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Abstract
This thesis deals with lead halide perovskites (LHPs), a relatively new group of ma-
terials which have found much use in fields such as photovoltaics and optoelectronics.
LHPs’ potential lies in their electronic structure and easily tunable band gap, which
result in unique physical and functional properties. To study LHPs’ optical proper-
ties and electronic structure we employ density functional theory (DFT). The DFT
method is an ab-initio method built upon minimization of electron density functional
to find the ground state energy of a given system. The DFT method was employed
along with the use of hybrid functionals to obtain the correct band structure and band
gap of CsPbBr3 bulk. The theoretically obtained data were used in the effective mass
model to compare with the photoluminescence emission peaks of individual CsPbBr3
nanocrystals to correctly assess the exciton energy levels based on the nanocrystals’
size, and shape.

Abstrakt
Tato práce se zabývá olovnato-halogenidovými perovskity (OHP), novou skupinou ma-
teriálů, jež našla své využití v oblastech jako například fotovoltaika a optoelektronika.
Potenciál OHP leží v jejich elektronové struktuře a snadno laditelném zakázaném pásu,
což má za následek jedinečné fyzikální a funkční vlastnosti. Ke studiu optických vlast-
ností a elektronové struktury OHP využíváme teorie funkcionálu hustoty (DFT). DFT
metoda je ab-initio metoda založená na principu minimalizace funkcionálu elektronové
hustoty k nalezení základní energie daného systému. DFT metoda společně s hybrid-
ními funkcionály byla využita pro získání správné elektronové struktury a hodnoty
zakázaného pásu pro krystal CsPbBr3. Teoreticky získaná data byla využita v modelu
efektivní hmotnosti k porovnání s fotoluminiscenčními spektry jednotlivých CsPbBr3
nanokrystalů s cílem zjistit energiové hladiny excitonů v závislosti na velikosti a tvaru
nanokrystalů.
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Introduction

The year was 1839 when Gustav Rose and his team of scientists in the Ural Mountains
discovered a mineral CaTiO3 that would come to be known as Perovskite. It wasn’t
until 1945 when the now well-known perovskite structure was first described using X-
ray diffraction giving the first impulse for the creation of a whole category of materials,
called perovskites, sharing the same structure ABX3. Then, for over 60 years, all was
quiet on the perovskite front until a team of Japanese scientists chose a lead halide
perovskite (LHP) to be the basis of their solar cell. Their results didn’t captivate the
attention of the wider scientific community at first, but the promise this material held
piqued enough interest to guarantee further study. Since its publishing, the number of
citations of the very first paper by Kojima and Miyasaka et al. rose exponentially. It
is them to whom we owe the beginning of the ’age of perovskite’.

With LHPs’ rise to prominence came the discovery of the unique and sometimes
unheard-of qualities this group of materials has to offer. In the subsequent years, these
unique qualities ensured LHPs found their application in a whole host of fields, the most
significant being the very field they first started in, photovoltaics. As the demand for
better, more stable and more efficient LHPs boomed, LHPs saw great improvement
both in their chemical composition and means of production. All this led to the group
of perovskites we study in this thesis, LHPs CsPbX3 (X = Cl, Br, I).

At this time and age, LHPs and perovskites as a whole are quite well understood
from an experimental standpoint, as the material’s fascinating qualities warranted thor-
ough experimental studies from scientists all over the world. However, there is still more
to be understood and that can be done through the employment of various ab-initio 1

methods which can uncover the reasons behind experimentally observed phenomena.
One way to study material theoretically is through the employment of density func-
tional theory (DFT) calculations. By using the DFT method to study LHPs’ the-
oretical band structure and optical properties one can at least partially examine the
physics behind the material’s distinctive properties, by comparing the calculated data
to experimentally obtained results of photoluminescence spectroscopy.

This thesis seeks to provide a comprehensive study of lead halide perovskites, a type
of material with a direct band gap and unique properties, and shed some light on
the reasons behind those properties. To do so we shall apply an array of ab-initio
calculations, which we are then comparing to experimental data.

1from Latin, means from the beginning and in the scientific context used as from first principles
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1. Electron Structure of Solid Matter

In this chapter, we look at the electronic structure of solids. This theory forms the
cornerstone for density functional theory (DFT) and other ab-initio calculations, which
are the main tools used in this thesis.

1.1 Schrödinger equation

The Schrödinger equation (SE) provides a full description of eigenstates and eigen-
functions of a given isolated quantum system via its solution, the wave function Ψ “

Ψp𝑟1, 𝑟2, ¨ ¨ ¨ , 𝑟𝑚; 𝑡q, where 𝑚 is the number of particles. The general form is the time-
dependent SE

iℏ
B |Ψy

B𝑡
“ Ĥ |Ψy , (1.1)

where ℏ is the reduced Planck constant and Ĥ is Hamilton’s operator, also known as
Hamiltonian. For stationary problems, we can express the time-independent SE as

Ĥ |Ψy “ 𝐸 |Ψy , (1.2)

where E is the eigenvalue of a given Hamiltonian Ĥ.
The Hamiltonian is the operator of the total energy of a system. It consists of

operators for kinetic and potential energy.

1.1.1 Born-Oppenheimer approximation

Equation 1.1 describes the given system perfectly from the physical standpoint. How-
ever, in doing so, it renders the problem virtually unsolvable. One big complication
is the fact that the movements of nuclei and electrons are bound together by a single
wave function. That is where the Born-Oppenheimer approximation comes into play.

The Born-Oppenheimer approximation is built on the notion of the mass of the
nuclei being much greater compared to the mass of the electrons, which means the
nuclei move at a much slower rate than the electrons. The approximation goes as far
as considering the nuclei static in relation to the electrons. This allows for the wave
function to be split into nuclear and electronic components as follows
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|Ψpr1, ¨ ¨ ¨ , r𝑛;R1, ¨ ¨ ¨ ,R𝑚qy “ |Ψepr1, ¨ ¨ ¨ , r𝑛; tR1, ¨ ¨ ¨ ,R𝑚uqy ¨ |ΨnpR1, ¨ ¨ ¨ ,R𝑚qy .

(1.3)
Vectors r𝑖 (𝑖 “ 1, 2, ¨ ¨ ¨ , 𝑛) and R𝑙 (𝑙 “ 1, 2, ¨ ¨ ¨ ,𝑚) define positions of electrons and
nuclei, respectively and Ψe,Ψn denote the wave functions for electrons and nuclei. t𝑅𝑙u

in Ψ𝑒 serves only as a parameter, implying that the distribution of electrons is depend-
ent solely on the position of nuclei and not on their velocity [1]. However even after
the Born-Oppenheimer approximation the SE is unsolvable in most cases but for a few
simple ones. That is why further approximation is needed, such as DFT or Hartree-
Fock presented later in this thesis.

Equation 1.4 shows the Hamiltonian of a system relevant to DFTs, i.e., isolated N -
electron system of atoms or molecules, it is important to note the following equations
are in Hartree’s atomic units,

Ĥ “ T̂ ` V̂ ` V̂c “

𝑁
ÿ

𝑖“1

ˆ

´
1

2
∇2

𝑖

˙

`

𝑁
ÿ

𝑖“1

𝑣p𝑟𝑖q `

𝑁
ÿ

𝑖ă𝑗

1

𝑟𝑖𝑗
(1.4)

in which

T̂ “

𝑁
ÿ

𝑖“1

ˆ

´
1

2
∇2

𝑖

˙

(1.5)

is the kinetic energy operator,

V̂c “

𝑁
ÿ

𝑖ă𝑗

1

𝑟𝑖𝑗
, (1.6)

is the potential generated by the Coulomb interaction and V̂ is the external potential
generated by the surrounding positively charged nuclei, where

𝑣p𝑟𝑖q “ ´
ÿ

𝛼

𝑍𝛼

𝑟𝑖𝛼
(1.7)

is the potential caused by charges 𝑍𝛼 of the surrounding nuclei which acts on the i -th
electron and 𝑟𝑖𝛼 is the distance between the i -th electron and the nuclei with charge
𝑍𝛼 [2, 3].

1.2 Bloch’s theorem

The basis of a crystal structure is formed by an atom or a group of atoms. The basis
repeats ad infinitum, forming the entire lattice and consequently resulting in periodic
potential which acts upon the charge carriers. Bloch’s theorem states that the wave
function of any periodic system can be expressed as

Ψprq “ 𝑢prq ¨ 𝑒ik¨r, (1.8)
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where k is the wave vector and 𝑢prq serves as a periodic function with the period of the
lattice 𝑢prq “ 𝑢pr + Tq, T is the translation vector of the lattice, which defines the
atoms’ positions in relation to each other, thus defining the whole crystal lattice [4].

Due to Bloch’s theorem the 𝑒ik¨r term enters the SE and brings with it dependence
on k, which consequently means 𝐸 „ |k|. Direct result of this is formation of electronic
band structure.

1.3 Electronic band structure

In quantum mechanics, electrons can inhabit only certain discrete levels in an atom’s
electron shell. When we put a great number of atoms together to form a crystal lattice,
the ever-so-slightly misaligned electron levels will create a continuum of energy - bands
- in which electrons are allowed to exist. The regions between the bands containing no
energy levels are called forbidden. The width of a band gap defines the material’s type,
this categorization is shown in Figure 1.1.

Conduction 
band

Valence
band

overlap

Band gapFermi level

metal semiconductor insulator

E
le

ct
ro

n 
en

er
gy

Figure 1.1: Schematic image of the relation of the valence and the conduction bands to
each other in different types of materials. In metals the band edges border on each other
or even the bands overlap, thus making the conduction possible without any added
energy. Semiconductors have a band of forbidden energies, the band gap, therefore
requiring excitation energy to allow the electrons to be excited into the conduction
band. Insulators exhibit the band gap so wide the electrons cannot cross it to facilitate
conduction. Adapted and edited from [5].
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The energy gap called the band gap is defined as the difference between the max-
imum of the valence band and the minimum of the conduction band. The band gap
is of great interest as it determines the energy an electron needs to transition between
the valence and conduction bands.

