
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

FINITE-STATE BASED RECOGNITION NETWORKS
FOR FORWARD-BACKWARD SPEECH DECODING

DISERTAČNÍ PRÁCE
PHD T H E S I S

AUTOR PRÁCE Dipl.-lng. MIRKO HANNEMANN
A U T H O R

BRNO 2016

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

FINITE-STATE BASED RECOGNITION NETWORKS
FOR FORWARD-BACKWARD SPEECH DECODING
ROZPOZNÁVACÍ SÍTĚ Z A L O Ž E N É NA K O N E Č N Ý C H STAVOVÝCH P Ř E V O D N Í C Í C H PRO D O P Ř E D N Ě

A Z P Ě T N É DEKÓDOVÁNÍ V ROZPOZNÁVÁNÍ ŘEČI

DISERTAČNÍ PRÁCE
PHD THESIS

AUTOR PRÁCE Dipl.-lng. MIRKO HANNEMANN
A U T H O R

VEDOUCÍ PRÁCE Doc Ing. LUKÁŠ BÜRGET, Ph.D.
S U P E R V I S O R

BRNO 2016

Abstract
M a n y tasks can be formulated i n the mathematical framework of weighted finite state trans
ducers (W F S T) . Th is is also the case for automatic speech recognition (A S R) . Nowadays,
A S R makes extensive use of composed probabil ist ic models - called decoding graphs or
recognition networks. They are constructed from the ind iv idua l components v i a W F S T
operations like composit ion. Each component is a probabil ist ic knowledge source that con
strains the search for the best path through the composed graph - called decoding. The
usage of a coherent framework guarantees, that the resulting automata w i l l be op t imal in
a well-defined sense. W F S T s can be opt imized wi th the help of determinization and min
imizat ion i n a given semi-ring. The application of these algorithms results in the opt imal
structure for un-pruned search and the op t imal dis t r ibut ion of weights for pruned search is
achieved by applying a weight pushing algori thm. The goal of this thesis is to further de
velop the recipes and algorithms for the construction of op t imal recognition networks. We
introduce an alternative weight pushing algori thm, that is suitable for an important class
of models - language model transducers, or more generally cyclic W F S T s and W F S T s wi th
failure (back-off) transitions. We also present a recipe to construct recognition networks,
which are suitable for decoding backwards i n time, and which, at the same time, are guar
anteed to give exactly the same probabilities as the forward recognition network. For that
purpose, we develop an algori thm for exact reversal of back-off language models and their
corresponding language model transducers. We apply these backward recognition networks
in an opt imizat ion technique: In a static network decoder, we use it for a two-pass decoding
setup (forward search and backward search). Th is approach is called tracked decoding and
allows to incorporate the first pass decoding into the second pass decoding by tracking hy
potheses from the first pass lattice. This technique results i n significant speed-ups, since it
allows to decode wi th a variable beam width , which is most of the t ime much smaller than
the baseline beam. We also show that it is possible to apply the algorithms in a dynamic
network decoder by using the incrementally refining recognition setup. Th is addit ional ly
leads to a par t ia l parallel ization of the decoding.

Keywords
Automat i c speech recognition, L V C S R decoding, recognition networks, weighted finite state
transducers, N-gram language models, weight pushing

Bibliographic citation
M i r k o Hannemann: Finite-state based recognition networks for forward-backward speech
decoding, P h D thesis, Brno , B rno Univers i ty of Technology, Facul ty of Information Tech
nology, 2016

Abstrakt
P o m o c í m a t e m a t i c k é h o formalismu váhovaných konečných s t avových p ř e v o d n í k ů (weighted
hnite state transducers W F S T) m ů ž e bý t fo rmulována ř a d a ú loh vče tně a u t o m a t i c k é h o
rozpoznáván í řeči (automatic speech recognition A S R) . Dnešn í A S R s y s t é m y široce využí
vají s ložených p r a v d ě p o d o b n o s t n í c h m o d e l ů n a z ý v a n ý c h dekódovac í grafy nebo rozpozná
vací s í tě . T y jsou z j edno t l i vých komponent k o n s t r u o v á n y p o m o c í W F S T operac í , n a p ř . kom
pozice. K a ž d á komponenta je zde zdrojem zna los t í a omezuje vyh ledáván í nejlepší cesty
ve s loženém grafu v operaci zvané dekódován í . Využ i t í k o h e r e n t n í h o t eore t i ckého r á m c e
garantuje, že výs l edná s t ruktura bude o p t i m á l n í podle def inovaného kr i t é r ia . W F S T mo
hou bý t v r á m c i d a n é h o polookruhu (semi-ring) op t ima l i zovány p o m o c í determinizace a
minimalizace. Apl ikací t ě ch to a lg o r i tmů z í skáme o p t i m á l n í s t rukturu pro p roh ledáván í ,
o p t i m á l n í distribuce vah je pak z í skána apl ikací "weight pushing" algori tmu. Cí lem t é t o
p ráce je zdokonalit postupy a algoritmy pro konstrukci o p t i m á l n í c h rozpoznávac ích sít í .
Zavád íme a l t e r n a t i v n í weight pushing algoritmus, k t e r ý je v h o d n ý pro dů lež i tou t ř í d u mod
elů - p ř e v o d n í k y j azykového modelu (language model transducers) a obecně pro všechny
cyklické W F S T a W F S T se zá ložn ími (back-off) p řechody . P ř e d s t a v u j e m e t a k é z p ů s o b
konstrukce rozpoznávac í s í tě v h o d n é pro dekódován í z p ě t n ě v čase, k t e r é p r o k a z a t e l n ě pro
dukuje ty s a m é p r a v d ě p o d o b n o s t i jako d o p ř e d n á síť. K tomuto účelu jsme vyv inu l i algo
ritmus pro e x a k t n í reverzi back-off j azykových m o d e l ů a p ř ev o d n ík ů , k t e r é je reprezentu j í .
P o m o c í z p ě t n ý c h rozpoznávac ích sítí optimalizujeme dekódován í : ve s t a t i c k é m d e k o d é r u je
v y u ž í v á m e pro d v o u s t u p ň o v é dekódován í (d o p ř e d n ě a z p ě t n é vyh l edáván í) . Tento p ř í s t u p

- "sledovací" dekódován í (tracked decoding) — umožňu je zahrnout výs ledky vyh l edáván í
z p r v n í h o s t u p n ě do d r u h é h o s t u p n ě tak, že se sledují h y p o t é z y obsažené v r o z p o z n á v a c í m
grafu (lattice) p r v n í h o s t u p n ě . V ý s l e d k e m je p o d s t a t n é zrychlení dekódován í , p ro tože tato
technika umožňu je p r o h l e d á v a t s va r i ab i ln ím p r o h l e d á v a c í m paprskem (search beam) - ten
je pově t š inou mnohem užší než u z á k l a d n í h o p ř í s t u p u . Ukazujeme rovněž , že uvedenou tech
n iku je m o ž n é využ í t v d y n a m i c k é m d e k o d é r u t í m , že p o s t u p n ě z j emňujeme rozpoznáván í .
To navíc vede i k čás t ečné paralelizaci dekódován í .

Klíčová slova
A u t o m a t i c k é rozpoznáván í řeči, dekódován í řeči, rozpoznávac í s í tě , v á h o v a n é konečné s tavové
automaty, j azykové modely

Bibliografická citace
M i r k o Hannemann: R o z p o z n á v a c í s í tě za ložené na konečných s t avových p řevodn íc ích pro
d o p ř e d n ě a z p ě t n é dekódován í v r o z p o z n á v á n í řeči, d i se r t ačn í p ráce , Brno , F I T V U T v B r n ě ,
2016

4

Finite-state based recognition networks for forward-
backward speech decoding

Declaration of Originality
I hereby declare that this thesis and the work reported herein was composed by and
originated entirely from me. The work has been supervised by Doc . Ing. L u k á š Burget ,
P h . D . and Doc . D r . Ing. Jan Černocký . Information derived from the published and un
published work of others has been acknowledged in the text and references are given in the
list of sources. Some of the used recognition systems were set-up by the members of the
B U T Speech@FIT research group or i n cooperation wi th th i rd parties (Microsoft Research,
K a l d i team, Johns Hopkins Univers i ty) .

M i r k o Hannemann
17.07.

© M i r k o Hannemann, 2016.
This work was created at the Brno University of Technology at the Faculty of Information
Technology. It is protected by the Czech copyright law and any use without the permission
of the author is illegal, except for the exceptions specified in the law.

Rozpoznávací sítě založené na konečných stavových
převodnících pro dopředně a zpětné dekódování v
rozpoznávání řeči

Prohlášení
Proh lašu j i , že jsem tuto d i se r t ačn í p rác i vypracoval s a m o s t a t n ě pod v e d e n í m Doc . Ing. Lukáše
Burgeta, P h . D . a Doc . D r . Ing. Jana Černockého . U v e d l jsem všechny l i t e rá rn í prameny a
publikace, ze k t e rých jsem čerpa l . N ě k t e r é s y s t é m y p o u ž i t é v p rác i byly v y t v o ř e n y členy
v ý z k u m n é skupiny B U T Speech@FIT s a m o s t a t n ě nebo ve spo lup rác i s t ř e t í m i s tranami
(Microsoft Research, K a l d i team, Johns Hopkins Univers i ty) .

M i r k o Hannemann
17.07.

© M i r k o Hannemann, 2016.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

6

Acknowledgements
I want to thank L u k á š Burget, who was my thesis supervisor, for his feedback and for the
discussions, especially for his efforts to advance our general machine learning knowledge. I
especially want to thank Dan ie l Povey, who was my first supervisor at Microsoft Research
and who had the original idea of decoding forwards and backwards i n t ime and to perform
an iterative weight pushing. I also want to thank h i m and his family for their hospitality.
Thanks go to Honza C e r n o c k ý for reviewing this thesis and for never being t ired i n coming
up wi th new projects and funding and to a l l colleagues from Speech@FIT for their help
and good atmosphere at work. I also want to thank Jasha Droppo, who was my second
supervisor at M S R , for the discussions on parallel izing the decoding algori thm and revers
ing the language model . I thank Geoffrey Zweig for hosting me at M S R and for useful
discussions on decoding i n general. Thanks go to Sanjeev Khudanpur for his input on the
weight-pushing algori thm and on language modeling. I want to thank my wife Tereza for
the patience she had wi th the inconveniences caused by the process of wr i t ing this thesis,
and I want to thank G o d for providing me wi th the t ime and health necessary to achieve
it. Some of the work described here was done when the author was summer intern at
Microsoft Research, Redmond, W A . This work was par t ly supported by the Intelligence
Advanced Research Projects A c t i v i t y (I A R P A) B A B E L program, the European Union ' s
Hor izon 2020 project N o . 645523 B I S O N and Czech M i n i s t r y of Educat ion , Y o u t h and
Sports from the Nat iona l Programme of Sustainabil i ty (N P U II) project „ I T 4 I n n o v a t i o n s
excellence in science - LQ1602" .

