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Zadání práce 

1. Seznamte se s genetickými algoritmy a jejich aplikacemi v oblasti numerické optimal­
izace. 

2. Prostudujte paralelizaci algoritmů pro systémy se sdílenou pamětí. 

3. Navrhněte novou techniku paralelizace genetického algoritmu pro systémy se sdílenou 
pamětí. Zaměřte se na maximální možné zrychlení daného algoritmu oproti sekvenční 
verzi. 

4. Navrženou koncepci realizujte a experimentálně ověřte zrychlení oproti sekvenční 
verzi. 

5. Zhodnoťte dosažené výsledky a diskutujte možné pokračování v projektu. 
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Abstrakt 
Genetický algoritmus je optimalizačná metóda zameraná na efektívne hľadanie riešení ro­
zličných problémov. Je založená na princípe evolúcie a prirodzeného výberu najschopnejších 
jedincov v prírode. Kedze je tá to metóda výpočtovo náročná, bolo vymyslených veľa spô­
sobov na jej paralelizáciu. Avšak väčšina týchto metód je z historických dôvodov založená 
na superpočítačoch alebo rozsiahlych počítačových systémoch. Moderný vývoj v oblasti 
informačných technológií prináša na trh osobných počítačov stále lacnejšie a výkonnejšie 
viacjadrové systémy. Táto práca sa zaoberá návrhom nových metód paralelizácie genet­
ického algoritmu, ktoré sa snažia naplno využiť možnosti práve týchto počítačových systé­
mov. Tieto metódy sú následne naimplementované v programovacom jazyku C za využitia 
knižnice OpenMP určenej na paralelizáciu. Implementácia je následne použitá na experi­
mentálne ohodnotenie rozličných charakteristík každej z prezentovaných metód (zrýchlenie 
oproti sekvenčnej verzii, závislosť konvergencie výsledných hodnôt od miery paralelizácie 
alebo od vyťaženia procesoru, . . . ) . V poslednej časti práce sú prezentované porovnania 
nameraných hodnôt a závery vyplývajúce z týchto meraní. Následne sú prediskutované 
možné vylepšenia daných metód vyplývajúce z týchto záverov, ako aj možnosti spraco­
vania väčšieho množstva charakteristík na presnejšie ohodnotenie efektivity paralelizácie 
genetických algoritmov. 

Abstract 
Genetic algorithm is a powerful optimization and search method successfully used in prac­
tice to solve many different problems. Underlying concept is based on the evolutionary 
mechanics observed in nature. As the GAs are computationaly intense applications, it is 
natural that there are many efficient methods for parallelization of these algorithms. How­
ever, most of these methods deal with supercomputers or large computer clusters with 
specialized hardware, as these were the most common parallel architectures in the past. 
Wi th modern-day computers the trend in personal computer design is also moving towards 
parallel architectures bringing small and cheap parallel multicore processors. That's why it 
is imperative to have efficient methods to exploit capabilities of this system. This document 
presents prototypes of new methods of parallel genetic algorithms designed especially for 
these multiprocessor computers with shared memory. 
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Chapter 1 

Introduction 

As genetic algorithms are relatively computationaly demanding applications, it is essential 
to design the most optimal methods to reduce the time needed to find a good solution. 
One way to achieve this is to exploit new generation of cheap multicore and multiprocessor 
personal computers with shared memory. 

The purpose of this document is to analyze advantages and bottlenecks of these com­
puter systems, and also to explore various approaches to parallelizing GAs. Based on this 
analysis, a design of new methods of parallel genetic algorithm is presented. The goal 
of these methods is to achieve maximum possible speedup trying to utilize the strengths 
and avoid the weaknesses of shared memory multiprocessor systems, as well as to explore 
possible ways to paralellization of genetic algorithm. 

These new methods and their variations are then implemented using low-level multi­
threading OpenMP library. This implementation is used to benchmark various aspects of 
these methods as speedup, fitness convergence, performance under heavy load, and effect 
of selection and migration variants on these aspects. Finally, the results of the experiments 
are discussed, and possible ways of future research based on the discussions are proposed. 

1.1 Organization 

This document is organized into three main parts: 
First part describes history and basic principles and models of genetic algorithms in 

chapter two, introduces genetic operators of mutation, crossover and selection in chapter 
three and basic description and taxonomy of various approaches used to parallelize genetic 
algorithms in the fourth chapter. 

Second part consisting of chapter five provides general information on parallel comput­
ing, hardware architectures realizing parallel computation (especially symmetric multipro­
cessing and multiprocessor systems with non-uniform memory access), its bottlenecks and 
introduction to theoretical background used to assess the speedup of parallel systems and 
algorithms. 

The last part, consisting of chapters six to eight, presents design goals based on analysis 
of current multiprocessor systems. These goals are used to design and implement the 
new methods of parallel genetic algorithm. Methods are then analyzed and experimental 
results are gathered from multiple runs on multiprocessor systems of various configurations. 
Chapter seven presents results and conclusions based on these results. Discussions on 
conclusions and future research on the subject are proposed in chapter eight. 
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Chapter 2 

Genetic Algorithms 

2.1 Introduction 

The genetic algorithm is optimization and adaptive heuristic search technique based on 
the evolutionary ideas of natural selection and genetics. GAs simulates processes in nature 
necessary for evolution, such as inheritance, mutation, selection, and crossover, that ensures 
the survival of the fittest. A G A allows a population composed of many individuals to evolve 
under specifed selection rules to a state that maximizes the fitness (i.e.,minimizes the cost 
function). [13] 

Some of the advantages of a G A include that it 

• Optimizes with continuous or discrete variables 

• Doesn't require derivative information 

• Simultaneously searches from a wide sampling of the cost surface 

• Deals with a large number of variables 

• Is well suited for parallel computers 

• Optimizes variables with extremely complex cost surfaces (they can jump out of a 
local minimum) 

• Provides a list of optimum solutions, not just one 

These advantages are intriguing and produce stunning results when traditional optimization 
approaches fail miserably. 

Of course, the G A is not the best way to solve every problem. Sometimes the traditional 
methods have been tuned to quickly find the solution of a well-behaved convex analytical 
function of only a few variables. For such cases the calculus-based methods outperform 
the G A , quickly finding the minimum while the G A is still analyzing the costs of the 
initial population. For these problems the optimizer should use the experience of the past 
and employ these quick methods. However, many realistic problems do not fall into this 
category. In addition, for problems that are not overly difficult, other methods may find the 
solution faster than the G A . The large population of solutions that gives the G A its power 
is also its disadvantage when it comes to speed on a serial computer - the cost function of 
each of those solutions must be evaluated. However, if a parallel computer is available, each 
processor can evaluate a separate function at the same time. Thus the G A is optimally 
suited for such parallel computations [13]. 
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2.2 Methodology 

Genetic algorithms are usualy implemented as a computer simulation in which a population 
of representations (called genotype or chromosomes) of possible solutions (called genomes) 
to an optimization problem evolves, thus moving toward better solutions. Usually, solu­
tions are represented as binary strings (containig Os and Is), but other encodings are also 
possible. The evolution starts on a population of randomly generated individuals and hap­
pens in generations. In each generation, the fitness of every individual in the population 
is evaluated, multiple individuals are stochastically selected from the current population 
(based on their fitness), and modified (recombined and possibly randomly mutated) to form 
a new population. The new population is then used in the next iteration of the algorithm. 
Commonly, the algorithm terminates when either a maximum number of generations has 
been produced, or a satisfactory fitness level has been reached for the population. If the 
algorithm has terminated due to a maximum number of generations, a satisfactory solution 
may or may not have been reached [26]. 

A typical genetic algorithm requires two things to be defined: 

• a genetic representation of the solution domain 

• a fitness function to evaluate the solution domain 

A standard representation of the solution is as an array of bits. Arrays of other types 
and structures can be used in essentially the same way. The main property that makes these 
genetic representations convenient is that their parts are easily aligned due to their fixed 
size, that facilitates simple crossover operation. Variable length representations may also be 
used, but crossover implementation is more complex in this case. Tree-like representations 
are explored in Genetic programming[26]. 

randomize current_generation 
evaluate current_generation 
while ( not ending_condition ) 
{ 

select parents for reproduction from current_generation 
create offsprings using crossover and mutation 
evaluate offsprings 
create new_generation from offsprings and parents 
swap new_generation and current_generation 

} 

Figure 2.1: Pseudocode for general genetic algorithm 

The fitness function is defined over the genetic representation and measures the quality 
of the represented solution. The fitness function is always problem dependent. For instance, 
in the knapsack problem we want to maximize the total value of objects that we can put in 
a knapsack of some fixed capacity. A representation of a solution might be an array of bits, 
where each bit represents a different object, and the value of the bit (0 or 1) represents 
whether or not the object is in the knapsack. Not every such representation is valid, as the 
size of objects may exceed the capacity of the knapsack. The fitness of the solution is the 
sum of values of all objects in the knapsack if the representation is valid, or 0 otherwise. 
In some problems, it is hard or even impossible to define the fitness expression[26]. 
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Once we have defined the genetic representation and the fitness function, G A proceeds 
to randomly initialize a population of solutions, then improve the overall fitness through 
continuous application of crossover, mutation and selection operators. Diagram iluustrating 
this process is on figure 2.2 with corresponding pseudocode on figure 2.1. 

Parents • Evaluation • 
Evaluated 
Offsprings 

• Selection • 
Population 

Swap 
"Populations" 

New Generation 
• Save-

Figure 2.2: New generation created from offsprings of successful parents. After the new 
generation is filled, it becomes the current population. 

2.3 Steady-State GA 

The variant of genetic algorithm described in previous chapter is called generational GA, 
because the evolution proceeds in discrete steps called generations. On the other hand, the 
Steady-state genetic algorithm (SSGA) is model based on notion of continuous evolution. 

Selection 

Parents 

T 
ross 
Mut; 
:valu 

Crossovers 
Mutation 

Evaluation 

Offsprings 

Replace 

Figure 2.3: Evolution process of steady-state G A . 

The difference from generational G A model is that in SSGA there are no generations, 
thus offsprings created by crossover and mutation get back to the population immediately. 
To keep the size of population constant, some of the genomes of current population must 
vacate a slot for these new offsprings. This process is called a replacement strategy. As 
current generation and new generation overlaps, offsprings compete with parents as soon as 
they enter the population [ ]. Schematic diagram of SSGA evolution process is displayed 
on figure 2.3. 

The replacement strategy is important factor of SSGA - it affects the population dy­
namics to large degree. Replacement of the worst individual is widely used strategy, and it 
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has been shown that it induces high selection pressure (more on selections in section 3.3) 
even if the parents are selected randomly [19]. Analysis in [ i] also shows that the de­
crease of population variance under steady-state G A is twice compared to the traditional 
G A working on generations. On the other hand, the evolution process requires half the 
computational steps of generational G A to achieve the same convergence [28]). 

There are different replacement strategies that try to solve this problem by enforcing 
higher population diversity. Most of them belongs to the category of crowding methods, 
because they are based on idea that new genomes are more likely to replace similar indi­
viduals already present in the population. Thus the population will not accumulate a lot 
of genomes with similar characteristics, preserving the multiple local optima [19]. 

