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Summary 
This master thesis is dealing with modeling of the rotor system based on the numerical 
transfer matrix calculations. This method is suitable for fast analysis of beam bodies to 
observe the resulting deflection and critical speed in regard to the initial circumstances. 
The bearing stiffness is a significant input factor that affects the outcomes of the analysis, 
especially the critical speed the rotor system. 
First of all,the available approaches to analyze the bended beam bodies are discussed 
focused on explanation of the transfer matrix algorithm. After that, the approach to 
estimate the bearing stiffness based on the Hertz contact theory is presented. Further, a 
brief explanation is given about the heat arising in the rotor bearings. 
The following chapters are focused on description of the software solver for rotor system 
analysis based on the transfer matrix method, considering the bearing stiffness estimation 
based on Hertz contact theory, with possible calculations of the induced bearing heat 
losses. 
In the end, the practical use of the developed software is presented with the analysis of the 
obtained results of the rotor deflection, critical speed, and bearing power loss. There is 
also discussed a comparison of the different bearing stiffness estimation with the impact to 
the computation outcomes, especially on the rotor critical speed, followed by comparison 
conclusion implementation into rotor system analysis. 

Abstrakt 
Tato diplomová práce se zabývá modelováním rotorových soustav pomocí numerické metody 
přenosových matic. Tato metoda je pro svou časovou efektivitu vhodná pro výpočty 
ohýbaných nosníků a analýzu výsledného průhybu a kritických otáček dané rotorové 
soustavy s ohledném na vstupní počáteční podmínky. Jedním z významných vstupních 
parametrů takovéto analýzy je tuhost ložisek rotoru a její vliv na výsledné kritické otáčky 
rotoru. 
Nejdříve jsou prezentovány dostupné výpočtové metody pro ohýbané nosníky se zaměřením 
na vysvětlení principu metody přenosových matic. Následuje nastínění výpočtu tuhosti 
ložiska na základě teorie Hertzova kontaktního tlaku. Dále je stručně vysvětlen princip 
výpočtu tepelných ztrát generovaných v ložiscích rotoru. 
Další kapitoly se zaobírají popisem navrženého řešice rotorových systémů, založeného 
na metodě přenosových matic, s možností stanovit tuhost ložiska na základě Hertzova 
kontaktního tlaku a možnosí stanovit tepelné ztráty v ložiscích rotoru. 
Nakonec je ukázáno praktcké řešení zadaného rotoru s pomocí vyvinutého programu spolu 
s uvedením výsledné průhybové čáry, kritických otáček a tepelných ztrát v ložiscích. V 
závěru je také provedeno srovnání výsledků pro další přístup stanovení tuhosti ložiska, 
zvláště pak vliv na kritické otáčky daného rotoru, závery ze vzájemného porovnání jsou 
následovně implementovány ve vyvinutém řešiči. 



Keywords 
Rotor system, Transfer matrix method, Bearing stiffness, Critical speed, Hertz's elastic 
contact theory, Heat loss 
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Rotorové soustavy, Metoda přenosových matic, Tuhost ložisek, Kritické otáčky, Teorie 
Hertzova kontaktního tlaku, Tepelné ztráty 
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Rozsšířený abstrakt 
Tato diplomová práce se zabývá modelováním rotorových soustav pomocí přenosových 
matic, s uvážením vlivu magnetického tahu, charakteristického pro elektrické stroje. Dal-
sším významným uvažovaným vstupním parametrem je hodnota tuhosti ložiskových pod­
por řešeného rotoru. Výsledky statcké analýzy v podobě silových reakcí v ložiskových 
podporách mohou být dále využity pro odhad tepelných ztrát indukovaných v ložiscích 
hřídele rotoru. 
Metoda přenosových matic je populární metoda pro řešení soustav diferenciálních rovnic 
popisující systémy sériově řazených prvků. Hřídel v elektrickém stroji skládající se ze 
segmentů o různých průřezech, nesoucí součásti, jako například ozubená kola, či řemenice, 
a podepřený ložisky o určité tuhosti určitě může být chápán jako systém sériově řazených. 
Metoda přenosových matic umožňuje časově efektivní řešení průhybu hřídele, stanovení 
silových reakcí v pružných podporách a výpočet kritických otáček daného rotoru. 
Tuhost ložiskových podpor, je významným parameterem, který ovlivňuje dynamické vlas-
nosti rotorové soustavy. V této práci je nastíněn postup odhadu tuhosti valivého ložiska 
na základě teorie Hertzova kontaktního tlaku, kdy lze stanovit tuhost kontaktu valivkého 
elementu ložiska s s oběžnými dráhami vnějšího a vnitřního prstence ložiska, a to z geo-
metrickýc rozměrů daného ložiska. 
Třecí ztráty generované v ložisku lze odhadnout na základě známého radiálního zatížení 
ložiska a na provozních otáčkách. Ve třecích ztrátách lze zohlednit také vliv maziva 
ložiska, případně těsnění ložiska. 
Na základě teoretických poznatků výše zmíněných problematik, byl navržen softwarový 
řešič, vyvinutý pomocí výpočtového prostředí M A T L A B . Navržený program umožňuje 
statickou a dynamickou analýzu zadané rotorové soustavy, pomocí algoritmu přenosových 
matic, Výsledky silových reakcí lze v tomtéž řešiči použít pro stanovení tepelných ztrát 
ve vybraném ložisku daného rotoru. 
Navržený řešič byl použit pro dvě analýzy rotorové soustavy. V prvním případě byla 
tuhost podpor stanovena na základě zmíněné Hertzovy teorie kontaktního tlaku, v druhém 
případě byly tuhosti ložiskových podopor stanoveny na základě vztahu odvozeného z 
předpokladu rozložení radiálního zatížení mezi více valivých elementů ložiska. Na základě 
srovnání dosažených výsledků byla navržena jistá úprava v ovládání výpočtu v daném 
programu, a to zejména s ohledem na kritické otáčky rotoru. Výpočet se musí skládat 
dílčích iteračních výpočtů v případě, že tuhost ložiskových podpor není na počátku blíže 
stanovena. 
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1. Introduction 
1.1. Motivation 

Rotary machines are one of the most important elements of industrial devices and rotating 
shafts are the most critical elements of these machines. The prime role of the shaft is 
the power transmission, furthermore these shafts are supposed to bear other machine 
parts like discs, bearings, gears, or rotors, especially in electric motors. There have been 
developed various methods to analyse the rotary systems. One of these methods is the 
transfer matrix method. The benefit of this method is the fact it is convenient to model 
serial systems, which the shaft bearing plenty of other parts is indeed. Such shaft can 
be split into particular segments. Individual segments can be described by its specific 
transfer matrix. These matrices can be derived from dynamic equations or can be already 
found as tabulated results in engineering handbooks. Because of the algorithm principle 
this method is time efficient for such sort of problems in shaft analysis. In the end it 
leads to estimate deflection and critical speed of the shaft and force reactions in the rotor 
bearing. However there exist several factors that influence the result accuracy of the 
computation compared to the real state. Especially in electric machines it depends on 
how precisely the magnetic pull arising from the interaction between rotor and stator is 
modelled. Moreover, it depends how the value of the stiffness of the bearing considered as 
a spring support is estimated, these factors have consequently an impact to determined 
deflection and critical speed of the shaft. One more output that can be estimated in the 
rotor system analysis is heat loss generated in the rotor bearing. This variable is depended 
on the specific bearing type, its reactions, which gives us a value of the bearing load, and 
operational rotational speed of the rotor as well. 

1.2. Problem definition 

The problem addressed master thesis is numerical modelling of rotor bearing system. The 
model should respect the following key factors: magnetic pull, bearing stiffness given by 
specific type of the bearing chosen by designer, influence of the different approaches to 
estimate bearing stiffness to critical speed, and bearing reactions consequently affecting 
generated heat loss in the bearings. 

1.3. Objectives settings 
1. Research in field of mathematical modelling of electric engines rotor bearing system, 

focused on application of the transfer matrix method. 
2. Devise a software solver for simulating rotor bearing system with aim to obtain 

deformation, critical speed of the rotor shaft and heat loss in the shaft bearings. 
3. Implementation of methods for estimating bearing stiffness and heating losses in­

duced in the bearings into the rotor analysis. 
4. Affect of bearing stiffness on rotor critical speed and bearing heat loss. 
5. Analysis and comparison of obtained results. 
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2. Beam computations 
Rotary machine shaft can be modelled in several ways, from the theory of stress-strain 
analysis it follows that suitable model for rotor shaft is one dimensional beam body. 
Characteristic property of such model is that it includes three displacements and three 
rotations as degrees of freedom in the endpoints of the beam body. Therefore, it makes it 
possible to describe the body in cases when it is subjected to bending load. This chapter 
is oriented on review of mathematical methods for beam models computations. 

2.1. Castigliano's Method 

The main idea of this method in stress strain analysis theory is to estimate resulting 
displacement in linear-elastic body systems of the point of causing force. It is defined 
as partial derivative of strain energy of the entire system with respect to certain causing 
force. The form for beam bending computation is mentioned below, in formula (2.1). The 
limitation of this method is that it makes possible to obtain only the displacement uk in 
point of causing force Fk [1]. 

^ ^OA 0 t M](x)dx ^ r M ^ d u 
dFk dFk.L 2EJy J EJy dFk 

2.2. Deflection curve 

This method is based on solving the differential equation for deflection curve of bended 
beam, formula (2.2). Compared to the previous method it makes it possible to get the 
outcome as shape function of the deflection along the whole loaded beam, and not only in 
the points of certain force loading. The necessity for solving the equation is to introduce 
boundary conditions which express the beam ending point state variables regarding to 
the real mounting conditions of the beam [1]. 

EJy-wü(x) = -My(x) (2.2) 

Deformation and internal force effects in arbitrarily point along the beam axes can be 
described by following state variables: 

• w displacement 

• 6 slope 

• M bending momentum 

• T transversal force 

Governing equations, which makes is possible to solve the differential equation are [2]: 



2.3. Method of initial parameters 

Method of initial parameters is specific way to formulate general solution of differential 
equation. The basis of this method is to transform boundary problem to initial problem. 
Integration constants are expressed via function values of state variables in the origin 
of the coordinate system, which is usually placed in the left side endpoint of the solved 
beam. It is usual case that the parameters in the origin are unknown, and it is needed 
to estimate them by transformation from conditions known in other points of the beam 
system [2]. 

Significant advantage of this method is the possibility to solve the problems of beams on 
elastic foundations with discontinuities along the beam span caused by applied forces or 
segments with different cross section areas [2]. 

For instance, here will be shown solution of beam subjected to bending caused only by 
transversal forces, as it is stated in [2]. 

The problem can be described by the homogeneous differential equation of the fourth 
order with the solution in the following way. 

wiv(x) = 0 

wm(x) = Ci 

WU(x) = C\X + C2 

x2 (2-3) 
wl(x) = Cl— + c2x + c 3 

S 2 
Ob tJC 

wix) = c i 7T + c 2— + c3x o 2 

The boundary conditions (initial parameters) are: 

w(0) wu{0) M(0) = -EJy • ̂ "(0) T(0) = -EJy • wiU{0) 

Estimated integration constants from the initial parameters are: 

C l = m C 2 , m C 3 ^ ( o ) „ = „ ( 0 ) 

By substitution of attained constants to formulas in (2.3) the following system of equations 
can be obtained. 

W{X) = W { 0 ) + ^ 0 ) . X - — — 

M(0)-x T(0) -x2 

M{x) = M(0)+T(0)-x 
T{x) = T(0) 

The results achieved in this section will be used later for explanation of principle of the 
following method. 
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2.4. Transfer matrix method 

Transfer matrix method is a matrix form of method of initial parameters. During times 
it had shown to be extraordinarily effective method for solving differential equations for 
serial system. The method is characterized by progressive matrix multiplications along a 
line of the serial system. This step leads to final matrix whose size does not depend on 
the number of elements in the solved system, which is the significant advantage property 
of this method in comparison with the finite element method [2], [3]. 

2.4.1. Establish of transfer matrix 

The basic idea of the transfer matrix method will be explained on the previous example 
with bended beam. The system of equations (2.4) can be written in matrix form as 
follows [2]: 

w 
a 
V 

M 
= 

T 
L J X 

X X2 X3 

X 1EJy 6EJ, 
1 — X X2 

EJy 2EJ, 
0 1 X 
0 0 1 

The state variables in the matrix form are gathered in a so-called state vector. 

In short form it is denoted [2]: 

w 
e 

M 
T 

_ 

(2.5) 

M x = [C]° o M o (2-6) 

Used notation means: 

• {w}x state vector at specific point x along the axes of the beam body 

• {w}0 initial state vector given by the values in the origin of the coordinates 

• [C]° o linear transformation; transfer matrix for the field on interval [0, x] 

The transfer matrix can be derived in general for the problems described by differential 
equations. The procedure will be shown again with the example of the bended beam. 
The system of equations (2.3) can be written in matrix form. 

w 1 X 
w% 0 1 
w%% 0 0 

X 
0 0 

The system can be written in short form. 

M l = 

c 4 

c 3 

c 2 

_ c l _ 

(2.7) 

o 

[F]x{c} (2.8) 
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Used notation means: 

• {w}'x vector including solution of differential equation ww(x) = 0 

• {c} vector of integration constants 

• [F] fundamental matrix (Wronskian) 

The initial parameters can be formulated in analogous way. 

M i = [F]o{c} (2-9) 

By execution of c from equation (2.9) and substitution into equation (2.6) it is obtained. 

M l = [FUF^M'o (2-10) 

The vector {w}'x can be transformed to vector {w}x by matrix [R] as follows: 

(2.11) 

By execution of {w}'x from equation (2.11) and substitution into equation (2.10), the state 
vector can be expressed. 

w "1 0 0 0 w 
w% 0 1 0 0 w% 

0 0 -EJy 0 

X 
0 0 0 -EJy_ 0 

{W}x = \R\\F\x\FXz\R\-\W}* 

Observed from formula above, general formulation of transfer matrix is: 

\C\ = \R\\F\x\F\t\R\-x 

2.4.2. Computational algorithm 

(2.12) 

(2.13) 

The general transfer formula (2.6) can be formulated for several beam segments in row 
along the beam axis. Total length of the beam body is divided into specific sub-intervals 
according to the specific elements [3]. For instance, according to the figure below. 

