
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

COMBAT MANAGEMENT IN STARCRAFT II GAME
BY MEANS OF ARTIFICIAL INTELLIGENCE
ŘÍZENÍ BOJE VE HŘE STARCRAFT II POMOCÍ UMĚLÉ INTELIGENCE

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR KAREL KRAJÍČEK
AUTOR PRÁCE

SUPERVISOR doc. RNDr., Ph.D. PAVEL SMRŽ
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
This thesis focuses on the use of Artificial Intelligence and design of working module in Real-Time
Strategy (RTS) game, StarCraft II. The proposed solution uses Neural Network and Q-learning for
combat management. For implementation, the StarCraft 2 Learning Environment has been used as a
means of communication between the designed system and the game. Evaluation of the system is
based on its ability to make progress over time.

Abstrakt
Táto práca sa zaoberá využitím umelej inteligencie a návrh funkčného modulu pre strategickú hru
StarCraft II. Riešenie využíva neurónové siete a Q-learning pre boj. Pre implementáciu systému a jej
prepojenie s hrou StarCraft používam StarCraft 2 Learning Environment. Vyhodnotenie systému je
založené na jej schopnosti vykonať pokrok.

Keywords
artificial intelligence, machine learning, Real-Time Strategy games, StarCraft II, SC2LE, PySC2, Q-
learning, artificial neural network

Klíčová slova
Umělá inteligence, strojové učení, strategické hry v reálném čase, StarCraft II, SC2LE, PySC2, Q-
learning, umělá neuronová síť

Reference
KRAJÍČEK, Karel. Combat Management in StarCraft II Game by means of Artificial Intelligence.
Brno, 2018. Bachelor's thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor doc. RNDr. Pavel Smrž Ph.D.

2

Combat Management in StarCraft II Game by Means of
Artificial Intelligence

Declaration

I hereby declare that this bachelor's thesis was prepared as an original author's work under
the supervision of doc. RNDr., Ph.D. Pavel Smrž. Al l the relevant information sources which were
used during the preparation of this thesis are properly cited and included in the list of references.

Karel Krajíček
17.5.2018

Acknowledgements

I would like to thank my, Professor Pavel Smrž, for his guidance during the creation of this work.

3

Extended abstract
Hlavná úloha tejto práce je design a implementácia systému ktorý používa strojové učenie pre RTS
hru StarCraft II. Hlavná časť RTS na ktorú sa sústredím v tejto práci je použitie umelej inteligencie je
boj a integrácia do celkovej štruktúry tohoto systému.

Navrhnuté riešenie je vytvorené v programovacom jayzku Python. Hlavný dôvod je ten aby som
mohol využiť StarCraft 2 Learning Environment (SC2LE) krorý používa modul PySC2, ktorý je
vytvorený pre využitie AI pre StarCraft II.

Techniky strojového učenia ktoré som použil pre tento projekt, sú Q-learning a neurónové siete.
Aplikácia Neurónovej sieťe ktorú som použil pre tento modul je MLPClassifier z Pythonovskej
knižnice scikit-learn.

Behom projektu som vykonal niekolko experimentov použitím rôznych nastavení Q-learningu a
neurónovej siete ako aj odlišné nastavenia interpretácie stavu prostredia a "odmien".

StarCraft II má 3 odlišné rasy Terran, Zerg, a Protoss ktoré majú úplne odlišné jednotky, budovy a
používajú velmi odlišné stratégie a preto som pridal všetky 3 rasy ale iba rasa Terran je plne
implementovaná. To znamená že strojové učenie pre boj je implementované iba pre rasu Tearran.

Okrem strojového učenia som vytvoril celý modul ktorý organizuje vytváranie základní, trénovanie
jednotiek a posielanie jednotiek odhalovat' hernú mapu.

Okrem originálneho plánu som aj implementoval použitie strojového učenia pre ténovanie jednotiek,
ale táto časť nebola poriadne otestovaná.

Systém ukazuje pokrok jako je ukázané v experimentech a je schopný poraziť defaultnáho bota
v StarCrafte vytvořeného Blizzardom.

Aby som toho dosiahol, musel som sa naučiť jako pracovať s SC2LE a naučiť sa používať Neurónové
siete a Q-learning a jako iuch implementovat' do modulu.

Z experimentov som vyvodil záver že Neurónová sieť je ovela efektívnejšia jako Q-learning pre
bojové scenária.
Moje riešenie nie je konečné, a je tu toho dosť čo sa dá vylepšiť, napríklad implementácia ostatních
aspektov hry pre strojové učenie. Časť ktorú určite mžem vylepšiť je plná implementáciapre rasy
Zerg a Protoss. Téma umelej inteligencie pre RTS ponúka velkú škálu možností pre vývoj.

4

Contents
1 Introduction 6

1.1 Motivation and Goals 6
2 Environment 8

2.1 Real-Time Strategy Games 8
2.2 StarCraftll 11
2.3 StarCraft II Learning Environment 12

3 Machine Learning 15
3.1 Q-learning 16
3.2 Neural Networks 18
3.1 Backpropagation 20
3.2 Neural Networks Implemented as Q-Learning 21

4 Design and Implementation of the Realized System 23
4.1 Combat and Reinforcement Learning Implementation 25
4.2 Other Functions 28

5 Experimental Evaluation and Discussion 31
6 Summary, Conclusions and Future Directions 49
References 50

5

1 Introduction

The main objective of this thesis is the design and implementation of a system that uses Machine
Learning techniques to play the Real-Time Strategy game StarCraft II.

The main part of Real-Time Strategy that I focus in this thesis is the use of artificial intelligence for
combat scenarios and integration of this use into the whole structure of the system.

The proposed solution is designed in the programming language Python. The reason why I decided to
use this language was so that I could use StarCraft 2 Learning Environment (SC2LE) £51 flOl that
uses module PySC2 r241 that is perfectly suited for AI research in StarCraft II.

Machine learning techniques that I chose for this project are Q-learning and Neural Networks.
The Neural Network I used for this Project is MLPClassifier from the Python library scikit-learn [27].

Throughout this project, I made several experiments using different settings of Q-learning and Neural
Networks as well as different settings of "states" and "rewards". These experiments are shown later in
this thesis.

StarCraft II has 3 distinct races, Terran, Zerg, and Protoss, that have completely different types of
units, buildings and uses very different types of strategies. Because of that, I implemented all 3 races,
but only race Terran is fully developed. That means that the Machine learning in combat is
implemented only for Terran and the type of strategy Terran units uses.

Besides Machine learning, I have developed an entire module that organizes building bases, training
units and scouting of environment.

Beyond the original plan, I have also implemented the use of Machine Learning for the training of
combat units, but this part was not so well tested.

In the last decade, AI has become very popular and plays an important role in our daily lives. From
something as simple as adding suggestions and classification of pictures on the internet to their use in
air travel and voice recognition.

I want to contribute to the development of the field of Artificial Intelligence and for that, I have
used the environment of a Real-Time Strategy game StarCraft II that contributes with many
interesting challenges and opportunities for the development of AI. [5]
My thesis is a response to the Call for AI Research in RTS Games from Michael Buro [8] who is

1.1 Motivation and Goals

6

introducing many problems and challenges that RTS game genre brings into the AI research and need
for the improvement of the game bots.
Working on this thesis has also helped me understand the use and principles of various machine
learning techniques, such as Artificial Neural Networks and Q-learning.

Goals:

Learn how to use Machine Learning techniques in Real-Time Strategy games and representation of
game states and encoding them for learning algorithms.
-Learn about Q-Learning
-Learn about Artificial Neural Networks
-Make a research about the use of Machine Learning in RTS games

Review the rules, conditions, and limitations of the environment defined within the Starcraft II
interface.
-Asses CommandCenter |T11
-Asses PySC2 [10]

Using existing implementations create a basic module for building bases, creation of units and their
use for combat and scouting.
-Find tutorial or example, that could help me build my own module ITU [35]
-Divide the system into sub-functions, where each sub-function will be using different aspect of the
game

Design and implement system that will be able to learn from the game and suggest the best strategies
in order to maximize the chance of winning.

Test the created system and compare it to other systems or human players.
-Use testing to find the best optimization of reinforcement learning technique

7

2 Environment

In this chapter, I will be explaining about the environment that is being used for my system, i.e. RTS
game StarCraft II and the libraries that I will need to use, in order to make my system run on
StarCraft II.

2.1 Real-Time Strategy Games
Real-Time Strategy or in short RTS is a subgenre of strategy games and is widely played in the
modern game world. [I]

The main concept of RTS games is that they are played in real-time, meaning the state of the game
is constantly changing without waiting for an action of the player, unlike turn-based strategy games
where the state of the game is waiting for the player's response.

Later in this thesis, we will find out that this definition is not so well founded because the learning
environment that is used for this project is dividing the game into steps and returning an action for
each step, which is rather closer to turn-based strategy games than RTS.

The important part of the RTS is how players use different tactics and strategies by making a set of
moves/actions in order to achieve a goal or to improve the strategy status of the player.

The player uses units under their control to achieve goals. Most of the time resources such as food,
gold or minerals are required to create the units, and the resources must be obtained during the game,
which eventually becomes a goal by itself.

RTS games started to become popular in the 90's but Sega Genesis' Herzog Zwei from 1989 can be
considered as the first RTS game [2]. They are interesting for AI research as described in Call for AI
Research in RTS Games from Michael Buro [8], mainly for all the problems that agents have to
encounter, in order to win the game like real-time planning, predicting of opponent moves, space and
time evaluation, resource management, and co-operation.

8

Turn-based strategy (TBS) is a game genre where players take turns, meaning, they are waiting for a
move of other players, based on the rules of the game. [3]

First-person is a game genre where players control only one unit, and the view of the player is
centered around the view of that unit. Advanced 3D graphics is usually required for FP games.