7

Contents

Table of Contents 2

1 Introduction 5
1.1 Mot iva t ion : search graphs and decoding networks 5
1.2 Cla ims of the thesis 6

1.2.1 Cont r ibu t ion and authorship 7
1.2.2 Structure of the thesis 8

2 Weighted finite state transducers and L V C S R decoding 9
2.1 Automat ic speech recognition 9
2.2 Speech recognition decoding 12
2.3 Weighted finite state transducers 13
2.4 Weighted finite state transducer based decoding 15

2.4.1 Decoding graph construction i n the K a l d i toolki t 16
2.5 Back-off language models as finite state automata 19

2.5.1 Difficulties w i t h the representation of back-off arcs 21
2.6 Paral le l Speech Decoding 25

2.6.1 Coarse and fine-grained parallel ization 25
2.6.2 Stage parallel ism through rank convergence 27

3 A n alternative weight pushing algorithm 29
3.1 Weight pushing algori thm 29
3.2 Ergodic Markov chains and non-negative matrices 33
3.3 Alternat ive weight pushing algori thm 37
3.4 Exper imenta l val idat ion 41
3.5 Conclusions 43

4 Exact reversal of A R P A back-off language models 44
4.1 Mot iva t ion : forwards and backwards search 44
4.2 Construct ion of an exactly reversed language model 45
4.3 The treatment of missing N-grams 48
4.4 Proof: Exac t reversal of the language model 51
4.5 Mot iva t i on by Bayes' formula 57
4.6 Conclusions 60

5 Combin ing forward and backward search in decoding 62
5.1 Introduction: combining forward and backward search 62
5.2 Construct ion of a reversed decoding graph 65

1

5.2.1 Reversing L, C and H 66
5.3 Incremental forward and backward search 68

5.3.1 F i n d i n g the op t imal operating point 68
5.3.2 Tuning the beam parameters 70
5.3.3 Para l le l incremental forward and backward search 72

5.4 Tracked decoding 74
5.4.1 Tracking tokens w i th an arc-lattice 76
5.4.2 Beam-wid th policy 77
5.4.3 Generat ion of the arc-lattice 79
5.4.4 Exper imenta l results 81
5.4.5 Importance of beam parameters 82

5.5 Conclusions 86

6 Conclusions 87
6.1 Summary of the findings 87

6.2 Future work 89

Bibl iography 91

A Scripts and executables in the K a l d i toolkit 97

2

List of Figures

2.1 Three-state Hidden Markov M o d e l 10
2.2 V i t e r b i search i n composite model 10
2.3 Simple phoneme-based recognition network 11
2.4 Components of automatic speech recognition 11
2.5 Dependencies and parallel ism in the V i t e r b i a lgori thm 12
2.6 W F S T corresponding to three-state H M M from figure 2.1 15
2.7 Acceptor U describing the acoustic scores of the utterance 15
2.8 One path of the context dependency transducer C 17
2.9 Determinist ic context dependency transducer C 18
2.10 Pronuncia t ion lexicon transducer L 18
2.11 Weighted finite state acceptor (W F S A) implementat ion of a bi-gram L M . . 20
2.12 W F S A resulting from the t r i -gram back-off A R P A L M 21
2.13 Weighted finite state acceptor (W F S A) implementat ion of a t r i -gram L M . 24
2.14 Para l le l L V C S R implementat ion on C P U and G P U 26
2.15 Rank convergence i n the V i t e r b i a lgori thm 27
2.16 Rank convergence i n V i t e r b i a lgori thm wi th rank bigger than one 28

3.1 Example of weight pushing 31
3.2 Pseudocode of single-source shortest path algori thm [Mohri(2002)] 32
3.3 Example of ergodic Markov chain and corresponding transi t ion mat r ix . . . 35
3.4 Decoding performance of backward decoding network 42

4.1 Example of a forward path through a t r i -gram language model 46
4.2 The backward path corresponding to the path i n figure 4.1 46
4.3 The same example of figure 4.1 w i th backing-off 47
4.4 The backward structure corresponding to figure 4.3 47
4.5 Forward and backward W F S A for t r i -gram back-off A R P A L M 49
4.6 W F S A for t r i -gram L M wi th just three words A, B, C 52
4.7 Decoding performance of backward decoding network and tr i -gram L M . . . 61

5.1 Forward and backward speech recognition: Example A S R result 63
5.2 I l lustrat ion of forward and backward search [Nolden et al.(2013)] 64
5.3 Reversing lexicon transducer L 67
5.4 One path of the deterministic context transducer C 67
5.5 Reversal of H M M structure for phoneme H M M 67
5.6 Reversing the H M M transducer Ha 68
5.7 F i n d i n g the op t imal operating point on the R T F / W E R curve 70
5.8 Max-tokens beam: frame-wise scores for three files from Eval2000 test set . 72
5.9 Para l le l implementat ion of incremental forward backward decoding 74

3

5.10 Fi rs t i teration of incremental forward-backward decoding on Eval2000 set . 75
5.11 One example utterance from the W S J Nov'92 test set 76
5.12 Frame score differences between current best par t ia l and final best path . . 77
5.13 Tracked decoding example i l lustrat ing the beam wid th pol icy 78
5.14 Performance of tracked decoding R T F / W E R on W S J Nov'92 test set 82
5.15 Prof i l ing the tracked two-pass decoding 83
5.16 Testing the extra-beam - R T F / W E R 84
5.17 A n a l y z i n g the effect of the latt ice-beam 85
5.18 A n a l y z i n g the effect of different max-beam settings 85

List of Tables

5.1 Example analysis of search errors on the W S J Nov'92 test set 81
5.2 Quanti ta t ive analysis of search errors on W S J Nov'92 test set 81

4

Chapter 1

Introduction

1.1 Motivation: search graphs and decoding networks
The applicat ion I had in m i n d while wr i t ing this thesis was the search for the best path
through a composed probabil ist ic model, represented as weighted finite state acceptor
(W F S A) or transducer (W F S T) . The task can be for example the decoding of the most
probable sequence of words i n large vocabulary automatic speech recognition (L V C S R) .
However, the approach presented here can also be used in other tasks, which can be formu
lated i n the W F S T framework, as e.g. in finding the most probable sentence in statist ical
machine translation and finding the most probable pronunciat ion of a spelled word in
grapheme-to-phoneme conversion.

Automat ic speech recognition (A S R) can be formulated in the W F S T framework [Al-
lauzen et al.(2004)], [Mohri et al.(2008)]. Nowadays, A S R makes extensive use of composed
W F S T s , called decoding graphs or recognition networks. W F S T s are used to represent the
language model (L M) , the pronunciat ion lexicon and the Hidden M a r k o v Models (H M M) in
a unified framework. These component W F S T s are integrated into a single W F S T by the
composit ion operation. E a c h component is a probabil ist ic knowledge source that constrains
the search for the best path through the composed graph. This search is called decoding.
The usage of a coherent framework guarantees, that the resulting automata w i l l be opti
ma l in a well defined sense. W F S T can be opt imized by operations like determinization
and min imiza t ion in a given semi-ring. The application of these algorithms results in the
opt imal (deterministic and minimal) structure for un-pruned search.

A n opt imized recognition network can contain up to mill ions of states, and the resulting
search state space (trellis) is even several orders of magnitude larger. G i v e n the complexity
of most of the tasks, the resulting huge search spaces cannot be explored exhaustively. It
is necessary to use heuristic pruning techniques. In this case, we have to dist inguish search
errors, which are due to the incomplete exploration of the search space (e.g. through search
beams and other pruning techniques), from modeling errors, which are due to insufficient
(or bad) t ra ining data or due to inaccurate models (independence assumptions, choice of
dis tr ibut ion, smoothing, . . .) . In general, the goal is to reduce the amount of search errors
at given run-time requirements (decoding speed). Th is can be achieved by operations like
weight pushing, which a im to distribute the weights along the path i n a way that is opt imal
for pruned search.

The goal of this thesis is to further develop the recipes and algorithms for the con
struction of opt imal recognition networks. We a im to find the op t imal trade-off between
improving search speed and reducing search errors.

5

1.2 Claims of the thesis
The focus of this thesis is the construction of op t imal forward and backward recognition
networks and the development of decoding techniques that combine forward and backward
decoding to achieve speed-ups. We introduce the idea of symmetr ical ly decoding forwards
and backwards i n time. For some tasks, the pruned backward search can be more efficient
than the forward search. Moreover, we show, that the search errors of forward and backward
search are mutual ly independent. To concentrate on search errors rather than on modeling
errors, we require both decoding passes to be symmetric - i.e. bo th models are equally
powerful and are constructed to assign exactly the same probabilities to hypotheses. Th is
guarantees that each difference in comparing the results of forward and backward decoding
corresponds to a search error. For most of the t ime frames in beam search decoding, a very
narrow beam is sufficient. Therefore, we decode wi th a variable beam wid th - using a small
baseline beam and only increasing it in places, where the forward and backward searches
disagree. Decoding wi th a variable beam w i d t h results i n significant speed-ups.

The main contributions of this thesis can be summarized i n the following points:

• Symmetric forward and backward decoding: To speed-up the decoding, as op
posed to multi-pass recognition techniques [Nguyen et al.(1993)], we use forward and
backward recognition passes which are equally powerful. Equa l ly powerful forward
and backward decoding has been used before for the purpose of system combination
[Li et al.(2009)] and confidence estimation [Jouvet and Fohr(2014)]. However, we
require that the forward and backward recognition networks assign exactly the same
probabil i ty scores, which allows us to detect search errors, to recombine par t ia l paths
and to incorporate the first pass into the second pass.

• W F S T s resulting from back-off and interpolated language models: We show,
that the common practice to convert interpolated L M s into back-off L M s , when storing
them i n the A R P A file format, leads to problems i n the construction of the recognition
network i n the log-probabili ty semi-ring. We give details about the approximation
and the correct handling of back-off arcs and explain "missing" N-grams.

• Alternative weight pushing algorithm: We give the theoretical justification and
explain details of the alternative weight pushing algori thm, that is suitable for an
important class of models - language model transducers, or more generally cyclic
W F S T s and W F S T s wi th failure (back-off) transitions.

• Construct ion of symmetric backward recognition networks: We present a
recipe to construct recognition networks, which are suitable for decoding backwards
in time, fulfill the cri teria of determinism and similar size, and which, at the same
time, are guaranteed to give exactly the same probabilit ies as the forward recognition
network.

• Exact back-off language model reversal: For the purpose of constructing back
ward recognition networks, we develop an algori thm for exact reversal of back-off
language models and their corresponding language model transducers, which is val id
for bo th types of approximations: using epsilon arcs or using failure arcs. We show
the derivation of the formulas by a series of steps guaranteeing W F S T equivalence,
as well as the derivation from Bayes' rule.

6

• Tracked decoding and variable beam width: We develop a two-pass decoding
setup (forward search and backward search), that allows to incorporate the hrst pass
decoding into the second pass decoding by tracking hypotheses from the first pass
lattice. Th is technique allows to decode wi th a variable beam width , which is most
of the t ime much smaller than the smallest single-pass beam at the same word error
rate. The beam is only increased i n areas, where forward and backward decoding
disagree.

• Speed-up and parallelization: We have implemented the backward recognition
networks for both static and dynamic network decoders and show experiments that
demonstrate significant speed-ups in both cases. A p p l y i n g the incrementally refining
recognition setup of [Nolden et al.(2013)] addit ional ly leads to a par t ia l parallel ization
of the decoding.

1.2.1 C o n t r i b u t i o n a n d a u t h o r s h i p

M y work on the topic of this thesis started at the K a l d i workshop 2010, where I was
part of the team implementing a W F S T based speech decoder. Several implementat ion
designs were tested, finally the one from Danie l Povey was the simplest and fastest and
was used further on as the ma in K a l d i decoder. The outcome of these efforts is described
in the common paper [Povey ct al.(2011)]. In the K a l d i workshop 2011, I was part of
the team, whose task was to add lattice generation to the K a l d i decoder. Aga in , several
approaches were discussed and implemented, and the final format of the lattices was decided.
I conducted the experiments exploring the properties of the new K a l d i lattice generation
[Povey et al.(2012)].

W h i l e I was at an internship at Microsoft Research (M S R) , under supervision of Danie l
Povey, we developed the technique of forward-backward decoding. The original idea came
up i n discussions w i t h Dan ie l Povey and Geoffrey Zweig. I developed a recipe for the
generation of backward decoding networks (section 5.2), together w i th an in i t i a l reversal
a lgori thm for bi-gram language models and I ran a series of experiments exploring the
properties of forward and backward decoding and an analysis of the pruning behavior of
the K a l d i decoder.