2.4 History 

In the 1950s and the 1960s, there were several independent studies of evolutionary sys­
tems coducted by computer scientists with the idea that evolution could be used as an 
optimization tool for solving various engineering problems. The basic idea was to evolve 
a population containig candidate solutions to a given problem, using operators based on 
natural selection and genetic variation. [24] 

Genetic algorithms (GAs) were invented in 1960s by John Holland and were developed in 
the 1970s by Holland and his colleadues and students the University of Michigan. In contrast 
with then established evolutionary programming and evolution strategies, Holland's original 
goal was to formally study the phenomenon of adaptation as it occurs in nature rather than 
design algorithms to solve specific problems. The main idea was to develop ways in which 
the mechanisms of natural adaptation might be imported into computer systems. Holland's 
1975 book Adaptation in Natural and Artificial Systems presented the genetic algorithm 
as an abstraction of biological evolution and gave a theoretical framework for adaptation 
under the G A . Holland's G A is a method for moving from one population of chromosomes 
(for example strings of ones and zeros) to a new population by using a kind of natural 
selection together with the operators of crossover, mutation, and inversion, inspired by 
genetics. The selection operator chooses those chromosomes in the population that will 
be allowed to reproduce, and it ensures that on average, the fitter chromosomes produce 
more offspring than the less fit ones. Crossover combines subparts of two chromosomes, 
imitating biological recombination of genomes between two organisms. Mutation randomly 
changes the values of some locations in the chromosome, and inversion reverses the order 
of a contiguous section of the chromosome, thus rearranging the order in which genes are 
arrayed [ ]. 

Holland's introduction of a algorithm based on population, with mutation, crossover and 
inversion was a major innovation. Moreover, Holland was the first who attempted to create 
a solid theoretical background for computational evolution. This theoretical foundation, 
based on the concept of schemas, was the basis for almost all of the theoretical research on 
GAs [ ]. 

2.5 Genome Encoding and Problems 

Although GAs typically represents chromosomes as a string of bits, they are not restricted 
to bitstrings. A number of early proponents of GAs developed GAs that use other represen­
tations such as real-valued parameters, permutations (also called ordered chromosome, used 
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for example in travelling salesman problem or scheduling problem) and treelike hierarchies 

Even for binary strings, there is still a choice to be made as to which binary coding 
scheme to use for encoding a numerical parameters. Most of empirical studies have found 
that Gray code is produces superior results to the standard binary coding for the commonly 
used test problems[1]. One reason is that the standard encoding introduces Hamming cliffs 
- two numerically adjacent values may have bit representations that are many bits apart. 
This could be a problem if the fitness function in gradual to some degree i.e. small changes 
in the variables correspond to small changes in the function value. This is often the case 
for functions with numeric parameters (also referred to as causality). 

As an example, consider a five-bit parameter, with a range from 0 to 31. If it is encoded 
using the standard binary coding, then 15 is encoded as 01111, whereas 16 is encoded as 
10000. In order to move from 15 to 16, all five bits need to be changed. On the other hand, 
using Gray coding, 15 would be represented as 01000 and 16 as 11000, differing only in 1 
bit. 

When choosing an alternative representation, the choice of appropriate crossover opera­
tor is critical. For example: in case of real-valued parameters as chromosome representation, 
a possible crossover operator could take the parameter values of the two parents to define 
an interval from which a new parameter is chosen. As the G A makes progress, it will narrow 
the range over which it searches for new parameter values [1]. 
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Chapter 3 

Genetic Operators 

This chapters briefly describes the genetic operators for most of the basic genome encodings. 
As mutation is often the most simple operation, it is described as first, followed by more 
complex crossover operator. Because crossover is usually the most important part of genetic 
algorithm, large part of this chapters deals with various means of recombining the parent 
genomes to create offsprings. The third and final section present some of the selection 
operators, their advantages and disadvantages. 

3.1 Mutation 

The main characteristic of mutation operators is that they operate on a single individual 
to produce a new individual. Most mutation operators with typical parameter settings are 
relatively likely to generate offspring close to the parent solutionfl]. 

Mutation operators are normally understood to serve two primary functions. The first 
function is as an exploratory move operator, used to generate new points in the space to test. 
The second is the maintenance of variability in the gene pool - the set of genomes available to 
recombination in the population. This is important because most recombination operators 
generate new solutions using only genetic material available in the parent population. If the 
range of gene values in the population becomes small the opportunity for recombination 
operators to perform useful search tends to diminish accordingly [ ]. 

Binary string mutation: 

110010110111 110000110111 

Ordered chromosone muation: 

G A H F D B E C G D H F A B E C 

Tree mutation: 

© (AND 

O I B 

CS) 
©/ \ 

(AND) 

(6 h> 
Figure 3.1: Example of mutation operation on genomes with different encodings 
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A common view in the G A community, dating back to Holland's book Adaptation in 
Natural and Artificial Systems, is that crossover is the major instrument of variation and 
innovation in GAs, with mutation insuring the population against permanent fixation at 
any particular locus and thus playing more of a background role[ ]. Example of mutation 
operation on different genome encodings are on figure 3.1. 

3.2 Crossover 

The intuitive idea behind crossover is easy to state: given two individuals who are highly 
fit, but for different reasons, ideally what we would like to do is create a new individual that 
combines the best features from both. Of course, since we presumably do not know which 
features account for the good performance (if we did we would not need a search algorithm), 
the best we can do is to recombine features at random. This is how crossover operates. 
It treats these features as building block's scattered throughout the population and tries 
to recombine them into better individuals via crossover. Sometimes crossover will combine 
the worst features from the two parents in which case these children will not survive for 
long. But sometimes it will recombine the best features from two good individuals creating 
even better individuals provided these textures are collectible [1]. 

The success or failure of a particular crossover operator depends on the representation 
of the problem, its fitness function, encoding, and specific details of the G A . It is still a very 
important open problem to fully understand the interactions of these aspects and to what 
extent they affect the behaviour of G A . That is also the reason that there is no definitive 
guide to choosing the best type of crossover for a given problem. [ ] 

3.2.1 One-point crossover 

One-point crossover is the simplest form: a single crossover position is chosen at random and 
the parts of two parents after the crossover position are exchanged to form two offspring (see 
figure 3.2). The basic idea is to recombine building blocks (schemas) of different genomess 
[ ]. Single-point crossover has some shortcomings: it cannot combine all possible schemas, 
it often destroys schemas with longer defining lengths and the segments exchanged between 
the two parents always begin and end with the endpoints of the strings. 

One-point crossover: 

Offsprings: 

11101 101010101 1.87 

00101 010110001 1.73 

<- crossover point 

00101 101010101 ??? 

11101 010110001 ??? 

Figure 3.2: Example of One-point corrosover on binary string 

3.2.2 Two-point crossover 

In two-point crossover, two positions are chosen at random and the segments between 
them are exchanged (see figure 3.3). Two-point crossover is less likely to disrupt schemas 
with large defining lengths and can combine more schemas than single-point crossover. In 
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addition, the segments that are exchanged do not necessarily contain the endpoints of the 
strings. Again, there are schemas that two-point crossover cannot combine [ ]. 

Two-point crossover: 

Offsprings: 

111 0110101 0101 1.87 
001 0101011 00011.73 

001 0110101 0001??? 

111 0101011 0101??? 

Figure 3.3: Example of Two-point corrosover on binary string 

3.2.3 Uniform crossover 

Some practitioners believe strongly in the superiority of parameterized uniform crossover, 
in which an exchange happens at each bit position with probability p (typically 0.5 or 0.7, 
see figure 3.4). 

Parameterized uniform crossover has no positional bias. Any schemas contained at 
different positions in the parents can potentially be recombined in the offspring. However, 
this lack of positional bias can prevent coadapted alleles from ever forming in the population, 
since parameterized uniform crossover can be highly disruptive of any schema [ ]. 

Parents: 

Offsprings: 

Uniform crossover: 

11101101010101 1.87 

00101010110001 1.73 

12212221121112 «- mask 

10101011010101 ??? 

01101100110001 ??? 

Figure 3.4: Example of Uniform corrosover on binary string using random mask for bit 
selection 

3.2.4 Ordered chromosome crossover 

When the chromosome is an ordered list, such as a list the cities to be travelled for the 
traveling salesman problem, a direct swap of genes may not be possible, because it would 
introduce duplicates and remove necessary candidates from the list. Instead, crossover point 
is selected on the parents. The chromosome up to the crossover point is retained for each 
parent, and the information after the crossover point is ordered as it is ordered in the other 
parent [26] (for example see figure 3.5). Note that there are more ways to crossover ordered 
chromosomes. 

3.2.5 Tree crossover 

Usually used in genetic programming, where the genome is in fact a parse-tree of a computer 
program. The operation begins by independently selecting one random point in each parent 
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Ordered chromosome crossover: 

Parents: ABCDlEFGH 1.87 
GAHFIDBEC 1.73 

- crossover point 

Offsprings: ABCDlGHFE ??? 
GAHFIBCDE ??? 

Figure 3.5: Example of Ordered chromosome corrosover with one crossover point 

to be the crossover point for that parent. The crossover fragment for a particular parent 
is the subtree which has as its root the crossover point. The first offspring is produced by 
deleting the crossover fragment of the first parent from the first parent and then inserting 
the crossover fragment of the second parent at the crossover point of the first parent. The 
second offspring is produced in a symmetric manner [17] (see figure 3.6). 

Tree crossover: 

Parents: Offsprings: 

crossover 
( O R ) P O I N T S 

( V ) O + l̂OTj ( O R ) 
7 " a _ ^ / \ 

y
 x © 

/ \ 

© © © © 

Figure 3.6: Example of Tree crrosover on logical expressions 

3.3 Selection 

Genetic algorithms use a selection mechanism to select individuals from the population to 
insert into a mating pool. Individuals from the mating pool are utilized as a parents to 
generate new offspring, with the resulting offspring forming the basis of the next genera­
tion. As the individuals in the mating pool are the ones whose genes are inherited by the 
next generation, it is desirable that the mating pool be comprised of "good" individuals. A 
selection mechanism in GAs is simply a process that favors the selection of better individ­
uals in the population for the mating pool. The selection pressure is the degree to which 
the better individuals are favored: the higher the selection pressure, the more the better 
individuals are favored. This selection pressure drives the G A to improve the population 
fittness over succeeding generations. The convergence rate of a G A is largely determined by 
the selection pressure, with higher selection pressures resulting in higher convergence rates. 
Genetic algorithms are able to to identify optimal or near optimal solutions under a wide 
range of selection pressure. However, if the selection pressure is too low, the convergence 
rate will be slow, and the G A will unnecessarily take longer to find the optimal solution. 
If the selection pressure is too high, there is an increased chance of the G A prematurely 
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converging to an incorrect (sub-optimal) solution. [22] 
Elitism, first introduced by Kenneth De Jong (1975), is an addition to many selection 

methods that forces the G A to retain some number of the best individuals at each gen­
eration. Such individuals can be lost if they are not selected to reproduce or if they are 
destroyed by crossover or mutation. Many researchers have found that elitism significantly 
improves the GA ' s performance. [ ] 

There are many different techniques which a genetic algorithm can use to select the 
individuals to be copied over into the next generation. Some of the most popular methods 
are: 

3.3.1 Roulette-wheel selection 

A form of fitness-proportionate selection in which the chance of an individual's being se­
lected is proportional to the amount by which its fitness is greater or less than its competi­
tors' fitness. (Conceptually, this can be represented as a game of roulette - each individual 
gets a slice of the wheel, but more fit ones get larger slices than less fit ones. The wheel 
is then spun, and whichever individual "owns" the section on which it lands each time is 
chosen) 

A 101111000001 
B101101010101 
c101001001110 
D101111000001 
E101010110001 

6.00 
2.00 
2.00 
1.00 
1.00 

Total fitness = 12.00 

0.0 I-I 1 

A B C D E 
\ 12.0 

A 
random(0.0,12.0) 

Figure 3.7: Roulette-wheel selection, where each genome has probability based on its fitness 

Probabilty of being selected is pi — „ j y ' - , where N is the number of individuals in 

the population (Figure 3.7). Disadvantage of this approach is that the selection pressure 
heavily depends on the fitness variances in the population. Another disadvantage is that 
two passes are requied for evaluating probabilities - one to compute the mean fitness and 
one to compute the expected value of each individual. 