RTS TBS First-person

moves are happening
simultaneously, in real-time

players are making moves in
order, waiting for each other

moves are happening
simultaneously, in real-time

time for making a decision
about the move is really short,
sometimes it's only a few
milliseconds

players have limited time for
making move as well, but it's
much longer, in case of Chess,
it can be several minutes or
hours.

time for making a decision
about the move is really short,
sometimes it's only a few
milliseconds

game tree size is theoretically
infinite.

game tree size is calculated by
all the possible move, the
players can make.

game tree size is theoretically
infinite.

most RTS games are non-
deterministic, because of
randomness set in games, for
example, range of damage

most are deterministic, like
Chess, but there are non-
deterministic games like Ludo,
which is caused by a throw of
the dice

some games have randomness
in them, which can cause non-
determinism, but otherwise,
they are deterministic

strategy - control of multiple
units

strategy - control of multiple
units

control of only one unit, the
first person shooter himself

limitation of view - fog of war
hides parts of the map, where
are no units of the player,
therefore, player must scout the
map, to gather intelligence
about environment and enemy

in case of board games like
chess no limitation of view, the
player can see everything that's
happening on the board, but in
case of computer games like
Heroes of Might and Magic or
Total War series, there is fog of
war

limitation of view - player sees
the only point of view of his
character

Table 1: Comparison of Real-Time Strategy against Turn-based strategy and First-person

There is a case of interesting transition from RTS to First-person in game series Warcraft, where all
Warcraft games, until Warcraft III Frozen Throne are RTS based, but with exception bonus
campaign, The Founding of Durotar which have more elements of First-person than RTS and then its
followed by Creation of World of Warcraft, famous MMORPG , which fits of all our criteria of First-
person.

9

No matter how complicated RTS games are, they will always allow the great complexity of strategy
and tactics to arise, due to their nature, as is described in Table 1. If we want to successfully manage
this complex environment, we need to divide this complex problem into smaller, manageable sub-
problems. This solution is greatly described in work of Professor David Churchill, Heuristic Search
Techniques for Real-Time Strategy games [4] who takes the main idea of categories Strategy, Tactics,
and Reactive Control, from literatures of AI research [21] and military command [22J. In his thesis,
Professor David Churchill describes the division of this problem based on the time scale and the level
of abstraction and divided it into categories Strategy, Tactics, and Reactive Control as shown in
Figure 2.

The strategy is the highest level of a decision-making process, which dictates what happens on a
global scale and which part of the game, military or economic one, the player should focus on.
Tactics decide what happens on the smaller scale, like which type of building to build or managing
local battles.
Reactive Control then works with individual units and executes actions of the game.
These categories imitate a military command hierarchy, in terms of
chain of command as well as information processing.

Strategic
High Level, Abstract

3 mins +

Knowledge ^
& Learning

Opponent
Modeling

Strategic
Stance

Army
Composition

Build-Order
Planning

f

Tactical
Mid-Level

30 sec - 1 min

Scouting

Combat Timing
* & Position -

Unit & Building
•*• Placement -

\

Reactive Control
Low-Level, Concrete

~ 1 sec

Unit
Micro

Multi-Agent *
•»Path f ind ing

Figure 2: Division of sub-problems in RTS, copied from [4] .

10

2.2 StarCraftll
StarCraft II is a successful science fiction RTS game created by Chris Metzen and James Phinney and
owned by Blizzard Entertainment, and released in July 2010. r51 [6]

The StarCraft franchise has been popular with players competing in tournaments for more than 20
years.

StarCraft also makes an ideal environment for AI research due to its rich, multi-layered gameplay.
The StarCraft games have been used by Artificial Intelligence and Machine Learning researchers,
who annually compete in the Artificial Intelligence and Interactive Digital Entertainment (AIIDE)
StarCraft AI Competition. [7]

Researchers are also intrigued by the large pool of keen players that daily compete online. The game
also has other qualities that appeal to researchers, such as the large pool of avid players that compete
online every day. This confirms that there is a considerable amount of replay data to learn from.

The main aim is to beat the opponent and in order to achieve that, the player must also attain sub-
goals like build a base (buildings and units), manage resources (Minerals, Vespene Gas, and
Supplies), build an army (combat units), and defeat the enemy.

Supplies are the special type of resources, where the amount of supplies is produced by building
like Command Center and Supply Depot, but the produces amount just sets the supply capacity and
every generated unit uses part of this capacity. When the supply capacity is fully used, it is not
possible to produce more units until more supply capacity is created, or some supplies are being set
free by losing some unit.

The player controls their base and army from a third person perspective. StarCraft has three different
races—Terran, Protoss, and Zerg, which all have distinct units and strategies.

One game/match can last from a few minutes to hours to finish. Players must manage their strategy
carefully because actions taken early in the game can have lasting consequences for the rest of the
match. The map is only partially observed hence, programmed agents must use a long-term memory
to succeed.

As in all RTS games, StarCraft II also have fog of war, and because of that players must send their
units to scout to react to their opponents' strategy. [9]

Another great challenge the StarCraft II presents is huge action space that it provides, with more
than 500 basic actions that can be taken [5] [10] [23], (523 in this version [23]) with many of them
requiring a position on the screen or minimap as an additional argument. Assuming a minimap size of
64x64 and screen size 84x84 there are roughly hundreds of millions of possible actions. [5]

11

2.3 StarCraft II Learning Environment

At first, I wanted to use CommandCenter [1J_], program written in C++ using BWAPI and Blizzard's
StarCraft II AI API, written by David Churchill Professor of Computer Science at Memorial
University of Newfoundland. After several months of efforts to make CommandCenter work,
Professor David Churchill explained to me that CommandCenter is not developed enough for using
machine learning techniques, and advised me to use PySC2 [24] instead, which was created for this
very purpose. Therefore, I'm using PySC2 for this thesis.

StarCraft 2 Learning Environment or for short, SC2LE exposes game StarCraft II as a research
environment. [10] SC2LE provides tools for agent that are identical to the way human players play
the game. That means, it's not like a typical bot that can use micromanagement and let every unit
control its behavior, but the agent must select one unit or group of units that are visible on the screen
and use one action per step as human players would. The agent does not see parts of the map that are
covered in fog of war. This approach in result makes agents using this environment weaker, but also it
makes them perfect tool for developing artificial intelligence since we want to develop AI that works
in the same environment as we humans, and they have to follow same rules as we humans do.

SC2LE consists of three modules: Linux StarCraft II binary, StarCraft II API, and PySC2.
The StarCraft II API [25] is an interface that provides full external control of StarCraft II.
The API can be used to start a game, get observations and take actions. This API works on Windows
and Mac OS. It directly does not support Linux, but instead, it provides a limited headless build for
Linux.

This API then builds PySC2, which is a Python open source environment that wraps the StarCraft II
API to enable the interaction between StarCraft II and an Agent.
PySC2 defines the action space and provides all the observation for an Agent.

12

Non-spatial Screen Minimap
features features features

Figure 3: SC2LE, and its components connected with agent, copied from [10].

The core part of PySC2 is class base_agent from which the created agent inherits important methods
from whose most important one is method step, where the agent defines everything it will do in one
step of the game.

PySC2 gives us two different reward structures. [91 [101 One informing us about the absolute result of
the game 1 for victory, 0 for a tie, and -1 for loss. Another is the Blizzard score, which is the sum of
the values of killed and created units and buildings and all other factors, but most importantly, it is
correlated with final result of the game, for example, more enemy units are killed, the higher chance
for victory. While human players can see this score at the end of the game SC2LE provides the option
to access the Blizzard score during the game, so the change in the score can be used as a reward for
reinforcement learning. The Blizzard score is not zero-sum because it's player-centric

The important part of observations is sets of feature layers with resolution of N x M pixels, with
default settings being 64 x 64 pixels for minimap and 84 x 84 pixels for the screen. Each layer
provides us with important information about the state of a game. Graphical display of the layers can
be seen in Figure 4.

The minimap is a representation of the entire map, and it contains 7 different layers.
Height Map that shows the terrain levels, Visibility layer shows which parts of the map are hidden

by the fog of war, parts of the map have been explored but are not visible anymore or parts of the map
are visible at the current moment. Creep layer shows land that is covered in zerg creep, Camera layer
displays the part of minimap which can currently be seen on the screen.

Player ID layer displays the units with the IDs of the player that owns them.
Player Relative layer shows whether units on the minimap are 1 - belongs to the player, 2 - friendly,

3 - neutral or 4 - enemy. Layer Selected displays which units are selected at the moment.

The screen is a representation of what the player can currently see on the main screen of the game,
and it contains 13 different layers.

13

Height Map has the same purpose as Height Map for minimap that shows the terrain levels, but only
for what is currently visible on the screen. Visibility layer same as in minimap shows which parts of
the map are hidden by the fog of war and Creep layer and layer Power displays parts of the map that
have Protoss power generated by Protoss buildings of the player.

Player ID layer is the same as for minimap, layer Player Relative, and layer Unit Type that displays
the IDs of the individual units. Layer Selected shows selected units, layer Hit Points gives
information about the hit points/health of individual units and layer Energy shows the amount of
energy of the units. Layer Shields shows how much shields the Protoss unit has, layer Unit Density
shows how many units are being present in one specific pixel and layer Unit Density A A with show
you the same, but its anti-aliased.

Besides screen and minimap, the PySC2 provides additional important nonspatial information, like
the amount of Minerals and Vespene Gas, amount of used supplies, supply capacity, list of actions
currently available, which is mostly dependent on selected unit and information about selected units.

The big difference when it comes to the rendering of the screen between PySC2 and the screen which
human players see is that [10] , the view for human players is in a 3D perspective with high resolution
and it's viewed from an angle different to that of PySC2 that renders screen by using top-down
orthographic projection. This makes all units to be shown as the same size no matter where they are in
view, meaning that every pixel in a feature layer corresponds to the position and size of the rendered
unit. Because of that, human players see more in the back of the screen and less in the front, with the
consequence for bad representation of actions in replays made by human players.

Figure 4: Layers of minimap and screen being displayed, copied from [10]. On the right we can see
the list of possible actions in current moment.

The basic moves taken by human players are mostly a combination of actions. For example, in order
to build a building on the map, the player must first select the option "Build" or "Advanced Build",
select the desired building, maneuver the cursor to a point on the screen where the building is to be
built, and finally click on the selected position. Instead of taking 3 different actions to make this one

14

move, PySC2 gives us an atomic compound action in a format:
a c t i o n s . F u n c t i o n C a l l (c o m m a n d _ b u i l d , [_BUILD_COMMANDCENTER, [x , y
]])
PySC2 provides estimated 300 action-function identifiers with 13 possible types of arguments.
Not all the actions are available in every state of a game. For instance, the build building command is
only available if a worker like SCV is selected.

Human Actions

Agent Actions no_op select_rect(p1, p2) build_supply(p3) no_op

action Point Point action Point Point

Available Actions waantie
select

rectangle
select

action Point Point

no_op

rectangle
select

Build
supply

action Point Point

no op 0
rectangle

select

Build
supply I

Figure 5: Comparison between human players actions and the PySC2 actions., copied from [10].