Dur ing the internship, my task was to come up wi th a method for guiding the second
pass decoding wi th the results from the first pass. For that purpose, I developed the graph-
arc lattices and the algori thm to construct them from the K a l d i lattices (section 5.4.3).
I also designed the tracked decoding algori thm (section 5.4), implemented it and ran the
experimental val idat ion of tracked decoding on a smaller L M .

Afterwards, I implemented the tracked decoding into the K a l d i toolki t and continued
the experiments by switching to a larger L M . Together w i th Dan ie l Povey, we developed the
in i t i a l reversal a lgori thm for W F S T s resulting from A R P A L M s wi th epsilon arcs. I derived
the formulas for this approach in the first part of section 4.4. I also explained the presence of
missing N-grams i n the L M (section 4.3) and showed how to correctly deal w i th them i n the
forward and backward models. Th is approach for L M reversal was used i n a more thorough
evaluation of the tracked decoding, which we published i n [Ilannemann et al.(2013)]. In this
thesis, I also analyze the contr ibution of the different pruning parameters of the technique
(section 5.4.5).

Since the standard weight pushing algori thm was failing for higher order L M s , together
wi th Danie l Povey, we discussed several approaches to weight pushing. The final idea of
using the matr ix power method was suggested by Dan ie l Povey and Sanjeev Khudanpur

7

and first implemented into the K a l d i toolki t by Ehsan Var ian i and Pegah Ghahrmani .
However, we only mentioned it very briefly i n [Hannemann et al.(2013)] without giving
much explanation. In chapter 3, I provide a theoretical justification of the algori thm from
the theory of Markov chains and non-negative matrices and explain the derivation of the
algori thm i n detail . I generalized the algori thm to be able to push towards the final state
and show the relation between the test for stochasticity and the propagation i n the matr ix-
vector mult ipl icat ion.

After we published the forward-backward decoding, the authors of [Nolden et al.(2013)]
showed that it is possible to use our recipe for generating the exactly matching back
ward models [Hannemann et al.(2013)] in an incremental forward-backward decoding setup.
W h i l e I was at my second internship at M S R under the supervision of Jasha Droppo, to
gether w i th the authors of [Maleki et al.(2014)], we were looking for a way to implement
the approach of [Maleki et al.(2014)] in a parallel speech decoder for L V C S R . Real iz ing the
analogy of the approach of decoding mis-matching portions of speech [Nolden et al.(2013)]
and the approach of decoding chunks [Maleki et al.(2014)], I implemented the incremental
forward-backward decoding into the M S R recognizer and ran experiments to analyze the
potential of using the incremental decoding for the parallel ization of the decoding (section
5.3).

Since the in i t i a l a lgori thm for the reversal of A R P A L M s was only for transducers using
the epsilon-arc approximation for back-off arcs, together w i th Jasha Droppo, I developed
the constructive approach for L M reversal described in section 4.2 and showed that it is
also val id for failure arcs. Afterwards, I also derived the proof for correctness i n section 4.4
by a series of pushing operations and the derivation of the L M reversal from Bayes' rule in
section 4.5.

1.2.2 S t r u c t u r e of the thesis

This thesis is organized as follows:

• Chapter 2 introduces the basic concepts and necessary definitions for automatic
speech recognition, weighted finite state transducers, language models and the con
struction of recognition networks.

• Chapter 3 provides the theoretical framework of the alternative weight pushing
algori thm by deriving it from the theory of Markov chains and non-negatives matrices.

• Chapter 4 describes the constructive approach for the exact reversal of back-off
language models as well as the formal proof and derivation.

• Chapter 5 Expla ins the application of the forward and backward recognition net
works in speed-up techniques.

— Section 5.2 explains the construction of the symmetric backward recognition
network from its components.

— Section 5.3 shows experiments w i th the incremental decoding i n a dynamic
network decoder.

— Section 5.4 explains the tracked decoding and shows experiments exploring its
parameters.

• Chapter 6 Summarizes the findings in this thesis.

8

Chapter 2

Weighted finite state transducers
and LVCSR decoding

2.1 Automatic speech recognition

The task i n automatic speech recognition (A S R) is to recognize the words uttered in a
segment of recorded audio and to correctly transcribe them to their corresponding textual
word form. W = wi, ,wn is the (unknown) uttered sequence of words (usually from a
fixed vocabulary V) . The encoding and transmission of the audio signal introduces errors
due acoustic deviations of the channel (microphone, telephone network, etc.). The resulting
audio w i l l be recorded, and then some acoustic analysis (feature extraction) is performed,
resulting i n the sequence of acoustic vectors X = xi,... ,xm, called acoustic observation.
The task in A S R is to decode the observation X to the (possibly wrong) word sequence W .

The dominant approach to A S R is statist ical pattern matching - i.e. to learn patterns
from tra ining examples and for the recognition, the observation is compared against the
trained patterns and classified according to the goodness of match. To decode an utterance,
we search for the word sequence W wi th the m a x i m u m a-posteriori probabi l i ty (M A P) given
the acoustics. Th is results in the fundamental equation of speech recognition:

P (W) H X I W)
W = a r g m a x P (W l X) = a rgmax — - — , \ (2.1)

w v 1 ' B w P (X) v '
Since the posterior probabil i ty P (W | X) is difficult to model, we applied Bayes' rule.

The probabi l i ty of the observation sequence -P (X) for a part icular utterance doesn't depend
on the hypothesized word sequence and doesn't influence the a rgmax. P (X | W) is called
the acoustic model, which computes the l ikel ihood that the observation X w i l l be produced,
when the speaker utters the words W and P (W) is the language model, which is the prior
probabil i ty that the speaker utters the word sequence W .

Commonly, the acoustic model is a hidden Markov model (H M M , example i n figure
2.1). A first-order H M M is defined by a finite set of states Si £ Q, the state transi t ion
probabilities aij = P(sj\si), a set of emission symbols x £ X (in our case continuous, but
can be also discrete) and the emission probabilit ies bi(xt) = p(xt\si). The state transitions
P(si+i\si) model the temporal structure of speech. The sequence of states is not observed.
The emission probabilities model the acoustic observations P(xi\si), i.e. the sequence of
emission symbols is observed. In the H M M framework, a common approximation is to

9

Figure 2.1: Three-state left-to-right Hidden Markov Model with depicted one-dimensional
continuous emission probabilities and a selected path through it (figure from Lukds Burget).

search for the op t imal state sequence S instead of searching for the op t imal word sequence:

m—1

W » a rgmax]J P{xi\si)P{si+1\si) (2.2)
s

i=0

In the most simple case of isolated word recognition, the H M M s model whole words
and i n decoding, the V i t e r b i a lgori thm searches for best pa th for each H M M separately,
and then the scores of the best paths are compared. In connected speech recognition, we
construct a composite model of the word models and the language model (L M) functions
as a grammar, which constrains which words can follow each other. This is the most simple
form of a recognition network.

0 1 2 3 t

Time

Figure 2.2: Viterbi search in composite model [Young et al.(2006)]. Each word is repre
sented with a left-to-right HMM, and the final states of words are connected to the initial
states according to the LM. The initial and final states are not tied to an observation (non-
emitting). Therefore, during decoding, the word connections are followed within the same
time frame.

If there are too many words in the vocabulary to reliably estimate a l l word models on

10

the t ra ining data, it is necessary to use H M M s that model sub-word units (e.g. phonemes)
instead of whole words. In this case, we need a mapping from words to phonemes, which is
given in the form of a pronunciat ion lexicon. We give a smal l example:

ONE w ah n
TWO t uw
THREE th r i y

Given this example pronunciation lexicon, figure 2.3 shows the corresponding simple
recognition network for connected speech recognition w i t h phoneme sub-word units.

Figure 2.3: Simple phoneme-based recognition network. Words are modeled by phonemes
(sil: silence) and bi-gram probabilities are applied at word transitions (figure from Lukas
Bürget). Each phoneme is modeled by a three-state HMM, thus in the figure, we show only
the transitions connecting the phoneme models and words.

In figure 2.4, we summarize the basic structure of an A S R system. The recognition
network is a composit ion of the L M (accepting word sequences), the pronunciat ion lexi
con (mapping the words to phonemes), and the H M M structure, modeling the temporal
structure of the phonemes. We conceptually split the H M M s into the H M M structure
(transition probabilit ies ajj), which are considered as part of the static recognition network
and emission probabilities bi(ot), which produce the acoustic likelihoods scores p{xi\si) for
each frame, and are usually applied dynamical ly during the recognition.

HMM structure pronunciation
lexicon

language
model P (W)

recognition network

T

speech input
decoding: search for
best hypothesis W =
argmaxwP(W) • P (X | W)

recognized text

Figure 2.4: Components of automatic speech recognition

11

2.2 Speech recognition decoding

The algori thm [Vitcrbi(1967)] that is used for the search for the best path through the
recognition network belongs to the class of algorithms called dynamic programming [Bell-
man(1952)]. In this class of algorithms, we can reduce the global task of finding the best
path, to the task of recursively solving the sub-problem of choosing the predecessor w i th
the best par t ia l pa th up to this t ime. Figure 2.5 shows this for the V i t e r b i algori thm.

State

Pij = max (Vi-i,k * tkJ)

Figure 2.5: Dependencies and parallelism in the Viterbi algorithm. Left: Viterbi algorithm
applied to an HMM in isolated word recognition [Young et al.(2006)] Right: Dependencies
in time-synchronous Viterbi search: The sub-problem of finding the max token in the cur
rent time step depends on all incoming arcs from the previous time step (stage) [Maleki
et al.(20U)].

The V i t e r b i a lgori thm [Viterbi(1967)] is a special form of the single source shortest path
problem (SSSP) , which has been extensively studied [Gibbons(1985)], [Cormen et al.(2009)].
A s seen i n the left part of figure 2.5, the search graph (in the example the H M M out-most
left) unfolds to the trellis structure of search states, where each H M M state is copied for
each t ime step. Often, the V i t e r b i a lgori thm is implemented as a token passing algori thm
[Young et al.(1989)]. We think of a token as a record of a part icular state i n the H M M that
is active on a part icular t ime frame and contains the accumulated score of the par t ia l path
explored so far (as well as a back-pointer).

A s opposed to figure 2.5, the search graphs used i n L V C S R (seen as composite H M M)
are usually huge and the resulting number of search states i n the trellis is an order of
magnitude higher. Therefore, we would not construct the full trellis, but bu i ld it frame by
frame. Every graph state i n a part icular t ime frame can only be reached by states from
the previous t ime frame (figure 2.5). Th is special dependency structure is used in the time-
synchronous V i t e r b i algorithms, which are applied in the majori ty of speech decoders. The
advantage is, that only scores of paths of the same length need to be compared, and only
the states of the current frame need to be kept i n memory.

Alternatively, we can represent the state transitions i n a matr ix P , where each entry
Pij represents the sum of a l l transitions from state i to state j . G i v e n a vector of forward
(Viterbi) probabilit ies for each state at a certain t ime, the vector of forward probabilit ies
for the next t ime step is obtained by "mul t ip lying" the mat r ix P^ (tropical semi-ring,

12

explained in next section 2.3). The weights of the mat r ix Pij need to be computed at each
t ime step - the transi t ion probabilit ies are fixed, but we need to evaluate the emission
probabilities bj(ot) given the observation at the current t ime step. Usually, the probabilities
are computed on-the-fly by combining the so called acoustic scores (bj(ot)) w i th the so called
graph scores (a^ , containing L M and H M M transitions).