The valence band, located under the Fermi level, is the highest occupied band at
absolute zero, whereas the conduction band, above the Fermi level, is unoccupied. As
the temperature increases, more electrons are thermally excited and cross the band
gap into the conduction band where they can move freely through the material. The
Fermi level 𝐸F is the highest occupied state at 0K and its proximity to the conduction
band determines the probability of transition for the valence band electrons.

Metals exhibit band gap of 𝐸g « 0. Insulators are materials with band gap over
3 eV. Semiconductors (SCs) find themselves approximately in between these two, with
the width of their band gap being p0–4q eV [4, 6]. SC’s optical properties are influenced
by the width of the band gap. There are two main types of band gaps in SCs, which
are discussed in the following section.

1.3.1 Direct & indirect band gap

The energy states at the valence band maximum and conduction band minimum are
defined by their k -vectors and their value determines the transition, as shown in Fig-
ure 1.2. For direct band gap the values of electron and hole k -vectors are equal, the
electron can undergo an optical transition. Whereas in indirect band gap the values of
k -vectors are not equal, part of the momentum must be dissipated via phonons first.
Only then can the electron make the transition, however, the light emission is very low.
All the optical transitions are governed by the energy and momentum conservation
laws [2, 7].

1.4 Density of states

The density of states (DOS) is given by the number of states per unit volume per unit
energy. The mentioned volume is the volume enclosed by a constant energy surface in
k-space. For free electrons in an isotropic environment, 𝐸 and k are connected by the
dispersion relation

𝐸pkq “
ℏ2k2

2𝑚
. (1.9)

This relation serves as the bridge between the two systems used to describe DOS. The
number of states is equal in both systems.

The k-space (reciprocal) is the Fourier transform of the real space. These two spaces
are inversely related as given by 𝑘 “ 2𝜋{𝜆, 𝑘 “ |k|. The reciprocal lattice is formed
by periodic repetition of the first Brillouin zone. A Brillouin zone is the reciprocal
counterpart to Wigner-Seitz cell and it is a primitive cell defined by points of high
symmetry. As a result of Bloch’s theorem, any system is completely characterised by
its behaviour in the Brillouin zone.
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e-h
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E

Direct gap

k k

Figure 1.2: Schematic of the direct and indirect band gaps. In the case of the
indirect band gap the k -vectors at the valence band maximum and the conduction
band minimum are not equal, part of the momentum must be dissipated first via
phonons before the transition is allowed. For the direct band gap, the k -vectors have
the same value, the electron can transition to the higher band when it absorbs a photon
with enough energy. Adapted and edited from [7].

The states in an energy band are not distributed evenly, therefore there will be
areas with a higher concentration of energy states as illustrated in Figure 1.3. The
DOS of a given system yields the approximate number of available quantum states.
The Fermi-Dirac distribution gives us the probability of a given quantum state being
occupied. Combining these two allows us to determine the density of occupied states.

E

DOS

Valence
band

Energy levels

Figure 1.3: Schematic of the DOS of an arbitrary valence band. The left part pictures
the DOS in relation to energy. On the right are the idealised energy levels (depicted as
lines) distributed throughout the width of the band with varying density, the densest
area is in the centre of the band coinciding with the graph on the left. Adapted and
edited from [7].
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The knowledge of quantum state occupancy is important for understanding the
optical properties of a material. The DOS resulting from a DFT calculation provides
us with the understanding of which electron orbitals participate in the formation of
valence and conduction bands [3, 4, 7].

1.5 Effective mass

An electron moving through the periodic potential of a crystal lattice will have a dif-
ferent perceived mass than an electron in a vacuum. This ’different’ mass is called
effective mass and it is given by the following expression

1

𝑚˚
“

1

ℏ2
d2𝐸

dk2
, (1.10)

where d2𝐸
dk2 expresses the change in the slope of the E -k curve given by the dispersion

relation, meaning the effective mass changes with the electron’s position within the
band. Using the effective mass in the classical mass’s stead allows for the electron’s
movement through the lattice to be described by Newton’s second law [7].

A particle’s effective mass can be either positive or negative, the sign, however,
has nothing to do with the particle’s actual mass, rather it serves as correction in the
case of a hole. For both the electron and the hole, the effective mass usually measures
between 0.1–10 expressed in units of 𝑚e, the electron rest mass.

We use the effective mass model to approximate the band edges of conduction and
valence bands. In our case the approximation is parabolic

𝐸pkq “ 𝐸g ˘
ℏ2k2

2𝑚˚
, (1.11)

where 𝐸g is the energy of the band gap, plus and minus denote an electron or a hole,
respectively [4, 7].

1.6 Excitons

An electron-hole pair bound together by the Coulomb attractive interaction is called
an exciton. In direct processes the threshold for exciton formation is ℏ𝜔 ą 𝐸g, whereas
in the indirect ones we have to take into account phonon interaction, therefore lowering
the needed energy by ℏΩ; ℏ𝜔 is the energy absorbed by the electron, while ℏΩ is the
energy of phonons.

Exciton is an electrically neutral quasiparticle, meaning it does not transfer any
net charge. However, an exciton carries the energy of its bond, which it releases in the
form of a photon once the exciton inevitably decays by recombination [4, 1].

Depending on the type of material, we distinguish between two types of excitons.
The Frenkel exciton is found in insulators and is also known as a tightly bound ex-
citon, due to the pair’s excitation being localized (usually to a single atom). The
Mott-Wannier excitons, typical for semiconductors, are considered weakly bound as

10



the exciton radius is much greater than the lattice parameter [8, 9, 10].
The exciton radius, i.e., the distance between the electron and the hole, depends

on the effective masses of both particles, thus dependent on the shape of the band
structure [11].

1.7 Photoluminescence

Photoluminescence (PL) is a type of luminescence, i.e, spontaneous emission of light
from any form of matter, caused by the absorption of photons [11]. The process of PL
consists of three steps. Photoexcitation is the event of a photon supplying an electron
with enough energy to allow it to be excited to a higher level. During relaxation,
part of the system’s energy is dissipated via phonon scattering, which leads to the
creation of electron and hole populations in the conduction and the valence band,
respectively. Finally, radiative recombination, i.e., the recombination of holes and
electrons accompanied by the emission of photons. The process is shown in Figure 1.4.

Conduction
band

Valence
band

E

k
0

Eg

Figure 1.4: Schematic depicting the process of PL. The electron absorbs a photon
of sufficient energy ℏ𝜔 to overcome the band gap and transitions into the higher band.
Here is where the relaxation occurs and part of the system’s energy is dissipated via
phonon scattering. Finally, the electron recombines with the hole which is accompanied
by the emission of a photon with energy ℏ𝜔1. Adapted and edited from [11].

PL can be classified into two main categories in respect to the nature of the elec-
tronic transitions causing it: intrinsic and extrinsic. Intrinsic PL can be further divided
into three subcategories. Band-to-band PL is the result of the recombination of an elec-
tron in the conduction band and a hole in the valence band. Exciton PL is caused by
the recombination of an exciton. Due to the nature of excitons, the exciton PL can be
observed only at temperatures low enough for the excitons to be stable.

Cross-luminescence is produced when the recombination of an electron in the valence
band and a hole in the outermost core band occurs. This type of PL happens only
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in a select few materials, for example, BaF2, which satisfy the condition 𝐸c-v ă 𝐸g,
i.e, the difference between the outermost core band and the top of the valence band is
lesser than the band gap.

Extrinsic PL is caused by the presence of impurities or defects in the lattice and
there are two forms which can be observed. In the case of localised PL, the luminescence
processes are confined to a specific luminescence centre, which is usually synonymous
with the disorder. Unlocalised PL means the free electrons and holes in the conduction
band and the valence band, respectively, partake in the process.

Another way to sort PL is by the difference between the energy of an absorbed
and emitted photon, described by the Stokes shift. Stokes shift means the emission of
a photon of lower energy, i.e., longer wavelength. Contrastingly, the anti-Stokes shift
is the situation of the emitted photon having higher energy compared to the absorbed
one. The energy difference is accounted for by the dissipation of thermal phonons in
the lattice [8, 12].

12



2. Lead Halide Perovskites

Perovskites as a group of materials are named after calcium titanate, also known as
Perovskite, owing to the lattice structure, which they share with the mineral. The
perovskite structure’s composition is given as ABX3. Seeing as in this work, we focus
on a subgroup of perovskites called lead halide perovskites (LHP), the formula becomes
CsPbX3, where X stands for Cl, Br, or I.

2.1 Structural properties

The LHPs we study crystallise at room temperature in an orthorhombic lattice. The
structure is built from PbX6 octahedra forming a cubic lattice with cations Cs+ filling
the cavities that are created when the octahedra are stacked together, as is shown in
Figure 2.1.

Cs

Pb

Br

PbBr6

Figure 2.1: Schematic of the cubic structure of a CsPbX3 perovskite, formed by the
PbX6 octahedra and completed by the Cs cations’ presence in the cavities among the
octahedra. The lattice parameter of the CsPbBr3 crystal is 𝑎 “ 5.92 Å and the volume
of the primitive cell is 𝑉 “ 207.475 Å3. The distance between the Br and Cs atoms
is 𝑑Br-Cs “ 4.23 Å and the distance between the Br and Pb atoms is 𝑑Br-Pb “ 3.02 Å
Created with VESTA [13].

The general guideline when it comes to regular SCs is to keep the occurrence of
impurities and crystalline defects as low as possible. LHPs however can contain up
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to 1–2 atomic per cent of point defects, such as vacancies, and still keep their unique
properties. This shows LHPs are highly tolerant to defects [14].

The high tolerance is the result of a combination of several factors. The main
one is, that the vacancies at A- or X-sites require very low formation energy and are
therefore the dominant type of defect in the perovskite lattice. These vacancies unlike
in conventional SCs do not form mid-gap trap states, as is shown in Figure 2.3, thus not
influencing the material’s optical and electronic properties. Furthermore, the vacancies
serve as a major enabling factor for the LHPs’ bright PL [8, 14, 15].

LHP’s phase depends on temperature as shown in Figure 2.2 [16]. If we look at
CsPbBr3, as it is the LHP we examine closely in this work, we see it is orthorhombic
at the room temperature, however when conducting the DFT calculations we consider
cubic lattice for simplicity.