3 Machine Learning
Machine Learning is the ability of computers to create the desired function only from input data and
feedback of its performance, which are commonly referred to as "punishment" and "reward". It might
use statistical techniques and improve its performance over time. Al l that without being specifically
programed to do the desired task.

Machine learning is being used for solving problems where programming specific algorithms are
not feasible or efficient. [12]

Markov Decision process is a framework that helps make decisions in a stochastic environment, an
environment where outcomes are partly random and partly under the control of an agent.
The goal of the process is to find a policy, which provides the agent with all optimal actions in each
state of the environment.

The process does not require to know past states for making a decision, it only requires present state
and reward.

15

Markov Decision process is more efficient than simple planning because the process will find
optimal action even if some unexpected change, change the plan, but simple planning keeps following
the plan after finding the best strategy.

Agent
Figure 6: Relationship between Agent, Interpreter and Environment in Reinforcement learning.
Picture taken from [13] .

3.1 Q-Learning
Q-Learning is a model-free reinforcement learning technique, which allows agents to learn how to act
optimally in controlled Markovian domains. [14]

Model-free means that Q-learning has no idea about the rules of the environment it's applied to,
meaning it does not have a model of the environment.

Q-learning creates a table which contains immediate rewards for every action that was taken, in every
state of the environment the agent happened to be in.

Let's have some definitions:
S is set of states
s is state s g S
A is set of actions
a is action a e A
R is set of possible rewards
r is reward r e R
Q is Q-learning table where

16

Q : S x A - > R
Q(s,a) is record in Q-learning table in state s with action a
a is learning rate, 0 < a < 1
y is reward decay, 0 < y < 1
If Y is lower than 1, it gives the learning process the ability to value the steps(ones that achieved the
same reward sooner) more,
s is threshold , 0 < e < 1

Threshold will tell us, what the probability of the agent acting based on Q-learning and 1- 8 is the
probability of the agent choosing action randomly. Threshold is not needed for Q-learning, but it can
help us to gather as much data as we need.

max(Q , s) is a function that finds an action with the highest reward for the state s, in the Q-
learning table Q

So every time the agent takes an action and enters a new state, the Q-learning table gets updated.
Update of record in Q-learning table is calculated as: [15]
Q (s t, a t) = (1 - a) * Q (s,, a t) + a * (r, + y * Q (s t +i , max(Q , s t + i))))
but I also encountered equations like: [16]
Q (s t, a t) = Q (s t, a t) + a * (r t + y * Q (st+i , max(Q , s t+i))) - Q (s t, a t))
which is basically the same equation.
Exception is, when state st is final, in that case the update is just calculated as:
Q (s t, a t) = rt

By following these principles, after many steps the Q-learning table gets sensible values through all
the states that's been encountered, from the states that receive rewards, all the way to initial state. [14]
Example on the picture Figure 7.

Down side of this is, that the agent has to go through the same environment many times, until the
Q-learning table gets updated all, and that amount is proportional (correlated) to the size of the table.
-Another problem is when space is not exactly Markov domain

Figure 7: States of Q-learning. Left - Found goal state, Right - Found path between initial state and
goal state. Picture taken from [17] .

Q-learning eventually finds an optimal set of steps for any finite Markov decision process. [181

17

3.2 Neural Networks

The artificial neural network is an information processing system which contains a substantial amount
of interconnected processing neurons which is inspired by the way biological nervous systems work.
The neural network learns from input information and expected the result to optimize its process. |T91

Learning in biological neural networks involves adaptations to the synaptic connections that exist
between the neurons. An artificial neural network works the same way. It is a setup for a particular
task, like data classification or pattern recognition. r201

Artificial neural networks come across as a recent phenomenon, however, they were invented before
the rise of computers.

"Many important advances have been boosted by the use of inexpensive computer emulations.
Following an initial period of enthusiasm, the field survived a period of frustration and disrepute.
During this period when funding and professional support was minimal, important advances were
made by relatively few researchers. These pioneers were able to develop convincing technology
which surpassed the limitations identified by Minsky and Papert. Minsky and Papert published a book
(in 1969) in which they summed up a general feeling of frustration (against neural networks) among
researchers, and was thus accepted by most without further analysis. Currently, the neural network
field enjoys a resurgence of interest and a corresponding increase in funding. The first artificial
neuron was produced in 1943 by the neurophysiologist Warren McCulloch and the logician Walter
Pits. But the technology available at that time did not allow them to do too much" [20]

Neural networks have a great ability to find patterns and trends in a large amount of data. The finding
of these patterns can be too difficult for humans, therefore, a trained network can become an expert in
the field it's trained in.

Neural networks can be used for various purposes, such as:
Adaptive learning, Self-Organisation, Real-Time Operation, Fault Tolerance via Redundant
Information Coding. [20]

A huge advantage of neural networks is their contrast to classical algorithmic programs. Usually,
when we need a computer to do some work, we need to program every step and every instruction of
what needs to be done. Therefore, we need to know how to do the work, we want from program to do,
and then we can program it. But neural networks can deal with problems, we don't know solutions to.
For example, it's really hard to find an algorithm that would be able to distinguish faces of different
people, but neural networks seem to be good at this job. [20]

The function of a neuron in the artificial neural network is based on a biological neuron. One neuron
has multiple inputs, but only single output.

Let's have some definitions:

18

X is set of inputs into neuron
x is single input x e X
W is set of weights of neuron
w is single weight w e W
b is bias
Activation function: Sigmoid function o (x) = l / (l + e~x)
Purpose of sigmoid function is to take any real number between -qo and +00 and turn it into a number
between 0 and 1 that is positively correlated to the input of the sigmoid function.

sigmoid function

- 4 - 3 - 2 - 1 0 1 2 3 4

Figure 8: sigmoid function, copied from [26]

Other activation functions are tanh(x) or
if x>0 then 1 else 0
There are also cases where sigmoid function is not needed or it is replaced by other functions that are
not limited by 0 and 1. [27] [20] [26]
Principle of computation of neuron is simple. It's just application of following equation:
O (Z n (*n * Wn) + b) = OUtpUt

INPUTS OUTPUT

TEACHING INPUT
Figure 9. An MCP neuron, copied from [20]

One layer of a neural network is just multiple neurons that share the inputs in the following way: [27]
A single input of the layer xi is also input xi of every neuron Nj in the layer. The output of the layer is
set in the way that a single output of each neuron Nj is the output oj of the layer. The number of
inputs and outputs a layer has are not necessarily the same, in most cases, when the layers are not
inner/hidden, they are usually very different. Hence, the whole neural network is just connected layers
from inputs to outputs, where the number of outputs of each layer must be the same as the number of
inputs of the following layer.

19

inputs H , d d e n l a y e r 0 u t p u t s

Figure 10. A neural network layers, copied from [20]

3.3 Backpropagation
The function of a learning algorithm is to map a set of inputs to outputs of the neural network the
way, the neural network produces desired results. The true miracle of neural networks is the way they
learn new information.

The Backpropagation algorithm enables the information to flow backward through the neural
network with more than one layer, in order to compute the gradient in a simple and computationally
inexpensive way.

The term Backpropagation does not refer to the entire learning algorithm for neural networks,
instead, it is only the method for computing the gradient. This gradient is then being used by the
stochastic gradient descent for neural networks to learn. [31]

The gradient descent optimization algorithm modifies the weights and biases of neurons.

Here is an oversimplification of how Backpropagation works: [28] [29] [30]
Let's divide function of a neuron by defining z:

X(L) = o (z)
Z = 2 m (X(L - l)m * W m) + b

L is the index of specific layer
n is the index of neuron
m is the index of input into neuron

20

First, we start with the last layer of the neural network, desired/correct outputs and actual outputs.
Cost =sum of all outputs (real output - desired output)2

C = Z n (X(L)(n) - y<n) Y

X(L)(n) = O (Z(L)(n))

Z(L)(n) = S m (X(L-l)(m) * W(L)(n)(m)) + b(L)(n)

Derivative of weights:
8C I 3W(L)(n)(m) = 3Z(L)(n/3W(L)(n)(m) * 3X(L) (n) /3Z(L) (n) * 3C /3X(L)(n)

9 Z (L) (n) / 9W(L)(n)(m) = X(L-l)(m)

9X(L)(n)/ 3Z(L)(n) = o'(Z(L)(n))

9C / 3x (L)(„) = 2*(x (L)(„) - y(„))

9C / 3W(L)(„)(m) = X(L-l)(m) * o'(Z (L) („)) * 2*(X (L) („) - y(„))

Derivative of biases:
8C I 9b(L)(n) = 3Z(L)(n)/3b(L)(n) * 3X(L) (n) /3Z(L) (n) * 3C /9X(L)(n))

9C / 3b(L)(„) = o'(z (L) („)) * 2*(x (L)(„) - y(„))

Derivative of previous layer:

8C I 3X(L-l)(m) = Zjn 9Z(L)(n)/9X(L-l)(m) * 3X(L)(n)/3Z(L)(n * 3C/3X(L)(n)

9C / 3X(L-l)(m) = Z n W(L)(n)(m) * o'(Z(L) („)) * 2 * (X (L) („) - y(„))

Then we use the calculated derivatives of weights and biases for altering of weights and biases in
specific neurons and we use a derivative of the previous layer for propagating this change into a layer
before the current layer and repeat the whole process.

3.5 Neural network implemented as Q-Learning

Neural networks are good at things like classification, but for playing games, it is much better to use
Q-learning, because Q-learning is designed for an agent controlling its actions in an environment.
But neural networks are designed just for answering questions.

Also, another problem is Q-learning itself. Size of Q-learning table is expanding by an incredible
rate, as the game is getting more complex, due to the size of the Q-learning table being equal to a
number of possible states times number of possible actions, and it gets to the point where Q-learning
is not practical anymore. Not only because of memory reasons of storing such massive table, but also
because the Q-learning process will be lost with such great amount of states, and it will not be able to
find the right path to states with rewards, because every new match will introduce new states that the
agent did not encounter before.

One way how to go around it is to limit states to what we consider important for the agent to know
and also limit its actions by creating actions where every action is composed of multiple elementary
steps, in which the step is just a basic action of the agent in the game. In my system, I also
implemented this option but it didn't turn out to be effective.

Therefore, if I want to use a neural network for an agent to move in an environment, it would be a
good idea to combine Q-learning and neural networks.