Due to the huge search spaces when using large vocabularies or context-dependency, it
is usually not efficient or not possible at a l l to perform an exhaustive search. In this case,
pruning needs to be applied (e.g. beam search [Lowerre(1976)]). The choice of an efficient
pruning strategy is the dominant factor i n determining the recognizer speed. Typical ly , only
a percent of the states of the search graph are active at each t ime frame and as a result, for
the straight forward implementation, their data structures are scattered in memory, which
leads to cache failures and slow memory access. Thus, the application of pruning changes
the properties of the basic S S S P fundamentally and the algori thm design becomes more
complex.

2.3 Weighted finite state transducers

Throughout this work, we think of weighted finite state acceptors/transducers (W F S A / W F S T)
as having a set of states w i th one distinguished start s tate 1 . E a c h state has a final weight
(or 0 (infinite cost) for non-final states) and there is a set of arcs between the states, where
each arc has an input label (for W F S T also an output label), and a weight. Formally, we
introduce a W F S A [Mohri(1997)], [Mohri and Riley(2001)] as:

A = (£, Q, i, F, E, A, p) over a semi-ring (K , ffi, <g), 0,1) (2.3)

A semi-ring [Kuich and Salomaa(1986)] is an algebraic structure - it is a r ing that may
lack negation. It has two associative operations © and <8> that are closed over the set K , they
have identities 0 and 1, respectively. (8) distributes over © and 0 is an annihilator. W h e n
the weights represent probabilities, the appropriate semi-ring is the probabi l i ty semi-ring
(M+,+, x , 0 , 1) 2 . For numerical stability, often log-probabilities are used, which results in
the log semi-ring (R U oo, ®iog, +, oo, 0) w i th Va , b G M U oo, a ®iog b = — log(exp(—a) +
exp(—&)). W h e n we use the V i t e r b i approximation, we replace the ®iog w i t h the m i n i m u m
and the resulting semi-ring is the t ropical semi-ring (M + U oo, min , +, oo, 0). A special class
of semi-rings are divisible semi-rings, i.e. Va , 6 G K , a f f i & ^ O : 3ai G K : a = (a ©6) ® a\. In
other words, a\ is the remainder of the divis ion of a by a © 6 and we introduce the inversion
operation: a\ = (a © 6) _ 1 © a.

A W F S A is given by:

• an alphabet or label set E

• a finite set of states Q

• an initial state i G Q

• a set of final states F C Q

• a finite set of transitions £ C Q x (S U e) x K x Q

• an initial weight X

• and a final weight p(q)

*As used in the OpenFST toolkit: www.openfst.org
2Sometimes, it is used in a more general sense, not limiting the numbers to between zero and one.

13

http://www.openfst.org

A transi t ion t = (p[i\, l[t],w[t], n[t]) G E can be represented as an arc from the source state
p[t] to the destination state n[t], w i th the label l[t] and weight w[t], which is typical ly a
probabil i ty (or log-probabil i ty). Transitions labeled wi th the empty string e consume no
input. For each state q G Q, E[q] denotes the set of transitions leaving q. The transi t ion
weights can be also represented i n form of the transi t ion matr ix P j j G \Q\ x \Q\, where
each entry pij = w[t] contains the sum of weights of a l l transitions t from state i = p[t] to
state j = n[t]. If no corresponding transi t ion exists, the entry is 0.

A path in A is a sequence of consecutive transitions TT = t\... tn w i th n[£j] = p[ti+i],i =
1 , . . . , n — 1. A successful path is a path from the in i t i a l state i to one of the final states
/ G F. The label of a path IT is the concatenation of the labels of its constituent transitions:
l[ir] = l[t\] .. .l[tn] and the weight associated to TT is the ^ -p roduc t of the in i t i a l weight,
the weights of its constituent transitions and the final weight p{n[tn\) of the state / = n[tn]
reached by TT:

W[TT] = A <g> w[ti] <g>... <g> w[tn] <g) p(n[tn]) (2.4)

The total weight of an W F S A is the sum of a l l successful paths from the in i t i a l state i
to a l l of the final states F:

wtot= 0 w[ir] (2.5)
V-7r,p[7r]=i,n[7r] = /G.F

A symbol sequence is accepted by A i f there exists at least one successful path TT labeled
wi th x = 1[TT]. The weight associated by A to the sequence x is then the © - s u m of the
weights of a l l the successful paths TT labeled w i t h x. In the same way, the weight of a set of
paths is the © - s u m of the weights of the ind iv idua l paths. A state q is accessible i f there
is a path from the in i t i a l state i to q. A state q is co-accessible if there is a path from q
to a final state / G F. A W F S A is trim or connected if it contains neither inaccessible nor
co-inaccessible states. A W F S A is stochastic, i f the transitions out of each state q (and the
final-probability) "sum to one" i n the given semi-ring:

\/qeQ,(0 w[e] j ®p[q\ = l (2.6)

It is only possible to make the W F S A stochastic if the to ta l weight of the entire W F S A
is 1. Otherwise, there is a left-over weight that must be handled. In practice this may be
discarded, or put on the in i t i a l or final states of the W F S A .

W F S T s generalize W F S A s by replacing the single transi t ion label by a pair {i, o) of an
input label and an output label:

A = (A, B, Q, i, F, E, X, p) over a semi-ring (K , ffi, <g), 0,1) (2.7)

, where A is the finite input alphabet, B is the final output alphabet, and a transi t ion
t = (p[t],i[i\, o[t],w[t],n[t]) G E has an input label i[t] and an output label o[t].

A W F S T associates pairs of symbol sequences and weights, i.e. it represents a weighted
binary relation between symbol sequences. Two W F S A s are equivalent if they associate the
same weight to each input string, i.e. weights may be distr ibuted differently along the paths
of two equivalent acceptors [Mohri and Riley(2001)]. Two W F S T s are equivalent i f they
associate the same output sequence and weights to each input sequence, i.e. the dis t r ibut ion
of the weight or output labels along paths need not be the same i n the two W F S T s .

14

There might be some confusion about the terms "weight" and "cost". Usually, by
mentioning "weights" in this thesis, we refer to a general probabi l i ty representation i n any
semi-ring, and by mentioning "costs" (not to be confused wi th cost functions i n e.g. Bayes
decision rule), we refer to probabilities in the log- or t ropical semi-rings, where a cost is a
floating point number that typical ly represents a negated log-probability.

2.4 Weighted finite state transducer based decoding

Also L V C S R can be formulated i n the framework of weighted finite state acceptors/trans
ducers (W F S A / W F S T) [Allauzen et al.(2004)], [Mohri ct al.(2008)]. A s seen in figure 2.6,
the H M M search graph can be represented as W F S T . We refer to this W F S T as the H M M
structure transducer H. The input labels are identifiers of probabil i ty density functions
(P D F - i d s , often context-dependent H M M states).

pdfl:<eps>/a_ll pdf2:<eps>/a_22 pdf3:<eps>/a_33

0
^ . pdfl:aa/1.0 f j \ pdf2:<eps>/a_12 f ^ A pdO:<eps>/a_23 f ^ \ <eps>:<eps>/a_34

Figure 2.6: WFST H corresponding to three-state left-to-right HMM from figure 2.1. The
notation of an arc is „input: output/weight", where „<eps>" stands for the e (no sym
bol). Instead of attaching the emission probabilities to the state, we attach them to the
incoming arcs of a state. Thus, the input labels correspond to identifiers of probability den
sity functions (PDF-ids). During decoding, the PDF-ids are used to evaluate the emission
probabilities assigned to the destination state of the arc. The acoustic likelihood score is
combined (®) with the weight of the arc, corresponding to the transition probability aij.
The output label is the identity of the phoneme (aa). The final arc is non-emitting (<eps>
input). In composite models, it can serve to interconnect the individual (sub-word HMM)
models according to the pronunciation lexicon and the LM.

1/4.86 1/4.16 1/5.23

Figure 2.7: Acceptor U describing the acoustic scores of the utterance [Povey et al.(2012)].

To decode an utterance of T frames in the W F S T framework, i.e. to find the most l ikely
state sequence through the trellis, we construct an acceptor (W F S A) U, as i n figure 2.7. It
has T + l states, w i th an arc for each combination of (time, P D F - i d) . The weights on these
arcs correspond to negated and scaled acoustic log-l ikel ihoods 3 . We construct the trellis S

3In figure 2.7, we represented the acoustic likelihoods (which can be very small numbers) in the negative
log-semi-ring, while in figure 2.6, we showed the weights the probability semi-ring for illustrational purposes.
Of course, the composition must be done with both weights in the same semi-ring.

15

wi th W F S T composit ion [Povey et al.(2012)]:

S = UoH. (2.8)

The trellis has approximately T + l times more states than H. The decoding problem
is equivalent to finding the best path through S, which can be done wi th the shortest
path algori thm i n the corresponding semi-ring. The best path is represented as a linear
W F S T . The output symbol sequence of this best path represents the decoding result, i.e. the
recognized sequence of phonemes (and words) 4 . The input symbol sequence of the best
path represents the sequence of P D F - i d s used for each t ime frame. If there is a direct
correspondence between the P D F - i d and the state i n the H transducer (for example i f
p d f l = 1, pdf2 = 2, pdf3 = 3 i n figure 2.6), we obtain the sequence of states as well . This is
called the state-level alignment. A s done in the K a l d i toolkit [Povey et al.(2011)], the input
labels can be constructed i n such a way, that they represent the P D F - i d , the graph state
and the transi t ion number, so that a l l this information w i l l be available i n the state-level
alignment. We refer to these identifiers as K a l d i transition-ids.

In practice, S is not searched exhaustively, but beam pruning is used. Let B be the
searched subset of S, containing a subset of the states and arcs of S obtained by some
heuristic pruning procedure. W h e n we do V i t e r b i decoding w i t h beam-pruning, we are
finding the best path through B. Since a L V C S R system can have up to ten-thousands of
P D F - i d s and there are typical ly hundreds to thousands of frames i n an utterance, it is not
very pract ical to construct U in advance. Also , due to pruning, just a subset of P D F - i d s
needs to be evaluated for each frame. Therefore, we are dynamical ly composing U during
decoding. This corresponds to combining (®) the acoustic l ikel ihood score wi th the arc
weights (transition probabilities, called graph score) on-the-fly.

Conceptually, we split H M M s (containing transi t ion probabilit ies and emission prob
abilities) into the H M M structure transducer H (figure 2.6) and the acoustic model (the
emission probabilities, which produce the acoustic likelihoods scores p{xi\Si) for each frame).
The H M M structure transducer H represents the transitions, i.e. the part of the H M M net
work, that is fixed for a l l t ime steps. It maps from a sequence of acoustic unit identifiers
(e.g. one P D F - i d per frame) to a sequence of phonemes.

Nowadays, instead of phonemes as sub-word acoustic units, usually we use context-
dependent phonemes. Mos t often, tri-phones are used (including the current phoneme and
one to the left and to the right) . Thus, the basic bui ld ing block of the graph (figure 2.6) are
tri-phone H M M s . In this case, an addi t ional component is needed: the phoneme-to-context-
phoneme mapping. Due to data sparsity not a l l possible context-dependent phonemes can
be observed sufficiently often i n training, usually, a clustering algori thm (e.g. decision tree)
is applied to reduce the number of units to t rain.

2.4.1 D e c o d i n g g r a p h c o n s t r u c t i o n in the K a l d i too lk i t

Already i n figure 2.4, we indicated the bui ld ing blocks of a recognition network: the H M M
structure, the pronunciat ion lexicon and the L M . Instead of the simple three-state H M M in
figure 2.6, now, we use a recognition network composed of thousands of sub-word H M M s ,
connected according to the phoneme-to-context-phoneme mapping, the pronunciat ion lex
icon and the L M . We represent each component as W F S T . The standard recipe for the
decoding graph construction is [Mohri et al.(2008)]:

HCL G = mm(det(H 0C0L0G)), (2.9)

4In our example just "aa", but for composite models, we obtain the sequence of phoneme HMMs used.

