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Abstract 
 

There is a pressing need to develop vascular graft since no clinically available 

appropriate prosthesis with inner diameter less than 6 mm works in a long term 

after implantation. In the thesis, blood vessel substitutes made from biodegradable 

polymers were created and characterized as potential candidates for such a medical 

device. The idea of tissue engineering scaffolds is based on mimicking natural 

environment - extracellular matrix therefore ideal bypass graft was designed as double 

layered structure with defined morphology of each layer. The proposed structure was 

created by electrospinning of polycaprolactone (PCL). The morphology of the resulting 

fibers resembled inner and medial layer of native arteries suggesting that this similarity 

will help body to regenerate functional tissue after implantation. Besides PCL, novel 

polymer from the same group of polyester - copolymer polylactide-polycaprolactone 

(PLC 70/30) was electrospun into a tubular form. Vascular graft made from copolymer 

PLC created only single layered prosthesis.  

Further tests were conducted with both presented electrospun materials in order 

to compare their bulk and surface properties. Copolymer PLC was slightly more 

hydrophilic than polycaprolactone. Thermal behavior revealed that copolymer is mostly 

amorphous with melting temperature about 110°C whereas polycaprolactone is 

semicrystalline polymer with melting temperature about 57°C. Mechanical strength 

and elongation at break of electrospun copolymer PLC was about ten times higher 

compared to electrospun polycaprolactone. 

Biological tests using fibroblast and endothelial cell line prove 

the biocompatibility of both tested electrospun polymers. Higher proliferation rate was 

found when cells were cultured on electrospun copolymer PLC suggesting that higher 

hydrophilicity contributes to favorable cell adhesion. Hemocompatibility testing 

of produced samples were carried out using platelets. It was found that fibrous layers 

are more thrombogenic than smooth surface when compared with foils made from 

the same materials. Platelets became activated and aggregated after incubation 

with fibrous materials. The level of activation was increased in dynamic conditions. 

Electrospun fibers were successfully used as a drug delivery system of nitric 

oxide (NO) that has many beneficial effects on cardiovascular system. Polycaprolactone 

fibers were blended with NO donors from the group of S-Nitrosothiols that are capable 

of long term NO release in physiological levels up to 42 days in vitro. After 

implantation of such grafts as a replacement of rat abdominal aorta, the NO release was 

found to strongly inhibit cellular infiltration into the medial and luminal regions 

of the vascular graft. The reduced presence of inflammatory cells within these regions 

may confer increased protection against neointimal hyperplasia from smooth muscle 

cells. 
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Anotace 

 
V současnosti není v klinické praxi cévní náhrada s vnitřním průměrem 

pod 6 mm, která by spolehlivě fungovala v dlouhodobém horizontu. Disertační práce se 

zabývá přípravou maloprůměrových cévních náhrad z biodegradabilních polymerů, 

které jsou testovány jako potenciálně vhodné materiály pro přípravu tkáňových nosičů 

pro vaskulární cévní systém. Hlavní myšlenkou tkáňového inženýrství je napodobování 

přirozeného prostředí - mezibuněčné hmoty. Proto byla ideální cévní náhrada navržena 

jako dvouvrstvá tubulární struktura s definovanou morfologií vláken. Tato definovaná 

struktura byla vytvořena elektrostatickým zvlákňováním polykaprolaktonu (PCL). 

Podobnost morfologie vláken s mezibuněčnou hmotou předpokládá, že po implantaci 

do organismu proběhne regenerace funkční tkáně. Kromě polymeru polykapronu byl 

testován polymer ze stejné třídy polyesterů - kopolymer polylatidu a polykaprolaktonu 

(PLC 70/30). Cévní náhrada připravená z toho polymeru byla tvořena pouze jednou 

vrstvou. 

Pro porovnání vlastností polymerů byla provedena charakterizace obou 

elektrostaticky zvlákněných materiálů. Kopolymer PLC je mírně hydrofilnější 

než polykaprolakton. Termické vlastnosti obou polymerů se značně liší. Zatímco 

kopolymer PLC je převážně amorfní s teplotou tání okolo 110°C, polykaprolakton je 

semikrystalický polymer s teplotou tání kolem 57°C. Mechanická pevnost a prodloužení 

je přibližně desetkrát větší u elektrostaticky zvlákněného kopolymeru PLC 

než u polykaprolaktonu. 

Biologické testování elektrostaticky zvlákněných materiálů potvrdilo 

biokompatibilitu obou testovaných polymerů s fibroblasty i s endotelovými buňkami. 

Vyšší proliferační stupeň byl pozorován při kultivaci buněk na mírně hydrofilnějším 

kopolymeru PLC, který zřejmě umožňuje lepší buněčnou adhezi. Vlákenné materiály 

byly rovněž testovány po interakci s krevními destičkami, které se po inkubaci 

aktivovaly a agregovaly. Mírnější aktivace byla pozorována po interakci s hladkými 

foliemi vyrobenými ze stejných materiálů, což dokládá, že na aktivaci destiček má vliv 

morfologie povrchu. Zvýšená aktivace trombocytů byla naopak pozorována 

při dynamické inkubaci vlákenných tubulárních vzorků. 

Vlákenné tkáňové nosiče byly využity jako systém cíleného uvolňování léčiv, 

konkrétně oxidu dusnatého (NO), který má pozitivní účinky na kardiovaskulární systém. 

Vlákna polykaprolaktonu byla obohacena o donory NO ze skupiny S-Nitrosothiolů, 

které umožňují uvolňování NO ve fyziologickém rozmezí po 42 dní v in vitro 

podmínkách. Po implantaci cévních náhrad jako náhrada břišní části aorty u potkanů 

bylo zjištěno, že NO inhibuje buněčnou infiltraci do vnitřní a střední vrstvy cévní 

náhrady. Tento snížený výskyt zánětlivých buněk může bránit vzniku neointimální 

hyperplazie způsobenou hladkosvalovými buňkami v pozdějších stadiích implantace.   

 

 

Klíčová slova: Cévní náhrady, Nanovlákna, Elektrostatické zvlákňování, In vitro 

testování, Oxid dusnatý 
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Notations 

ATCC  American Type Culture Collection 

BSA  Bovine serum albumine 

CE  European Conformity (certification mark within the European  

   Economic Area) 

CVDs  Cardiovascular Diseases 

DAPI  2-(4-amidinophenyl)-1H -indole-6-carboxamidine 

DMEM  Dulbecco´s Modified Eagle Medium 

EBM-2  Endothelial basal medium 

EC  Endothelial cells 

ECM  Extracellular matrix 

EDRF  Endothelium-derived relaxing factor  

EDTA  Ethylenediaminetetraacetic acid 

EPC  Endothelial progenitor cells 

ePTFE  Expanded polytetrafluorethylene 

FBS  Fetal bovine serum 

FDA  Food and Drug Administration  

FESEM  Field emission scanning electrone microscopy 

FITC  Fluorescein isothiocyanate 

GMP  Good manufacturing practice 

GP  Glycoprotein 

H&E  Hematoxylin eosin staining 

HUVEC  Human umbilical vein endothelial cells 

MTT test Cell viability test using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-

   tetrazolium bromide 

MTU  Michigan Technological University 

NAP  N-acetyl-D-penicillamine 

NO  Nitric oxide 

NOA  Nitric oxide analyzer 

PBS  Phopshated buffer saline 

PCL  Polycaprolactone 

PDGF  Platelet-derived growth factor 

PDLLA  Racemic mixture of L- and D-isoform of polylactic acid 



PET  Polyethyleneterephtalate  

PGA  Polyglycolic acid 

PI  Propidium iodide 

PLA  Polylactic acid 

PLC  Copolymer polylactide-polycaprolactone 

PLGA  Copolymer of polyglycolic and polylactic acid 

PLLA  L-isoform of polylactic acid 

PMMA  Polymethylmethacrylate 

PUR  Polyurethanes 

RGD  Tripeptide composed of L-Arginin, Glycin and L-Aspartic Acid  

   mediating cell attachment 

RSNO  S-Nitrosothiols 

SEM  Scanning electrone microscopy 

SMC  Smooth muscle cells 

SNAP  S-Nitroso-N-acetyl-D-penicillamine 

SNAP-cyclam S-Nitroso-N-acetyl-D-penicillamine derivatized cyclam 

TRS  Thrombocyte rich solution 

VEGF  Vascular endothelial growth factor 
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1 Introduction 

 

 The development of new medical care and treatment lead to the ageing 

of the population and more tissues are needed to be repaired or restored. Transplantation 

is considered to be a gold standard of tissue replacement, however it could be limited 

due to the lack of appropriate donors. Government and other funding institutions are 

beware of this fact therefore a lot of grants and projects dealing with so called tissue 

engineering are funded nowadays. The development of tissue engineering scaffold, 

making them off-the shelf available in various sizes is a real challenge in today's world. 

Especially in the field of vascular tissue engineering there is a demand of an appropriate 

scaffold since no small diameter synthetic vascular graft successful in a long term after 

implantation has been successfully translated to clinic yet.  

 Cardiovascular diseases (CVDs) are the number one cause of death globally. 

More people die annually from CVDs than from any other cause according to World 

Health Organization. A large number of patients suffer from vascular damage, resulting 

in the need for bypass surgery. Blood vessels can be blocked through a process called 

atherosclerosis. Cholesterol and fibrous tissue make up a plaque and blood vessels 

become narrow and stiffen. If the vessel is completely occluded, new pathway for blood 

flow has to be created during a surgery. A graft can be either autologous using patient 

own vessel or man-made synthetic tube.  

Since there are still limitations in the replacement of small diameter vascular 

grafts, the need and demand for developing more desirable grafts is increasing day 

by day. The thesis is focused on a contribution to the development of ideal bypass graft 

scaffolding material. Currently used materials are commercially fabricated from inert 

polymers such as expanded polytetrafluorethylene or polyethylene terephtalate known 

as Dacron. In the thesis, the usage of biodegradable materials is preferred since these 

materials possess many advantages over the inert ones. After implantation 

of biodegradable material, the body will start the healing response. Ideally, the scaffold 

structure and composition would be able to promote healing of the injured or damaged 

tissue. In this case, scaffold material serves as a temporary support that starts self-

renewal of the tissue. Biodegradable polyesters were tested and compared in the thesis 

as ideal candidates for vascular tissue engineering scaffold fabrication. 

The hypothesis of the dissertation was to create a vascular graft that will fulfill 

requirements of small diameter vascular graft in terms of morphological structure 
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that resembles native extracellular matrix (1), possess appropriate mechanical properties 

(2) and surface properties that will facilitate cell adhesion, especially endothelial cell 

adhesion to prevent further thrombosis (3). Synthetic vascular grafts could be improved 

by incorporation of nitric oxide releasing substances. The aim of long term nitric oxide 

release (4) was hypothesized to reach in the last experimental part of the thesis. 

The theoretical part of the thesis described in chapter 2 deals with basic concepts 

of tissue engineering and specific knowledge concerning vascular tissue engineering. 

The experimental part of the dissertation is divided into 3 chapters called Synthetic 

vascular grafts preparation and testing, Biological testing of vascular grafts 

and Vascular grafts releasing nitric oxide. The first experimental chapter describes 

the electrospinning technique and devices used for production of nanofibrous scaffolds 

as well as tubular vascular grafts. Produced materials were characterized 

morphologically to reach the goal of creation structure similar to natural extracellular 

matrix (1), mechanically to verify hypothesis 2 and surface wettability was tested 

in relationship to the third hypothesis that was further tested in the second experimental 

part with the focus on in vitro testing of produced scaffolds. Seeding 

of fibroblasts and endothelial cells was carried out in order to test the hypothesis 

of biocompatibility of produced scaffolds for vascular tissue engineering. Cell lines 

were cultured on fibrous materials and their proliferation rate was analyzed using 

metabolic MTT test, fluorescence microscopy and scanning electrone microscopy 

in order to characterize biological performance of biodegradable scaffolds and to clarify 

the third hypothesis. As a part of biological performance, thrombogenicity of fibrous 

scaffold was also evaluated. The third experimental part of the thesis is devoted 

to the modification of vascular graft by nitric oxide release in a long term. Obtained 

results are discussed in the discussion chapter. In the end of the thesis, general 

conclusions are summarized and contribution of the achieved results to the field 

of vascular tissue engineering is evaluated. 
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2 Theoretical part 

 

Theoretical part describes the basic concept of tissue engineering focused 

on the specific materials and fabrication techniques used in the thesis. Biological 

performance of tissue engineering scaffolds is introduced in order to explain 

the methods and approaches employed in the second experimental part of the thesis. 

Specific requirements of vascular grafts are listed and current status of the market 

with its limitations is outlined. Finally, the background of nitric oxide and its role 

in cardiovascular system is introduced since the modification was studied in the last 

chapter of experimental part. 

 

2.1 Tissue Engineering 

Tissue engineering is an interdisciplinary field that applies the principles 

of chemistry, physics, material science, engineering, cell biology and medicine 

to the development of biological substitutes that restore, maintain or improve 

tissue/organ functions (Langer, 1993). The combination of classical engineering and life 

sciences is essential. Biomedical engineering requires the cooperation of materials 

engineers, cell culture biologists, clinicians and many other experts in different fields 

in order to develop functional scaffold.  

Tissue engineering field utilizes different types and forms of materials that serve 

as scaffolds for cell attachment. Plenty of materials are used to produce scaffolds 

with desired properties and several methods are combined in order to create an ideal 

scaffold. Cells that colonize the scaffold could be influenced by signals affecting their 

function or proliferation rate. The process of tissue engineering lays in 3 main 

categories: cells, scaffolds and signals as depicted in figure 1. All of these aspects are 

discussed later with specific focus on vascular tissue engineering related to the aims 

of the thesis. 

Combination of these 3 pillars (cells, scaffolds and signals), multiple strategies 

of tissue engineering could be employed. So called in vitro tissue engineering, 

considered to be a traditional approach, constructs the scaffold by using cells, scaffold 

and bioreactor.  In vivo tissue engineering uses the tissue environment such as peritoneal 

cavity or subcutaneous place for production of functional scaffolds. The last but not 

least possibility is called in situ tissue engineering. Biocompatible scaffolds are 
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produced and implanted suggesting that functional tissue will regenerate within 

the living organism in the site of implantation. This approach was utilized in the thesis 

because it reduces the cultivation time for in vitro cell expansion, leading to readily 

available grafts in various sizes (Li, 2014).  

 

 
Figure 1: The description of 3 basic components of tissue engineering: cells, scaffolds 

and signals. 

 

2.1.1 Scaffolds 

Tissue engineering scaffolds are designed as structural and functional analogues 

of extracellular matrix (ECM) assuming that cells recognize their natural environment 

and undergo the regeneration of the damaged tissue. Extracellular matrix is a natural 

cell environment composed of complicated nano- and macro-architecture. Most body 

tissues are hierarchal fibrillar or tubular structures with various size, organization 

and composition that affect the tissue mechanical and biophysical properties (Kim, 

2013). To reach this goal, many scaffold fabrication techniques has been studied, 

for example rapid prototyping, solvent casting and particulate leaching, electrospinning 

or decellularization of tissues. Specific requirements are demanded for each application 

but some of them are generally accepted. Scaffolds have to be fabricated 

from biocompatible materials that will further promote normal cell growth without any 

adverse tissue reactions (Boland, 2004). A non-viable material used in medical device 
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or interacted with biological system is defined as biomaterial. Metals, ceramics 

or polymers are widely used biomaterials in medical devices (Bauer, 2013).  

 

Materials used for scaffolds fabrication 

There are still applications utilizing inert materials that are described later  

in the paragraph 2.2.4 (Currently used vascular grafts). On the other hand, there is 

a shift from usage of inert materials to biodegradable ones in the last years. It is 

assumed that most of the prosthetic device will be replaced by biodegradable materials 

that will allow the body to repair and regenerate. The overall biocompatibility of final 

scaffold is affected by material chemistry, molecular weight, solubility, shape and inner 

structure, surface wettability, degradation rate etc. (Nair, 2007).  

Variety of natural and synthetic polymers could be used for fabrication of tissue 

engineering scaffolds. Natural polymers like collagen, chitosan, gelatin, cellulose 

acetate, silk protein, chitin, fibrinogen possess better biocompatibility and lower 

immunogenicity compared to synthetic ones. On the other hand, synthetic polymers can 

be tailored to give a wide range of structural and functional properties such 

as mechanical behavior, degradation rate etc. (Bhardwaj, 2010). Synthetic tissue 

engineering scaffolds have higher mechanical stability compared to natural based 

scaffolds. Moreover, it avoids the use of crosslinking agents leading to slow degradation 

of such a device. These polymers represent a new generation of biomaterials to mimic 

extracellular matrix by fibrillar structure and viscoelasticity (Yarin, 2014). 

In biomedical applications biodegradable polyesters such as polyglycolic acid (PGA), 

polylactic acid (PLA) and polycaprolactone (PCL) are often used. Special attention is 

devoted to PCL and PLA since these polymers and their copolymer were used 

in the experimental part of the thesis. 

Polyglycolic acid is a rigid thermoplastic polymer. Due to its high crystallinity 

(45-60%), it is insoluble in most organic solvents except for fluorinated organic solvents 

such as hexafluoro isopropanol. PGA shows excellent mechanical properties that are 

lost in 1-2 months after implantation. Polyglycolic acid degrades into amino acid 

glycine. The hydrolysis of PGA is completed within 6-12 months. Due to its high 

degradation rate with releasing of acidic byproducts and low solubility, PGA has been 

replaced by other polymers (Nair, 2007). 

Polylactic acid is present in 3 isomeric forms: D, L and racemic mixture 
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PDLLA. Its L isoform (PLLA) is preferentially metabolized in the body. PLLA is 

a crystalline polymer (crystallinity about 37%), its crystallinity depends on molecular 

weight. Racemic form PDLLA is an amorphous polymer with faster degradation rate 

than PLLA. Polylactic acid degrades to lactic acid that enters citric acid cycle and is 

excreted as water and carbon dioxide. Degradation byproducts are not accumulated 

in the vital organs. The rate of degradation is slower than in case of PGA and is 

determined by crystallinity, molecular weight, morphology, porosity, site 

of implantation etc. (Gunatillake, 2003).  

Polycaprolactone is a hydrophobic, semicrystalline polymer with a long 

degradation time (2-3 years). Its crystallinity decreases with increasing of molecular 

weight. It has been used in the biomedical field due to its good solubility, low melting 

point (59-64°C) and blend-compatibility. The degradation occurs firstly by non-

enzymatic cleavage of ester groups followed by intracellular degradation of PCL 

fragments. The degradation product 6-hydroxylcaproic acid is further converted 

to acetylcoenzym-A and metabolized in citric acid cycle. Since PCL is a semicrystalline 

polymer, amorphous regions are preferentially degraded as depicted in the figure 2 

(Woodruff, 2010).  

 
Figure 2: Hydrolytic degradation of PCL (a), schematic visualization of crystalline 

fragmentation during degradation (b) (Woodruff, 2010). 
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Some of the products made from biodegradable polyesters listed below have 

already been approved by Food and Drug Administration (FDA) or acquired European 

Conformity (CE) mark: 

Monocryl suture is used in general soft tissue approximation and/or ligation. 

Monocryl is composed of a block copolymer of polycaprolactone with glycolide. 

The absorption occurs by means of hydrolysis that is completed between 91-119 days. 

The degradation begins as a progressive loss of tensile strength followed by a loss 

of mass. The sutures are produced by Ethicon (Middleton, 2000). 

Artelon CMC Spacer is a T-shape device for ligament/tendon reinforcement, 

joint resurfacing or soft tissue replenishment. It is a biocompatible PCL based 

polyurethane urea biomaterial well tolerated in both bone and soft tissues having more 

than 10 years of clinical experience. The device degrades by hydrolysis that is not 

affected by enzymes. One half of the device that is made from PCL degrades 

and urethane urea part remains. The degradation is completed at about 6 years. There 

have not been reported any inflammatory or foreign body response accompanying 

implantation (Nilsson, 2010). 

Mesofol is an implantable, resorbable surgical sheet made from a lactide-

caprolactone copolymer. After implantation it is chemically broken down by hydrolytic 

cleavage of polymers, giving rise to 3 monomers: 6-hydroxylcaproic acid that is further 

metabolized to acetylcoenzym A and D-/L-lactic acid. The degradation involves 

molecule adhesion and fibrin attachment to both sides of the sheet. The mesh absorption 

time is about 4-6 weeks. The surgical sheet is used where temporary wound support is 

required to reinforce soft tissues (Klopp, 2008). 

Neurolac is an FDA approved nerve guide manufactured by Polyganics having 

also CE mark. Neurolac offers tensionless nerve repair to further improve healing 

and function recovery without the need for autologous transplants. It is mechanically 

stable for 10-12 weeks after which degradation is observed by loss of strength and mass. 

The nerve guide is made from poly (D,L-lactide-ε-caprolactone) co-polyester. Both 

used polymers (PLA, PCL) are safe and approved for use in medical and pharmaceutical 

implants (Bertleff, 2005). 
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 Technologies used for scaffold fabrication 

Development of functional scaffold rises from the assumption of mimicking 

natural cellular environment – extracellular matrix. Studying of the composition 

and morphology of the tissue of interest is an important step when designing 

the scaffold structure. Afterwards, utilization of appropriate technologies that will create 

the proposed scaffold architecture will bring success in the development of functional 

scaffold. Mimicking this 3D web by nanofibers is a challenge in the modern tissue 

engineering (Srouji, 2008). Electrospinning is the most well-known method 

for production of nanofibrous structures. However, there are other methods that could 

be used to produce fibers in nanoscale such as centrifugal spinning, melt-blowing, phase 

separation or self-assembly (Zhang, 2014). Due to the versatility of electrospinning 

apparatus that enables mimicking of native morphology of ECM in blood vessels, this 

technique was chosen for experimental part of the thesis. 

 Nanofibers have been widely used as scaffolds for tissue engineering 

and regenerative medicine. Their structure is very similar to the native extracellular 

matrix therefore it facilitates cell adhesion and spreading (Dahlin, 2011). Fiber 

diameters in nanoscale mimic the collagen fibrils and allow cell adhesion to multiple 

electrospun fibers instead of many cells adhering to one microfiber (Pham, 2006). 

Electrospinning is using high electric field intensity which is affecting surface 

of polymeric solution. Electric forces create instabilities on the polymeric solution 

surface and when it reaches its critical values, the polymeric jet appears. During 

process, the most of the solvent has been evaporated and dry nanofibers are collected 

on the counter electrode. There are several physical and chemical parameters which 

affect this process. These parameters bring some complexity but as well some flexibility 

for possible modifications. One can for example control the fibrous diameter or porosity 

by the usage of specific solvent, molecular weight and concentration of polymer 

together with air humidity (Yarin, 2014). 

 

2.1.2 Cells 

The interaction of the cells with scaffold requires a complex assessment 

before implantation into the body. The thesis deals with so called in situ tissue 

engineering explained previously in subchapter 2.1 assuming that the cells will colonize 

the scaffold after implantation. However, the first tests with new materials have to be 
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tested in laboratory conditions using cell lines. In this case, cells serve as a tool 

for prediction of regeneration and engraftment of the scaffold following implantation. 

Assessment of biocompatibility of materials requires standard tests defined by the 

legislation. Polymers used in the thesis have been approved by FDA or acquired CE 

mark so their safety has been proved by companies or has been previously published 

by other groups (Bertleff, 2005; Sun, 2006). Biocompatibility testing was designed 

in order to verify the cytocompatibility of electrospun fibers made from these polymers 

by using fibroblast cell line. For specific application in cardiovascular system, 

the scaffolds were also tested using endothelial cell line. Successful endothelialization 

of the lumen is the key factor for ensuring antithrombotic surface of implanted graft.  

Scaffolds interacting with blood also require hemocompatibility testing 

for prediction of interactions between blood and the material. For this purpose,  

a part of complex hemocompatibility assessment, the scaffolds were incubated 

with thrombocytes predicting their thrombogenic potential that is prone to occlusion 

in small diameter vascular grafts.  