21

One way I can do this is:

1.) If the neural network is not set, then execute a random action.
2.) Generate a random number and test if that number is smaller than threshold 8 , and if it is,

then execute a random action.
3.) For every action in the set of all possible actions:

Push the state of the environment together with the selected action as an input into
the neural network.
Compare result from the neural network with the highest probability for the highest
reward (or some alteration of this), and if it's higher, then set this result as highest.

4.) Execute an action with a higher result.
5.) Observe reward after executing the action, and train the neural network using the reward

following way:
Q (s t, a t) = a * (r t + Y * Q (st+i, a t + i)))
The index of time/step t, in this case, it is not the current step, but all the steps that have
already happened in the current game.

This process is based procedure from following source [32].

Problem with this design is Catastrophic interference. Catastrophic interference is when a neural
network forgets what it had previously learned after learning new information. To avoid this problem,
I will use experience replay. [32]

Let's create a buffer where all the important information, state of the environment, executed actions
and rewards will be saved for a large number of steps.

Then the following process can be used:

1.) Test if state is final and if it is, then set variable steps_in_game to 0.
2.) If neural network is not set, then execute a random action.
3.) Generate a random number and test if that number is bigger than threshold 8 and if it is, then

execute a random action.
4.) For every action in the set of all possible actions:

Push the state of the environment together with the selected action as an input into
the neural network.
Compare result from the neural network with the highest probability for the highest
reward (or some alteration of this), and if it's higher, then set this result as highest.

5.) Execute an action with a higher result.
6.) Observe reward after executing the action, and alter the latest data in buffer:

Q (s t , a t) = a * (r t + Y * Q (St+i , at+i))) , the amount of data to alter is defined by the
variable steps_in_game.

7.) Store the data, state of environment, executed action and reward from current stap in it.
8.) Test if buffer is full, and if it is, push all the stored data in buffer into neural network. Then

empty the buffer.
9.) Increment the variable steps_in_game by 1.

22

4 Design and Implementation of the
Realized System

My system is based and inspired by the PySC2 tutorial [35] made by Steven Brown. I used his work
to learn how to control StarCraft II Learning Environment.
His bots are the basis of my system.

Since I'm using pysc2 for my system, I can't use micromanagement for every unit that is under my
control but I can control only one selected unit in one step or a selected group of units that can only
do one specific command together. I would have to take the same approach as a human player would.
Design of my system is similar to what was defined in chapter 2.1 Real-Time Strategy where we
talked about division of game into strategy, tactics and reactive control but the difference is I can't
use micromanagement for every unit as mentioned above. The main strategy of the game is managed
by Strategy Manager which is defined directly in function Step.

From this function, I'm calling other functions-Build Base, Build Army, Attack Base and Scout Base.
Since I can do only one action per step, I designed the system to be a bit similar to the operating
system and Strategy Manager is handling functions under it, like processes. Meaning that the Strategy
Manager calls one function for example Build Base, and when this function is in the process, the
function Build Base decides what actions will be made, like build some specific building on specific
position by a specific unit. But finishing such action takes time, and before it's finished, other steps
can be made. Therefore, if function Build Base is engaged and can't do any other actions before
everything is finished, then the function will be waiting, and other functions, like Build Army or
Scout Base, can be used. The exact same principle is being used inside functions Build Base and
Build Army.

Strategy Manager

Build Army
Attack Base Scout Base

-Build Building

-Train Worker

-Upgrade

-Mine

-Machine Learning by Q-Learning

-Machine Learning by Neural Network

Figure 11. Chain of Command

The core of my system is class MyAgent (base_agent. BaseAgent) that inherits all
functionality of base_agent of the PySC2.

23

Before the game begins, I have to locate all the strategic points. In a classical match, where players
have to first build a base, gather resources and then build an army, the strategic points are Mineral
Mines together with Vespene Geysers. In the function second_init, I have located these strategic
points. I take the advantage of the fact that in most StarCraft maps the Mineral Mines together with
the Vespene Geysers are in shape of semicircles. In my opinion, the best strategic point for such
shape would be near the center of the imaginary circle, but a little farther from Mineral Mines. It's
also the place where Command Center, Nexus, and Hive are located at the beginning of the game.

I calculated the position using the following method: First, I take the list of all positions of Mineral
Mines and Vespene Geysers and calculate the median point. Next, I calculate the most distant point in
the list from the median point, which will be the endpoints of the semicircle and then, I calculate the
point most distant from this point, and I get another endpoint of the semicircle. After that, I just
calculate point between the two endpoints. Let's call this point "the center". Lastly, I calculate the
strategic point as (2 * the center) - the median point

Al l these parts are calculated at the beginning of every game, in the function called
second i n i t (s e l f , obs).

In this function is doing all the necessary initialization, that needs to be done at the beginning of
every game.

It's called second_init because there is already a function called i n i t (s e l f) and purpose
of this function is the initialization of the class My Agent and also initialization of class Q-learning in
earlier versions of the system or Neural Network in later versions of the system.

The first function that's being called in every step of the game is function s t e p (s e l f , obs) . It's
the main function of the agent and it's being called directly from the PySC2.

The PySC2 gives the function step argument obs, which is really important global structure, that
contains all the observation of the environment. The information that is being contained in this
structure is described in the chapter 2.3 StarCraft II Learning Environment.

Strategy Manager as mentioned above is programmed in this function. First, it updates the status of
the strategic points, where is located my base, where are located enemy units, and if my base is under
attack. I detect if there are some functions that are already in process, and if there are none, then the
Strategy Manager will choose function base of the state of the strategic points.

Then there are functions that help Strategy Manager evaluate where to progress next:
Function n e a r e s t _ p l a c e (s e l f , p o s i t i o n) finds the nearest strategic point to the requested

point, in most cases it is a point that represents the position of the screen.
Function n e a r e s t _ e m p t y _ p l a c e (s e l f , p o s i t i o n) finds the nearest strategic point which

is completely empty or unexplored.

Function n e a r e s t _ f r e e _ p l a c e (s e l f , p o s i t i o n) finds the nearest strategic point where
our base is not completed.

Function s c o u t _ b a s e (s e l f , p o s i t i o n , obs) sends some worker or a low-level unit to
some unexplored strategic point.

24

Function a t t a c k _ b a s e (s e l f , p o s i t i o n , obs) attacks selected position if we have
sufficient army, if not then calls function b u i l d _ a r m y (obs) . This function also serves as a
defense of our base.

4.1 Combat and Reinforcement Learning
Implementation

Function combat (s e l f , p o s i t i o n , obs) serves for controlling an army during battle.
This function uses Neural Network for making decisions about the action of the army.
In earlier versions of this system, it was using Q-Learning instead of Neural Network.

For Q-learning, I defined the state as a list of attributes of the environment that I considered to be
crucial for the decision-making process of Q-learning. It is important that the list will contain a
minimal amount of information, because with every new information, the size of the Q-learning table
will grow exponentially, and it is crucially important to keep the table in a reasonable size for reasons
mentioned in chapter 3.1 Q-learning.

Therefore, the information that I picked for the list is active type of unit, boolean informing us if
first special ability is free for use, boolean informing us if second special ability is free for use and
integer that represents difference in power between me and my enemy, that is calculated by function
l o g _ f or_power_of_enemy (obs) . The reason why I picked to represent only two special
abilities by boolean, is because majority of Terran units use maximally 2 special abilities and the only
unit, that use more abilities is Ghost, so for this purpose, I divided the use of this unit into two
different types, where first type use as a first ability Steady Targeting and as a second EMP Round,
and second type uses as first ability Cloak and as a second Tac Nuke Strike. Another unit that uses
more special abilities is unit Raven, but PySC2 doesn't offer use of abilities Intervence Matrix and
Anti Armor Missile, so I just dismissed them.

The actions that I chose for Q-learning are: Attack weak, Attack close, Retreat, First ability, Second
ability, Group change.

With this design, the size of the Q-learning table will b e l 4 x 2 x 2 x 5 x 6 = 1680 cells.

Action Attack weak tell the whole army to attack the enemy unit that has the lowest health and also
highest value. I calculated it as hit points / (cost of unit in minerals + cost of unit in gas) and then I
choose the unit with the lowest ratio as the target.

Action "Attack close" tells the whole army to attack the enemy unit that is closest our units.

Action "Retreat" commands the army to run away from enemy units. The point they are set to go to is
calculated as (2 * position of the closest enemy unit) - the center of enemy units.

Action "First ability" commands the active type of unit / active group of units to use their first ability.
If the ability requires coordinates of some target, then it will use one of these calculated coordinates:

25

weakest enemy unit with the lowest ratio of = hit points / (cost of unit in minerals + cost of unit in
gas), weakest ally unit with lowest ratio of = hit points / (cost of unit in minerals + cost of unit in gas),
strongest enemy unit with the highest ratio of = cost of unit in minerals + cost of unit in gas
and the closest enemy unit.

Action "Second ability" commands the active group of units to use their second ability with the same
rules as the first ability.

Action "Group change" changes the active group of units into a different group. By group, I mean the
type of units from all the selected units that can use special abilities at the moment.

The reason why I chose this representation of state and this list of actions for Q-learning was my
inspiration from the work of Stefan Wender and Ian Watson, Applying Reinforcement Learning to
Small Scale Combat in the Real-Time Strategy Game StarCraft: Broodwar [33]. In their work, they
compare many types of Q-learning techniques, but the main difference between their work and mine
is that their agent controls only one unit, while mine controls the whole army of units of different
types.

I would also like to mention another work that I used as a research for combat scenarios, but at the
end, I didn't use much of it, and that is Fast Heuristic Search for RTS Game Combat Scenarios from
David Churchill, Abdallah Saffidine and Michael Buro [34] •

As a reward, during testing I was trying more systems, I was trying immediate reward, when
Reinforcement Learning receive reward immediately when an enemy unit dies, or punishment when
own unit dies, calculated as:
r e w a r d = o b s . o b s e r v a t i o n [' s c o r e c u m u l a t i v e '] [5] - s e l f . l a s t reward-
punishment,
where punishment is a calculated score of own units that were lost and value of each unit is calculated
as a sum of its resources needed for its creation.
S e l f , l a s t reward contains obs . o b s e r v a t i o n [' s c o r e c u m u l a t i v e '] [5] from last
step.
Besides immediate reward, I was also testing final reward, where the reward was received only at the
end of the game, and it was calculated as:
reward = obs.reward * 1000000
i f obs.reward > 0 :

reward -= s e l f . r e w a r d l o s t s sum
e l s e :

Reward +=
o b s . o b s e r v a t i o n [' s c o r e c u m u l a t i v e '] [5] + o b s . o b s e r v a t i o n [' s c o r e cumula
t i v e '] [6]

For Q-learning itself, I used an already created class QLearningTable, that was created by Steven
Brown r351 who used some code from Morvan Zhou [16].