16

here, H, C, L and G are the components, which are created separately and are integrated
into a single WFST(HCLG) (called decoding graph) wi th W F S T composit ion (denoted
as o). H, C , L and G represent the H M M structure, the phonetic context-dependency
transducer, the lexicon transducer and the L M (grammar), respectively. A s in figure 2.6,
the result is a "fully expanded" graph, where the arcs correspond to H M M transitions, the
input labels are the identifiers of P D F - i d s (context-dependent H M M states), and the output
labels represent words as accepted by the L M . For both the input and output labels, the
special symbol e may appear, meaning "no label is present." In the following, we briefly
describe the H, C and L transducers. The G transducer is described in detail in section
2.5. Unless otherwise mentioned, the experiments in this work were conducted wi th the
K a l d i toolkit [Povey et al.(2011)] 5 .

The H M M structure transducer H was already described i n figure 2.6, but here, we
extend our model to an ergodic loop of many sub-word H M M s . A n example w i l l be given
in the upper part of figure 5.6. A s a part icular i ty of the K a l d i toolki t [Povey et al.(2011)],
the H M M structure transducer is created without self-loops (called Ha) to reduce the size
of the model . The self-loops are added i n a final step.

The context-dependency transducer C is a mapping from context-dependent phonemes
to phonemes. Figure 2.8 explains how to construct a deterministic mapping and figure 2.9
shows the full context W F S T C for the toy example w i t h only two phonemes. F r o m this
example, it is clear, that C is huge, and therefore it is often constructed and composed
on-the-fly.

Figure 2.8: One path of the context-dependency transducer C, mapping from context-dependent
phonemes to phonemes. We compose it with the lexicon WFSTL from the right, i.e. we think of the
phonemes being generated from the lexicon. Therefore, the output symbols are actually the input of
the mapping, which might be confusing. Upper sequence: Given the word 'cat' and its pronunciation
'k ae t', the naive implementation would be to have one arc for each phoneme (output symbol) and
put the corresponding tri-phone on the input label. The tri-phone encoding 'k-ae-t' means that 'ae'
is the center phoneme, with 'k' and t' as left and right context. This naive implementation results in
a FST, that is not deterministic (given the output symbols). Lower part: The deterministic solution
[Mohri et al.(2008)] is to delay the tri-phone symbols until all its constituting phonemes have been
observed. To compensate the delay, we introduce a special end-of-sequence symbol '$' on the last
arc.

The lexicon W F S T is a mapping from words to phoneme sequences. We give an example
taken from Vas i l Panayotov's b l o g 6 . We are given the following pronunciat ion lexicon:

5 The graph construction is only described very briefly in [Povey et al. (20], so whenever we cite this
paper, we also refer to the official Kaldi documentation http://kaldi-asr.org/doc/graph.html.

6http://vpanayotov.blogspot.cz/2012/06/kaldi-decoding-graph-construction.html

17

http://kaldi-asr.org/doc/graph.html
http://vpanayotov.blogspot.cz/2012/06/kaldi-decoding-graph-construction.html

<eps>-y-<eps>:$

Figure 2.9: Deterministic context-dependency transducer C, mapping from context-dependent
phonemes to phonemes, shown for only two phonemes 'x' and 'y'. We compose it with the lexicon
WFST L from the right and with the HMM transducer H from the left. The tri-phone encoding
'x-y-z' means that 'y' is the center phoneme, with 'x' and 'z' as left and right context. '$' is the
end-of-sequence symbol.

Figure 2.10: Pronunciation lexicon transducer L. The first arc for each word (starting from state
1) outputs the word identifier. The last arc of a word is looped back to the word initial state 1, so that
all possible words can follow. There is an optional silence (sil) at the begin of the sentence and in
between words. Thus, we 'split' the word-final arc, either looping back to state 1 with log-probability
-log(0.5) or going over state 2 and producing a silence (sil). The '#0' is a disambiguation symbol
forwarded from the G transducer.

ache ey k
Cay k ey #1
K. k ey #2

The symbols #1 and #2 are disambiguation symbols [Mohri(1997)]. Wi thou t adding
them, the resulting W F S T would not be determinizable, since the phoneme sequence 'k
ey' can result i n two different words. Therefore, we insert auxi l iary phone symbols disam
biguating the two possible homophones before the determinizat ion 7 . We also need to add

disambiguation symbols need to be passed through the C and H transducers by adding self-loops at
each state, and after determinizing the final WFST HCLG, we replace them by e.

18

disambiguation symbols if a phoneme sequence can be a prehx of another. The resulting
lexicon W F S T is shown in hgure 2.10.

So far, we have introduced the W F S T components Ha, C and L. The remaining W F S T
G is explained i n the following section. The final formula for the graph creation i n K a l d i is
(asl - add self loops, rds - remove disambiguation symbols):

HCLG = asl{min{rds{det{Ha o min{det{C o min{det{L o G)))))))) (2.10)

2.5 Back-off language models as finite state automata

The A R P A language model (L M) format is one of the most widely used standards for
encoding N-gram back-off L M s i n text form. The A R P A format has most probably been
created by Douglas B . P a u l [Paul and Baker(1992)] from M I T L inco ln Labs for the D A R P A
Spoken Language System (SLS) community - hence its name. A wide class of L M s can be
encoded i n the A R P A format - including e.g. interpolated L M s .

Stat is t ical language models estimate the probabil i ty of a word sequence W (usually
sentence or utterance):

P(W) = P(Wl,w2,...,wN) (2.11)

P(W) = P(wi)P(w2\wi)P(w3\wi,W2) .P(wN\wi, ... ,WN-i),

where the terms P{wi\ . . .) are the condit ional probabilit ies of words given their history.
N-gram L M s approximate the condit ional probabil i ty of a word by shortening the history
to the previous N — 1 words:

m

P(wi... wm) « Yl P(wi\wi-N+1... Wi-i) (2-12)
i=l

Every history corresponds to a possible state of the search space. Even i f more powerful
L M s are available today (based e.g. on the maximum-entropy principle or on recursive neural
networks), often they are s t i l l approximated wi th iV-gram models, since long histories lead
to intractable search spaces.

Stat is t ical smoothing techniques are applied to the dis t r ibut ion of counts, since it is
not possible to observe a l l possible word sequences (iV-gram, including history) sufficiently
often i n the t ra ining texts. O n top of that, typical ly models of different iV-gram order are
combined. E i the r different orders of history are interpolated, or the higher order model
performs backing-off by leaving out the first word in the history and looking-up the shorter
history i n the lower order model . This process is repeated recursively un t i l the words in
the context are found.

N-gram L M s can be expressed as weighted finite state acceptors (W F S A) - each L M
history corresponds to one state of the automaton (hi = Wi-N+i • • • Wi-i)- N-g ram L M s can
be conveniently integrated into the speech decoding process - the search space is defined by
the W F S A corresponding to the N-gram L M . However, the number of possible states of a
model of order iV wi th a vocabulary size V is VN_1 and the number of possible arcs (and N -
grams) is VN, which becomes clearly intractable for higher orders of iV (typical vocabulary
sizes go into the hundreds of thousands). A s a consequence, A R P A language models only
store the probabilit ies of those N-grams that occur sufficiently often. The probabil i ty of
other N-grams is estimated by recursively „backing-off" to models of lower order (N — 1)

19

that use shortened histories (leaving out the first word of the history). Back-off L M s were
introduced by S. K a t z [Katz(1987)]:

i f C (w i - N + 1 ...Wi) > k

otherwise
(2.13)

Here, d is the amount of discounting applied ([Katz(191] used Good-Tur ing smooth
ing), C is the occurrence count of the given N-gram i n the t raining corpus and k is the
cut-off frequency (min imum number of occurrences). aWi_n+1,„Wi_1 is the so called back-off
weight, which is dependent on the current history. It usually corresponds to the sum of
probabil i ty mass that was discounted from al l N-grams sharing the same history and is
now available to be re-distributed by the lower order dis t r ibut ion Piower, that can be recur
sively defined in exactly the same way as Pxatz- Alternat ively, a different type of back-off
dis t r ibut ion can be used, as e.g. i n Kneser-Ney smoothing [Kneser and Ney(1995)].

W2/P(W2\wi)

Figure 2.11: Weighted finite state acceptor (WFSA) implementation of a bi-gram LM. Left: fully
connected model (V x V arcs) Right: WFSA approximation of a bi-gram back-off model [Mohri
et al.(2008)], just showing the representation of transitions leaving state w\. The bi-gram W\W2 was
seen sufficiently often during training and is thus represented by a direct link between the history
states W\ and W2- The bi-gram W1W3 was not seen sufficiently often, thus the model backs-off to
the history-less state "bo" with the cost of the back-off weight a{w\). No symbol is consumed in
this transition - indicated by the e-symbol. Leaving the back-off state, the lower order (uni-gram)
probabilities are applied (P{wz)). The approximation with the back-off state can greatly reduce the
number of arcs, but it also introduces non-determinism. If e would be a regular label, the WFSA
would be deterministic (only a single outgoing arc per label in each state). However, since e doesn't
consume any symbol, the bi-gram w\W2 can be either formed by taking the arc w\ —> W2 or by going
over the back-off arc: wi —> bo —> W2-

A s seen i n figure 2.11, back-off L M s can be represented as W F S A , but since not a l l
possible history states and arcs can be specified for higher N and V, usually an approxi
mate structure wi th back-off arcs is used [Allauzen et al.(2003)], [Mohri et al.(2008)]. The
probabilities P'{wi\hi) and the back-off weights a (equation 2.13) are pre-computed, and
only those are stored i n the A R P A format. For each N-g ram (e.g. t r i -gram abc) w i th
C{abc) > k, an A R P A file contains an entry i n the form ^P'{c\ab) abc a(abc)\ where
P'(c\ab) is the discounted probabil i ty P(c\ab), and a(abc) is the back-off weight of backing-
off from the higher order N-g ram abc to the shortened history be. Thus, i f C{abcd) < k

PKatz(vJi\Wi-N+1 . . . Wi-l,

P'(Wi\hi) d Wi-N+l-.-Wi

C(WJ-N+1 . ..Wj-iWj)

C (w i - N + 1 . ..Wi-i)

a Wi-N+l---VJ i_i • Plower(Wi\Wi-N+2 • • • Wi-1,

20

then P(d\abc) = a(abc)P(d\bc). For the highest order, there are no explicit history states.
For example i n a t r i -gram L M , we don't create states for every tr i-gram, but we use the
tri-grams as connections between bi-gram states (e.g. the t r i -gram abc connects the states
ab and be).

We can interpret the highest order (e.g. tri-gram) connections i n an alternative way:
we could create the highest order (tri-gram) history state as target of the transit ion, but
there would only be the possibil i ty of immediately backing-off to the corresponding lower
order (bi-gram) state. In this interpretation, the back-off weights for the highest order
iV are assumed to be always one (zero in log-domain), and therefore there is no need to
specify them. T h i s interpretation has the advantage, that there are only two types of arcs:
going towards a higher order by extending the history, and backing-off to lower orders by
shortening the history. This simplifies some derivations in chapter 4. Figure 2.12 shows an
example A R P A text file and the corresponding W F S A .