 

Methods for biocompatibility assessment 

Assessment of scaffold biocompatibility could be done in static or dynamic 

conditions. The static incubation of materials with certain cell lines was used 

for assessment of cellular adhesion and proliferation. Testing in dynamic conditions 

requires the usage of bioreactors and more closely simulate the natural environment. 

The construction of a bioreactor is challenging since many aspects has to be taken 

into account such as sterilization of the device, placing the bioreactor system 

into the incubator ensuring temperature of 37°C and 5% CO2, flow of the medium 

through the tested scaffold etc.  

Composition and morphology of tested materials plays an important role in cell 

behavior. Assessment of cell response to materials has to be performed using 

combination of techniques used in tissue culture laboratory. Measurement of cellular 

metabolic activity reflects the cell count so these methods result in quantitative 

evaluation. Metabolic assays are carried out after certain time of incubation  

(in the thesis after 1, 3, 7 and 14 days) so the proliferation rate of the cells could be 

estimated and materials cultured under the same conditions could be compared. 

Metabolic tests such as MTT test utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
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2H-tetrazolium bromide measures the reduction of tetrazolium salt to formazan 

indicating normal cell metabolism. There is a relationship between number of cells 

and the measured absorbance nevertheless the results are presented as measured 

absorbance of reduced formazan (Freshney, 2010). The precise cell number could be 

more precisely evaluated by DNA quantification. DNA content is measured using 

specific device spectrofluorimeter that is not available in the laboratory of tissue 

engineering in TUL. Therefore, metabolic test MTT was used for quantification 

of cellular proliferation rate after culturing of the cells with tested materials.  

Microscopic techniques are another useful tool of evaluation of interactions 

between cells and materials. The disadvantage of microscopic methods is their 

qualitative character. The observation of cellular shape and specific cellular response is 

described from pictures depicting cells adhered on materials. Fluorescence microscopic 

techniques enable the visualization of certain structures within the cells. Cellular 

spreading within the scaffold could be evaluated by staining of the cell nuclei 

by fluorescence stains binding to nucleic acids such as propidium iodide (PI) or 2-(4-

amidinophenyl)-1H -indole-6-carboxamidine known as DAPI. The number of cell 

nuclei per specific area could be quantified and comparison of cells adhered to scaffold 

could be carried out. This quantification is possible when cells adhered on the surface 

of the material where automated image analysis could be used. When dealing 

with electrospun fibrous layers, the cells have a tendency to colonize both sides 

of tested scaffold and growth into the inner parts. The fluorescence pictures do not 

allow the accurate automated quantification of cells therefore alternative approaches 

were employed. Manual counting of the cells per field of view was used 

for quantification of the cells per specific area in the experimental section of the thesis. 

Scanning electron microscopy (SEM) allows the observation of single cells 

as well as monolayer of cells on the scaffold surface with high magnification. The rate 

of cellular spreading corresponds with the adhesion of the cells to the surface. When 

the cells are rounded and small-sized, the adhesion to the material is weak. On the other 

hand, cells largely spread indicate satisfactory cell adhesion to the material. Evaluation 

of specific cellular shape requires the knowledge of normal cell morphology. 

After the cells adhere to materials, the proliferation rate could be estimated by the area 

occupied by these cells. Nevertheless, quantification is not usually possible due 

to the high magnifications used in SEM. Representative pictures are presented in order 

to depict the colonization of tested scaffolds. 
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Ideal scaffolds support cell adhesion within hours after seeding. When cells 

create strong adhesion, the process of their proliferation could start and confluent layer 

of the cells is created during the cultivation time. This process is detected by increasing 

metabolic activity of the cells measured by MTT test after certain period of incubation. 

Cell morphology and spreading is also observed by microscopic techniques that could 

be in agreement with MTT test results (more cells are observed with higher metabolic 

activity measured by MTT).  

 

Hemocompatibility assessment 

Thrombogenic potential of materials is a challenging question that has been 

investigated by other authors. The main function of platelets is the formation 

of mechanical plugs during the normal response to the vessel wall injury. Platelets bind 

to extracellular matrix components such as fibrin, collagen and laminin, 

to microorganisms, macrophages and surfaces of prosthetic devices. When platelets 

adhere to such structures, they change their regular discoid shape to irregular one 

with extrusion of many pseudopodia. Therefore the change of platelet morphology is 

a useful tool in evaluating of thrombogenicity of materials. The outermost layer 

of platelets is made from glycoproteins (GP) and contains various receptors. 

For example GP Ia/IIa facilitates adhesion to collagen, GP Ib allows adhesion 

to von Willebrand factor and the vascular subendothelial components and GP IIb/IIIa 

facilitates platelet-platelet interactions by fibrinogen ligands. Another surface receptor 

P-selectin is capable of binding to neutrophils and monocytes. P-selectin is located 

in resting platelets in the membrane of the alpha granules but after the platelets are 

activated, P-selectin is expressed also on plasma membrane. Platelet activation that 

follows their adhesion is accompanied by degranulation of platelet granules 

and releasing of proteins such as platelet factor 4, platelet derived growth factor, 

fibrinogen, von Willebrand factor, fibrinogen and other clotting factors that accelerate 

the activation of other platelets and contribute to platelet aggregation (Kamath, 2001). 

Platelet adhesion and change in shape are the initial steps towards the development 

of thrombus therefore the assessment of thrombogenic potential of tested materials is 

based on evaluation of platelet shape (qualitative data) and measurement of their 

metabolic activity by MTT test that enables quantification.  
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Platelets are fragments of cytoplasm derived from the megakaryocytes 

of the bone marrow. Their life span is about 8-10 days. Resting platelets have discoid 

shape with smooth, rippled surface of the size between 1 and 2 μm (Kamath, 2001). 

Incubation of materials with thrombocytes lead to decreasing of metabolic activity since 

platelets do not contain a nucleus therefore they are not able to proliferate such as cell 

lines used in previous experiments. The highest metabolic activity is detected 

immediately after the interaction with the materials followed by decreasing of metabolic 

activity reflecting their physiological life time. Higher absorbance measured by MTT 

test after 2 hours of incubation with materials and the rate of their decreasing metabolic 

activity indicates higher thrombogenic potential of materials. 

 

2.2  Small diameter vascular grafts 

 Tissue engineering strategies has some common features that have already 

been described. When designing scaffolds for certain application, specific aspects have 

to be considered. Since tissue engineering rises from the idea of mimicking native 

extracellular matrix, composition and structure of vessel wall components is depicted 

in figure 3. Vascular tissue engineering brings many issues that have to be overcome 

since there is no commercially available vascular graft that will fulfill all requirements 

summarized in further sections. History of blood vessel substitutes is described 

and the most common cause of failure of currently used grafts is outlined. 

One of a promising modification of vascular graft is the enrichment of nitric oxide 

donors that have many beneficial effects on cardiovascular system. The background 

of nitric oxide is also a part of further chapters in theoretical as well as in experimental 

section. 

 

2.2.1 Structure of native blood vessels 

The native artery is an extremely complex multi layered tissue composed 

of a number of different extracellular matrix proteins and cell types as depicted in figure 

3. In order to withstand the high flow rate, high pressure and pulsating nature of blood 

flow, an artery is composed of three distinct layers called the tunica intima, tunica 

media and tunica adventitia. Each of these layers has a different composition and plays 

a different physiological role (Sell, 2009). The intimal layer of the blood vessels 
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consists of a single layer of endothelial cells (ECs) lining the vessels internal surface 

(Nerem, 2001). This layer is in contact with the bloodstream therefore it provides 

a critical barrier to platelet activation. Intact endothelium is the only one known non-

thrombogenic surface. Endothelial cells prevent thrombocytes from contact 

with prothrombotic elements such as collagen in the subendothelium. The endothelial 

cell reacts with physical and chemical stimuli within the circulation and regulates 

hemostasis, vasomotor tone, and immune and inflammatory responses. In addition, 

the endothelial cell is crucial in angiogenesis and vasculogenesis (Sumpio, 2002). ECs 

are attached to a laminin-rich basement membrane. The ECM in tunica intima provides 

critical support for vascular endothelium and it influences ECs migration, invasion, 

survival and organization. ECs are attached to ECM by cell-surface integrins. Cell 

adhesion can be supported by interstitial fibrin and collagen I (Davis, 2005).  

The tunica media begins in the internal elastic lamina that separates the tunica 

intima and the tunica media. The middle layer is composed of smooth muscle cells 

(SMCs) with many functions including vasoconstriction and dilatation, synthesis 

of various types of collagen, elastin, and proteoglycans and vessel remodeling 

after injury (Rensen, 2007). The tunica media is organized into concentric lamellar units 

composed of elastic fibers and SMCs, separated by an interlamellar matrix containing 

collagens, proteoglycans and glycoproteins. Collagen fibers provide tensile stiffness 

whereas elastin gives the vessel the required elastic properties. Compressibility 

of the vessel and the deformation against pulsating blood flow are provided 

by proteoglycans and glycoproteins. In vitro studies confirm the involvement of ECM–

SMC signaling in establishing and maintaining the mature tubular structure (Brooke, 

2003). The composition of ECM in the tunica media regulates the activity 

and phenotype of SMCs (Patel, 2006).  

The outermost layer tunica adventitia extends beyond the external elastic 

lamina and is composed mainly of randomly arranged collagen fibers and fibroblasts 

(Kolacna, 2007). This outermost layer is nourished by vasa vasorum, thin capillaries 

providing an important source of nutrition (Williams, 2006). 
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Figure 3: The structure of native blood vessel composed of 3 distinct layers: tunica 

intima, tunica media and tunica adventitia (Sarkar, 2006). 

 

2.2.2 Requirements for small diameter blood vessel replacement 

The issue of small diameter blood vessel replacement remains a major challenge 

yet to be overcome in the production of appropriate vascular grafts. Specific properties 

of such grafts have to be maintained not only in time of surgery but also in a long term 

after the implantation. The production of vascular grafts has to be cost effective, 

environmental friendly with consistent quality. The final product has to withstand 

selected sterilization technique. The graft should be available in different sizes, various 

inner diameters, wall thickness and length. During implantation, the graft has to be 

easily sutured and provided initial mechanical strength to withstand blood pressure 

with no bleeding. An ideal vascular graft must meet an extended list of criteria 

including the strength and elasticity of the vessel wall, biocompatibility, blood 

compatibility and biostability in the long term (Greenwald, 2000; Arrigoni, 2006). 

It also needs to adapt to the hemodynamic conditions. Vascular graft should enable 

the regeneration of the vessel wall therefore inert materials are replaced 

by biodegradable ones. The materials have to be non-immunogenic and non-toxic 

(Thomas, 2003; Kakisis, 2005).  

One of the important properties that influenced cellular colonization of vascular 

grafts is surface wettability. It was reported that commercially used expanded 

polytetrafluorethylene (ePTFE) and polyethylene terephtalate (PET) vascular grafts 

work well for large diameter blood vessel substitutes but they fail in small diameter 

applications because of their hydrophobicity (Jardine, 2005). In general, synthetic 
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polymers are too hydrophobic (contact angle ˃ 100°). Cell adhesion to the biomaterial is 

mediated by molecules of ECM like fibronectin, vitronectin, collagen, laminin, and 

fibrin. These adhesion molecules are spontaneously adsorbed from the body fluids or 

culture media or are deposited on the cells by themselves. If the material is too 

hydrophobic, these molecules are adsorbed in a denaturated or rigid form. Their 

geometrical conformation does not allow cells to bind to the surface because of specific 

sites like RGD-peptides are less accessible to integrins (Bacakova, 2011).  

Increasing of surface wettability does not influence only cell adhesion; 

hydrophilic surface may also confer thromboresistance of the vascular graft. But 

the thrombogenicity depends more on type of material rather than on surface properties 

(Kallmes, 1997). One of the ways of reducing hydrophobicity of materials is 

the covalent linkage of hydrophilic groups, for examples polyethylene glycol (Karrer, 

2005) or polyethylene oxide (Bergstrom, 1994). Another method based on plasma 

treatment was used by Valence et al. Vascular grafts made from PCL underwent a cold 

air plasma treatment that lead to significantly increased hydrophilicity of the surface. 

The scaffolds were tested in vitro  using smooth muscle cells showing more spread 

morphology of the cells compared to small, rounded cells cultured on the scaffolds 

without the plasma modification. After implantation into vascular position, the plasma 

treated scaffold became more infiltrated with the cells than non-treated one suggesting 

that increased hydrophilicity could accelerate tissue regeneration (Valence, 2013). 

Other properties that have to be thoroughly considered are mechanical qualities. 

Vascular grafts should match those of natural blood vessels but currently used 

commercial grafts made from PET or PTFE have much stronger mechanical properties. 

Abdominal aorta in longitudinal direction possess tensile strength of 1,47 MPa 

compared to commercial graft Teflon TF-208 having tensile strength of 85,2 MPa 

(How, 1992).  

After implantation, the graft will provoke an in vivo response known as graft 

healing that could be either transanastomotic or transmural. Transanastomotic healing 

takes place from adjacent native arteries through newly-emerged anastomosis 

between implanted graft and arteries as depicted in figure 4. Smooth muscle cells 

in the media of native artery start to proliferate and migrate into the intima 

and to the graft. Amongst relevant factors playing a crucial role in anastomotic healing 

belongs porosity of the graft and type of animal model. There is a remarkable difference 

between human and experimental models in terms of endothelialization rate 
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(Beyuidenhout, 2004). In humans, the endothelialization occurs only closely 

to the anastomosis (Sauvage, 1971). Even after years of implantation, 

the transanastomotic endothelialization did not exceed 1-2 cm (Berger, 1972). 

Transmural healing occurs when long vascular grafts are implanted such 

as femoropopliteal bypasses that could be up to 60 cm long where transanastomotic 

endothelialization in humans is limited. Transmural healing also depends on graft 

structure and proliferative and migratory capacity of the host cells. The newly formed 

tissue should consist of smooth muscle cells secreting its own extracellular matrix 

and development of vasa vasorum that will nourish the newly restored vessel 

(Beyuidenhout, 2004). 

 

 
Figure 4: Schematic picture of the difference in transanastomotic endothelialization 

in animal models (bottom) and in humans (top) where permanently non-endothelialized 

graft section are present. (Zilla, 2007). 

 

Spontaneous endothelialization of vascular graft lumen occurs by direct 

migration from the anastomotic edge, transmural migration and by cell transformation 

from endothelial progenitor cells (EPC). Despite the fact that endothelialization happens 

in animal models such as rats, rabbits and pigs (Pektok 2008; Zheng, 2012; 

Mrowczynski, 2014) there are difficulties in achieving spontaneous endothelialization 

in humans. In case of PTFE there is a little evidence of any endothelialization (Guidon, 

1993) whereas knitted Dacron enables the formation of a patchy endothelial layer 

after implantation in humans (Shi, 1999). Pektok et al. compared healing characteristics 
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of vascular grafts made from electrospun PCL having average fiber diameter of 1,9 μm 

and commercially available ePTFE after implantation in rats. Electrospun PCL conduit 

showed faster endothelialization, better cellular infiltration accompanied 

by neovascularization after 6 months of implantation. However, the authors comment 

on the necessity of testing these grafts in long term studies using higher animal models 

(Pektok, 2008).   

 

 
Figure 5: Prediction of vascular wall regeneration following implantation 

of synthetic vascular graft (Wang, 2014). 

 

There is a gap of knowledge in tissue remodeling process following 

the implantation of vascular graft in vivo. Proposed remodeling process is described 

by Wang et al. in figure 5. Macrophages are the first cells infiltrating the graft. 

Macrophages could express either phenotype M1 (inflammatory) or phenotype M2 

(anti-inflammatory, immunomodulative) that is responsible for successful tissue 

remodeling process. Inner surface of the graft is being endothelialized within months 

depending on animal model. Smooth muscle cells will penetrate the graft ensuring 

the physiological function of implanted graft. In the adventitial site, vasa vasorum will 

develop and nourish the newly created vessel. Some adverse effects such 

as calcification or foreign body response can be observed (Wang, 2014).  

The explanation of early cell-material reaction as well as long-term outcomes have to be 
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done in order to create a synthetic small caliber graft, resistant to thrombosis 

and biocompatible, that would have some advantages over traditional autologous grafts 

– an unlimited availability and consistent quality and patency.  

 

2.2.3  History of blood vessel tissue engineering 

The idea of small diameter blood vessel tissue engineering came from Weinberg 

and Bell, 1986. Their group reported the first tissue-engineered blood vessel created 

from collagen gels combined with bovine endothelial cells, fibroblasts and smooth 

muscle cells (Weinberg, 1986). In 1998, L'Hereux et al. created a tissue-engineered 

blood vessel without supporting material. Human vascular smooth muscle cells 

and fibroblasts separately produced cohesive cellular sheets. By wrapping these two 

sheets, a tubular scaffold was created and its lumen was seeded with endothelial cells. 

This graft had high burst strength, positive surgical handling and a functional 

endothelium (L'Hereux, 1998). Niklason et al. described the first successful 

implantation of tissue-engineered vascular graft. Smooth muscle cells were seeded 

on a polyglycolic acid mesh and cultivated in a bioreactor. After 8 weeks, a lumen 

of the vessel was seeded with endothelial cells. This graft was implanted to mini pigs 

showing patency up to 4 weeks (Niklason, 1999). Watanabe et al. introduced 

a biodegradable polymer scaffold seeded with mixed cells obtained from femoral veins. 

After 1 week of in vitro cultivation, the scaffolds were implanted into dogs. 

After 6 months, the tissue-engineered vessel contained a sufficient amount of ECM 

without occlusion or aneurysm formation. In addition, an endothelial lining was present 

in the luminal surface (Watanabe, 2001). The first clinical trial of a tissue-engineered 

blood vessel in a human was carried out by Shin'oka et al, 2001. Cells were isolated 

from a peripheral vein of a 4-year-old patient. A biodegradable polymer scaffold was 

seeded with cells and after maturation the graft replaced an occluded pulmonary artery. 

The patient showed no evidence of either occlusion or aneurysm change after 7 months 

(Shin'oka, 2001).  

 The above mentioned studies have the disadvantage of long term vessel 

maturation in vitro. To overcome the issue of endothelial cell isolation and proliferation 

in in vitro conditions, the approach of tissue engineering in situ seems to be more 

suitable for vascular replacement. If the structure of the scaffold would mimic the native 

extracellular matrix, cells will infiltrate the graft and the process called remodeling will 
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regenerate vessel as depicted previously in figure 5. There are discussions whether this 

approach could be used in humans despite there are many successful studies in rats 

(Notellet, 2009; Valence, 2012; Valence, 2013; Wang, 2014), rabbits (Tillman, 2009; 

Zheng, 2012) and pigs (Mrowczynski 2014). Zilla et al. summarized wrong attempts 

in in vivo testing of vascular grafts in terms of inappropriate animal models used 

or different place of suturing in the body. The studies using inappropriate locations 

of the graft as well as animal with different rate of endothelialization lead 

to misrepresented results when the grafts were transferred to human clinical praxis 

(Zilla, 2007).  

 

2.2.4  Currently used vascular grafts 

Vascular grafts could be classified as small caliber diameter (˂ 6 mm), medium 

size (6-8 mm) and large caliber diameter (˃ 8 mm) (Chlupac, 2009). The latter are 

successfully used in clinical praxis for years but there is still a pressing need to develop 

small diameter vascular grafts that can replace failed small diameter arteries when there 

is an absence of endogenous grafting material. Vascular grafts could be classified 

into two groups based on their material composition - biological and synthetic. 

Biological grafts are usually the first choice in clinical use. Autologous veins (f.e. 

saphenous, jugular) are preferred for bypass grafting of arteries (coronary, carotid, renal 

etc.). However, the usage of veins in arterial circulation could cause deterioration 

of local hemodynamic forces. Autologous arteries such as internal mammary artery 

could serve as a biological graft as well but they are not readily available as autologous 

veins (Beyuidenhout, 2004). Coronary artery bypass grafting has constantly been 

the mainstay of surgical revascularization of coronary artery disease. The most widely 

used conduits are either autologous internal thoracic arteries, saphenous veins or radial 

arteries. These grafts provide mechanical stability and natural antithrombogenicity 

(Angelini, 1989; Cameron, 1996). However, increase in the indications for the surgical 

revascularization, elderly patients’ population and increased number of re-operations 

could be limiting for the availability of suitable autologous grafts. It is the problem 

of approximately 25% of all patients indicated to a coronary bypass (Hasegawa, 2005). 

A relatively significant group of patients have no vein grafts suitable for a coronary 

bypass owing to pre-existing vascular disease, vein stripping or vein harvesting (Wang, 

2007). Unavailability of the autologous grafts could be an invitation for the use 
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of prosthetic conduits. 

Synthetic grafts used in clinical praxis are represented by biostable grafts made 

from expanded polytetrafluorethylene and polyethylene terephtalate. Biostable materials 

are permanently implanted into the body since it has been recognized that no material is 

completely inert upon implantation (Beyuidenhout, 2004). In the last years, new 

biodegradable materials are under development amongst which polyurethane (PUR) 

and biodegradable polyesters has been successfully investigated. The advantages, 

disadvantages and healing characteristics of clinically used synthetic vascular grafts are 

summarized in table 1. 

 

Table 1: Synthetic vascular grafts in clinical use (Chlupac, 2009). 

Synthetic vascular grafts 

 PET (Dacron, Terylen) ePTFE (Teflon, Gore-

Tex) 

Polyurethane 

Woven Knitted Low-

porosity 

High 

porosity 

Fibrillar Foamy 

Advan-

tages 

Better 

stability, lower 

permeability 

and less 

bleading 

Greater 

porosity, 

tissue 

ingrowth and 

radial 

distensibility 

Biostability, 

no dilation 

over time 

Biostability, 

better cell 

ingrowth 

Compliance, good 

hemo- and 

biocompatibility, less 

thrombogenicity 

Disad-

vantages 

Reduced 

compliance 

and tissue 

incorporation, 

low porosity, 

fraying at 

edges, 

infection risk 

Dilation over 

time, infection 

risk 

Stitch 

bleeding, 

limited 

incorporation, 

infection risk 

Late 

neointimal 

desquamation, 

infection risk 

Biodegradation in first 

generation, infection 

risk, carcinogenic? 

Healing Inner fibrinous 

capsule, outer 

collagenous 

capsule, scarce 

endothelial 

islands 

Fibrin luminal 

coverage, very 

sporadic 

endothelium, 

transanasto-

motic 

endotheliali-

zation in 

animals 

Luminal fibrin 

and platelet 

carpet, 

connective 

tissue capsule 

with foreign 

body giant 

cells, no 

transmural 

tissue 

ingrowth 

Macrophages 

and 

polymorphonu

clear invasion, 

capillary 

sprouting, 

fibroblast 

migration, 

certain 

angiogenesis, 

thicker 

neointima, 

endothelializat

ion in animals 

Thin inner 

layer, 

outside 

foreign 

body cells, 

limited 

ingrowth 

Better 

ingrowth 

with 

bigger 

pores 
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Polyethylene terephtalate is melt-spun and drawn into highly crystalline 

filaments having the diameter of 10-20 μm with high tensile strength. These filaments 

are bundled into multifilament yarns and then woven or knitted to form of tubular 

or bifurcated grafts. Woven prostheses possess poor compliance with limited 

elongation. Knitted PET grafts have good dimensional stability and suturing properties. 

Both types of PET grafts are often crimped to improve strength in radial direction 

and to increase elongation (Beyuidenhout, 2004). Another common modification of PET 

grafts is sealing with collagen, albumin or gelatin to eliminate blood permeability (von 

Oppel, 1998). Vascular grafts made from PET are used for large-diameter vascular graft 

applications with high flow such as aortic replacement. 