For a Neural Network, I defined state as a list that contains Visibility minimap, Camera minimap,
Player Relative minimap, all with resolution of 16x16, Player Relative screen, Unit Type screen, Hit
Points screen, Unit Density screen, again all with resolution of 16x16, type of active group of units,
boolean informing us if first special ability is free for use, and boolean informing us if second special
ability is free for use.

26

The actions for Neural Network are exactly the same as for Q-learning.

The output of neural network is one integer that can have 7 different values, numbers from 0 to 6.
Output 0 means that the reward in that one step was less than -300
Output 1 means that the reward in that one step was between -100 and -300
Output 2 means that the reward in that one step was between 0 and -100
Output 3 means that the reward in that one step was 0
(there were lots of outputs like this, mostly where nothing happened)
Output 1 means that the reward in that one step was between 0 and 100
Output 1 means that the reward in that one step was between 100 and 300
Output 6 means that the reward in that one step was more than 300
Again reward is calculated as
o b s . o b s e r v a t i o n [' s c o r e c u m u l a t i v e '] [5] - s e l f . l a s t reward-punishment
Same as for Q-learning. Final reward is just reward = obs. reward * 100 00 0

For Reinforcement Learning by Neural Network, I created a class NeuralNetwork that is just
rewritten class QLearningTable. In this class, I applied the technique described in chapter 3.2Neural
Networks Implemented as Q-Learning.

For the Neural Network itself, I used MLPClassifier from library sklearn [27]. I learned how to use
MLPClassifier thanks to the website https://www.python-course.eu/neural_networks_with_scikit.php
[36].

The class NeuralNetwork contains functions:

i n i t
(s e l f , a c t i o n s , l e a r n i n g rate=0.1, reward decay=0.9, e greedy=1.0)

The initialization of NeuralNetwork, where I create MLPClassifier with parameters
(h i d d e n l a y e r s i z e s = (2050, 1000, 500), a c t i v a t i o n = ' l o g i s t i c ' ,
max i t e r = 150, a l p h a = l e - 4 , s o l v e r = 'sgd', v e r b o s e = 10, t o l =
l e - 4 , random s t a t e = 1, l e a r n i n g r a t e i n i t = l r)
During testing, I was trying different settings of parameters, and trying to find out which setting
works more efficiently.

change_policy(self, e_greedy), a function that just changes the threshold value •

choose_action(self, observation,used_units), function that tests every possible action and then picks
the action with the best score. Al l according to the procedure that was described in the chapter
3.2Neural Networks Implemented as Q-Learning . The score on base of the action is chosen is
calculated as:
s c o r e = (7 * p r e d i c t i o n s [p r e d i c] [6]) + (5 * p r e d i c t i o n s [p r e d i c] [5]) + (3 * p r e d i
c t i o n s [p r e d i c] [4]) - p r e d i c t i o n s [p r e d i c] [3] -
(2 * p r e d i c t i o n s [p r e d i c] [2]) - (3 * p r e d i c t i o n s [p r e d i c] [1]) -
(4 * p r e d i c t i o n s [p r e d i c] [0])

where p r e d i c t i o n s = s e l f .mlp. p r e d i c t proba (t e s t s e t)

27

https://www.python-course.eu/neural_networks_with_scikit.php

This part of code means, that it will go through all possible actions with the same state push them into
function predict_proba and it will return the probability for every possible output (number from 0 to 6
as is mentioned above) and it will use these probabilities for calculating the score, (the equation
above)

Next function is choose_unit(self, unit).
Well, this function is not part of the planned design. The original plan was to use Machine Learning

only for combat, but at the last moment, I decided to use a ready created Reinforcement Learning
system for making decisions about what units to train. I decided to do that because everything was
already created for combat, so it didn't take much time to implement it.

This function loads one random state from a buffer, creates a copy of this state, and in this copy, it
will alter data by adding 1 to the value in the state that is informing us about the number of units of a
specific type, and that specific type is the argument of this function. Then it will push that one
random state and his altered copy into self.mlp.predict_proba(testset), then it calculates the score the
same way
(7 * p r e d i c t i o n s [0] [6]) + (5 * p r e d i c t i o n s [0] [5]) + (3 * p r e d i c t i o n s [0] [4]) -
p r e d i c t i o n s [0] [3] - (2 * p r e d i c t i o n s [0] [2]) - (3 * p r e d i c t i o n s [0] [1]) -
(4 * p r e d i c t i o n s [0] [0])

for both original state and altered state, and then as an output of this function it will return their
difference. This number then will be used as a decisive factor, for making a decision whether to train
this unit or not.

The last function of NeuralNetwork class is function learn(self, s, a, r, s_, used_units).
This function takes state, action, and reward and does everything with them that was described in
chapter 3.2 Neural Networks Implemented as Q-Learning. Meaning, it will store the state, action, and
reward into the buffer and if the buffer is full, it will feed it into Neural Network using the function
self.mlp.partial_fit(self.learnset, final_learnlabels)

4.2 Other Functions
The function l o w e r _ r e s o l u t i o n (map) lowers the resolution of the minimap or screen to
picture of 16x16 pixels.

Function number o f s e l e c t e d u n i t s (s e l f , obs, t y p e o f s e l e c t e d u n i t) returns
number of units of specific type that are selected.

Function l o g _ f or_power_of_enemy (s e l f , obs):returns ratio of how much space on
minimap is taken by own units compared to how much space is taken by the enemy units.

Function a b i l i t y f r e e f o r use (s e l f , obs, a b i l i t y , t y p e o f s e l e c t e d u n i t)
returns boolean that informs us if it is possible to use the requested ability.

Function f i n d _ c e n t e r _ o f _ b a t t l e (s e l f , obs) finds an enemy unit that is closest to our
units, or at least close enough.

28

Function b u i l d _ a r m y (s e l f , obs) decides which units to create. Neural Network is being used
for this decision. This function calls function c h o o s e _ u n i t (s e l f , u n i t) for every possible
unit and which unit returns the highest ratio, that unit is being created. Of course, only if we have
enough resources and the needed requirements for the training.

Function b u i l d _ b a s e (s e l f , p o s i t i o n , l e v e l , obs) decides which buildings to build
and if it is needed to train workers. While working on this part of program, I found out that it is a
huge problem for PySC2 to find out how many workers are working in mines, that's why I'm only
looking on how many workers are present on the screen. It's not the ideal solution, but it's efficient.

Function s e l e c t e d _ u n i t (s e l f , u n i t _ i d , obs) informs me if the requested type of unit is
selected.

Function b u i l d _ f arm (s e l f , p o s i t i o n , obs) commands worker to build building
command center on some near strategic point.

Function go_mine (s e l f , t y p e _ o f _ m i n e , obs) : sends worker to mine some specific type
of resource.

Function t r a i n _ u n i t (s e l f , u n i t _ i d , obs, how_many=0) commands some building to
train train specific type of unit.

Function t r a i n _ w o r k e r s (s e l f , obs) trains workers, SCV, Drone, Probe. This function is
distinct from function t r a i n _ u n i t because it also should make sure that the workers are directly
being send to mine minerals.

Function t r a i n _ w o r k e r s (s e l f , obs) trains workers, SCV, Drone, Probe. This function is
distinct from function t r a i n _ u n i t because it also should make sure that the workers are directly
being send to mine minerals.

Function b u i l d _ b u i l d i n g (s e l f , t y p e _ o f _ b u i l d i n g , obs) commands worker to
build specific type of building. It also improves existing buildings and researches improvements.
General problem with making buildings, is that PySC2 doesn't give back information, if selected
point for placing building is free. It can try to estimate, if it might be available, which is the purpose
of function f r e e l a n d (s e l f , p o i n t x, p o i n t y, s i z e , s t r u c t u r e) , But in the end
the only way is just by trying. The reason why i decided to program this system they way, that it
handless functions like processes, so it can work on other functions, while worker is being send to
construct building.

Functions how many u n i t s (s e l f , u n i t t y p e t , obs) and
how_many_buildings (s e l f , u n i t _ t y p e _ t , obs) Try to estimate how many units or
buildings of specific type are present on the screen which help me following progress of
development of the base. I chose this function instead of variables that would count them, because
destruction of some buildings will be hard to follow.

r e t u r n one p o i n t o f b u i l d i n g (s e l f , u n i t t y p e t , s t r u c t u r e)

29

Gives mi list of estimated center points of buildings present on the screen. Creation of this function
was needed because some unit that were too close to the building were selected instead and I caused
problems, like loop.

def s a m e _ s c r e e n _ p o s i t i o n (s e l f , p o s i t i o n) tests if current position of the screen is
also desired position, and this function is needed, because action
actions.FunctionCall(_MOVE_CAMERA, [[p o s i t i o n [1] , p o s i t i o n [0]] ,]) is
returning the view on coordinates little bit different than what I can get by
s e l f . p o s i t i o n o f s c r e e n = (i n t (s c r e e n y . m e a n ()) , i n t (s c r e e n x.meanf)))
where MOVE CAMERA = a c t i o n s . FUNCTIONS .move camera, i d

30

5 Experimental Evaluation and
Discussion

In the experiments, I was testing implemented system with various implementations of reinforcement
learning against default programmed hot made by Blizzard that is already part of the StarCraft II. The
part that is mostly tested is combat management because that is where the machine learning was
implemented. I created several testing maps by using StarCraft II Editor that contained only combat
units and no resources, so the agent can focus only on combat and not other parts of the game, like
development of the base.

There I was testing only combat of terran units against terran units.
Point of those experiments was to find out if the agent will be improving its strategy over time, which
will prove that the reinforcement learning had taken place.

Each test had taken place for around 1000 games, and recorded final score at the end of each game.
System was being tested for the score of killing enemy units and the value of its own units that been
lost.

Unfortunately, in many cases we cannot compare the tests to each other, because sometimes the
testing maps had been changed and some modifications had been added, but what we can compare, is
how much the score had been improved over time from the first game, till the last game within one
test.

TEST 1
In first test I'm testing the combat with the use of Q-learning as a main RL technique.
The settings of Q-learning process are:
Q - l e a r n i n g (s e l f , a c t i o n s , l e a r n i n g rate=0.01, reward decay=0.9,
e greedy=0.9)

Immediate reward for every step is set as:
reward = o b s . o b s e r v a t i o n [' s c o r e c u m u l a t i v e '] [5] - s e l f . l a s t reward -
punishment
And reward at the end of the game is set as:
reward = 1000 * obs.reward

31

This graph shows the Blizzard score of the killed enemy units in every game. Score is usually
calculated as a sum of resources that were needed of creation the specific unit.
X axis represents the number of played games and Y axis represents the score.