IF IF V 

W; w b 

c 4 

w d w e 

Figure 2.1: Beam with denoted segments [3] 
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Transfer formulas for each sub-interval are expressed in following forms [3]. 

M c = WIM 
(2-14) 

ci 

The state vectors {w}a , {w}b, {w}c , {w}d contain state variables at dividing points. From 
the equation system above it is obvious that vectors at dividing points can be progressively 
expressed by the vector from the initial point, that leads to system of equations [3]. 

= [CMMl b[C}l,a{w}a (2.15) 

M e = [c}tAC}lAC}lAC}la{w}a 

The equations have shown other way to obtain the state vector at any point by multipli­
cation of transfer matrices, from endpoint on the left side up to the chosen point, with 
the initial state vector in the left endpoint of the beam. The matrix coming from the 
multiplication of matrices of all elements is called global transfer matrix [2], [3]. 

Computer computation is based on two major steps, the first one is to establish the 
global transfer matrix of the system. After that boundary conditions are applied to global 
matrix, thus initial state vector becomes known. Further it follows another multiplication 
along the system according to the (2.14) and (2.15) which permits to print out the state 
variables responses of the entire system along the system elements [3]. 

2.4.3. Loading incorporation 

Influence of such external occurrences as springs, lumped masses, concentrated transverse 
forces or distributed load along the beam axes is expressed by involving particular solution 
of certain differential equation in the following way [2]: 

W * = M , o M + H > . (2-16) 

The second term {wp}x, which denotes particular solution of differential equation in gen­
eral, corresponds to impulse response of the system to change of state variables in solved 
field. It is usual to incorporate the loading terms directly in the transfer matrix with the 
aim to make the computations more convenient. This is done by defining extended state 
vector and extended state matrix through mathematical identity 1 = 1, as it follows [2]. 

w " l X X2 

lEJy 
9 0 1 X 

EJy 
1 M = 0 0 

X 

EJy 
1 

T 0 0 0 
1 

X 0 0 0 

6EJy 

1EJV 

X 
1 
0 

F 
-1 w 

w 

FD 
6 

Fm M 

Fji T 

1 1 

(2.17) 
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As it has been mentioned above using the shown extension via the last column in extended 
matrix helps to add influence of external causing load into computation. Through that 
idea can be expressed the effect of the beam's mass distributed along its axis. Specific 
extended form of the matrices describing the beam segments are stated in appendix of 
this thesis, Transfer matrices. 

Next, it will be explained derivation of the matrices for spring supports and concentrated 
transverse force. These two cases have in common the expression of step change of the 
state variables in field of the beam body, matrices for these cases are referred also as point 
matrices. 

Suppose concentrated transverse force at point j of the solved beam body. Consider 
infinitesimally short spanning element around the point j. As it illustrates the figure 2.2 
below [3]. 

F 

Figure 2.2: Beam segment at point j [3] 

Deflection and slope are continuous across j. Summation of momentum of point j implies 
that bending momentum is also continuous. However, equilibrium of the vertical forces 
shows the change of shear force between left and right side with the magnitude corre­
sponding to value of the subjecting transverse force F. A l l of that can be expressed by 
equation for specific point j [3]: 

w 
9 

w 
9 

0 
0 

M = M + 0 
T T —F 
1 j 1 j 1 

(2.18) 

The equilibrium can be written in matrix form, where the matrix is transfer matrix for 
step change of transverse force at certain point of the beam [3]: 

w "1 0 0 0 0 " w 
9 0 1 0 0 0 9 

M = 0 0 1 0 0 M 
T 0 0 0 1 —F T 
1 j 0 0 0 0 1 1 

(2.19) 

- ;i 
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The idea for derivation of spring support matrix is the same with such distinction, that 
the force at point j is given by spring stiffness k and displacement Wj at point j. Transfer 
matrix formulation for such case is [3]. 

(2.20) 

Spring support element can be used in the system as model of bearing with specific the 
stiffness. The ways to estimate the bearing stiffness will be discussed in another chapter. 

w "1 0 0 0 0 " w "1 0 0 0 0" w 
e 0 1 0 0 0 e 0 1 0 0 0 e 

M = 0 0 1 0 0 M = 0 0 1 0 0 M 
T 0 0 0 1 kwj T k 0 0 1 0 T 
1 j 0 0 0 0 1 _ 1 j 0 0 0 0 1 1 3 

2.4.4. Bearing reactions 

One of the sought outcomes of the rotor system analysis are bearing reaction forces. 
As explained in the previous section, the transverse forces or spring supports cause the 
step change of the transverse force state variable. There exists following mathematical 
expression of the step change around the spring support: 

w "1 0 0 0 0" w W 
9 0 1 0 0 0 9 9 

M = 0 0 1 0 0 M — M 
Rj k 0 0 1 0 T T 
1 b 0 0 0 0 1 b,a 1 

a 
1 

The state vector at point a contains the values of the state variables on the one side of 
the spring support, by the multiplication with the spring support transfer matrix it is 
obtained the state variables on the other side of the support. By the subtraction of these 
two vectors, the vector with the bearing force reaction Rj is obtained. 

2.4.5. Boundary conditions 

As it has been declared, boundary conditions are necessary to gain the initial state vector. 
Here will be given an insight into the process to apply prescribed boundary conditions 
into computation. Consider bended beam described in general by transfer formula (2.6) 
expressing relation between state vectors at the beginning x = 0 and at the end x = L of 
the beam. Further, suppose the global transfer matrix has been already attained [4]. 

(2.22) 

o 

For bended beam four boundary conditions are required through prescribed values of state 
variable in the endpoints of the beam. These values are substituted to corresponding posi­
tions in the initial and the final state vectors of the beam in transfer formula (2.22), [2], [4]. 

w Cu C12 Cl3 Cu Cl5 w 
9 C21 C22 C*23 C24 C*25 9 

M = C31 C32 C 3 I C34 C35 M 
T C41 C 4 2 C 3 4 C 4 4 C 4 5 T 
1 C51 C52 C35 C45 C55 1 
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For instance, suppose beam founded on spring supports with free end points, correspond­
ing boundary conditions are: 

. for x = 0: M(0) = 0; T(0) = 0 

. for x = L: M(L) = 0; T(L) = 0 

Implementing these conditions to formula (2.22) leads to elimination of columns matching 
to positions of zero values in initial state vector and rows matching to unknown values in 
the endpoint state vector, last row can be omitted as well [4]. 

w 
e 

M = 0 = 
T = 0 

1 L 

->• ->• ->• ->• ->• 

- > - > — > - > - > 

C 3 I C 3 2 - > - > C 3 5 

C41 C42 - > - > C45 
->• ->• ->• ->• ->• 

(7 
M = 0 
T = 0 

1 

(2.23) 

Gained reduced system of equations make solving of remaining initial state variables 
possible. Such achieved initial state vector can be used in following computation to print 
out the state variables response along the beam structure as it explains the previous 
section about the computational algorithm. 

2.4.6. Dynamic response 

Previous sections have been focused on solving of static problems. However, also dynamic 
problems including the inertia of the acceleration of the structural mass effects has to 
be taken into account. The responses of the structure in dynamic problems are so-called 
natural modes, which are characteristic deformation shapes of the structure body, that 
occurs under the action of initial displacement and velocity conditions. Each natural 
mode is related to certain natural frequency, therefore, to obtain only one of these two 
information is enough to predict the dynamic response of the structure. Relatively logical 
approach to get the natural frequency of the beam structure provides transfer matrix 
methodology [3]. 

Suppose bended beam, free motion is governed by the following equation [3]: 

d2 („32w\ d2w 

< * \ E I w ) = - r m ( 2 ' 2 4 ) 

Additional governing equation to solve the problem are [3]: 

dw d6 M dM m dT 2 . 
— = -6 — = — = T — = -pu2w 2.25 
dx x EJ x dx 
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The procedure to solve the equations above can be done in the analogous way as the static 
problem. For serial segmented beam structures can be composed global transfer matrix 
by progressive multiplication of the transfer matrices of each segment of the structure. 
These matrices are stated in the appendix of this thesis, Transfer matrices. 

Consider bended beam with identical boundary condition as in the static problem above. 

. for x = 0: M(0) = 0; T(0) = 0 

. for x = L: M(L) = 0; T(L) = 0 

Transfer form for the entire system with its global transfer matrix will be obtained, as 
it has been explained in the case with the static problem above. In general, it can be 
written as follows [4]. 

w Uu U12 u13 Uu w 
9 u22 u23 u2i 6 

M u31 u32 u33 f/34 M 
T L #41 U,2 f/43 f/44 T 

(2.26) 

- 0 

w 
a 
u 

M = 0 
= 

T = 0 L 

->• ->• ->• ->• 

-> -> -> -> 
f/31 f/32 -> -> 
f/41 f/42 -> -> 

u 
M = 0 
T = 0 

The boundary conditions will be applied, and reduced system of equations will be obtained 
[3], [4]: 

(2.27) 

In accordance with the formulas from the appendix (Transfer matrices), the terms of the 
matrix depend through the coefficient 7 on the angular velocity (rotation) u. The distinc­
tion compared to the static problem is, the original system of equations is in dimension 
4 x 4 , not 5 x 5 . This causes the system indeterminate since five variables are unknown: 
the state variables and the rotational speed u [3], [4]. 

The reduced system of equations is called homogeneous, nontrivial solution of such system 
exists if determinant of the system matrix is zero. Because the determinant is a function 
of the unknown rotation ou, the value of the determinant can be tracked on dependency 
of the rotation ou. The values of u corresponding to zero determinant are desired natural 
frequencies Q of the solved beam structure [3]. 

Use of bisection method 

Tracking the root of the relation between the angular velocity and the determinant of 
the reduced system can be solved numerically, appropriate method for such problems is 
bisection method [6]. 

The method is based on Bolzano's theorem for continuous functions [5], [6]. 

If it holds for a function f(x) on certain interval [a, b] that f(a) • f(b) < 0, then there 
must exist c G (a,b) for which /(c) = 0, [6]. 
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The bisection method looks to find an approximation of the root of the function f(x). 
The accuracy of the approximation is given by tolerance e set for the algorithm. The 
algorithm as is stated in [5],[6], follows these steps: 

1. by tracking the function values with respect to condition in Bolzano's theorem, 
values a and b are chosen 

2. interval halving: midpoint c as an arithmetic mean between a and b is estimated 

3. function / is evaluated for c 

4. if /(c) 0, the sign of /(c) is checked 

• if /(c) has the same sign as /(a), b is replaced by c 

• if /(c) has the same sign as f(b), a is replaced by c 

5. calculation continues again from step 2., new values of a or b are recalculated 

The tolerance e is the absolute value of the difference |c — x\ between value of c and the 
actual root x. For the convergence within an absolute error tolerance e it is needed to 
meet the condition [5], [6]: 

The iterative loop for certain interval [a, b] lasts until the recalculated values of an and b. 
in nth iteration meet the condition [6]: 

Hence, the value of c„, given as an arithmetic mean of the an and bn, can be considered 
as an approximation of the root x of the tracked function within the certain tolerance 

The application of the bisection method in the calculations of the natural modes in rotor 
shaft analysis is as it follows: 

• the range of the rotation speed of the solved shaft is given 

• interval step of the rage is given 

• determinant of the reduced transfer matrix (2.27) is tracked depending on the given 
rotation speed range, in accordance with the algorithm stated above 

Numerical tracking of the determinant is not giving continuous waveform of the function 
values. Therefore, the bisection, especially the evaluation of the c value, is done through 
a linear approximation of the bounds an and bn in current nth iteration of the interval 
halving. 

Since the bisection method is linear convergence rate, with the constant m — | , it needs 
at least k iterations to get 2~k tolerance. In practical engineering tasks the usual tolerance 
e is two orders smaller than the given interval step. Therefore, seven steps of halving for 
one initial intervals are processed, since 2~ 7 = and TJS < IM t^' 

c — x\ < e 

e [5], [6]. 
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3. Magnetic pull 
This chapter is focused on brief explanation of magnetic pull, what does it mean, where 
does it arise from and what is an optimal method to model this phenomenon in electric 
machines. 

Rotor electric machines are composed from two basic parts, rotor, and stator. Between 
these parts, there is an air gap in which magnetic field operates and consequently induces 
electromagnetic forces. These forces should ideally cancel out. However, thickness of the 
air gap is not constant along the rotor and stator due eccentricity caused by factors like 
manufacturing imperfections resulting in deviations from ideal cylindrical shape of con­
sidered parts. This leads to force interaction between rotor and stator called unbalanced 
magnetic pull (UMP). This phenomenon is unavoidable in electric machines, therefore it 
is needed to be taken into account in rotor system modelling. The U M P acts in radial 
and tangential direction, but the radial component effect is usually larger, therefore the 
U M P is modelled as loading in radial direction of the rotor shaft [8]. 

The figure below shows concepts of considered mutual rotor and stator eccentricity. Two 
coordinate system are deemed, for stator (x\ — y\) and rotor (x 2 —1/2)- Static eccentric­
ity est and direction angle 8st are defined from transition between these two coordinate 
systems. Dynamic eccentricity e^y and direction angle 9dy are defined in rotor reference 
coordinate system derived from rotor whirling motion. Then mixed eccentricity can be 

The reason, to observe the eccentricity in time dependency, is to express the air gap in 
the following computations [10]. 

3.1. Eccentricity model 

defined [9], [10]: 

Figure 3.1: Rotor eccentricity scheme [11] 
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3.2. Force and stiffness model 

The force of unbalanced magnetic pull can be computed by integration of Maxwell stress 
tensor in the air gap between rotor and stator. Therefore, it requires to estimate magnetic 
flux density distribution in the air gap. This can be obtained in terms of air-gap permeance 
harmonics and surface magnetomotive force harmonics as it follows [9], [10]. 

F (a t) 
Bs (a, t) = mu0 - ; ' / = A (a, t) F (a, t) (3.2) 

o (a, t) 

Here, a denotes location of interested air gap on rotor surface, 8 (a, t) means the air gap, 
\(a,t) denotes air-gap permeance and F (a,t) means total magnetomotive force. The 
U M P forces can be finally calculated as it follows [10]. 

r2*Bs(a,t) 
rx= • r • lst • cos(a)aa 

Jo 2/x0

 1 ' 
f2-Bs(a,t) 

By — — • r • Igt • sin[a)aa 
Jo 2/x0 

(3.3) 

Here r is air gap radius and lst is length of the stator stack. 