3.3.2 Rank selection 

Each individual in the population is assigned a numerical rank based on fitness, and selection 
is based on this ranking rather than absolute differences in fitness. The advantage of this 
method is that it can prevent very fit individuals from gaining dominance early at the 
expense of less fit ones, which would reduce the population's genetic diversity and might 
hinder attempts to find an acceptable solution. [20] 

Ranking avoids giving the far largest share of offspring to a small group of highly fit 
individuals, and thus reduces the selection pressure when the fitness variance is high. It also 
keeps up selection pressure when the fitness variance is low: the ratio of expected values 
of individuals ranked i and i + 1 will be the same whether their absolute fitness differences 
are high or low. [ ] Disadvantage of this selection method is potentially time-consuming 
sorting procedure, which is required for rank assignment. Figure 3.8 shows probabilities of 
genomes in rank selection. 
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Figure 3.8: Rank selection, where each genome has probability based on its rank 

3.3.3 Tournament selection 

Tournament selection provides selection by holding a tournament among n competitors, 
with n being the tournament size. The winner of the tournament is the individual with the 
highest fitness of the n tournament competitors, and the winner is then inserted into the 
mating pool. 

elitism 

Population: 

I^OISWWRWT^^TT^ 
|10101111000001 2.32 
10110110010101 1.32 
11101010110101 2.08 
00101001001110 2.22 
00110001001001 0.86 
00101010100100 1.45 
11101101010101 1.87 

|jJ^1£llJjaiI)OQQ_^13j 

Tournaments: 

10110110010101 
00110001001001 
11101101010101 

11101010110101 
00101001001110 
11101101010101 

1.32 
0.86 
1.87 

2.08 
2.22 
1.87 

Mating pool: 

10101111000001 2.32 
11101101010101 1.87 
00101001001110 2.22 
10101111000001 2.32 
00101010110001 1.73 

Figure 3.9: Tournament selection with elitism and tournament size of 3. Only the best 
genome from tournament gets selected. 

Increased selection pressure can be provided by simply increasing the tournament size 
n, as the winner from a larger tournament will, on average, have a higher fitness than 
the winner of a smaller tournament. Tournament selection is increasingly being used as a 
G A selection scheme because it's simple to code and is efficient for both non-parallel and 
parallel architectures [ ]. Process of selection is on figure 3.9. 
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Chapter 4 

Parallel Genetic Algorithms 

4.1 Introduction 

As genetic algorithms usually require more computation time than other heuristic ap­
proaches, the basic motivation of G A parallelization is the reduction of the processing 
time needed to reach an acceptable solution [11]. 

Parallel GAs are complex non-linear algorithms that are controlled by many parameters 
that affect the quality of their search and their efficiency. In particular, the design of parallel 
GAs involves choices such as using one population or multiple populations. In both cases, 
the size of the population or populations must be determined carefully, and when multiple 
populations are used, one must decide how many to use. In addition, the populations 
may remain isolated or they may communicate by exchanging individuals. Communication 
involves extra costs and additional decisions on topologies, on how many individuals are 
exchanged, and on the frequency of communications [4]. 

4.2 Classification 

The parallel GAs can be divided into three main classes [ ]: 

• Global single-population master-slave parallel G A 

• Fine-grained parallel G A (also called Massively parallel GA [11] or Neigborhood model 
[1]) 

• Multi-deme parallel G A (also called Multiple-population [ ], Distributed GA [11], 
Coarse-grained GA [4] or Island model [1]) 

4.2.1 Global Parallel G A 

This class of Parallel G A is called global because all clients operate on one population. 
Probably the easiest way to parallelize GAs is to distribute the evaluation of fitness among 
several slave processors while one master executes the G A operations (selection, crossover, 
and mutation, see figure 4.1). Master-slave GAs are important for several reasons: 

• They explore the search space in exactly the same manner as a serial G A , and therefore 
the existing design guidelines for serial GAs are directly applicable 

• They are very easy to implement, which makes them popular with practitioners 
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• In many cases master-slave GAs result in significant improvements in performance [4] 

The most common operation that is parallelized is the evaluation of the individuals, 
because the fitness of an individual is independent from the rest of the population, and there 
is no need to communicate during this phase. The evaluation of individuals is parallelized 
by assigning a fraction of the population to each of the processors available. Communication 
occurs only as each slave receives its subset of individuals to evaluate and when the slaves 
return the fitness values. 

current generation new generation 

Master thread 

crossover 
mutation 

S lave thread 

Slave thread 

Slave thread 
i 

Figure 4.1: Master-Slave P G A , where master executes genetic operations and stores the 
population, while slaves evaluates new genomes. 

If the algorithm stops and waits to receive the fitness values for all the population before 
proceeding into the next generation, then the algorithm is synchronous. A synchronous 
master-slave G A has exactly the same properties as a serial G A , with speed being the only 
difference. However, it is also possible to implement an asynchronous master-slave G A 
where the algorithm does not stop to wait for any slow processors, but it does not work 
exactly like a serial G A [3]. 

4.2.2 Fine-grained Parallel G A 

Fine-grained parallel GAs are suited for massively parallel computers and consist of one 
spatially-structured population. Selection and mating are restricted to a small neighbor­
hood, but neighborhoods overlap permitting some interaction among all the individuals 
(see figure 4.2). The ideal case is to have only one individual for every processing element 
available [ ]. Usual parameters of fine-grained P G A are size and shape of neigborhood. 

4.2.3 Mult i -Deme Parallel G A 

Multi-Deme Parallel genetic algorithms are the most popular parallel methods. Such algo­
rithms assume that several subpopulations (demes) evolve in parallel and that is why this 
P G A is also called multiple-population or multiple-demes genetic algorithm. 

The models include a concept of migration (movement of an individual string from one 
subpopulation to another). It uses multiple demes (populations) that occasionally exchange 
some individuals in a process called migration. A specification of an island GAs defines the 
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Figure 4.2: Fine-grained P G A with 2D spacial structure and 1-neighborhood 
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Figure 4.3: Multi-Deme P G A on home computer cluster with local neighborhood migration. 

size and number of demes, the topology of the connections between them, the migration 
rate (the fraction of the population that migrates), the frequency of migrations and the 
policy to select emigrants and to replace existing individuals with incoming migrants. A l l 
these seven new parameters have a great influence on the quality of the search and on the 
efficiency of the algorithm. Because they are controlled by many parameters, the multiple 
population P G A s are the hardest to use [11]. Example of multi-deme configuration is on 
figure 4.3. 

4.2.4 Hierarchical P G A 

This class of algorithms are called hierarchical because at higher level they are multiple-
deme algorithms with single-population parallel GAs (either master-slave or fine-grained) 
at the lower level. A hierarchical parallel GAs combines the benefits of its components, and 
it promises better performance than any of them alone [3]. 
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Chapter 5 

Multiprocessor Systems 

5.1 Introduction 

Multiple processors were used to be the exclusive domain of mainframes and high-end 
servers. Today, they estabilished a firm base in all kinds of systems, including high-end 
PCs and workstations [ ]. 

The size of components used to build both high-end and desktop machines have con­
tinually decreased in the past few decades. Shortly before 1990, Intel announced that the 
company had put a million transistors onto a single chip (the i860). A few years later, 
the threshold of 10 million transistors was achieved by several companies. In the mean­
time, technological progress has made it possible to put billions of transistors on a single 
chip. The rate at which instructions were fetched could be increased as data paths became 
shorter. The main source of advances in processor performance was the raising of the clock 
speed. However, this approach had inherent limitations, particularly the heat emissions 
and power consumption was getting increasingly hard to deal with [6]. 

Therefore, computer architects have begun to explore other strategies for increasing 
hardware performance and making better use of the available on the chip available to 
them: multiple processors that share memory. At first the processors were configured 
in a single machine, and later, on a single chip. This approach is known as multicore. 
Simultaneous multithreading platforms, multicore machines, and shared-memory parallel 
computers all provide system support for the execution of multiple independent instruction 
streams known as threads [6]. 

5.2 SMP 

SMP stands for symmetric multiprocessing which represents multiprocessor system with 
one shared memory. Processors and physical memory are usually connected by a bus 
or crossbar switch (Figure 5.1 and 5.2). A l l the processors in the S M P system share the 
physical memory uniformly - access time to any memory location is independent of processor 
making the request or memory chip containing the requested data (it is also called U M A 
- uniform memory access). Since every processor has its own private cache memory, it is 
essential to ensure cache coherency - that every copy of the shared data is the same in 
every cache memory. That's why SMP architecture is also called c c U M A (cache coherent 
Uniform Memory Acces) [10]. 

SMP is the most popular parallel architecture today[10]. S M P computers are usually 
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Figure 5.1: Connection between processors and memory by bus - only one processor can 
access the memory at once. 
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Figure 5.2: Connection between processors and memory by crossbar. This connection 
allows some degree of simultaneous memory access, thus achieving greater efficiency than 
bus solution. 

used as servers or building blocks (nodes) for larger supercomputer clusters. Symmetric 
multiprocessing also dominates home computer market with multicore architecture contain­
ing two or more independent processing units called cores on one chip[10]. 

5.3 N U M A 

The main disadvantage of S M P architectures is the memory bottleneck of the shared mem­
ory bus, which prevents effective scalability of the S M P system. This drawback can be 
eliminated by providing each processor with its own local memory. Processors are then 
connected by shared bus (as seen in diagram on figure 5.3) or high-throughput connections 
(diagram on figure 5.4) to get access to non-local memory. As latency of local and non­
local memory is different (see 5.1), this approach is known as N U M A (or c c N U M A - cache 
coherent Non-Uniform Memory Access [ ]). 
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Figure 5.3: Each processor is directly connected to local memory. Shared bus or crossbar 
is used to access non-local memory. 
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Figure 5.4: Each processor is connected to its neighbour by high-speed connection. To ac­
cess some of the data, two additional processors must be enquired (two "hops" are required) 
in the worst case. Table in 5.1 describes various access times on A M D Opteron system, 
which uses this form of inter-CPU communication [16]. 

Data location Page-hit latency (ns) Page-miss latency (ns) 
Local memory 65 95 
Adjacent processor 100 120 
Two "hops" processor 140 160 

Table 5.1: A M D Opteron memory access latency (source: [16]) 

As each processor have immediate access to its local memory and this communication 
channel is not shared with other processors, it can access the memory anytime without need 
for synchronization mechanism. This ensures better scalability in comparison with U M A 
systems. On the other hand, rather complicated inter-processor communication systems 
and protocols must be employed between cache controllers to ensure cache coherence [ ] 
(more on cache coherence is in section 5.5). This can be obviously problem and can cause 
poor performance in case that more processors tries to access the same memory resource. 
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5.3.1 H y b r i d N U M A 

Modern system often combine U M A and N U M A models to create hybrid architectures, 
thus exploiting advantages from both approaches. Processors are grouped together with 
memory to form nodes. Memory acces time within the node is the same for all the cores 
in the node - there is local unified memory access. These nodes are then connected by bus 
or high-speed interconnect to allow access to non-local memory banks at slightly higher 
latencies, thus creating non-uniform access between the nodes[ ]. There is example of 
such system on figure 5.5. 

C P U C P U 

t t 
| Local Bus |« 

1 t 
Memory 

bank 
Memory 

bank 

C P U C P U 

t t 
Local Bus 

t t 
Memory Memory 

bank bank 

Bus 

Figure 5.5: Hybrid architecture combinig U M A and N U M A approaches to gain advantages 
from both models. Server platforms like Intel Xeon are examples of such system [ ]. 