This graph shows the score as the sum of value of lost own units in every game.

This graph shows the difference between score of the killed enemy units and loss of own units in
every game.

This graph shows the score of the killed enemy units in every game but its averaged for 100 games.
This graph is important, because the original graph is not transparent, because incredible variation of
results in games.

32

average kills

.'ULHi

1'ifir:

1«»

•.tic:

0

This graph shows the score of the lost value of friendly units in every game but its averaged for 100
games.

This graph shows the difference between score of the killed enemy units and loss of friendly units in
every game but its averaged for 100 games.

average difference

1040

In this test we can see that over time the kills score increases, but also the loss increases, and when we
sum the kills score and the loss score together, we can see that our score is decreasing over
time,which is the exact opposite of what we hoped to achieve. Close to the end of testing, the most
frequent actions that were chosen where actions Attack Weak and Second Ability.

TEST 2
33

In this test I'm testing the combat with the use of Q-learning as a main RL technique.
The settings of Q-learning process are:
Q - l e a r n i n g (s e l f , a c t i o n s , l e a r n i n g rate=0.05, reward decay=0.9,
e greedy=0.9)

Immediate reward for every step is set as:
reward = o b s . o b s e r v a t i o n [' s c o r e c u m u l a t i v e '] [5] - s e l f . l a s t reward -
punishment
No reward at the end of the game is being set.

With each game progresses, i set the variable self.epsilon to decrease with every other game, to
achieve slow progress over the all test.
greedy i n c l i n e = (s e l f . r u n s o f g a m e - (s e l f . r u n s o f game%10))/10
s e l f . q l e a r n . c h a n g e p o l i c y (g r e e d y i n c l i n e / 1 0 0)

This graph shows the Blizzard score of the killed enemy units in every game.
X axis represents the number of played games and Y axis represents the score.

This graph shows the score as the sum of value of lost own units in every game.

This graph shows the difference between score of the killed enemy units and loss of own units in
every game.

34

This graph shows the score of the killed enemy units in every game but its averaged for 100 games.
This graph is important, because the original graph is not transparent, because incredible variation of
results in games.

This graph shows the score of the lost value of friendly units in every game but its averaged for 100
games.

-eB***<*l|5gliSlElt3liB!lltkll991IISIfcl9SIitSfl)l3SSilSllt&llll9llieiBIIEX]IISflllttlllltlklll

This graph shows the difference between score of the killed enemy units and loss of friendly units in
every game but its averaged for 100 games.

In this test we can see that none of the test progresses, which shows that the learning process had no
real effect for the results of the game. This is proof that my implementation of Q-learning was not
successful. The main reason why this happened is the fact that the states i use as a representation of
the environment are not enough for making decision of what action to use.

TEST 3
In this test I'm testing the combat with the use of Neural Network applied as a Q-learning as a main
RL technique.
The settings of Neural Network are:
N e u r a l Network (s e l f , a c t i o n s , l e a r n i n g rate=0.1, reward decay=0.9,
e g r e e d y = l . 0) :

35

M L P C l a s s i f i e r (h i d d e n l a y e r s i z e s = (6 0 0 , 1) , a c t i v a t i o n = ' l o g i s t i c ' ,
max i t e r = 1 5 0 , a l p h a = l e - 4 , s o l v e r = ' s g d ' , verbose=10, t o l = l e - 4 ,
random s t a t e = l , l e a r n i n g r a t e i n i t = . l)
activation='logistic' sets the Activation function to Sigmoid function o (x) = l / (l + e"x)
Before conducting this test, I forgot to set this variable, and it had bad consequences, meaning that the
Neural Network didn't see difference between different actions for the output.

Size of the buffer is being set to 10000 states of environment.

The output of neural network was calculated from reward by following way:
i f r>200:

s e l f . l e a r n l a b e l s . a p p e n d (6)
e l i f r>100:

s e l f . l e a r n l a b e l s . a p p e n d (5)
e l i f r>0:

s e l f . l e a r n l a b e l s . a p p e n d (4)
e l i f r==0:

s e l f . l e a r n l a b e l s . a p p e n d (3)
e l i f r>-100:

s e l f . l e a r n l a b e l s . a p p e n d (2)
e l i f r>-200:

s e l f . l e a r n l a b e l s . a p p e n d (1)
e l s e :

s e l f . l e a r n l a b e l s . a p p e n d (0)

The state of environment for Neural Network are being set as: a list that contains Visibility minimap,
Camera minimap, Player Relative minimap, all with resolution of 16x16, Player Relative screen, Unit
Type screen, Hit Points screen, Unit Density screen, again all with resolution of 16x16, type of active
group of units, boolean informing us if first special ability is free for use, but boolean informing us if
second special ability is free for use is missing in this test and following tests.

X axis represents the number of played games and Y axis represents the score.
KILLS

36

LOSS

-3000

^—DIFFERENCE

AVERAGE KILLS

3500 ^
3500 f

2000

1500

1000

500

0

^—AVE FLftGE KILLS

37

AVERAGE LOSS

- A V E R A G E LOSS

A V E R A G E _ D I F F E R . E I M C E

e--::-e_:: = : : . ; :

In this test we can see that the learning process had taken place, as shows the progress of kills at the
beginning of the graph, which is the time when program gathered enough data and the buffer was
filled and the Neural Network was activated. Close to the end of testing, the most frequent action that
was chosen, was action attack the weakest unit.

TEST 4
In this test I'm testing the combat with the use of Neural Network applied as a Q-learning as a main
RL technique.
The settings of Neural Network are:
N e u r a l Network (s e l f , a c t i o n s , l e a r n i n g rate=0.1, reward decay=0.9,
e g r e e d y = l . 0) :
M L P C l a s s i f i e r (h i d d e n l a y e r s i z e s = (6 0 0 , 3) , a c t i v a t i o n = ' l o g i s t i c ' ,
max i t e r = 1 5 0 , a l p h a = l e - 4 , s o l v e r = ' s g d ' , verbose=10, t o l = l e - 4 ,
random s t a t e = l , l e a r n i n g r a t e i n i t = . l)

Kills
This graph shows the Blizzard score of the killed enemy units in every game.
X axis represents the number of played games and Y axis represents the score.

38

Loss
This graph shows the score as the sum of value of lost own units in every game.

1 lllll'l '1 1 ' 1 I-
1 1 1 1 1

1

11

Difference
This graph shows the difference between score of the killed enemy units and loss of own units in
every game.

Average Kills
This graph shows the score of the killed enemy units in every game but its averaged for 100 games.
This graph is important, because the original graph is not transparent, because incredible variation of
results in games.

39

Average Loss

This graph shows the score of the lost value of friendly units in every game but its averaged for 100
games.

6200 —

5900

5350 —

5B00

Average Difference

This graph shows the difference between score of the killed enemy units and loss of friendly units in
every game but its averaged for 100 games.

•15"

•2 : : :

In this test we can see that the learning process had taken place, as shows the progress of kills at the
beginning of the graph, which is the time when program gathered enough data and the buffer was
filled and the Neural Network was activated. It's the same as Test 3.Close to the end of testing, the
most frequent action that was chosen, was action attack the weakest unit.

40

Test 5
In this test I'm testing the combat with the use of Neural Network applied as a Q-learning as a main
RL technique.
The settings of Neural Network are:
N e u r a l Network (s e l f , a c t i o n s , l e a r n i n g rate=0.1, reward decay=0.9,
e g r e e d y = l . 0) :
M L P C l a s s i f i e r (h i d d e n l a y e r s i z e s = (6 0 0 , 3) , a c t i v a t i o n = ' l o g i s t i c ' ,
max i t e r = 1 5 0 , a l p h a = l e - 4 , s o l v e r = ' s g d ' , verbose=10, t o l = l e - 4 ,
random s t a t e = l , l e a r n i n g r a t e i n i t = . l)

With each game progresses, i set the variable self.epsilon to decrease with every other game, to
achieve slow progress over the all test.
r decayed=self.gamma*r
greedy i n c l i n e = f l o a t (s e l f . r u n s o f game/400.0)

i f greedy i n c l i n e > l . 0 :
greedy i n c l i n e = l . 0

s e l f . q l e a r n . c h a n g e p o l i c y (g r e e d y i n c l i n e)

l l U , i , nil LJJ

rtfö TT

41

Average Kills

In this test we can see that the learning process had taken place, as shows the progress of kills and
decrease of loss for first 200 games, which is the time when g r e e d y _ i n c l i n e got near the value
of 0.5. Near the game 600 we can see decline in performance and then again grow. I'm not sure what
caused that, Maybe because neural network did not get data with enough variance of actions. Close to
the end of testing, the most frequent action that was chosen, was action attack the weakest unit.

Test 6
In this test I'm testing the combat with the use of Neural Network applied as a Q-learning as a main
RL technique.
The settings of Neural Network are:
N e u r a l Network (s e l f , a c t i o n s , l e a r n i n g rate=0.1, reward decay=0.9,
e g r e e d y = l . 0) :
M L P C l a s s i f i e r (h i d d e n l a y e r s i z e s = (2 0 5 0 , 1 0 0 0 , 5 0 0) , a c t i v a t i o n = ' l o g i s t i
c', max i t e r = 1 5 0 , a l p h a = l e - 4 , s o l v e r = ' s g d ' , verbose=10, t o l = l e - 4 ,
random s t a t e = l , l e a r n i n g r a t e i n i t = . l)

The output of neural network was calculated from reward by following way:
i f r>300:

s e l f . l e a r n l a b e l s . a p p e n d (6)
e l i f r>100:

s e l f . l e a r n l a b e l s . a p p e n d (5)
e l i f r>0:

s e l f . l e a r n l a b e l s . a p p e n d (4)
e l i f r==0:

s e l f . l e a r n l a b e l s . a p p e n d (3)

42

e l i f r>-100:
s e l f . l e a r n l a b e l s . a p p e n d (2)

e l i f r>-300:
s e l f . l e a r n l a b e l s . a p p e n d (1)

e l s e :

s e l f . l e a r n l a b e l s . a p p e n d (0)

Size of the buffer is being set to 7000 states of environment.