Obtained U M P force can be used to define magnetic pull stiffness linearized around the 
static eccentricity (xst,yst) a s h follows [9], [10]. 

Cri 
'dFx 

dx a rn.y 
x=xst 

'dFy 
. dy 

(3.4) 
y=yst 

3.3. Simplification assumptions 

The analytical model above has, however, limitations related to the accuracy. The model 
is established within following simplifications [9]: 

• No effect of variation in slip, slot opening, magnetic saturation and flux leakages 
considered [9] 

• Value of mixed eccentricity is static at instantaneous time [9] 

Therefore, to overcome mentioned limitations, the usual process is to realize more detailed 
finite element analysis simulations of the specific magnetic field to achieve results of the 
mentioned variables with aim to estimate causing forces and eccentricity values for U M P 
stiffness as precise as possible regarding the specific circumstances [10]. 
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3.4. Transfer matrix model 

From above stated the model of magnetic pull stated above, resulting in stiffness esti­
mation, that magnetic pull can be taken into account also in numerical model of rotor 
shafts based on transfer matrix method. The appropriate element type seems to be spring 
support, however, there are few differences related to the element considered as the one 
with the magnetic pull effect [4]. 

First, the stiffness deemed as the magnetic pull is included with negative sign. Briefly, 
the larger the eccentricity is, the bigger the air gap is, consequently the arising magnetic 
forces are weaker. That is opposite compared to common mechanical spring model, where 
the arising force in the spring is growing proportionally with the spring deflection. 

Second, it is inappropriate to deem the element with magnetic pull as zero length element. 
Thus, the approach in such cases is to divide the magnetic pull element into separate shaft 
type elements and spring support elements with negative value of stiffness in the transfer 
matrix [4]. However, more appropriate is to discretise the element into more than just 
two shaft elements with one spring between. The element with the length L is usually 
divided internal in the transfer matrix algorithm into n elements with L/n length and 
n — 1 springs are placed between the elements with stiffness Cm/n — 1. 

Exact form of the transfer matrices for magnetic pull elements are stated in the appendix 
Transfer matrices. 

CJn-1 

M — k 

Figure 3.2: Magnetic pull element division scheme 
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4. Rolling-Element Bearings 
This chapter considers rolling-element bearings and briefly introduces common types of 
rolling-element bearing. 

4.1. Bearing types 

There can be considered two basic types of rolling-element bearings, ball bearing and 
roller bearing. The stated bearing types differs from each other based on the shape of the 
contact area, the ball bearing has an elliptical contact area, whereas the roller bearing 
has a rectangular shape of the contact area. The figure 4.1 shows the descriptive pictures 
of specific bearing types. 

(c) (d) 
Figure 4.1: Description of the most common rolling-element bearing types [13], 

(a) Ball bearing, (b) Cylindrical roller bearing, (c) Tapered roller bearing, (d) Thrust 
ball bearing 

As it illustrated the figure 4.1, rolling-element bearings are assembled from several parts: 
an inner race, an outer race, a set of balls, or rollers, and cage, or separators. The 
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cage and separators maintain even spacing between the rolling elements. Full-complement 
bearings are cage-less, and the annulus in packed with the maximum number of rolling 
elements. Such type of bearing disposes higher load carrying capacity but lower speed 
limits compared to cage equipped bearings. Tapered-roller bearings are an assembly 
of a cup, a cone, a set of tapered roller, and a cage [12]. 

4.1.1. Ball Bearings 

The ball bearings are used in greater quantity than any other types of rolling-element. 
Such type is suitable in application with primarily radial load and some thrust load 
present. The ability to carry the thrust load can be expressed by the parameter called 
contact angle [12]. 

Contact angle 
The figure 9.4 of the ball bearing cross section depicts the meaning of the contact angle. It 
is defined as the angle made by line thought the points where the ball element touches both 
inner, and outer raceways and a plane perpendicular to the bearing axis of rotation [12]. 
The figure implies, the higher contact angle is, the higher is the capacity of the bearing 
to carry the thrust load. 

Deep-groove ball bearing is the essential type of ball bearing. This kind of ball bear­
ing is not recommended for applications with thrust load, since the contact angle varies 
from 0° to approximately 5°, because of the radial clearance and an axial play between 
the raceways and the rollers [12]. As it shows the figure 4.2. 
Angular-contact ball bearings are designed to carry a heavy thrust load in one direc­
tion. It has a two-shouldered ball groove in one raceway and single-shouldered ball groove 
in the other raceway, as it depicts the figure 4.3. The typical values of the contact angle 
vary from 15°up to 40° [12]. The angular contact ball bearings are usually mounted in 
duplex pairs either back-to-back, or face-to-face position. Such case requires the preload 
so that both bearings are clamped together. The preloaded bearings provides stirrer shaft 
support and prevent the bearings from skidding at light loads [12]. 
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Figure 4.3: Angular-contact ball bearing, cross section detail [12] 

Self-aligning bearings have an outer race, or inner race ball path in spherical shape, 
so that it accepts some levels of misalignment [12]. 
Thrust ball bearings have the contact angle 90°, therefore they are applicable exclu­
sively for machinery with vertically oriented shafts [12]. 

4.1.2. Roller Bearings 

Roller bearings are employed for higher loads than can be accommodated with ball bear­
ing. There can be also defined the contact angle in analogous way as for the ball bearings, 
as it shows the figure 4.4 below [12]. 
Cylindrical roller bearings provide purely radial load support (since the contact angle 
is zero) with high carrying-load capacity and as well as high speed capability, exceeding 
spherical, or tapered roller bearings [12]. 
Spherical roller bearings are made either single, or double row design. They combine 
extremely high radial load capacity with modest thrust-load carrying capacity and have 
an excellent tolerance to misalignment [12]. 
Tapered roller bearings use rollers in the shape of truncated cones. The radial load 
capacity is comparable to that of a cylindrical roller bearing with the same size. The 
contact angle is in range from 10° to 16°, but also steeper contact angle of 30° can be used 
to increase the thrust load capacity. However, the tapered-roller bearing cannot accept 
pure radial load and since the assembly is separable, they are usually mounted in pairs, 
like the angular-contact ball bearing, to improve ability to transfer bidirectional axial 

Figure 4.4: Cross section scheme of tapered roller bearing with marked contact angle [12] 

load [12], [13]. 
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5. Bearing stiffness 
Numerical modelling of bearing is getting more complex nowadays, computations are often 
made through advanced analysis tools like F E M simulation etc. Such approaches help to 
develop the knowledge about the problematic of the roller-element bearings. However, 
there is still need to have useful analytical methods, which can be easily applied by 
designers in practical task in machine designing. This chapter gives an insight to available 
approach to estimate a contact stiffness of rolling elements with the ring raceways based 
on the the bearing geometry [12]. 

5.1. Hertz's contact 

The idea to estimate the contact stiffness arises from general load deflection relation­
ship [12]: 

wz = Kj5j (5.1) 

Here, Kj means bearing rolling element contact stiffness, S means displacement under the 
causing load in the contact point of the bearing rolling elements. There are two significant 
types of contact conjunction in the bearings, elliptical for ball bearing or rectangular for 
roller bearing. These two cases are distinguished via value of j, for ball bearing it is 
j = 3/2, for roller bearing it is j = 1 [12]. The stiffness Kj for certain contact type can be 
determined from the bearing geometry, based on the Hertz's elastic contact theory, which 
will be, for both cases, described in following sections. The method is adopted from the 
publication [12]. For Hertz's contact theory following factors have to be assumed [14]: 

1. The contact body is an isotropic linear elastic material, which obeys Hooke's law 
and is in a small deformation state. 

2. Te length a of the contact area is much smaller than the radius R of curvature of 
the surface of the object, that is, a « R. 

3. Te contact surface is smooth and continuous, and there is no friction. 
4. Since a « R, every object can be regarded as an elastic half space. 

5.1.1. Elliptical contacts 

Formula for ball bearing contact stiffness is: 

Used notation means: 

• ke 

. E' 

. R 

• E,T elliptic integrals 

(5.2) 

ellipticity parameter 

effective module of elasticity 

curvature sum 
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Ball bearing geometry 

Figure 5.1 depicts cross section of ball bearing geometry. These bearing dimensions are 
marked: Outer bearing diameter da, inner bearing diameter db, bearing width bw. 

Figure 5.1: Cross section of single row ball bearing [12] 

For the rolling element contact analysis are important following dimensions: outer raceway 
diameter dQ, inner raceway diameter di and ball diameter d. These parameters can be 
found and measured from bearing C A D models available in the online catalogues. The 
practical way of this process will be presented further in the text. Another necessary 
parameter can be determined by the following relations: 

Pitch diameter de: 

de = (5.3) 

Diametral clearance q (marked in the figure 4.2) is thought as the maximum distance 
that one raceway can move in diametral direction with respects to the other, when small 
load is applied [12]: 

Cd = dQ — di — 2d (5.4) 

Race conformity Rr is a measure of the geometrical conformity of the race and the ball 
in plane passing through the bearing axis [12]. It is defined as the ratio of the raceway 
radius and rolling element diameter. For the ideal case, the race raceway radius is equal 
to the ball radius, thus Rr would be 1/2. However the closer the race conforms to the 
ball, the greater is the frictional heat within the contact. The modern bearings usually 
have 0.51 < Rr < 0.54 . The race conformity ratio for the outer raceway is said to be 
slightly larger compared to inner raceway, with the aim to compensate the contact stresses 
at inner and outer raceway [12]. In the computations of thesis, the following values are 
considered, adopted from [15]: 

• Rro = ^ = 0.53 for outer-ring raceway 

• Rri = -̂ = 0.52 for inner-ring raceway 
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Radius curvature for ball-inner-race contact: 

d (de — dcosß) 
Rxi 

R hi 

24 

2R 

(5.5) 

Radius curvature for ball-outer-race contact: 

d (de + dcosfi) 
R., 24 

R 
(5.6) 

2Rrn — 1 

From radius curvature values of radius ratio ar can be obtained, for inner-ring raceway: 

(5.7) Ryi 
Rxi 

In analogous way for outer-ring raceway: 

R yo 
R, 

(5. 

Value of the radius ratio determines calculation of the elliptic integrals J7 and £ according 
to the following table 5.1: 

Table 5.1: Simplified elliptic integrals contact equations [12] 
Radius ratio range 

Property 1 < ar < 100 0.01 < ar < 1 

Geometry 

Ellipticity ratio ke = a r ke = Otl^ 

ElHpUc l n t e E r a l 5 + E i ^ T ^ \ ~ % ~ ^ 

Of course, the variables ellipticity parameter ke and consequently elliptic integrals J 7 , £, 
stated in the table above, are needed to be distinguished for inner and outer raceway. 
Final formula for curvature sum R is for inner-ring raceway: 

Ri R 
1 1 

+ R 
(5.9) 
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In the same way for outer-ring raceway: 

1 
Rn R 

1 1 
+ R 

(5.10) 

The estimated ellipticity parameter ke, curvature sum R and elliptic integrals £, T can 
be finally used to calculate the elliptical contact stiffness. 

\E'l 

2ln(±§*) - 1 

5.1.2. Rectangular contact 

Formulas for roller bearing contact stiffness is: 

Kx = 

Used notation means: 

• E' effective module of elasticity 

• / length of the rolling element 

• Rx radius curvature 

• b* contact semiwidth 

Radius curvature for cylinder rolling elements can be calculated by formula: 

1 _ 1 1 
Rx f'a.x f'b.x 

(5.11) 

(5.12) 

Where rax denotes radius of rolling element and r&x denotes radius of the bearing raceway, 
that value is distinguished for inner and outer raceway, consequently radius curvature Rx 

is distinguished in the same way, as it shows the figure below. 

Cylinder Cylindrical inner Cylindrical outer 

rtH>0.rby=~ rtH>0.rby=~ 
H i 

Figure 5.2: Designations for radii of curvature for rolling bearing races [12] 

Contact semiwidth is given by formula: 

b* = R7 

7T 

1/2 

Here, W is dimensionless load defined via normal load per unit w': 

W w 
E'Rn 

(5.13) 

(5.14) 
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Formula (5.14) above implies that for bearings with rectangular contact type,the radial 
load is necessary to be known as an input. This fact makes the stiffness estimation for the 
rectangular contact bearing more complicated, compared to the ball contact bearings. 

5.1.3. Material properties 

Last variable needed for contact stiffness estimation, for both cases of contact types, is 
effective elastic modulus, which is defined by material properties of conjugated rings and 
rolling elements. 

E' = 2 - 2 (5.15) 
Ea Ej, 

Where E and \i means Young's modulus and Poisson's ratio, subscripts a, b are assigned 
to rolling element and bear ring, respectively. 

5.1.4. Stiffness estimation 

The stiffness of rolling bearing can be determined from contact analysis explained above 
together with following assumptions of loading distribution in bearing. Mostly, bearing 
applications involve steady-state rotation of either the inner or outer race. Furthermore, 
rotational speeds are usually not so high so effect as centrifugal forces or gyroscopic 
moments can be neglected [12]. 

At first, it requires to get rolling element stiffness Kj. Furthermore, the total radial 
deflection 5m is given by deflection of inner and outer ring [12]: 

&m &mo ~t~ &mi (5.16) 

Here, for Smo, and 5mi it holds: 

Wz \ „ I wz

 x 

(5.17) 

Finally, by substituting of the equations (5.16) and (5.17) into equation (5.1) it is obtained 
stiffness of bearing rolling element conjunction with the inner and outer rings expressed 
by formula [12]. 

Kj = ^j— (5.18) 

The value of j distinguish, if the stiffness is related to the elliptical, or rectangular con­
junction shape. 
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5.2. Preloaded bearing 

As have been mentioned in the review about bearing types (chapter Rolling-Element 
Bearings), the angular contact ball bearings are usually mounted in pairs to be able carry 
the thrust load. Here, it will be given a simple approach to determine the radial stiffness 
of the preloaded angular contact bearing. The two angular bearings are usually preloaded 
by mounting with rigid preload P. The figure 5.3 shows the paired bearing subjected to 
axial load A [16]. 