Figure 2.2: Schematic of the thermal dependency of phase transitions in different
LHPs. Adapted and edited from [16].

2.2 Electronic properties

The LHPs are a family of SCs with direct and highly tunable band gap. The electrons
in LHPs do not behave as a classical electron gas, for they are believed to be strongly
correlated, instead, they are governed by electron-electron interactions. Changes in
the electron behaviour as significant as these result in interesting phenomena such
as unprecedented PL quantum yields in LHPs, metal-insulator transitions or high-
temperature superconductivity in more advanced compounds [17, 18, 19]. The band
gap in CsPbBr3 crystal, as the structure we study, is 𝐸g “ 2.36 eV.

The composition of bands is shown in Figure 2.3. The top of the valence band
is formed as a combination of Pb 6s and Br 4p orbitals with overall s-symmetry and
the bottom of the conduction band is formed by Pb 6p orbitals resulting in an overall
p-symmetry.
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Figure 2.3: Schematic of the energy bands in materials a) intolerant to defects b)
tolerant to defects – LHPs. LHPs unlike regular SCs do not exhibit mid-band gap
states which would influence the material’s optical properties. In LHPs the top of
the valence band is formed by Pb 6s orbitals, resulting in overall s-symmetry, and the
bottom of the conduction band is formed by Pb 6p orbitals resulting in p-symmetry
and facilitating the spin-orbital coupling. Adapted and edited from [8].

The lead in the structure is the reason behind strong spin-orbital coupling. The first
and the most significant effect spin-orbital coupling has on the calculation is a massive
reduction of the band gap. The other effect we registered, which is closely related to
the band gap reduction, was the splitting of the conduction band minimum level into
two, one forming the bottom of the conduction band and a split-off band [20].

2.3 Optical properties

Nanostructured SCs emit light by means of excitons. The ground state exciton in
a conventional SC is, according to Hund’s rules, poorly emitting. This, however, is not
what experiments have shown in LHPs. The lowest energy exciton in LHPs is a bright
triplet [21].

One of the main reasons behind this unusual behaviour is the effect of strong spin-
orbital coupling. Lead as a heavy metal helps in the formation of the unique band
structure that ensures LHPs’ great qualities. Taking spin into account, a hole can
occupy two states: up and down

𝐽h “
1

2
: |Òyℎ “ |𝑆y |Òy ,

|Óyℎ “ |𝑆y |Óy ,
(2.1)

where 𝐽h is the total angular momentum of the hole, |𝑆y is the s-symmetry operator
and |Òy , |Óy denote spin up and spin down states, respectively.

States in the conduction band are described by three components of the Bloch
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function |𝑋y , |𝑌 y , |𝑍y. This, in combination with spin-orbital coupling, results in
doubly degenerate total angular momentum of electron 𝐽e “ 1

2
:

𝐽e “
1

2
: |òye “ ´

1
?
3

rp|𝑋y ` i |𝑌 yq |Óy ` |𝑍y |Òys ,

|óye “
1

?
3

r|𝑍y |Óy ´ p|𝑋y ´ i |𝑌 yq |Òys .
(2.2)

The spin-orbital coupling splits the energy level into two and its effect causes the
spin is no longer preserved. Instead, the total angular momentum 𝐽 “ 𝐽h ˘ 𝐽e is
preserved. Combining the two states in equations 2.1 and 2.2, we get either 𝐽 “ 0 or
𝐽 “ 1. For 𝐽 “ 0 it is a single state, therefore a singlet

|Ψ0,0y “ ´
1

?
2

r|óye |Òyh ´ |òye |Óyhs . (2.3)

For 𝐽 “ 1 we get three non-degenerate states, i.e., a triplet

|Ψ1,´1y “ |óye |Óyh ,

|Ψ1,0y “ ´
1

?
2

r|óye |Òyh ` |òye |Óyhs ,

|Ψ1,`1y “ |òye |Òyh .

(2.4)

Should we calculate the probability of each state we end up with: zero for 𝐽 “ 0,
suggesting a dark singlet, and non-zero for the triplet, suggesting a bright triplet.
Calculating the energy of each state would reveal their theoretical order - the singlet
below the triplet.

Now comes the time to mention the other reason for LHPs’ unique qualities - the
Rashba effect. The Rashba effect causes the momentum-dependent splitting of spin
bands. The effect is the consequence of spin-orbital interaction and asymmetrical
potential in the crystal. As a result of the Rashba effect, the triplet and the singlet
switch places, therefore the bright triplet becomes the ground state [22, 23].

The previously described fine structure has proven to be able to emit 1000 times
faster than regular SCs [24]. Each of the three orthogonal non-degenerate states we
obtained in equation 2.4 emit as a linear dipole. The radiative lifetime of an exciton is
given as

1

𝜏𝑒𝑥
“

4𝜔𝑛𝐸p

9 ˆ 137𝑚0𝑐2
𝐼2‖ , (2.5)

where the important parts are 𝐸p, Kane energy, which is the energy the exciton can
emit, and 𝐼‖, the so-called overlap integral, which contains an envelope function, de-
scribing the exciton’s confinement [25].

The final order of the energy states in the fine structure is given by the value of
Rashba coefficients. Their sign determines whether the helicity is conserved between
the top of the valence band and the bottom of the conduction band. Helicity is the
projection of the angular momentum vector in the direction of the momentum vector k.
The same sign means the helicity is preserved. Given the helicity is preserved, optical
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transitions are allowed between such bands [26].
The end product of the article, shown in Figure 2.4, is a set of rules an SC must

adhere to have the ability to emit from a ground state bright triplet:

- lack of inversion symmetry,

- the edges of the conduction and the valence bands have either s- or p-symmetry,

- the band exhibiting p-symmetry must be strongly affected by spin-orbital coup-
ling,

- Rashba coefficients for electron and hole are non-zero and of the same sign.

As of now, the only SCs known to meet these criteria are LHPs [21].

x
y

z

E
ne

rg
y Electron-hole

exchange

Rashba effect

Triplet

Singlet

Optically
passive

Optically
active

Inversion asymmetry
direction

Figure 2.4: Schematic of the energy levels in LHPs. The level is firstly split into
a singlet and triplet due to the spin-orbital coupling caused by the presence of heavy
metal in the lattice. The Rashba effect affects the final order of the energy levels,
resulting in the bright triplet laying beneath the dark singlet state. Adapted and
edited from [21].

2.4 Applications

Due to the research and the understanding of their unique qualities, LHPs have enjoyed
an enormous rise in popularity over the last decade and have become one of the most
sought after materials in optoelectronics.
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The best-known use of LHPs in the mainstream is in the field of photovoltaics. The
combination of the material’s highly tunable band gap and low manufacturing costs
make LHPs the ideal candidate for solar cells. Tuning the band gap via change of the
halide content in the compound and optimizing it for the solar spectrum increases the
material’s efficiency [8].

As a material efficient in solar cells LHPs should therefore prove to also be very fine
light emitters. LEDs based on LHPs have shown high external quantum efficiencies
(EQE). To achieve higher EQE metal doping can be introduced. Another upside of
doping is the improvement of thermal and air stability which results in a larger Stokes
shift [15, 27].

LHP nanowire (NW) lasers, seen in Figure 2.5, serve as miniaturized light sources
which could find their use in many fields. The combination of 1D geometry and high
refractive index make for strong quantum confinement. The NWs along their axis
serve as the gain medium for light amplification, while the smooth end facets func-
tion as Fabry-Perot cavities, triggering light emission. NWs of solution-grown organic-
inorganic hybrid perovskites have shown very low lasing thresholds, high Q-factor and
broad wavelength tunability (500–820q nm. LHPs have been also studied for use con-
trariwise to lasers, i.e., for optical limiting. Owing to their two-photon and multiple-
photon absorption properties LHPs could function as laser light limiting materials,
lowering the possible laser-induced damage to optical devices and even the human eye
[28, 29, 30].

Figure 2.5: Optical image of a green-lasing FAPbBr3 NW. Adapted and editted from
[29].

The wide-ranging PL observed in LHPs is highly desirable in display applications.
LHPs could very soon find their use in LCD back-lighting as colour-pure red and green
emitters. Furthermore, LHPs can serve as colour-controlling and colour-enhancing
films in portable devices [31, 32, 27].
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3. Density Functional Theory

The density functional theory (DFT) serves as a relatively simple solution to complex
many-body problems that arise in solid-state physics, here we shall cover how DFT
came to be and how it works.

3.1 Variation method for ground state

The variation method is used for estimating the ground state energy 𝐸0 in quantum
mechanics, it is based on the variation principle, see Figure 3.1.

The average energy of a system obtained over many measurements is given by the
formula

𝐸pΨq “
xΨ|Ĥ|Ψy

xΨ|Ψy
, (3.1)

where xΨ|Ĥ|Ψy “
ş

Ψ˚ĤΨ d𝑥. The procedure is as follows, a trial ket |Ψy is chosen
based on experience and its energy 𝐸pΨq is found using equation 3.1. With each new
iteration we obtain new energy values which all meet this criteria

𝐸pΨq ≧ 𝐸0. (3.2)

The energy of the estimated state provides an upper bound in our search for the
actual lowest energy 𝐸0. The next step is the minimization of the functional. Account-
ing for all N -electron wave functions the minimization of the functional will result in
finding the ground energy 𝐸0 [3, 33] given by

𝐸0 “ min
Ψ
𝐸pΨq. (3.3)

x

x1
x2

t1 t2 t

Figure 3.1: Variation principle demands the trajectory to be the stationary point of
the system. Adapted and edited from [34].
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3.2 Approximations and assorted theories of DFT

The ability to find the ground state of a quantum system merely by minimizing a func-
tional is of great use in physics. It is the principle upon which the DFT calculations
were built, where the functional in question is the electron density functional.

3.2.1 Hohenberg-Kohn theorem

To resolve the problem of solving the SE for realistic, complex systems, Hohenberg and
Kohn offered a solution, the basis of which was the electron density as the means to
fully describe a given quantum system. They proposed two theorems.