5.3.2 OS Support 

To ensure the best performance, operating system must be aware of the architure on wich 
it runs. On S M P and single processor systems, each memory page is as good as another. 
But this does not hold for N U M A architectures, where distance between the memory and 
processor matters. The distribution of processors and memory into the nodes must be 
taken into account when designing the scheduler and the kernel to find the most optimal 
way of memory and thread mapping. The kernel memory allocation system must minimize 
the distance between physical memory on which the thread's data are mapped and the 
processor which the thread is running on [ ]. The scheduler should also avoid migration 
of process or thread to another node, as this would mean that all of the data had to be 
copied also. Another optimization problem is shared code of OS standard libraries, which 
is normally present only once in the memory. Optimally, the parts which are used by the 
multi-process application should be mirrored to each node of N U M A system [ ]. 
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5.4 Speedup 

In parallel computing, speedup refers to how much a parallel algorithm is faster than a 
corresponding sequential algorithm. Speedup is defined as: 

S n  = % ( 5 - 1 } 

Where N is the number of processors, T\ is the execution time of the sequential algorithm 
and TJV is the execution time of the parallel algorithm on system with iV processors [26]. To 
obtain estimated speedups of parallel programs, researchers have been using two different, 
but mathematicly equivalent formulas - Amdahl's Law and Gustaj'son's Law [29]. 

Amdahl's law is named after computer architect Gene Amdahl, and is used to find the 
maximum expected speedup to an overall system when only part of the system is improved. 
It states that serial program can be decomposed into two portions - s and p, where p is 
the proportion of a program that can be made parallel, s is the proportion that cannot 
be parallelized (remains serial), and s + p = 1. Then the maximum speedup that can be 
achieved by using N computational units is: 

S + P (52) 
M + & ( 5 - 2 ) 

After using s + p = 1 and s = 1 — p, formula can be reduced to: 

( 1 -P ) + * ( 5 ' 3 ) 

As iV approaches infinity, the maximum speedup tends to 1/(1 — p). This means that 
performance falls rapidly as iV is increased once there is even a small component of (1 — 
p)[26], as can be seen on figure 5.6. 

Main prerequisite to applying the Amdahl's Law is that the serial and parallel programs 
must compute the same total number of steps for the same input, which is hard to satisfy for 
commonly used algorithms and produce confusion [29]. Often the parallel implementation 
is directly crafted from the corresponding serial implementation of the same algorithm, 
therefore an alternative formulation was proposed by John Gustafson known as Gustafson's 
Law. In Gustafson's formulation, a new serial percentage is defined in reference to the 
overall processing time using N processors and it is dependant on N. This iV dependent 
serial percentage is easier to obtain than that in Amdahl's formulation via computational 
experiments. 

The difference from Amdahl's formulation is that Gustafson takes already parallelized 
version of problem as basis for computing time needed to run that version on sequential 
computer. The execution of the program on a parallel computer is decomposed into s+p = 
1, where s is the serial fraction of the program and p is the parallel fraction. On a sequential 
computer, the relative time would be s+Np, where N is the number of processors in parallel 
case [26]. Speedup is therefore: 
S-±^ (5.4) 

s+p 
Because s + p = 1 and p = 1 — s, we can reduce this formula to: 

s + N(l-s) (5.5) 
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Figure 5.6: Graph of expected speedup for different levels of parallelization based on Am­
dahl's law 

Gustafson discovered, that in the real-world applications, the parallel part p of a program 
tends to scale with the problem size, but the serial part s, consisting of program loading, 
serial bottlenecks and I /O, remains constant [12]. So as the problem size grows, s diminishes 
and the speedup approaches number of processors N. 

It has been observed that theoretical speedups could be overly optimistic due to overhead 
incurred while parallelizing the code. This overhead often includes additional code requied 
to parallelize task as well as communication latency due to shared memory bandwidth and 
ensuring cache coherence [ ]. 

5.5 Cache Coherence 

Althogh theoretical speedup of algorithm can be computed independently of the architecture 
of system on which the algorithm is implemented, real speedup is limited by things like 
memory bandwitdth, communication speed and by cache coherence mechanism. 

One of the major challenges facing computer architects today is the growing difference 
in processor and memory speed. Processors have been consistently getting faster. But 
more rapidly they can perform instructions, the quicker they need to receive the values of 
operands from memory. Unfortunately, the speed with which data can be read from and 
written to memory has not increased at the same rate [27]. This effect is illustrated on 
figure 5.7. 

In response, the vendors have built computers with hierarchical memory systems, in 
which a small, expensive, and very fast memory called cache memory, supplies the processor 
with data and instructions at high rates. Each processor of an multiprocessor system needs 
its own private cache if it is to be fed quickly; hence, not all memory is sharedf ]. Figure 5.8 
shows an example of a generic, cache-based dual-core processor. 
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Figure 5.7: Difference between processor and memory speeds in years 1980 - 2000 
(source: [27]) 

In a uniprocessor system, new values computed by the processor are written back to 
cache, where they remain until their space is required for other data. At that point any new 
values that have not already been copied back to main memory are stored back there. This 
strategy does not work for multiprocessor systems. When one processor of such system 
stores results of local computations in its private cache, the new values are accessible only 
to code executing on that processor. If no extra precautions are taken, they will not be 
available to instructions executing elsewhere on an machine until after the corresponding 
block of data is displaced from cache. But it may not be clear when this will happen. In 
fact, since the old values might still be in other private caches code executing on other 
processors might continue to use them even then[ ]. 
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Figure 5.8: Diagram of generic dual-core system with cache memories 

This is known as the memory consistency problem. A number of strategies have been 
developed to help overcome it. Their purpose is to ensure that updates to data that have 
taken place on one processor are made known to the program running on other processors, 
and to make the modified values available to them if needed. A system that provides this 
functionality transparently is said to be cache coherent[6]. 
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Chapter 6 

New Methods of P G A 

6.1 Motivation 
As multiprocessor architecture is dominating the computer systems market, beginning from 
personal computers, through high-end workstations used for demanding computations, and 
including even massively parallel supercomputer clusters, which are using multicore chips as 
building blocks [18]. These systems provides better scalability of computation performance 
and lower power consumption over the single-processor machines, and because of this, it 
has became a trend in computer design. 

As genetic algorithms are computationally demanding applications, it is imperative 
to have efficient approach to exploit advantages of these systems. This chapter presents 
prototypes of two new methods specifically designed for multiprocessor architectures. 

Description of the methods' inner workings, advantages and disadvanages is presented 
in the second and third section, with section two describing Symmetric Method, and section 
three describing Asymmetric Method. 

As there is difference between SMP and N U M A systems, there are two variations for 
both methods. Each variation is adapted to its corresponding architecture to avoid perfor­
mance loss. These variations are described in fourth section of this chapter. 

Various implementation details as random generator and fitness function used for bench­
marking are represented in section five. 

6.2 Design Principles 

The most efficient parallel algorithm would have following properties: 

• No communication 

• No shared resources 

• No sequential code 

However, only limited number of problems could be parallelized efficiently while conforming 
to this restriction. Unfortunately, as crossover operation is one of the core parts of GA[8], it 
is not possible to completly adhere to aforementioned principles (especially the restriction 
of the shared resources). Nevertheless, minimization of communication, shared resources 
and sequential parts are key principles in designing new methods of P G A . 
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These methods are described in following two sections. Only variants for S M P systems 
are described, and the modification of these methods for N U M A systems is then presented 
in section 6.5. 

6.3 Symmetric Method 

The first of new methods of parallel genetic algorithm presented in this section belongs 
to category of global parallel G A , because there is only one distributed population. It is 
similar to master-slave model, with some properties of multi-deme parallel G A . 

In traditional master-slave model, slave threads are used only to evaluate genomes while 
master thread performs other evolution operators and stores the generation (figure 4.1). 
This model requires communication between master thread and slave thread. On the other 
hand, in Symmetric Method, all the threads are equal and each thread performs, in addition 
to evaluation of fitness, full evolution process with selection, crossover and mutation, thus 
eliminating master-slave hierarchy and therefore also the need for communication. Figure 
6.1 shows this process on system with two processors. 

current generation new generation 

Figure 6.1: Schematic drawing of evolution process on system with two processors. 

Since there is no communication, genomes are divided into small subpopulations of 
equal size and each thread stores new genomes into its own population to prevent genome 
loss due to overwrite. But as the memory is shared, selection of parents is done globally 
over all subpopulations with little penalties on S M P systems (the modification for N U M A 
systems is described in section 6.5). Because of that, these small subpopulations create 
together one global population, where each genome has the same chance to get selected by 
each thread as in serial G A . 

The evolution process is divided into two phases - first is the initialization phase, where 
every thread initializes its population by randomizing all genomes and then evaluates ev­
ery genome. The evolution phase, which comes after initialization, lasts until the ending 
condition is met. 
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Each thread has two storage areas - current generation and new generation (see Fig­
ure 6.1). Parents are selected from current generation and offsprings are stored to new 
generation. After all free places in new generation are filled, pointers to both storage areas 
are swapped making new generation act as current generation. Swapping is done in an 
asynchronous manner. The pseudocode for this process is in figure 6.2. 

randomize a l l genomes in current_generation 
evaluate a l l genomes in current_generation 

while ( not ending_condition ): 
select 2 genomes 
create offspring 
evaluate offspring 
store offspring in new_generation 
i f ( new_generation is f u l l ): 

swap new_generation and current_generation 

Figure 6.2: Pseudo-code for one thread running Symmetric Method. 

6.3.1 Elit ism 

Elitism is very powerfull technique and helps to maintain the convergence of fitness values. 
In case of Symmetric Method, the elitism is implemented on each subpopulation as copy of 
the best genome in current subpopulation to its new generation. 

6.3.2 Properties 

A good method of parallelization should preserve any properties that sequential algorithm 
with the same genetic operators would have. It should also not introduce too many addi­
tional parameters whose values could significantly affect the G A performance. [11]. 

Symmetric Method has almost all of this properties except identity with serial G A due 
to its asynchronous matter. It is using the same genetic operators except selection operator, 
which needs to be changed to work on multiple subpopulations. 

Furthermore, the communication and synchronization is eliminated, with sequential part 
used only for memory allocation and thread creation. Because of this, the sequential part 
is not scaling with the problem size and remains constant, therefore it tends to diminishes 
as the problem grows. 

The description of some properties of S M P version below (for properties of N U M A 
version, see section 6.5): 

Advantages 

Global population - because the selection operates on all of the populations equally, 
every genome has a chance to compete with each other making it one global distributed 
population. This eliminates the need for migration. 

No communication - with no migration, non-blocking write, shared memory and asyn­
chronous approach, there is no need for threads to communicate to each other. 
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Non-blocking write - each thread stores new genomes only into its designated memory. 
Threads don't have to wait for each other to complete writing and one thread cannot 
overwrite other thread's offspring. 

Everything is parallel - since whole evolution process is done in parallel, speed-up of 
asynchronous approach is limited only by memory bus bandwidth and cache coherence 
mechanism. 

Localized memory usage - as each thread has its own private memory for writing and 
this memory is not read by other threads at the time of writing, the need for cache 
controllers communication to ensure cache coherence is minimal. 

No additional parameters - global population doesn't require new parameters as migra­
tion rate and frequency needed for multi-deme P G A , and shared memory eliminates 
need for topologies and communication. 

Easy implementation - implementation of the method is simple as only selection oper­
ator needs to be modified to work on whole population. This can be simplified even 
more by using tournament selection, which selects n genomes with equal chance (as it 
is no problem to choose uniformly from many population), thus minimizing amount 
of modifications. 

Disadvantages 

Shared memory - this method requires shared uniform access memory by design, as the 
selection operates on all genomes. As so, efficient implementation on computer archi­
tectures with non-uniform memory access is not possible without further modification 
of algorithm described in section 6.5. Also memory bus bandwidth could be bottle­
neck on some multiprocessor systems, as each processor accesses genomes from whole 
population. 

Selection methods - distributing population into several subpopulations makes this method 
unsuitable for any kind of fitness-proportional selection because sorting of population 
after each asynchronous swap would be impossible without communication and syn­
chronization. 

