypracoval samostatně pod vedením vedoucího bakalářské práce s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny uvedeny v seznamu literatury na konci práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení § 152 trestního zákona č. 140/1961 Sb.

V Brně dne 29. 5. 2009

podpis autora

Poděkování

Děkuji vedoucímu bakalářské práce Ing. Ondřejovi Krajsovi, za velmi užitečnou metodickou pomoc a cenné rady při zpracování práce.

V Brně dne 29. 5. 2009

.....podpis autora

Obsah

Úvod	10
1 Telekomunikační síť	11
2 Systémy xDSL a důvody jejich zavádění	12
2.1 Rozdělení systémů xDSL	
3 Telekomunikační vedení	14
3.1 Symetrická vedení	14
4 Modelování parametrů vedení	16
 4.1 Modely popisující parametry symetrických vedení	
5 Aproximace přenosové funkce modelu vedení	
 5.1 Vlastnosti číslicových IIR filtrů 5.1.1 Metody návrhů IIR filtrů 5.2 Funkce Yulewalk 5.2.1 Použití funkce Yulewalk pro aproximaci přenosové funkce 	
6 Závěr	35
Seznam použité literatury	37
Seznam použitých zkratek	
Seznam přílohy	
Přílohy	40

Seznam obrázků

Obr. 1.1 Telekomunikační řetězec přenosu zprávy	11
Obr. 3.1 Typy symetrických prvků	14
Obr. 3.2 Skupinová konstrukce zemních nebo místních kabelů	15
Obr. 4.1 Element homogenního vedení délky dx	16
Obr. 4.2 Vliv délky vedení na vložný útlum	22
Obr. 4.3 Vliv odbočky na průchozí signál vedením	23
Obr. 4.4 Vliv odbočky na vložný útlum vedení	23
Obr. 4.5 Vedení jako dvojbran	24
Obr. 4.6 Kaskádně řazené úseky vedení jako dvojbrany	24
Obr. 4.7 Úsek vedení s nezakončenou odbočkou zapojené jako dvojbrany	25
Obr. 4.8 Model vedení	26
Obr. 4.9 Struktury testovacích ANSI smyček	27
Obr. 4.10 a) Přenosová funkce testovacích smyček ANSI T.601#2, T.601#5,	
T.601#9	28
Obr. 4.10 b) Přenosová funkce testovacích symček ANSI T.601#13, CSA#4,	
CSA#7	29
Obr. 5.1 Postup aproximace přenosové funkce	32
Obr. 5.2 Návrh fázovacího článku	33
Obr. 5.3 Rozložení nulových bodů a pólů fázovacího článku 2. řádu	33
Obr. 5.4 Rozložení nulových bodů a pólů fázovacího článku 4. řádu	34

Seznam tabulek

Tab. 2.1 Přehled typů přípojek systémů xDSL	
Tab. 4.1 Popis kabelových prvků pro model BT#1	
Tab. 4.2 Popis kabelových prvků pro model ANSI	
Tab. 4.3 Popis kabelových prvků pro model KPN#1	

Úvod

Systémy xDSL (Digital Subscriber Line) neboli digitální účastnické přípojky umožňují vysokorychlostní datový přenos po stávajících metalických účastnických vedení. Tyto vedení jsou v převážné míře realizovány symetrickými kabely.

V této práci budou objasněny základní konstrukční prvky symetrických kabelů, přenosové parametry a principy modelování těchto parametrů. Dále budou vysvětleny principy pro určení přenosové charakteristiky a její aproximace pomocí číslicových IIR filtrů. Zjištěné teoretické poznatky budou aplikovány na vytvoření aplikace v prostředí Matlab, umožňující zvolit charakter vedení a parametry aproximace přenosové funkce. Výstupem aplikace budou koeficienty IIR filtrů, které budou aproximovat přenosovou funkci zvoleného modelu vedení modulově i fázově.

1 Telekomunikační síť

Telekomunikační řetězec pro poskytnutí některé z informačních služeb může vypadat dle obrázku 1.1. Zdroj informace ZI (např. PC) vyšle signál nesoucí informaci účastnickému koncovému zařízení UKZ (např. modem), kde dojde k úpravě signálu (modulace, kódování atd.), na tvar vhodný pro přenos v dané telekomunikační síti. Dále signál postupuje do síťového uzlu SU (např. tlf. Ústředna; tvoří rozhraní mezi přístupovou a transportní sítí), kde dochází ke směrování a postupnému šíření signálu přes další SU k uživateli (spotřebitel informace SI), na jehož straně dochází k inverzním úpravám signálu než na straně zdroje informace.

Obr. 1.1: Telekomunikační řetězec přenosu zprávy

Telekomunikační síť se dá tedy rozdělit na dvě hlavní sítě, na síť přístupovou a síť transportní (páteřní). Transportní síť zajišťuje přenos a směrování informace na velké vzdálenosti mezi síťovými uzly sítě. Přenosovým médiem v transportní síti můžou být dnes hlavně optický kabel nebo rádioreléový spoj, metalické vedení není do budoucna perspektivní. Tyto sítě jsou prakticky neustále vytíženy, přenosové rychlosti se pohybují v řádech desítek Gb/s.

Přístupová síť plní funkci přizpůsobení účastnického koncového zařízení na síťové uzly transportní sítě, přenosu signálu mezi účastnickými koncovými zařízeními a síťovými uzly transportní sítě, multiplexování a demultiplexování signálů k efektivnímu využití přenosových médií, pružné přizpůsobování potřebné provozní kapacity a třídění provozní zátěže, což umožňuje směrování signálu na příslušná rozhraní. Přenosovým médiem v přístupových sítích je ve většině případů metalické vedení.

2 Systémy xDSL a důvody jejich zavádění

Metalické vedení v přístupových sítích bylo několik desítek let využíváno pouze pro přenos nízkofrekvenčního hovorového signálu v pásmu 300 – 3400 Hz (klasický telefon), avšak umožňuje přenášet signály s mnohem větší šířkou frekvenčního pásma. Postupem času, s rozmachem telefonních přístrojů, byly zaváděny vícenosné tlf. systémy (primární, sekundární skupina atd.) pro přenos více hovorů po jednom tlf. kanále. S rozvojem Internetu se dostaly do popředí analogové tlf. modemy. Jejich nevýhody jsou hlavně malá přenosová rychlost (56 kb/s) a neumožňuje současný přenos dat a vést tlf. hovor, proto nejsou nejefektivnějším řešením pro vysokorychlostní přenos dat.

V místech, kde neexistuje pevný datový okruh (LAN, WLAN apod.) nebo přípojka kabelové televize a naopak nechybí běžná tlf. přípojka, je pro nejefektivnější vysokorychlostní datový přenos výhodné nasazovat na účastnické vedení systémy xDSL (Digital Subscriber Line). Původně měly sloužit pro přenos videa a televize po účastnickém vedení, ale s rozvojem Internetu se tyto předpoklady nenaplnily a dnes slouží výhradně jako přípojka na Internet. Je třeba si uvědomit, že technologie xDSL, na rozdíl od modemů neumožňuje přenášet signál celým tlk. řetězcem, ale pouze mezi koncovým zařízením uživatele a síťovým uzlem (ústřednou) připojeným na datovou síť.