The first theorem states that external potential is completely defined by the electron
density 𝑛prq, which therefore means the energy of the system is too. In turn, the
external potential completely defines the wave function of the ground state, hence this
wave function is completely defined by the electron density 𝑛prq.

The second theorem states that there is a universal electron density functional
𝐹 r𝑛prqs, independent of the external potential and the global minimum of this func-
tional is equal to ground-state electron density, therefore we can apply variation prin-
ciple to find this value.

The first theorem is understood as saying that Ψ is a functional of 𝑛prq and so has
to be the kinetic and interaction energy, then we can define

𝐹 r𝑛prqs ” xΨ| T̂ ` Û |Ψy , (3.4)

where 𝐹 r𝑛prqs is the sought after universal functional. Using the electron density
functional we define the energy functional for a given potential 𝑣prq

𝐸vr𝑛prqs ”

ż

𝑣prq𝑛prq dr ` 𝐹 r𝑛s, (3.5)

which is equal to the ground state considering the correct 𝑛prq. For function 𝑛prq to
be considered ’correct’ it has to fulfill the condition 𝑁 r𝑛s “

ş

𝑛prq 𝑑r “ 𝑁 , where 𝑁 is
the number of electrons.

The Hohenberg-Kohn theorems do not however prescribe the form of the univer-
sal functional. In practice, it has to be approximated and the most commonly used
approximation is based on the Kohn-Sham equations [35, 36].

3.2.2 Kohn-Sham equations

Kohn and Sham built upon the discoveries of Hohenberg and Kohn in their theorem by
including in an approximate way the exchange and correlation effects. The equations
are a set of non-interacting Schrödinger-like equations of a Kohn-Sham system. The
Kohn-Sham system is a fictitious system of non-interactive electrons giving the same
density as a system of interacting particles.

The energy of inhomogeneous gas of interacting electrons in a static potential 𝑣prq

is expressed as
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𝐸 “

ż

𝑣prq𝑛prq dr `
1

2

ĳ

𝑛prq𝑛pr1q

|r ´ r1|
dr dr1

` 𝐺r𝑛s (3.6)

where 𝑛prq is the density and 𝐺r𝑛s is a universal functional of the electron density. We
can write the universal functional as

𝐺r𝑛s ” 𝑇sr𝑛s ` 𝐸xcr𝑛s, (3.7)

where 𝑇sr𝑛s is the kinetic energy and 𝐸xcr𝑛s the exchange-correlation energy of the
system. 𝑇sr𝑛s is not known, however it can be expressed using single electron wave
functions |𝜓𝑖prqy:

𝑇sr𝑛s “
ÿ

𝑖

x𝜓𝑖prq| ∇
2

2
|𝜓𝑖prqy , (3.8)

where
ř

𝑖 |𝜓𝑖prq|2 “ 𝑛. For slowly varying 𝑛prq

𝐸xcr𝑛s “

ż

𝑛prq𝜀xcr𝑛prqs dr, (3.9)

where 𝜀xc is the exchange-correlation energy of one electron in a uniform electron gas of
density 𝑛. The approximation lays in assuming the equation 3.9 describes the exchange-
correlation effect exactly. Substituting equations 3.7 and 3.9 into 3.6 and solving for
minimum we obtain

ż

𝛿𝑛prq

"

𝜙prq `
𝛿𝑇sr𝑛s

𝛿𝑛prq
` 𝜇xcr𝑛prqs

*

dr “ 0, (3.10)

under the condition
ş

𝛿𝑛prq dr “ 0, where

𝜙prq “ 𝑣prq `

ż

𝑛pr1q

|r ´ r1|
dr1, (3.11)

and

𝜇xcr𝑛prqs “
dr𝑛𝜀xcp𝑛qs

d𝑛
(3.12)

is the exchange-correlation contribution to the chemical potential.
Seeing as equation 3.11 and its condition are the same as those Hohenberg and Kohn

[35] would have obtained for a system of non-interacting electrons in the 𝜙prq`𝜇xcr𝑛prqs

potential, 𝑛prq can be acquired by solving the so-called Kohn-Sham equation

"

´
1

2
∇2

`

”

𝜙prq ` 𝜇xcr𝑛prqs

ı

*

𝜓𝑖prq “ 𝜀𝑖𝜓𝑖prq (3.13)

for given 𝜙 and 𝜇, considering

𝑛prq “

𝑁
ÿ

𝑖“1

|𝜓𝑖prq|2, (3.14)
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is the sum of partial densities and N is the number of electrons. The term 𝜀xc in
expression 3.12 is not known and therefore has to be approximated, this is expanded
upon in the following sections.

3.2.3 Local-density approximation

Local-density approximation (LDA) is an approximation of the exchange-correlation
functional used to improve upon Kohn’s and Sham’s expression of the term in their
equations.

Kohn and Sham were the first to attempt to solve the problem of the unsatisfactory
exchange-correlation term that has arisen from their previous solutions. The exchange-
correlation energy is written as

𝐸LDA
xc r𝑛s “

ż

𝑛prq𝜀xcr𝑛prqs dr, (3.15)

and 𝜀xcp𝑛q is the energy per particle in a uniform gas of density 𝑛. 𝐸xc can be expressed
as a linear combination of the exchange and correlation energies as such

𝐸xc “ 𝐸x ` 𝐸c. (3.16)

The exchange functional is based on homogeneous electron gas as its exchange-
energy density is known analytically, resulting in

𝐸LDA
x r𝑛s “ ´

3

4

ˆ

3

𝜋

˙1{3 ż

𝑛prq
4{3 dr. (3.17)

The correlation functional is known analytically only in high- and low-density limits.
In recent years a new correlation functional based on the many-body perturbation
theory has been proposed. The most used LDA functionals are based on Quantum
Monte Carlo data, which they try to parameterize, for example, the Vosko-Wilk-Nusair
(VWN) correlation functional [37].

For situations when spin ought to be taken into consideration the LDA has been
modified into LSDA, i.e., local spin density approximation. The terms previously
described are expanded for two possible spin polarization. The exchange-correlation
energy becomes

𝐸xcr𝑛Ò,𝑛Ós “

ż

𝑛prq𝜀xcp𝑛Ò,𝑛Óq dr, (3.18)

where 𝜀xcp𝑛Ò,𝑛Óq is the exchange-correlation energy per electron of an electron gas with
uniform spin densities 𝑛Ò and 𝑛Ó [3, 38, 39, 40].

3.2.4 Generalized gradient approximation

Even though the introduction and refinement of the LDA method meant a huge stride
forward in the accuracy of ab-initio calculations. However, LDA’s crux lies in its as-
sumption that the electron density is the same everywhere and thus this method might
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fail in the description of such systems where the electron density changes considerably
over the space.

As its name suggests the generalized gradient approximation (GGA) considers
changes in the density over space by introducing dependence on the gradient of 𝑛.
The LSDA exchange-correlation term 3.18 subsequently changes as

𝐸GGA
xc r𝑛Ò,𝑛Ós “

ż

𝑛prq𝜀xcp𝑛Ò,𝑛Ó,∇𝑛Ò,∇𝑛Óq d3r. (3.19)

The GGA leads to an overall improvement of total energies, atomization energies,
energy barriers and structural energy differences with respect to LSDA [41, 42].

3.2.5 Hartree-Fock method

The Hartree-Fock method predates the Kohn-Sham DFTs and serves as an alternat-
ive approach. There are also the so-called hybrid functionals which combine energies
calculated by Hartree-Fock’s method with classical DFT. Hartree’s approach was to
substitute the two-particle interaction term for a single-particle one

1

2

ÿ

𝑖,𝑗
𝑖‰𝑗

𝑒2

|r𝑗 ´ r𝑖|
ÝÑ 𝑈H

ef “

𝑁
ÿ

𝑖“1

𝑈𝑖pr𝑖q “

𝑁
ÿ

𝑗“1
𝑗‰𝑖

𝑒2
ż

𝜓˚
𝑗 pr1q𝜓𝑗pr

1q

|r ´ r1|
d3r1, (3.20)

which would serve as an effective potential compensating for the effect of the remaining
p𝑛 ´ 1q electrons.

Fock built upon Hartree’s conclusions by incorporating Pauli’s principle. That is
achieved by approximating Ψ as an antisymmetrized product of 𝑁 orthonormal spin
orbitals 𝜓𝑖pxq, the Slater determinant

ΨHF “
1

?
𝑁 !

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
𝜓1px1q 𝜓2px1q ¨ ¨ ¨ 𝜓𝑁px1q

𝜓1px2q 𝜓2px2q ¨ ¨ ¨ 𝜓𝑁px2q
...

... . . . ...
𝜓1pxNq 𝜓2pxNq ¨ ¨ ¨ 𝜓𝑁pxNq

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ “

1
?
𝑁 !

detr𝜓1𝜓2 ¨ ¨ ¨𝜓𝑁 s. (3.21)

Consequently, Hartree’s effective potential (3.20) is expanded with a new term

𝑈HF
ef prq “ ´𝑒2

𝑁
ÿ

𝑗“1
𝑠“𝑠1

𝜓𝑗prq

𝜓𝑖prq

ż

𝜓˚
𝑗 pr1q𝜓𝑖pr

1q

|r ´ r1|
d3r1, (3.22)

the 𝑠 “ 𝑠1 means summation of states with parallel spins. This ’exchange’ term is
a result of the exclusion principle and the antisymmetry of the wave function.

An electron considered in the Hartree-Fock approximation is not the classical free
electron, but instead a quasiparticle, the so-called Hartree-Fock electron (free electron
+ exchange hole). The Hartree-Fock electron’s effective charge is (-e) however its
dispersion relation 𝐸pkq is different from equation 1.9.

The total energy in the Hartree-Fock approach is calculated as
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𝐸 “

𝑁
ÿ

𝑗“1

𝜀𝑖 ´
𝑒2

2

𝑁
ÿ

𝑖,𝑗

ĳ

|𝜓𝑖prq|2|𝜓𝑗pr
1q|2

|r ´ r1|
d3r d3r1, (3.23)

where the Hartree-Fock parameter 𝜀𝑖 is the negative ionization energy of an electron
in single-particle Hartree-Fock state 𝜓𝑖 [1, 3].