Thread starvation - as each subpopulation has corresponding thread, the fitness of its 
genomes are dependant on flawless execution of this thread. In case the thread is 
deprived of processor, the subpopulation is stagnating and low-fitness genomes are 
leaking to the global population, thus slowing the convergence. 

6.4 Asymmetric Method 

Asymmetric Method is focusing on some problems of Symmetric Method - thread starvation 
particulary. This could be serious problem, as running time of G A could be measured in 
days, and it would be inconvenient to not be able to use the computer during this time. 

Asymmetric Method is designed to minimize the damage in case that some thread will 
be denied of processor for few generation. To solve this problem, it divides the global 
population into many smaller subpopulations (more than number of threads). Due to this 
fact the probability of chosing parent genomes from the defect subpopulation is lower. 
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Figure 6.3: Consecutive steps of computation by Asymmetric Method. (1) Each thread is 
evolving corresponding subpopulation. (2) Thread 2 is finished, swapping new generation 
with current generation and moving to next free subpopulation. (3) Thread 2 is evolving 
the new subpopulation while Thread 1 finished evolution. (4) Thread 1 acquired the next 
free subpopulation. 

As there are more subpopulations than thread, each thread will work on more than one 
subpopulation. When the thread finishes evolution of current subpopulation, it will claim 
the first "free" one and starts evolving it. Figure 6.3 displays few steps of the evolution 
process done by Asymmetric Method. Pseudo-algorithm form Asymmetric Method is on 
figure 6.4. 

As there is possibility that each subpopulation will be evolved by each thread in some 
time, the damage done by the starving thread should be divided equally between all sub-
population. The crucial difference between Symmetric Method and Asymmetric Method 
is the acquisition of free subpopulation, because it cannot be done without sacrificing ad­
vantages like no thread communication or synchronization. Section 6.7.1 describes the 
implementation of this acquisition. 
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while ( not ending_condition ): 
pop = f irs t free subpopulation 
i f pop was not init ia l ized: 

randomize a l l genomes in current_generation 
evaluate a l l genomes in current_generation 
continue to next iteration 

for each genome in new_generation: 
select 2 parents 
create offspring 
evaluate offspring 
store offspring in new_generation 

swap new_generation and current_generation 

Figure 6.4: Pseudo-code for one thread running Asymmetric Method. 

6.4.1 Properties 

Experimental results in section 7.3 shows that the Asymmetric Method successfully elimi­
nates the thread-starvation disadvantage of Symmetric Method. Additionally, Asymmetric 
Method retains some of the advantages from its symmetric counterpart: 

• Global population 

• Non-blocking write 

• Whole evolution is parallel 

• Localized memory usage 

However, it needs additional parameter (number of subpopulations) and synchronization 
(albeit with little overhead, as seen on table 6.2). Also it is not suitable for N U M A archi­
tectures, as each thread could work on any subpopulation so it is impossible to associate 
the data with some processor. Asymmetric Method also retains some of the disadvan­
tages of Symmetric Method such as it need memory with uniform access to achieve efficient 
performance, and the selection operator must be modified to work on subpopulations. 

6.5 SMP vs N U M A 

SMP technology is one of the most popular parallel architectures today. It is used in form of 
multicore C P U in personal computers, servers and even building blocks of supercomputer 
clusters [18]. S M P systems are also often used as nodes for hierarchical parallel genetic 
algorithms. 

On the other hand, high-end computer systems used for scientific calculations tends 
to have higher processor count and so are using N U M A architecture because of its better 
scaling. Application programming for these systems is slightly different, because memory 
and processor location on chip must be taken into account when designing the parallel 
algorithm. On S M P system, the algorithm could count on uniform access time to any block 
of memory. This is not the case on N U M A architecture, where the data must be allocated 
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carefully and simultaneous reading or writing to the same memory block by more than one 
processor must be avoided at all costs [ ]. Thus algorithm designed to fully exploit all of 
the resources on SMP system could have poor results on N U M A system. 

So to be effective on N U M A architecture, each thread should have associated separate 
data, and access to other data should be minimized, so OS can allocate data to physical 
memory more effectively. Luckily, in case of genetic algorithm, the selection function is used 
by thread to obtain data it will use in evolution process, so the modification is restricted 
to writing two different selection operators, one for SMP system and the other for N U M A 
system. 

6.5.1 N U M A selection 

As accesing genomes residing in non-local memory will slow down the execution of the 
thread, the selection operator should be inclined to choose genomes from thread's local 
subpopulation. This could be implemented in two ways: 

1. for choosing genomes from non-local subpopulation with low probability 

2. restrict selection to operate only on local subpopulation, ignoring non-local subpop-
ulations entirely 

To compare this two approaches, both were implemented and run on N U M A systems. 
Figure 6.5 shows speedup of each approach. 

System: 
2x Quad Core Intel Xeon 5355 
2.66GHz, 4096 KB cache, 32 G B R A M 

Speedup 

Prob 0.1 
Prob 0.5 

S M P 

• * * ,.»»***"* ^^000-0^^ 

3 4 

Number of threads 

System: 
2x Quad-Core A M D Opteron 2387 
2.8GHz, 512 KB cache, 16 G B R A M 

Speedup 

Local 
Prob 0.1 
Prob 0.5 

SMP 

3 4 

Number of threads 

Figure 6.5: Speedup of N U M A selection approaches compared with U M A selection. Local 
describes selection restricted to local subpopulation, Prob 0.1/0.5 describes selection from 
global population with 0.1/0.5 probability and SMP describes selection chosing all genomes 
with uniform probability. The tests were taken on 2 different N U M A systems and values 
are computed as arithmetic means of 20 independent runs. 

The results shows that the selection restricted to operate only on local subpopulation 
has the best speedup. Wi th local selection, there would be no means to get the genomes 
from other subpopulations, so some form of migration must be introduced to N U M A variant 
of G A . To minimise the operations on non-local data, the migration scheme displayed on 
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figure 6.6 will be employed. Each thread takes best genome from all of the subpopulations 
and copies these genomes into new generation. Then it will continue the evolution process 
as in S M P version. Comarison of fitness convergence for S M P selection and N U M A selection 
with migration is described in section 7.2 

current generation 

best 1 

best 2 

best 3 

best 1 
best 2 
best 3 

new generation 

best 1 
best 2 
best 3 

best 1 
best 2 
best 3 

best 1 
best 2 
best 3 

Figure 6.6: Diagram showing the migration in N U M A variation. Each thread copies the 
best genome from each subpopulation to its local new generation. 

6.5.2 Disadvantages 

The obvious disadvantage of N U M A selection is that it selects genomes only from local 
subpopulation, thus altering the function of G A . Wi th U M A selection, the paralell version 
of G A behaves similary to serial G A - the evolution is done on whole population. But 
with N U M A selection, it is closer to the island model of multi-deme paralell G A . Another 
disadvantage is the need to implement migration schemes to mix the genomes of local 
subpopulations, and this brings additional parameters required to define the process of 
migration. These parameters are often very hard to optimize for achieving the best results 

[4]-

6.6 Comparison 
Although modification of the selection operation to work on N U M A systems is simple, it 
alters some of the properties of each method. Table 6.1 displays properties of each method 
and its corresponding variants. 

6.7 Implementation 

Prototypes of both methods were implemented in C language using the OpenMP [ ] library 
for parallel computing. Some details of implementation are described below. 
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Method Symmetric Asymmetric Method 
S M P N U M A S M P N U M A 

Global population X X 
Non-blocking write X X X X 
No additional parameters X 
Everything is parallel X X X X 
No synchronization X X 
Special selection X X 

Table 6.1: Comparison of methods' properties 

6.7.1 Synchronization 

To minimize communication and synchronization, the best way to acquire the free subpop-
ulation in Asymmetric Method is to keep index pointig to first free subpopulation, so the 
process of acquisition can be implemented as simple atomic increment operation. In the 
same atomic operation, we must also get the old value. There are several ways to do it, 
and as the prototype is implemented using OpenMP and G N U Compiler Collection[25], 
following options for atomic operations are available: 

• OpenMP Atomic command 

• OpenMP Critical section 

• G N U gcc built-in function sync_f etch_and_add [25] 

Table on figure 6.2 shows running times of each operation. We can see that OpenMP 
Critical section is not suited for this kind of problem as the overhead is too high for one 
incrementation. Running time of OpenMP Atomic incrementation is acceptable, but it is 
impossible to increment and get value in one atomic operation using this approach [6], so 
G N U gcc built-in function sync_f etch_and_add is the only choice that remains. 

Method Intel Xeon A M D Opteron 
Without synchronization 0.037 0.1651 
O M P critical 9.56 12.6 
O M P atomic 0.26614 0.29312 

sync_fetch_and_add 0.26934 0.2884 

Table 6.2: Running times in seconds for various synchronization methods and computer 
systems. Values are calculated as arithmetic means from 50 independent runs. Each run 
consisted of 10 million corresponding operations. Source code of the benchmark program 
is in appendix A . 

6.7.2 Fitness functions 

To benchmark the efficiency and speedup of new methods, two fitness functions are used: 

• Onemax 

• Cartesian Genetic Programming [ ] 
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Onemax 

Onemax is one of the most used fitness function for evaluating G A performance. The 
calculation of fitness value is straightforward - it is the count of bits with value 1. 

Cartesian Genetic Programming 

Cartesian Genetic Programming (CGP) is relatively new technique of genetic programming 
(GP). It was presented by J . F. Miller and P. Thompson in 2000 [ ]. C G P represents 
computation algorithms by acyclic directed graphs rather than trees used by traditional G P 
pioneered by John R. Koza in [17]. Each node of the graph is encoded as three numbers: 
function index, node index for the first input and node index for the second input. To keep 
the graph acyclic, input of each node can be taken only from previous nodes. Genotype of 
C G P consists of nodes list followed by indexes of output nodes. Example of genotype and 
corresponding phenotype used for solving symbolic regression is on figure 6.7. 

Genotype: 

2 0 0 0 1 1 1 2 3 3 3 1 2 2 4 0 6 1 2 2 7 3 4 1 8 
node 2 node 3 . . . node 9 output 

Phenotype: 
inputs: 

output 

Figure 6.7: Example of relation between C G P genotype and corresponding phenotype. The 
phenotype represents computation of mathematical expression x 6 — 2x 4 + x2. First number 
of each gene is function type with (0)+, (1) — , (2)* and (3)-=-. Grey color denotes inactive 
nodes. Surce: [7] 

C G P was usually implemented with mutation only, because the crossover used on integer 
encoding has negative impact on fitness convergence. However, in 2007, Miller and others 
introduced new encoding using floating point numbers in [7]. This encoding was designed 
to allow succesfull crossover operator for C G P , speeding-up the convergence considerably. 
Each node consisted of three floating point numbers from interval (0,1). Each number 
corresponds with integer number in original genome so the purpose of each number is not 
changed. To get the index values from floating points number, each interval is mapped to 
corresponding integer range from 0 to maximum allowed index. The value of particular 
index is then produced by rounding the floating point number representing it. Wi th this 
kind of encoding, the real-valued crossover can be applied to genome. This technique was 
shown to produce better results than original C G P [7]. 

For benchmarking the new methods, C G P was used to find the logical circuit realizing 
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the 3x3 multiplier. The building blocks for this circuit was nodes with four logical functions: 
and, or, xor and not. Each node has two 1-bit inputs and one 1-bit output. The input 
of the whole circuit are 6 bits representig two 3-bit numbers and the output is one 6-bit 
number. The circuit containins 100 nodes, although not every node must be active. Fitness 
value of genome is defined as number of bits that are the same as bits in desired output. 
This difference is calculated for all of 2 6 input combination. In case of absolutely correct 
results, the number of inactive nodes are added to fitness, so the evolution can optimize 
also the size of the circuit. 