Největší výhody systémů xDSL jsou

- Vysokorychlostní přenos dat, až desítky Mb/s
- Jako přenosové médium efektivně využívá stávající účastnické (metalické) přípojky, tím odpadá složitá a finančně náročná instalace nových vedení
- Umožňují současný přenos dat a běžné telefonování, přenos dat je uskutečněn na vyšších kmitočtech než je telefonní pásmo (některé varianty xDSL toto neumožňují).

Naopak nevýhody těchto systémů jsou

- Omezený dosah od ústředny (ústředna musí být napojena na datovou síť)
- O něco málo menší skutečná rychlost než teoretická
- Časté omezení množství stahovaných dat.

2.1 Rozdělení systémů xDSL

Přehled jednotlivých typů přípojek systémů xDSL je uveden v tabulce 2.1. Tyto systémy lze dělit podle dvou kritérií, dle:

- a) symetrie šířek frekvenčních pásem přenosových směrů k účastníkovi (downstream) a od účastníka (upstream)
 - symetrický provoz downstream = upstream IDSL, HDSL, SDSL,
 SHDSL, VDSL
 - asymetrický provoz downstream > upstream ADSL, VDSL¹
- b) metody přenosu
 - v základním pásmu neumožňuje současný provoz přenosu dat a tlf.
 hovoru IDSL, HDSL, SDSL, SHDSL
 - v přeloženém pásmu umožňují současný provoz přenosu dat a tlf.
 hovoru ADSL, VDSL.

Typ přípojky	Typ provozu	Přenosová rychlost (downstream) [Mb/s]	Přenosová rychlost (upstream) [Mb/s]	Orientační dosah [km] (d = 0,4 mm)
IDSL	Symetrický	0,128	0,128	7
HDSL	Symetrický	2	2	3
SDSL	Symetrický	až 2,3	až 2,3	2 až 5
SHDSL	Symetrický	až 2,3	až 2,3	2 až 7
ADSL	Asymetrický	až 8	až 1	2 až 5
VDSL	Asymetrický	až 52	až 6,4	0,3 a 1,5
VDSL	Symetrický	až 26	až 26	

Tab. 2.1: Přehled typů přípojek systémů xDSL

¹ VDSL může být použit pro oba typy provozu, záleží na jaký je nakonfigurován.

3 Telekomunikační vedení

Metalické telekomunikační vedení lze dle konstrukčního uspořádání rozdělit do dvou skupin:

- Symetrické vedení dvojice paralelních vodičů
- Koaxiální vedení dvojice souosých vodičů.

Dále lze metalické vedení rozdělit dle instalace na:

- Nadzemní vedení vliv klimatických podmínek a velké elmag. rušení
- Úložná (zemní nebo místní) vedení umístěny v zemi (asi 80 cm) nebo domovní instalace, kde není vliv klimatických podmínek svou konstrukcí (kroucené vodiče) jsou částečně odolné proti elmag. rušení

V přístupových sítích, kde jsou nasazovány digitální účastnické přípojky xDSL, se v drtivé většině případů vyskytují symetrická vedení. Koaxiální kabely jsou vhodné pro přenos vysokofrekvenčního signálu (televizní signál, rozhlasový apod.).

3.1 Symetrická vedení

Symetrická vedení jsou tvořena dvojicí paralelních vodičů, jež mají vůči zemi shodnou (symetrickou) impedanci. Vodič je tvořen měděným (Cu) jádrem o průměru 0,4 až 0,9 mm a izolací na bázi polyethylénu PE, PVC nebo papírovou.

Stočením několika takto izolovaných žil (jádro + izolace) vznikne kabelový prvek typu pár, X (křížová) čtyřka nebo DM čtyřka. Pár vznikne stočením dvou žil s určitou délkou skrutu (obr. 3.1a). X (křížová) čtyřka je tvořena stočením čtyř žil se stejnou délkou skrutu (obr. 3.1b). DM čtyřka je realizována stočením jednoho páru délkou skrutu l_1 , druhého páru délkou skrutu l_2 a tyto dva páry jsou pak stočeny délkou skrutu l_3 (obr. 3.1c).

Obr. 3.1: Typy symetrických prvků: a) pár, b) X čtyřka, c) DM čtyřka, d) čtyři páry

Kabelové prvky uspořádané do skupin či vrstev tvoří duši kabelu (obr. 3.2), která je chráněna proti vlhkosti olověným, hliníkovým nebo plastovým pláštěm a ocelovým pancířem proti mechanickému poškození. Kovový plášť a pancíř zároveň působí jako elektromagnetické stínění. Plastový plášť bývá doplněn o hliníkovou stínící fólii.

Obr. 3.2: Skupinová konstrukce zemních nebo místních kabelů

4 Modelování parametrů vedení

Telekomunikační vedení lze považovat za vedení homogenní, které má rovnoměrně rozprostřené elektrické parametry, tj. ve všech svých částech má stejné elektrické vlastnosti. S rostoucím kmitočtem se sice projevují nehomogenity podél vedení, ale v kmitočtovém pásmu využívaném systémy xDSL lze dostatečně přesně aproximovat skutečné telekomunikační vedení vedením homogenním.

Homogenní vedení délky *l* může být rozděleno na nekonečně krátké úseky (elementy) délky *dx* (obr. 4.1). Vlastnosti takovéhoto úseku jsou popsány primárními a sekundárními parametry. Tyto parametry jsou značně závislé na frekvenci a také na druhu vodiče (průměr, materiál, ze kterého je vyroben atd.). Primární parametry jsou měrný odpor *R* [Ω /km], měrná indukčnost *L* [H/km], měrná kapacita *C* [F/km] a měrný svod *G* [S/km].