Polytetrafluoroethylene is an inert fluorocarbon polymer with high degree 

of crystallinity. Expanded PTFE grafts are produced by extrusion and subsequent 

sintering. This non-biodegradable polymer is widely used for lower-limb bypass grafts 

with the inner diameter between 7 and 9 mm. These grafts are rigid in comparison 

with the elasticity of the host artery (Tai, 2000; Salacinski, 2001).  

Vascular grafts made from polyurethanes possess biocompatibility 

and elastomeric properties. The structure could be either fibrillar or foam-type. 

Although many grafts made from polyurethane have been developed using different 

fabrication techniques (f.e. weaving, knitting, electrostatic spinning, melt spinning), 

they have not been widely accepted for clinical use up to now (Beyuidenhout, 2004). 

Biodegradable polyesters, such as poly-ε-caprolactone or poly-L-lactic acid 

have been successfully used in research for tissue engineering applications, including 

vascular replacement (Vaz, 2005; Notellet, 2009; Dong, 2008; He, 2008; Wu, 2010; Hu, 

2012; Huang, 2012). The advantage of biodegradable polymers instead of inert one has 

already been mentioned in the paragraph 2.1.1. Therefore these type of materials were 

used in experimental part of the thesis - namely PCL and copolymer composed 

of polylactic acid and polycaprolactone (PLC). Polymer PCL has been reported by my 

colleagues for different tissue engineering applications such as bone tissue engineering 

(Rampichova, 2013; Erben, 2015). Based on literature, electrospun vascular grafts made 

from PCL were reported by several groups to be a promising candidate for vascular 

replacement (Pektok, 2008; Notellet, 2009). PCL possesses intrinsically slow 

degradation rate, desirable mechanical properties, and general biocompatibility 

(Woodruff, 2010). However, insufficient regeneration of the vascular wall as well as 
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graft calcification was reported by Valence et al. (2012). Therefore novel material 

besides PCL was tested in order to improve function of such grafts. 

Copolymer PLC composed of polylactic acid and polycaprolactone in different 

ratios has also been reported as a good candidate for vascular graft replacement. 

Mo et al. studied electrospinning conditions of copolymer PLLA and PCL in ration 

75/25 proving its biocompatibility with endothelial cells and smooth muscle cells 

in vitro (Mo, 2004). Dong et al. tested copolymer PLLA and PCL in ration 70/30 

with endothelial cells for 105 days proving its long-term compatibility 

with the endothelial cells that is a crucial task for vascular graft function 

after implantation (Dong, 2008). He et al. rotationally seeded endothelial cells 

in the lumen of the graft made from copolymer PLLA and PCL in ration 70/30. 

After 10 days endothelial cells covered the lumen of the prepared graft during culturing 

in vitro. This construct was subsequently implanted in the rabbit showing patency 

for 7 weeks (He, 2008). 

The final vascular graft could be designed as multi layered tube that will match 

the properties of native tissues. Different polymers, fabrication techniques as well as 

drug delivery systems could be employed in order to produce ideal vascular graft. 

Such approach has been published for example by Han et al. The scaffold was prepared 

by electrospinning of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) 

(PELCL), copolymer of polyglycolic acid and polylactic acid (PLGA) and PCL 

to ensure sufficient mechanical properties. Delivery of vascular endothelial growth 

factor (VEGF) and platelet-derived growth factor (PDGF) incorporated into the inner 

and middle layer of the graft supported new blood vessel formation and maturation with 

better results when compared in vivo as a replacement of rabbit common carotid artery 

for 8 weeks (Han, 2013). Similar study using double layered electrospun scaffold was 

performed by Zhang et al. The combination of gelatin, elastin, PCL and poliglecapron 

(PGC) was used to promote endothelialization. Human aortic endothelial cells favored 

the biomechanics and biochemistry of such scaffold for at least 11 days (Zhang, 2010). 

A three layered electrospun scaffold made from PCL, collagen and elastin was 

described by McClure et al. The combination of polymers led to construction 

of vascular graft with distinct properties for each layer such as fiber diameter, suture 

retention and compliance. Mathematical modeling was implemented in order to achieve 

the best mechanical combination of materials and to help the prediction of future graft 

optimization (McClure, 2010). Fiber orientation in vascular graft was studied 
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by Wu et al. through the combination of regulating the electric field and the rotation 

of collector leading to tubular scaffolds with different nanofiber orientation 

(circumferential, axial and its combination). They stated that such a complex nanofiber 

orientation can be constructed to achieve desirable macroscopic mechanical property 

and cell responses along specific directions (Wu, 2010). 

 

2.2.5 Failure of small diameter vascular grafts 

Biological vascular grafts failed mostly because of degenerative changes. These 

small-diameter vascular grafts proved excellent anti-thrombogenicity in in vitro studies, 

but no long term patency have been reported in coronary artery surgery. A human 

umbilical vein graft (Biograft, Meadox Medicals, USA; 4 mm diameter) demonstrated 

angiographic graft patency rates of 46 % within 3-13 months (Silver, 1982). A treated 

bovine IMA graft (Biocor BIMA Biograft, Biocor laboratory, 4 and 5 mm of diameter) 

was implanted in the coronary artery position of 20 patients (Vrandecic, 1987). Graft 

patency was confirmed in two patients at 6 months. A dialdehyde starch-treated bovine 

artery grafts (Bioflow, Bio-Vascular Inc., USA) have been used over the past few years 

(Abbate, 1988; Suma, 1991). The only one long-term follow-up clinical report was 

available and it reported graft patency rates of 16 % within 3-23 months (Mitchell, 

1993). These biological grafts have a tendency to undergo degenerative changes 

and dilatation (Tomizawa, 1994). 

The main synthetic graft materials are successfully used in large diameter blood 

replacement. However, their usage in small diameter blood vessel replacement is 

impossible due to the early occlusion after implantation. The major causes of graft 

failure have been thrombosis and intimal hyperplasia (Esquivel, 1986). 

After implantation, plasma proteins immediately adsorb to the lumen of vascular graft 

presenting binding sites for integrin receptors found on platelets. Apart from that fact, 

platelets adhere to positively charged surfaces due to their own negative charge. 

Thrombocytes also preferentially attach to hydrophilic surfaces. Therefore negatively 

charged hydrophilic materials could contribute to prevent acute thrombosis. Endothelial 

cell lining is known to provide a constantly tuned non-thrombogenic environment. 

There are numerous biochemical pathways by which endothelial cells modulate plasma 

protein and platelet adhesion. Basement membrane possesses moderate thrombogenicity 

whereas collagen in the subendothelial tissue is highly thrombogenic (Sarkar, 2006). 
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In small diameter vessel, the blood flow is lower than in vessels with larger diameter 

that contributes to thrombogenic potential as well together with hemodynamic changes 

near anastomosis (Kapadia, 2008). 

Another complication is the development of intimal hyperplasia that is 

characterized by increased smooth muscle cell migration, proliferation, and synthetic 

activity in the inner region of a vascular graft, leading to progressive intimal wall 

thickening and eventual stenosis (Lemson, 2000; Ducasse, 2003). 

 The poor mechanical features and the lack of endothelial cell lining of the graft 

lumen are the crucial factors causing the poor patency of ePTFE vascular grafts (Berger, 

1972). Grafts made from PET have shown poor patency rates when used in small 

diameter sizes or in low-flow locations (Xue, 2003; Soldani, 2010). Polyurethanes have 

been investigated as an alternative graft material more compliant than PET and PTFE. 

Thus, their mechanical and flow parameters are better matched to those of the native 

vasculature. Early attempts using polyurethane led to high rates of aneurysm formation 

and thrombosis compared with conventional prosthetic grafts (Brothers, 1990). 

However, some modified forms of polyurethane grafts based on nanocomposite 

polymers are more resistant to biodegradation (Giudiceandrea, 1998; Seifalian, 2003). 

Synthetic materials available nowadays have not been successful in coronary 

artery bypass so far because of their poor long-term patency rates. Attempts to improve 

synthetic grafts have included embedding them with anti-thrombotic drugs, seeding 

with endothelial cells or developing new biomaterials. These grafts had better results 

than standard prostheses, but it was marginal. Heparin was rapidly lost to plasma 

(Engbers, 1991). The other grafts have been tested with dipyridamole, hirudin, tissue 

factor pathway inhibitor or non-thrombogenic phospholipid polymer. The surface 

texture of prostheses has also been altered in an attempt to increase patency 

and promote endothelialization (Hoenig, 2005).  

 

2.2.6 Modification of vascular grafts by nitric oxide releasing substances 

 Modification of vascular grafts by nitric oxide (NO) releasing substances 

improves the biocompatibility of vascular grafts by stimulation of endothelial cell 

proliferation and inhibition of platelet aggregation and adhesion, inhibition of vascular 

smooth muscle cell proliferation and migration and leukocyte chemotaxis and activation 
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(Ahanchi, 2001). Therefore special attention was focused on this type of modification 

that is closely connected to the third experimental chapter. 

The discovery of the physiological and pathophysiological roles of nitric oxide 

(NO) began in 1980s. In 1992, NO was called the molecule of the year by the editors 

of the journal Science. Later on in 1998, R.F. Furchgott, L.J. Ignarro and F. Murad were 

awarded the Nobel Prize in physiology and medicine for their contribution 

to elucidating the role of NO in the functions of living organisms (Wang, 2005). 

NO is a diatomic free radical, known as the endothelium-derived relaxing factor 

(EDRF). Endothelial cells produce NO that has many beneficial effects 

on cardiovascular system. NO is thromboresistant due to the inhibition of platelet 

aggregation, adhesion and activation (Radomski, 1987). The affects of NO differs 

for certain cell types in blood vessels. Whereas NO stimulates endothelial cell 

proliferation (Ziche, 1994) and prevents endothelial cells apoptosis (Tzeng, 1997), 

it also inhibits smooth muscle cells growth and migration (Garg, 1989; Mooradian, 

1995). NO possess anti-inflammatory properties due to the inhibition of leukocyte 

adhesion and migration (Lefer, 1997). The affects of NO are summarized in figure 6.   

 

 
Figure 6: Beneficial properties of nitric oxide (NO) in the vasculature. EC = 

endothelial cell; PLT = platelet; VSMC = vascular smooth muscle cell; WBC = white 

blood cell. The symbol of an arrow symbolizes the acceleration of action supported 

by NO whereas the symbol of a segment line means the suppression/inhibition 

of function by NO (Popowich, 2007). 
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 NO has limited solubility in water (2-3 mM), and it is unstable in the presence 

of various oxidants. This makes it difficult to introduce into biological systems 

in a controlled manner. Consequently, the development of chemical agents that release 

NO is important (Wang, 2005). One promising group of NO donors is S-nitrosothiols 

(RSNO), which can be readily incorporated into a polymeric vascular graft. 

S-Nitrosothiols are present in biological systems, where they serve as a reservoir 

and transporter of NO (Jourd'heuil, 2000). S-Nitroso-N-acetyl-D-penicillamine (SNAP) 

is a compound from the group of S-nitrosothiol that has been used in NO-releasing 

polymers having a capacity for low and controllable NO release (Gierke, 2011). 

The S-NO bond can be cleaved through several mechanisms. These include 

the reduction of Cu
2+ 

to Cu
+
 that reacts with RSNO to release NO, forming a sulfhydryl 

anion product and regenerating Cu
2+ 

(Dicks, 1996). Physiologically prevalent ascorbate 

ions are sufficient reducing agents to generate Cu
+
 from Cu

2+
. Another mechanism 

of NO release is homolytic cleavage of the S-NO bond by light (Frost, 2005). 

Therefore, the level of NO release in vivo is highly dependent on the presence of Cu
2+

 

and ascorbic acid when using S-nitrosothiols. High levels of ascorbic acid (millimolar 

concentration) are found in cells such as leucocytes and tissues whereas in extracellular 

fluids such as plasma the levels of ascorbic acid are low (micromolar concentration). 

The total body content of ascorbic acid ranges between 300 mg to about 2 g and is 

strongly dependent on people life style (Jacob, 2002). The reference value of copper 

in adult plasma has been reported as 16,5 ± 8,6 µmol/l (Rukgauer, 1997). 

 Incorporation of S-nitroso-N-acetylpenicillamine into a polymer was described 

by Brisbois et al., who showed that SNAP-doped polymers exhibited improved 

hemocompatibility for a wide variety of blood-contacting materials (Brisbois, 2013). 

NO-releasing vascular grafts that incorporate diazeniumdiolates, another group of NO 

donors, have been described by Fleser et al. Using a polyurethane vascular graft 

containing the NO donor dialkylhexadiaminediazeniumdiolate, the graft was implanted 

for 21 days in a sheep arteriovenous bridge graft model.  It was found to have higher 

patency compared to controls (Fleser, 2004). 

NO-eluting polymers are a promising, albeit challenging, family of implantable 

biomaterials.  The use electrospinning technology enables entrapment of NO donors 

in a polymer matrix, thereby providing a protected NO reservoir and making long-term 

release possible (Koh, 2013; Chen, 2014) Delivery of NO at physiological levels is 

crucial for device efficacy. Endothelial cells are believed to produce NO surface fluxes 
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of 50400 pmol cm
-2

 min
-1 

(Vaughn, 1998). An ideal vascular graft should produce 

an NO flux at physiological levels for several months. This promises to mitigate 

harmful inflammatory responses and simultaneously encourage cellular infiltration, 

re-endothelialization, and tissue regeneration. There has not been a NO-releasing 

compound or incorporated polymeric material that would meet these requirements. 

For instance, Hetrick et al. introduced NO-releasing implants containing diazenium-

diolates. However, 50% of the total NO was released after 5 h and more than 99% 

of the available donor was exhausted after 72 h (Hetrick, 2007). Nichols et al. stated 

in their work the need for materials with NO release profiles exceeding 2 weeks 

in duration (Nichols, 2012). Koh et al. used electrospun fibers with entrapped 

NO-releasing silica nanoparticles. Their electrospun polyurethane nanofibers exhibited 

a wide range of NO release totals with release durations up to 2 weeks (Koh, 2013). 

Fabrication of biodegradable synthetic vascular grafts seems to be a promising 

approach to generate appropriate scaffolds in terms of morphological similarity 

to the native ECM, appropriate bulk and surface properties. However, limitations 

in the healing response of electrospun vascular grafts made from PCL were described 

(Valence, 2012). To overcome the issues of thrombogenicity of the grafts, lack 

 of endothelialization of the graft lumen, intimal hyperplasia development as well as 

inflammatory reaction, the incorporation of nitric oxide releasing substances was 

introduced in the chapter 5 Vascular grafts releasing nitric oxide. 
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3 Synthetic vascular grafts preparation and testing 

 

The first section of experimental part is focused on production of vascular grafts 

made from biodegradable polyesters. The work is based on the study of native blood 

vessel structure that is followed by mimicking of certain structural patterns 

by electrospinning technique. Additional properties like surface wettability, thermal 

properties and mechanical behavior are investigated in relationship to the usage 

of these grafts in vascular tissue engineering. 

 

3.1 Histology of native blood vessel  

 First of all, the composition of native blood vessel was studied. 

One of the tested hypothesis rises from the idea of mimicking the natural environment 

of tissues in order to facilitate and support regeneration. Therefore, the tissue of interest 

(small diameter blood vessel) was characterized histologically and its structure was 

mimicked in further experiments using electrospinning technique. This section was 

carried out in cooperation with R. Domin from Pathology Department of Liberec 

Regional Hospital. 

 To prove the hypothesis of mimicking native ECM blood vessel components, 

a histological investigation of the carotid artery having similar internal diameter 

of 6 mm was carried out. Small diameter blood vessels were obtained from Liberec 

Regional Hospital. The human carotid artery as a representative specimen of small 

diameter blood vessel was fixed in formaldehyde followed by gradual dehydration 

with alcohol and soaking in toluene. Samples were embedded in paraffin and 3 µm 

sections were prepared for histological analysis. After removal of the embedded resin, 

the samples were stained with: Hematoxylin eosin (H&E) (a), Van Gieson staining 

specific for collagen (b), acidic orcein for elastin fibers detection (c) and specific 

staining for reticulin fibers (d). The stained samples were placed on slides and analyzed 

using Nikon ECLIPSE Ti-E/B light microscope. A thin section of the embedded tissue 

was prepared directly on the target for further SEM analysis. 

The main components of ECM such as collagen, elastin and reticulin fibers were 

studied as well as the arrangement of cells in the different layers as depicted in figure 7. 

The wall thickness of the analyzed samples varied from 400 µm to 1000 µm along 
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its length. The thickness of the innermost layer, tunica intima, is very thin having 

about tens of micrometers. The middle layer thickness is the most variable one having 

the thickness between 200 and 600 μm. The outermost layer, tunica adventitia, has 

the thickness of about hundred micrometers but its measurement is affected by the fact 

that the layer continuously passes to the adjacent tissues and its borders could not be 

accurately determined.  

 

  
Figure 7: Hematoxylin eosin staining (a), collagen (b), elastin (c) and reticulin fibers 

in the tunica intima (TI), tunica media (TM) and tunica adventitia (TA). Scale bars: 

100 µm. Collagen nanofibers arranged in microfibrous bundles are depicted 

in SEM picture intercalated in (b), scale bar: 10 µm. Black arrows in picture (c) 

indicate vasa vasorum in the tunica adventitia. 

 

Hematoxylin-eosin staining depicted in figure 7a provided information 

about the cell arrangement in the different layers. Endothelial cells create a single layer 

covering the luminal surface, whereas smooth muscle cells are organized into numerous 

layers inside the tunica media. The cross section of the smooth muscle cell nuclei shows 

their concentric arrangement which corresponds with the organization of collagen 

and elastin fibers inside the middle layer. The outermost layer, tunica adventitia, is 

composed of fluffy fibers with a few fibroblasts. Collagen frequently occurs in all three 



39 

layers of native blood vessel as shown in figure 7b. The collagen nanofibers are 

organized in micrometer scale bundles as depicted in the top right corner of the same 

picture. In the figure 7c, the vasa vasorum can be seen in the tunica adventitia which 

nourishes the outermost layer. Elastin forms an elastic layer between the tunica intima 

and the tunica media called the lamina elastica interna (figure 7c). Elastin fibers are 

also present in the tunica media and tunica adventitia and give the blood vessel 

the desired elastic properties. Reticulin fibers depicted in figure 7d are rarely found 

in all three layers of native blood vessels.  

 The native blood vessel is composed of 2 basic components: cells 

and extracellular matrix that creates a functional entity. When considering an ideal 

biomaterial, structures closely mimicking native ECM will enable remodeling process 

after implantation into the body. The ideal vascular graft replacement has to (1) enable 

endothelialization of the lumen, (2) allow smooth muscle cells infiltration and (3) 

possess adequate mechanical properties. Based on these assumptions, an ideal vascular 

graft was designed as a double layered graft with desired properties of each layer. It has 

been published that nanofibers promote cellular adhesion (Bacakova, 2011) therefore 

the inner layer is intended to be a nanofibrous layer that will facilitate endothelial cell 

adhesion and proliferation. The thickness of the inner layer is about tens of micrometers 

as in native vessel. The middle layer in the native blood vessel is composed of radially 

oriented collagen and elastin fibers and smooth muscle cells. The layer in the thesis is 

designed as a microfibrous layer that will enable cellular infiltration. Nanofibers 

supports cell adhesion; on the other hand, their small pore sizes do not enable cellular 

infiltration into 3D structure. Therefore the middle layer mimicking tunica media within 

blood vessels is designed as microfibrous layer with radially oriented fibers that will 

have sufficient strength and allow the elongation of the graft upon implantation into the 

blood flow. The thickness of the layer will be about hundreds of micrometers as 

in native blood vessel. There could not have been changes in the wall thickness 

between the bypass graft and vessel wall. Therefore, the thickness will be adjusted 

according to specific requirements of implantation site. Finally, the outermost layer is 

composed of collagen fibers and fibroblast cells in the body. It is expected that this layer 

does not have to be mimicked because fibroblasts will infiltrate the scaffold 

and produce its own ECM that will help to integrate the graft to the neighboring tissues. 

These considerations were taken into account when designing ideal vascular graft using 

electrospinning of biodegradable polymers described in the following section. 
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The schematic design of suggested structure is depicted in figure 8 together with listed 

properties of inner and media layers. 

 

 
 

Figure 8: Structural design of double layered vascular grafts. 

 

3.2 Vascular graft production 

 Biodegradable polymers were chosen for vascular graft replacement due their 

biocompatibility, relatively slow degradation rate and ease of processing. The main 

technology used for production of vascular grafts was electrospinning due 

to the capability of creation structure similar to native ECM. At the beginning, 

optimization of electrospinning parameters was done using needle electrospinning. 

Then, needleless electrospinning using Nanospider was carried out in order to obtain 

sufficient amount of samples for material characterization such as surface wettability, 

thermal behavior and mechanical properties. Some of the properties such as mechanical 

behavior and in vitro performance were tested in planar as well as in tubular forms 

of produced scaffolds. The section was done in cooperation with A. Šaman, Department 

of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical 

University of Liberec and I. Yalcin, Department of Textile Engineering, Faculty 

of Textile Technologies and Design, Istanbul Technical University. 

 

3.2.1 Materials used for vascular graft fabrication 

Synthetic polyesters were used for fabrication of small diameter vascular grafts, 

namely polycaprolactone (PCL, Mn=45,000, Sigma Aldrich) and copolymer of poly-L-

lactide and polycaprolactone (PLC, 70/30, PURASORB). Polymer PCL supplied by 

Sigma Aldrich has the average number molecular weight of 45,000 (Mn 40,000-50,000) 

and polydispersity index between 1,2 and 1,8 with the mass average molecular weight 

Inner layer: nanofibrous, thickness tens of micrometers, 

non-thrombogenic, facilitating endothelialization 

Media layer: microfibrous, radially oriented fibers, 

thickness hundreds of micrometers, porous structure 

facilitating smooth muscle cell migration; elastic 

properties with sufficient mechanical strength 
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of 48,000-90,000. Copolymer PURASORB PLC 7015 is a GMP grade copolymer 

of L-lactide and ε-caprolactone in a 70/30 molar ratio. Content of L-lactide is 

determined by the supplier in the range of 67-73 mol % and caprolactone between 33 

and 27 mol %. Instead of molecular weight of the polymer, inherent viscosity is 

determined by the supplier. The midpoint of inherent viscosity is 1,5 dl/g (ranging 

between 1,2 and 1,8 dl/g).  

The solvent system used for electrospinning was composed of chloroform 

(Penta) and ethanol (Penta) 9/1 (v/v) or chloroform/ethanol/acetic acid (Penta) 8/1/1 

(v/v/v). The solvent system is specified for each experiment separately. The polymeric 

component in the electrospinning solution ranged between 14 and 22 wt% of PCL 

and 2-12,5 wt% PLC. The solutions were stirring until complete dissolution and then 

immediately electrospun. 

The behavior of PCL is well known from previous experiments done 

in the Department of Nonwovens and Nanofibrous Materials, Faculty of Textile 

Engineering, Technical University of Liberec (Rampichova, 2013; Erben, 2015). 

Copolymer PLC has not been investigated before therefore its optimization 

of electrospinning solution composition and parameters was studied firstly using needle 

electrospinning technique. 

 

3.2.2 Electrospinning technologies 

Polymeric solutions were electrospun using different technologies in order 

to optimize the process itself and to produce planar as well as tubular samples 

of electrospun biodegradable polymers for further characterization.  

 

Needle electrospinning using planar collector 

The needle electrospinning was carried out in order to find the ideal 

electrospinning solution composition that was not known for novel material - copolymer 

PLC. The electrospinning apparatus consisted of a syringe filled with electrospinning 

solution, a needle, a syringe pump, a high-voltage power supply (Spellman SL 150, 

Direct Industry) and a flat collector covered with an aluminium foil. Needle 

electrospinning was performed in order to optimize polymeric concentration for further 

experiments. Needle diameter was 0,6 mm, used voltage 15 kV, distance between 

needle and collector 18 cm, feed rate 1,5 ml/h, relative humidity was kept about 50% 
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and temperature between 22-23°C. Copolymer PLC was dissolved in solvent system 

composed of chloroform/ethanol/acetic acid 8/1/1 (v/v/v) in various concentrations: 

2 wt%; 3 wt%; 5 wt%; 7,5 wt%; 8 wt%; 9 wt%; 10 wt% and 12,5 wt%.  