6.7.3 Pseudorandom number generator 

As G A are essentialy stochastical algorithms, the function implementing pseudorandom 
number generator (PRNP) is the most called function in the whole system. Large period 
and high efficiency are the main requirements that G A put on this generator. Although 
statistical quality of generated numbers can be helpfull, it was shown in [5] that it is not 
essential for good convergence. Based on these requirements, xorshift [21] was selected as 
P R N G for benchmarking. As its name suggests, only bitwise xor and shift instructions 
are used for generating random numbers. Because these instructions are among the fastest 
instruction supported by modern CPUs, xorshift can produce numbers at very high rates. 
These numbers have also sufficient statistical quality as xorshift has period 2 1 2 8 — 1 and 
passes all of die-hard tests designed to evaluate P R N G [21]. Source code used in prototype 
implementation is in appendix B . 
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Chapter 7 

Experimental Results 

This chapter presents results of various experiments used to benchmark the speedup and 
convergence of both methods, and conclusions based on acquired data. 

Goal of the G A was to optimize two problems: simple onemax and more complex design 
of digital logical circuit using cartesian genetic programming. More info on implementation 
details of each method and fitness functions is in section 6.7. 

7.1 Speedup 

This section presents a comparison of Symmetric Method and Asymmetric Method. The 
speedup of each method with corresponding U M A and N U M A variant are calculated from 
data acquired from 50 independent runs. Each run consisted of 5000 generations. As 
the methods are essentialy asynchronous, the notion of generation is defined as number of 
evaluations equal to population size (with elitism and migration not counting towards this 
number) 

Results are presented by graphs on figure 7.1. Tests were run on four multiprocessor 
systems with different configurations. Brief description of the systems is presented in the 
following list, with more detailed technical parameters described in appendix C. 

edesignl, edesign2 - high-performance multiprocessor systems dedicated for research 
purposes. Hybrid N U M A architecture (2 Dual-Core chips for edesignl and 2 Quad-
Core chips for edesign2) based on A M D and Intel processor technologies. Both sys­
tems run Linux-based operating system. 

merlin - computer server system set up for developing and testing student projects. As 
all of the students have access to this system (opposed to edesign systems with access 
restricted to authorized personell), it is under low to moderate load for most of the 
time. Tests on this system serves to benchmark performance on such systems. Server 
is built on N U M A architecture with two Quad-Core A M D Opteron chips. 

pcjaros-gpu - high-performance private S M P system with single Quad-Core Intel C P U 
used for benchmarking algorithms accelerated on graphic cards. As all of the other 
systems represents hybrid N U M A architectures, pcjaros-gpu is used for obtaining test 
results on S M P architecture. 
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Figure 7.1: Graphs showing speedup for different systems and fitness functions. 
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The size of population was chosen to be 840 as this number is divisible by numbers from 
1 to 8 (the numbers of threads), so each test run will be run on the population of same 
size. For Asymmetric version, the number of subpopulations was s = 2t + 1, where t is the 
number of threads. Appendix C describes all of the parameters used to configure genetic 
algorithm for the tests. Due to the elitism and migration, different number of genomes are 
copied to new generation (details in table 7.1). As these genomes have their fitness already 
calculated, they are not counted towards evaluations count. 

7.1.1 Conclusion 

The results plotted in figure 7.1 shows that the speedup of both methods is dependandant on 
many factors, including fitness function and even hardware configuration of multiprocessor 
system the test is being run on. Other than that, the results were quite consistent with the 
expectations except a few phenomena: 

Superlinear speedup - on some systems, the onemax fitness function displays superlin-
ear speedup. This could be the effect of larger cache memory being used - as more 
threads use more processor and each processor has its own cache, more data could 
be stored in high-speed low latency cache memory contributing to better speed. This 
assumption would also explain the fact that C G P fitness function doesn't display 
such large superlinear speedup, as the C G P genome is roughly 10 times larger than 
genome used for onemax problem (for details on parameters of G A see appendix C). 
This assumption should be the subject of further research. 

U M A faster than N U M A - on edesign2, the U M A variant of Asymmetric version op­
timizing the C G P problem shows greater speedup than its corresponding N U M A 
variant. As the Asymmetric U M A variant is working with whole population all the 
time, it is expected to have the worse speedup. This holds true for all the other test 
cases. 

Overall, the N U M A variant of the Symmetric Method shows nearly linear speedup in 
all of the test cases. Second place in performance is dependant on fitness function, as the 
Asymmetric N U M A variant shows better results for onemax, but Symmetric U M A variant 
beats it in the field of C G P problem optimization. A l l of the methods and variations display 
somewhat linear speedup on S M P system pcjaros-gpu. 

7.2 Convergence 

In previous chapter we measured the performance of G A by measuring the the time of 
run. Althoug this time is one of the indicators of performance, the effectivity of GAs also 
depends largley on fitness convergence. It would not be beneficial to have algorithm that 
runs at double speed, but need also twice the steps to reach the same fitness value, as we 
would have to wait the same time to get similar solutions. 

Following experiments provides results showing the convergence of fitness for each of the 
methods and variants. Graph on figure 7.2 displays arithmetic means of best and average 
fitness of population after 50 independent runs of G A . 

As the surface of C G P fitness function is much more complex than the simple Onemax 
problem, the fitness convergence is measured on C G P problem. Each run consisted of 
1000 generations (as the methods are asynchronous, one generation is defined as number 
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Best Genome Average Fitness 

Figure 7.2: Graphs showing best and average fitness achieved on the end of the 1000th 
generation. The graph displays relation between number of threads and fitness values. 
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Figure 7.3: Difference between best and average fitness. 

of evaluations equal to population size), because the solutions have converged by then and 
population fitness just slowly rose in the follofing generations. 

We can see that the fitness achieved at the end of the evolution rises with the thread 
count. Difference between best and average fitness, which is displayed on figure 7.3, can be 
considered as one of the indicators of variance in the population. 

Plot on figure 7.4 provides the values of average and best fitness during all the steps of 
evolution process. Both methods were run with 8 threads for 1000 generations 

7.2.1 Conclusion 

Result of the convergence tests shows that the fitness values tends to rise with rising thread 
count. Figure 7.2 also shows that N U M A variants are more effective than their U M A 
counterparts. Better convergence is mirrored by smaller variations in population displayed 
on figure 7.3. We can also notice that Asymmetric Method achieves better values and 
converge faster than Symmetric Method (figure 7.4). 

This effect could be caused by the elitism and migration technique used in U M A and 
N U M A variants. In case of Symmetric Method, the number of subpopulations that global 
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population is divided into equals to the number of threads t. As the elitism is carried out 
on subpopulation level, the number of locally optimal genomes copied into new generation 
is equal t in U M A variant and t2 in N U M A variant. In Asymmetric Method, the number 
of subpopulations is even bigger: 2t + 1. This migration is possible due to the fact that 
each subpopulation keeps local information about the best thread. 

Thr 
Symmetric Asymmetric 

Thr S M P N U M A S M P N U M A 
1 1 (0%) 1 (0%) 3 (0%) 9 (1%) 
2 2 (0%) 4 (0%) 5 (1%) 25 (3%) 
3 3 (0%) 9 (1%) 7 (1%) 49 (6%) 
4 4 (0%) 16 (2%) 9 (1%) 81 (10%) 
5 5 (1%) 25 (3%) 11 (1%) 121 (14%) 
6 6 (1%) 36 (4%) 13 (2%) 169 (20%) 
7 7 (1%) 49 (6%) 15 (2%) 225 (27%) 
8 8 (1%) 64 (8%) 17 (2%) 289 (34%) 

Table 7.1: Number of genomes propagating to the new generation by each method. 

Number of locally best genomes migrating to the new generation is displayed in table 7.1. 
We can see that as we increase the subpopulation count, the number of genomes copied 
from "old" generation increases - we are approaching kind of high-pressure variant of a 
steady-state genetic algorithm. SSGA are known to have faster convergence rates at the 
expense of smaller variance [28], so it could be possible explanation of acquired data. 

Figures 7.2 and 7.3 also displays an unexpected raise in fitness for Symmetric N U M A 
Method between 4 and 5 threads. Comparable raise can be observed in Asymmetric N U M A 
Method between 2 and 3 threads. According to table 7.1, both of these two points share 
the number of migrating genomes (approximatly 3%-6% of whole population). It could 
represent a critical migration value to achieve the best convergence and together with 
N U M A ' s better convergence should be the subject of further research. 
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7.3 Heavy Load 

Following experiments test the ability of each method to converge on system with moderate 
to heavy load. They are designed to test the assumption that Symmetric Method suffers 
from lack of computing resources. To simulate system with load, the tests were run with 
more threads than the number of processors. 

S y m m e t r i c Me thod 

Symmetric Method, Best Genome Symmetric Method, Average Fitness 

A s y m m e t r i c Me thod 

360 

350 

340 

330 

320 

310 

300 

290 

Asymmetric Method, Best Genome 

I I I I I I 

NUMA 

7 ^ UMA 

i l l 

normal ' _ 
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Asymmetric Method, Average Fitness 

4 5 

threads 

Figure 7.5: Graphs show the relation between fitness achieved on system with no load and 
system with moderate to heavy load. Plot label normal refers to runs on edesign2 system 
with while label heavy load describes data measured on edesignl. 

Two systems were used: edesign2 with two Quad-Core CPUs to simulate normal be­
haviour and edesignl with two Dual-Core CPUs to simulate system with moderate to heavy 
load (as it has only 4 cores, 5 to 8 threads could not run simultaneously). More informa­
tions about each system can be found in section 7.1 and in appendix C. Figure 7.5 displays 
average and best fitness values achieved by the G A under different conditions. 

7.3.1 Conclusion 

From graphs on figure 7.5 is obvious that the only variant suffering from lack of processor 
time is U M A variant of Symmetric Method. These results confirms the assumptions about 
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the U M A selection. As the selection operates on whole population, sub-optimal genomes 
spread from poor subpopulations. On the other hand, U M A variant of Asymmetric Method 
is achieving the same convergence under heavy load as under normal conditions, thus the 
Asymmetric Method succeeded in solving the lack-of-resources issue of Symmetric Method 
and successfully accomplished its design goal. 

However, the N U M A variants of both Methods produce almost identical results in-
dependenly of system load. This result is interesting because it renders the Asymmetric 
Method unnecessary as the heavy load problem of Symmetric Method can be solved by its 
N U M A variant, which has better results than U M A variant in all the aspects. 
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Chapter 8 

Conclusion 

This work is presenting comparison of two different approaches to paralellization of G A . 
These two methods - Symmetric Method and Asymmetric Method - are presented in chap­
ter 6 and their performance is evaluated in chapter 7. Final chapter sums up the conclusions 
based on acquired results and presents possible direction for future research of this subject. 

8.1 Results 

The experiments measured three main aspects of each method: 

• Speedup 

• Convergence 

• Performance under heavy load 

The quality of each aspect is measured by running different optimization problems described 
in section 6.7. 

8.1.1 Speedup 

The ability to achieve effective speedup on multiple processors is essential to achieve good 
performance. Figure 7.1 displays speedups of each method and variant. As can be seen on 
graphs, the speedup depends on many factors as fitness function or hardware configuration 
and architecture. Overall, N U M A variant of Symmetric Method has the best performance, 
achieving linear or almost linear speedup on all of the architectures. 

8.1.2 Convergence 

Another important indicator of G A performance is its ability to find near optimal solution 
quickly. As the quality of solution is measured by the fitness function, this ability can be 
represented as convergence of fitness values in population toward optimal value. Figures 7.2, 
7.3 and 7.4 in section 7.2 compare the development and final values of population fitness 
of each method. 