Figure 5.3: Preloaded paired bearing [16] 

The mechanical equilibrium for the depicted axial bearing forces Fa\ and Fa2 is: 

A = Fal — Fa2 

The preloaded state is special case described by equilibrium: 

Fai = Fa2 = P 

(5.19) 

(5.20) 

The initial axial deflections 5a\ and Sa2 of the paired bearings satisfy the relation for 
relative approach of the rings under the preload [16]: 

Sai + S, n 2 (5.21) 

The equations stated above can be illustrated by preload deflection curve stated in the 
figure 5.4. The graph shows that value of P corresponds with the intersection of two 
opposite curves when equation (5.20) holds. 
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Axial preload 

Deflection 
curve of the 
bearing 2 

Deflection 
curve of the 
bearing 1 

Axial deflection 

Figure 5.4: Deflection curve for paired bearing [16] 

In accordance with the analysis stated in [16], relation for preload P holds: 

P = Z-Kr sin5/2(/3) • (e/2) 3 / 2 (5.22) 

Finally, it can be estimated, according to the paper in [16], that the axial stiffness ka and 
the radial stiffness kr of the paired bearing is: 

ka = 3 • (Z • Kjf3 sin5/3(ß) • P 1 / 3 

k(, 
tan2(ß) 

(5.23) 

(5.24) 

The aim of the calculations stated in this chapter is to show how the bearing stiffness can 
be determined for the machine designer as simply as possible. The only parameters needed 
for the input are outer raceway diameter dQ, inner raceway diameter di, ball diameter d, 
and the number of rolling elements Z which are accessible from bearing catalogues, and 
the C A D geometry. There have been developed several other approaches to estimate 
the bearing stiffness, which are usually based on experimental analysis. Their potential 
use with the results comparison will be discussed in later chapter chapter Application, 
dedicated to practical rotor analysis. 
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6. Power losses 
This chapter covers phenomenon of friction heat generated in shaft bearings. There exist 
various sources of frictional resistance. The most predominating cases will be discussed, 
with the mathematical approach to describe them. 

Quantitative evaluation of the total power dissipated in bearing can be expressed by 
formula [13]: 

2ir 
Pdls = M- — (6.1) 

n 
Where, n denotes operational speed of the bearing in revolution per minute, M gath­
ers total frictional momentum arising from bearing component contacts and lubricant 
interaction. In detail the frictional momentum can be expanded as follows [13]: 

M MP • Mi, • M< (6.2) 

The terms in equation above express the load dependent momentum Mp, lubricant viscous 
friction momentumMi, and sealing friction momentumMs [13]. 

6.1. Loading friction 

Loading contact friction consists of two major contributing factors: rolling and sliding. 
First one, rolling, is caused by elastic hysteresis. When roller and raceway materials just 
ahead of the contact in the circumferential direction undergo distortion and compression, 
while, material just behind the contact is relieved of stress. Second factor, sliding, is a 
microslip which occurs in the rolling direction as a result of roller depression and raceway 
stretch. The deformation causes the roller goes forward slightly less than its circumference 
in one revolution [13]. 

The total frictional momentum can be evaluated within sufficient accuracy as a load and 
geometry dependent using a constant coefficient of friction [13]: 

MP = 0.5 • /x • db • P (6.3) 

Used notation means: 

• Mp bearing frictional momentum 

• n coefficient of the friction for the bearing 

• P equivalent static load 

• db bearing bore diameter 

The equivalent static load P can be estimated based on axial Fa and radial Fr bearing 
reactions in accordance with the procedure stated in [17] with the following relations: 

P Pa 

— — 1 for < e 

f-=X + Y^- f o r ^ > e 
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As radial load Fr is considered obtained bearing reaction from static analysis computation, 
axial load Fa can be obtained from additional computations, not directly from bended 
beam static analysis. Coefficients X and Y denote radial load and axial load factors. 
The values of these coefficients together with the value for limit value e can be found in 
bearing catalogue. Another required input is static load rate C 0 and mutual position of 
the shaft bearings. Possible cases of the bearings' position are: single or paired in tandem, 
especially for angular contact ball bearings plays role, if they are set up to each other in 
opposite position in " X " , or "O" [17]. 

This case of friction predominates in cases with slow rotation and heavy loads [13]. 

6.2. Lubricant friction 

Lubricant friction arises from interaction of roller and viscous shearing on rolling element, 
cage and raceway surfaces and churning on lubricant dispersed in bearing cavity [13]. 

The lubricant friction momentum can be expressed as follows [13]: 

ML = 10" 7 • fL • {v • n ) 2 / 3 • d3

m for v • n > 2000 
ML = 160 • 10" 7 -fL-d3

m for v • n < 2000 

Used notation means: 

• Ml momentum representing lubricant losses 

• v lubricant kinematic viscosity 

• n bearing speed 

• Jl factor depending on bearing type and method of lubrication 

This case of friction is typical for applications with high speeds and light loads. 

6.3. Sealing friction 

Sliding motion in contact of the cage and rollers, or sliding between the end of rollers and 
seal can appear in bearing. In such cases for the sealing friction momentum the empirical 
equation holds [13]: 

M s = { H R ) 2 + h ( 6 - 6 ) 

Used notation means: 

• Ms friction momentum of two seals 

• db, D bearing bore diameter, outside diameter 

• / i ) H friction factors for bearing seals, dependent on bearing design 
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This case of friction loss is worth to be considered when inadequate lubricant is used the 
kinematic viscosity is high, or the operating temperatures are low [13]. 
Values of the bearing coefficients, in the formulas above, are stated in the appendix 
Frictional coefficients. 
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7. Software interface 
As the objectives of this thesis set, one of the points of the assignment is to develop a simple 
software to analyze the rotor system. The devised software is required to include the whole 
theory summarised in the previous chapters. This chapter will give a review into software 
developing tools that can be considered to built up a graphical user interface (GUI). 

7.1. M A T L A B 

M A T L A B is a popular tool for scripting and computations in scientific and engineering 
applications. The language is math oriented, which makes it useful for engineering com­
putations based especially on matrix calculus. Another worthy advantage of M A T L A B is, 
that it provided several specialized toolboxes (GUI based applications) , which make the 
scientific computing for the users even more convenient. The toolboxes and the script­
ing language are professionally developed, rigorously tested and documented for scientific 
usage, which are the reasons, it has to be paid for a use of this software. 

Since 2015, M A T L A B has released a new environment called App Designer, through which 
the user can develop a specific interface based on his own preferences and purposes. The 
advantages of the M A T L A B GUI build up environment are following: relatively easy to 
learn, develop and set up the apps even for users less experienced with GUI designing. 

7.2. Python 

Python can be an open source alternative to M A T L A B . However, since Python is more 
general purpose programming language, it demands intermediate programming skills of 
the user. Compared to the M A T L A B toolboxes testing, user can rely on community 
developed function packages and libraries available on web forums. On the other hand, 
since the Python is open source, there is no official guaranty of the language usage for 
certain purposes like it is for M A T L A B . In terms of application development, there exists 
PyQt5 Designer, which is solid environment to build up a custom app, similar to M A T L A B 
App Designer. However, it is suitable rather for basic apps, than more visual wise complex 
applications. 

7.3. C++ 

C++ is general purpose, object oriented programming language that scales up huge range 
of applications like software, websites, or algorithm developing. The syntax is much 
more complex, compared to M A T L A B or Python, which requires higher level of software 
knowledge and programming skills of the user. If the goal is to develop tools for certain 
data analysis or model building, of course it can be done in C++, but process can be much 
more harder and time consuming for users less experienced with software development. 
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8. Rotor shaft solver 
Based on the review above, it was decided to use M A T L A B App Designer environment to 
build up a software solver for rotor analysis. The figure 8.1 shows the layout structure of 
the developed application divided into two major parts. Upper part contains a tab group 
panel with three tabs: Input, Shaft Results, and Bearing Results. In the lower part, there 
are situated two panels called Shaft and Control, to visualize the solved rotor and control 
the opened project. 

• Rotor Shaft Solve - • X 
Input Shaft Res 

Element 5election 
jits Bearing Results 

Element Parameters Beating Parameters 
Element Type | Elerrent with Added Mass » ] Diameter [mm] | o| -.: Support Stiffness [Ním] Ď] Bearing Type - t | Geometry dimensions 

• Length [mm] | 01 Mag netto Pull Stiffness [Ním] 0 Material Properties - Rolling element Outer-race diameter do [mm] 0 

1 Add Element | — ' '"I Mass [kg] 1 o| Moment of irertia ]kg'mn2] Young modulus E [MPa] o| Inner-race diameter d [mm] 0 

1 Delete Element | \ Angular velocity [rpm] [ oj Force [N] 0 Poisson ratio u [-] o| Element diameter d [mm] 0 

' ' Srjeed Range 
Number of elements 121 

Material Young modulus E [MPa] o| Contact angle 0 [°] 0 

Boundary Condition 0 Estimate Critical Speed 0 Gravity g = 9.&1 mfs*2 Poisson ratio u [-] o| Preload P |N| 0 

® Loose - Loose Lower bound [rpm] | 10001 Young Modulus [MPa] 210000 Radial Load w[N] 0 

Fixed - Loose Upper Bound [rpm] | 2e+051 Density [kg/m1] 7850 [ Calculate Result Stiffness |NJm] n Element length 1 [mm] 0 

Support - Suppo t Step [rpm] | 10DD | | Save Bearing | | Load Bearing 
Shaft 

L=40.0 mm L=16_5 mm k=5_1e+07 L=6.0 mm 
B=li.D lim B=20.0mm Nfm D=20_0 mm 

L̂ .Onm L=26_a mm L=4.0mm k=4_1e+rj7 b9.Smn L=21.0 mm L=16_7 
D = 25.0mm D=14_0 mm D = 12.0 mm Ulm D = 12.Q mm 0=10.0 mm D=8.7 

m=0.32Skg m=0.Q25kg 
Cm= 

7.06e+05M/m 

mm L=15.Smm 
nm D=B.O mm 

m=0.060 kg 

1 1 
1 I I I 1 1 1 

TönTFÖl  
j Defied io 1 Critical speed | I Save Shaft | | Load Shaft | Save Deflection Save Critical speed Reset Help 

Figure 8.1: Solver layout, with filled example 

The following section explains shortly the idea of the user work-flow of the developed 
program. Three basic parts of the work-flow can be considered, rotor parameters definition 
and possible outcomes, detailed bearing results analysis, and project data save. 

The following picture illustrates the basic idea of the program work-flow. 

Add or Delete 
Element 

Figure 8.2: Scheme of the rotor definition and obtained results 

According to the scheme 8.2, an input of the rotor parameters is required at the beginning. 
There are two options, first is to define the array of specific element types, second is to load 
rotor defining parameters saved from the previous use of the program. With the buttons 
Add Element or Delete Element is possible to edit the sequence of the rotor elements. Of 
course the, element array loaded from a saved file can be edited. Bearing element has 

31 



specific input parameters requirements to estimate the bearing contact stiffness located 
in the panel Bearing Parameters. User can save, or load the bearing parameters via the 
separate file, dedicated to specify bearing input parameters. 

After the elements array is defined, the material properties of the rotor have to be defined: 
material density, and Young modulus. Material density input plays an important role in 
the calculation, it determines what can be gained as an outcome of the analysis. 

If the material density is not specified in accordance with the transfer matrix formulas 
(appendix Transfer matrices), the shaft mass load distribution is neglected and only the 
deflection shape function and bearing reactions can be obtained. Only if the density has 
been specified, the critical speed analysis is possible as an outcome. 

To take into account the phenomenon of the mass load distribution except for material 
density also gravity influence has to be considered in the calculation. As the scheme 8.2 
shows, if the density is not included in the analysis, the resulting deflection shape function 
does not reflect the shaft mass distribution, however the influence of the gravitational force 
of the beared masses can be included in the calculation. If both, the material density and 
gravity acceleration, are included in the analysis inputs, the resulting deflection shape 
function reflects the shaft mass distribution along the rotor axes. 

For the critical speed estimation the gravity influence is not relevant input parameter. 

To decide if the mass load distribution should be considered in the computation, it de­
termines how the rotor is oriented in reality. If the rotor is mounted horizontally, it is 
appropriate to consider the mass distribution influence. If the rotor is vertically oriented, 
the mass distribution is not relevant for the analysis of the transverse bended beam body. 

The chain in the scheme 8.3 illustrates the procedure of the bearing power loss analysis. 
Since the bearing reaction forces have been estimated, the results can be used to compute 
the induced heat in the chosen bearing according to the theory stated in the chapter 
Power losses. User can decide if the cases lubricant, or sealing friction should be taken 
into account in the heat loss analysis. 

Bearing 
selection 

Friction case 
selection 

Load firction 
Lubricant friction 
Seal friction 

Bearing power loss 
estimate 

Figure 8.3: Scheme of the bearing results analysis 

The last chain, figure 8.4, illustrates that in the current project opened in the program 
there can be saved several specific files, which can be useful for further analysis, or obtained 
result processing, or analysis repetition. The input parameters for the computation can 
be saved into file with M A T L A B suffix .mat. There are three options. User can decide to 
save the rotor definition into file named Shaft_Data.mat, another option is to save inputs 
to store bearing contact stiffness inputs into the file Bear_Param.mat, or to save the 
parameters for the heat analysis for the selected bearing into the file Heat_Param.mat. 
For the results, there is an option to store computed deflection, and critical speed curves 
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into .txt files. The bearing results gathered in the final table, situated in the panel Bearing 
Results, can be exported into Excel .xlsx file. 

5ave 
Data 

Rotor 
parameters Shaft Data, mat 

Bearing 
parameters 

Bear Param.mat 

Heat Param.mat 

Results Deflection, txt 

> Critic a 15 peed .txt 

» Bear Table.xlsx 

Figure 8.4: Scheme of the data save 

The description above gives only a brief insight into the program work-flow, the following 
sections explain the structure of the program components in more detail. The components 
can be distributed into the following categories, based on the purpose to be used for. The 
categories are: input parameters components, results and visualizing components, and 
project control buttons. 

8.1. Input parameters 

The tab group Input serves to define the initial properties of the solved rotor. The follow­
ing panels have to be used: Element Selection, Element Parameters, Bearing Parameters, 
Boundary Conditions, Speed Range, and Material. 