\data\
ngram 1=4
ngram 2=2
ngram 3=2

\l-grams:
-5.234679 a -3.3
-3.456783 b
0.0000000 <s> -2.5
-4.333333 </s>

\2-grams:
-1.45678 a b -3.23
-1.30490 <s> a -4.2

\3-grams:
-0.34958 <s> a b
-0.23940 a b </s>
\end\

Figure 2.12: Left: Definition of a tri-gram ARPA back-off language model. For each N-gram
'abc', there is an entry in the form 'P'(c\a, b) abc a(a,b,c)', where P'(c\a, b) is the discounted
probability P(c\a, b), and a(a, b, c) is the back-off weight of backing-off from a higher order N-gram
to the shortened history abc. The probabilities are by convention given as logarithms to the basis
of two. Right: The WFSA resulting from the tri-gram back-off ARPA LM defined on the left.
The highest-order N-grams (tri-grams) behave slightly differently than lower-order N-grams: The
transition for tri-gram <s>ab is going from state <s>a to state ab. In an alternative interpretation,
this is equivalent to going to an imaginary state <s>ab and immediately backing-off to state ab. If for
some reason the bi-gram ab would be missing in the ARPA file (removed line —1.45678ab — 3.23'),
the state ab would be created as target state for the tri-gram abc, however, the arc from a to ab would
not exist, and the back-off arc from ab to b would be with zero cost.

2.5.1 Diff icult ies w i t h the representat ion of back-off arcs

A s seen i n figure 2.11, the approximate structure of back-off arcs w i t h the symbol e in
troduces non-determinism. Therefore, it is important to pay attention to the computat ion
of the arc weights of the L M W F S T G. The same structure (figure 2.11) can be used to
represent both back-off L M s and interpolated L M s . We compare the formulas for both
models:

21

file:///l-grams
file:///2-grams
file:///3-grams

Pbacko (w\h) = i P ' (W i \ h i) ifC(wi,hi)>k , 2 1 4 -
backoff \ i\ i) y abo(hi) • Piower(wi\hi) otherwise

Pint{Wi\hi) = P'\lVi\hi) + aint(hi) • Piower(wi\hi) (2 -!5)

hi = W i - N + 2 . • -Wi-i. (2-16)

We observe, that the only pr inc ipal difference is the incorporation of the lower order
probabilities - either we add them i n the interpolated L M , or we decide to use them based
on the condit ion C(wi,hi) > k. Tha t means, in the back-off L M , we should not use the
lower order dis t r ibut ion, i f the higher order N-g ram was observed sufficiently often. This
has the important consequence, that the back-off weights a are computed differently in
both cases:

aintihi) = l - J 2 P ' (w i \ h i) (2-17)

abo(hi) = ^ a U h l l ((2.18)

otintihi) is computed so that Pint(wi\hi) forms a va l id dis t r ibut ion by assuming, that
we always add the lower order dis t r ibut ion PiOWer- Th is means, i f we compute P'(wi\hi),
ctint(h-i) and PiOWer(wi\hi) for an interpolated L M , and use it as arc weights i n the L M
transducer G, we should always take the sum of a l l possible paths which accept the same
symbol sequence. For example, i n figure 2.11, we should sum the arc w\ —>• u>2 and the path
going over the back-off arc: w\ —>• bo —>• u>2 to correctly obtain the weight for the bi-gram
w\W2- If we use the t ropical semi-ring i n decoding, which only picks the best of the possible
paths, we do not obtain the correct probabili ty. Us ing the (log-) probabil i ty semi-ring is
also incorrect, since for orders higher than bigram, after backing-off more than once, the
original context is lost and the lower-order paths w i l l not continue wi th the correct state.

Pa r t ly to avoid this problem and par t ly since the A R P A format is the most commonly
used file format (which was designed for back-off L M s) , many popular L M tool -k i t s 8 convert
the probabilities of interpolated L M s to back-off L M s before saving them to the A R P A file:

P"(wi\hi) = Pint(wi\hi) = P'(wi\hi) + aint(hi) • Piower(wi\hi) (2.19)

a » („) _ 1 - E f M W (M 0)

Z^Wi\C{wi,hi)<=k Flower\wi\hi)

That means, we use the interpolated probabil i ty Pint(wi\hi) instead of P'{wi\hi). In case
Plower is itself an interpolated probability, we have to recursively add al l lower orders. The
resulting model can be used as a back-off L M . Its origin as an interpolated L M is no longer
visible when stored in the A R P A format.

If we would just use Pmt{i"i\hi), without changing the back-off weights a"(hi), the
decoding in the t ropical semi-ring would produce the correct result, since it is guaranteed
for interpolated L M s , that Pint(wi\hi) > ctint{hi) • Piower(wi\hi)- However, to interpret
the model as a back-off L M , the back-off weights a"(hi) are re-computed. Therefore, if the
original counts are no longer available (only A R P A given), the original interpolation weights
aint are los t 9 , and the decoding i n the t ropical semi-ring is not guaranteed to produce the
correct result, since it is now possible that Pint(wi\hi) < a"(hi) • Piower(wi\hi)10.

For example SRILM http://www.speech.sri.com/projects/srilm/.
9We could reverse-engineer the equations, but due to complexities like missing N-grams and pruning,

this is non-trivial.
1 0 In rare cases, where C(wi, hi) > k for almost all wi, it is even possible, that a"(hi) > 1.0.

22

file:///lVi/hi
http://www.speech.sri.com/projects/srilm/

Lucki ly , this is not happening very frequently, and w i l l not have a big impact e.g. on word
error rates. For back-off L M s , ab0{hi) (equation 2.18) is computed under the assumption,
that we only back-off, i f C(wi, hi) <= k. Therefore, when we compute P'(wi\hi), a\>0{hi) and
Plower{wi\hi) for a back-off L M (or convert an interpolated L M to a back-off representation
as in equation 2.20) and use these as arc weights i n G , we should only take the back-off
arcs i f there is no corresponding arc w i t h the higher-order N-gram. For example, in figure
2.11, we are not allowed to use the back-off arc w\ —>• bo —>• u>2, because there is a b i -
gram arc w\ —> u>2- In other words, for these models, when we represent back-off arcs
w i th e, we do not obtain the correct probability, neither w i th the probabil i ty semi-ring,
which is summing a l l possible paths, nor w i th the t ropical semi-ring (taking only the best
path). W h e n decoding w i t h the t ropical semi-ring, we would incorrectly take the back-off
path i f P'{wi\hi) < abo(hi) • Piower(wi\hi)11. A s already said, luckily, this does not happen
very frequently, and most often, this inconsistency for the t ropical semi-ring is neglected.
[Allauzen et al.(2003)] introduce an algori thm to obtain a back-off W F S T G', that produces
correct results i n the t ropical semi-ring, even when using e-arcs.

A n exact and deterministic implementat ion of back-off L M s wi th W F S A would require a
different type of arc. The so called failure arcs were introduced for efficient str ing matching
[Aho and Corasick(1975)]. Usually, in the literature (e.g. [Allauzen et al.(2003)]), a special
arc label ip (or (f>) is used to mark failure arcs. A failure arc doesn't consume any symbol
and it has the semantic interpretation, that it can only be taken, i f no other symbol on
any of the other out-going arcs of the same state can be accepted. This works similar to
the 'default' case i n a C-language ' switch ' statement. [Allauzen ct al.(2003)] shows how
to evaluate paths through W F S T s wi th failure arcs. These failure-arc-type W F S A accept
sequences of words wi th exactly the same probabilities as when correctly implemented as
a back-off L M i n any of the L M tool-kits. The algori thm that we are going to develop in
chapter 4 w i l l work for both, e- and failure-arc-type W F S A . Figure 2.13 shows an example
of a t r i -gram back-off L M implemented wi th failure arcs, and explains, why failure arcs
contradict the M a r k o v assumption.

A s explained, there are correct solutions for W F S T s generated from back-off L M s , when
working i n the t ropical semi-ring. This is true when taking the probabilities as estimated
for a back-off L M or when converting an interpolated L M to a back-off L M . However,
during the construction of the recognition network (section 2.4.1), we usually work i n the
(log-) probabil i ty semi-ring - most important are the determinization and weight pushing
operations. W h e n we compute the arc weights for back-off L M s , but implement the back
offs arcs w i th e, the summation of the redundant back-off paths i n the probabi l i ty semi-ring
actually has the consequence, that the probabilities of outgoing arcs do not sum to one, but
to a sl ightly higher value, i.e. the resulting W F S A is no longer stochastic. Since the L M
W F S A has cycles, the weight of a cycle can be greater than one, which causes the W F S A
to have an infinite to ta l weight (equation 2.5). A s we w i l l see i n section 3.1, this can cause
the conventional weight pushing algori thm to fail.

The correct solution would be to implement weight pushing (i.e. the shortest path
algorithm) and the determinization for W F S A wi th failure arcs, i.e. respecting the semantics
of failure arcs. A s seen in figure 2.13, this is a non-t r ivia l task, since failure arcs violate the
Markov assumption, i.e. when following a failure arc, we have to remember the history of
arcs to be able to choose the successor arcs co r rec t ly 1 2 .

1 1 This might be the case, if P(wi, W2) <S P(wi)P(w2).
1 2 In the composite recognition network HCLG, the number of past arcs to be remembered can be quite

high, since the arcs with word label can be farther apart.

23

Figure 2.13: Weighted finite state acceptor (WFSA) implementation of a tri-gram back-off LM
using failure arcs. Only selected arcs are shown. A failure-arc, indicated by ip, doesn't consume
any symbol and it can only be taken, if no other symbol on any of the other out-going arcs of the
same state can be accepted. I.e. we can not take the arc (v) —> (v,w), since there is a direct arc
(u,v) —?• (v, w). Failure arcs have the peculiarity that the decision, which arc to take, is made based
on the current symbol, but the symbol is only consumed later in the next non-failure arc. If there
are several failure-arcs in a row (e.g. backing-off (u,v) —> (v) —> (bo)), we compare the same input
symbol (w) several times against the outgoing arcs of different states (v and bo). Therefore, the
decision to not take the arc (bo) —> (w) is based on the fact, that there exists an arc (u,v) —> (v,w).
This contradicts the Markov property of the model, because after backing-off (u,v) —> (v), due to the
Markov assumption, it is not possible to decide in state bo, whether we came originally from (u, v)
or from some other state (x,v), or just from (v). Therefore, to correctly implement the semantics
of failure arcs, completely different algorithms are necessary.

Since, to the best of our knowledge, determinization and shortest path algorithms for
failure arcs i n the probabil i ty semi-ring are not yet available, we conclude, that there is no
absolutely correct way to construct recognition networks. W h e n using (b ig ram 1 3) interpo
lated L M s , we should not convert the probabilities to a back-off L M , as it is usually done.
We would compose the recognition network i n the log-semi-ring, i.e. apply determinization
and weight pushing i n the log-semi-ring. Once the final recognition network is obtained,
we apply the algori thm i n [Allauzen et al.(2003)] (section "Exact offline representation")
to obtain a W F S T , that can be correctly used for decoding in the t ropical semi-ring. For
back-off L M s , the si tuat ion is worse. We would have to convert the back-offs L M s to an
interpolated L M for the purpose of bui ld ing and opt imizing the recognition network i n the
log-semi-ring. W i t h o u t going into details, this is not always possible. Therefore, we have to
be aware of the fact, that when interpreted i n the log-semi-ring (using e arcs), these models
are not stochastic and can have an infinite to ta l weight. This has important consequences
for the weight pushing algori thm (section 3.1). Therefore, we present an alternative weight
pushing algori thm (section 3.3), that can handle this problem.

1 3 For higher order interpolated LMs we would have to introduce context-specific back-off states to make
sure we continue the back-off paths with the right context.

24

2.6 Parallel Speech Decoding

Dur ing the last decade, Moore 's law, the trend of increasing clock rates by reducing transis
tor gate lengths, has slowed down and the power consumption of chips has become a major
issue [Horowitz et al.(2005)]. There seems to be a Pareto relation [Horowitz et al.(2005)]
between increasing performance and increased power consumption. Therefore, it is more
efficient to run more units or cores i n parallel at a lower clock speed instead of a single core
running at higher clock speed. A s a result, there is a need for parallel algorithms, which
can efficiently use mult iple cores that are usually present i n recent systems.