We can see that N U M A variants are achieving slightly better convergence rates and 
fitness values for the C G P fitness function. This improvement of convergence is achieved at 
the expense of variance in the population. The relation between Asymmetric Method and 
steady-state genetic algorithm is discussed at the end of section 7.2. Overall, Asymmetric 
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Method (especially its N U M A variant) shows better convergence rates that Symmetric 
Method. Also N U M A selection is producing better results than its U M A counterpart. 

8.1.3 Heavy Load 

Final tests were dedicated to the performance under the system with moderate to heavy 
load. Graphs on figure 7.5 shows that the methods are not affected much by system load or 
lack of resources, with U M A variant of Symmetric Method being the exception (however, 
the difference in fitness values is only marginal). 

8.2 Future work 

The multi-deme approach represented by N U M A variant of Symmetric Method combined 
with shared memory of multiprocessor systems shows promising results in the area of per­
formance enhancing for genetic algorithms. As SSGA-like aspect of Asymmetric Methods 
provides better convergence than Symmetric Method, so optimal parallelization of G A could 
be achieved by combination of these two properties. 

Another interesting phenomenon is super linear speedup achieved on some systems. The 
cause of this speedup should be analyzed and conclusion of this analysis should be used in 
design and implementation of this new combined method. 

As genetic algorithms are complicated dynamic systems with many parameters, it is 
difficult to find general assumptions that would hold true in all the cases. Parallel G A are 
no different. There are always more test cases that can measure different combination of 
various parameters to quantify the performance more accurately. Unfortunately, it is out 
of scope of this work to perform all of these tests, so additional tests can be the subject of 
the future research. Following list provides some of the aspects that could be measured to 
assert the performance of both methods: 

• Speedup dependance on the size of population and subpopulations count 

• Relation between convergence and subpopulation count 

• More fitness functions 

• Comparison of convergence with other methods (SSGA, master-slave, . . . ) 

• More detailed statistics (population variance, standard deviation, . . . ) 

• More migration strategies 

44 



Bibliography 

[1] Thomas Baeck, David Fogel, and Zbigniew Michalewicz. The Handbook of 
Evolutionary Computation. Oxford University Press, 1997. 

[2] Glen Beane. The effects of microprocessor architecture on speedup in distributed 
memory supercomputers. Technical report, The University of Maine, 2004. 

[3] Erick Cantu-Paz. A survey of parallel genetic algorithms. Technical report, Illinois 
Genetic Algorithms Laboratory, University of Illinois, 1998. 

[4] Erick Cantu-Paz. Efficient and Accurate Parallel Genetic Algorithms. Springer, 2000. 

[5] Erick Cantu-Paz. On random numbers and the performance of genetic algorithms. In 
GECCO '02: Proceedings of the Genetic and Evolutionary Computation Conference. 
Morgan Kaufmann Publishers Inc., 2002. 

[6] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable 
Shared Memory Parallel Programming. M I T Press, 2007. 

[7] Janet Clegg, James Alfred Walker, and Julian Frances Miller. A new crossover 
technique for cartesian genetic programming. GECCO '07: Proceedings of the 9th 
annual conference on Genetic and evolutionary computation, 2007. 

[8] Kenneth Alan De Jong. An analysis of the behavior of a class of genetic adaptive 
systems. PhD thesis, University of Michigan, 1975. 

[9] Ulrich Drepper. What every programmer should know about memory. Technical 
report, Red Hat, Inc., 2007. 

[10] Vaclav Dvorak. Architektura a Programovani Paralelnich Systemu. V U T I U M Brno, 
2004. 

[11] Marin Golub and Domagoj Jakobovic. A new model of global parallel genetic 
algorithm. Technical report, Faculty of Electrical Engineering and Computing, 
University of Zagreb, 2000. 

[12] John Gustafson. Reevaluating amdahl's law. Communications of the ACM, 1988. 

[13] Randy Haupt and Sue Ellen Haupt. Practical Genetic Algorithms. 
Wiley-Interscience, 2004. 

[14] Intel. Multiprocessors, clusters, grids and parallel computing. Internet, 
http: / / www.intel.com/cd/ids / developer / asmo-na / eng/95581 .htm. 

45 

http://www.intel.com/cd/ids


[15] Intel. Optimizing software applications for numa. Technical report, Intel, 2009. 

[16] Earl Joseph, Christopher G . Willard, and Nicholas J . Kaufmann. The amd opteron 
processor: A new alternative for technical computing. Technical report, A M D , 2003. 

[17] John Koza. Genetic Programming: On the Programming of Computers by Means of 
Natural Selection. M I T Press, 1992. 

[18] Los Alamos National Laboratory. Roadrunner system overview. 

[19] Manuel Lozano, Francisco Herrera, and Jose Ramon Cano. Replacement strategies to 
preserve useful diversity in steady-state genetic algorithms. Information Sciences, 
2008. 

[20] Adam Marczyk. Genetic algorithms and evolutionary computation. Internet, 
http://www.talkorigins.org/faqs/genalg/genalg.html, 2004. 

[21] George Marsaglia. Xorshift rngs. Journal of Statistical Software, 2003. 

[22] Brad Miller and David Goldberg. Genetic algorithms, tournament selection and the 
effect od noise. Technical report, Department of General Engineeringm, University of 
Illinois, 1995. 

[23] J . F. Millerand and P.Thomson. Cartesian genetic programming. Proceedings of the 
3rd European Conference on Genetic Programming (EuroGP2000), 2000. 

[24] Melanie Mitchell. An Introduction to Genetic Algorithms. M I T Press, 1998. 

[25] Collective of Authors. Gnu compiler collection manual. 

[26] Collective of Authors. Wikipedia, the free encyclopedia. Internet, 
http: //www.wikipedia.com. 

[27] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly 
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case for 
intelligent ram. IEEE Micro, 1997. 

[28] Alex Rogers and Adam Prügel-Bennett. Modelling the dynamics of a steady state 
genetic algorithm. In Foundations of Genetic Algorithms 5. Morgan Kaufmann, 1999. 

[29] Yuan Shi. Reevaluating amdahl's law and gustafson's law. Technical report, 
Computer and Information Sciences Department, Temple University, Philadelphia, 
1996. 

46 

http://www.talkorigins.org/faqs/genalg/genalg.html
http://www.wikipedia.com


List of used abbreviations and 
symbols 

CGP - Cartesian Genetic Programming 

C P U - Central Processing Unit 

G A - Genetic Algorithm 

GP - Genetic Programming 

N U M A - Non-Uniform Memory Access 

P G A - Parallel Gentic Algorithm 

P R N G - Pseudo-Random Number Generator 

SSGA - Steady-state genetic algorithm 

SMP - Symmetric Multiprocessing 

U M A - Uniform Memory Access 

47 



Appendix A 

Atomic Increments 

Source code for atomic increments benchmark. 

#define ITERS 10000000 
#define T 8 
void test() { 
#pragma omp p a r a l l e l for shared(a) num_threads(T) 
f o r Q n t i = 0; i < ITERS; i++) { 

a++; 
} 

} 

void testsyncO { 
#pragma omp p a r a l l e l for shared(a) num_threads(T) 
f o r ( i n t i = 0; i < ITERS; i++) { 

sync_fetch_and_add(&a, 1); 
> 

> 
void testompQ { 
#pragma omp p a r a l l e l for shared(a) num_threads(T) 
f o r ( i n t i = 0; i < ITERS; i++) { 

#pragma omp atomic 
a++; 

} 

} 

void testompcrit() { 
#pragma omp p a r a l l e l for shared(a) num_threads(T) 
f o r ( i n t i = 0; i < ITERS; i++) { 

#pragma omp c r i t i c a l 
a++; 

} 

} 
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Appendix B 

Xorshift Pseudo-Random Number 
Generator 

B . l Implementation of xorshift P R N G 

Source: [21] 

s t a t i c unsigned int x=123456789,y=362436069,z=521288629,w=88675123; 

inl i n e unsigned int xor128(void) { 
unsigned int t=x~(x«ll); 
x=y; y=z; z=w; return w=(w~ (w»19)) " (t~ (t»8)); 

} 

B.2 Initialization with seed value 

i n l i n e void randseed(unsigned int seed) 
{ 
x "= seed; y "= seed; z "= seed; w "= seed; 

} 
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Appendix C 

Speedup Data 

C . l System Specifications 
edesignl 
Hardware: 
2xDual Core AMD Opteron 2220 
1024 KB cache, 32 GB RAM 
OS: 
Linux version 2.6.32.12 
(gcc version 4.3.4 (GCC) ) #1 SMP Tue Apr 27 15:10:42 CEST 2010 

edesign2 
Hardware: 
2xQuad Core Intel Xeon 5355 
4096 KB cache, 32 GB RAM 
OS: 
Linux version 2.6.32.12 
(gcc version 4.3.4 (GCC) ) #1 SMP Tue Apr 27 15:10:42 CEST 2010 

merlin 
Hardware: 
2x Quad-Core AMD Opteron 2387 2.8GHz 
512 KB cache, 16 GB RAM 
OS: 
Linux version 2.6.32.12 
(gcc version 4.3.4 (GCC) ) #1 SMP Tue Apr 27 15:10:42 CEST 2010 

pcjaros-gpu 
Hardware: 
Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz overclocked to 3.32Ghz (Quad-Core) 
8192 KB cache, 12 GB RAM 
OS: 
Linux version 2.6.31-21-generic 
(gcc version 4.4.1 (Ubuntu 4.4.l-4ubuntu9) ) #59-Ubuntu SMP 
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C.2 Running times 

Parameters of genetic algorithm used for speedup benchmark are in table C . l . 

C G P Onemax 
Population 840 840 
Genome size (bits) 9792 1024 
Generations 5000 5000 

Table C . l : Parameters of G A used for benchmark 

Values were calculated as an arithmetic mean and its standard deviation from 50 inde­
pendent runs. Example table C.2 describes measured parameters. 

System name 
Method name 

Thr 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 
2 

19.75 (0.33) 
9.54 (0.14) 

4.70 (0.08) 
2.27 (0.03) 

1.00 
2.07 

13.01 (0.10) 
6.44 (0.02) 

3.10 (0.02) 
1.53 (0.01) 

1.00 
2.02 

Table C.2: Data table example. System nam is on top followed by Method name. CGP 
and Onemax are the names of fitness functions used for benchmark. Thr is number of 
threads, Time is totoal time of run in seconds, Time/Eval is total time divided by fitness 
evaluations count (virtual time of one evaluation) and Spd denotes speedup in comparison 
with single-thread version. Values in parentheses represents standard deviations. 
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edesignl 
Symmetric Method N U M A 

C G P Onemax 
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 

1 19.75 (0.33) 4.70 (0.08) 1.00 13.01 (0.10) 3.10 (0.02) 1.00 
2 9.54 (0.14) 2.27 (0.03) 2.07 6.44 (0.02) 1.53 (0.01) 2.02 
3 6.37 (0.07) 1.52 (0.02) 3.10 4.30 (0.02) 1.02 (0.00) 3.03 
4 4.84 (0.09) 1.15 (0.02) 4.08 3.20 (0.05) 0.76 (0.01) 4.06 

Symmetric Method U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 20.24 (0.31) 4.82 (0.07) 1.00 13.81 (0.01) 3.29 (0.00) 1.00 
2 10.71 (0.16) 2.55 (0.04) 1.89 7.11 (0.01) 1.69 (0.00) 1.94 
3 7.48 (0.09) 1.78 (0.02) 2.70 4.81 (0.01) 1.15 (0.00) 2.87 
4 5.75 (0.06) 1.37 (0.01) 3.52 3.68 (0.01) 0.88 (0.00) 3.76 