3.3 Pseudo-potential approximation

Many approximations in DFTs are made to save computation time, in order to make the
calculations a proficient tool. One such approximation is made by dividing the electrons
of an atom into two groups, the inner core and the valence electrons. Further, in many
cases, the inner core electrons can be ignored, which effectively creates a system of
ions interacting with the valence electrons. The effective interaction is called a pseudo-
potential.

Pseudo-potentials approximated in such a way however did not represent reality
very well. The modern type of pseudo-potentials was developed to mirror reality. The
so-called ab-initio pseudo-potential is obtained by fitting a pseudo-potential to a free-
atom SE of a realistic electron configuration, thus creating wavefunctions that will,
beyond a certain distance 𝑟c, coincide with the true wave functions, see Figure 3.2 [43,
44, 45].

rrc

Figure 3.2: Comparison of the real wavefunction and potential (gray) with the
approximated ’pseudo’ ones (red). We see they match beyond a cut-off radius 𝑟c, the
Couloumb radius.
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3.4 DFT calculation

DFT calculation begins with an initial guess of the electron density 𝜌prq, upon which
the self-consistent cycle begins. The self-consistent calculation runs until convergence
is reached or until the maximum number of steps has been made. Convergence with
requested accuracy is reached once the difference in the ground state energy between
the previous and current step fulfils the condition ∆𝐸 ă 𝐸CUT, where 𝐸CUT is the
energy limit specified by the user according to their needs.

Initial guess
ρ(r)

Calculate effective potential

Solve Kohn-Sham equations

Evaluate the electon density & total energy

Output quantities

Converged?

yes

no

Figure 3.3: Schematic describing the process of a DFT calculation. An initial guess
of the electron density serves as the input, which is used in the construction of the
effective potential. This is followed by the assembly of and solution of the Kohn-Sham
equations. The result is a new electron density, from which the total energy can be
calculated. If the total energies of the last two steps differ less than a given constant we
say the calculation has converged and we can obtain the sought after resulting values.
If the convergence was not reached the calculation restarts with the result electron
density. Adapted and edited from [46].
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Input files

For our calculations we use the Vienna Ab-initio Simulation Package (VASP) [47, 48,
49, 50]. Calculation in VASP requires four input files, each providing specific inform-
ation important to the process. The detailed input and output files can be found in
Appendix A.

- POSCAR is the file specifying the lattice geometry and ionic positions of the crystal
in question. The structure used in our calculations looks as follows

CsPbBr3
5.92

1.0200333401049706 0.0000000000000000 0.0000000000000000
0.0000000000000000 1.0200333401049706 0.0000000000000000
0.0000000000000000 0.0000000000000000 1.0200333401049706

Cs Pb Br
1 1 3

Direct
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.5000000000000000 0.5000000000000000 0.5000000000000000
0.5000000000000000 0.5000000000000000 0.0000000000000000
0.0000000000000000 0.5000000000000000 0.5000000000000000
0.5000000000000000 0.0000000000000000 0.5000000000000000

- The POTCAR file contains all information about the pseudopotential for a given
element, as well as the basic information about the atom. This file is gener-
ated directly in VASP as the program provides several types of pseudopotentials.
When generating the POTCAR file it is important to keep the order of elements set
in the POSCAR file on the sixth line.

- In the KPOINTS file we find the sampling of the reciprocal lattice. Depending on
the type of calculations there are several types of k-point sampling.

- The INCAR file is where we define the parameters of the calculation itself [51].

Output files

VASP produces a great number of output files, many of which find their use only in
very specific situations, however, we present a handful of files that are useful in most
calculations.

- CHGCAR contains the final lattice vectors, atomic positions and the charge density
multiplied by volume. It can also be used as an input file to start a calculation
from precalculated charge density (ICHARG = 1).
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- CONTCAR has the same format as POSCAR and contains the configuration of the
system after each ionic step. It is the main product of relaxation calculations,
serving as the ’relaxed’ POSCAR for further runs.

- EIGENVAL stores the Kohn-Sham eigenvalues for each k-point at the end of the
calculation.

- OUTCAR presents a complete output of a given DFT calculation, such as informa-
tion about the electronic steps, stress tensors or forces on the atoms.

- WAVECAR holds the predicted wave function in the form of plane waves in the case
of dynamic calculations or the solution to the Kohn-Sham equations after the
last step when static or relaxation calculations are concerned. WAVECAR is often
used as a starting file for continuation runs.

Lastly, it is also good to mention vasprun.xml, which is a file containing all the
previously mentioned information in xml form used in post-processing [51].

27



28



4. Crystal Structure Optimization of
CsPbBr3

Using all the knowledge presented in the previous chapter we embark on the journey to
calculate a CsPbBr3 band structure and DOS consistent with experimental data using
the DFT method.

Before any calculations can begin we need a well relaxed POSCAR file, which means
each atom of the CsPbBr3 structure in Figure 4.1 lies in the minimum of the potential
encapsulating it. We achieve relaxation in two steps, using molecular dynamics.

5.92 Å

Cs

Pb Br

Figure 4.1: Visualisation of the used POSCAR file with 𝑎 “ 5.92Å. Made in
VESTA [13].

As we were looking to compare the results of our calculations with experimental
data it was good to also start from experimentally obtained data. The initial guess
of the lattice constant was therefore made from Transmission Electron Microscope
(TEM) measurements of CsPbBr3 crystals, provided by Ing. Michal Horák, PhD, seen
in Figure 4.2. We conducted a 2D Fourier transform for each of the chosen crystals, thus
obtaining diffraction spectra. from which we were able to measure the distance between
the Cs atoms. We calculated the desired lattice constant by fitting the histogram
with the normal distribution, see Figure 4.3a and extracted the ideal value of the
experimental lattice constant 𝑎 “ p5.9 ˘ 0.2q Å with 95% confidence interval.

The first step of the relaxation requires us to find the correct number of plane
waves that are to be used to construct the solution to the Kohn-Sham equations. It
is crucial to include enough plane waves so that the calculation can converge, however
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unnecessarily large quantities of plane waves cause the calculation time to increase
significantly very fast. Therefore we have to find the correct balance between these
two factors.

The amount of plane waves used is determined by the cut-off energy 𝐸CUT, which is
in the calculations specified via the ENCUT tag. When the correct ENCUT is found we also
test convergence for different k-point grids. The convergence is checked by comparing
the free energy per one atom between each step, when the difference reached the set
limit of 1 meV we would deem the given parameter correct, as the changes in the
free energy per one atom were not significant enough to interfere with the calculated
structure. The resulting values were 400 eV as the plane wave energy cut off and
6 ˆ 6 ˆ 6 k-point grid.
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d)

a)a) b)

c)
2D

FFT

Figure 4.2: a) Thanks to Ing. Michal Horák, PhD, we obtained a TEM image of
an array of CsPbBr3 crystals. b) Using Gwyddion [52] we singled out a crystal and
c) using the 2D Fast Fourier Transform tool we obtained a diffraction pattern. d) By
measuring the distance between the maxima (Cs atoms) we found a reciprocal value
of 2𝑎. Solving for 𝑎 we found a lattice constant for the examined crystal.
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In the second step comes volume relaxation, which is done by finding the volume
with minimal free energy. The value obtained from the TEM data now served as the
basis of our relaxation calculations. We ran optimization calculations at fixed volumes
using structures with lattice parameters with ˘7% deviation from the measured value,
meaning p5.9˘ 0.4q Å, and acquired a graph showing cell volume’s dependence on free
energy, shown in Figure 4.3b.
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Figure 4.3: a) We measured 40 crystals and obtained a statistic shown in the his-
togram. Fitting the data with the normal distribution we obtained the experimental
lattice constant to be 𝑎e “ p5.9˘0.2q Å. b) Conducting molecular dynamics calculation
in an interval of lattice parameters around 5.9Å we obtained values of free energy for
each parameter. Fitting these points with the Murnaghan equation of state results in
the ideal lattice parameter of 𝑎i “ 5.92Å.

Free energy and cell volume were read from the OUTCAR files of each sub-calculations.
The data was fitted by an equation of states as seen in Figure 4.3 using a code adapted
from [53]. The fit is a parabolic approximation of the Murnaghan equation of state
and the results of the fit are parameters of the equation of states. The bulk modulus
of our calculated CsPbBr3 crystal, using the PBE functional, is 𝐵 “ 20.28 GPa, and
the cohesive energy of the bulk is 𝐸coh “ ´4.13 eV. The experimental values are
𝐵 “ 21.00 GPa and 𝐸coh “ ´3.37 eV [54, 55]. The notable difference between the
experimental and calculated value of the cohesive energy is likely due to the use of
different functionals in the underlying DFT calculations. The minimum of the parabola
and thus the ideal lattice constant lays at 𝑎i “ 5.92Å. For the relaxed structure see
Figure 4.1.

At the end of the process we run a self-consistent calculation, which means we set
the number of ionic steps to zero (NSW = 0), using the POSCAR file for 𝑎i. The goal of
this step was to produce the charge density and set of plane waves which will be used
to restart our future calculations.
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5. Electronic Structure Calculation of
CsPbBr3

In this chapter, we venture to calculate the band structure, DOS and effective mass of
a CsPbBr3 bulk, which we will compare to experimentally acquired data in the next
chapter to assess our ability to reach relevant results using the DFT method.

CsPbBr3’s unique structure poses a challenge for the classical DFT calculations.
The presence of the heavy metal, lead, in the structure introduces the effect of spin-
orbital coupling into the mix which then has to be accounted for in the actual calcula-
tion. Therefore we are required to calculate with great fidelity all the electron orbitals
in the atoms of lead, which makes for an expensive calculation, time-wise as well as
calculation capacity-wise. To simplify the process somewhat we opted to approximate
the realistic orthorhombic structure of CsPbBr3 with a simple cubic lattice.