The challenge i n parallel izat ion is to divide the task into sub-problems, that are as
independent of each other as possible - to minimize the communicat ion between the tasks
and to avoid wait ing times. A t the same time, each of the sub-problems should be of
approximately the same computat ional complexity to achieve a good load balancing and
thus work efficiently. The m a x i m u m possible speed-up i n parallel ization is determined by
the proport ion of code that needs to be run serially (Amdahl ' s law). Depending on the size
of the sub-problems that can be identified as being independent, we can distinguish coarse
level and fine-grained parallelization. We think of fine-grained parallelizations as working
on the level of ind iv idua l states/arcs/densities or even on instruct ion level, while coarse
refers to parallel ism among decoding passes or chunks/segments of the utterance.

2.6.1 Coarse and fine-grained parallelization

Coarse level parallel ization for L V C S R can be achieved, i f different stages of processing
or different knowledge sources are distr ibuted to different cores. Speech recognition has
several stages of processing (feature extraction, acoustic model evaluation, graph search),
which can be distr ibuted among cores. Another opportuni ty for coarse parallel ization is the
presence of mult iple acoustic feature sets (acoustic models), where different feature streams
can be computed on mult iple cores. Coarse level parallel ization has the advantage, that
the serial algorithms do not need to be changed, i.e. no overhead due to communicat ion
and extra data structures is introduced. However, the scalabili ty is l imi ted by the number
of available stages or feature streams and model components, which is usually small . The
opt imal dis t r ibut ion of computat ion tasks to mult iple cores depends on the task (e.g. size
of the recognition network, complexity of the acoustic model) and on the processor and
memory configuration [You et al.(2009)]. A typica l system can have a combinat ion of
several C P U cores w i th shared memory and a graphic processing unit (G P U) , or multiple
C P U s can be connected over a network. Two recent examples of systems using parallel
C P U s and G P U s are given i n figure 2.14 and i n [Cardinal et al.(2013)].

In a single-threaded system, typical ly the majori ty of t ime is spent i n the acoustic model
evaluation (e.g. 80% in [You et al.(2009)]). A t the same time, the acoustic model evalu
ation (either G M M or neural networks) is easily parallelizable (e.g. [Dixon et al.(2009)]).
W h i l e the acoustic model evaluation can be easily parallelized in a fine-grained way [Dixon
et al.(2009)], the fine-grained parallel ization of the graph search is less t r iv ia l .

In dynamic programming algorithms (and S S S P) , the sub-problems that do not depend
on each other, and thus can be computed i n parallel , form stages or wave-fronts [Maleki
ct al.(201] (see figure 2.5). There are efficient and scalable parallel algorithms to solve
the general SSSP, many of them are based on the delta-stepping algori thm [Meyer and
Sanders(2003)]. The idea is, that nodes are assigned to buckets and a l l nodes wi th in a
bucket are updated at the same time in parallel . A l so the queue (and sorting) operations

25

C P U
Data Control

I LM Model |
.] Lookup J

Manycore G P U
Control Data

Phase 0
Iteration Control

Prepare ActiveSet

Acoustic Likelihood
Computation

w

Figure 2.14: LVCSR implementation on CPU and GPU [Kim et al.(2012)] - acoustic model
evaluation and graph search is implemented on GPU, language model re-scoring due to memory
requirements on GPU.

can be parallelized. There are also recent implementations on G P U s , which are able to
process huge graphs and achieve significant speed-ups [Davidson et al.(2014)].

W h i l e the general S S S P is well parallelizable, this is not true for search in L V C S R .
A s already pointed out, the arc weights are computed dynamical ly (acoustic scores are
added). A l so , due to pruning, only a fraction of the states of the recognition network are
kept i n memory. Thus, the application of pruning changes the properties of the basic SSSP
fundamentally, which makes it difficult to design a parallel a lgori thm for V i t e r b i search in
L V C S R , that would be scalable to a high degree of parallel ism and at the same time stays
efficient.

Several parallel ization attempts have been made wi th word-based H M M s and recogniz
ers using linear lexica, however, for A S R systems wi th large vocabularies, a lexical-tree or
more efficient W F S T based decoders are desirable. [Phillips and Rogers(1999)] describe
an W F S T - b a s e d approach, that introduces fine-grained parallel ism by organizing the data
structures and grouping the computations according to a state of the recognition network.
The computations belonging to each state are assigned to a core according to the modulo
operation, which should achieve uniform load balancing. They achieved a speed-up factor
of 3..6 on 4..12 processors.

Another idea was pursued by [Parihar and Hansen(2008)]. They use a lexical-tree based
decoder, i.e. using the lexicon transducer (uni-gram) and storing the word history wi th each
token. Then, it is possible to split the lexical tree at the root into several sub-trees for each
thread. To achieve a good load balancing, the split was done between similar sounding
phones. However, the approach d id not scale to more than 2-4 threads.

[You et al.(2009)] present an analysis on several a lgori thm designs to implement fine
grained parallel ism for the V i t e r b i graph search. They showed, that the op t imal algori thm
design varies w i th the architecture (multi-core C P U vs. G P U) . [Chong et al.(2009)] im-

26

plemented a W F S T based recognizer for a medium sized L V C S R completely on the G P U ,
which already achieved a l l x speed-up. However, i n case huge language models of higher
order (tri-gram and more) need to be used, the l imi ted memory on the G P U would not be
sufficient. To solve this, [K i m et al.(2012)] showed how to uti l ize the C P U i n parallel for
the language model on-the-fly re-scoring.

A n alternative architecture is presented i n [Cardinal et al.(2013)] - here, an A-s tar
algori thm is used for search, and the computat ion of the heuristic is performed on the
G P U . For that purpose a backward decoding wi th a uni-gram recognition network (L M
look-ahead) is performed, which is parallelized by dis t r ibut ing transitions among cores
according to the destination state (aggregation approach).

2.6.2 Stage parallelism through rank convergence

Figure 2.15: Rank convergence in Viterbi algorithm [Maleki et al.(2014)J- Vi contains the scores
of the states at time i. If at time k, the search converges to only one active state, then all future
frames depend only on the score of this single state. Therefore, independent of the initialization at
time i, the resulting vector Vj will be equal, except for an additive offset, which is constant for all
its components. That means, the rank of state scores is independent of the initialization.

A n interesting observation concerning V i t e r b i decoding (and many F S T based algo
rithms in general) was made by [Maleki et al.(2014)]: If we would start decoding in the
middle of a sentence by assigning a random score to a l l states, usually, after a quite l imi ted
amount of t ime frames (20-50), the a lgori thm converges to a smal l set of active states,
which is independent of the ini t ia l izat ion at the start frame. We can interpret this as an
all-pair-shortest-path problem [Cormen et al.(2009)], i.e. finding the shortest pa th between
any pair of states in the graph. If we represent the possible transitions between states in
one t ime step as a transi t ion matr ix , each t ime step of the V i t e r b i a lgori thm can be seen
as a matr ix-matr ix mul t ip l ica t ion of the transi t ion matr ix i n the t ropical semi-ring. The
observation is, that resulting all-pairs-shortest-path matr ix (containing the score of paths
between two states) w i l l converge to a matr ix of smal l orthogonal rank after several frames.
We obtain the V i t e r b i forward score for the final t ime frame by mul t ip ly ing the all-pairs
matr ix w i th an in i t i a l vector from the left. A s seen in figure 2.15, i f the rank of the all-pairs
matr ix is one, this leads to the si tuation that the V i t e r b i forward scores for a l l frames after
the point of convergence are independent of the in i t ia l iza t ion vector (off by a constant).

This fact can be exploited to parallelize the V i t e r b i a lgori thm across stages - i n other
words to split it into t ime chunks which can be processed i n parallel . If each randomly
ini t ia l ized chunk is long enough for the algori thm to converge to a single state at some
point, then the state sequence after that is independent of the ini t ia l izat ion and only the
beginning frames of each chunk need to be fixed i n a consecutive parallel fix-up phase.

27

Figure 2.16: Rank convergence in Viterbi algorithm with rank bigger than one [Maleki, unpub
lished]. During the fix-up phase <Si+i, only the values of those input nodes Si that originate from
different active states (different color) need to be fixed.

For smal l decoding tasks, this algori thm showed very promising results [Maleki et al.(2014)],
but for L V C S R , the rank (number of active states) does usually not converge to one, but to
a smal l number. In this case, the state scores w i l l be linear combinations of vectors resulting
from the few active states - see figure 2.16. A similar parallel ization can be applied as in
the singular case, but the fix-up phase gets slightly more complex. Us ing huge networks
also makes it necessary to introduce state pruning. It is not clear, which states to activate
during the random ini t ia l izat ion. Therefore, the set of states i n the fix-up phase might only
be par t ly overlapping w i t h the random-ini t ia l izat ion phase, which complicates the fix-up
phase of the algorithm.

A n open research question is whether it is possible to automatical ly detect frames in
advance, where the rank w i l l converge, and what is the op t imal segmentation into chunks for
a given task. W h i l e we have no direct answer to that question, we suspect, that at the points
w i th few remaining active states, the decoding results of a forward and backward search
w i l l agree (see chapter 5). Therefore, it should be possible to split the segments at points,
where forward and backward search agree. This leads to an approach to parallelization,
which is described in section 5.3.

28

Chapter 3

An alternative weight pushing
algorithm

We explain the connection between Markov chains, non-negative matrices and weighted
finite state acceptors (W F S A) . Based on that, we introduce an alternative weight pushing
algori thm, that is able to deal w i th possibly infinite to ta l weight, and is much more efficient
for acceptors w i th cycles. Th is alternative weight pushing algori thm is suitable for an
important class of models - i.e. language model transducers or more generally (cyclic)
W F S A s wi th failure transitions.

3.1 Weight pushing algorithm

A s a prerequisite to this chapter, we assume, that we are able to construct a model (W F S A)
that has some desired properties (i.e. being deterministic and minimal) . The application
we had i n mind (chapter 4) was to construct a (back-off) language model (L M) acceptor,
that has the desired size and structure and is deterministic (except for the e-arcs). If we
want to use the resulting acceptor i n a pruned search (i.e. for L V C S R) , it is desirable, that
the acceptor has yet another property - to be (locally) stochastic.

Two W F S A s are equal, i f they accept the same set of input label sequences wi th the
same path weights. In other words, two equivalent W F S A s (or W F S T s) may differ by the
way the weights (and output labels) are distr ibuted along the path, even if they have the
same topology wi th the same input labels [Mohri and Riley(2001)]. It was pointed out by
[Mohri and Riley(2001)], that the dis t r ibut ion of weights along the path plays a crucial
role i n pruned search. P run ing is typical ly based on the weight accumulated along a path
explored so far - often it is a combined weight (e.g. acoustic, pronunciat ion and language
model for L V C S R) . Typical ly , we prune by l imi t ing the breadth of the search around the
current best path (called beam pruning).