8.1.1. Elements definition 

In the panel Element selection, there is a drop down menu, containing a list of possible 
rotor element types. The following table 8.1 contains the element types with the relevant 
input parameters. The list is in accordance with elements list stated in the appendix 
Transfer matrices. Buttons Add Element and Delete Element serve to control the elements 
sequence definition. Already defined elements are shown in the panel Shaft. 
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Table 8.1: List of the element types with required parameters 

Element type Picture Parameters Unit 

Shaft element 
E.J. S. p Diameter 

Length 
[mm 
imm 

Element 
with added mass 

E.J. S. p 
Diameter 
Length 
Mass 

[mm 
[mm 
N' 

Magnetic pull 
E.J. S. p 

Diameter 
Length 
Magnetic pull stiffness 

[mm 
[mm 
[N/m 

Magnetic pull 
and added mass 

IM 
E.J. S. p 

I m T 

Diameter 
Length 
Mass 
Magnetic pull stiffness 

[mm 
[mm 
N' 

[N/m 

Disc 
Mass 
Moment of inertia 
Angular velocity 

[kg] 
[kg • m2] 

[rpm] 

Bearing Stiffness estimated in panel 
Bearing parameters 

[N/m] 

Spring Support Spring stiffness [N/m] 

Force Transverse force [N] 
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8.1.2. Bearing parameters 

This panel, shown in the figure 8.5, serves to estimate the bearing element contact stiffness 
in accordance with the process stated in chapter Bearing stiffness. The elements become 
active when the option Bearing from the element drop down menu Element Type is chosen. 

Bearing Parameters 

Bearing Type | Ball Bearing 

Material Properties - Rolling element 

Young modulus E [MPa] 

Poisson ratio u [-] 

Material Properties - Ring raceway 

Young modulus E [MPa] 

Poisson ratio u [-] 

I Save Bearing | | Load Bearing | 

C Calculate Result Stiffness [N.'m] 

Geometry dimensions 

Outer-race diameter do [mm] 

Inner-race diameter di [mm] 

Element diameter d [mm] 

Contact angle p [=] 

Number of rolling element Z [-] 

Preload P [N] 

Radial Load w [N] | 

Element length I [mm] | 

I Upload I 

Figure 8.5: Panel with for bearing stiffness estimation 

After that can be chosen the Bearing Type, Ball Bearing, Roller Bearing or Preloaded 
Paired Bearing. In accordance with the selected bearing type corresponding input fields 
become active to use, as shows the following table. 

Table 8.2: Bearing type input parameters 
Inputs requested for Parameter Mark Unit 

Outer-race diameter d0 [mm] 
Ball bearing Inner-race diameter di [mm] 
and roller bearing Element diameter d [mm] 

Contact angle (3 [°] 
Roller bearing Radial load 

Element length 
w 
I 

[N] 
[mm] 

Prelaoded pair bearing Number of rolling elements 
Preload 

Z 
P 

H 
[N] 

When the proper parameters for the chosen bearing type are filled in, the Result Stiffness 
of the bearing can be calculated. After that the bearing element with estimated stiffness 
can be added into the rotor elements array using the button Add Element as done for the 
others element types. 
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8.1.3. Material and Speed Range 

In the panel Material Young modulus and shaft material density is defined. Moreover, 
user can decide via the check box Gravity, if the effect of the mass distributed along the 
shaft axis and causing gravity forces should be considered in the computation, as has been 
explained in the previous section. 

Under the panel Speed Range user can define the range of the operational speed to estimate 
the critical speed of the rotor, according to the process explained in the chapter Beam 
computations, section Dynamic response. Requested inputs for the interval are: Lower 
bound, Upper bound and Step. 

Speed Range Material 

0 Estimate Critical Speed 

Lower bound [rpm] 
Upper Bound [rpm] 

Step [rpm] 

1000 

1.56+05 

1000 

0 Gravity g = 9S1 mte*2 

Young Modulus [MPa] 

Density [kg/m1] "if: 

210000 

Figure 8.6: Detail of the panel Speed Range and Material 

8.1.4. Boundary conditions 

The panel named Boundary Conditions contains buttons for choosing appropriate bound­
ary conditions for the transfer matrix algorithm.The most common cases of the mounting 
state of the rotor considered are grouped in the following table. 

Table 8.3: Possible boundary conditions 
Condition Scheme 

Loose - Loose 

Fixed - Loose 

Support - Support •0-
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8.2. Shaft visualize 

The panel Shaft serves to visualize simply the scheme of the rotor according to the el­
ements' selection. Above the elements' schematic pictures, there are stated labels with 
element specific parameters. 

Shaft 

L=40.0mm L=16.5 mm k=5.1e+07 L=6.0mm L=3.0mm L=26.0 mm L=4.0 mm k=4.1e+07 L=9.5 mm L=21.0mm L=16.7mm L=15.Smm 
D=19.0mm D=20_0 mm film D=ZO.O mm D=25.0 mm D=14.0 mm D=12.0 mm Nfm D=12.0 mm D=10.0mm D=S.7mm D=S.0mm 

m=0.325kj m=0.025kg m=0.060kg 
Cm= 

7.06e+05Wm 

Figure 8.7: Visualized shaft scheme 

8.3. Shaft Results 

This tab panel contains a graph to plot deflection curve, and numeric field containing the 
maximal deflection, which is also highlighted in the deflection graph. That outcome can 
be obtained as a callback of the push button Deflection. 

Deflection curve 

Length [mm] 
Critical speed First Critical Speed [rpm] 39859 Second Critical Speed [rpm] 84766 Third Critical Speed [rpii] 127703 Maximal deflection [mm] 0 0006362 

Figure 8.8: Shaft result panel 

As a callback to the Critical Speed push button can be obtained at most first three values 
of the critical speed, printed in three numeric fields under the graph. In the graph user 
can observe the determinant in dependency on the given speed range to look if more than 
three critical speeds in the range can occur. 

8.4. Bearing Results 

In the tab panel Bearing Results is situated a table containing following columns Select, 
Reaction, Deflection, Stiffness, and Power loss. The order of the bearing numbering is 
meant from left end of the shaft up to the right end. The force reactions are obtained 
from the deflection computation. 
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Input Shaft Results Bearing Results 

Force Reaction 

Select Reaction [N] Deflection [mm] Stiffness [Ulm] Power loss [W] 

1 0 2.7496 5,3913e-05 51000000 5.4645 

2 • 3.5339 B.6315e-05 41000000 0 

Power loss 

2 75 Radial Load [N] 

Axial Load [N] 

Bore diamaeter [mm] 

Constant factor p 

Revolution n [rpm] 

Calculate | Heat Loss [W] 

0.0015 

Static load rating [N] 

Radial load factor X 

Axial load factor Y 

Limiting value e • '4 

0 Lubrication 

Kinematic viscosity [mm3/s] 

Lubrication factorfl [-] 

Pitch diameter dm [mm] 

Sealing 

1SK Position In Tandem 

5.465 Save Heat Load Heat Save Table 

Figure 8.9: The panel gathering the bearing results 

Factor f1 [-] 

Factor f2[-] 

Outer Diameter D [mm] 

The power loss generated in the certain bearing can be be estimated in panel Power loss 
situated below the table. The chosen bearing can be picked up in the table, and as the 
radial load will be taken resulting radial bearing reaction, stated in the table. After that, 
following inputs for the resulting frictional momentum are necessary to be filled in: 

Table 8.4: Load friction inputs 
Parameter Mark Unit 
Radial load Fr 

[N] 
Axial load Fa 

[N] 
Bore diameter dh [mm] 
Friction constant / / H 
Operating revolution n [rpm] 
Static load rating C [N] 
Radial load factor X H 
Axial load factor Y H 
Limiting value e H 
Position í-l 

If the influence of the bearing lubricant is to be considered in the analysis, there is a 
checkbox called Lubrication. If the checkbox is checked off, the following inputs fields will 
be activated: 

Table 8.5: Lubrication friction inputs 
Parameter Mark Unit 
Kinematic viscosity V [mm2/s] 
Lubrication factor fl H 
Pitch diameter de 

[mm] 

If the influence of the bearing sealing is to be considered in the analysis, there is another 
checkbox called Sealing. If the checkbox is checked off , the following inputs fields will be 
activated: 

38 



Table 8.6: Sealing friction inputs 
Parameter Mark Unit 
First sealing factor h [-] 
Second sealing factor h H 
Outer diameter D [mm] 

The parameters can be saved into Heat_Param.mat, if they have been filled in, via the 
button Save Heat. Of course, they can be also uploaded from the previous computations 
via the button Load Heat. 

As the heat loss has been computed, as a callback to the Calculate push button, the value 
is assigned to the last column in the row for the selected bearing. Furthermore, the table 
gathering the bearing results can be exported to .xlsx file via push button Save Table, as 
the figure 8.9 depicts. 

8.5. Project control 

The last panel named Control includes push buttons that allows the calculations and 
project data control. There are also some other push buttons in the program to control 
some computations or data parameters control. That all will be described in the following 
paragraphs. 

8.5.1. Computation 

The two buttons Deflection and Critical speed serves to obtain a deflection curve with 
the bearing force reactions, and critical speeds, respectively. The response will appear 
in the tab Shaft Results (defection curve and critical speed curve and values) and in the 
panel Bearing Results (the bearing reaction forces). As has been explained in the previous 
sections. 

To obtain the correct deflection results the following parameters have to be filled in 
properly: 

• Element selection and relevant parameters definition, especially for the bearing stiff­
ness estimation 

• Boundary conditions with correctly chosen option 

• Material properties, where Young modulus is always necessary, density with gravity 
are optional (as explained in the introduction of this chapter) 

To obtain the correct critical speed results the following parameters have to be filled in 
properly: 

• Element selection and relevant parameters definition, especially for the bearing stiff­
ness estimation 

• Boundary conditions with correctly chosen option 
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• Material properties, where Young modulus is always necessary, density for critical 
speed analysis is also necessary, gravity influence is not relevant 

• Speed range, where range bounds with the interval step need to be filled in 

Another calculation push button is situated in the panel Bearing parameters, when the 
bearing contact stiffness in obtained as a callback. To get the Result Stiffness all active 
numeric fields need to be filled in, for chosen bearing type. 

There is also calculation push button situated in the tab Bearing results, panel Power 
loss, which serves to estimate the power loss for bearing selected in the table . 

8.5.2. Data save 

It is possible for the user to save the current project via push button Save Shaft. As 
a response, the dialogue box will appear to save the project data file. By default the 
file name is set as Shaft_Data.mat. The structure of the created file is illustrated in the 
following figure. 

Shaft Data.mat 

ne 
MatShaft 
- Young modulus 
- Density 

omg 
- Lower bound 
- Step 
- Upper bound 
de; le; me; av; ss; cm; mi; fe; et; ed; bp; img 

be 
gr 

Figure 8.10: Data structure of the rotor definition saved file 

The notation used in the figure above has the following meaning: parameter ne means 
number of the rotor elements in the project, parameter MatShaft includes values of 
Young modulus and material density. Parameter omg is used to save data about speed 
range definition, if the check box Estimate critical speed is filled, the first value of the 
variable omg is 1, the others are parameters of the speed range. If the check box is 
not filled, the first value is 0 and the other values are 0 as well. The fourth array of 
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variables in the figure 8.10 contains data about elements' parameters, the meaning is: 

de element diameter 

le element length 

me element added mass 

av angular velocity 

ss saved spring support, or bearing stiffness 

cm magnetic pull stiffness 

mi moment of inertia 

fe value of the transverse force 

et element type 

ed label of element description 

bp bearing, or spring support position index 

img element schematic picture 

The remaining parameters be and gr include the information about selected boundary 
conditions, and gravity check box. 

Naturally, if the user had saved the project data sometimes before, there is an option 
to load the saved data file to continue or correct some previous analysis. This can be 
done via push button Load Shaft. As a response the saved rotor will appear visualized in 
the Shaft panel with corresponding labels. Also boundary conditions, material properties 
specifications eventually speed range definition values will correctly fill in. 

Another save and load push buttons control are available in the panel Bearing parameters. 
The user can save entered bearing parameters, with corresponding selected bearing type, 
for eventual upcoming calculations. The file name for bearing save is by default set as 
Bear_Param.mat. The structure is show in the figure below. 

Bear Param.mat 

BearType 
MatBear 
- Young modulus 
- Poisson ratio 

geom 
- do; di, d; beta 
- Z, P 
- w; I 

Figure 8.11: Data structure of the bearing definiton saved file 

The meaning of the structure, in the figure 8.11, is following. Variable BearType contains 
the label of the selected bearing type from the drop down menu: Ball Bearing, Roller 
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Bearing, and Paired Preloaded. Variable MatBear includes material properties of the 
rolling elements and bearing ring raceways. The first and second values relate to Young 
modulus of the rolling elements, and the rings, respectively. The third and fourth values of 
this variable relate to the Poisson ratios of the rolling elements, and the rings, respectively. 
Variable geom consists of geometry parameters of the bearing. The content of this 
variable depend on the selected bearing, as it is depicted in the third block in the figure 
8.11. The parameters in the first row mean: 

• do Outer-ring raceway diameter 

• di Inner-ring raceway diameter 

• d Rolling element diameter 

• beta Contact angle 

The first row is common for all bearing types. If the Paired Preloaded bearing type is 
selected, the second row in saved file is included containing the parameters about number 
of rolling elements Z, and bearing preload P. The last row is related to the bearing type 
Roller Bearing containing the values with the following meaning bearing radial load w, 
and rolling element effective length 1. 

The last file save and load push buttons control are related to bearing power loss analysis 
in the panel Bearing Analysis, the structure of the saved file is depicted in the figure 8.12 
bellow. 

Heat Param.mat 

H Friction 

•\ Lubrication 

ÎSeaJJ 
Figure 8.12: Data structure of the heat loss parameters saved file 

The meaning of the variables in the saved file Heat_Param.mat is as follow. The variable 
Friction contains parameters related for friction momentum calculation, the sequence of 
the values stored in the variable is explained below: 
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• Fr Radial load 

• Fa 
Axial load 

• db Bearing bore diameter 

• / / Friction constant factor 

• n Bearing operating revolution 

• C0 Static load rating 

• X Radial load factor 

• Y Axial load factor 

• e Limiting value 

• Position Label of the bearing position for dynamic load calculation 

If the the lubrication is taken into account for the analysis, the variable Lubrication is 
nonzero containing the sequence of the following values: 

• v Grease kinematic viscosity 

• fi Lubrication factor 

• dm Bearing pitch diameter 

The last variable Sealing is nonzero, if the sealing impact is said to be considered in the 
analysis, and contains the following sequence of the variables related to sealing momentum 
induced in the bearing: 

• fi First sealing factor 

• J2 Second sealing factor 

• D Bearing outer diameter 

8.6. Warning dialogues 

As explained in the introduction section of this chapter, in dependency of desired out­
comes, appropriate inputs need to be entered. The program is designed to alert the 
user if some inputs are incorrectly entered. The aim is to preserve potential erroneous 
calculations. Here is given an overview of such situation. 