Throughout this chapter we will often use the term ’classical DFT’, by that we
mean a DFT calculation employing the most widely used functional, the Perdew–Burke-
Ernzerhof (PBE) functional [56, 57]. The PBE functional was created as an improve-
ment upon the LSDA by introducing further physical constraints on the exchange-
correlation term. Its popularity lies in its easy convergence and universality of applic-
ation. It produces good results in band structure calculations, however, it does not
bode well when predicting the value of band gap. The PBE’s biggest problem is the
underestimation of the band gap due to the prioritization of occupied states [58, 59,
60]. All the calculations presented in this thesis were calculated using the projector
augmented wave (PAW) pseudopotential [61, 62].

Seeing as CsPbBr3 is no trivial structure and we were just at the beginning of our
journey with DFT calculations we approached the task in stages. For the input files
see Appendix A. The very first milestone would be correctly implementing the spin-
orbit coupling effect into the classical DFT calculation. Both the band structure and
DOS calculations were done in two steps. The first, shared step was an accurate self-
consistent (SC) collinear calculation in the ground state (using the vasp_std package).
This was done to ’pre-converge’ the calculation, obtaining a set of wave functions in
the WAVECAR file and a charge density distribution in the CHGCAR file.

Due to the inclusion of the spin-orbital coupling, the second step was run as a non-
self-consistent (NSC) non-collinear calculation and required the use of vasp_ncl pack-
age. It was restarted from the set of wave functions a charge density we generated in
the first step. The second step serves as either the band structure calculation or DOS
calculation thus calling for the NSC approach. The NSC calculation does not start the
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next step from the previous one’s electron density, but rather runs each step separately
from the others. It is used in non-stationary problems, such as the band structure
calculation. The NSC of the calculation is implemented by adding 10 to the value of
the ICHARG tag, here we used ICHARG = 11, saying to the program ’start calculation in
a non-self-consistent manner, reading the charge density from an existing CHGCAR file’.

The DOS calculation requires the use of the tetrahedron smearing method for in-
creased accuracy. The DOSCAR file needed during the post-processing is generated
thanks to the LORBIT tag, through which we can determine how the program calcu-
lates the orbitals. We opted for LORBIT = 10 which results in data split into s, p, d
orbitals and thus allows us to calculate projected DOS for those orbitals.

The band structure calculation does not necessitate the change in smearing. What
differentiates this calculation is the change in the sampling of the k-point grid in the
KPOINTS file, the new KPOINTS include the coordinates of the high-symmetry points in
the first Brillouin zone and a number of intersections, determining how many times the
first Brillouin zone will be traced. The calculation was conducted using a simple cubic
lattice in an effort to simplify the calculation, see Figure 5.1.

b1

b2

b3

R

X

M

L

Figure 5.1: The first Brillouin zone of the simple cubic lattice with the points of high
symmetry. The path describing the simple cubic lattice is Γ-X-M-Γ-R-X|M-R.

In both second steps, we used the CHGCAR and WAVECAR from step one and started
from pre-converged wave functions and charge density. The calculated band structure
and DOS of CsPbBr3 with the effect of the spin-orbital coupling is shown in Figure 5.2.
The calculations were processed using vaspkit [63] and plotted in OriginPro.

Figure 5.2 shows that the optical transition happens at the R point in the first
Brillouin zone of the simple cubic lattice. The difference between the valence band
maximum and the conduction band minimum at that point is 𝐸CBM ´𝐸VBM “ 0.77 eV,
resulting in the band gap of the same value. Comparing the outcome with the experi-
mentally obtained value 𝐸g “ 2.36 eV we see the calculation is severely lacking. The
unsatisfactory result was however to be expected as it is well known the PBE functional
used in this calculation underestimates the band gap [60]. The effect of the spin-orbital
coupling also contributed to the narrower result.

To show the effect spin-orbital coupling has on the energy bands we present a side-
by-side comparison of calculated CsPbBr3 structures with the spin-orbital coupling
effect turned off and on, see Figure 5.3. The first and the most significant effect spin-
orbital coupling has on the calculation is a massive reduction of the band gap. In our
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Figure 5.2: Band structure and DOS with spin-orbital coupling: on the left is the
band structure graph showing the energy level in relation to the position in the first
Brillouin zone. The optical transition happens at the R high-symmetry point. The
value of the band gap is 𝐸g “ 0.77 eV. On the right is the DOS in relation to energy.
We see the maximum of the valence band consists of Pb and Br orbitals, and the
minimum of the conduction band is mainly characterized by the Pb orbitals, which is
in agreement with findings in [21].

case, we observed a decrease by 1.08 eV. The other effect we registered, which is closely
related to the band gap reduction, was the splitting of the triply degenerate conduction
band minimum. Due to the inclusion of the spin-orbital coupling effect, we obtained
a new distribution of the levels. We ended up with a fourfold degenerate state at the
conduction band minimum and a twofold split-off level. The lower band represents
the electronic spin states

⃒⃒
𝐽 “ 3

2
, 𝐽z “ ˘3

2

D

, while the higher-energy band represents⃒⃒
𝐽 “ 3

2
, 𝐽z “ ˘1

2

D

[20].
In an effort to improve the value of the band gap we chose to employ the use of

hybrid functionals. The HSE type hybrid functional which we chose to use combines the
local contribution from Hartree-Fock’s exact exchange with the exchange-correlation
energy calculated by the PBE functional for the area further from the atom, where
it agrees well with reality. What this approach does to the calculated structure is it
effectively shifts the unoccupied states higher thus broadening the band gap.

The first hybrid functional we used was the HSE06 functional which includes 25 %

mixing of the Hartree-Fock contribution. We carried out the hybrid functional calcula-
tion in two steps. The first step was identical to the first step of the previous calculation.
Pre-converging the calculation first using the regular PBE functional is the recommen-
ded approach as it drastically cuts down the calculation time. The WAVECAR and CHGCAR
files from the first step once again serve as the input of the second step. The form of
the DOS and band structure calculations was very similar to the previous calculation.

The hybrid calculation of the band structure implements tags specifying the para-
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Figure 5.3: Side-by-side comparison of CsPbBr3 band structure calculated using the
PBE functional with the spin-orbital coupling effect a) turned off and b) turned on.

meters of the hybrid functional we use. It also requires a suitably modified KPOINTS file
with a changed sampling of the reciprocal space. The KPOINTS file includes the explicit
k-points combined with the k-points describing the bulk itself. Those are signified by
the 0 weight at the end of the line and are combined with the k-points generated into
the IBZKPT file. The result of the hybrid calculation using the HSE06 hybrid functional
is in Figure 5.4.
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Figure 5.4: Band structure and DOS calculated with HSE06 hybrid functional: on
the left is the band structure graph showing energy level in relation to the position in
the first Brillouin zone. The optical transition happens at the R high-symmetry point.
The value of the band gap is 𝐸g “ 1.39 eV. On the right is the DOS in relation to
energy.
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The width of the band gap 𝐸g “ 1.39 eV was still unsatisfactory, which led us to
increase the mixing of the exact exchange from the Hartree-Fock method as suggested
in [21]. The resulting mixing was 45% and it was achieved by adjusting the AEXX tag
which specifies the fraction of the exact exchange used in a Hartree-Fock type hybrid
functional. The resulting structure is in Figure 5.5.
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Figure 5.5: Band structure and DOS calculated with 45 % mixing hybrid functional:
on the left is the band structure graph showing energy level in relation to the position
in the first Brillouin zone. The optical transition happens at the R high-symmetry
point. The value of the band gap is 𝐸g “ 2.01 eV. On the right is the DOS in relation
to energy.

The band gap resulting from this calculation was 𝐸g “ 2.01 eV. The value we were
attempting to reach was 𝐸g “ 2.36 eV. Further mixing of the exact exchange was
inadvisable and therefore we opted to implement the scissor operator as suggested in
[21].

The scissor operator is a method used to correct the band gap obtained from DFT
calculations. The method works by adding a constant term ∆ to the energies above
the band gap, meaning 𝐸𝐿𝐷𝐴

g becomes 𝐸𝐿𝐷𝐴
g `∆s. The value of ∆s is chosen to correct

the calculated band gap to the fundamental gap, it may be set either empirically from
the experimental absorption spectra, or one-time higher level generalized Kohn-Sham
DFT calculation, e.g. from the GW calculation. Then the value of ∆ is obtained as
∆ “ 𝐸𝐺𝑊

g ´𝐸𝐿𝐷𝐴
g [64, 65, 66]. The GW calculations utilize the Green function G and

the screened Coulomb interaction W, for further information on the subject, see [67,
68]. This approach does however not fall in the category of DFT and is far beyond the
scope of this thesis, therefore it was not employed.

Consequently, we have decided for the use of empirical value to set the scissor
operator. The experimental value of band gap of CsPbBr3 crystals measured by Ing.
Petr Liška is 𝐸g “ 2.36 eV. The value of the scissor operator was set to ∆s “ 0.35 eV to
bridge the remaining difference between our biggest calculated band gap 𝐸g “ 2.01 eV
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and the experimentally acquired value. The band structure with the corrected band
gap is in Figure 5.6.
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Figure 5.6: Band structure with the scissor operator implemented.

During the post-processing of the data, we were also able to calculate the hole’s and
electron’s effective masses directly in vaspkit. Their values will be important in the
next chapter, however, in the band structure calculations they served as a fact check for
us to ensure the attempts to correct the value of the band gap do not negatively affect
the physics of the bands. The effective masses in the Γ–𝑅 region from the individual
calculations are in Table 5.1 along with their respective value of the band gap.

The fact that the changes in the effective mass with increasing Hartree-Fock mixing
are minimal means we can be assured that the physics of the bands remains intact.

Table 5.1: Table comparing the values of bang gap and electron and hole effective
masses with experimentally obtained data.

Calculation 𝐸g r𝑒𝑉 s 𝑚˚
e r𝑚es 𝑚˚

h r𝑚es

S–O 0.77 0.177 -0.187
25% 1.39 0.251 -0.268
45% 2.01 0.279 -0.289

Experiment 2.36 – –
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6. The Effective Mass Model

In the previous chapter, we have obtained some optical characteristics and electron
structure of bulk CsPbBr3 via DFT calculations and in this chapter, we want to com-
pare said results with experimental data. However in reality we study nanostructures
of CsPbBr3 as they exhibit enhanced physical and functional properties compared to
bulk. Let us consider a quantum mechanical model of an exciton in a finite potential
well of arbitrary shape. The model utilizes a single-band effective-mass approximation
of the Schrödinger equation to calculate the exciton energy levels, which are used to
study the dependence of the PL emission peak energy on the nanocrystal’s size, and
shape.