With each game progresses, i set the variable self.epsilon to decrease with every other game, to
achieve slow progress over the all test.
r decayed=self.gamma*r
greedy i n c l i n e = f l o a t (s e l f . r u n s o f game/250.0)

i f greedy i n c l i n e > l . 0 :
g reedy i n c l i n e = l . 0

s e l f . q l e a r n . c h a n g e p o l i c y (g r e e d y i n c l i n e)
The state of environment for Neural Network are being set as: a list that contains Visibility minimap,
Camera minimap, Player Relative minimap, all with resolution of 16x16, Player Relative screen, Unit
Type screen, Hit Points screen, Unit Density screen, again all with resolution of 16x16, type of active
group of units, boolean informing us if first special ability is free for use, and boolean informing us if
second special ability is free for use had been added for this test and all following tests.

This graph shows the Blizzard score of the killed enemy units in every game.
X axis represents the number of played games and Y axis represents the score.

' - • 5 » * - t : « * } ; c . 1 f ; ; S 5 s ! j 5 a ! i ; ; i . ; i £ | e a S £ (! e ! i i ; i s E ^ ; 4 t B ; ; j S , | 5 | t i ; ; g * i i S » S S J S e i I i i » : S i i l

This graph shows the score as the sum of value of lost own units in every game.

1
II

This graph shows the difference between score of the killed enemy units and loss of own units in
every game.

43

This graph shows the score of the killed enemy units in every game but its averaged for 100 games.

This graph shows the score of the lost value of friendly units in every game but its averaged for 100
games.

This graph shows the difference between score of the killed enemy units and loss of friendly units in
every game but its averaged for 100 games.

' - • • • • • » > > * M f > i f i * l i | 9 ! 9 3 i i i | i | i I i ! i | i U l l l l l l l l f f l i l l l l l (I I I I I > l f l l l t M I I I I I I I M I I t l f l t l M t l l l t l I I I I t l

In this test we can see that the learning process had taken place, as shows the progress of kills and
slow decrease of loss for first 150 games. Close to the end of testing, the most frequent action that
was chosen, was action Attack Weak.

Test 7
In this test I'm testing the the overall performance on a classic test map Simple64 against single
enemy with the use of Neural Network applied as a Q-learning as a main RL technique.
Since the whole game is much longer that just combat, for each test i conducted only 50 games.
Average game lasted around 20 minutes and average combat lasted around 3 minutes of game time.
Race that is selected for my agent is Terran, but the enemy have randomly generated race each game.

44

The settings of Neural Network are:
N e u r a l Network (s e l f , a c t i o n s , l e a r n i n g rate=0.1, reward decay=0.7,
e g r e e d y = l . 0) :
M L P C l a s s i f i e r (h i d d e n l a y e r s i z e s = (2 0 5 0 , 3) , a c t i v a t i o n = ' l o g i s t i c ' ,
max i t e r = 1 5 0 , a l p h a = l e - 4 , s o l v e r = ' s g d ' , verbose=10, t o l = l e - 4 ,
random s t a t e = l , l e a r n i n g r a t e i n i t = . l)

With each game progresses, i set the variable self.epsilon to decrease with every other game, to
achieve slow progress over the all test.
r decayed=self.gamma*r
greedy i n c l i n e = f l o a t (s e l f . r u n s o f game/40.0)

i f greedy i n c l i n e > l . 0 :
greedy i n c l i n e = l . 0

s e l f . q l e a r n . c h a n g e p o l i c y (g r e e d y i n c l i n e)

This graph shows the Blizzard score of the killed enemy units in every game.
X axis represents the number of played games and Y axis represents the score.

This graph shows the score as the sum of value of lost own units in every game.

This graph shows the final score of the game l=win 0=tie -l=loss.

, , u J u -

i— n \ 1

0 _

This graph shows the difference between score of the killed enemy units and loss of own units in
every game.

45

This graph shows the score of the killed enemy units in every game but its averaged for 5 games.

This graph shows the score of the lost value of friendly units in every game but its averaged for 5
games.

This graph shows the final score of the game l=win 0=tie -l=loss.

A

This graph shows the difference between score of the killed enemy units and loss of friendly units in
every game but its averaged for 5 games.

In this test we can see that the learning process had taken place, as shows the progress of final wins
and decrease of loss. This shows that the Agent tried to defeat the enemy faster as it learned more.
Close to the end of testing, the most frequent action that was chosen, was action Attack Weak.

Test 8
46

In this test I'm testing the the overall performance on a classic test map Simple64 against single
enemy with the use of Neural Network applied as a Q-learning as a main RL technique.
Race that is selected for my agent is Terran, but the enemy have randomly generated race each game.

The settings of Neural Network are:
N e u r a l Network (s e l f , a c t i o n s , l e a r n i n g rate=0.1, reward decay=0.7,
e g r e e d y = l . 0) :
M L P C l a s s i f i e r (h i d d e n l a y e r s i z e s = (2 0 5 0 , 1 0 0 0 , 5 0 0) , a c t i v a t i o n = ' l o g i s t i
c', max i t e r = 1 5 0 , a l p h a = l e - 4 , s o l v e r = ' s g d ' , verbose=10, t o l = l e - 4 ,
random s t a t e = l , l e a r n i n g r a t e i n i t = . l)

With each game progresses, i set the variable self.epsilon to decrease with every other game, to
achieve slow progress over the all test.
r decayed=self.gamma*r
greedy i n c l i n e = f l o a t (s e l f . r u n s o f game/40.0)

i f greedy i n c l i n e > l . 0 :
g reedy i n c l i n e = l . 0

s e l f . q l e a r n . c h a n g e p o l i c y (g r e e d y i n c l i n e)

47

In this test, we can see that the learning process had taken place, as shows the progress of final wins
and decrease of loss. This shows that the Agent tried to defeat the enemy faster as it learned more.
Close to the end of testing, the most frequent action that was chosen, was action Attack Weak.

The conclusion that we can make out of all the tests that took place is that the number of neurons and
the number of layers are not as important, because in the end the Neural Network just chooses to use
the action "attack the weakest unit", which is disappointing for me, because I had hoped to see some
variation of the use of special abilities. Nevertheless, the learning process had taken place for the use
of Neural Network, which is a success, and it proves that the representation of state of the game was
sufficient enough to make progress over time.

48

6 Summary, Conclusions and Future
Directions

The goal of this work was to design, implement and evaluate system for the game StarCraft II.
System shows progress over time as seen from the experiments and is able to defeat the default bot in
StarCraft II created by Blizzard.

In order to achieve this, I had to learn how to use StarCraft 2 Learning Environment for the creation
of the system as well as to learn to use Neural Network and Q-learning to incorporate them into the
module.

From the experiments, I concluded that the use of Neural Network is more efficient than that of Q-
learning for combat scenarios.

The part of the project that I decided not to implement was the use of replays -the record of games
made by professional players. The main reason why i didn't use the replays is because, the actions
that players take, do not correlate with my implemented actions and it would be hard to detect which
parts of the game are happening. Instead, I implemented the learning process by reinforcement,
meaning, the agent has to play the game by itself in order to learn.

My solution is not final and in the future there is a lot to improve, perhaps in the application of
Machine learning on other aspects of the game. Part that I definitely can improve in future is full
development for races Zerg and Protoss. The topic of AI for RTS has a lot to offer and so there are a
lot of advancements to be made.

49

References
[1] GERYK, B. In: Bruce Geryk's blog: A History of Real-Time Strategy Games [online],

[retrieved on 2018-05-08] Available at:
<https://web.archive.Org/web/20110427052656/http://gamespot.com/gamespot/featur
es/all/real_time>

[2] GERYK, B. In: Bruce Geryk's blog: A History of Real-Time Strategy Games [online],
[retrieved on 2018-05-08] Available at:
<https://web.archive.Org/web/20110721213420/http://www.gamespot.com/gamespot/

features/all/real_time/p2_01.html>

[3] Wikipedia: Turn-based Strategy [online], [retrieved on 2018-05-08]. Available at:
<https://en.wikipedia.org/wiki/Turn-based_strategy>

[4] CHURCHILL, D.: Heuristic Search Techniques for Real-Time Strategy Games.
Edmonton, 2016. PhD thesis. University of Alberta, Department of Computing Science.
[retrieved on 2018-05-08] Available at:

<https://era.library.ualberta.ca/items/c3589c0d-9b9e-46d5-blal-
b4004379faad/view/9d9a23d0-7dcl-46ad-afd3-ba8f8cc49c39/thesis_pdfa.pdf>

[5] VINYALS, O.; GAFFNEY, S.; and EWALDS, T.: DeepMind's blog: DeepMindand
Blizzard Open Star Cr aft II as an AI Research Environment, 2017 [online], [retrieved on
2018-05-08] Available at:

<https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-
environment/>

[6] Wikipedia: StarCraft [online], [retrieved on 2018-05-08] Available at:
<https://en.wikipedia.org/wiki/StarCraft>

[7] A11DE StarCraft Al Competition [online], [retrieved on 2018-05-08] Available at:
<http://www.cs.mun.ca/~dchurchill/starcraftaicomp/>

[8] BÜRO, Michael, PhD.: Call for AI Research in RTS Games. In Proceedings of
the AAAI Workshop on AI in Games, 2004. San Jose: McEnery Convention Center,
[retrieved on 2018-05-08] Available on:

<http://www.aaai.org/Papers/Workshops/2004AVS-04-04/WS04-04-028.pdf>

[9] StarCraft II [online], [retrieved on 2018-05-08] Available at:
<https://github.com/deepmind/pysc2/blob/master/docs/environment.md>

[10] VINYALS, O. et al: StarCraft II: A New Challenge for Reinforcement
Learning arXiv:1708.04782, 2017 [online], [retrieved on 2018-05-08] Available at:
<https://deepmind.com/documents/110/sc21e.pdf>

50

http://web.archive.Org/web/20110427052656/http://gamespot.com/gamespot/features/all/real_time
http://web.archive.Org/web/20110427052656/http://gamespot.com/gamespot/features/all/real_time
http://web.archive.Org/web/20110721213420/http://www.gamespot.com/gamespot/features/all/real_time/p2_01.html
http://web.archive.Org/web/20110721213420/http://www.gamespot.com/gamespot/features/all/real_time/p2_01.html
http://en.wikipedia.org/wiki/Turn-based_strategy
http://era.library.ualberta.ca/items/c3589c0d-9b9e-46d5-blal-b4004379faad/view/9d9a23d0-7dcl-46ad-afd3-ba8f8cc49c39/thesis_pdfa.pdf
http://era.library.ualberta.ca/items/c3589c0d-9b9e-46d5-blal-b4004379faad/view/9d9a23d0-7dcl-46ad-afd3-ba8f8cc49c39/thesis_pdfa.pdf
http://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-
http://en.wikipedia.org/wiki/StarCraft
http://www.cs.mun.ca/~dchurchill/starcraftaicomp/
http://www.aaai.org/Papers/Workshops/2004AVS-04-04/WS04-04-028.pdf
http://github.com/deepmind/pysc2/blob/master/docs/environment.md
http://deepmind.com/documents/110/sc21e.pdf