Missing Young modulus: This parameter is always requested for both deflection and 
critical speed analysis. If the related numeric field is empty, the following warning will 
appear. 
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Q Young modulus... — X 

Young modulus is notspacifiod 

1 OK 1 
Figure 8.13: Warning dialogue about Young modulus 

Missing material density: This parameter is important for critical speed analysis. So, 
if button Critical speed is pushed and the density numeric field is empty, the warning 
dialogue will appear. 

For critical speed, material density is required 

Figure 8.14: Warning dialogue about material density 

Missing Speed Range values: If the user requests again critical speed results, but the 
Speed range parameters are empty, program will inform the user to specify the range. 

Q RMP Range — X 

Tha range tir Critical spi ii not spcdfi&d 

1 OK | 

Figure 8.15: Warning dialogue about Speed range 

Incorrect boundary conditions: Such situation can occur, if there is not specified 
element type called Spring Support, oiBearing and concurrently boundary conditions 
Loose - Loose is chosen. Consequently, the transfer matrix of the rotor would become 
singular and the algorithm would break down. To preserve such occurrence, the following 
dialogue warns the user to change the boundary conditions, or redefine the rotor elements. 

H Singularity — X 

The matrix is singular. Changeihe boundary conditions 

• K 

Figure 8.16: Warning dialogue about possible singular matrix 

Missing specific parameters: Such warning will appear in the following cases: 

• some parameter for chosen element has not been specified before adding selected 
element type 

• bearing stiffness is requested, but some parameter has not been entered 

• bearing power loss is requested, but some requested parameter has not been specified 

44 



Q No input X 

Soma rjaramftters are missing 

OK 

Figure 8.17: Warning dialogue about missing specific parameter 

Missing rotor definition This warning will alert the user, if there is no rotor element 
defined, and concurrently one of the Deflection, Critical speed, or Save Shaft button is 
pushed. 

Q Rotor is missing — X 

There is no rotor defined 

1 OK 1 
Figure 8.18: Warning dialogue about missing rotor definition 

8.7. Software installation 

The procedure to run developed program is to run .m-file script appended to this thesis 
from running M A T L A B script window. The necessity is to have the script in the same 
folder with the added figures to visualize of the rotor element types. 

For more convinced regular use of the software, the script with the pictures can be packed 
in to .mlappinstall file via button Package App in the M A T L A B window. After that, 
the packed file can be via button Install App uploaded between other available M A T L A B 
toolboxes. 

The script of the application is designated without any dependency on another M A T L A B 
toolboxes. No additional toolbox is required to be installed to run the application. 
-} MATLAB R2020b - a x 

HOME PIO I 1 APP 5 
S © ® 1 Search Documentation •°n 

m a 
Design Get More 

App App; 

0 
Install 
App 

D 
Package 

App 
Curve Fitting Optimizati 

m m m 
n PIDTuner Analog Input Analog 

Recorder Output Gen,, 

B 
Modbu 
Explore 

m • 
r Waveform G... Analyze 

(B m m m 
Image Instrument 5imBiology SimBiclogy 

Acquisition Control Model Builder Model Analy... 

-

F IE APP5 

G • Us rs • Public * Document; * Marter_Thesis-Matlab • MatlabCc.de; • 

Current Folder Editor - âdJuhoBt -

Figure 8.19: Application package and install buttons location, in M A T L A B window 
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9. Application 
This chapter is devoted to show a practical example of the specific rotor analysis, to 
illustrate the use developed software. Moreover, it will be discussed the impact of the 
different approaches to model the bearing stiffness to the final results. 

9.1. Solved rotor 

The scheme, figure 9.1, depicts the rotor, adopted from [4], which will be solved in this 
chapter. 

X 

X .V / / / / / 
- / / / / / / / / 

- s . _ _ _ 

• 

•' / / / / ' / / / 

- s 

u 

y 
• 

• • fn T T T T fr 
"A / / / / / 
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21 16.5 15. B 

Figure 9.1: Drawing scheme of the solved rotor A F 502-B 

The other figure 9.2 shows the the mentioned rotor as a sequence of the discreet elements 
for the transfer matrix algorithm. It can be seen, there are 13 elements, when the bearings 
are replaced by spring support and the shaft element type with the width corresponding to 
the one half of the bearing width is added between the bearing and the adjoining element 
(elements no. VI . , and no. VIII.). The estimation of the spring (bearing) stiffness is 
commented on in further detail below. 
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Figure 9.2: Scheme of the solved rotor A F 502-B for transfer matrix algorithm 
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The following table 9.1 gathers used rotor elements types with the specific parameters' 
values. 

Table 9.1: Solved rotor parameters 
Element type Parameters Value Unit 

Shaft element 
Diameter 
Length 

D 
L 

19 
40 

[mm] 
[mm] 

Shaft element 
Diameter 
Length 

D 
L 

20 
16 

[mm] 
[mm] 

Bearing S K F 7304 BE-2RZP 

Shaft element 
Diameter 
Length 

D 
L 

20 
7 

[mm] 
[mm] 

Shaft element 
Diameter 
Length 

D 
L 

30 
5 

[mm] 
[mm 

Diameter D 18 [mm] 
Element with magnetic pull Length L 26 [mm] 
and added mass Mass rn 0,625 [kg] 

Magnetic pull Cm 706000 [N/m] 

Shaft element 
Diameter 
Length 

D 
L 

18 
5 

[mm] 
[mm] 

Shaft element 
Diameter 
Length 

D 
L 

12 
6 

[mm] 
[mm] 

Bearing S K F 7301 BE-2RZP 

Shaft element 
Diameter 
Length 

D 
L 

12 
9 

[mm] 
[mm] 

Shaft element 
with added mass 

Diameter 
Length 
Mass 

D 
L 
m 

10 
21 

0,025 

[mm] 
[mm] 
[kg] 

Shaft element 
Diameter 
Length 

D 
L 

8,5 
16,5 

[mm] 
[mm] 

Shaft element Diameter D 
T 

7 
15,8 
0,06 

[mm] 

with added mass Length Mass L 
m 

7 
15,8 
0,06 

[mm] 
[kg] 
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9.1.1. Bearing stiffness calculation 

The chosen bearings for solved rotor are angular contact ball bearing S K F 7304 BE-2RZP, 
and S K F 7301 BE-2RZP. The figure 9.3 shows the geometry of the selected bearings, 
obtained from C A D model available in the online catalogue on the website of SKF. In the 
figure there are marked the dimensions necessary for the bearing stiffness estimation, and 
the induced power losses analysis, based on the formulas stated in the chapters Bearing 
stiffness, and Power losses, respectively. 

(a) SKF 7304 BE-2RZP (b) SKF 7301 BE-2RZP 
Figure 9.3: Selected bearings geometry 

The parameters needed for the calculation are grouped in the table 9.2. The value of the 
contact angle /3f is chosen in accordance with the bearing data available in the online 
S K F catalogue. 

Table 9.2: Selected bearings parameters 

Parameter S K F 7304 BE-2RZP S K F 7301 BE-2RZP 
Value Unit Value Unit 

Outer-raceway diameter d0 
46,4 mm 32,52 mm 

Inner-raceway diameter di 26,4 mm 16,63 mm 
Element diameter d 10 mm 7.94 mm 
Pitch diameter de 

36.4 mm 24.57 mm 
Outer diameter D 52 mm 37 mm 
Contact angle ßf 40 0 40 0 
Number of rolling elements Z 9 [-] 8 
Young modulus, the rings E 210 000 [MPa] 210 000 

Poisson ratio of the rings 0.3 0.3 

[MPa] 
Young modulus, the rolling elements E 210 000 [MPa] 210 000 [MPa] 

Poisson ratio of the rolling elements JJL 0.3 0.3 
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In accordance with the formulas stated in the chapter Bearing stiffness, the bearing el­
ement contact stiffness calculation will be presented based on the bearing geometry di­
mensions stated above. For the bearing 7304 BE-2RZP it holds: 

Pitch diameter de: 

de = ———- — 36,4 mm 

Radius curvature for inner-ring raceway: 

d(de-dcos(3) 
HTj — : — O , » it In I 

2de 

Rrid 
Ry{ =

 O P _ 1 = 1 3 0 M M 

Radius curvature for outer-ring raceway: 

d{de + dcosß) 
Rxo = — = 6,1 mm 

2de 

Rrod 
Ryo = 7775 " = 8 8 ' 3 m m 

ZRr 

'TO 

Radius ratio for inner-ring raceway: 

« „ = # ^ = 3 2 . M . ; 
ti~i 

Radius ratio for outer-ring raceway: 

ocro = = 14, 59 Rxo 

Ellipticity ratio for inner-ring raceway and outer-ring raceway: 

= = 9,24 

A:0 = a r

2 ^ = 5,33 

Elliptical integrals for inner-ring raceway and outer-ring raceway: 

Ti = ^ + ^ - l ) lnari = 3, 56 

7T /7T \ 

J" 0 = - + - lJ lnaro = 3,10 

7T - 2 
£ = 1 + ^ = 1,016 

2ar 

7T - 2 
S0 = l + - = 1,041 

2av 
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Effective Young's modulus of the contact: 

2 
E' = —z = 230 770 MPa 

Ea Ej, 

Contact stiffness for inner-ring raceway: 

Ki.bi = TikiE' {^^\ ' = 29 316/m 

Contact stiffness for outer-ring raceway: 

=26 457 N/m 

Resulting contact stiffness of the rolling element with the bearing rings is: 

#1.5 = YPT— = 9.838 • 109 N/m 

For the bearing 7301 BE-2RZP, the calculation is processed in analogous way, the resulting 
stiffness of the rolling element is: 

#1.5 = WJT^- T F — =  8 - 7 6 3 •  1 0 9  N / M  

{ [ K 1 . 5 l ] 2 / 3 + [ K 1 . 5 o ] 2 / 3 } 3 / 2 
Obtained values of the bearing element contact stiffness will be used further in the rotor 
analsysis. 
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9.1.2. Analysis setting 

The analysis in the program Rotor Shaft Solver was set in the following way: 

Table 9.3: Settings of the inputs in the Rotor Shaft Solver 
Material panel Unit 
Gravity checked 
Young modulus 210 000 [MPa] 
Density 7850 [kg -m 3] 
Boundary conditions Loose-Loose 
Speed Range 
Lower bound 1000 [rpm] 
Upper bound 200 000 [rpm] 
Step 1000 [rpm] 

The bearing element contact stiffness calculation stated in the previous section are done 
via panel Bearing Parameters as a callback to the input parameters as the figure below 
illustrates. 

Bearing Parameters 

Bearing Type Ball Bearing 

Material Properties - Rolling element 

Young modulus E [MPa] | 2.1e+05~| 

Poisson ratio p [-] \ 0.3 

Material Properties - Ring raceway 

Young modulus E [MPa] | 2.1e+05| 

Poisson ratio p [-] 0.3 

Save Bearing 

Bearing Parameters 

Load Bearing 

(a) 

Bearing Type Ball Bearing 

Material Properties - Rolling element 

Young modulus E [MPa] | 2.1e+05] 

Poisson ratio p [-] |~ 0.3 

Material Properties - Ring raceway 

Young modulus E [MPa] | 2.1e-H 

Poisson ratio p [-] 0 

Result Stiffness [N.'m] 3.764e+09 Element length I [mm] 

| Save Bearing | | Load Bearing 

(b) 

4';.-

•0 

Geometry dimensions 

Outer-race diameter do [mm] 

Inner-race diameter di [mm] [̂  25.4 

Element diameter d [mm] 

Number of rolling element Z [-] 

Contact angle p ['] 

Preload P [N] 0 

Radial Load w [N] 0 

40 

( Calculate ] Result Stiffness fNŕm] | 9 . 0 ^ 9 

7 :•-

Geometry dimensions 

Outer-racediameterdo[mm] | 32.5f 

Inner-race diameter di [mm] | 16.eJ 

Element diameter d [mm] 

Number of rolling element Z[-] 

Contact angle (5 ['] 

Preload P [N] 

Radial Load w [N] 

40 

Figure 9.4: Calculation of the bearing contact stiffness in Rotor Shaft Solver, 
(a) S K F 7304 BE-2RZP , (b) S K F 7301 BE-2RZP 
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Through the panels Element Selection and Element Parameters the rotor elements se­
quence was defined, depicted in the following figure. 

L=40.0 mm 1=16.0 mm k=9.8e+09 L=7.0mm L=5.0mri L=26.0mm L=5.0mm L=S.[>mm k=8.8e+09 L=9.0 mm L=21.0 mm L=16.5mm L=15.8 mm 
D=19.0 mm D=20.0 mm D=20.0mm D=30.0 mm D=18.0mm D=18.0 mm D=12.0 mm D=12.0mm D=10.0 mm D=S.5 mm D=7.0 mm 

m=0.625 kg m=0.025 kg m=O.O60 kg 
Cm= 

706e*-05Nfm 

, , 

Kl ' ' Kl ' ' ' 
Figure 9.5: Solved rotor in scheme from program Rotor Shaft Solver 

9.1.3. Obtained results 

Deflection curve obtained in the program is plotted in the figure below. 

0 20 40 60 80 100 120 140 160 180 
Length [mm] 

Figure 9.6: Computed deflection curve 

Critical speed curve in the given range is plotted in the figure below. 
x 1 0 1 7 Critical speed curve 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Revolution [rpm] x 10 5 

Figure 9.7: Computed curve of critical speed 

With the bisection method there were located two values of the critical speed in the 
specified range. The values correspond to the intersections of the curve with the horizontal 
axis, when determinant of the global critical speed of the transfer matrix is zero. This is 
in accordance with the theory about the transfer matrix method for critical speed. 