Asymmetric Method N U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 19.49 (0.20) 4.64 (0.05) 1.00 12.91 (0.10) 3.07 (0.02) 1.00 
2 10.45 (0.28) 2.49 (0.07) 1.87 6.76 (0.02) 1.61 (0.01) 1.91 
3 7.18 (0.33) 1.71 (0.08) 2.71 4.34 (0.01) 1.03 (0.00) 2.98 
4 5.50 (0.32) 1.31 (0.08) 3.53 3.20 (0.01) 0.76 (0.00) 4.02 

Asymmetric Method U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 20.00 (0.31) 4.76 (0.07) 1.00 13.64 (0.02) 3.25 (0.00) 1.00 
2 10.81 (0.16) 2.57 (0.04) 1.85 7.18 (0.01) 1.71 (0.00) 1.90 
3 7.83 (0.12) 1.86 (0.03) 2.56 4.98 (0.01) 1.19 (0.00) 2.74 
4 6.29 (0.08) 1.50 (0.02) 3.17 3.89 (0.01) 0.93 (0.00) 3.50 

Table C.3: Running times and speedup of both methods on edesignl system 
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edesign2 
Symmetric Method N U M A 

C G P Onemax 
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 

1 13.58 (0.21) 3.23 (0.05) 1.00 11.11 (0.01) 2.64 (0.00) 1.00 
2 6.83 (0.06) 1.63 (0.02) 1.99 5.51 (0.01) 1.31 (0.00) 2.01 
3 4.59 (0.04) 1.09 (0.01) 2.96 3.65 (0.01) 0.87 (0.00) 3.04 
4 3.47 (0.05) 0.83 (0.01) 3.91 2.69 (0.01) 0.64 (0.00) 4.14 
5 2.80 (0.10) 0.67 (0.02) 4.84 2.11 (0.01) 0.50 (0.00) 5.26 
6 2.34 (0.08) 0.56 (0.02) 5.80 1.73 (0.01) 0.41 (0.00) 6.42 
7 2.02 (0.09) 0.48 (0.02) 6.73 1.46 (0.01) 0.35 (0.00) 7.60 
8 1.77 (0.08) 0.42 (0.02) 7.68 1.26 (0.00) 0.30 (0.00) 8.79 

Symmetric Method U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 14.28 (0.18) 3.40 (0.04) 1.00 11.33 (0.01) 2.70 (0.00) 1.00 
2 7.64 (0.07) 1.82 (0.02) 1.87 5.83 (0.01) 1.39 (0.00) 1.94 
3 5.35 (0.05) 1.27 (0.01) 2.67 3.95 (0.00) 0.94 (0.00) 2.87 
4 4.18 (0.03) 1.00 (0.01) 3.41 2.99 (0.00) 0.71 (0.00) 3.79 
5 3.43 (0.03) 0.82 (0.01) 4.16 2.40 (0.00) 0.57 (0.00) 4.72 
6 2.95 (0.03) 0.70 (0.01) 4.84 2.00 (0.00) 0.48 (0.00) 5.68 
7 2.62 (0.03) 0.62 (0.01) 5.45 1.71 (0.00) 0.41 (0.00) 6.62 
8 2.34 (0.02) 0.56 (0.00) 6.09 1.49 (0.00) 0.36 (0.00) 7.59 

Asymmetric Method N U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 13.52 (0.21) 3.22 (0.05) 1.00 10.96 (0.04) 2.61 (0.01) 1.00 
2 8.24 (0.19) 1.96 (0.05) 1.64 5.69 (0.02) 1.35 (0.01) 1.93 
3 5.89 (0.13) 1.40 (0.03) 2.30 3.68 (0.01) 0.88 (0.00) 2.98 
4 4.60 (0.14) 1.10 (0.03) 2.93 2.69 (0.01) 0.64 (0.00) 4.06 
5 3.88 (0.11) 0.93 (0.03) 3.47 2.12 (0.00) 0.51 (0.00) 5.14 
6 3.38 (0.11) 0.81 (0.03) 3.96 1.75 (0.00) 0.42 (0.00) 6.19 
7 3.15 (0.07) 0.75 (0.02) 4.29 1.53 (0.00) 0.36 (0.00) 7.17 
8 3.00 (0.06) 0.72 (0.01) 4.47 1.35 (0.00) 0.32 (0.00) 8.06 

Asymmetric Method U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 14.11 (0.17) 3.36 (0.04) 1.00 11.24 (0.02) 2.68 (0.00) 1.00 
2 7.89 (0.09) 1.88 (0.02) 1.79 5.87 (0.01) 1.40 (0.00) 1.91 
3 5.79 (0.07) 1.38 (0.02) 2.44 3.97 (0.01) 0.95 (0.00) 2.83 
4 4.57 (0.04) 1.09 (0.01) 3.08 2.97 (0.01) 0.71 (0.00) 3.77 
5 3.76 (0.03) 0.90 (0.01) 3.73 2.35 (0.01) 0.56 (0.00) 4.75 
6 3.24 (0.03) 0.78 (0.01) 4.31 1.94 (0.00) 0.47 (0.00) 5.73 
7 2.92 (0.03) 0.69 (0.01) 4.84 1.68 (0.00) 0.40 (0.00) 6.68 
8 2.65 (0.02) 0.64 (0.00) 5.28 1.46 (0.00) 0.35 (0.00) 7.62 

Table C.4: Running times and speedup of both methods on edesign2 system 
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merlin 
Symmetric Method N U M A 

C G P Onemax 
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 

1 7.50 (0.15) 4.46 (0.09) 1.00 5.14 (0.05) 3.06 (0.03) 1.00 
2 3.74 (0.05) 2.23 (0.03) 2.00 2.53 (0.01) 1.51 (0.01) 2.03 
3 2.50 (0.03) 1.49 (0.02) 2.99 1.68 (0.01) 1.00 (0.01) 3.05 
4 1.89 (0.03) 1.13 (0.02) 3.97 1.25 (0.01) 0.74 (0.00) 4.12 
5 1.51 (0.03) 0.90 (0.02) 4.97 1.00 (0.01) 0.59 (0.01) 5.16 
6 1.27 (0.03) 0.76 (0.02) 5.89 0.82 (0.01) 0.49 (0.01) 6.26 
7 1.09 (0.04) 0.65 (0.02) 6.89 0.70 (0.00) 0.42 (0.00) 7.35 
8 0.97 (0.04) 0.57 (0.02) 7.76 0.61 (0.01) 0.36 (0.01) 8.43 

Symmetric Met hod U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 7.77 (0.12) 4.63 (0.07) 1.00 5.38 (0.05) 3.20 (0.03) 1.00 
2 4.12 (0.05) 2.45 (0.03) 1.89 2.82 (0.02) 1.68 (0.01) 1.91 
3 2.83 (0.06) 1.69 (0.03) 2.74 1.92 (0.01) 1.14 (0.00) 2.80 
4 2.18 (0.03) 1.30 (0.02) 3.57 1.46 (0.00) 0.87 (0.00) 3.68 
5 1.83 (0.02) 1.09 (0.01) 4.25 1.19 (0.01) 0.71 (0.01) 4.51 
6 1.59 (0.02) 0.94 (0.01) 4.90 0.99 (0.00) 0.59 (0.00) 5.44 
7 1.39 (0.01) 0.83 (0.01) 5.58 0.88 (0.01) 0.52 (0.00) 6.12 
8 1.25 (0.02) 0.74 (0.01) 6.24 0.79 (0.03) 0.47 (0.02) 6.84 

Asymmetric Method N U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 7.09 (0.21) 4.22 (0.12) 1.00 5.05 (0.05) 3.01 (0.03) 1.00 
2 4.06 (0.10) 2.42 (0.06) 1.75 2.72 (0.02) 1.62 (0.01) 1.86 
3 2.77 (0.09) 1.65 (0.05) 2.55 1.73 (0.01) 1.03 (0.00) 2.91 
4 2.14 (0.06) 1.28 (0.04) 3.30 1.27 (0.01) 0.76 (0.00) 3.96 
5 1.77 (0.04) 1.06 (0.02) 3.99 1.01 (0.01) 0.60 (0.00) 4.99 
6 1.53 (0.07) 0.92 (0.04) 4.58 0.84 (0.00) 0.50 (0.00) 5.98 
7 1.38 (0.03) 0.82 (0.02) 5.14 0.73 (0.01) 0.43 (0.00) 6.92 
8 1.28 (0.06) 0.77 (0.03) 5.49 0.64 (0.01) 0.38 (0.00) 7.84 

Asymmetric Method U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 7.82 (0.15) 4.65 (0.09) 1.00 5.46 (0.06) 3.25 (0.04) 1.00 
2 4.21 (0.07) 2.50 (0.04) 1.86 2.94 (0.01) 1.75 (0.01) 1.86 
3 3.03 (0.05) 1.81 (0.03) 2.58 2.03 (0.01) 1.21 (0.01) 2.69 
4 2.46 (0.04) 1.47 (0.03) 3.17 1.58 (0.01) 0.94 (0.00) 3.44 
5 2.13 (0.03) 1.27 (0.02) 3.65 1.33 (0.01) 0.80 (0.00) 4.08 
6 1.97 (0.03) 1.18 (0.02) 3.94 1.18 (0.01) 0.71 (0.01) 4.57 
7 1.89 (0.04) 1.13 (0.02) 4.13 1.11 (0.00) 0.66 (0.00) 4.92 
8 1.87 (0.03) 1.12 (0.02) 4.15 1.08 (0.02) 0.65 (0.01) 5.02 

Table C.5: Running times and speedup of both methods on merlin system 
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pcjaros-gpu 
Symmetric Method N U M A 

C G P Onemax 
Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 

1 6.56 (0.14) 1.56 (0.03) 1.00 7.10 (0.01) 1.69 (0.00) 1.00 
2 3.27 (0.05) 0.78 (0.01) 2.00 3.49 (0.01) 0.83 (0.00) 2.04 
3 2.23 (0.03) 0.53 (0.01) 2.94 2.33 (0.02) 0.55 (0.00) 3.06 
4 1.70 (0.05) 0.41 (0.01) 3.85 1.70 (0.02) 0.41 (0.00) 4.18 

Symmetric Met hod U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 6.58 (0.11) 1.57 (0.03) 1.00 7.24 (0.01) 1.72 (0.00) 1.00 
2 3.28 (0.07) 0.78 (0.02) 2.01 3.62 (0.01) 0.86 (0.00) 2.00 
3 2.22 (0.05) 0.53 (0.01) 2.97 2.42 (0.02) 0.58 (0.00) 2.99 
4 1.66 (0.09) 0.40 (0.02) 3.96 1.83 (0.02) 0.43 (0.00) 3.97 

Asymmetric Method N U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 6.56 (0.12) 1.56 (0.03) 1.00 6.94 (0.05) 1.65 (0.01) 1.00 
2 3.29 (0.17) 0.78 (0.04) 2.00 3.31 (0.02) 0.79 (0.01) 2.10 
3 2.15 (0.14) 0.51 (0.03) 3.04 2.17 (0.02) 0.52 (0.00) 3.20 
4 1.70 (0.14) 0.41 (0.03) 3.84 1.64 (0.03) 0.39 (0.01) 4.22 

Asymmetric Method U M A 
C G P Onemax 

Thr Time [s] Time/Eval [ms] Spd Time [s] Time/Eval [ms] Spd 
1 6.54 (0.15) 1.56 (0.04) 1.00 7.12 (0.02) 1.69 (0.00) 1.00 
2 3.33 (0.08) 0.79 (0.02) 1.97 3.55 (0.02) 0.85 (0.00) 2.00 
3 2.30 (0.06) 0.55 (0.01) 2.84 2.41 (0.02) 0.57 (0.00) 2.95 
4 1.81 (0.05) 0.43 (0.01) 3.61 1.86 (0.02) 0.44 (0.00) 3.81 

Table C.6: Running times and speedup of both methods on pcjaros-gpu system 
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