We have observed two main groups of the CsPbBr3 nanocrystal shapes as seen
in Figure 6.1. The shapes were a lens shape and a triangular shape and we then
approximated the given crystals by a corresponding quantum well. Combining the
SEM and AFM measurements shown in Figure 6.1 we have acquired the volumetric
parameters of said quantum wells. These two techniques need to be combined due to
AFM’s inability to correctly measure the horizontal dimensions of nanocrystals. The
resulting image is a convolution of the sample’s topography and AFM’s tip. This is
where the SEM data play a crucial role, combined with the height profile from AFM
we obtain the true 3D model of each nanocrystal.

In Figure 6.2a and b we see two PL maps corresponding to the nanocrystals dis-
played in Figure 6.1. From these PL maps, we obtained the integral intensity and
peak emission wavelength of PL, from which we then calculated the emission energy
𝐸 “ ℎ𝑐{𝜆 which we shall compare with the theoretical model. The integral intensity
of the PL map (Figure 6.2a) is the area under the curve of intensity in relation to
wavelength and it determines the wavelength-weighed power emitted by a crystal via
PL, see Figure 6.2c. The emission peak energy is the wavelength corresponding to the
position of the centre of mass of the area under the curves in 6.2b, in general, the value
of the emission peak energy was 𝜆0 „ 520 nm. In Figure 6.2d we see the PL spectra of
two selected nanocrystals one triangular and one with a lens shape

In the approximation, we use the Hamiltonian written as

Ĥ “ ´
ℏ2

2
∇ 1

𝑚˚p𝑥,𝑦,𝑧q
∇ ` 𝑉 p𝑥,𝑦,𝑧q, (6.1)

where 𝑚˚ is the effective mass of the charge carriers in the crystal and 𝑉 is the potential
field where
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Figure 6.1: We observed two types of shapes of the CsPbBr3 nanocrystals – triangle
shape and lens shape. Using the a) SEM and b) AFM measurements we obtained the
volumetric parameters of the observed nanocrystals. Processed in Gwyddion [52].
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Figure 6.2: From the PL data we were able to acquire the values of a) PL integral
intensity and b) PL emission peak wavelength. c) The integral intensity is the area
under the curve of intensity in relation to wavelength. d) Two typical spectra of selected
nanocrystals. Processed in Gwyddion [52].
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𝑉 p𝑥,𝑦,𝑧q “

#

0, in crystal,

∆𝐸V or ∆𝐸C, elsewhere.
(6.2)

∆𝐸V and ∆𝐸C are the valence and conduction band discontinuities, respectively. The
wave function is assumed as an expansion of normalized plane waves as follows

𝜓p𝑥,𝑦,𝑧q “
1

a

𝐿𝑥𝐿𝑦𝐿𝑧

ÿ

𝑛𝑥,𝑛𝑦,𝑛𝑧

𝑎𝑛𝑥,𝑛𝑦,𝑛𝑧𝑒
ip𝑘𝑛𝑥𝑥`𝑘𝑛𝑦𝑦`𝑘𝑛𝑧𝑧q, (6.3)

where 𝐿𝑖 is the length of the unit cell along the given axis and 𝑘𝑛𝑖 “ 𝑘𝑖 ` 𝑛𝑖𝐾𝑖, 𝐾𝑖 “

2𝜋{𝐿𝑖, for 𝑖 “ 𝑥,𝑦,𝑧; 𝑛𝑥,𝑛𝑦,𝑛𝑧 give the numbers of plane waves in each direction.
For the triangular shape, the x and y wave functions are inseparable, hence the

ground state energy is written as

𝐸0,𝑥𝑦 “
2ℎ2

3𝑚𝑎2
, (6.4)

where 𝑎 is the edge of the triangular base. The term in z direction takes from of

𝐸0,𝑧 “
ℎ2

8𝑚𝑙2𝑧
, (6.5)

where 𝑙𝑧 is the height of the shape. The two terms are then simply added to form the
total ground state energy as follows

𝐸0 “ 𝐸0,𝑥𝑦 ` 𝐸0,𝑧 “
ℎ2

𝑚

ˆ

2

3𝑎2
`

1

8𝑙2𝑧

˙

. (6.6)

We obtain the term for the total energy of emission from a triangular triangle
shaped crystal as

𝐸 “ 𝐸g `
ℎ2

𝜇

ˆ

2

3𝑎2
`

1

8𝑙2𝑧

˙

, (6.7)

where the 𝐸0 term constitutes the quantum confinement contribution and 1
𝜇

“ 1
𝑚˚

h
` 1

𝑚˚
e

is the reduced effective mass of the exciton. This approach however is not possible with
the lens shape as the wave functions for 𝑥,𝑦,𝑧 are inseparable, from [69] we used the
following equation

𝐸 “ 𝐸g `
ℎ2

8𝜇
𝑉

´2{3
0

`

𝐴𝑅´4{3
` 2𝐴𝑅2{3

˘

, (6.8)

where 𝜇 is the reduced effective mass of the exciton and 𝐴𝑅 “ 𝑙𝑧{𝑟 is the aspect ratio
of the shape’s height and radius, with constant volume 𝑉0 “ 1{6𝜋𝑙𝑧p3𝑟2 ` 𝑙2𝑧q.

Now we can compare the calculated PL emission peak energy with the experiment-
ally obtained data. Two such comparisons are in Figures 6.3a and 6.3b, the approxima-
tions were made with lens shape and triangular shape, respectively, as they are defined
above.

As we can see in Figure 6.3b the crystals approximated by the triangular shape
show practically no agreement with the theory. That was however to be expected
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Figure 6.3: We have used the two presented models and fitted the experimental data
with the theoretical curve. a) Shows the crystals approximated by a lens shape. The
data show a trend consistent with theory as well as the energy values for larger crystals
due to favourable noise-to-signal ratio at larger crystal sizes. b) Shows the crystals
approximated by the triangular shapes. The theory and experiment show virtually
no agreement. It is due to the small size of the crystals, where even a small error in
wavelength is projected as a large error in the calculated emission peak energy. And
also due to the small crystals’ forming in close proximity to one another, the observed
emission peak wavelength is negatively impacted.

as all the crystals that could be considered for this approximation were considerably
smaller than the lens shapes. Their size and the fact that they often are grouped close
together meant low PL emission, and therefore even a small error in the reading of the
emission peak wavelength results in a significant discrepancy in the calculated emission
peak energy.

The lens-shaped crystals and their corresponding experimental data are plotted in
Figure 6.3a. Here we see that the experimental data not only show the same trend as
the theoretical curve but it also exhibits some agreement to the energy values, mostly
for larger crystals, as for those the noise-to-signal ratio is far more favourable.

The model using lens-shaped crystals has shown greater agreement with experi-
mental data than the model of equivalent spheres used in [8]. However, the remaining
discrepancies are not likely to be solved by yet another, better model. The LHP crys-
tals used in this section are self-assembled polymorphs, and can thus contain significant
inelastic strain which would then severely affect the results. There will also be a need
for further experiments with higher resolution to examine the small crystals better, as
we currently have no way to determine whether we are observing a single crystal or
a cluster of smaller crystals, which would then result in the convolution of PL emission
spectra and again negatively impact our results.
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Conclusion

Throughout this thesis, I have laid out a possible approach to acquiring a correct band
structure and value of band gap of a CsPbBr3 bulk via the DFT method and my
subsequent use of the theoretical data in a quantum mechanical model used to assess
experimental data provided by Ing. Petr Liška a Ing. Michal Horák, PhD.

To obtain an authentic model of a CsPbBr3 crystal we opted to start from an
experiment. We used high-resolution images of CsPbBr3 nanocrystals from TEM (by
Ing. Michal Horák). Processing the data and using the normal distribution we procured
the experimental value of the lattice parameter of CsPbBr3 𝑎e “ p5.9 ˘ 0.2q Å. We
proceeded to carry out volume optimization calculations in VASP in a 7% interval
around 𝑎e. The data we calculated was plotted out, showing the relation between the
volume of the unit cell and the free energy of its atoms aiming to find the volume with
the least free energy. To do so we fitted the data with the Murnaghan equation of state.
The minimum of the fit showed the ideal theoretical lattice constant to be 𝑎t “ 5.92 Å.
We were also able to obtain other data from the fit, the bulk modulus of our calculated
CsPbBr3 crystal, using the PBE functional, was calculated as 𝐵 “ 20.28 GPa, and the
cohesive energy of the bulk 𝐸coh “ ´4.13 eV.

With the ideal value of the lattice constant and therefore the ideal model of the
structure we were able to progress to attempting to calculate the correct band structure
and band gap of the CsPbBr3 bulk. In the first stage of the way, we used classical DFT
to calculate the band structure and DOS of the bulk, while implementing the effect
of spin-orbital coupling. The first obtained band structure was seemingly consistent
with the structure found in literature in regards to the shape of the bands, however,
the value of the band gap was severely lacking. The value was calculated as 𝐸g “

0.77 eV, this was the result of the combination of classical DFT’s underestimation of
the unoccupied states in the conduction band and the effect of the spin-orbital coupling.
In the calculated DOS we observed a valence band containing mainly Pb orbitals and
a conduction band consisting of a combination of Br and Pb orbitals, in agreement
with what was suggested in [21].

In our continuous attempt to improve the value of the band gap we opted to imple-
ment the HSE hybrid functionals, which mix the classical DFT with a contribution from
the Hartree-Fock (HF) method. At first we chose 25% mixing of the HF energy contri-
butions, which resulted the improvement to the value of the band gap to 𝐸g “ 1.39 eV.
This was however insufficient and we chose to increase the HF contribution mixing to
45 %. This choice lead to further enhancement of the band gap. The resulting value
was 𝐸g “ 2.01 eV. To ensure the physics of the calculated bands remain intact we also

43



calculated the value of effective mass for hole and electron at the R point, the point
at which the transition occurs, at every step. To reach the experimentally acquired
value of the band gap 𝐸g “ 2.36 eV we opted to implement the scissor operator, a
mathematical operator which shifts the conduction band levels by a fixed constant.