• First critical speed 48 234 [rpm] 

• Second critical speed 173 266 [rpm] 
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Bearing Results 
In the panel Bearing Results, the table with the following results is available: 

Table 9.4: Obtained bearing results, from static rotor analysis 
Reaction [N] Deflection mm Stiffness [N/m] 

S K F 7304 BE-2RZP 4.6984 
S K F 7301 BE-2RZP 4.9541 

4.7759-10"7 

5.6530-10"7 

9.8378-109 

8.7637-109 

The values of the force reaction are further used in the analysis of the frictional heat 
loss induced in the chosen bearings. For the S K F 7304 BE-2RZP the following input 
parameters are required. 

Table 9.5: S K F 7304 BE-2RZP power loss analysis parameters 
Parameter Value Unit 
Radial load Fr 4.698 [N] 
Axial load Fa 

0 [N] 
Bore diameter db 20 [mm] 
Friction factor / / 0.002 H 
Revolution n 1500 [rpm] 
Load capacity Co 9500 [N] 
Radial load factor X 0.35 H 
Axial load factor Y 0.26 H 
Limiting value e 1.14 H 

In accordance with the formulas in the chapter Power losses the friction momentum can 
be estimated as follows, for the radial load it holds: 

Fa 

i r 

P = Fr = 4.698 

For the resulting friction momentum it holds: 

Mp = 0.5 • n • P • db = 0.094 Nmm 

For illustration it is considered the influence of the bearing lubrication, the input pa­
rameters are gathered in the table below. The value of kinematic viscosity was selected 
in accordance with the S K F catalogue, when the grease lubrication is considered, the 
appropriate lubrication factor fp = 2 is chosen from the table in appendix Frictional 
coefficients. 

Table 9.6: S K F 7304 BE-2RZP lubrication parameters 
Parameter Value Unit 
Kinematic viscosity v 96 mm 2 /s 
Lubrication factor fp 2 -
Pitch diameter dm 36 mm 

The lubricant friction momentum can be calculated with the following formula: 

Mp = 10" 7 • fL • {y • n ) 2 / 3 • dz

m = 25.636 Nmm 

53 



The total power loss generated in the bearing S K F 7304 BE-2RZP is determined as it 
follows. 

OTT • fi 
Pdiss = (MF + ML) • —— = 4.024 W 

60 
For the second bearing S K F 7301 BE-2RZP the process to estimate the power loss is 
analogous. 

Table 9.7: S K F 7301 BE-2RZP power loss analysis parameters 
Parameter Value Unit 
Radial load Fr 

4.954 [N] 
Axial load Fa 

0 [N] 
Bore diameter dh 12 [mm] 
Friction factor / / 0.002 H 
Revolution n 1500 [rpm] 
Load capacity Co 5000 [N] 
Radial load factor X 0.35 H 
Axial load factor Y 0.26 H 
Limiting value e 1.14 H 

In accordance with the formulas for the friction momentum it can be estimated, for the 
radial load: 

r 
p = Fr = 4.954 

The resulting friction moment: 

MF = 0.5 • fi • P • db = 0.0594 Nmm 

Here it is again considered the influence of the bearing lubrication. The input parameters, 
gathered in the table, they are obtained in the same way as in the previous case. 

Table 9.8: S K F 7301 BE-2RZP lubrication parameters 
Parameter Value Unit 
Kinematic viscosity v 96 mm 2 /s 
Lubrication factor fa 2 -
Pitch diameter dm 24 mm 

The lubricant friction momentum can be calculated with the following formula: 

ML = 10" 7 • fL • {y • n ) 2 / 3 • d3

m = 8.08 Nmm 

The total power loss generated in the bearing S K F 7304 BE-2RZP is determined as it 
follows. 

27T • 77 
Pdiss = (MF + ML) • —— = 1.279 W 

60 
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9.2. Influence of the bearing stiffness 

As was mentioned above in the text, there exist several approaches to estimate the bearing 
stiffness. So far used approach based on the Hertz's elastic contact theory is the most 
simplistic. However, such model assumes an extreme case, when only single rolling element 
is subjected to the radial load. More realistic model can be explained as follows. 

Bearing radial load is distributed among the rolling elements, as the figure 9.8 illustrates. 

Figure 9.8: Radial load distribution [13] 

Total radial force Fr equals the sum of the supports provided by the individual rolling 
elements, expressed by equation [13]: 

Fr = Qx + 2 • Q2 • cos(a) + 2 • Q3 • cos(a)... (9.1) 

Here, a number of rolling elements Z is considered and a denotes angle between the rolling 
elements, 2-rr/Z, and Qi is the force loading an individual rolling element. 

From the general load-deflection formula 5.1, stated in the chapter Bearing stiffness, for 
ball bearing it holds Q2/Q1 = ( ^ 2 / ^ i ) 3 / / 2 , respectively Q2/Q1 = (cos(a))3^2. After that, 
the equation (9.1) becomes [13]: 

Fr = Q1 • (1 + 2 • (cos(a)f/2 + 2 • (cos(2a)f/2...) (9.2) 

Analogous idea can be considered for rolling element leads to formula [13]: 

Fr = Q1 • (1 + 2 • (cos(a)) L 9 / 0- 9 + 2 • (cos(2a))L 9 / 0- 9...) (9.3) 

The brackets of the equations above express the radial load distribution in the bearing, 
it can be observed the distribution depends only on the number of the rolling elements Z 
[13]. Further, it can be determined the maximum normal loading for the rolling element, 
with the influence of the contact angle ß , expressed by the formula [13]: 

5 • Fr 

Z • cos(p) 
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After the maximal load for an individual rolling element has been determined. The 
individual deflection at inner and outer ring raceways can be obtained, from the load-
deflection formula 5.1 in the form 5 ~ Qmax, for the elliptic contact, and in the form 
5 ~ Qriax for rectangular contact, respectively. By sum of individual rolling elements 
radial displacement radial stiffness can be established. 

The considerations stated above are the basis for more detailed calculations stated in the 
article [18], and [19] presenting established analytical formulas for certain rolling element 
bearing. Only the resulting analytical formulas for the bearing stiffness are presented 
here, adopted from the article [18]. 

The final formula for ball bearing radial stiffness is: 

K = 0.3743 • ( i f 1.5 • Z)2/3 • (cos/3f/3 • F r

1 / 3 (9.5) 

The final formula for roller bearing radial stiffness is: 

K = 0.2784 • (K, • Zf9091 • (cos?)1-09091 • F r

0 - 0 9 0 9 (9.6) 

Here, i^i.s, and K\ denotes the element contact stiffness for ball bearing, and for roller 
bearing, respectively. Further the Z denotes the number of rolling elements, and the Fr 

denotes the the bearing radial load. 

It observes from the formulas above, that radial load has to be known for the bearing 
stiffness calculation. Following section presents procedure to do such computations in the 
practise. 

9.3. Improved rotor analysis 

Consider the same rotor as at the beginning of this chapter, with the parameters grouped 
in the table 9.1. As the bearing stiffness it was considered the estimated contact stiff­
ness. The following table gathers the necessary parameters for the computations of the 
bearing stiffness in accordance with the formula (9.3) from the previous section. Stated 
force reactions are taken from the previous static rotor analysis, bearing element contact 
stiffness as well: 

Table 9.9: Inputs for the calculation of the bearing stiffness 
Reaction [N] Contact stiffness [N/m] Rolling elements Z 

S K F 7304 BE-2RZP 4.6984 9.8378-109 9 
S K F 7301 BE-2RZP 4.9541 8.7637-109 8 

For bearing S K F 7304 BE-2RZP, it holds: 

K = 0.3743 • ( i f 1.5 • Z)2/3 • (cos/3f/3 • F r

1 / 3 = 7.9870 • 106 N/m 

For bearing S K F 7301 BE-2RZP, it holds: 

K = 0.3743 • (iv"i.5 • Z)2/3 • (cos/3f/3 • F r

1 / 3 = 6.9580 • 106 N/m 
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Since new estimated stiffness values are three orders smaller, compared to the original 
defined rotor, the effect of the different stiffness values to analysis result can be expected. 
The bearings in the original rotor system were replaced with the new established values 
and the static analysis and the critical speed computation were made again with use of 
the program Rotor Shaft Solver. The rotor is depicted below: 

L=40.0 mm L=16.0 mm k=8.0e+OS L=7.u mm L=5.0 mm L=26.0 mm L=5.0 mm L=8.0 mm k=7.0e+08 L=9.0mm L=21.0 mm L=16.5mm L=15.Smm 
D=19.0 mm D=20.0 mm Him D=20.0 mm n=30.0 mm D=1S.O mm D=1S.O mm D=12.0 mm Him D=12.0 mm D=irj.rj mm D=S.5mm D=7.0 mm 

m=0.625 kg m=0.025 kg m=O.OS0 kg 
Cm= 

7.06e+O5Wm 

M [xl i 1 i 1 

Figure 9.9: Solved rotor in scheme with the updated support stiffness values 

The following table collects the static calculation results of the origin analysis and the 
analysis with updated stiffness values. 

Table 9.10: Comparison of resulting bearing reactions and deflection 
Stiffness [N/m] Reaction [N] Deflection [mm 

S K F 7304 BE-2RZP 9.8378-109 4.6984 4.7759-10-7 
S K F 7301 BE-2RZP 8.7637-109 4.9541 5.6530-1Q-7 

S K F 7304 BE-2RZP 7.9870 -106 4.9334 6.1767 -10"4 

S K F 7301 BE-2RZP 6.9580 -106 5.2024 7.4768 -10"4 

From the values of the deflection, the impact of the updated stiffness is evident, since the 
deflection is larger compared to the previous case of the rotor when stiffer bearings had 
been considered. 

Results comparison should be done also for critical speed calculation. Following table give 
a comparison of obtained critical speed with respect to different spring support stiffness 
values. 

Table 9.11: Comparison of critical speed 
Bearing stiffness Units Original Updated Units 

S K F 7304 BE-2RZP 9.8378 -109 7.9870 -106 [N/m] 
S K F 7301 BE-2RZP 8.7637 -109 6.9580 -106 [N/m] 
Critical speed 
First critical speed 48 234 26 359 [rpm] 
Second critical speed 173 266 37 984 [rpm] 
Third critical speed - 73 547 [rpm] 

The results stated in the tables above implies the support stiffness values have a significant 
effect to resulting critical speed values. The outcome corresponds to generally known 
assumptions, the higher the stiffness of the system is, the higher the natural frequencies, 
respectively critical speeds, are, and vice versa. 
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9.4. Validation 

Use of stated formulas for bearing stiffness (9.3), and (9.6) has been validated by the 
following comparison. From research stated in [20] results of bearing stiffness estimation 
has been adopted. For bearing S K F 6205 had been estimated the radial stiffness via finite 
element simulation as Kr = 9.5 • 107 N/m, corresponding to radial load Fr = 894 N. 
Following table gathers necessary parameters, for the computations: 

Young modulus, the rings 

Poisson ratio of the rings 0.3 
Poisson ratio of the rolling elements \i 0.3 

Table 9.12: Parameters of bearing S K F 6205 

Parameter S K F 6205 Parameter 
Value Unit 

Outer-raceway diameter d0 
46,3 mm 

Inner-raceway diameter di 34.4 mm 
Element diameter d 7.9 mm 
Pitch diameter de 38.5 mm 
Outer diameter D 52 mm 
Contact angle ßf 0 0 
Number of rolling elements Z 9 [-1 

E 210 000 [MPa] 
Young modulus, the rolling elements E 210 000 [MPa] 

Using the developed Rotor Shaft Solver in the panel Bearing Parameters bearing element 
contact stiffness has been computed as Ki5 = 8.745 • 109 N/m. 

Bearing Parameters 

Gearing Type Eair Bearing T j 

Material Properties - Rolling element 

Young ITHNJUI US £ |MPa] 

Ho ::cr ratio J [•] 

Z.1e*C5 

0 3 

Material Properties - Ring raceway 

Young modurus E jMPa] 

Poisson ratio u [-] 

2.1e+05 

0 i 

Geometry dimensions 

Outer-rate diameter do [mm] 

Inner-race diameter di [mm] 

Element diameter 6 [mm] 

Nu mbe r of rolling element Z (-] 

Contact angle .: ['] 

Preload P [N] 

Radial Load w |N] 

Calculate Result Stiffness IN.m] e.ľ45e+09 

4'; :• 

34 -'. 

" í 

J] 

Save Bearing Load Gearing 

Figure 9.10: S K F 6205 contact stiffness estimation 

By substitution of available parameters into equation (9.3), the stiffness of the S K F 6205 
is estimated: 

K = 0.3743 • (üfi.5 • Z)2/3 • (cosßf/3 • F r

1 / 3 = 6.622 • 107 N/ 
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For comparison has been used available software M E S Y S , suitable also for rolling bearing 
analysis. The S K F 6205 bearing has been defined in the program in accordance with the 
parameters stated in table 9.12, the radial load has been set on the value from stated 
F E M analysis Fr = 894 N. 

Corresponding radial deflection has been computed as Sr = 0.013 mm. Using in general 
known formula for load-deflection relation the stiffness has been estimated, as follows: 

p 
K = -f = 6.85 • 107 N/m 

0r 

Obtained values show, the result from stated formula (9.3) is almost the same as result 
achieved with M E S Y S Rolling Bearing Calculation. However, these values are slightly 
different from the outcomes, of the F E M analysis. Since the order of the values is the 
same 10 7 A7m, it can be concluded, the stated analytical formulas approach, based on 
Hertzian contact theory, can be used in practise for rough stiffness estimation. 

9.5. Software improvement 

In accordance with the conclusion in the end of the previous section, there have been made 
certain improvements in the developed program Rotor Shaft Solver. The scheme 9.11 
illustrates the iterative work-flow in the improved rotor solver. 