 

Needle electrospinning using rotating mandrel collector for fabrication of small 

diameter vascular grafts 

Synthetic vascular grafts were prepared by electrospinning with special set 

up that is depicted in figure 9. Special collector in the form of rotating stainless steel 

mandrel was used for obtaining tubular scaffolds. Electrospinning parameters like speed 

of polymer dosage, voltage, distance between needle tip and collector, speed of mandrel 

rotation, relative humidity and temperature were recorded. The parameters are described 

together with resulting structures for each experiment described in further subchapters. 

 

 
Figure 9: The schema (a) and photo (b) of electrospinning setup used for small 

diameter vascular grafts. Syringe pump (2) doses polymeric solution in the syringe (1) 

that is connected to the positively charged needle (3). Forming fibers are collected 

on the rotating mandrel (4). 

 

The custom designed electrospinning apparatus consisted of a positive high-

voltage power supply (Spellman SL 150, Direct Industry), a syringe pump, a plastic 

syringe, a hypodermic needle and a grounded stainless steel rotating mandrel (1-6 mm 

diameter, 20 cm length). The speed of rotation varied between 250 rpm and 15 000 rpm. 

Reciprocal movement of the needle spinning electrode was achieved using a linear 

actuator. The speed of movement was approximately 20 cm/3,5 s that corresponds 

with an average speed of 0,057 m/s. The length of the movement was limited to 20 cm 

after which was a pause of about 1,5 s in duration. Polymeric solution dosage was set 

to 1,5 ml/h. Time of electrospinning was adjusted to the required thickness of the graft 

that was measured during the fabrication process using micrometer screw gauge. 

a) b) 
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After electrospinning, the tubular scaffold was dried overnight and then removed 

from the mandrel by manually pushing.  

 

Needleless electrospinning 

 For detailed characterization of electrospun PCL and PLC, sufficient amount 

of planar samples were obtained by needleless electrospinning using Nanospider
TM

 

1WS500U. Needleless electrospinning was carried out using a 0,2 mm string that was 

covered by polymeric solution using slots in size of 0,5 mm. The forming fibers were 

collected on spun bond layer that was rolled by speed of 15 mm/min. The collector was 

placed 17 cm above the string. The applied voltage was -10 kV and +35 kV in collector 

and in the string, respectively. The temperature was kept in 23°C and relative humidity 

between 35 and 42%. 

The comparison of tested fibrous structures should reflect only polymeric 

composition difference between PCL and copolymer PLC, not the morphology 

of the layer itself. Materials with similar microfibrous structures were electrospun 

after a series of electrospinning solution composition optimization. PCL was dissolved 

in chloroform/ethanol 9/1 (v/v) in total concentration of 22 wt% to get uniform 

microfibrous layer having the average fiber diameter of 0,96 ± 0,76 µm. Copolymer 

PLC was dissolved in chloroform/ethanol/acetic acid 8/1/1 (v/v/v) at 10 wt% 

concentration to get similar microfibrous layer with average fiber diameter 

of 1,03 ± 0,71 µm. The structure of electrospun PCL and PLC is depicted in figure 10.  

 

 
Figure 10: SEM pictures of electrospun PCL (a) and copolymer PLC (b).  

Scale bars 50 µm. 

 

 

 

a) b) 
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Characterization of electrospun layers made by needleless electrospinning 

Morphology of electrospun layers was assessed by scanning electrone 

microscopy (SEM) and image analysis software to characterize average fiber diameter. 

Samples for SEM analyses were sputter coated with gold and analyzed using TESCAN 

Vega 3SB Easy probe (Czech Republic) or Phenom FEI scanning electrone microscope 

(USA). All specimens were recorded in appropriate magnification to enable image 

analysis of fibrous morphology.  Image analysis of produced grafts was made 

from SEM pictures using software NIS Elements (LIM s.r.o., Czech Republic) or NIH 

Image J software (Rasband, 1997-2014). The main characteristics as fiber diameter 

and orientation of the fibers were measured. Fiber diameter or capsule diameter in case 

of beaded structure was evaluated from 100 measurements (n=100). The data were 

expressed as mean ± standard deviation. 

Surface area of produced fibrous layers was measured by cutting the samples 

to the size of 1x1 cm and weighing. Ten samples were weighted and surface area was 

calculated in units of mg/cm
2
. Thickness of the samples was measured by micrometer 

screw gauge. The measurements were repeated 10 times for each electrospun layer 

and the mean ± standard deviation was calculated. Characterization of prepared layers 

by needleless electrospinning is summarized in table 2 (n=10). 

 

Table 2: Characterization of electrospun PCL and PLC 

 22% PCL 10% PLC 

Surface area [mg/cm
2
] 7,65 ±1,18 3,71 ± 0,35 

Thickness [µm] 289 ± 37 107 ± 8  

Average fiber diameter [µm] 0,96 ± 0,76 1,03 ± 0,71 

 

Fibers made from PCL and PLC had an average fiber diameter of about 1 µm. 

The morphology of electrospun fibers is comparable in these 2 polymers. Fiber diameter 

did not show significant difference between electrospun layers. Surface area 

and thickness of prepared layers was approximately twice higher in case of PCL. 

On the other hand, the following material analysis should reflect the effect of polymer 

composition or surface properties and this non-uniformity of surface area and thickness 

could be neglected. 
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3.3 Electrospinning of polycaprolactone  

 Since PCL is a promising material for various tissue engineering applications, 

the process of electrospinning and its parameters were known from previous 

experiments carried out in the Department of Nonwovens and Nanofibrous Materials. 

Therefore the optimization had started with tubular grafts production using rotating 

mandrel collector. 

 

3.3.1 Optimization of polymeric concentration for vascular graft fabrication 

For preparation of tubular vascular grafts made from PCL, rotating mandrel 

with 6 mm inner diameter was used. Electrospinning conditions were set as follows: 

needle diameter 0,6 mm, the distance between needle tip and collector 20 cm, speed 

of polymer delivery 2 ml/h, voltage 7,5 kV, polymer concentration 14 wt%, 16 wt%, 

18 wt%, 20 wt%, 22 wt%, solvent system chloroform/ethanol 9/1 (v/v). In the pictures 

below (figure 11), morphology of electrospun PCL in different concentration is 

depicted.  

 

 
Figure 11: SEM pictures of different concentration of PCL electrospun 

on rotating mandrel with inner diameter of 6 mm: 14 wt % (a), 16 wt % (b), 18 wt % 

(c), 20 wt % (d) and 22 wt % (e). Scale bars 120 µm. 

 

The lowest polymer concentration (14 wt %) wasn't sufficient for obtaining 

fibrous structure. A lot of beads are present within the structure together with thin 

fibers. Concentration of PCL between 16 and 22 wt % led to fibers having around more 

than 1 µm in diameter as shown in figure 12 where mean fiber diameter and its 

dependence on polymeric concentration is shown. 

 

a) b) c) d) e) 
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Figure 12: The function of polymer concentration and mean fiber diameter. 

 

Further study of fiber morphology showed that there were two types of fibers 

present within the structure - thinner one having the diameter in nanoscale and thicker 

with diameter about 2 µm. The fiber diameter spectrum is depicted in figure 13 having 

two peaks corresponding to the statement of nano- and micro- composite structure. This 

structure is able to provide higher mechanical strength by microfibers as well as binding 

sites in nanoscale for cell attachment. 

 
Figure 13: The morphology of the fibers obtained from electrospinning 

of 20 wt % PCL containing nanofibers and microfibers, scale bar 40 µm (a). The graph 

shows the frequency of fiber diameter with two peaks corresponding with 2 types 

of fibers occurred in the structure (b). 

 

The morphology of prepared tubular grafts was analyzed on the inner and outer 

side. It was found that the fibers in the inner layer were deformed probably because 

of collector impact (see figure 14). Several experiments (exchange of collector material, 

different methods of graft removal from the mandrel) were performed to minimize 

or better to eliminate occurrence of these deformed fibers but with no reproducible 

solution.  
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Figure 14: SEM pictures of inner (a) and outer layer (b) of electrospun vascular graft 

having inner diameter of 6 mm made from 18 wt % PCL. Scale bars 60 µm. 

 

3.3.2 Fiber orientation 

Preferential fiber orientation in radial direction is required for mimicking 

of medial layer of prepared vascular graft as described previously in subchapter 3.1. 

This orientation could be achieved by increasing of mandrel rotational speed (250 rpm, 

5 000 rpm, 10 000 rpm and 15 000 rpm). Orientation of fibers was measured manually 

using NIS Elements software from 100 fibers from at least 5 pictures. The direction 

of radial axis of the tube was determined as 0° and the fiber angle with the axis was 

recorded. The data were translated in the graph as the dependence of frequency 

on the angle of orientation. 

Oriented fibers in the vascular graft with 6 mm inner diameter were obtained 

using rotation speed of 5 000 rpm and higher. The structure of resulting fibers obtained 

by increasing rotational speed (250 rpm, 5 000 rpm, 10 000 rpm and 15 000 rpm) is 

depicted in SEM picture below in figure 15.  

 

 

Figure 15: SEM photos of fibers collected on mandrel (6 mm inner diameter) 

with various rotational speed: 250 rpm (a), 5 000 rpm (b), 10 000 rpm (c) 

and 15 000 rpm (d).  Scale bars 120 µm. 

 

a) b) 

a) b) c) d) 
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Increasing in rotational speed led to more accurate orientation as shown in the 

graph in figure 16). In Additional properties of these layers were studied and the results 

were published in Journal of Industrial Textiles (Yalcin, 2014). 

 

  

 

Figure 16: The graph showing fiber orientation distribution: the dependence 

of frequency on fiber orientation angle. Radial direction marked by the white arrow in 

the tubular sample under the graph is considered as 0°. Red line reflects the orientation 

of fibers obtained by 250 rpm, green line 5 000 rpm, violet line 10 000 rpm and blue 

line the highest rpm of 15 000.  

 

3.3.3 Preparation of double layered vascular graft 

One of the goals of the thesis was mimicking of structure of native blood vessel 

that is naturally composed of 3 layers. The idea was to mimic only 2 layers (inner 

and medial) assuming that the third outer layer will create naturally after implantation 

into the body (see figure 8). The inner layer supports the endothelial cells that are 

crucial for vascular graft function within the body. Endothelialization of the graft lumen 

will ensure the antithrombotic surface. The inner layer was composed of nanofibrous 

structure made from 16 wt % PCL. It has been found out that the addition of acetic acid 

into electrospinning solution decrease the fiber diameter therefore PCL for inner layer 

was dissolved in chloroform/ethanol/acetic acid 8/1/1 (v/v/v). The solution led mostly 

to the fibers having about 150 nm diameter with a few deformed fibers and beads 

(figure 17 a). Nanofibrous structure also serves as a barrier for migration of other cell 

types into this layer that could lead to severe complications. The thickness of the layer 

-90 -60 -30 0 30 60 90 

250 rpm 
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was adjusted by the time of electrospinning that was set to 5-10 minutes for the thin 

inner layer giving the thickness of tens of micrometers. There was no requirement 

for fiber orientation therefore the rotation speed was set between 3 000 and 5 000 rpm.  

The middle layer has to ensure the mechanical strength and support for smooth 

muscle cells that are radially oriented in many layers. The infiltration of the smooth 

muscle cells is supported by microfibrous structure allowing cells to penetrate 

the middle part of the graft. The middle layer was prepared by electrospinning 

of 18 wt % PCL dissolved in chloroform/ethanol 9/1 (v/v) having diameter of around 

1 µm (figure 17 b). The layer was thicker (250-300 µm set by the time 

of electrospinning that was about 1 hour) in order to ensure the mechanical strength 

of the graft. The speed of collector rotation was adjusted to 10 000 rpm in order 

to obtain fiber orientation. The electrospinning parameters were the same for both 

layers: temperature 22-23°C, relative humidity 50-60%, voltage 15 kV, distance 20 cm, 

feed rate 3 ml/h. Morphology of separate layers are depicted in figure 17. Cross section 

of double layered PCL graft is seen in figure 18. 

 

 
Figure 17: Inner layer of the graft composed of nanofibers with a few deformed fibers 

and beads (a) and outer layer composed of oriented microfibers (b). Scale bars 20 µm. 

  
Figure 18: Cross section of double layered PCL graft composed of nanofibers in the 

inner side (I) and microfibers in the outer side (O). Scale bars 2 mm (a), 100 µm (b). 

 

a) b) 

a) b) 

I 

 

O 
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3.4 Electrospinning of copolymer polylactide and polycaprolactone  

 Copolymer PLC was tested for the first time in the Department of Nonwovens 

and Nanofibrous Materials. Therefore the optimization of electrospinning parameters 

as well as solution composition had started using needle electrospinning 

with planar collector. Copolymer PLC is very sensitive to the temperature and relative 

humidity. These parameters strongly affected spinability of polymeric solutions 

therefore standard conditions were strictly kept during production of fibrous layers 

in range of 23-25°C and 50-55% relative humidity. 

 

3.4.1 Optimization of polymeric concentration 

Firstly, the optimization of electrospinning solution composition was done. 

Various concentrations of copolymer PLC were electrospun using a needle. The pictures 

in figure 19 show that concentrations below 5 wt% were not sufficient for fiber 

formation. Capsules with the diameter of about 4 µm were created (figure 20 a). When 

7,5 wt% was used, beaded structure composed of capsules together with fibers was 

obtained (Figure 19 d). Concentration above 8 wt% led to uniform fibrous structure.  

 

 

 
Figure 19: SEM photos of electrospun PLC in different concentrations: 2 wt% (a); 

3 wt% (b); 5 wt% (c); 7,5 wt%  (d); 8 wt%  (e); 9 wt%  (f); 10 wt%  (g) and 12,5 wt% 

(h). Scale bars 20 µm. 

 

a) b) c) d) 

e) f) g) h) 
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Fiber diameter of fibrous structure is described in the graph in figure 20 b. 

Electrospinning of copolymer PLC resulted in the structure composed mostly 

of microfibers with no significant change in structure with different solution 

with concentration higher than 8 wt% or electrospinning parameters.  

 

 
Figure 20: Morphology evaluation of electrospun PLC: comparison of capsule 

diameter formed after electrospinning of solutions with low PLC content (a) and fiber 

diameter formed after electrospinning of 7,5 wt% PLC and higher (b). 

 

3.4.2 Tubular scaffolds made from PLC 

For further experiments, ideal electrospinning solution composed of 10 wt % 

PLC dissolved in chloroform/ethanol/acetic acid 8/1/1 (v/v/v) was chosen 

for production of tubular scaffolds. Electrospinning parameters were set as follows: 

needle diameter 0,6 mm, voltage 15 kV, distance between the tip of the needle and 

collector 20 cm, rotational speed of the mandrel 5 000 rpm, feed rate 3 ml/h. As seen 

from the pictures in figure 21 there were not observed differences between the inner 

and outer side of the graft as previously in case of PCL electrospinning depicted 

in figure 14. 

 
Figure 21: SEM pictures of inner (a) and outer layer (b) of electrospun vascular graft 

having inner diameter of 6 mm made from 10 wt % PLC. Scale bars 50 µm. 
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 Cross section of PLC vascular grafts were performed with more satisfactory 

results. The cross section of PCL graft was not sharp-edged to enable detailed 

characterization of single fiber cross section. The cross section of PLC was straight 

with no defects such as glued fibers in figure 18. The difference in cross section could 

be explained by different thermal characteristics of polymers used (more in chapter 

3.5.2.). Glass transition temperature (Tg) of PCL is much lower (-60°C) than PLA (60-

65°C) that creates 70 % of copolymer PLC. It is assumed that successful cross section 

has to be carried out in the temperature under Tg. On the contrary, successful cross 

sections of PCL were not achieved even when working in the liquid nitrogen. 

 

  
Figure 22: Cross section of vascular graft made from PLC. Scale bars 100 µm (a), 

50 µm (b). 

 

Copolymer PLC did not enable the creation a double layered vascular graft 

with morphology resembling native ECM. Electrospinning of PLC on rotating mandrel 

led to the structure composed of uniform microfibers. Changing of neither 

electrospinning solution composition nor electrospinning conditions did not enable 

the creation of nanofibers from this copolymer.  

 

3.5 Characterization of electrospun polymeric layers 

 Additional properties of polymers used were investigated. Some 

of the methods require planar samples for evaluation therefore needleless 

electrospinning utilizing Nanospider were employed to prepare sufficient amount 

of planar material available for further testing. 

 

a) b) 
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3.5.1 Surface wettability 

Surface wettability of microfibrous PCL (22 wt %) and PLC (10 wt %) layers 

prepared by needleless electrospinning (structure is depicted in figure 10) was assessed 

by contact angle measurement. Due to the difficulties of wettability evaluation 

of fibrous structures, polymeric foils were prepared for testing. Both tested polymers 

(PCL and PLC) in the total concentration of 2 wt% were dissolved in chloroform, 

placed to a microscopic slide and let evaporated. Foils were measured in the same way 

as fibrous layers to characterize the surface wettability of polymers without affect 

of nonhomogenities within electrospun layers. A water droplet was placed on dried 

electrospun layers attached to a glass slide. The droplet was captured and analyzed 

by Digital Contact Angle Measurement System with a camera. The measurements were 

carried out in triplicates and water contact angle was plotted as mean ± standard 

deviation. Tests for significant differences used a two-tailed Student's t-test and required 

p < 0.05 to claim significance. 

 

 
Figure 23: Surface wettability of electrospun fibers and foils made from PCL 

and copolymer PLC (* indicates p < 0.05). 

 

The results depicted in graph in figure 23 showed that PCL possess higher 

contact angle of water droplet than copolymer PLC when foils or fibrous layers were 

tested. The outcome corresponds within the expectations based on the chemical 

structure of tested polymers; polycaprolactone is more hydrophobic than polylactide 

that creates 70% of copolymer PLC. PCL fibers as well as foils had significantly higher 

contact angle (between 60° and 70°C) compared to PLC layers (45-50°). 
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3.5.2 Differential scanning calorimetry (DSC) 

Thermal analysis was carried out in order to measure the thermic curves of both 

polyesters PCL and copolymer PLC. The difference in thermal behavior could have 

influence on mechanical properties of the grafts described later, on the processing 

conditions like cross sections, sterilization method as well as on cellular response. 

The measurements were done in cooperation with L. Běhálek from the Department 

of Engineering Technology, Technical University of Liberec. For measurement 

of thermal curves, original polymer in the form of granules from suppliers as well as 

needleless electrospun polymeric layers (structure is depicted in figure 10) was used. 

Thermal analysis was done using DSC 1/700 Mettler-Toledo instrument calibrated 

against indium and zinc. Accurately weighed samples were sealed in aluminum pans. 

The heating rate was 5°C /min and the nitrogen purge rate was 40 ml/min. The range 

of temperatures were set from -20°C to 100°C for PCL and maximum of 180°C 

for PLC. Characteristic temperatures (melting, crystallization and glass temperatures) 

were calculated by integration of measured peaks of heat flow. 

Thermal curves of both polymers (PCL and PLC in the form of granules as well 

as fibers) are depicted in figures 24 and 25. Polycaprolactone showed standard thermal 

curves during both cycles of heating with melting temperature of 57°C 

and crystallization temperature of 29°C (derived from the second cycle). The first cycle 

of heating is influenced by the technology used. There was a slight difference between 

electrospun fibers and original granules of PCL in the first peak (during the first heating 

cycle) that has not appeared during the second cycle of heating (third peak in the graph 

in the figure 24). 

Thermal characteristics of copolymer PLC were measured in the same way. 

Similarly, there is a difference in the first measured peak that corresponds to melting 

temperature that reflects the technology used. Further crystallization phase during 

cooling of the system had to change the polymeric structure since no peaks are 

presented afterwards in graph in figure 25. Melting point of PLC was about 110°C 

and glass transition temperature about 19°C. 
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Figure 24: Thermal curves of PCL (black line – granules, red line – electrospun fibers).  

X axis depicts temperature and time, y axis shows heat flow. The first peak in the graph 

corresponds with melting temperature (Tm=57°C), the second peak reflects 

crystallization temperature (Tc=29°C), and the third peak represents melting 

temperature during the second cycle of heating (Tm=57°C). 

 

 
Figure 25: Thermal curves of copolymer PLC (black line – granules, red line – 

electrospun fibers). X axis depicts temperature and time, y axis shows heat flow. Glass 

transition temperature (Tg) as well as melting temperature (Tm) was derived 

from the first cycle of heating.  
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Data obtained from measurement of PCL thermal curves corresponds to the data 

obtained from the supplier (Sigma Aldrich) in case of melting temperature. There was 

no change between melting temperature in PCL between granules and fibers 

in the second heating cycle that is frequently used for thermal characterization. 

Copolymer PLC had higher melting point of 110°C that corresponds to the fact that 

the copolymer is composed from 70% from PLA with melting temperature about 

150-160°C. The electrospinning process affects the thermal behavior of PLC. There is 

a difference in heat flow when granules and electrospun layers were measured. 

Therefore melting temperature was calculated from measurement of granules were 

the area under the peak can be evaluated. After cooling cycle, the polymer probably 

degraded and the second cycle could not be measured. This outcome could be explained 

by the fact that PLC is a copolymer that could not been crystalline. It is known that PCL 

is partially crystalline polymer depending on its molecular weight (Jenkins, 2006). 

Statistic copolymers like PLC due to its irregular structure are not able to create crystals 

during the cooling cycle therefore no crystallization temperature was detected. 

The difference in thermal behavior has an impact on many aspects of vascular 

grafts such as cross section of tubular scaffold that was successfully done 

with copolymer PLC only. It was hypothesized that fibers could be cross sectioned 

closed to the value of glass transition of the polymer. Certain sterilization technique 

requires resistance to heat. Copolymer PLC is stable up to melting temperature 

of 110°C compared to PCL that is stable only to 57°C. Thermal curves also reflect 

the crystallinity of polymers. Polycaprolactone as a semicrystalline polymer underwent 

crystallization process at about 29°C during cooling phase. On the other hand, 

copolymer PLC as a representative of statistical copolymer is mostly amorphous 

and no crystallization was detected during cooling cycle. Presence of crystalline 

and amorphous phases within the polymer affect the degradation rate of polymers as 

described in the theoretical part (figure 2). Thermal analysis showed that PCL contained 

crystalline regions suggesting slower degradation rate compared to statistical copolymer 

PLC. The amorphous phase will be probably degraded faster but degradation studies 

have to be carried out. 
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3.5.3 Mechanical testing 

 Mechanical performance belongs to important parameters of tissue engineering 

scaffolds. It is hypothesized that mechanical properties could mimic the environmental 

behavior of native tissues. Vascular grafts have to possess sufficient strength as well as 

elasticity. Mechanical testing was carried out in cooperation with M. Ackermann from 

the Department of Applied Mechanics, Faculty of Mechanical Engineering, Technical 

University of Liberec. 

 In order to compare the mechanical properties of electrospun polymers, 

stress-strain curves were measured using a universal tensile testing machine TIRA Test 

2810. Firstly, planar materials made from 22% wt PCL and 10% wt PLC prepared 

by Nanospider were measured (structure is depicted in figure 10). Planar materials were 

cut into rectangular shapes with constant width of 20 mm and length of 50 mm. 

The thickness of the electrospun layer was measured using micrometer screw gauge 

before each experiment. The samples were clamped into jaws and stretched using 

loading rate of 100 mm/min until break. Measurement was repeated three times for each 

material. The active length of measured sample was 30 mm. During the tensile test, 

force F and elongation Δl0 of the scaffold were recorded to obtain stress-strain curves 

of each tested material. The relationship for engineering tension calculation was related 

to the measured sample thickness t and standard width of the samples d (20 mm). 