To compare the data we calculated for a CsPbBr3 bulk with the experimental data
measured on nanocrystals we implemented a quantum mechanical model of an exciton
in a finite potential well of arbitrary shape. This model utilizes a single-band effective-
mass approximation of the Schrödinger equation to calculate the exciton energy levels.
Based on the data at our disposal we considered two possible shapes of the potential
well – a triangle shape and a lens shape. The triangle shapes showed no agreement with
the theory, due to the small size of the nanocrystals and proximity of said nanocrystals
to each other, which resulted in skewed PL emission peak wavelength values and those
then negatively affected the experimental energy compared with the theoretical model.

The lens shapes have shown greater agreement with the experiment both in the
trend of the relation between the size of the nanocrystal and the PL emission energy
and also in the actual values of the emission energy for each crystal. The best agreement
was achieved in larger nanocrystals as they exhibit a more favourable noise-to-signal
ratio than the smaller ones. The remaining discrepancies are due to the nanocrystals’
being self-assembled polymorphs, which can contain significant inelastic strain which
severely impacts the results.
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A. The VASP Files

Here you can find the files used in our calculations in full.

A.1 VASP Input Files

The POSCAR file specifies the structure.

CsPbBr3
5.92

1.0200333401049706 0.0000000000000000 0.0000000000000000
0.0000000000000000 1.0200333401049706 0.0000000000000000
0.0000000000000000 0.0000000000000000 1.0200333401049706

Cs Pb Br
1 1 3

Direct
0.0000000000000000 0.0000000000000000 0.0000000000000000
0.5000000000000000 0.5000000000000000 0.5000000000000000
0.5000000000000000 0.5000000000000000 0.0000000000000000
0.0000000000000000 0.5000000000000000 0.5000000000000000
0.5000000000000000 0.0000000000000000 0.5000000000000000

0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00

The first line is viewed by the program as a comment line and usually contains
the name of the system. The second line is where we find the universal scaling factor,
in our case the lattice constant of the crystal, which scales the lattice vectors. Those
are on the lines three through five. The next two lines specify the type of atoms
and the number of each atomic species. The eighth line signifies whether the atomic
coordinates are input in Cartesian or Direct coordinates. On lines following come the
atomic coordinates.

The KPOINTS file determines the sampling of the reciprocal space.
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K-Points
0

Monkhorst Pack
6 6 6
0 0 0

The zero on the second line means automatic generation. The third line specifies
the k-points have been generated using the Monkhorst-Pack scheme, Gamma centred or
Cartesian can be also used. Numbers on the fourth line serve to determine the number
of subdivisions along the reciprocal lattice. The fifth line gives an additional shift of
the k-mesh. This type of sampling is used in structure relaxation or DOS calculations.

Special k-points for band structure
100 ! 100 intersections
line-mode
Reciprocal

0.0000000000 0.0000000000 0.0000000000 1 GAMMA
0.0000000000 0.5000000000 0.0000000000 1 X

0.0000000000 0.5000000000 0.0000000000 1 X
0.5000000000 0.5000000000 0.0000000000 1 M

0.5000000000 0.5000000000 0.0000000000 1 M
0.0000000000 0.0000000000 0.0000000000 1 GAMMA

0.0000000000 0.0000000000 0.0000000000 1 GAMMA
0.5000000000 0.5000000000 0.5000000000 1 R

0.5000000000 0.5000000000 0.5000000000 1 R
0.0000000000 0.5000000000 0.0000000000 1 X

0.5000000000 0.5000000000 0.5000000000 1 R
0.5000000000 0.5000000000 0.0000000000 1 M

The second line specifies the number of points per line segment. The line-mode on
the third line ensures the generation of a string of k-points between every two specified
points in the first Brillouin zone. The fourth line determines the format in which the
coordinates of the points will be provided. The rest are coordinates of points of high
symmetry in the first Brillouin zone. This type of KPOINTS file is to be used in band
structure calculations.

The INCAR file is where we specify the calculation’s parameters.
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System = CsPbBr3
###
ISTART = 0
ICHARG = 2

smearing:
ISMEAR = 0

electronic:
LREAL = .False.
ALGO = A
ENCUT = 400
NELM = 100
LMAXMIX = 4
EDIFF = 1E-6
NBANDS = 64

fft:
PREC = Accurate

ionic:
IBRION = 2
ISIF = 4
NSW = 30
EDIFFG = -0.005

dft:
LSORBIT = .TRUE.

parallel:
NCORE = 8
KPAR = 2

The capitalized words are called tags. ISTART tells the program where to start, 0
means a new job, and with 1 the program would start from previously calculated wave
functions from the WAVECAR. ICHARG determines how VASP constructs the initial charge
density, 2 means the program uses the sum of the atomic charge densities. ENCUT gives
the cut-off energy for the set of the plane-wave-basis. ISMEAR specifies the method used
for the electron smearing, 1 means the Fermi smearing. SIGMA defines the interval over
which the smearing happens. IBRION establishes how the ions are treated depending
on the type of calculation, 2 is for the ionic relaxation using the conjugated gradient
method. NSW sets the maximum number of ionic steps. EDIFF gives the condition both
the total energy change and the band-structure energy change must clear in order for
the calculation to stop. ISYM switches on or off the consideration of symmetry. KPAR
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and NCORE along with others serve to optimize the given calculation.

A.2 VASP Output Files

The OUTCAR file contains the complete output provided by VASP.

A.3 Stages of the Calculation

The following excerpts from INCAR files include only tags that are unique to the given
process, every INCAR file should also include all the appropriate tags such as those
shown in the INCAR file in the Input section above.

Volume Relaxation

ISMEAR = -5
ISIF = 4
NSW = 30

Spin-Orbital Coupling

First step:

PREC = Accurate
ISYM = -1
LREAL = .FALSE.
LSORBIT = .TRUE.

This calculation already takes into account the effect of the spin-orbital coupling
(LSORBIT = .TRUE.).

The second step is mostly identical to the first one but for the addition of ICHARG = 11
to the INCAR file.

25% Hartree-Fock Mixing

LHFCALC = .TRUE.
HFSCREEN = 0.2
AEXX = 0.25
ALGO = D
TIME = 0.4
LDIAG = .TRUE.
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45% Hartree-Fock Mixing

This calculation is virtually identical to the one before with the only difference being

AEXX = 0.45
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B. The Phonon calculations

For the phonon calculation, we opted for the finite displacement method. In this
method certain atoms in a lattice are displaced by a small amount from their equilib-
rium, then single-point energy calculations are conducted and the forces on every ion
in the system are evaluated. For conducting the phonon calculations we used an open-
source code phonopy [70], while VASP was used for the heavy-duty work of classical
DFT calculations.

The phonon calculations ought to start with well-relaxed structure and we have
such structure already prepared and ready to go. The first step takes place in phonopy,
where we calculate a 3 ˆ 3 ˆ 3 supercell from our pre-existing POSCAR file. We do so
by running the following command:

phonopy -d --dim="3 3 3"

We obtain a set of three POSCAR files each containing the supercell with the single
atom displacements.

The goal of the second step is to obtain force constants for the supercell. We need
to carry out a set of three static SC calculations in VASP, one for each of the POSCAR
files, the result of which are calculated forces on an atom. It is important in this
calculation for the evaluation of the projection operators to be done in reciprocal space
because in reciprocal space the number of operators scales with the number of plane
waves. Using the calculated forces on atom phonopy can construct a set of forces for
the entire supercell written in a FORCE_SETS file. The INCAR used for the mentioned
SC calculations of force constants should contain these tags

LREAL = .FALSE.
ISYM = 0
ADDGRID = .TRUE.

It is advised to use fewer k-points to conserve the size of the overall structure over
which the calculations are carried out. We used a 6 ˆ 6 ˆ 6 k-point grid in our regular
DFT calculations, therefore now when considering a supercell 3ˆ3ˆ3, we should lower
the k-points to 2 ˆ 2 ˆ 2.

Once the DFT calculations are complete for all three of the POSCAR files, we return to
phonopy, where we create the force set from the force constants contained vasprun.xml
files, which we place in three folders disp-001--003. The command for the creation
of force set is as follows:
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phonopy -f disp-{001..003}/vasprun.xml

The output is a FORCE_SET file. Now we move on to the post-process. During
the post-process, the force constants are calculated from the set of forces, from those
a part of the dynamical matrix is built and finally from the dynamical matrices the
eigenvectors and phonon frequencies are calculated in the specified q-points.

For the mesh sampling calculations, we need a file that will define the process. In it,
we specify the type of atoms in the structure, the dimensions and the mesh sampling
in a scheme of our choice, which was Monkhorst-Pack. The file is mesh.conf:

ATOM_NAME = Cs Pb Br
DIM = 3 3 3
MP = 48 48 48

The DOS is then calculated, plotted and saved with:

phonopy -p -s mesh.conf

The resulting phonon DOS is in Figure B.1.
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Figure B.1: The phonon total DOS.

For the band structure calculations we need to write a file specifying the band
structure calculation, it is band.conf:
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ATOM_NAME = Cs Pb Br
DIM = 3 3 3
BAND = 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.5 0.5 0.0 0.5 0.5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.5 0.0 0.5
0.5 0.5 0.5 0.5 0.0
which has to specify the types of atoms used, the dimensions of the supercell and the
sampling of the first Brillouin zone. The band structure plotting is initiated by the
following command:

phonopy -p -s band.conf

The result of our calculation is shown in Figure B.2.
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Figure B.2: The phonon band structure.

In both Figure B.1 and B.2 we see the calculated frequencies go into negative
values. That is the problem we were not able to solve in the course of the writing of
this thesis. However, after consulting this problem with people with experienced we
have found out that the problem was most likely in the use of the simple cubic lattice,
which we employed for simplicity of the calculations. Simple cubic crystal of CsPbBr3,
however, is not stable at 0 K. The calculations would therefore need to be run using the
orthorhombic phase of CsPbBr3, which was not possible with our current resources.
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