Obr. 4.1: Element homogenního vedení délky dx

Pomocí primárních parametrů jsou definovány parametry sekundární. Mezi sekundární parametry patří charakteristická (vlnová) impedance a měrná (vlnová) míra přenosu, vztahy (4.1) a (4.2).

$$\boldsymbol{Z}_{\rm c} = \sqrt{\frac{R + j2\pi fL}{G + j2\pi fC}} \qquad [\Omega/\rm{km}], \tag{4.1}$$

$$\boldsymbol{\gamma} = \sqrt{(R + j2\pi fL)(G + j2\pi fC)} = \alpha + j\beta \qquad [S/km], \tag{4.2}$$

kde α [Np/km] je měrný útlum (1 Np = 8,686 dB) a β [rad/km] je měrný fázový posuv. S rostoucím kmitočtem charakteristická impedance symetrického vedení klesá a na vysokých kmitočtech, kde platí $2\pi fL >> R$, $2\pi fC >> G$,

je reálná a konstantní

$$Z_{\rm c} = \sqrt{\frac{L}{C}} \qquad [\Omega/\rm{km}]. \tag{4.3}$$

Pokud platí, že průměry jader symetrického páru jsou mnohem menší než jejich vzájemná vzdálenost lze charakteristickou impedanci vyjádřit vztahem

$$Z_{\rm c} = \frac{1}{\pi} \sqrt{\frac{\mu}{\varepsilon}} \ln \frac{2a}{d} \qquad [\Omega/\rm{km}], \tag{4.4}$$

kde *a* je vzdálenost jader, *d* je průměr jader, μ je permeabilita jader ($\mu = \mu_0 \mu_r$) a ε je permitivita ($\varepsilon = \varepsilon_0 \varepsilon_r$). Podobně jako u charakteristické impedance lze na vysokých kmitočtech zjednodušit vztah pro výpočet měrného útlumu

$$\alpha = \frac{R}{2} \sqrt{\frac{C}{L}} + \frac{G}{2} \sqrt{\frac{L}{C}} \qquad [Np/km].$$
(4.5)

Sekundární parametry charakterizují daný úsek vedení z hlediska přenosových vlastností a lze je určit měřením. V praxi je často nutné získat ze změřených výsledků primární parametry vedení, což ukazují vztahy (4.6) až (4.9).

$$R = \alpha \operatorname{Re}\{\boldsymbol{Z}_{c}\} - \beta \operatorname{Im}\{\boldsymbol{Z}_{c}\} \qquad [\Omega/\mathrm{km}], \qquad (4.6)$$

$$L = \frac{\beta \operatorname{Re}\{\mathbf{Z}_{c}\} + \alpha \operatorname{Im}\{\mathbf{Z}_{c}\}}{2\pi f} \qquad [H/km], \qquad (4.7)$$

$$G = \frac{\alpha \operatorname{Re}\{\boldsymbol{Z}_{c}\} + \beta \operatorname{Im}\{\boldsymbol{Z}_{c}\}}{\operatorname{Re}\{\boldsymbol{Z}_{c}\}^{2} + \operatorname{Im}\{\boldsymbol{Z}_{c}\}^{2}} \qquad [S/km], \qquad (4.8)$$

$$C = \frac{\beta \operatorname{Re}\{\boldsymbol{Z}_{c}\} - \alpha \operatorname{Im}\{\boldsymbol{Z}_{c}\}}{\operatorname{Re}\{\boldsymbol{Z}_{c}\}^{2} + \operatorname{Im}\{\boldsymbol{Z}_{c}\}^{2}} \frac{1}{2\pi f} \qquad [F/km].$$
(4.9)

4.1 Modely popisující parametry symetrických vedení

Vlastnosti vedení jsou popsány primárními a sekundárními parametry, které lze získat měřením. Avšak pro postihnutí základních charakteristik a pro simulování chování systémů instalovaných na vedení je vhodné, nadefinovat funkce, které simulují jednotlivé parametry měřeného vedení. Modely pro popis symetrických vedení byly vytvořeny několika evropskými telekomunikačními institucemi a to tak, že byly změřeny frekvenční závislosti parametrů jednotlivých kabelů a byly určeny parametry funkcí, které tyto frekvenční závislosti aproximují. Jednotlivé modely jsou definované pro určité typy kabelů, které se vyskytují v přístupové síti dané země, kde byl model definován. Všechny níže uvedené vztahy jednotlivých modelů byly převzaty z literatury [1]. Dle toho jaké parametry modely simulují se dělí na:

- a) Modely modelující primární parametry (British Telecom, ANSI, Royal PTT Netherland, France Telecom, Finland Nokia)
- b) Modely modelující sekundární parametry (Swisscom, Deutsche Telecom).

4.1.1 Modely pro modelování primárních parametrů

Tyto modely modelují primární parametry *R*, *L*, *C*, *G*. Pro popis vedení z hlediska přenosových vlastností (určení přenosové funkce vedení viz. níže) je třeba znát jeho sekundární parametry. Výpočet sekundárních parametrů z primárních parametrů ukazují vztahy (4.1) a (4.2). Výhodou těchto modelů je, že byly definovány pro více typů kabelových prvků.

Model British Telecom BT#1

Tento třinácti parametrový model, vytvořený společností British Telecom, je možné použít do kmitočtů řádově desítky MHz. Přesnost modelu je do 10 MHz asi 1 %, do 20 MHz 2 – 3 %, na vyšších frekvencích (do 100 MHz) nepřesáhne pro většinu kabelových prvků 10 – 15 %. Vztahy (4.10) až (4.13) uvádějí výpočty primárních parametrů vedení.

$$R(f) = \left(\frac{1}{\sqrt[4]{R_{oc}^{4} + a_{c}f^{2}}} + \frac{1}{\sqrt[4]{R_{os}^{4} + a_{s}f^{2}}}\right)^{-1} \quad [\Omega/\text{km}]$$
(4.10)

$$L(f) = \frac{L_0 + L_\infty \left(\frac{f}{f_m}\right)^{Nb}}{1 + \left(\frac{f}{f_m}\right)^{Nb}} \qquad [H/km]$$
(4.11)

$$G(f) = g_0 f^{Nge} \qquad [S/km] \tag{4.12}$$

$$C(f) = C_{\infty} + \frac{C_0}{f^{Nce}}$$
 [F/km]. (4.13)

Parametry R_{oc} , a_c , R_{os} , a_s , L_0 , L_{∞} , N_b , f_m , g_0 , N_{ge} , N_{ce} , C_{∞} a C_0 byly stanoveny měřením, jejich hodnoty pro jednotlivé typy kabelových prvků (tab. 4.1) jsou uvedeny v příloze A.1.

Označaní	Kabelový prvek						
kabelového prvku	Počet párů	Průměr jádra [mm]	Jádro	Izolace	Stínění		
BT_dw1	1	0,91	Cu + Ca	PVC	ne		
BT_dw3	1	0,72	ocel + Cu	PVC	ne		
BT_dw5	1 + zemnící vodič	0,72	ocel + Cu	PVC	ne		
BT_dw6	1	0,81	ocel + Cu	PVC	ne		
BT_dw8	1 (nekroucený)	1,14	Cu + Ca	PVC	ne		
BT_dw10	2	0,5	Cu	PVC	ocel		
BT_dw12	1	0,9	Cu	PE	ocel + PVC + PE plášt		
BT_dwug	Zemní kabel	0,5	Cu	PE	PVC nebo Pb plášť		

Tab. 4.1: Popis kabelových prvků pro model BT#1

Model pro testovací ANSI smyčky

Americký model ANSI (American National Standarts Institute) je obdobou modelu BT#1. Pro výpočet primárních parametrů vedení také využívá vztahy (4.10) až (4.13). Kebelové prvky ANSI_TP1 jsou označovány v americké literatuře jako 26 AWG, ANSI_TP2 jako 24 AWG. Kabelové prvky ANSI_TP3 jsou identické s BT_dw10, ANSI_FP s BT_dw8. Parametry kabelů viz. příloha A.2.