Engineering tension σ was then calculated for current strength as:  

  
 

   
 

Relative deformation ε was calculated as a quotient of sample elongation Δl 

and its original length lo (30 mm) ε= Δl/lo. The directly measured values of force F 

and elongation Δl0 were recalculated to the dependence of engineering tension [MPa] 

on relative deformation [%] that were depicted into graphs below in figures 26-28 

describing mechanical behavior of electrospun layers. 

 Stress-strain curve of electrospun PCL mat is depicted in figure 26. There is 

a noticeable increase of stress with slight increase of strain followed by a change 

in the response that continues until break. The maximum strength of PCL layers was 

between 10,4 and 17 MPa depending on the materials thickness (the highest strength 

was noticed in the thickest sample). The elongation of the samples was also dependent 

on the thickness of materials with the values ranging from 27% to 71%. The average 
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values of engineering tension for PCL reached values of 13,0 ± 3,6 MPa a elongation 

of 44,3 ± 23,6 % (n=3).  

 

Figure 26: Stress-strain curve of electrospun PCL layers having the thickness of 24 µm 

(red line), 24,5 µm (blue line) and 32 µm (green line). 

 

 Electrospun copolymer PLC showed different shapes of stress-strain curves 

with linear response of stress to strain as depicted in figure 27. Tested samples gave 

more homogeneous results with the maximal strength between 30 to 40 MPa 

and elongation between 128 and 144% of its original length. Even if there were 

differences in the thickness of the samples, similar trend of mechanical response could 

be seen from the graphs. Electrospun layers made from copolymer PLC possess higher 

value of mechanical strength (average value of 33,7 ± 6,1 MPa) and elongation 

with the average value of 135,4 ± 6,3 % (n=3). 
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Figure 27: Stress-strain curve of electrospun PLC layers having the thickness of 8,5 µm 

(red line), 6,5 µm (blue line) and 7 µm (green line). 

 

 For mechanical performance comparison of electrospun PCL and PLC 

on planar collector, representative stress-strain curves were placed in the graph in figure 

28. Obviously, PLC reached about three times higher values of engineering 

and elongation. Samples were tested in a triplicate that is not sufficient for statistical 

evaluation. However, the outcomes provided obviously different mechanical properties 

of semicrystalline PCL and amorphous copolymer PLC in the form of planar 

microfibrous layers. 

 

Figure 28: Comparison of stress-strain curves of PCL planar fibrous layer (blue line, 

24 μm thickness) and PLC layer (red line, 7 μm thickness). 
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 Further tests were performed in a tubular form in order to investigate the effect 

of rotating mandrel collector on produced layers and its mechanical performance. 

Microfibrous samples with similar morphology were prepared by electrospinning 

of 18% wt PCL and 10 % wt PLC on rotating mandrel having the inner diameter 

of 6 mm. Single layered tubular scaffolds were tested based on the hypothesis 

that middle layer of final vascular graft is responsible for mechanical properties. These 

tubular samples were cut into rectangular shapes with a constant width of 10 mm (n=3). 

The thickness of the graft wall was measured using micrometer screw gauge before 

each experiment. The samples were clamped into jaws and stretched using loading rate 

of 50 mm/min until break. The active length of measured sample was 

50 mm. During the tensile test, force and elongation of the scaffold were recorded 

and further recalculated in the same way as previously mentioned to the engineering 

tension and relative elongation that is depicted in the graphs. 

Mechanical behavior of tubular samples reflected different mechanical behavior 

between PCL and PLC fibrous layers. In case of PCL, there was no significant change 

in a response between stress and strain as observed in planar form (compare figure 26 

and 29). The maximum strength was lower than in case of planar samples giving 

the values between 2,3 and 4,4 MPa (the average engineering tension 

of 3,3 ± 1,1 MPa). The elongation of tubular samples ranged between 32 and 48% 

with the average value of 37,5 ± 8,8 % that is comparable to planar samples 

(44,3 ± 23,6 %). 

 

Figure 29: Stress-strain curves of electrospun tubular PCL scaffolds having the 

thickness of 29,5 µm (red line), 29 µm (blue line) and 32 µm (green line). 
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 The scaffolds made from copolymer PLC showed similar shape of measured 

stress-strain curves reaching the maximum strength between 26 and 43 MPa  

and elongation of 230-450% as depicted in figure 30. The average maximum strength 

of 37,2 ± 9,2 MPa was similar as previously measured in planar form (33,7 ± 6,1 MPa) 

but the elongation of tubular form with average values of 377,4 ± 157,4 % was 

significantly higher than in planar scaffolds (135,4 ± 6,3 %). This difference could be 

explained by different fibrous morphology of electrospun layers on planar collector 

and into tubular forms and by different thickness of tested layers that were about three 

times higher in tubular scaffolds (average thickness of 25 μm) compared to planar 

samples having average thickness of 7 μm. Tubular scaffolds made from PLC have 

excellent mechanical properties making them ideal choice in terms of mechanical 

performance for utilization in vascular tissue engineering. 

 

Figure 30: Stress-strain curves of electrospun tubular PLC scaffolds having the 

thickness of 27 µm (red line), 29 µm (blue line) and 20 µm (green line). 

 

The comparison of representative stress-strain curves is depicted in figure 31. 

Copolymer PLC is capable to withstand higher engineering tension and elongation that 

are considered to be important aspects of functional vascular grafts. As previously 

mentioned, the population of tested samples has not been sufficient for statistical 

evaluation. Deeper analysis with more samples will have to be carried out in order 

to fully characterize the mechanical features of tubular scaffolds. 
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Figure 31: Comparison of stress-strain curves of PCL tubular fibrous layer (blue line, 

29 μm thickness) and PLC layer (red line, 29,5 μm thickness). 

 

3.6 Conclusion of synthetic vascular grafts fabrication 

and testing 

 The first experimental part of the thesis was focused on understanding of native 

blood vessels structure that was subsequently mimicked by electrospinning of 2 chosen 

biodegradable polymers: PCL and copolymer PLC. An ideal model of vascular graft 

morphology was designed as double layered graft with defined morphologies of certain 

layers. In case of PCL, the proposed model was created and the double layered graft 

was produced. When PLC was used for production of tubular scaffolds, only single 

layered graft was prepared.  

The second tested hypothesis was the mechanical performance of vascular 

grafts. Copolymer PLC created tubular scaffolds possessing excellent elongation 

properties of 377,4 ± 157,4 % of elongation until break compared to only 37,5 ± 8,8 % 

achieved with tubular scaffolds made from PCL. Mechanical strength of PLC was also 

higher than PCL (37,2 ± 9,2 MPa in case of PLC compared to 3,3 ± 1,1 MPa for PCL). 

Based on the mechanical behavior, copolymer PLC seems to be more appropriate 

candidate for production of vascular grafts even if double layered structure has not been 

achieved. Copolymer PLC also excels by higher contact angle suggesting increased cell 

attachment in vitro. The last hypothesis was tested in the following experimental 

chapter.  
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The thesis is focused on comparison two chosen biodegradable polymers 

for small diameter vascular grafts. However, the combination of these 2 polymers could 

bring improvements of final vascular prosthesis. Inner layer of vascular graft could be 

created from nanofibrous polycaprolactone and the middle layer could be created 

by electrospinning of copolymer PLC ensuring sufficient mechanical properties. 
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4 Biological testing of vascular grafts 

 

The function of vascular grafts has to be evaluated in vitro as well as in vivo 

before translation to clinical use. Endothelialization of graft lumen is crucial to ensure 

non-thrombogenic surface. Otherwise thrombocytes became activated and aggregate 

making the graft occluded. In order to ensure sufficient mechanical properties, the graft 

has to be infiltrated with smooth muscle cells that will enable contraction of the vessel. 

Only the cooperation between endothelial cells and smooth muscle cells allow 

the vascular graft normal function. Therefore biological testing of produced grafts was 

performed. At first, fibroblast cell line was used for overall evaluation 

of cytocompatibility of materials introduced in the first section (PCL and PLC). 

Following tests were carried out using endothelial cells in order to investigate whether 

the fibrous materials supports endothelialization. Because of the delay of complete 

endothelial cell coverage of the lumen, the thrombogenicity of the graft was also 

evaluated by incubation the scaffold with trombocyte rich solution in static and dynamic 

conditions using bioreactor. 

 

4.1 In vitro tests with 3T3 mouse fibroblasts 

 Prepared electrospun layers made from 22 wt% PCL and 10 wt% PLC 

as described previously (see the morphology in the figure 10) were analyzed in vitro. 

Firstly, 3T3 mouse fibroblasts (ATCC) were used to assess the overall cell behavior 

when cultured on prepared layers. 

 

4.1.1 Materials and methods used for biocompatibility testing with fibroblast 

cell line 

To test cell adhesion and proliferation, MTT test was used for measurement 

of cell viability during the cultivation time. Fluorescence microscopy and SEM was 

used for an analysis of cellular morphology on the fibrous layers. 

Prior to cell seeding, scaffolds were cut into round patches of 6 mm in diameter 

and sterilized by immersion in 70% ethanol for 30 minutes followed by double washing 

in phosphated buffer saline (PBS, Lonza).  
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Mouse 3T3 fibroblasts were cultivated in Dulbecco´s Modified Eagle Medium 

(DMEM, Lonza) supplemented by 10% fetal bovine serum (FBS, Lonza) and 1% 

penicillin/streptomycin/amfotericin B (Lonza). The cells were placed in a humidified 

incubator at an atmosphere of 5% CO2 at 37°C. When cells became confluent, they 

were suspended using trypsin-EDTA solution (Lonza), centrifuged (200 x g) 

and resuspended in fresh complete medium. Number of cells was determined by Luna
TM

 

cell counter (Logos Biosystems). Fibroblasts (passage 19) were seeded on the scaffolds 

placed in 96-well plate at density of 5x10
3 

per well plate. 

Viability of the cells seeded on the scaffolds was analyzed by MTT test after 

1, 3, 7 and 14 days of culturing. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-

tetrazolium bromide] has been reduced to purple formazan by mitochondrial 

dehydrogenase in cells indicating normal metabolism. MTT solution (Sigma Aldrich) 

in amount of 50 µl was added to 150 µl of complete medium and samples were 

incubated at 37°C for 4 hours. Formed violet crystals of formazan were solubilised 

with acidic isopropanol. Optical density of suspension was measured (λsample 570 nm, 

λreference 690 nm) using Absorbance Reader ELx808 (BioTek). Each testing day, 

4 samples of each material were incubated with MTT solution and average absorbance 

was calculated as the difference between absorbance measured by 570 nm 

and by reference wavelength 690 nm. The data were expressed as mean ± standard 

deviation. Tests for significant differences used a two-tailed Student's t-test and required 

p < 0,05 to claim significance. 

The samples for fluorescence microscopy were washed twice in PBS and fixed 

in frozen methanol for 10 minutes followed by double washing with PBS and staining 

with propidium iodide (PI dilution 2 g/l PBS, Sigma Aldrich) for 10 minutes in the dark. 

Propidium iodide binds to nucleic acids (DNA and RNA) therefore it enables 

the visualization of the cells. For observation of cellular shape, indirect immunostaining 

with phalloidin-fluorescein isothiocyanate (FITC) conjugated antibody was performed. 

Phalloidin binds to F-actin therefore it enables the visualization of actin filaments within 

the cells. Briefly, scaffolds seeded with cells were washed twice with PBS and fixed 

using 2,5% glutaraldehyde (Sigma Aldrich) in PBS. Then, scaffolds were washed twice 

in PBS and incubated in 0,2% Triton X-100 (Sigma Aldrich) in PBS at room 

temperature for 30 minutes. Antigen blocking was done by incubation with 1% bovine 

serum albumin (BSA, Prolabo) in Triton solution for 30 minutes at room temperature. 

Then, incubation with phalloidin-FITC antibody (Sigma Aldrich, dilution 1:1000) was 
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done for 30 minutes in the dark. After double washing in PBS, counterstaining of cell 

nuclei was done with 2-(4-amidinophenyl)-1H-indole-6-carboxamidine (DAPI 1 mg/ml, 

dilution 1:1000, Sigma Aldrich) that binds to double stranded DNA in cell nuclei.  

Stained cells were observed by inverted microscope Nikon ECLIPSE Ti-E/B. 

Cell counting on the scaffolds was done manually using NIS Elements software 

from PI stained scaffolds after 1, 3, 7 and 14 days of testing. Testing probe (cell 

counting frame) in the size of 200 x 200 µm was placed on fluorescence picture 

with magnification 100 x. For each testing day, 4 pictures were randomly chosen 

and 6 testing probe were placed on the picture (total 24 measurements). Average cell 

number ± standard deviation per area of 1 mm
2
 was calculated and plotted into graph. 

The samples for SEM analyses were washed twice in PBS and fixed in 2,5% 

glutaraldehyde in PBS for 10 minutes (4°C). The samples were dehydrated by treating 

with a series of graded ethanol solutions (60%, 70%, 80%, 90%, 96% and 100%). 

After water removing, the scaffolds were transferred to SEM holder, coated with gold 

and analyze using SEM VEGA3 SB - Easy Probe (TESCAN, Czech Republic) or SEM 

from Phenom-World (FEI Company, USA). 

 

4.1.2 Results of culturing 3T3 mouse fibroblasts with electrospun scaffolds 

 Cultivation of 3T3 mouse fibroblasts with electrospun PCL and PLC was 

evaluated using complex methods that reflect the response of cells in terms 

of the adhesion and proliferation rate on both tested microfibrous materials. 

Cell viability seeded on PCL and PLC microfibrous scaffold was measured 

by MTT test during the time of cultivation in days 1, 3, 7 and 14 as depicted in figure 

32. After the first and the third day of cultivation, the adhesion of fibroblasts did not 

show statistically significant difference between both tested materials. After a week 

of cultivation, higher proliferation rate was found in PLC layer. After 7 and 14 days 

of cell culture, the viability of fibroblasts on copolymer PLC was significantly higher 

compared to PCL fibers (p<0,05). 
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Figure 32: Cell viability measured by MTT test after 1, 3, 7 and 14 days of scaffold 

cultivation with 3T3 mouse fibroblasts (* indicates p < 0,05). 

 

Fluorescence microscopy pictures show cellular adhesion after 1 day that was 

followed by proliferation of fibroblasts through the scaffold surface (figure 33, 

magnification 100 x). Cells adhered well on PCL as well as PLC layers. Both 

microfibrous structures support uniform cell distribution within the scaffold surface 

during proliferation on these tested layers. 
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Figure 33: Fluorescence microscopy pictures of propidium iodide-stained cell nuclei 

of 3T3 mouse fibroblasts during cell culture (1, 3, 7 and 14 days): a) PCL, b) PLC. 

Scale bar 100 µm. 

 

 In order to evaluate the homogeneicity of cellular spreading through 

the scaffold surface, the tested samples were captured using 40 x magnification. 
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Subsequently, those pictures were folded up to a single picture showing the colonization 

of the cells within the scaffold surface (figure 34). 

 

  
Figure 34: Propidium iodide- stained 3T3 mouse fibroblasts cultured on PCL (a) and 

PLC (b) scaffolds after 14 days of incubation. 

 

Cell counting using counting frames showed that more cells were present 

in PLC scaffold compared to PCL layer (figure 35). The difference is statistically 

significant only the third testing day because of high standard deviations in this type 

of evaluation. There were efforts for automatic cell counting with the whole scaffold 

surface but the quality of pictures does not allow such a measurement (see figure 33). 

The cells are on both sides of the scaffold and they can penetrate into the structure 

making the proper counting impossible. Therefore the usage of counting frames was 

employed in order to obtain an estimate of cell number per area. The standard 

deviations of cell numbers reflect the homogeneicity of the cell deposition within 

scaffold surface. 

 
Figure 35: Estimation of cell count per 1 mm

2
 in scaffolds after 1, 3, 7 and 14 days 

of cultivation (* indicates p < 0,05). 
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 Cell morphology of fibroblasts attached to tested scaffolds was evaluated 

from phalloidin-DAPI staining. Actin filaments stained by phalloidin (green color 

in figure 36) show promising adhesion and spreading of the cells on the microfibrous 

scaffolds facilitating its colonization. Counterstaining of cell nuclei using DAPI (blue 

color in figure 36) depicted that more cells were found on PLC scaffold (figure 36 b) 

but the quantification has already been done from PI staining. 

 

      1                   3        7   14 

 

 
Figure 36: Fluorescence microscopy pictures of 3T3 mouse fibroblasts stained 

with phalloidin-FITC (green) and DAPI (blue) during cell culture (1, 3, 7 and 14 days): 

a) PCL, b) PLC. Scale bar 100 µm. 

 

                     1                  3                7                 14           

 

   
Figure 37: Scanning electrone microscopy pictures of 3T3 mouse fibroblasts during cell 

culture (1, 3, 7 and 14 days): a) PCL, b) PLC. Scale bar 100 µm.  

 

b) 

a) 

a) 

b) 
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Pictures from scanning electrone microscopy shows cellular spreading during 

2 weeks of cell culture (figure 37). After 14 days, the surface was almost covered 

with cells in both tested materials. Copolymer PLC was colonized by cells more 

than PCL as shown in SEM pictures after 3 and 7 days of cultivation. More area of PLC 

fibrous structure is covered by fibroblasts compared to PCL. 

 

4.1.3 Assessment of material biocompatibility with fibroblasts 

In vitro tests with 3T3 mouse fibroblasts proved biocompatibility of both tested 

materials with 3T3 mouse fibroblasts. Microscopic techniques showed sufficient cell 

adhesion after 1 day of cell culture followed by proliferation through the scaffold 

surface during 2 weeks of cell culture. Microfibrous structures also enable uniform cell 

spreading through the scaffold surface. Cell viability was supported mostly by PLC 

fibrous structure where absorbance measured by MTT test was higher at each testing 

day (1, 3, 7 and 14). Cell viability was probably influenced by surface wettability 

properties that are more beneficial in PLC since the fiber morphology was equal in both 

tested electrospun layers. 

 

4.2 In vitro tests with endothelial cells 

In order to test the biological performance of PCL and PLC for vascular tissue 

engineering, endothelial cells were seeded onto the layers to test their adhesion 

and proliferation to the material using similar methods described in the previous section. 

In vitro tests were performed with endothelial cells to evaluate the effect of material 

itself by testing similar fiber morphologies made from different polymers (PCL 

and PLC) and to assess the effect of fiber diameter on endothelialization of scaffold 

(nanofibers versus microfibers). The proposed structure of ideal vascular graft was 

composed of nanofibers that were assumed to promote endothelialization. Since only 

polymer PCL was able to create nanofibrous structure as described in paragraph 3.3.3, 

PCL with different fiber diameters (nano- and microfibrous) was tested together 

with copolymer PLC (microfibrous). 

 



71 

4.2.1  Materials and methods used for assessment of scaffolds culturing 

with endothelial cell line 

Electrospun layers made from PCL and PLC were tested as in the previous 

experiment with fibroblasts. PCL was also prepared by needleless electrospinning 

technique utilizing Nanospider to obtain fibrous layer having fiber diameters 

in nanoscale. Such a structure was achieved by electrospinning of 18 wt% PCL 

dissolved in chloroform/ethanol/acetic acid 8/1/1 v/v/v. The average fiber diameter 

of electrospun "PCL nm" was 230 ± 190 nm. The structure is depicted later 

in figure 41 a. This experiment was design to compare PCL and PLC with similar 

morphologies (1) and to assess the effect of PCL fiber diameter on endothelial cell 

adhesion and proliferation (2). Three materials were tested to prove this hypothesis 

marked as PLC, PCL µm and PCL nm. 

The materials were prepared in the same way as described in previous section. 

Before endothelial cell seeding, the scaffolds were pre-incubated for 2 hours 

with complete medium in order to facilitate cell adhesion by protein adsorption. 

Human umbilical vein endothelial cells (HUVEC, Lonza) were cultivated 

in Endothelial Basal Medium (EBM-2, Lonza) supplemented by EGM-2 Single Quots 

(Lonza) containing Human Epidermal Growth Factor, Hydrocortisone, Bovine Brain 

Extract, Ascorbic Acid, Fetal Bovine Serum, and Gentamicin/Amphotericin-B. 

The cells were placed in humidified incubator at an atmosphere of 5% CO2 at 37°C. 

When cells became confluent, they were suspended using trypsin-EDTA solution, 

centrifuged (200 x g) and resuspended in fresh complete medium. Endothelial cells 

(passage 6) were seeded on the scaffolds placed in 96-well plate at density of 7,5x10
3 

per well plate.  

Evaluation of endothelialization was carried out using MTT test, fluorescence 

microscopy and SEM after 1, 3, 7 and 14 days of incubation. 

 

4.2.2 Results of endothelial cells cultured with electrospun scaffolds 

Endothelial cell viability was detected by MTT test during 14 days 

of experiment. Cells adhered to the scaffold and started to proliferate through the 

surface. The proliferation rate was delayed in comparison with the results obtained with 

3T3 mouse fibroblasts. Measured values of absorbance obtained during the first week 

of testing were in low levels (about 0,1). Even if the seeding density was three times 
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higher than in case of fibroblasts, it seems that even higher cell number needs to be 

seeded or longer cultivation time should be performed. 

However, the highest proliferation rate of the cells was found in PLC fibers 

as previously with fibroblast cell line. After 7 days of cell culture, the viability 

of endothelial cells on PLC was significantly higher compared to PCL microfibrous 

layer (p<0,05). After 2 weeks of cell culture, higher cellular viability was also measured 

in scaffolds made from PLC but this difference did not claim significance. 

 
Figure 38: Comparison of cellular viability on PCL and PLC microfibrous scaffold 

measured by MTT test after 1, 3, 7 and 14 days of scaffold cultivation with human 

umbilical vein endothelial cells (* indicates p < 0,05). 

When morphology of PCL fibers was compared, contrary to the assumptions, 

microfibers supported endothelialization of the surface more than nanofibers as seen 

in figure 39. 

 
Figure 39: Comparison of cellular viability on PCL nano- and microfibrous scaffolds 

measured by MTT test after 1, 3, 7 and 14 days of scaffold cultivation with human 

umbilical vein endothelial cells (* indicates p < 0,05). 
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Fluorescence microscopy pictures show endothelial cell adhesion 

and proliferation on PCL nano- and microfibrous and PLC layers (figure 40). 

Surprisingly, the cell adhesion was not enhanced by the nanofibrous structure  

(figure 40a). Cells proliferated on the scaffold surface during 2 weeks of cell culturing. 

In agreement with MTT test results, PLC microfibers were populated more than PCL 

layers after 7 and 14 days of culturing.  

                1               3                         7   14 

 

 

 
Figure 40: Fluorescence microscopy pictures of propidium iodide-stained cell nuclei 

of human umbilical vein endothelial cells during cell culture (1, 3, 7 and 14 days): 

a) PCL nm, b) PCL µm, c) PLC. Scale bar 100 µm. 

 

 Cell counting using counting frame could not be done by using the same 

approach as previously with fibroblasts. Endothelial cells did not grow homogeneously 

in the surface. On the other hand, endothelial cell amount is reflected by their metabolic 

activity measured by MTT test that is a reliable method for measurement of cellular 

viability that corresponds to the cell number on tested materials. 

       

  

a) 

b) 

c) 
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Figure 41: Fluorescence microscopy pictures of human umbilical vein endothelial cells 

stained with phalloidin-FITC (green) and DAPI (blue) during cell culture (1, 3, 7 

and 14 days): a) PCL nm,  b) PCL µm, c) PLC. Scale bar 100 µm. 

 

Pictures from scanning electrone microscopy depict similar trend 

as fluorescence microscopy. In the pictures below cellular spreading during 2 weeks 

of cell culture (figure 41) is shown. The nanofibrous PCL layers did not enhance 

endothelial cell adhesion that had been assumed, only a few cells adhered 

to the nanofibers. Even after 2 weeks of culturing, cells did not start to create monolayer 

as seen in microfibrous PCL and PLC (figure 41 b, c). The tests were carried out 

in the static conditions. It is necessary to verify the results in dynamic conditions using 

bioreactor before final conclusion of appropriate fiber diameter for successful 

endothelialization. 