Rotor 
definition 

Static analysis Results: 
Bearing reactions 

Bearing stiffness 
calculation 

Bearing stiffness 
update 

Static analysis 
Critical speed 

Results 
Bearing reactions 
Deflection 
Critical speed 

Figure 9.11: Scheme of an iterative work-flow in the Rotor Shaft Solver 

Let suppose user aims to analyse rotor system, when the bearing support stiffness is not 
exactly known. First, the rotor should be defined with the supports considered as rigid. 
That means the value of the spring support stiffness should be at least k = 10 1 2 N/m. 
As the rotor is defined, the static analysis using the Deflection push button is processed. 
After that, the table in the panel Bearing Results is filled in as the figure 9.12 shows. 
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Force Reaction Beraing Stiffness Iteralive 

Select Reaction [N] Deflection Imrnl Stiffness [N.'m] Contact stiffness [N/m] Power loss [W] Bearing Type Ball Bearing t | 
1 • 3.2550 0 7.0673ef-06 9.337861-09 0 

Bearing Type Ball Bearing t | 

0 3.4505 0 6 .1677e»06 3.76376*09 0 Radial Load [N] \ 3 451 | 

Power loss 

Radial Load [N] 

Axial Load [N] [ 

Bore diamaeter [mm] [ 

Constant factor u |̂  

Revolution n [rpm] 

Static load ratine [N] 

Radial load factorX 

Axial load factory 

Limiting value e 

• Lubri cation 

Kinematic viscosity [mm'/s] 

Lubrication factor n [-] 

Pitch diameter dm [mm] 

Sealing 

Factorfl [-] 

Factors [-] 

Outer Diameter D1 [mm] 

Position I In Tandem 

Calculate Heat Loss [W] 

L=40.0 mm L=16.0mm k=7.1e+06 L=70mm L=50mm L=26.0 mm L=50mm L=60mm k=6.2e+0S L=yOmm L=21.0 mm L=16.5mm L=15.Smrn 
D=19.0mm D=20.0 mm Nmi 0=20.0 mm 0=30.0 mm D=13.0 mm 0=13.0 mm D=12.0 mm Nmi 0=12.0 mm 0=10.0 mm D=S5mm D=7 u mm 

m=0.325kg m=0.025kg 
Cm-

7.0Be*05N/m 

rn-0.050 kg 

Figure 9.12: Improved Bearing Results panel 

Contact stiffness [Nmi] 3.764e-K)9 

Contact angle fit3] Q 

Number of rolling elements Z [-] 

4: 

Stiffness Lpcla:ed [Ivn; 6.1S8e+06 

Update 

If the certain bearing is selected using the checkbox in the first column, user can calculate 
the bearing contact stiffness using the Bearing Parameters in the Input tab, in the same 
way as in the examples stated earlier in the text. With the button Upload the estimated 
value is uploaded in the table in corresponding selected row in the column Contact Stiff­
ness. This step is repeated for all supports of the rotor. There exists the option to fill the 
contact stiffness directly in the table, since the column Contact Stiffness is editable. After 
the contact stiffness has been estimated for all bearings, the calculation of the stiffness 
based in the formulas (9.3), and (9.6) can be done. 

For this calculation servers the panel Bearing stiffness iterative located next to the Bearing 
results table. The check-boxes in the first column is used again to to select the bearing. 
As a callback the force reaction and the contact stiffness are uploaded in the fields Radial 
load and the Contact stiffness, in the panel Bearing Stiffness Iterative. Only the contact 
angle, and number of rolling elements are required as the input, for selected bearing. 
After that the stiffness can be calculated, the value appears in the field Updated stiffness. 
When the button Update is pressed, the corresponding spring support will be replaced 
with the new stiffness value. This step has to be again repeated for all bearings. One 
more fact has to reminded. As the stiffness has been updated, data about the deflection 
curve and the critical speed are deleted. This can be recognized since the values of the 
deflection in the table are exactly 0. To plot the deflection curve, or get the critical speed, 
the buttons Deflection, or Critical Speed need to be used again. As a result, new data 
about the deflection, or critical speed are obtained and filled in the table. 
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9.5.1. Illustrative example 

Finally is presented an illustrative example of the iterative rotor analysis procedure. Con­
sider again the rotor from the previous section, when the initial spring support stiffness 
is set as k = 10 1 2 N/m, for both bearings. The contact stiffness values are the same, as 
estimated in the previous sections: 9.8378 • 109, respectively 8.7637 • 109. 

Table below shows comparison of three iterations computed in the Rotor Shaft Solver. 
Values of critical speed in first and second iteration implies that first, or second iteration 
helps to get be more accurate results with respect to true critical speed, of solved rotor 
system. 

Table 9.13: Iteration comparison 

Bearing Quantity Units 
Iteration Bearing Quantity Units Initial First Second 

S K F 7304 BE-2RZP Reaction [N] 4.6984 4.9334 4.9294 
S K F 7301 BE-2RZP Reaction [N] 4.941 5.2024 5.1982 
S K F 7304 BE-2RZP 
S K F 7301 BE-2RZP Support stiffness [N/m] 10 1 2 

10 1 2 

7.987 106 

6.958 106 

8.118 106 

7.0723 106 

S K F 7304 BE-2RZP Power loss [W] 
4.0534 4.054 4.054 

S K F 7301 BE-2RZP Power loss [W] 1.1218 1.2128 1.2127 
48 234 26 359 26 547 

Rotor critical speed [rpm] 173 266 37 984 
73 547 

38 266 
73 672 

Table data show, the iterative procedure of the analysis has importance specially for 
critical speed results, if the bearing stiffness is not precisely known at the beginning of 
the analysis. Since the values of the bearing reactions only slightly differ during the 
iteration, there is not significant difference in induced bearing heat loss. 
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10. Summary 
This master thesis has been dedicated to practical application of rotor system modeling 
methods. Based on the research especially in field of beam analysis methods, bearing 
contact stiffness computation, and bearing friction phenomenon, has been developed a 
simple software gathering the theoretical findings with aim to make the rotor analysis as 
simple as possible for practical performances. 

The developed software has been illustrated with practical solving of given rotor system. 
Further followed a discussion about the impact of different bearing stiffness estimation 
approaches to final outcomes of the analysis. Based on the conclusion arising from the 
result comparison has been made an improvement in the developed software. The upgrade 
is focused on more precise results to be obtained especially with respect to rotor critical 
speed. The enhanced accuracy is gained, since the procedure of the analysis has to be 
iterative. The comparison in the final section shows, at least one iteration should be 
made to get closer to true critical speed of the rotor. However, it has to be reminded 
the used approach is based on simple analytical formula, based on certain simplification 
assumption for Hertz's elastic contact theory. For more complex bearing system, or in 
cases with greater accuracy required, the bearing manufacturer should be consulted in 
order to obtain the bearing stiffness values reflecting the geometry of particular bearing 
design, and other specific operational conditions. 

Further, the possible computation of induced bearing heat loss can be useful in potential 
design of new rolling-element bearings based on development of new material for the 
manufacturing. For instance ceramic materials disposing for example greater abrasion 
resistance compared to steel bearings elements can be used with potential improvement 
of the bearings' lifespan. 

The bearing lifespan analysis can be one of the future improvements of the developed 
software. Another limitation of the solver is the the iterative process of the bearing 
stiffness estimation and critical speed analysis has to be performed manually and it is 
only up to user how many iterations will be performed. 

The last suggestion to improve the built program is more detail analysis of impact of the 
magnetic field in solved rotor system. In the developed software the magnetic field in the 
machine is represented only with magnetic pull stiffness considered as a constant in the 
calculation. It could be in more detail explored mutual influence of the varying bearing 
stiffness leading to different deflections even between rotor and stator, and consequently 
arising magnetic forces. And vice versa, varying values of magnetic pull stiffness could 
affect final bearing load, important for iterative bearing stiffness calculation with the 
impact to resulting critical speed. 
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11. List of appendix and used 
software 

Appendix 

• Transfer matrices 

• Frictional coefficients 

Electronic Appendix 

. C A D geometry 7304 BE-2RZP 

. C A D geometry 7301 BE-2RZP 

• M A T L A B script of the developed program RotorShaftSolver.m 

Used software 

. M A T L A B R2020b; License: 40874381, M A T L A B (Individual) 

. Inkscape 0.92.4 (5da689c313, 2019-01-14) 

• MESYS Rolling Bearing Calculation; Version: 08-2021b (x64); Demoversion 

• Overleaf, Online LaTeX Editor 
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Transfer matrices 
The following formulas show transfer matrices for certain shaft element in considered 
segment given by an arbitrary interval [a, b], adopted from [4] 

List of transfer matrices - Static problems 
• Shaft element 

1 L 
0 1 
0 0 
0 0 
0 0 

L2 L 3 

2EJ 6EJ 
-L L2 

' EJ 2EJ 
1 L 
0 1 
0 0 

SpgL4 

' 24EJ 
SpgL3 

6EJn  

SpgL2 

2 

-SpgL 
1 - a,b 

• Shaft element with added mass 

E.j.s.r 

L 
1 
0 
0 
0 

L2 

' 2EJ 
-L 
EJ 

1 
0 
0 

L 3 

6EJ 
L2 

2EJ 

L 
1 
0 

( S p g + ? ) L 4 

24EJ 
mg • 
I 

( S p 9 + ^ ) L 3 

6EJ 
(Spg+^)L2 

(Spg + 7) L 
1 

a.b 

• Transverse concentrated force 
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1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 0 0 1 —F 
0 0 0 0 1 

Spring support 

A. • : 
a ! o \ "H 

1 

/ / / / / / 

'1 0 0 0 0" 
0 1 0 0 0 
0 0 1 0 0 
fc 0 0 1 1 
0 0 0 0 1 a,6 

Disc 

1 0 0 0 0 
0 1 0 0 0 
0 Iw 2 1 0 0 

-mu2 0 0 1 1 
0 0 0 0 1 

Magnetic pull 



C M 
• ^ ^ ^ i^f ^ ^ "i^r i^f ^ "i^f "l^f y / 

EJ.S 

/M, 

— Matrix expressing discretization of magnetic pull stiffness 

1 0 0 0 0" 
0 1 0 0 0 
0 0 1 0 0 

-Cm/n - 1 0 0 1 1 
0 0 0 0 1_ 

— Matrix describing discretization of shaft element 

1 L 
0 1 
0 0 
0 0 
0 0 

(L/n)2 

2E.J 
~(L/n) 

E.J 

1 
0 
0 

(L/nf 
6EJ 

(L/nf 
2E.J 

L 
1 
0 

Spg(L/n)4 

24EJ 
SpgjL/nf 

6EJ „ 
Spg(L/n)2 

2 
-Spg{L/n) 

1 

Final matrix arises from multiplication of alternate sequence composed from 
last two stated above 
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List of transfer matrices - Rotating elements 
• Shaft element 

Vi (riL) 

jEJ •y2EJ 

--fEJV^L) -lEJVibL) V i ( 7 £ ) ^ 
-J3EJV2(JL) -J2EJV3(JL) 7 ^ 4 ( 7 ^ ) V1(-yL)_ a,6 

Vx ( 7 L ) = \ [cosh ( 7 L ) + cos ( 7 L)] 

V2 ( 7 L ) = I [sink ( 7 L ) + sin (7I/)] 

^ 3 ( 7 L ) = I [ cos / i ( 7 L)-cos ( 7 L)] 

V4 ( 7 L ) = I [sro/j ( 7 L ) + sin (7I/)] 

7 = ^ 

Shaft element with added mass 

The transfer matrix formula is the same as in the previous case with the only 
difference for density in the formula for coefficient 7 . 

Pm P 

Transverse concentrated force 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 , 

a,b 

Spring support of rotating shaft 

i ) 

a ! b ) 
\ 1 

////// 
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a,b 

Disc 

D 

Magnetic pull 

1 0 0 0 0 
0 1 0 0 0 
o m2

 I o o 
-m2 0 O i l 
0 0 0 0 1 

C M 

a, 6 

— Matrix expressing discretization of magnetic pull stiffness 

1 
0 
0 

~Cm/n 
0 

0 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 1 
0 0 0 1 

— Matrix describing discretization of shaft element 

Vi (rtL/n) 
7 V 4 (lL/n) 

-72EJV3 ( 7 L / n ) 
--fEJV2 (jL/n) 

Vi llL) 
-jEJVA inL/n) 
-^EJVz ( 7 L / n ) 

V 3 ( 7 i / n ) Vz^L/n) "I 
7 3 £ J 

V 2 ( 7 i / n ) V 3 ( 7 i / n ) 
y2EJ 

V inL/n) V2{lL/n) 
7 

7^4 ( 7 £ ) ( 7 L / n ) 
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Vi ( 7 L ) = I [cos/* ( 7 L ) + cos ( 7 L)] 

V 2 ( 7 L ) = § [sin/i ( 7 L ) + sin ( 7 L)] 

V 3 ( 7 L ) = i [cos/i ( 7 L ) - c o s ( 7 L)] 

V 4 ( 7 L ) = I [sm/i ( 7 L ) + sin ( 7 L)] 

— Final matrix arises from multiplication of alternate sequence composed from 
last two stated above 
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Fractional coefficients 
In this appendix are stated tables for bearing friction coefficients, which are discussed in 
chapter Power losses. Data are adopted from [13]. 

Coefficient of friction for rolling element bearings 
Bearing type Coefficient of friction, \x 
Deep-groove ball bearings 0.0015 
Self-aligning ball bearings 0.0010 
Angular-contact ball bearing 

Single row 0.0020 
Double row 0.0024 

Cylindrical roller bearings 
With cage 0.0011 

Full complement 0.0020 
Spherical roller bearings 0.0018 
Taper roller bearings 0.0018 
Thrust ball bearings 0.0013 
Cylindrical roller thrust bearings 0.0050 

Lubrication friction factor fi 

Bearing type Grease Oil spot Oil bath Vertical shaft Bearing type lubrication lubrication lubrication oil jet 
Deep-groove ball bearing 0.75-2 1 2 4 
Self-aligning ball bearing 1.5-2 0.7-1 1.5-2 3-4 
Angular-contact ball bearing 

Single row 2 1.7 3.3 6.6 
Double row, bearing pair 4 3.4 6.5 13 

Cylindrical roller bearing 0.6-1 1.5-2.8 2.2-4 2.2-4 
Spherical roller bearing 3.5-7 1.75-3.5 3.5-7 7-14 
Taper roller bearing 

Single row 3-6 6 8 8-10 
Paired single row 12 6 12 16-20 

Thrust ball bearing 5.5 0.8 1.5 3 
Cylindrical roller bearing 9 3.5 7 

Friction factors for bearing seals f\ and f% 

Bearing design Factors 
fi h 

Deep groove ball bearings (2RS1), self-aligning ball bearings (2RS1), 
angular-contact ball bearing (2RS), Y-bearings (series 17262(00)-2RS1 20 10 
and 17263(00)-2RS1) 
Y-bearings (all other series), needle roller bearings (2RS) 20 25 
Cylindrical roller bearings, full complement (2LS) 
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