Tab. 4.2: Popis kabelových prvků pro model ANSI

	Kabelový prvek						
Označení kabelového prvku	Počet párů	Průměr jádra [mm]	Jádro	Izolace	Stínění		
ANSI_TP1	1	0,4	Cu	PVC	ne		
ANSI_TP2	1	0,5	Cu	PVC	ne		
ANSI_TP3	1	0,5	Cu	PVC	ocel + PE plášť		
ANSI_FP	1	0,81	Cu + Ca	PVC	ne		

Model Royal PTT Netherland KPN#1

Devíti² parametrový model holandské společnosti Royal PTT Nethelrand modelující primární parametry. Liší se od předchozích modelů, tím že zahrnuje vliv skin efektu. Model je platný asi do frekvence 30 MHz. Tento model je zaměřen na modelování zemních nebo místních kabelů (obr. 3.2) tvořených skupinami párových čtyřek. Popis jednotlivých kabelů je znázorněn v tabulce 4.3.

$$R(f) = \operatorname{Re}\left\{ j2\pi f \frac{Z_{0\infty}}{c} + R_{ss00} \left[1 + K_1 K_f \left(\chi \operatorname{coth}\left(\frac{4}{3}\chi\right) - \frac{3}{4} \right) \right] \right\} \qquad [\Omega/m] (4.14)$$

$$L(f) = \operatorname{Re}\left\{\frac{1}{j2\pi f}\left[j2\pi f\frac{Z_{0\infty}}{c} + R_{ss00}\left[1 + K_{l}K_{f}\left(\chi \operatorname{coth}\left(\frac{4}{3}\chi\right) - \frac{3}{4}\right)\right]\right\}\left[H/m\right] \quad (4.15)$$

$$\chi(f) = (1+j) \sqrt{f \frac{\mu_0}{R_{ss00}K_f}}, \qquad (4.16)$$

$$G(f) = \frac{\tan \Phi}{cZ_{0\infty}} 2\pi f \qquad [S/m]$$
(4.17)

$$C(f) = \frac{1}{cZ_{0\infty}} \left(1 + \frac{K_c - 1}{1 + \left(\frac{f}{f_{c0}}\right)^N} \right)$$
 [F/m]. (4.18)

Parametry modelu $Z_{0\infty}$, *c*, R_{ss00} , tan Φ , K_{f} , K_{L} , K_{c} , N, f_{c0} jsou uvedeny pro jednotlivé typy kabelových prvků v příloze A.3. Konstanta μ_{0} vystupující ve vztahu (4.16) je permeabilita vakua, $\mu_{0} = 4\pi \cdot 10^{-7}$ [H/m].

² V [1] je označován jako jedenácti parametrový model, ale dva parametry jsou 1, proto je v této práci označován jako devíti parametrový model.

Typ kabelu	Struktura	Délka[km]	Popis
KPN_L1	50x4x0,5 mm	0,5	Zemní kabel, papírová izolace, Pb stínění
KPN_L2	150x4x0,5 mm	1	Zemní kabel, papírová izolace, Pb stínění
KPN_L3	48x4x0,8 mm	1,1	Zemní kabel, papírová izolace, Pb stínění
KPN_L4	150x4x0,5 mm	1,5	Zemní kabel, papírová izolace, Pb stínění
KPN_H1	30x4x0,5 mm	0,36	Místní kabel, PE izolace, nestíněný
KPN_R1	8x2x0,4 mm	0,15	STP, stínění opletením
KPN_R2	1x4x0,5 mm	0,44 STP, stíněnění fólií	
KPN_X1	2x0,5 mm	0,2	kroucený pár, nestíněný

Tab. 4.3: Popis kabelů pro model KPN#1

4.1.2 Modely pro modelování sekundárních parametrů

Výhoda těchto modelů je, že přímo modelují sekundární parametry, které popisují přenosové vlastnosti vedení. Naopak nevýhodou je, že oproti předchozím modelům byly definovány pro méně typů kabelových prvků.

Model Swisscom SWC#1

Třinácti parametrovým modelem SWC#1 byl definován pouze pro dva nejpoužívanější typy kabelových prvků ve Švýcarsku o průměrech 0,4 (SWC_40) a 0,6 mm (SWC_60) s PVC, papírovou nebo PE izolací. Frekvenční pásmo, ve kterém je možné modelovat parametry je asi do 30 MHz. Charakteristická impedance a míra přenosu se určí dle vztahů (4.19) a (4.20).

$$\boldsymbol{Z}_{\rm C}(f) = Z_{00} \left(1 + \frac{f}{f_1} \right)^{N_{e1}} e^{j \left[-\frac{\pi}{4} + C_1 \arctan\left(\frac{f}{f_2} \right) \right]} \qquad [\Omega/m], \tag{4.19}$$

$$\boldsymbol{\gamma}(f) = C_2 \frac{\ln(10)}{20} \left(\frac{1 + \frac{f}{f_4}}{1 + \frac{f_3}{f}} \right)^{N_{e^2}} + j \frac{\pi}{180} C_3 \left(\frac{f}{f_5} \right)^{N_{e^3}} \left(1 + \frac{f}{f_5} \right)^{N_{e^4}} \qquad [S/m]. (4.20)$$

Parametry modelu Z_{00} , f_1 , f_2 , f_3 , f_4 , f_5 , N_{e1} , N_{e2} , N_{e3} , N_{e4} , C_1 , C_2 , C_3 jsou opět uvedeny v příloze A.4.

4.2 Přenosová funkce vedení s více úseky a odbočkami

Z hlediska přenosových vlastností je útlum nejdůležitějším parametrem. Celkový vložný útlum *IL* (Insertion Loss) vedení délky *l* je určen vztahem

$$IL = \alpha \cdot l \qquad [dB]. \tag{4.21}$$

Vložný útlum s délkou vedení roste (obr. 4.2). Čím větší je útlum, tím je signál, který je přenášen po vedení více zatlumen a na přijímací straně zkreslen. Vložný útlum tedy omezuje dosah použitého vedení pro přenos signálu.

Obr. 4.2: Vliv délky vedení na vložný útlum (kroucený pár ANSI_TP1, d = 0,4 mm)

Vztah (4.21) platí pouze pro výpočet útlumu jednoho úseku vedení. Někdy se ale mohou na účastnickém vedení objevovat další nevyužité (nezakončené) úseky vedení. Tyto úseky, nazývané nezakončené odbočky na vedení (Bridged Trap), vznikají jak chtěně (větší flexibilita účastnické smyčky), tak nechtěně (špatná instalace). Nechtěné odbočky je třeba odstranit, naopak se chtěnými je nutno počítat při určení přenosové funkce vedení s odbočkami. Vliv odbočky na průchozí signál ukazuje obrázek 4.3.