         

     

  

a) 

b) 

c) 
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Figure 41: Scanning electrone microscopy pictures of human umbilical vein endothelial 

cells during cell culture (1, 3, 7 and 14 days): a) PCL nm, b) PCL µm, c) PLC. Scale 

bars 50 µm. 

 

4.2.3 Biocompatibility of electrospun biodegradable polyesters with endothelial 

cells 

All three tested materials (microfibrous PCL, nanofibrous PCL and microfibrous 

copolymer PLC) supported human umbilical vein endothelial cell adhesion 

and proliferation. Microscopic techniques as well as viability measurement using MTT 

test showed satisfying cell adhesion after 1 day of cell culture followed by proliferation 

through the scaffold surface during 2 weeks of cell culture. Even though the cell seeding 

density was too low for comparison of cellular viability during the first days 

of culturing, after 7 days the difference between tested materials appeared to be 

significant. Copolymer PLC supported endothelial cell proliferation more than PCL. 

In case of PCL, nanofibers did not fasten the endothelialization of the scaffold surface. 

The effect seemed to be in the opposite way - microfibers were more beneficial 

a) 

b) 

c) 
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for endothelialization than nanofibers. Based on these results, endothelialization is 

dependent on fiber diameter and chemical structure; however nanofibers did not show 

the enhanced endothelialization as expected when cultured under static conditions. 

 

4.3 Thrombogenicity 

The main failure of vascular grafts after implantation is the acute 

thrombogenicity that is affected by chemical composition of surface, morphology 

of exposed surface and other factors. In order to characterize an extent 

of thrombogenicity of the electrospun layers, samples were tested with thrombocyte rich 

solution (TRS) under in static and dynamic conditions.  

Thrombocyte rich solution was obtained from Liberec Regional Hospital, blood 

transfusion centre. The solution was prepared from mixed buffy coats obtained 

from 4 blood donors. After centrifugation using a deleucotization filter (CompoStop® 

Flex 3F T&B, Fresenius Kabi), thrombocyte rich solution was obtained.  

 

4.3.1 Thrombogenicity testing in static conditions 

Firstly, the thrombogenicity of electrospun layers made from PCL and PLC was 

assessed by incubation of scaffolds in TRS containing 914x10
6
 thrombocytes/ml 

up to a week. The analysis of platelet activation was carried out after 2 hours, 1, 4 and 7 

days by MTT test, fluorescence microscopy and SEM. Secondly, the comparison 

of different roughness of the samples was carried out. Foils made from the PCL 

and PLC were prepared similarly as described in subchapter 3.5.1 Surface wettability. 

The extent of thrombogenicity was compared between samples with the same chemical 

composition but different surface roughness (smooth foils vs. fibrous layers). 

 

Materials and methods used for assessment of thrombogenic potential of scaffolds 

tested in static conditions 

 For static conditions, the ethanol sterilized samples (PCL µm, PCL nm 

and PLC) with the diameter of 6 mm after double washing in PBS were placed in 96-

well plate and incubated with 200 µl TRS (~183x10
6
 thrombocytes/well) for 2 hours 

and then the solution was replaced with Composol PS solution (Fresenius Kabi) that is 

frequently used for platelet storage. MTT test and SEM was carried out after 2 hours, 1, 
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4 and 7 days of incubation as described above in subchapter 4.1.1 Materials 

and methods used for biocompatibility testing with fibroblast cell line. 

 Indirect immunofluorescence staining of thrombocytes was done using FITC-

conjugated antibody against integrin αIIb/β3 (CD 41) (dilution 1:50, Santa Cruz 

Biotechnology) that is considered as a marker of thrombocyte activation. In resting 

platelets, integrin αIIb/β3 is normally in a low activation state. Stimulation 

of thrombocytes will induce a conformational change called inside-out signaling 

and the marker could be abundantly found in the membrane of platelets. 

After the incubation with TRS, tested scaffolds were washed twice in PBS, fixed 

in 2,5% glutaraldehyde and blocked in 0,1% bovine serum albumine. Primary antibody 

anti CD41-FITC was added for 30 minutes followed by triple washing in 0,1% BSA 

solution.  

In order to compare different surface morphology, samples made from PCL 

(foils and nanofibrous electrospun layer) and PLC (foil and microfibrous electrospun 

layer) were prepared in the same way as in previous experiment and incubated 

with TRS containing 1046x10
6
 thrombocytes/ml for 2 hours (~209x10

6
 

thrombocytes/well). After the incubation period, MTT test was measured and platelet 

morphology was observed by scanning electrone microscopy. 

 

Results of thrombogenicity assessment in static condition 

Figure 42 shows metabolic activity of thrombocytes after incubation with TRS 

for certain period (2 hours, 1 day, 4 and 7 days). The highest metabolic activity 

of adhered thrombocytes after 2 hours of incubation measured by MTT test was found 

in nanofibrous layer made from PCL but the difference did not claim significance 

(p˃0,05). Platelets lost their viability during the incubation time. After 4 and 7 days 

of incubation the metabolic activity was very low that is in agreement with the life-time 

of thrombocytes. 

 



78 

 
Figure 42: Metabolic activity of thrombocytes adhered to electrospun layers measured 

by MTT test after 2 hours, 1, 4 and 7 days. 

 

Fluorescence microscopic pictures showed the aggregates formation. Firstly, 

the thrombocytes adhered to the surface of the fibrous layers, became activated 

and aggregated. The biggest aggregates were found in PLC microfibrous structures 

(indicated by an arrow in figure 43) due to the pore sizes that enable creation 

of such aggregates. In the figure 43 there are fluorescence images of 3 tested materials 

incubated with TRS for 2 hours (first row) and for 4 days (second row). Number 

of adhered platelets is very high therefore cell counting could not be performed. 

 

                     PCL nm   PCL µm   PLC

 

Figure 43: Fluorescence microscopic pictures of adhered thrombocytes to fibrous 

layers: PCL nm (a), PCL µm (b) and PLC (c) after 2 hours and after 4 days (d, e, f). 

Red arrows mark platelet aggregates formation found in PLC microfibrous layer. 
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The scaffolds incubated with thrombocytes were also evaluated by scanning 

electrone microscopy to see their morphology (figure 44). After 2 hours the nanofibrous 

PCL layer (PCL nm) contained the highest number of thrombocytes that corresponds 

with the result of MTT test. The surface of nanofibrous layer was fully covered 

with adhered thrombocytes. On the other hand, microfibrous structures allowed platelets 

to penetrate the layer and they were found not only on the surface as in case 

of nanofibrous structure. This could be an explanation of similar metabolic activity 

measured by MTT test. 

 

 
Figure 44: SEM pictures of adhered thrombocytes after 2 hours of incubation 

in thrombocyte rich solution on PCL nm (a), PCL µm (b) and PLC (c). Scale bars 20 

µm. 

 

The structure of adhered thrombocytes changed during the time of incubation. 

The following SEM pictures in figure 45 show the structure of platelets after 1 day 

and after 7 days of incubation. The platelets lost their viability after adhesion 

and activation during the incubation therefore their structure had changed. 

 

 
Figure 45: SEM pictures of adhered thrombocytes on nanofibrous PCL layer 

during the incubation: after 1 day (a) and after 7 days (b). Scale bars 20 µm. 

 

a) b) c) 

b) a) 
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The fibrous surface of tested polymers caused the activation of thrombocytes 

that is seen from SEM pictures below in figure 46. The structure of platelets changed 

from circular shape to the structure with many pseudopodia. The microfibrous structures 

also promote the creation of platelet aggregates that is also visible from fluorescence 

picture in figure 43 f. 

 

  
Figure 46: SEM pictures of activated platelets with many pseudopodia (a) 

and aggregated platelets (b) on microfibrous PLC layer after 1 day of incubation. Scale 

bars 10 µm. 

 

 In order to examine the influence of surface roughness, foils and electrospun 

layers were tested in similar way. The MTT results showed that fibrous layers activated 

more thrombocytes than foils prepared from the same materials as depicted 

in graph in figure 47. 

 

 
Figure 47: MTT test of thrombocytes incubated with electrospun layers  

(PCL nanofibrous and PLC microfibrous) and with foils with smooth surface  

(* indicates p < 0,05). 

 

 The rate of platelet activation was also visible in scanning electrone 

microscopic pictures. While fibrous layers were fully covered with spread thrombocytes 

as shown in previous pictures (Figures 44-46), smooth surfaces of foils were covered 

a) b) 
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by individual platelets in different stages of their activation. Circular resting platelets 

(indicated by blue arrows) as well as irregular shapes of thrombocytes with pseudopodia 

(indicated by red arrows) were found as seen in figure 48. 

 

 

Figure 48: SEM pictures of platelets incubated in PLC foils. Red arrows mark activated 

spread platelets, blue arrows sign resting circular platelets. Scale bars 5 µm. 

 

Conclusion of scaffold thrombogenic potential in static conditions 

Incubation of nanofibrous and microfibrous scaffolds with thrombocytes did not 

show significant difference between PCL and PLC nor between nanofibrous 

and microfibrous layer made from PCL in terms of measured thrombocyte viability. 

There was a difference in platelet colonization of the scaffold. Nanofibrous layers did 

not allow the penetration to the inner structure therefore platelets were abundantly found 

on the surface. On the contrary, platelets incubated with microfibrous structures made 

from PCL and PLC were poorly spread over the surface but the platelets reached 

the inner parts of the scaffolds due to bigger pore sizes. Thrombocyte aggregate 

formation was typical in these pores.  

Roughness of fibrous structure contributes to thrombocytes activation that was 

manifested by testing the same materials in 2 forms - electrospun fibers and smooth 

foils. It was found that smooth surface with the same chemical composition is less 

thrombogenic than corresponding fibrous surface. Electrospun layers were fully covered 

with thrombocytes whereas foils were covered by single platelets in different stage 

of their activation that was clearly visible from SEM pictures in figure 48. 
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4.3.2 Dynamic conditions for thrombogenicity assessment 

Static incubation does not fully simulate conditions in vivo therefore bioreactor 

was employed to simulate platelet circulation. Blood flow is an important aspect that 

contributes to thrombocytes activation. The first prototype of bioreactor was designed 

and constructed in the Technical University of Liberec. 

 

Materials and methods used for assessment of thrombogenic potential of scaffolds 

tested in dynamic conditions 

The experiments were conducted in bioreactor that has been constructed 

in cooperation with M. Ackermann from the Department Applied Mechanics, Faculty 

of Technical Engineering, Technical University of Liberec. The device is depicted 

in figure 49. The bioreactor consisted of a transparent polymethylmethacrylate (PMMA) 

pipe with a core that allows testing of 4 tubular samples with inner diameter 6 mm 

and length of 10 cm. The system was placed in CO2 incubator to maintain appropriate 

cell culture conditions as depicted in figure 50. 

 

 
Figure 49: Description of bioreactor used for thrombogenicity assessment in dynamic 

conditions. 
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Figure 50: Photograph of bioreactor placed in CO2 incubator used for dynamic 

thrombogenicity testing. 

 

During dynamic conditions, two double layered PCL vascular graft (inner layer 

interacting with thrombocytes was composed of nanofibers, the SEM structure is 

depicted in figure 18) and two single layered microfibrous PLC grafts (SEM structure 

could be seen in figures 21 and 22) were attached in bioreactor and sterilized by 70% 

ethanol and washed with PBS. Subsequently, thrombocyte rich solution containing 

914x10
6
 thrombocytes/ml was circulated through each tested graft for 2 hours (10 

ml/min). The analysis of adhered thrombocytes was done by SEM only. 

 

Results of thrombogenicity testing in dynamic conditions 

  After 2 hours of thrombocytes rich solution flow through the vascular grafts 

made from double layered PCL and microfibrous PLC, different morphology of adhered 

thrombocytes were found in SEM pictures. Thrombocytes adhered to nanofibrous 

structures and became activated and almost no circular platelet was found such as 

in the picture in figure 44 after static incubation. The nanofibrous PCL structure was 

covered by completely spread thrombocytes. In case of microfibrous PLC graft, 

the platelets were also spread but some of the circular platelets with pseudopodia were 

found. Nanofibers have high surface to volume ratio therefore it was assumed that 

the activation of thrombocytes will be higher. No quantitative data were obtained 

from this experiment but different morphology of platelets was found. The flow 

of thrombocytes rich solution contributed to higher platelet activation compared to static 

conditions. 
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Figure 51: SEM pictures of vascular graft thrombogenicity tests under flow conditions: 

inner nanofibrous layer of PCL vascular graft in low (a) and high magnification (b) 

and microfibrous PLC vascular graft in low (c) and high magnification (d). Scale bars 

230 µm (low magnification), 20 µm (high magnification). 

 

Conclusion of thrombogenicity evaluation in dynamic conditions 

 The difference found in thrombocytes morphology after static and dynamic 

conditions pointed the necessity of working as close as possible to natural environment 

of cells. Nanofibrous PCL layer attracted more thrombocytes during static and dynamic 

conditions. When tested in bioreactor, thrombocytes in nanofibrous PCL layer 

possessed completely spread structure compared to microfibrous PLC layer. However, 

these preliminary qualitative results have to be supported by further studies focused 

on experimental design and evaluation of thrombogenicity testing. 

 

4.4 Evaluation of tested materials 

Electrospun layers made from biodegradable polymers that were described 

in the previous chapter were tested in vitro. The first test compared electrospun PCL 

and PLC layers having similar fiber diameter around 1 µm (PCL 0,96 ± 0,76 µm; PLC 

1,03 ± 0,71 µm). Copolymer PLC significantly supported fibroblast proliferation 

on those scaffolds compared to PCL one probably due to the lower hydrophobicity 

of the surface that corresponds with the assumption that slightly hydrophilic surfaces 

supports cellular adhesion due to the adhesion of proteins in right conformation. Similar 

results were obtained by using endothelial cells. Copolymer PLC was endothelialized 

faster than PCL. Another tested hypothesis was whether nanofibers support endothelial 

cell adhesion but this assumption has not been proved. The design of ideal vascular 

graft has to be remake according to these findings. Nanofibers also activated more 

thrombocytes than microfibrous layers.  

a) b) c) d) 
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Taken together, even if copolymer PLC was not able to create previously 

designed double layered graft, it seems that other materials properties in general are 

more important when considering ideal material for usage in vascular tissue engineering 

applications. Copolymer PLC has excellent mechanical properties, it is less hydrophobic 

than PCL and it supports cell adhesion and proliferation. Based on the copolymer PLC 

properties besides its microfibrous morphology it could be stated that the material is 

more beneficial for vascular tissue engineering in terms of better surface wettability 

properties, higher elongation, mechanical strength, cytocompatibility with both tested 

cell lines (fibroblasts and endothelial cells) and lower thrombogenicity compared 

to PCL. Another important property of polyesters is their degradation rate that strongly 

influenced in vivo performance. The degradation studies will be carried out as well 

in order to fully characterize suitability of presented materials. However, the results are 

not a part of the thesis. 
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5 Vascular grafts releasing nitric oxide 
 

 

The third experimental section of the thesis was done during my Fulbright-

Masaryk fellowship at Michigan Technological University (MTU), Department 

of Biomedical Engineering. The aim of the research was the development of a long-term 

nitric oxide (NO) releasing polymeric vascular graft by blending different NO releasing 

compound from the group of S-Nitrosothiols with PCL by the way of electrospinning. 

The section describes synthesis of NO donors, NO release measurement, in vitro testing 

of modified scaffolds using endothelial cell line and in vivo testing of control and NO 

releasing vascular grafts. All experiments except of in vitro tests were done in MTU.  

 

5.1 Modification of PCL vascular grafts by NO releasing 

compounds 

 In this section, preparation of selected NO donors from the group 

of S-Nitrosothiols is described together with its incorporation into vascular grafts made 

from PCL. The fibrous morphology and NO release kinetics are described. Produced 

grafts were tested in vitro and in vivo in order to confirm long term NO release and its 

consequences on vascular functions mentioned in theoretical part of the thesis. 

 

5.1.1 Synthesis of nitric oxide releasing compound 

Firstly, representative NO donors from the group of S-Nitrosothiols were 

chosen. At the beginning, variety of substances weas tested for NO release such as 

spermine, spermidine, and fumed silica nanoparticles capable of NO release etc. 

However, the best results were achieved using 2 NO releasing compounds - S-

Nitrosoacetyl-D-penicillamine (SNAPs) and S-Nitrosoacetyl-D-penicillamine 

derivatized cyclam (SNAP-cyclam). Representative compound SNAP was chosen as a 

model substance that has already been published (Gierka, 2011).  Newly synthesized 

compound, SNAP-cyclam, was studied for long term NO release. This compound was 

discovered in MTU and its characterization was carried out by C. McCarthy, 

Department of Biomedical Engineering, MTU.  
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Materials used were purchased from Sigma Aldrich except of 1, 4, 8, 11-

tetraazacyclotetradecane (cyclam) and tert-butyl nitrite that were obtained from Acros 

Organics. 

 S-Nitrosoacetyl-D-penicillamine 

The chemical structure of NO releasing compoung, S-Nitrosoacetyl-D-

penicillamine (SNAP), is depicted in figure 52. SNAPs were prepared by dissolving 

of 200 mg N-acetyl-D-penicillamine (NAP) in 5 ml of methanol. After short sonication, 

acids were added in amount of 1,5 ml of 1M HCl and 100 µl 17,8M H2SO4. Afterwards, 

sodium nitrite (144,9 mg) was added. The mixture was vortexed and let react for at least 

30 minutes until a pale green color has developed. Subsequently the solution was cooled 

on ice for 45 minutes until crystals begin to precipitate and a dark green/red color 

developed. Finally, methanol was removed using rotary evaporator (40°C water bath) 

and green crystals were collected after complete evaporation of solvents. After SNAPs 

synthesis, the crystals were stored in 4°C protected from light.  

For modification of PCL vascular grafts, electrospinning solutions containing 

16 wt% PCL and 0,2 wt% of SNAPs were prepared after a series of optimization 

experiments. Maximum amount of SNAPs (Mw=220,25 g/mol) dissolvable 

in the electrospinning solution was about 0,6 wt%. Higher amount of SNAPs added 

to the electrospinning solution led to increased initial burst of NO, not to prolonged NO 

release in time as expected. Therefore this low concentration was chosen for further 

experiments otherwise the initial burst was too high when higher amount of SNAPs was 

added to the electrospinning solutions. 

 
Figure 52: Structure of S-nitroso-N-acetylpenicillamine (SNAP). 

 

S-Nitrosoacetyl-D-penicillamine derivatized cyclam 

N-acetyl-D-penicillamine-thiolactone was prepared according to a previously 

published method by Riccio et al., 2012. Briefly, N-acetyl-D-penicillamine was 
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dissolved in pyridine and cooled on ice for 1 hour. This solution was mixed with equal 

volumes of ice chilled acetic anhydride dissolved in pyridine. The mixture was stirred 

for 24 hours until the solution turned light red. The solvents were removed using 

a rotary evaporator at 45-60°C. The remaining liquid was re-dissolved in chloroform, 

followed by three extractions with 1M HCl. The organic layer containing 

NAP-thiolactone was dried using magnesium sulfate. The remaining chloroform was 

removed with the rotary evaporator. Solid particles were resuspended in hexanes, 

and crystals were collected using vacuum filtration. 

NAP-cyclam was prepared by dissolving two components: NAP-thiolactone 

and cyclam in chloroform in a stoichiometric ratio of 2:1. The solutions were combined 

and allowed to react for 2 hours. Chloroform was removed by flash evaporation using 

a rotary evaporator (200 rpm, 35°C). The resulting crystals were vacuum dried 

for 2 hours. 

Tert-butyl nitrite was prepared for use by cleaning with an aqueous 30 mM 

cyclam solution to chelate copper ions.  Copper ions are used to stabilize the tert-butyl 

nitrite. 

NAP-cyclam was converted to its nitrosated form—SNAP-cyclam—by the 

addition of clean tert-butyl nitrite immediately prior to electrospinning. Firstly, NAP-

cyclam was dissolved in concentration that should be theoretically capable of releasing 

of 10mM NO (0,2734 wt %) in chloroform/ethanol/acetic acid (8/1/1 v/v/v). Secondly, 

150 l of clean tert-butyl nitrite was added to this solution. The solution was allowed 

to react for 24 hours until the solution turned green in color. Samples were protected 

from light until electrospinning commenced. The proposed structure of newly 

synthesized compound, SNAP-cyclam (Mw=546,794 g/mol), is depicted in figure 53. 
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Figure 53: Chemical structure of SNAP-cyclam that is produced from 1,4,8,11-

tetraazacyclotetradecane (cyclam) and NAP-thiolactone. 

 

5.2 Vascular graft preparation and characterization 

Vascular grafts made from poly-ε-caprolactone (PCL, Sigma Aldrich, 

Mn=45,000) were obtained by electrospinning a 16 wt% of PCL dissolved 

in chloroform/ethanol/acetic acid (8/1/1 v/v/v) using similar device as described 

in chapter 3 Synthetic vascular grafts preparation and testing (figure 9). Vascular grafts 

with long-term NO release were prepared by mixing the SNAPs (0,2 wt%) 

or SNAP-cyclam (0,2734 wt%) into the PCL electrospinning solution. The final 

concentration of NO releasing compounds was optimized by: the amount of compounds 

added to the electrospinning solution (a), the way of preparation of electrospinning 

solution (b), the release kinetics of produced grafts (c). After a series of optimization 

procedure of electrospinning solution preparation, the electrospinning parameters were 

set as follows: the solution was charged at 20 kV and ejected through a 22 G needle 

at a constant rate of 2,54 ml/h. The fibers were collected on a rotating stainless steel 

mandrel at a rotational speed of 250 rpm. The mandrel with 1,65 mm inner diameter 

was placed 15 cm from the needle tip. After electrospinning, the tubes were easily 

removed from the collector and placed under vacuum for 2 hours to evaporate 

any residual solvent.  

 Fiber morphology was evaluated by field emission scanning electrone 

microscopy (FESEM) on a Hitachi S-4700. The samples were sputter coated 
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with platinum/palladium to a thickness of 5 nm and observed at low and high 

magnification to compare the inner and outer surface of each graft. Fiber diameter was 

measured based on FESEM images at 15 000x magnification. For each sample, five 

images were analyzed, and 50 fibers were manually measured and analyzed on each 

image using NIH Image J software (Rasband, 1997-2014).  

 Produced scaffolds were about 5 cm in length, 1,65 mm inner diameter with 

a wall thickness between 500 and 700 µm. Fiber morphology can be seen in figure 56. 

The layers have not shown any difference in morphology when NO releasing 

compounds were added. Tubular scaffold made from PCL had average fiber diameter 

of 143 ± 80 nm, PCL modified by SNAPs 154 ± 61 and PCL modified by SNAP-

cyclam 179 ± 182 nm.  

 

 

Figure 54: Scanning electrone microscopy pictures of electrospun 16 wt % PCL (a), 16 

wt % PCL+SNAPs (b), 16 wt % PCL+SNAP-cyclam (c). Scale bars 10 µm. 

 

Further morphological evaluation was carried out with vascular grafts made 

from 16 wt% PCL (control graft) and PCL graft modified by SNAP-cyclam. 

Measurement of fiber diameters was performed on the inner and outer graft surfaces 

showing no difference between the two graft types or between their respective inner 

and outer surfaces. The morphology of produced grafts is depicted in figure 55. 

In addition to fibers, polymeric beads are seen in the structures of both control and NO-

releasing PCL grafts. The summary of fiber diameter measurement is summarized 

in the figures 55 and 56 where average fiber diameters measured in inner and outer side 

of the grafts are plotted.  

a) b) c) 
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Figure 55: SEM images of a PCL control (a) and NO releasing vascular graft made 

from PCL+SNAP-cyclam (b). Scale bars 50µm.  