[11] Github: [davehurchill] CommandCenter: AI Bot for Broodwar and Starcraft
II [online]. [retrieved on 2018-05-08] Available at:
<https://github.com/davechurchill/commandcenter>

[12] SAMUEL, A. L.: Computer Games I. NY: Springer, New York, 1988.
[retrieved on 2018-05-08] ISBN 978-1-4613-8718-3 also available at:
<https://link.springer.com/chapter/10.1007%2F978-l-4613-8716-9_14>

[13] Wikipedia: Reinforcement Learning [online], [retrieved on 2018-05-08]
Available at: <https://en.wikipedia.org/wiki/Reinforcement_learning>

[14] Watkins, C.J.C.H. & Dayan, P. Mach Learn (1992): Machine Learning (Q-
Learning). [retrieved on 2018-05-08] ISSN 0885-6125 also available at:
<https://rd.springer.eom/article/10.1007/BF00992698#citeas
https://rd.springer.com/content/pdf/10.1007%2FBF00992698.pdf>

[15] HOEUMAKERS, N.: Possibilities for Applying Decision-making Processes
and Reinforcement Learning with Units in a RTS Game. Enschede, NL. Bachelor's this.
University of Twente. [retrieved on 2018-05-08] Available at:
<http ://referaat. cs. utwente.n1/conference/5/paper/6745/possibilities -for-applying-
decision-making-processes-and-reinforcement-learning-with-units-in-a-rts-game.pdf>

[16] Github: [MorvanZhou]: Reinforcement Learning with Tensorflow. [online]
[retrieved on 2018-05-08] Available at: <https://github.com/MorvanZhou/Reinforcement-
learning-with-tensorflow>

[17] McCULLOCK, J.: John McCullock's Tutorial: Q-Learning [online],
[retrieved on 2018-05-08] Available at: <http://mnemstudio.org/path-finding-q-learning-
tutorial.htm>

[18] MELO, F. S.: Convergence of Q-learning: A Simple Proof. Institute for
Systems and Robotics, Lisbon, [retrieved on 2018-05-08] Available at:
<http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf>

[19] JIANG, J.; TRUNDLE, P.; and REN, J.: Medical Image Analysis with
Artificial Neural Networks. Digital Media & Systems Research Institute, University of
Bradford. [retrieved on 2018-05-08] Available at:
<https://pdfs.semanticscholar.org/bf3c/5e84e462el9940e025abe0fl687d85842fac.pd>

[20] STERGIOU, C.; and SIGANOS, D.: Neural Networks [online], [retrieved on
2018-05-08] Available at:
<https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs ll/report.html#What%20is%2
0a%20Neural%20Network/>

[21] CHUNG, M. ; BURO, M. ; and SCHAEFFER, J.: Monte Carlo planning
in RTS Games. In IEEE Symposium on Computational Intelligence

51

http://github.com/davechurchill/commandcenter
http://link.springer.com/chapter/10.1007%2F978-l-4613-8716-9_14
http://en.wikipedia.org/wiki/Reinforcement_learning
http://rd.springer.eom/article/10.1007/BF00992698%23citeashttps://rd.springer.com/content/pdf/10.1007%2FBF00992698.pdf
http://rd.springer.eom/article/10.1007/BF00992698%23citeashttps://rd.springer.com/content/pdf/10.1007%2FBF00992698.pdf
https://rd.springer.com/content/pdf/10.1007%2FBF00992698.pdf%3e
http://utwente.n1/conference/5/paper/6745/possibilities
http://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow
http://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow
http://mnemstudio.org/path-finding-q-learning-tutorial.htm
http://mnemstudio.org/path-finding-q-learning-tutorial.htm
http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf
http://pdfs.semanticscholar.org/bf3c/5e84e462el9940e025abe0fl687d85842fac.pd
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs%20ll/report.html%23What%20is%20a%20Neural%20Network/
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs%20ll/report.html%23What%20is%20a%20Neural%20Network/

and Games (CIG). Colchester: Essex University, 2005. [retrieved on 2018-05-08]
Available at:
<http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.125.7452&type=cc>

[22] WILSON, A. R.: Masters of War: History's Greatest Strategic
Thinkers, 2012 [Audio/Video Course] [online], [retrieved on 2018-05-08] Available at:
<http://www.thegreatcourses.com/courses/masters-of-war-history-s-greatest-strategic-
thinkers.html>

[23] Github: actions.py [online] [retrieved on 2018-05-08] Available at:
<https://github.coiiVdeepmind/pysc2/blob/e9dl2938afa0f28fb9285e5b0acf4a5cla8f7289/
pysc2/lib/actions.py>

[24] Github: [tewalds] StarCraft II Learning Environment [online] [retrieved on
2018-05-08] Available at: <https://github.com/deepmind/pysc2>

[25] Github: [sheikyabooti] StarCraft II Client - protocol definitions used to
communicate with StarCraft II [online] [retrieved on 2018-05-08] Available at:
<https://github.com/Blizzard/s2client-proto>

[26] NIELSEN, M . A.: Neural Networks and Deep Learning. Determination
Press, 2015 [online]. [retrieved on 2018-05-08] Available at:
<http://neuralnetworksanddeeplearning.com/chap 1 .html>

[27] PEDREGOSA et al.: Scikit-learn: Machine Learning in Python JMLR 12, pp.
2825-2830, 2011 [online], [retrieved on 2018-05-08] Available at:<http://scikit-
learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html>

[28] NIELSEN, M . A.: Neural Networks and Deep Learning. Determination
Press, 2015 [online]. [retrieved on 2018-05-08] Available at:
< http ://neuralnetworksanddeeplearning. com/chap2 .html >

[29] [3BluelBrown], (2017, Nov 3) Backpropagation calculus \ Appendix to deep
learning chapter 3 [Video File] [online], [retrieved on 2018-05-08] Available at:
<https://www.youtube.com/watch ?v=tIeHLnjs5U8>

[30] WERBOS, P., J.: Backpropagation Through Time: What It Is and How to Do
It. In Proceedings of the IEEE, 1990. VOL. 78, NO. 10, Oct 1990. [retrieved on 2018-05-
08] Available at: <ftp://143.54.lL3/pub/SIA/refer%C3%AAncias/BPTT.pdf>

[31] GOODFELLOW, I.; BENGIO, Y.; and COURVILLE, A.: Deep Learning.
MIT Press, [retrieved on 2018-05-08] ISBN 9780262035613 also available at:
<https://www.scribd.com/document/318441546/Ian-Goodfellow-Yoshua-Bengio-Aaron-
Courville-Deep-Learning-pre-pub-version-MIT-Press-2016-pdf>

52

http://citeseerx.ist.psu.edu/viewdoc/similar?doi=10.1.1.125.7452&type=cc
http://www.thegreatcourses.com/courses/masters-of-war-history-s-greatest-strategic-thinkers.html
http://www.thegreatcourses.com/courses/masters-of-war-history-s-greatest-strategic-thinkers.html
https://github.coiiVdeepmind/pysc2/blob/e9dl2938afa0f28fb9285e5b0acf4a5cla8f7289/?pysc2/lib/actions.py
https://github.coiiVdeepmind/pysc2/blob/e9dl2938afa0f28fb9285e5b0acf4a5cla8f7289/?pysc2/lib/actions.py
http://github.com/deepmind/pysc2
http://github.com/Blizzard/s2client-proto
http://neuralnetworksanddeeplearning.com/chap%201%20.html
http://scikit-?learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
http://scikit-?learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
http://www.youtube.com/watch%20?v=tIeHLnjs5U8
http://143.54.lL3/pub/SIA/refer%C3%AAncias/BPTT.pdf
http://www.scribd.com/document/318441546/Ian-Goodfellow-Yoshua-Bengio-Aaron-Courville-Deep-Learning-pre-pub-version-MIT-Press-2016-pdf
http://www.scribd.com/document/318441546/Ian-Goodfellow-Yoshua-Bengio-Aaron-Courville-Deep-Learning-pre-pub-version-MIT-Press-2016-pdf

[32] SOREN, D.: Soven D's Blog: Teaching a Neural Network to Play a Game
Using Q-learning, 2017 [online]. [retrieved on 2018-05-08] Available at:
<https://www.practicalai.io/teaching-a-neural-network-to-play-a-game-with-q-learning/>

[33] WENDER, S.; and WATSON, I.: Applying Reinforcement Learning to Small
Scale Combat in the

Real-Time Strategy Game StarCrafV.Broodwar 2012. Proceedings of the
IEEE Conference on Computational Intelligence and Games (CIG'12). [retrieved on
2018-05-08] Available at:

<https://pdfs.semanticscholar.org/1308/c8326203caec91a7c44ffdldfe86dd227c7f.pdf>

[34] CHURCHILL, D.; SAFFIDINE, A.; and BÜRO, M. : Fast Heuristic Search
for RTS Game Combat Scenarios. Proceedings of the AIIDE Conference,2012. Stanford,
Palo Alto, California. [retrieved on 2018-05-08] Available at:
<https ://skatgame.net/mburo/ps/aiide 12-combat.pdf>

[35] Github: [skjb] Tutorials for Building a PySC2 Bot [online] [retrieved on
2018-05-08] Available at: <https://github.com/skjb/pysc2-tutorial>

[36] KLEIN, B.: Bernd Klein's course: Python Machine Learning Tutorial:
Neural Networks with scikit. [online] [retrieved on 2018-05-08] Available at:
<https://www.python-course.eu/neural_networks_with_scikit.php>

53

http://www.practicalai.io/teaching-a-neural-network-to-play-a-game-with-q-learning/
http://pdfs.semanticscholar.org/1308/c8326203caec91a7c44ffdldfe86dd227c7f.pdf
http://github.com/skjb/pysc2-tutorial
http://www.python-course.eu/neural_networks_with_scikit.php

Appendices

54

Appendix A

CD contains electronic version of
this report, source code and folder
containg all the experiments.

55