Obr. 4.3: Vliv odbočky na průchozí signál vedením

V místě připojení odbočky se průchozí signál rozdělí na dvě složky, jedna postupuje dále po vedení, druhá se šíří odbočkou na jejím konci se odrazí a sčítá se s průchozím signálem, na vedení vznikají stojaté vlny, které způsobují lokální maxima útlumové charakteristiky (obr. 4.4).

Obr. 4.4: Vliv odbočky na vložný útlum vedení; úsek vedení – kroucený pár ANSI_TP1, d = 0,4 mm, l = 1 km; odbočka – kroucený pár ANSI_TP1, d = 0,4 mm, l = 0,2 km

Přenosová funkce vedení znázorněného na obrázku 4.3 má tvar

$$H(f) = \frac{\mathbf{Z}_{C2}}{\mathbf{Z}_{C1} + \mathbf{Z}_{C2} + \frac{\mathbf{Z}_{C1} + \mathbf{Z}_{C2}}{\mathbf{Z}_{BT}}} e^{-\gamma_1 l_1} e^{-\gamma_2 l_2} , \qquad (4.22)$$

kde Z_{C1} , Z_{C2} jsou charakteristické impedance a γ_1 , γ_2 míry přenosu úseků vedení délek l_1 a l_2 . Z_{BT} je vstupní impedance odbočky

$$\boldsymbol{Z}_{\text{BT}} = \boldsymbol{Z}_{\text{C3}} \frac{\cosh(\boldsymbol{\gamma}_3 l_3)}{\sinh(\boldsymbol{\gamma}_3 l_3)} = \boldsymbol{Z}_{\text{C3}} \coth(\boldsymbol{\gamma}_3 l_3) \qquad [\Omega], \qquad (4.23)$$

 Z_{C3} je charakteristická impedance a γ_3 je míra přenosu odbočky délky l_3 .

4.2.1 ABCD parametry

Vztah (4.22) pro určení přenosové funkce, a tím i vložného útlumu vedení, není příliš vhodný v situaci, kdy se vedení skládá z několika úseků a odboček, s různými parametry. Vhodnější je určit tzv. ABCD parametry popisující daný úsek vedení, pomocí nichž se následně určí přenosová funkce celého vedení složeného z více úseků a odboček.

Na úsek vedení je možné se dívat jako na dvojbran (obr. 4.5), jehož přenosové vlastnosti jsou popsány parametry ABCD, vztahy (4.24) a (4.25). Více úseků zapojených za sebou odpovídá kaskádně řazeným dvojbranům (obr. 4.6).

Obr. 4.5: Vedení jako dvojbran

 $U_1 = \boldsymbol{A}U_2 + \boldsymbol{B}I_2 \tag{4.24}$

$$I_1 = C U_2 + D I_2. \tag{4.25}$$

Obr. 4.6: Kaskádně řazené úseky vedení jako dvojbrany

Parametry kaskádně řazených dvojbranů se určí jako maticový součin parametrů popisujících jednotlivé dvojbrany

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A1 & B1 \\ C1 & D1 \end{bmatrix} \begin{bmatrix} A2 & B2 \\ C2 & D2 \end{bmatrix} = \begin{bmatrix} A1A2 + B1C2 & A1B2 + B1D2 \\ C1A2 + D1C2 & C1B2 + D1D2 \end{bmatrix}.$$
 (4.26)

Matice popisující jednotlivé úseky vedení má tvar

$$\begin{bmatrix} \boldsymbol{A}(f) & \boldsymbol{B}(f) \\ \boldsymbol{C}(f) & \boldsymbol{D}(f) \end{bmatrix}_{\text{úsek}} = \begin{bmatrix} \cosh[\boldsymbol{\gamma}(f)l] & \boldsymbol{Z}_{\text{c}} \sinh[\boldsymbol{\gamma}(f)l] \\ \frac{\sinh[\boldsymbol{\gamma}(f)l]}{\boldsymbol{Z}_{\text{c}}(f)} & \cosh[\boldsymbol{\gamma}(f)l] \end{bmatrix}_{\text{úsek}}, \quad (4.27)$$

kde *l* [km] je délka úseku, $Z_{C}(f)$ [Ω /km] je charakteristická impedance úseku, $\gamma(f)$ [S/km] je míra přenosu úseku vedení.

Nezakončená odbočka zapojená mezi dva úseky vedení odpovídá dvojbranům zapojeným podle obrázku 4.7 a je popsaná maticí, vztah (4.28).

Obr. 4.7: Úsek vedení s nezakončenou odbočkou zapojené jako dvojbrany

$$\begin{bmatrix} \boldsymbol{A}(f) & \boldsymbol{B}(f) \\ \boldsymbol{C}(f) & \boldsymbol{D}(f) \end{bmatrix}_{\text{odboč}} = \begin{bmatrix} 1 & 0 \\ 1 \\ \boldsymbol{Z}_{\text{co}} \operatorname{coth}[\boldsymbol{\gamma}_0(f)l_0] & 1 \\ \boldsymbol{Z}_{\text{co}} \operatorname{coth}[\boldsymbol{\gamma}_0(f)l_0] & 1 \end{bmatrix}_{\text{odboč}}, \quad (4.28)$$

kde l_0 [km] je délka odbočky, $\mathbf{Z}_{CO}(f)$ [Ω /km] je charakteristická impedance odbočky, $\boldsymbol{\gamma}_0(f)$ [S/km] je míra přenosu odbočky na vedení.

Výsledné ABCD parametry vedení s více úseky a odbočkami s různými parametry se určí jako součin kaskádně řazených matic popisujících jednotlivé úseky a odbočky. Pozor součiny jednotlivých matic musí být ve stejném pořadí jako v modelu vedení! Tedy dle modelu na obrázku 4.7 bude součin matic vypadat

$$\begin{bmatrix} \mathbf{A}(f) & \mathbf{B}(f) \\ \mathbf{C}(f) & \mathbf{D}(f) \end{bmatrix} = \begin{bmatrix} \mathbf{\hat{U}sek1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{Odboč} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{\hat{U}sek2} \end{bmatrix}.$$
(4.29)

Přenosová funkce modelu vedení (obr. 4.8) je dána vztahem

$$\boldsymbol{H}(f) = 20\log \left| \frac{Z_{\rm G} + Z_{\rm L}}{\boldsymbol{A}(f) Z_{\rm L} + \boldsymbol{B}(f) + Z_{\rm G} [\boldsymbol{C}(f) Z_{\rm L} + \boldsymbol{D}(f)]} \right|, \tag{4.30}$$

kde $Z_{\rm G}$ je impedance generátoru a $Z_{\rm L}$ zakončovaní impedance.

Obr. 4.8: Model vedení

Podrobný popis určení parametrů ABCD a odvození vzorců pro jejich výpočet je uveden v literatuře [2].