 

 
Figure 56: Fiber diameter of produced vascular grafts: "in" signifies inner surface, 

"out" marks outer surface (p<0,05). 

 

 The similarity of inner and outer side of the tubular grafts was in contrast 

to the previous experiments provided in Technical University Liberec even 

if the material of the collector and polymeric solution were similar (see figure 14). 

Possibly the collector diameter (1,65 mm) could play an important role.  

 

5.3 NO release measurement 

 Measurement of NO release was carried out using a Siever’s Nitric Oxide 

Analyzer (NOA) that is based on chemiluminiscence reaction of NO with ozone 

yielding to nitrogen dioxide in its activated state (NO2
*
) that is relaxed by photon 

emission (hν) to nitrogen dioxide: 

   NO + O3 → NO2
*
 + O2  

   NO2
*
 → NO2 + hν  
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The device offers the most versatile detection system for NO analysis. Samples 

releasing NO were measured immersed in PBS at 37°C to imitate conditions 

in the body. As mentioned in the theoretical part (section 2.2.6), S-Nitrosothiols release 

NO group in the presence of copper ions and ascorbic acid. Therefore when NO release 

declined, these agents were added to PBS and further NO release was detected. 

 Data from NOA measurement were collected in parts per billion NO released 

(ppb) that were further recalculated by known constant of calibrated NOA 

to NO Surface Flux with the unit of moles/(min x cm
2
). The calibration constant was 

1,25799 x 10
-13

 mol/s ppb. Commonly, the data are represented in units 

of moles/(min x cm
2
) but nanofibers possess high surface to volume ration, its surface is 

impossible to calculate. Therefore the data from NOA were related to the mass weight 

of measured sample in units of mg/cm
2
. When a single evaluation of NO release was 

carried out, the unit in the graph is represented as moles/(min x cm
2
 x mg). When two 

samples were compared for NO release kinetics, the weight of the samples was omitted 

and standard units of moles/(min x cm
2
) were used. Samples of the same size 

and similar weight were always measured in order to avoid any data misinterpretations. 

 

5.3.1 Comparison of NO release between SNAPs and SNAP- cyclam  

 Two NO releasing vascular grafts containing either SNAPs or SNAP-cyclam 

were tested for NO release using a Siever’s Nitric Oxide Analyzer (Boulder, CO). 

One centimeter PCL vascular graft modified by NO releasing compounds was weighted 

and put into PBS to measure NO release. A dry nitrogen sweep gas (200 ml/min) was 

used to carry the generated NO to the analyzer. After an initial burst of NO measured 

for 60 minutes, 200 µl of 0.1M aqueous CuCl2 and 0.1M ascorbic acid were added 

to the PBS solution containing the sample and additional NO release was observed. 

The samples were put to PBS and NO release measurement was repeated after 24, 48 

and 72 hours with shortened period (5 minutes) of NO release measured in PBS only. 

The third day, UV light (RX Firefly; 400 nm, Phoseon Technology) was used 

to photolytically release NO from the material. The lamp was placed against the clear 

glass sampling tube containing the sample and activated for 1 minute in order 

to determine if a further reservoir of NO was available. Due to the presence of NO 

donors after 3 days, the samples were kept at 37°C for total of 42 days when 

measurement of NO release using NOA was repeated. 
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 At the beginning of a 42 days long experiment, the initial burst of NO was 

about 1x10
-8

 moles/(min*cm
2
*mg) in case of SNAPs and 2x10

-8
 moles/(min*cm

2
*mg) 

when SNAP-cyclam was incorporated in PCL. The NO release was diminished during 

60 minutes of measurement until external CuCl2 and ascorbic acid were added. Higher 

NO flux the addition of NO release initiates was observed with SNAP-cyclam 

modification of PCL (see figure 57). 

 

  

Figure 57: NO release profile of PCL+SNAPs (a) and PCL+SNAP-cyclam (b) 

measured in PBS solution. After 60 minutes, CuCl2 and ascorbic acid were added to 

PBS solution (indicated by an arrow). 

 

 The measurement of NO release was repeated after 24 and 48 hours 

of incubation in PBS at 37°C. Because of the decrease of spontaneous NO release 

in PBS only, the external CuCl2 and ascorbic acids were added in minute 6 (corresponds 

to peaks indicated by arrows in figure 58). The level of released NO was in the same 

order of 10
-11

 moles/(min x cm
2
) but there was a difference between the releasing 

kinetics. SNAP-cyclam showed more stable NO release for 15 minutes whereas 

modification with SNAPs lead to fast consumption and decreasing of released NO. 

 

 

 

a) b) 
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Figure 58: NO release profile of PCL+SNAPs (a) and PCL+SNAP-cyclam (b). Blue 

line shows NO release after 24 hours of incubation, red line after 48 hours of 

incubation in PBS at 37°C. The increase in minutes 6 refers to addition of CuCl2 

and ascorbic acid to the solution indicated by an arrow. 

 

 The vascular grafts after 72 hours of incubation were illuminated by UV 

for 1 minute showing the presence of NO reservoir within the fibers. Due to the fact 

that another mechanism of S-NO cleavage is used, the NO fluxes reached higher values 

than in PBS with addition of CuCl2 and ascorbic acid. As previously, the SNAP-cyclam 

within PCL fibers proved one order higher NO release (surface flux 

about 4x10
-9 

moles/(min*cm
2
*mg)) compared to SNAPs modification with surface flux 

about 4x10
-10 

moles/(min*cm
2
*mg) as shown in figure 59. 

 

 
 

Figure 59: NO release of PCL+SNAPs (a) and PCL+SNAP-cyclam (b) after 

illumination of the samples using UV light for 1 minute after 72 hours of incubation. 

a) 

b) 

a) b) 
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 Tubular scaffolds were placed again in PBS at 37°C and the NO release 

measurement was repeated after 42 days of incubation. In figure 60 there is depicted the 

comparison of NO release from PCL containing SNAPs and SNAP-cyclam  

after 3 days (blue line) and 42 days (red line). After 42 days the vascular graft made 

from PCL + SNAPs showed NO surface flux of 6*10
-12 

moles/(min*cm
2
) compared 

to PCL + SNAP-cyclam with NO surface flux of an order higher 

(6*10
-11 

moles/(min*cm
2
)). Modification of vascular grafts by incorporation 

of SNAP-cyclam led to physiological NO flux (50-400 pmol/min*cm
2
) when reducing 

agents were present as depicted in figure 60 b. Vascular grafts modified by SNAPs 

produced one order lower levels of NO flux after 42 days in PBS at 37°C compared 

to physiological levels released from endothelial cells. 

 

 

 
Figure 60: NO release profile of PCL+SNAPs (a) and PCL+SNAP-cyclam (b). Blue 

line shows NO release after 3 days of incubation, red line after 42 days of incubation 

in PBS at 37°C. The peak in minute 6 refers to addition of CuCl2 and ascorbic acid 

to the solution indicated by an arrow. Green lines displays physiological NO release 

by endothelial cells that is achieved only by using SNAP-cyclam (b). 

 

 These complex measurements of NO release showed that newly synthesized 

compound, SNAP-cyclam, is capable of stable and long term NO release 

a) 

b) 
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in physiological levels therefore further characterization was performed 

with this compound only. 

 

5.3.2 NO release from SNAP-cyclam in PCL vascular grafts 

 It was shown in previous experiments that incorporation of newly synthesized 

compound SNAP-cyclam is capable of NO release in physiological levels up to 42 days 

of incubation in PBS at 37°C. However, it is known that NO release is influenced 

by chemical composition of the environment. In order to simulate body conditions, 

vascular grafts were incubated in PBS and in complete medium between NO release 

measurements. Vascular grafts made from PCL modified by SNAP-cyclam 

(length 1 cm) were weighted and incubated in PBS as well as complete medium 

consisting of Dulbecco's Modified Eagle's Medium (DMEM), 10% fetal bovine serum 

and 1% penicillin/streptomycin. The data obtained by incubation in PBS/complete 

medium should simulate the environment in vivo where the same vascular grafts were 

further implanted for time period of 10 days. Nitric oxide release from the samples 

immersed in PBS and complete DMEM was assessed at time points of 1 hour, 3 days 

and 10 days after washing twice in PBS. All samples were immersed in PBS at 37°C 

during analysis. After an initial burst of NO measured for 60 minutes, 200 µl 

of 0,1M aqueous CuCl2 and 0,1M ascorbic acid were added to the PBS solution 

containing the sample to stimulate NO release. At 1 hour time point, CuCl2 and ascorbic 

acid solutions were added after 60 minutes of measurement in PBS because of high 

level initial burst of NO. At later time points (3 days and 10 days), the release in PBS 

was diminished, so the initial measurement in PBS was shortened to 5 minutes followed 

by 15 minutes of measurement after the introduction of CuCl2 and ascorbic acid 

solutions. Cumulative NO release was determined by plotting the release data 

and determining the area under the curve using a calibration constant specific 

to the machine. After 10 days of incubation, UV light was used as previously described 

to measure remaining NO-releasing groups within the fibers.  

 Nitric oxide releasing PCL grafts were evaluated for NO release after 1 hour 

incubation period bathed in PBS (figure 61, blue line) and in complete DMEM (figure 

61, red line) which are conditions that are known to promote NO release 

from the polymer composite. The grafts display an initial burst of NO immediately 

after soaking in PBS between 2x10
-10

 moles/(min*cm
2
) and 4,5x10

-10
 moles/(min*cm

2
) 
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that is similar to physiological levels released from endothelial cells. NO release 

decreased with time until CuCl2 and ascorbic acid were added after 60 minutes. 

Addition of exogenous solutions caused an increased NO release to comparable levels 

as measured during the initial burst in PBS.  

 
Figure 61: NO release from a SNAP-cyclam PCL graft after 1 hour bathing in PBS 

(blue line) and in complete DMEM (red line). After 60 minutes, CuCl2 and ascorbic 

acid were added to the PBS solution, stimulating the further release of NO (indicated 

by an arrow). Green lines displays physiological NO release by endothelial cells. 

 

After measurements were taken at the one hour time point, the grafts were 

incubated at 37°C in PBS and complete DMEM for 3 and 10 days. The surface flux was 

reduced after 3 and 10 days of incubation when measured in PBS but after the addition 

of CuCl2 and ascorbic acid, NO release increased to 1x10
-11

 moles/(min*cm
2
) when 

incubated in PBS and 3x10
-11

 moles/(min*cm
2
) when incubated in complete DMEM 

(data not shown). To compare the total NO release during 10 days of incubation in PBS 

solution containing CuCl2 and ascorbic acid, cumulative NO release after the addition 

of CuCl2 and ascorbic acid was plotted in figure 62. 
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Figure 62: Cumulative NO release measured from vascular graft for 15 minutes in PBS 

with the addition of CuCl2 and ascorbic acid after incubation in PBS/complete DMEM 

for 1 hour, 3 days and 10 days. N=1 for each sample type. 

 

After 10 days of incubation, the NO releasing samples were exposed to UV light 

(400 nm) for 1 minute to demonstrate continued control of NO release from the grafts. 

The results indicate that after 10 days of storage in PBS and complete DMEM, 

a physiologically relevant reservoir of NO remains available for further NO release. 

UV light exposure was limited to 1 minute. However, this provoked NO release 

from the grafts for more than 20 minutes (figure 63). 

 

 
Figure 63: NO release measured after exposure to a 400 nm UV light for 1 minute, N=1 

for each sample type. 

 

5.3.3 Evaluation of NO releasing materials 

 Modification of PCL vascular graft was carried out by choosing appropriate 

substances capable of nitric oxide release. Representative compounds from the group 

1h 3d 10d 

PBS 5,10E-08 5,18E-08 5,28E-08 

DMEM 5,16E-08 5,30E-08 5,38E-08 

4,75E-08 

5,00E-08 

5,25E-08 

5,50E-08 

N
O

 r
e

le
as

e
 [

m
o

le
s]

 

time of incubation 



99 

of S-Nitrosothiols - SNAPs and SNAP-cyclam were blended with PCL electrospinning 

solution and modified vascular grafts were produced. NO release kinetics was studied 

for 42 days in vitro showing that incorporation of SNAP-cyclam enables the NO release 

in physiological levels up to 42 days in in vitro conditions. Further assessment of NO 

release from SNAP-cyclam modified PCL vascular graft was carried out 

in 2 mediums - buffer PBS and complete medium. It was confirmed that vascular graft 

containing SNAP-cyclam is capable of NO release in physiological conditions such as 

endothelial cells when incubated in PBS or complete medium (see Figure 61). 

Therefore, this type of graft was chosen as an ideal candidate for further in vitro 

and in vivo tests. 

 

5.4 Seeding of endothelial cells 

 Electrospun layers made from 16 wt% PCL and 16 wt% PCL containing 

0,2 wt% nitrosated SNAP-cyclam (synthesized and delivered from Michigan 

Technological University) were prepared by needle electrospinning using flat collector. 

Previously, slightly higher amount of the compound was added but the nitrosation had 

taken place within the electrospinning solution. MTU prepared nitrosated form 

of SNAP-cyclam therefore lower concentration (similar to SNAPs concentration) was 

used for electrospinning in Technical University of Liberec. The electrospinning 

conditions were set as follows: 18 cm distance between the needle and the planar 

aluminium foil collector, 15 kV voltage, speed of polymeric solution dosage 3 ml/h, 

temperature 23°C, relative humidity 40%.  Evaluation of affect of NO for endothelial 

cells was done by seeding the samples(0,6 mm in diameter) with human umbilical vein 

endothelial cells (HUVEC, passage 6) as described previously in chapter 4 Biological 

testing of vascular grafts, subchapter 4.2 (In vitro tests with endothelial cells). 

The analysis was done by MTT test and SEM.  

 Cell viability was measured during the time of cultivation in days 1, 3, 7 

and 14. Cells adhered to the scaffold and start to proliferate through the surface. 

Statistically significant difference in cell viability was found within cells cultured 

on PCL layer modified by SNAP- cyclam at day 1, 3 and 7.   



100 

 

Figure 64: Cell viability measured by MTT test after 1, 3, 7 and 14 days of scaffold 

cultivation with human umbilical vein endothelial cells on control PCL scaffold 

and on modified scaffold by SNAP-cyclam (PCL cyclam) (*indicates p < 0,05). 

  

    Scanning electrone microscopy pictures (figure 65) show endothelial cells 

after 2 weeks of culturing. Endothelial cells started to create a monolayer 

on the scaffold surface, especially on PCL modified by SNAP-cyclam (figure 65 b). 

 

 
Figure 65: Scanning electrone microscopy pictures of human umbilical vein endothelial 

cells after 14 days of culturing on: a) PCL control, b) PCL modified by SNAP-cyclam. 

Scale bars 50 µm. 

 

 The viability of human umbilical vein endothelial cells was supported by NO 

release during the first week of cell culture. The NO release could be diminished 

by the way of sterilization. Previous experiments of NO release measurement described 

above were carried out with non-sterile samples in contrary to in vitro tests that were 

made with samples after 30 minutes soaking in ethanol followed by double washing 

a) b) 
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in PBS. The duration of NO release could be also accelerated in endothelial basal 

medium that contains ascorbic acid known as NO releasing promoter.  

 

5.5 In vivo implantation 

The in vivo experimental protocol was approved by the Michigan Technological 

University Institutional Animal Care and Use Committee. Six Sprague Dawley rats 

received an abdominal aorta replacement graft with an inside diameter of 1,65 mm 

and wall thickness of 685,5 ± 53,3 µm, of which three were pure electrospun PCL 

controls, and three were experimental NO releasing, electrospun vascular grafts 

containing 10 mM SNAP-cyclam that was fully characterized by NO releasing 

measurement described in chapter 5.3.2. Samples for in vivo implantation were 

sterilized by immersion in 70% ethanol for 10 minutes. Rats were anesthetized with 

2,1% inhaled isoflurane in oxygen. A midline laparotomy incision was performed 

and the abdominal aorta was isolated. Side branches from a 10 mm long segment 

of the artery between the renal and femoral bifurcations were tied off to prevent 

collateral blood flow from within the segment. The proximal and distal ends 

of the segment were clamped and the artery was severed near the midpoint 

of the 10 mm segment.  A microdose (~10 L) of 200 units/mL heparin was 

administered to the exposed ends of the artery. The polymeric grafts were sutured 

to the exposed ends of the artery using an end-to-end anastomotic technique with 10-0 

nylon sutures (1520 stitches at each end). After suturing both ends of the graft 

to the native vessel, blood flow was re-established and pulsation of the distal artery was 

observed, demonstrating blood flow. The abdomen was closed using sutures for muscle 

and staples for skin. Rats recovered from anesthesia and were kept with food and water 

ad libitum. No anticoagulation treatment was administered to the rats.  

After 10 days, the rats were sacrificed by increasing the inhaled isoflurane 

concentration from 2,1 to 5,0% and then puncturing the diaphragm followed 

by the removal of the heart after the rats were deeply anesthetized. The graft was 

collected with the host distal and proximal ends of the artery. The samples were 

embedded in freezing medium (Neg 50; Thermo Scientific), snap frozen in liquid 

nitrogen, and stored at -80°C until cryo-sectioning.  

 Both PCL and NO-releasing PCL vascular grafts exhibited excellent surgical 

handling and suture retention properties during implantation. No significant blood 
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leakage was observed after restoration of blood flow and pressure (see figure 66). 

It could be caused by microthrombi formation in the vessel wall. It was reported 

by thrombogenicity testing in chapter 4.3 that platelets are activated by fibrous 

structures in dynamic conditions. A beneficial effect of coagulation was observed. Since 

normally the graft is permeable, there were concerns about the leakage after suturing. 

The thrombogenic potential in this case was beneficial since no graft occlusion was 

observed inside the graft and simultaneously the grafts did not leak after restoration 

of blood flow. After 10 days in vivo, none of the six implanted grafts demonstrated 

thrombosis or aneurysm formation.  

 

 
Figure 66: Stereomicroscopic picture of implanted vascular graft made from PCL 

immediately after suturing (a) and after 10 days of implantation (b). 

 

5.5.1 Morphological and quantitative analysis of explanted vascular grafts 

Grafts were cut longitudinally (10 µm thickness) using a Microm HM550 

cryostat (Microm International GmbH; Walldorf, Germany) and stained 

with Hematoxylin and Eosin (H&E) for later bright-field examination. All staining 

reagents were obtained from Sigma Aldrich with the exception of the Gill’s #3 (Leica 

Biosystems). Briefly, the sections were fixed in chilled ethanol for 1 min followed 

by triple-washing in PBS. After rinsing in tap water, the slides were stained in Gill’s #3 

solution for 3 minutes. After that, the sections were dipped in an acidic solution  

(pH 1.8) to differentiate the Gill’s staining. The slides were then rinsed in deionized 

water and washed twice in 95% ethanol. Subsequently, the sections were counter-

stained with 0.25% eosin Y for 30 s and immediately dehydrated in ethanol. The slides 

were cleared in xylene substitute and mounted in resinous mounting medium.  

a) b) 
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Slides for fluorescence analysis were fixed in chilled ethanol followed by double 

washing in PBS. Sections were stained for 10 min using 4',6-diamidino-2-phenylindole 

(DAPI 5 mg/ml, dilution 3 μL in 1 mL PBS) followed by two washes in PBS. The slides 

were dehydrated in ethanol, cleared in xylene substitute and mounted. 

The evaluation of the stained slides was carried out on an Olympus BX51 

microscope. Image analysis was performed using NIH Image J software (Rasband, 

1997-2014). 

Cell density inside the implanted graft was quantified from DAPI staining. 

At first, cell density was counted through the whole graft thickness. Cells were counted 

from 6 randomly selected images (nominal magnification 100) per specimen. The area 

of the vascular graft was measured and the cell number was normalized to a 100100 

µm area. 

Cell density was also quantified in the mid-section of the graft. Images stained 

with DAPI (nominal magnification 600) were cropped to display the middle part 

of the graft with the area of 100100 µm. The middle part is between the lumen 

of the graft and adventitial part depicted by red square in figure 67. The cells were 

counted manually in 30 randomly selected images per specimen. 

 

 
Figure 67: Image of vascular graft infiltrated by cells with marked mid section where 

cell density was counted. Adventitial side of the graft (A) as well as luminal side (L) is 

marked by red letters, scale bar 500 μm. 

 

In NO-releasing grafts, respective cellular infiltration from the adventitial 

and luminal sides was calculated from H&E-stained images (nominal magnification 

100). The wall thickness of each graft was measured from H&E stained images, as 

well as cellular penetration depth from both sides. The cellular infiltration was 

expressed as a percentage of cellular infiltration depth from the luminal and adventitial 
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sides. The cellular ingrowth was evaluated from 6 random images by measuring 

adventitial and luminal ingrowth in 5 randomly selected locations (30 measurements 

per specimen). The analysis could not be performed in PCL grafts due to their complete 

cellular infiltration through the graft thickness (see figure 68 B, C) 

 Data are expressed herein as mean ± standard deviation. Tests for significant 

differences used a two-tailed Student's t-test and required p < 0,05 to claim significance. 

 Longitudinal cross sections revealed extensive cellular infiltration 

within the wall of the grafts (figure 68, 69). However, the presence and distribution 

of cells in the control graft differed from that of the NO-releasing grafts. The PCL 

control graft was homogeneously infiltrated with cells. In contrast, a high density 

of cells was present in the luminal and adventitial margins of the NO-releasing graft, but 

cells were nearly absent from the central region. Cells had penetrated the NO-releasing 

graft largely from the adventitial side, with only a relatively thin band of cells observed 

along the luminal side of the graft.  No evidence of cell injury or necrosis was detected 

in the NO-releasing graft cross sections (figure 69 D, E, and F). 

 

Figure 68: H&E and DAPI staining of PCL vascular graft after 10 days 

of implantation: Graft-artery junction showing host artery to the right (A), transverse 

cross section of graft's wall H&E stained (B) and DAPI stained (C); scale bars 500 µm. 

Detailed images of luminal side of the graft (D), middle part (E) and adventitial part 

(F); scale bars 50 µm. 
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Figure 69: H&E and DAPI staining of a NO-releasing vascular graft after 10 days 

of implantation: Graft-artery junction showing host artery to the right (A), transverse 

cross section of graft's wall H&E stained (B) and DAPI stained (C); scale bars 500 µm. 

Detailed images of luminal side of the graft (D), middle part (E), and adventitial part 

(F); scale bars 50 µm. 

 

 Quantification of the cells present in each graft confirmed that the PCL control 

was homogeneously infiltrated by cells. The mean cellular density for the PCL control 

graft was similar throughout the entire graft (23,5 ± 0,8 cells/100100 µm) relative 

to the middle region (24,2 ± 0,6 cells/100100 µm). In contrast, the NO-releasing graft 

exhibited an average cell density of 18,1± 1,0 cells/100100 µm compared to 6,5 ± 0,5 

cells/100100 µm in the middle region of the graft. Both the average cell density 

and the density of cells from the middle of the graft were significantly reduced 

in the NO-releasing graft relative to the control PCL grafts (p = 0,039 and 0,003, 

respectively). The results are summarized in figure 70. Specific cell staining in order 

to distinguish different cell phenotype has not been carried out. However, after 10 days 

of   implantation it is expected that most of the cells were immune cells. This suggestion 

was also noticeable from morphology of cells when observed with higher magnification 

objective. The majority of the cells belonged to macrophages and neutrophils. 
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Figure 70: The density of cells within the control PCL and NO-releasing vascular graft 

calculated based on DAPI staining (*indicates p < 0,05; n=3). Average value 

over the whole graft thickness as well as cellular density in only the middle part 

of the grafts are depicted (P=0,0386 average; P=0,0026 in the Mid Section). 

 

 In order to characterize cellular ingrowth into the NO-releasing graft, cellular 

infiltration depth from the luminal and adventitial sides was measured. 