4.3 Testovací účastnické smyčky systémů xDSL

Struktury jednotlivých testovacích smyček, definovaných ANSI, jsou zobrazeny na obr. 4.9. Smyčky obsahují jednotlivé úseky vedení a odbočky, které jsou realizovány kabely ANSI_TP1 nebo ANSI_TP2 (viz. tab. 4.2). Průběhy přenosových charakteristik modelů jednotlivých smyček (obr. 4.10) jsou pozorovány do frekvence 2 MHz, kam sahá spektrum systémů ADSL. Impedance generátoru $Z_{\rm G}$ i zakončovací impedance $Z_{\rm L}$ mají hodnotu 100 Ω .

Obr. 4.9: Struktury testovacích ANSI smyček

Obr. 4.10 a) Přenosové funkce testovacích smyček ANSI T.601#2, T.601#5 a T.601#9

Obr. 4.10 b) Přenosové funkce testovacích smyček ANSI T.601#13, CSA#4 a CSA#7

5 Aproximace přenosové funkce modelu vedení

V prostředí Matlab byla vytvořena aplikace umožňující zvolit strukturu modelu vedení a určení přenosové funkce zvoleného modelu vedení a její aproximace (viz. příloha C). Aproximace přenosové funkce je uskutečněna pomocí číslicových IIR filtrů. Parametry aproximace jsou také nastavovány ve vytvořené aplikaci.

5.1 Vlastnosti číslicových IIR filtrů

Číslicové IIR (Infinitive Impulse Response) patří do skupiny systémů LTI (Linear Time Invariant), což jsou diskrétní lineární časově stálé systémy. IIR filtry mají nekonečnou impulsní charakteristiku. Obecně mají menší řád přenosové funkce, asi 10 krát menší než FIR filtry při stejném zadání, což má za následek menší nároky na paměť a menší zpoždění zpracování signálu. Pro realizaci je nutné použít zpětných vazeb (rekurzí) a tudíž je nutné kontrolovat stabilitu filtru. U těchto filtrů není možné dosáhnout lineární fázové charakteristiky. Přenosová funkce IIR filtru v rovině Z v součtovém a součinovém tvaru

$$H(z) = \frac{\sum_{i=0}^{r} b_i z^i}{\sum_{j=0}^{s} a_j z^j} = k \frac{\prod_{i=1}^{r} (z - z_{o_i})}{\prod_{j=1}^{s} (z - z_{x_j})},$$
(5.1)

kde *b*, *a* jsou koeficienty filtru, z_{oi} jsou nulové body ($H(z_{oi}) = 0$) a z_{xj} póly ($H(z_{xj}) = \infty$) přenosové funkce IIR filtru. Konstanta *k* je zesílení filtru. Aby byla splněna podmínka kauzality musí platit $r \le s$.

5.1.1 Metody návrhu IIR filtrů

Metody návrhů IIR filtrů jsou dle [3] rozděleny do dvou skupin, na metody analogově číslicové transformace a na iterační optimalizační metody.

Analogově číslicové transformace

Tradiční a výpočetně nenáročná metoda, využívá návrhu filtr v analogové oblasti. Požadovaná přenosová funkce číslicového filtru je převedena z číslicové do analogové oblasti a podle známých vzorců, tabulek a nomogramů je určena funkce aproximující požadovanou přenosovou funkci. Aproximující funkce jsou Butterworthova, Besselova, Čebyševova nebo Cauerova (eliptická) funkce. Liší se strmostí přechodového pásma a zvlněním v propustném a nepropustném pásmu. Převedením aproximující funkce z analogové do číslicové oblasti vznikne přenosová funkce požadovaného číslicového filtru. Nejpoužívanější analogově číslicové transformace jsou bilineární transformace (návrh ve frekvenční oblasti) a metoda impulsní invariance (návrh v časové oblasti). Nevýhoda této metody je, že je vhodná pouze pro návrh filtrů s částečně konstantní kmitočtovou charakteristikou.

Iterační optimalizační metoda

Tyto metody využívají přímého návrhu číslicového filtru a jsou výpočetně náročnější. Při návrhu je vytvořena tzv. účelová funkce, která je iterační metodou pomocí soustavy lineárních a nelineárních rovnic minimalizována k určité optimální hodnotě. Mezi tyto metody návrhu patří metoda nejmenších čtverců v kmitočtové nebo časové oblasti. Narozdíl od předchozí metody je tato vhodná pro návrh filtrů s libovolnou kmitočtovou charakteristikou.

5.2 Funkce Yulewalk

Pro aproximaci přenosové funkce zvoleného modelu vedení byla vybrána funkce yulewalk, která patří mezi iterační metody návrhu filtrů. Tato funkce, která je součástí funkčního vybavení prostředí Matlab umožňuje návrh IIR filtru s požadovanou frekvenční charakteristikou. Pro návrh využívá metodu nejmenších čtverců v časové oblasti. Zápis funkce je následovný

$$[b,a] = yulewalk(N,F,M), \qquad (5.2)$$

kde b a a jsou vektory koeficientů filtru délky N+1, N je řád filtru, F je vektor frekvencí požadovaného frekvenčního pásma a M je vektor modulů frekvenční charakteristiky na zadaných frekvencích.

Algoritmus výpočtu koeficientů jmenovatele filtru *a* využívá modifikovaných lineárních rovnic (metoda modifikovaných Yule-Walker rovnic) s korelačními koeficienty vypočtených z požadované impulsní charakteristiky. Impulsní charakteristika je určena zpětnou Fourierovou transformací požadované frekvenční charakteristiky. Algoritmus pro výpočet koeficientů čitatele *b* je složitější, obsahuje čtyři kroky:

- 1. Výpočet polynomu čitatele odpovídající aditivnímu rozkladu výkonové spektrální hustoty filtru
- 2. Stanovení frekvenční charakteristiky z polynomů čitatele a jmenovatele filtru
- 3. Výpočet impulsní charakteristiky pomocí spektrálního rozkladu
- 4. Určení polynomu čitatele metodou nejmenších čtverců z impulsní charakteristiky získané v bodě 3.

5.2.1 Použití funkce Yulewalk pro aproximaci přenosové funkce

Obrázek 5.1 ukazuje postup aproximace přenosové funkce vedení. Aproximace je realizována kaskádně zapojených IIR filtrů. Požadovaná přenosová funkce H_p je v prvním kroku předána jako parametr funkci yulewalk, která určí první aproximující filtr (jeho koeficienty *b*, *a*) s přenosovou funkcí H_1 . Přenosová funkce je určena z koeficientů filtru pomocí funkce freqz (součást funkčního vybavení Matlab). Zápis této funkce je následovný

$$[H, f] = freqz(b, a, n),$$
 (5.3)

kde *H* vektor přenosové, *f* je vektor frekvencí, ve kterých je přenosová funkce určena, *b* a *a* jsou koeficienty filtru a *n* je počet vzorků přenosové funkce. V dalším kroku je parametrem funkce yulewalk rozdíl přenosových funkcí H_p a H_1 a je určen druhý aproximující filtr s přenosovou funkcí H_2 . V dalších krocích je parametrem funkce yulewalk rozdíl požadované přenosové funkce H_p a součinu předchozích přenosových funkcí aproximujících filtrů. Algoritmus výpočtu aproximující funkce viz příloha B.

Obr. 5.1: Postup aproximace přenosové funkce

Výsledná aproximující přenosová funkce je dána součinem jednotlivých přenosových funkcí IIR filtrů a aproximuje požadovanou přenosovou funkci pouze modulově. Fázová charakteristika je v celém kmitočtovém pásmu nelineární. K aproximaci fázové charakteristiky byly použity fázovací články 2. a 4. řádu, zapojené do kaskády s aproximujícími filtry. Na obrázku 5.2 je naznačen návrh fázovacího článku. Rozložení nulových bodů a pólů fázovacích článků v rovině Z je na obrázcích 5.3 a 5.4. Nulové body a póly jsou komplexně sdružené, tudíž koeficienty článků jsou reálné. Jestliže budou jednotlivé filtry stabilní, tj. jejich póly budou ležet uvnitř jednotkové kružnice v rovině Z, bude i celá kaskáda aproximujících filtrů stabilní. Pro kontrolu stability Matlab obsahuje funkci zplane (b, a). Výstupem aplikace je průběh přenosové charakteristiky zvoleného modelu vedení její aproximace IIF filtry a koeficienty těchto IIR filtrů a fázovacích článků.

Obr. 5.2: Návrh fázovacího článku

Obr. 5.3: Rozložení nulových bodů a pólů fázovacího článku 2. řádu

Obr. 5.4: Rozložení nulových bodů a pólů fázovacího článku 4. řádu

6 Závěr

Hlavním cílem práce bylo vysvětlení problematiky modelování přenosových vlastností vedení systémů xDSL, které využívají jako přenosové médium stávající metalické symetrické účastnické vedení. Pro stanovení přenosové funkce vedení složeného z několika úseků a odboček na vedení je třeba znát parametry (primární nebo sekundární) tohoto vedení, pomocí nichž se určí tzv. ABCD parametry popisující vedení jako dvojbran. Modely popisující tyto parametry (primární, sekundární) byly v této práci popsány. Jednotlivé modely se od sebe liší tím, pro jaké typy kabelových prvků jsou definovány a jaké parametry vedení simulují.

Modely simulující primární parametry jsou britský British Telecom BT#1, americký model ANSI, francouzský France Telecom, holandský Royal PTT Netherland a finský Nokia Finland. Všechny tyto modely vycházejí z modelu BT#1, liší se pouze parametry definovanými pro jednotlivé typy kabelových prvků.

Modely definované pro popis sekundárních parametrů jsou švýcarský Swisscom SWC#1 a německý Deutsche Telecom.

Zjištěné teoretické poznatky byly využity k vytvoření aplikace v prostředí Matlab, která umožňuje zvolit charakter vedení (délku úseku vedení a odbočky, použitý model úseku vedení a odbočky a impedanční přizpůsobení) a parametry aproximace přenosové funkce zvoleného modelu vedení (řád a počet IIR filtrů v kaskádě). Pro aproximaci fázové charakteristiky aplikace umožňuje zvolit počet fázovacích článků (2. nebo 4. řádu), které aproximují fázovou charakteristiku modelu vedení. Dostatečná aproximace argumentu přenosové funkce pomocí fázovacích článků je splněna částečně.

Výstupem aplikace je přenosová funkce zvoleného modelu vedení, výsledná přenosová funkce aproximujících kaskádně zapojených IIR filtrů včetně fázovacích článků a koeficienty těchto filtrů. Koeficienty filtrů (*b, a*) jsou uloženy do matic **B** (koeficienty *b* IIR filtru), **A** (koeficienty *a* IIR filtru), **Bf2** (koeficienty *b* fázovacího článku 2. řádu), **Af2** (koeficienty *a* fázovacího článku 2. řádu), **Bf4** (koeficienty *b* fázovacího článku 4. řádu) a **Af4** (koeficienty *a* fázovacího článku 4. řádu). Jednotlivé matice mají počet řádků odpovídající počtu filtrů a počet sloupců odpovídající řádu filtru plus jedna. Po určení aproximace jsou tyto matice automaticky uloženy do aktuálního pracovního adresáře nastaveného v Matlabu jako soubory pojmenované stejně jako matice s příponou mat. Pro další práci s koeficienty je možné je

exportovat do Workspace tlačítkem export (viz. příloha C). Koeficienty mohou být dále využity například k vytvoření bloku, který bude reprezentovat zvolený model vedení v prostředí Simulink pro dynamickou simulaci systémů xDSL.

Seznam použité literatury

- [1] Cable reference models for simulating metallic access networks, ETSI STC TM6 meeting, 22 26 June 1998, Lulea, Sweden.
- [2] RAUSCHMAYER, D., J., ADSL/VDSL Principles: A Practical and Precise Study of Asymmetric Digital Subscriber Lines and Very High Speed Digital Subscriber Lines. Indianapolis (USA): Macmillan Technical Publishing, 1999. ISBN1-57870-015-9.
- [3] SMÉKAL, Zdeněk SYSEL, Petr. *Číslicové filtry*. Brno: FEKT VUT v Brně, 2004. 127 s.
- [4] ŠIMÁK, Boris, VODRÁŽKA Jiří, SVOBODA, Jaroslav. Digitální účastnické přípojky xDSL : Díl 2. Přenosové prostředí. Druhá generace ADSL a VDSL, měření na přípojkách. 1. vyd. Praha: Sdělovací technika s. r. o., 2005. 156 s. ISBN 80-86645-16-9.
- [5] VODRÁŽKA, Jiří. Modelování metalických účastnických přípojek. Metalická vedení [online] 2004. Dostupný z WWW: http://access.feld.cvut.cz/view.php?nazevclanku=&cisloclanku=200101260 1>. ISSN 1214-9675.
- [6] ZAPLATÍLEK, Karel DOŇAR, Bohuslav. MATLAB: tvorba uživatelských aplikací. 1. vyd. Praha: BEN - technická literatura, 2004. 215 s. ISBN 80-7300-133-0.