The NO-releasing graft was found to have been infiltrated from the adventitial side 

up to 38,4 ± 11,1% of its nominal thickness.  This stands in stark contrast to cellular 

infiltration from the luminal side, which was measured at 14,8 ± 9,7% of the nominal 

graft thickness (figure 71).  The PCL graft was uniformly infiltrated throughout 

the graft (see figure 68 B and C) therefore a comparable analysis could not be 

performed. Surprisingly, the primary source of infiltrating cells in this abdominal aortic 

graft is therefore the surrounding microcirculation, rather than the arterial blood 

or the host artery. 
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Figure 71: Cell infiltration distances in the NO-releasing graft from luminal side 

and from adventitial side (*indicates p < 0,05). The depth of cellular penetration is 

expressed as a percentage of the total graft thickness (P=0,0189). 

 

5.6 Conclusion of vascular grafts modified by NO-releasing 

compounds 

 The third section of the thesis was focused on modification of polymeric 

vascular grafts made from PCL. Nitric oxide donors were added to electrospinning 

solution and release kinetics was studied in vitro. Newly synthesized compound, SNAP-

cyclam, was able to release NO in a long term that was proved in in vitro as well as 

in vivo conditions. Newly synthesized compound, SNAP-cyclam, was able to release 

NO at physiological levels up to 42 days measured in PBS after blending with PCL 

by the way of electrospinning. Similar results were achieved when vascular grafts were 

incubated in complete medium that more closely simulate conditions within the body. 

Seeding of endothelial cells confirmed higher proliferation rate of cells in the first week 

of culturing. After implantation in vivo, vascular grafts were patent after 10 days 

of implantation. There were differences between control PCL grafts and NO releasing 

grafts, especially in the way of cellular distribution within the graft thickness. 

The NO release strongly inhibits the harmful infiltration of inflammatory cells 

 into the middle and inner regions of the vascular grafts.  Additional long-term studies 

should be conducted to confirm a reduced intimal hyperplasia relative to control grafts 

and measure the rate of re-endothelialization. 
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6 Discussion 

 

Achieved results presented in previous experimental parts are discussed 

in a broad context within the field of vascular tissue engineering. The advantages 

and limitations of the results are presented towards further studies in the development 

of ideal small diameter vascular graft. 

 

6.1 The design of vascular graft 

The design of vascular graft has to start with a smart choice of appropriate 

materials. Biodegradable polyesters are commonly used for tissue engineering 

applications including vascular grafts (Watanabe, 2001; Vaz, 2005; Wu, 2010; Du, 

2012; Hu, 2012; Diban, 2013). In the thesis, comparison of 2 chosen polymers 

from the group of biodegradable polyesters was carried out. Polycaprolactone obtained 

from Sigma Aldrich and copolymer composed of polylactide and polycaprolactone 

obtained from PURASORB were used for tubular scaffold fabrication. It was found that 

both polymers are biocompatible when tested in vitro using fibroblast cell line 

(subchapter 4.1) and endothelial cell line (subchapter 4.2). 

Since the hypothesis was based on mimicking the extracellular matrix, 

electrospinning technique was employed in order to produce structure that resembles 

this cellular natural environment. Electrospinning is versatile technique enabling 

creation of fibrous structures with various morphologies. For fabrication of small 

diameter vascular graft, rotating mandrel was used as a collector and tubular scaffolds 

with defined morphology were produced. The device is depicted in chapter 2 in the 

figure 9. Depending on polymer properties, composition of electrospinning solution and 

electrospinning parameters, different fibrous morphology could be obtained. In case 

of polycaprolactone, fibers were created when 16-22 wt% was electrospun 

in solvent system composed of chloroform/ethanol 9/1 (v/v) as shown in figure 11. 

The resulting fibers could be oriented in radial direction by increasing the rotational 

speed (see figure 15). Copolymer PLC gave rise to fibrous structure when 9-12,5 wt% 

was dissolved in solvent system composed of chloroform/ethanol/acetic acid 8/1/1 

(v/v/v) as depicted in figure 19. Lower polymeric concentration led to beaded structure. 

Histological assessment of vessel wall composition was carried out in order 

to visualize the structure of native blood vessel, especially the native extracellular 
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matrix that is thought to be mimicked by electrospinning. There are 3 layers in native 

blood vessels with special arrangement that is shown in figure 7. The inner layer called 

tunica intima is composed of single layer endothelial cells that are crucial 

for maintaining non-thrombogenic surface of the lumen besides many other properties. 

Therefore it is necessary to provide a structure that will enable fast endothelialization 

of the scaffold after implantation. The middle layer of vessel wall is called tunica media 

and it is composed of radially oriented collagen fibers and smooth muscle cells. Similar 

structure was designed for vascular graft production in the thesis. The structure 

of proposed ideal vascular graft is depicted in figure 8. The outermost layer was not 

considered to be important to mimic since it is composed mostly of fibroblast cells that 

are believed to colonize the scaffold spontaneously after implantation. The proposed 

structure of double layered graft was achieved by electrospinning of PCL (see figures 

17, 18) with different parameters of solution composition and electrospinning 

conditions. The inner layer was composed of thin nanofibers that had been assumed 

to support endothelialization. The outer layer was created by oriented microfibers 

with sufficient pore size for further smooth muscle cell infiltration. Copolymer PLC was 

electrospun in a single layered tubular scaffold. Its fibrous morphology is depicted 

in figures 21 and 22. This vascular graft did not resemble native ECM by layering 

approach but its properties seemed to surpass the material performance in other qualities 

discussed later. Ideal vascular graft has to be designed not just morphologically but 

mechanical properties, surface wettability and biocompatibility have to be complexly 

evaluated. Morphology of the graft is not the only one aspect that has to be considered 

when appropriate tissue engineering scaffolds is being developed.  

 

6.2 Surface wettability  

Appropriate surface wettability enables protein adsorption in a right 

conformation followed by cell attachment to the substrate. Surface properties in terms 

of their wettability were tested using contact angle measurement. Surface wettability is 

influenced by surface roughness, testing of wettability of fibrous structures could 

provide misleading outcomes. Therefore foils made from PCL and copolymer PLC were 

tested. The results showed that copolymer PLC in both tested forms (foils 

and electrospun fibers) was more hydrophilic than PCL (PLC contact angle between 

46 and 49°compared to PCL with contact angle in range of 60-67°). This outcome 
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corresponds with the chemical structure of tested polymers. Copolymer PLC is 

composed from 70% of monomer lactide units that are more hydrophilic than 

caprolactone units. It was reported that slightly hydrophilic materials are preferred 

for tissue engineering scaffolds (Bacakova, 2011). Polycaprolactone is known to be 

hydrophobic and there were attempts to increase its hydrophilicity for example using 

plasma treatment. Electrospun PCL without modification had the contact angle 

127,6°± 0,88°. The value of measured contact angle decreased with increasing time 

of plasma treatment. After 60 seconds of plasma treatment the PCL surface reached 

complete wetting (contact angle 0°) (Valence, 2013). 

 

6.3 Mechanical properties of vascular grafts 

Mechanical properties of vascular grafts should match those of natural blood 

vessels but currently used commercial grafts made from PET or PTFE have much 

stronger mechanical properties. Our tubular scaffolds made from PCL possess average 

engineering tension of 3,3 ± 1,1 MPa compared to PLC tubular scaffold 

with 37,2 ± 9,2 MPa that is slightly higher than that of native blood vessels. Abdominal 

aorta in the same longitudinal direction has the tensile strength of 1,47 MPa 

and commercial graft Teflon TF-208 85,2 MPa (How, 1992). Biodegradable vascular 

grafts have to ensure the mechanical strength in time of suturing that is followed 

by tissue remodelation accompanied by changing of mechanical behavior. Higher 

values of mechanical strength that has been achieved in tubular samples made 

from PCL and PLC are beneficial since degradation of the polymer will weaken 

the scaffold following the implantation. Electrospun PCL exhibit low engineering 

tension that could be potentially improved by using polycaprolactone with higher 

molecular weight. Measured elasticity of PCL tubular samples was much lower 

with the average elongation of 37,5 ± 8,8 % compared to PLC reaching the average 

values of 377,4 ± 157,4 %.  

Measurement of mechanical properties could be done in axial direction as well. 

Such a study was carried out previously in our department. Electrospun vascular grafts 

made from PCL with different degree of fibre orientation were measured at both 

directions to obtain the values of tensile strength and elongation at break. Isotropic 

fibrous structures possess tensile strength between 0,3 and 0,4 MPa and elongation 

at break up to 100% in both directions. When the fibers were oriented in radial 
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direction, tensile strength in the same direction decreased to 0,1 MPa with increasing 

tensile strength in axial direction to 1 MPa and elongation at break to 200% (Yalcin, 

2014). 

Besides engineering strength and elongation at break, other parameters related 

to the mechanical behavior of the grafts have to be tested. One of the most important 

parameter is burst pressure that has to be determined in order to verify that the grafts 

will not leak after suturing. Another important aspect is the suture retention. The above 

mentioned tests are under development in our laboratories. However, preliminary 

in vivo tests revealed that vascular grafts made from PCL worked well as replacement 

of rat abdominal aorta. No troubles in suturing positions or blood leakage through the 

wall of vascular graft to the abdomen were observed (see figure 65). 

 

6.4 Biocompatibility of electrospun layers tested in vitro 

Electrospun PCL and PLC with similar fibrous morphologies having fiber 

diameter of about 1 µm were tested with fibroblast cell line. It has been assumed that 

PLC with lower contact angle than PCL would support cellular adhesion 

and proliferation due to the adsorption of adhesion molecules in right conformations. 

The results showed significantly higher proliferation rate on PLC after 7 and 14 days 

of incubation with 3T3 mouse fibroblasts. The outcome corresponds with surface 

properties of the scaffolds, mostly with appropriate surface wettability of PLC discussed 

above. 

Electrospun layers were tested in a similar manner using endothelial cell line. 

Since PCL was able to create nanofibers that had been supposed to fasten 

endothelialization, two different fibrous morphologies were tested assign as PCL nm 

(fiber diameter 230 ± 190 nm) and PCL µm (fiber diameter 960 ± 760 nm). Copolymer 

PLC created fibrous structure with average fiber diameter of 1030 ± 710 nm. Obtained 

results were similar to previous experiment - copolymer PLC support endothelial cell 

proliferation more than PCL. When different fibrous morphologies of PCL were 

compared, contradictory to the assumption, microfibers supported endothelial cell 

proliferation more than nanofibers. One of the limitations of the study is the static 

incubation of the scaffolds. It is possible that flowing conditions would result 

in different outcomes. This assumption has to be clarified after cultivation of tubular 

scaffolds in bioreactor that enables medium flow similar as in blood vessels. 
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Based on the in vitro test results the design of double layered graft should be 

re-make. The thesis was focused on characterization of electrospun layers made 

from either PCL or copolymer PLC. Both polymers possess certain advantages 

and disadvantages. Appropriate combination of those 2 polymers could improve 

the function of final ideal prosthesis and further tests are expected to be carried out. 

 

6.5 Thrombogenicity of vascular grafts 

Thrombosis is a major cause of poor patency in synthetic vascular grafts 

for small diameter blood vessel replacement. Endothelial cells provide a constant non-

thrombogenic environment. Platelets having negative charge adhere to positively 

charged hydrophobic surfaces (Sarkar, 2006). Due to the difficulties of spontaneous 

endothelialization in humans, an investigation of thrombogenic potential of new 

materials has to be carried out.   

The evaluation of thrombogenicity of tested layers (microfibrous 

and nanofibrous PCL and microfibrous PLC) with thrombocyte rich solution showed 

no statistical significant difference between the samples in case of thrombocytes 

viability measured by MTT test (see figure 42). Thrombocytes adhered and became 

activated as seen from SEM images. Platelets changed their shape from circular 

to the structure with multiple pseudopodia. Microscopic techniques revealed 

the difference in platelet spreading through the layers. Since nanofibrous layers were 

covered abundantly in the surface, microfibrous layers allow platelets to penetrate 

into the inner structures and create aggregates. However, quantification of the platelets 

by microscopic techniques was not possible to carry out due to the spread structure 

of thrombocytes where single platelets could have not been distinguished. Qualitative 

description of thrombocyte shape is a regular technique for evaluation of thrombogenic 

potential. When platelets are in resting state, their shape is circular. Once became 

activated, the structure undergo changes and multiple pseudopodia are created. When 

the activation continues, the platelets start to aggregate and spread through the surface.  

Different surface morphologies were compared in order to examine its 

contribution to thrombogenicity. Interestingly, it was found that electrospun fibrous 

layers activated platelets more than corresponding foils. Surface roughness play very 

important role in thrombogenicity. While electrospun layers were fully covered with 

spread thrombocytes, platelets in foils occurred isolated in different stage of their 
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activation. In the figure 48 there are resting circular platelets as well as spread 

thrombocytes with pseudopodia. 

Experiments in static and dynamic conditions showed different platelet 

morphologies after incubation with vascular grafts pointing the necessity of testing 

in natural environment. When dynamic conditions were employed, platelets completely 

lost their circular shape and became completely spread that indicates their higher degree 

of activation. This activation was higher in nanofibrous PCL structure compared to PLC 

microfibrous structure where sporadic not fully spread platelets could be found (see 

figure 51).  

Milleret et al. tested the influence of electrospun fiber diameter, roughness 

and surface wettability on blood activation. They found out that nanofibers exhibit low 

coagulation with almost no adhered platelets. The microfibrous structure caused 

thrombin formation and coagulation cascade activation when incubated with whole 

blood (Milleret, 2012). Our results showed higher degree of thrombocyte activation 

in nanofibers. However, the difference did not claim significance and further 

hemocompatibility tests have to be carried out. Platelet activation is just a part of blood-

material interaction assessment that is planned to study in further experiments. 

When thrombocytes are incubated with materials, they can adhere to the surface 

of material, undergo the process of activation and create aggregates. These reactions 

could be beneficial but also harmful. Vascular grafts that will allow the blood leakage 

could not work after suturing into blood circulation. Platelet activation leading 

to the creation of microthrombi within the graft wall could have a positive effect 

on blood permeability. On the other hand, thrombogenic potential of materials can cause 

thrombus formation in the lumen of the graft making the bypass occluded. 

The equilibrium of those two contradictory processes is difficult to evaluate without 

in vivo or ex vivo testing. 

 

6.6 Vascular grafts releasing nitric oxide  

 One of the main limitations of state-of-the-art NO-releasing biomedical devices 

is short-term delivery of NO. In the experiments described above in chapter 5, 

incorporation of SNAP-cyclam, newly synthesized compound, into a PCL nanofibrous 

vascular graft led to long-term NO release. The initial burst of NO after exposure 

to an aqueous environment was between 200 and 450 pmol min
-1

 cm
-2

 (figure 61), 
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which was of similar to the physiological levels of NO produced by endothelial cells 

(Vaughn, 1998).The measurement of NO release was strongly influenced 

by the presence of Cu
2+

 and ascorbic acid. Copper is known to catalytically decompose 

RSNOs to release NO, provided that the appropriate reducing equivalents are present 

to convert Cu
+2

 to Cu
+1

. PBS and complete medium were both used to soak the NO-

releasing PCL to demonstrate that biological agents present in the medium do not coat 

the polymer and prevent NO release. Even after 42 days of immersion in PBS, NO-

releasing groups were still present within the fibers and were capable of NO generation. 

These in vitro results suggest that physiological levels of NO were still being developed 

at the NO-releasing PCL graft surface after 10 days in vivo. In the in vivo environment, 

many endogenous agents (including Cu
2+

 and ascorbate) are present that are able 

to release NO from RSNOs present in the polymer (Singh, 1996). 

Nanofibrous structures mimic the extracellular matrix and therefore promote 

cellular adhesion (Bhardwaj, 2010). However, cellular infiltration of complex 3D 

nanofibrous structures can be limited by the small pore size of nanofibrous scaffolds 

(Nam, 2007). The vascular grafts prepared by electrospinning of PCL composed 

primarily of 150 nm-diameter fibers which allowed uniform cellular infiltration 

throughout control PCL grafts after 10 days of implantation (see figure 68).  In striking 

contrast, we found that cellular infiltration was strongly inhibited by NO release. 

Nanofibrous PCL vascular grafts were uniformly infiltrated with inflammatory cells, 

and their presence was significantly reduced in the NO-releasing graft. Most of the cells 

present had colonized the NO graft from the adventitial side, with relatively few cells 

present on the luminal side, and a near absence of cells in the mid-section of the graft. 

The results show a clear protection of the middle and luminal part of the implanted graft 

from inflammatory cell infiltration, which comprise the approximate region where 

neointimal hyperplasia occurs.  The results also show that inflammatory cells migrate 

into the graft primarily from the surrounding microcirculation relative to the circulating 

blood. Thus, the NO release was very effective in creating a barrier that inhibited 

the transmigration of adventitial inflammatory cells into the middle and inner regions 

of the graft (Figure 67).  Because SMCs are stimulated by inflammatory cells to migrate 

to the intima of vascular grafts where they promote neointimal hyperplasia and eventual 

graft failure, we speculate that the reduced presence of inflammatory cells in the inner 

and middle regions of NO-releasing grafts may reduce later intimal hyperplasia 

of SMCs.   
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Whereas the transmigration of harmful inflammatory cells was strongly 

inhibited, the presence of a thin band of cells along the blood-contacting surface 

of the vascular graft suggests that re-endothelialization may not be impaired by the NO 

release. Indeed, there is evidence that NO release may be beneficial for endothelial cell 

migration and proliferation (Taite, 2008; Kushwaha, 2010). After the implantation 

of a conventional vascular graft, endothelial cells typically begin to migrate 

from the adjacent host artery. After 6 weeks of implantation into the rat abdominal 

aorta, endothelial cells cover 80% of a conventional graft's lumen, and complete 

endothelialization is achieved after 6 months (Valence, 2012). Because of the short 

duration of the present study (10 days), we were not able to assess the contribution 

of continuous exogenous NO release to restore endothelial cell coverage. A long-term 

study is required to determine to what extent endothelial cell coverage may be enhanced 

by NO release.  

 

6.7 Future perspectives 

 The thesis offers the technological tools for production of vascular grafts, their 

fabrication from biodegradable polyesters PCL and PLC and the characterization 

of such scaffolds. To assess the function of tissue engineering scaffolds, further studies 

have to be carried out. Further in vitro tests with vascular smooth muscle cells that are 

another important part of functional blood vessel are ongoing. Assessment 

of thrombogenicity will be repeated with new model of bioreactor. Meanwhile static 

incubation of thrombocytes with fibrous layers modified by NO releasing compounds 

will be tested. 

 Materials used for vascular grafts will be also examined for complex 

hemocompatibility testing including hemolysis assay and different coagulation 

pathways assessment to understand the blood material interactions. 

Since both used polymers are biodegradable, the degradation rate has to be 

studied as well. Previously, there were carried out tests with degradation of PCL that 

had taken several months to degrade. On the other hand, copolymer PLC is a new 

material that has to be characterized over a period of time for the progress of its 

degradation and its mechanical and structural changes after implantation in vivo. It is 

assumed that the degradation will be faster in case of copolymer PLC because of its 
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amorphous state slightly more hydrophilic than PCL. Degradation studies have to 

follow the molecular weight loss and mechanical behavior shift. 

Long term performance of vascular grafts implanted in animal models such as 

rats, rabbits and pigs will be evaluated. These outcomes will bring very important 

insight into the function of presented scaffolds for vascular tissue engineering since 

the results from complex in vivo testing are the most valuable for further directions.  
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7 General conclusions 

 

The aim of the thesis was the contribution to the development of ideal vascular 

graft that will fulfill its requirements listed in the theoretical part. The hypothesis 

of mimicking extracellular matrix was employed and proposed structure composed 

of two layers mimicking native vessels (tunica intima and tunica media) had been 

designed. Biodegradable polymers were chosen for production of vascular grafts 

because those materials enable tissue remodeling after implantation. The concept 

of in situ tissue engineering was accepted leading to readily available grafts in various 

sizes and thicknesses of final products. Polycaprolactone was electrospun into planar 

and tubular samples with different morphologies. Nanofibers as well as microfibers 

were created by changing electrospinning solution properties and electrospinning 

conditions. PCL enabled the creation of proposed double layered vascular graft where 

inner layer was composed of nanofibers and outer layer was created by oriented 

microfibers as in native vessels. The first hypothesis based on the mimicking of native 

extracellular matrix by electrospinning was achieved using electrospinning 

of polycaprolactone. 

Novel material from the same group of biodegradable polyesters, copolymer 

polylactide and polycaprolactone, was electrospun into planar and tubular form. 

However, the morphology remained similar even if conditions or composition 

of electrospinning solution was changed. Therefore a single layered graft was prepared 

from this polymer. 

 The second hypothesis was based on mechanical performance of produced 

tubular scaffolds. Mechanical properties of electrospun vascular grafts made from PCL 

and copolymer PLC were compared by measurement of stress-strain curves. Copolymer 

PLC possessed higher strength and elasticity compared to electrospun PCL making it 

ideal material for vascular tissue engineering. The values of mechanical strength were 

higher compared to native blood vessels. However, it is beneficial since degradation of 

the polymer will weaken the scaffold following the implantation. In terms of 

appropriate mechanical behavior, copolymer PLC is preferred over polycaprolactone in 

time of suturing. 

Materials properties were evaluated in order to characterize these candidates 

potentially employed in the field of vascular tissue engineering. Surface wettability 
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showed that copolymer PLC is more hydrophilic than PCL that was hypothesized 

from their chemical structures. Slightly more hydrophilic surface of PLC facilitated 

fibroblast and endothelial cells adhesion and proliferation in vitro. Higher proliferation 

rate of fibroblasts and endothelial cells was observed with copolymer PLC that possess 

lower contact angle compared to PCL. 

 Nanofibers were assumed to promote endothelialization of vascular lumen 

as proposed for the inner layer of ideal vascular graft. Nevertheless, this hypothesis has 

been rejected after incubation of nano- and microfibrous PCL in static conditions. 

Endothelial cells showed higher viability on microfibrous PCL layers than 

on nanofibrous PCL layers. Nanofibers also activated thrombocytes in static 

and dynamic conditions due to their high surface to volume ratio. Based on these 

complex results, the proposed structure has to be re-designed according to the outcomes. 

Material properties are probably more important than morphology of the fibers. 

Copolymer PLC made from microfibers fitted more to the requirements for vascular 

grafts however the native ECM has not been fully mimicked by electrospinning. Further 

steps in evaluation of in vivo tests have to be carried out to verify this statement. 

 Another important part of the thesis was the functionalization of vascular graft 

made from PCL by nitric oxide releasing compound. Long term release has not been 

achieved in the literature before. Newly synthesized compound, SNAP-cyclam was 

added to polymeric fibers ensuring stable long term NO release in physiological levels 

up to 42 days in vitro. Nitric oxide beneficial properties were confirmed in vitro 

 by culturing the scaffolds with endothelial cells that were supported in the presence 

of NO donors compared to controls during the first week of culturing. More 

importantly, the effect of NO was observed in vivo after implantation in rats 

as a replacement of abdominal aorta. After 10 days of implantation, nitric oxide 

suppressed the inflammatory reaction within the graft compared to control PCL grafts. 

The NO release strongly inhibits the harmful infiltration of inflammatory cells 

into the middle and inner regions of the vascular grafts.  The protection against 

inflammation in this region of the graft is anticipated to confer increased resistance 

against neointimal hyperplasia from smooth muscle cells.  Additional long-term studies 

should be conducted to confirm a reduced intimal hyperplasia relative to control grafts 

and measure the rate of re-endothelialization. 

 The development of tissue engineering scaffold requires wide range 

of knowledge and skills in material science field, biology and medicine. The thesis is 
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focused on characterization of electrospun vascular grafts made from polycaprolactone 

or copolymer polylactide-polycaprolactone. The material bulk and surface properties 

were investigated followed by in vitro tests and preliminary in vivo tests. Further 

investigation before translation into clinic is needed. However, the first steps towards 

the development of suitable vascular graft were conducted. 
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