Seznam použitých zkratech

ADSL	Asymetric Digital Subscriber	Asymetrická digitální
	Line	účastnická přípojka
ANSI	American National Standarts	Americký národní institut pro
	Institute	standarty
BT#1	British Telecom #1	Britská telekomunikační
		společnost
DM	Dieselhorst – Martin	Označení kabelového prvku
FIR	Finitive Impulse Response	Číslicový filtr s konečnou
		impulsní
HDSL	High bit rate Digital Subscriber	Vysokorychlostní digitální
	Line	účastnická přípojka
IDSL	ISDN Digital Subscriber Line	Základní digitální účastnická
		přípojka
IIR	Infitive Impulse Response	Číslicový filtr s nekonečnou
		impulsní charakteristikou
ISDN	Integrated Services Digital	Digitální síť integrovaných
	Network	služeb
KPN#1	Koninklijke PTT Nederland	Holandská telekomunikační
		společnost
LTI	Linear Time Invariant	Lineární časově stálý systém
SDSL	Symetric Digital Subscriber	Symetrická digitální
	Line	účastnická přípojka
SHDSL	Single pair High bit rate Digital	Vysokorychlostní digitální
	Subscriber Line	účastnická přípojka po jednom
		páru
SWC#1	Swisscom #1	Švýcarská telekomunikační
		společnost
VDSL	Very High speed Digital	Digitální účastnická přípojka
	Subscriber Line	s velmi vysokou přenosovou
		rychlostí
xDSL	Digital Subscriber Line	Digitální účastnické přípojky

Seznam příloh

- Příloha A.1 Parametry modelu BT#1
- Příloha A.2 Parametry modelu ANSI
- Příloha A.3 Parametry modelu KPN#1
- Příloha A.4 Parametry modelu SWC#1
- Příloha B Algoritmus aproximace modulu přenosové funkce
- Příloha C Aplikace aproximace přenosové funkce modelu vedení

	BT_dw1	BT_dw3	BT_dw5	BT_dw6	BT_dw8	BT_dw10	BT_dw12	BT_dwug
R _{oc} [Ω]	65,32	335,18	335,321	270,703	41,16	180,93	55,4606	179
Nb	1,30698	1,12676	1,52968	1,3579	1,19527	0,75577	0,93971	1,2
ac	2,72·10 ⁻³	5,35·10 ⁻³	1,10·10 ⁻²	2,49·10 ⁻³	1,22·10 ⁻³	4,97·10 ⁻²	4,99∙10 ⁻³	3,59·10 ⁻²
G ₀ [nS]	855	137,182	32,5741	360	53	89,041	20	0,5
R _{os} [Ω]	0	1281,3	1116,45	774,232	0	0	0	0
Nge	0,746	0,80765	0,919	0,777	0,88	0,85606	0,88	1,033
as	0	30286,3	13175,5	3349,76	0	0	0	0
C ₀ [nF]	46,5668	34,4311	31,6079	39,4114	31,7786	63,8243	5,80225	1
L ₀ [mH]	0,88424	1,14166	1,12771	1,10646	1	0,72887	0,62104	0,695
C∞ [nF]	28,0166	24,4465	29,2979	27,8941	22,6812	50,9283	51,1281	55
L∞ [μH]	800,587	708,221	792,766	760,267	910,505	543,435	461,954	585
N _{ce}	0,11744	0,06589	0,11155	0,10659	0,11087	0,11585	0,10065	0,1
f _m [Hz]	263371	15211	20842,6	15668	174877	718888	193049	106

Příloha A.1: Parametry modelu BT#1

	ANSI_TP1	ANSI_TP2	ANSI_TP3	ANSI_FP
$R_{oc} [\Omega]$	286,17578	174,55888	180,93	41,16
Nb	0,92930728	1,1529766	0,755771	1,195
ac	0,1476962	0,053073481	49,722·10 ⁻³	1,218·10 ⁻³
g ₀ [nS]	43	0,000234874	89,04104	53
R _{os} [Ω]	×	∞	Ø	∞
Nge	0,7	1,38	0,856063	0,88
as	0	0	0	0
C ₀ [nF]	0	0	63,82434	31,78
L ₀ [µH]	675,36888	617,29539	728,868	1000
C_{∞} [nF]	49	50	50,92833	22,68
L∞ [µH]	488,95186	478,29539	543,4352	910,505
N _{ce}	0	0	0,115846	0,1109
f _m [Hz]	806338,63	553760	718888	174877

Příloha A.2: Parametry modelu ANSI

	KPN_L1	KPN_L2	KPN_L3	KPN_L4	KPN_H1	KPN_KK	KPN_R1	KPN_R2	KPN_X1
$Z_{0\infty}$	136,651	136,047	137,527	137,005	135,458	142,451	87,787	97,497	110,538
c (·10³)	239298	239687,4	255182,4	236298,3	192114,3	213695,4	191296,8	191821,5	188785,2
R _{ss00}	0,168145	0,168145	0,065682	0,168145	0,177728	0,177728	0,2777	0,177728	0,177728
2πtanφ	0,13115	0,169998	0,114526	0,153522	0,018425	0,071111	0,0963554	0,0189898	0,075374
K _f	0,72	0,7	1	0,9	0,85	0,8	1,1	0,5	1
Kı	1,2	1,1	1	1	1	1,1	0,77	1,14	0,97
Kc	1,08258	1,08201	1,06967	1,07478	1,11367	1,09373	1,05036	1	1,1781
Ν	0,7	1	1	1	1,5	0,5	1	1	1
f _{c0} [Hz]	4521710	1862950	559844	557458	5020	8088	3391970	100000	52284

Příloha A.3: Parametry modelu KPN#1

	SWC_40	SWC_60
Z ₀₀	135	135
f ₁	45000	13000
f ₂	44000	21000
f ₃	13000	7500
f4	250000	125000
f ₅	24500	12500
N _{e1}	0,59	0,75
N _{e2}	0,65	0,65
N _{e3}	0,475	0,475
N _{e4}	0,51	0,51
C ₁	0,44	0,46
C ₂	0,007	0,0037
C ₃	0,043	0,022

Příloha A.4: Parametry modelu SWC#1

Příloha B: Algoritmus aproximace modulu přenosové funkce

```
1 - function IIR(F,H,n,N,I,fc2,fc4)
 2 - [B(1,:),A(1,:)]=yulewalk(N,Fs,abs(H));
 3 - [Hh, f]=freqz(B(1,:),A(1,:),n);
 4 - Hf = Hh;
 5 - i=1;
 6 - if I==1;
 7 – else
 8 –
     while max(20*log10(abs(H))-20*log10(abs(Hf')))>1
 9 –
               min(20*log10(abs(H))-20*log10(abs(Hf')))<(-1);</pre>
10 -
             i=i+1;
11 -
            M=((abs(H)-abs(Hf')))+1;
12 -
            [B(i,:),A(i,:)]=yulewalk(N,Fs,M);
             [Hh,f]=freqz(B(i,:),A(i,:),n);
13 -
             Hf=Hf.*Hh;
14 -
15 -
             if i==I;
16 -
                 break;
17 -
            end
18 -
        end
19 - end
```

Parametry předávané funkci IIR jsou:

F – vektor frekvencí, pro které je určena přenosová funkce vedení H

H – vektor hodnot přenosových funkcí na frekvencí určených v F

n – délka vektoru F (počet frekvencí)

N – řád aproximujících filtrů, zadává uživatel v aplikaci

I – počet aproximujících filtrů, zadává uživatel

fc2 a fc4 – počet fázovacích článků 2. a 4. řádu, zadává uživatel.

Samotná aplikace se spouští v Matlabu souborem Model.m.

Příloha C: Aplikace pro aproximaci přenosové funkce modelu vedení