[Mohri and Riley(2001)] conjectured, that the op t imal dis t r ibut ion of weights for pruned
search should be such, that the weights (coming from different knowledge sources such as
acoustic and language model) are locally synchronized for the sequential decisions, which
arc to take next. Another common wisdom is, that the knowledge should be applied as
early as possible in search - to be able to rule out unlikely paths as early as possible. Th is
manifests itself i n techniques like L M look-ahead [Ortmanns et al.(1996)], which are used in
L V C S R decoding wi th dynamic networks. For stat ically compiled networks (or monoli thic
models like the L M W F S A s dealt w i th here), this corresponds to "pushing" the weights as

29

much as possible towards the in i t i a l state. A s shown i n [Mohri et al.(2008)], pushing weights
towards the in i t i a l state is actually equivalent to making the weights of the outgoing arcs of
every state sum to one i n the given semi-r ing 1 , i.e. making the W F S A stochastic. W h e n the
weights are distr ibuted in such a way, the pruned search w i l l be more effective - i.e. a smaller
beam can be used. However, the overall best path (and accuracy) is s t i l l the same - i n the
asymptotic case of a very wide beam. [Mohri and Riley(2001)] show substantial speed-ups
for several tasks in L V C S R , when modifying the transi t ion probabilities of a W F S A in
such a way, that the weights of paths through the W F S A form a stochastic dis t r ibut ion.
Therefore, for op t imal pruning i n L V C S R w i t h the probabil i ty semi-ring, we want to obtain
a W F S A , where weights of outgoing arcs sum to one for each state.

We give a general definition of weight pushing for W F S A s , where we refer to the def
in i t ion of a W F S A given i n section 2.3. The generalization to W F S T s is given by inter
preting weight-output label pairs as new weights combined by the appropriate semi-ring
[Mohri(1997)]] 2 .

Re-weighting [Mohri et al.(2008)] is an operation on W F S A s that alters the weights
w[ti] of ind iv idua l transitions and the final-probabilities p(n[tn]), while leaving unaffected
the weights W[TT] of successful paths (i.e. from in i t i a l to final states). The possible ways
to change the transi t ion weights of a W F S A can be expressed wi th the help of a potential
function V : Q —> K \ 0, which can be an arbitrary function on states, assigning a value
of K (except 0) to every state q. G i v e n such a function, we can update the in i t i a l weight
A, the transi t ion weights w[e] and the final weights p(f) according to the following [Mohri
and Riley(2001)]:

A <- A <g) V(i) (3.1)

Ve€E,w[e] <- [^ [e])] " 1 ® (w[e] ® V{n[e])) (3.2)

VfeF,p(f) <- [V(f)]-1 ® p[f] (3.3)

If the re-weighting is carried out this way, it is easy to see, that the overall weight of a
successful path is not changed, since the potentials along any successful path cancel each
other. Thus, the resulting W F S A is equivalent to the original one. The simplest possible
re-weighting operation is to mul t ip ly (8) a fixed value k to the weights of a l l incoming arcs
into a part icular state q' and to divide (_ 1) the same value from the weights of a l l arcs
leaving that state. Th is is achieved wi th the potential function:

{ 1 _ otherwise (^-4)

Weight pushing is a special case of re-weighting, that aims to make the W F S A stochastic,
or i n other words to push the weights as much as possible towards the in i t i a l state. Th is
is achieved [Mohri and Riley(2001)] by setting the potential function V(q) to the shortest
distance d[q] from q to any of the final states F:

Vq G Q, V(q) = d[q] = 0 w[ir] (3.5)
t6P(<?)

Here, P(q) is the set of a l l paths from q to any of the final states F. Figure 3.1 shows an
example of weight pushing i n the t ropical and probabil i ty semi-ring.

xFor the tropical semi-ring, this means that the maximum over all outgoing arcs is one.
2 OpenFST uses the Gallic semi-ring, which uses composite weights (ProductWeight) of an output label

string and the arc weight. For the strings, we use the longest common prefix as © and concatenation as ®.

30

Figure 3.1: Example of weight pushing [Mohri et al.(2008)]. Left: WFSA before applying the
weight pushing. Center: Weight pushing in the tropical semi-ring (® is the minimum operation
and <S> is addition). In this case, the potential function is the shortest distance to the final state,
as computed by a Viterbi algorithm, that runs backwards from the final state. State 1 and 3 can
be reached with zero cost, state 2 with cost 4- Thus, for each arc we <S> (add) the potential of the
destination state and _ 1 (subtract) the potential of the source state. Right: Weight pushing in the
probability semi-ring. The potential function is the sum of all paths meeting in a state, as computed
by the forward algorithm.

There are several algorithms to compute the shortest distance, based on the dynamic
programming principle, whose complexity depends on the semi-ring and the type of W F S A
that is dealt wi th . For the t ropical semi-ring, a V i t e r b i a lgori thm can be used. If the
log-probabili ty or probabil i ty semi-ring is used, however, a l l possible paths towards a state
need to be summed, which is especially difficult, i f the W F S A has cycles. A cycle can be
followed an infinite amount of times, generating an infinite number of paths that need to
be summed. So we need to guarantee that the weight of any cycle is W(TT) < 1. In other
words, we need to be able to compute the closure wl, otherwise the cycle would result
in an infinite total weight. If a semi-ring fulfills this condit ion for Vic € K , it is called closed
semi-ring - see [Mohri(2002)] for an exact general definition. If the structure of the W F S A
is simple, i.e. the cycles are not nested and can be easily identified, the closure operation
could be direct ly applied. For W F S A s resulting from L M s , this is not true, since the cycles
are nested in a complex way.

In [Mohri(2002)], the set of k-closed semi-rings is introduced, which guarantees that the
max imum number of times a cycle needs to be followed is k:

k+1 k I

V a € K , 3 / f e : 0 a i = 0 a i = 0 a i , V l > / f e (3.6)
i=0 i=0 i=0

For that class of semi-rings, figure 3.2 presents a generic shortest distance algori thm as
given by [Mohri(2002)]. The algori thm manages a queue of states S that need to be updated.
After extracting the state q from the queue, the so called relaxation operation (starting from
line 10) consists in propagating the accumulated weight update r[q] to a l l arcs e leaving
the state. For a l l destination states n[e] which meet the relaxation condit ion (line 11),
i.e. the update is bigger than zero, we update the distance d[n[e]] and the tentative update
r[n[e]] and add the state to the queue. The algori thm continues unt i l the queue is empty.
For A:-closed semi-rings, the relaxation condit ion (line 11) makes an update unnecessary,
if the weight of a loop has already been added k times. The algori thm is thus iterative
and operates by local ly forwarding weight mass through the W F S A according to the queue
policy. The algori thm is efficient, if the number k is small , and if the state transi t ion matr ix
is sparse, i.e. \E\ <C \Q\2-

31

G E N E R I C - S I N G L E - S O U R C E - S H O R T E S T - D I S T A N C E (G, S)

1 for i <- 1 to \Q\
2 do d[i] <- r[i] < - 0

3 d[s] <- r[s] <- T
4 5 ^ { S }
5 while 5 ^ 0
6 do q <— head(S)
7 D E Q U E U E (S ')

8 r' <- r[q]
9 r[q] < - 0

1 0 for each e e %]
1 1 do if d[n[e]] ± d[n[e}} © (r' <g> w[e])
1 2 then d[n[e]] <- d[n[e]] © (r' <8) to[e])
1 3 »"[n[e]] <- r[ra[e]] © (r' (g> u>[e])
1 4 if n[e] <£ S
1 5 then E N Q U E U E (, S , n[e])
16 d[s] « - 1

Figure 3.2: Pseudocode of single-source shortest path algorithm used in the generic weight pushing
algorithm [Mohri(2002)J. The algorithm computes the shortest distance d[q] from the initial state
s for each state q of the WFSA G. To compute the shortest distance to the final state, we have to
start with the final state and follow the arcs in the opposite direction.

For the (log-) probabil i ty semi-ring, there is no k < oo, for which equation 3 .6 would
hold, but it is s t i l l a closed semi-ring (k —> oo). The generic shortest-distance algori thm
can't be used i n this case, however, closed semi-rings are covered by the generic F l o y d -
Warsha l l and Gauss-Jordan algorithms [Lehmann(1977)]. These algorithms solve the so
called algebraic path problem by computing the all-pair shortest distance wi th a t ime com
plexity of 0 (n 3) (n proport ional to the number of states), but they are not as efficient for
our purpose, since they don't take advantage of the sparsity of the transi t ion matr ix and
since we are actually just interested i n the distance from one single (start) state. A s soon
as the W F S A has thousands of states, an algori thm wi th complexity 0 (n 3) is clearly not
feasible.

One strategy is to decompose the W F S A into several strongly connected components,
where any state of a component is reachable by any other state of the same component
by a path of l imi ted length. In this case, the all-pair shortest distance only needs to be
computed for each component separately. However, it is relatively easy to see, that a model
of language such as the N-g ram consists basically of just a single huge strongly connected
component. Since the history is l imi ted to a few previous words, and even completely erased
on sentence boundaries, it is obvious that i n principle any sequence of words is repeatable
after a l imi ted amount of t ime steps. Thus, the complexity of the F loyd-Warsha l l a lgori thm
cannot be reduced this way.

The original relaxation condit ion for the generic algori thm (figure 3 . 2 , line 1 1) is given
I'.v:

d[n[e}} + d[n[e}} ® (r <g> w[e}) (3 . 7)

where d is the distance and r' is the tentative update to be propagated, i.e. the weight
accumulated since the last relaxation of q = p[e\. Thus, (r' ® w[e\) is the weight to be
added i n the relaxation. To handle also semi-rings that are not fc-closed, [Mohri(2002)]

3 2

replaces the relaxation condit ion by an approximate test w i th a metric A :

A(d[n[e]],d[n[e]] © (r' <g> w[e])) > 5 (3.8)

where 5 > 0 is a positive number used for approximation. For the probabil i ty semi-ring, the
condit ion simplyfies to (r' x w[e\) > 5. Due to l imi ted machine precision, there is actually
always some S for which this condit ion w i l l not be met. Thus, w i th a fc-closed semi-ring, a
cycle w i l l not be followed more than k times, and in our case the algori thm stops updat ing
as soon as:

where W[TT] is the weight of the cycle. If I is large (W[TT] —>• 1 or 5 —>• 0) the algori thm w i l l
iterate for a long time unt i l it converges. For w[ir] > 1, the algori thm fails to converge at
a l l . In this case, the to ta l weight of the W F S A becomes infinity.

W h e n we apply the weight pushing algori thm to W F S A that are constructed from back
off language models, we have to dist inguish two cases: A s explained i n section 2.5.1 and
figure 2.11, the e-style back-off arcs lead to duplicate paths. In case the weights were taken
from a back-off L M estimated for failure arcs, but the back-off arcs are represented wi th
e, the outgoing arcs w i l l not exactly sum to one, but to a slightly higher value. W h e n
occurring i n a loop, the condit ion w[ir] < 1 does no longer hold. Tha t means, the generic
weight pushing algori thm [Mohri(2002)] as implemented in O p e n F S T w i l l fail to converge,
because the to ta l weight of the entire W F S A w i l l not be finite. If the weights are correctly
estimated as interpolated L M , the representation w i t h e arcs results i n a stochastic W F S A .
However, the weight i n cycles can s t i l l be very close to one, so that the generic algori thm
is inefficient (equation 3.9).

3.2 Ergodic Markov chains and non-negative matrices

In the previous section, we explained why we want a model that has a (locally) stochas
tic weight dis t r ibut ion, and why for W F S A , that are cyclic, the standard weight pushing
algori thm [Mohri and Riley(2001)] is either inefficient or completely fails to converge 3 , i f
the total weight of the W F S A is not finite. For this purpose, we need a weight pushing
algori thm that w i l l always succeed. We show here, that this problem can be solved, if we
represent the W F S A as an ergodic Markov chain.

Here, we deal w i t h Markov chains, which are, by definition, already stochastic, and
thus don't need weight pushing. However, they w i l l serve us for the purpose of introducing
important concepts and the basic idea of our algori thm. Later , we generalize to non-negative
matrices. A Markov chain [Grinstead and Snell(1997)] can be defined similar to the W F S A
(equation 2.3), but discarding the labels S . To have a more flexible definition, every state
can be a potential in i t i a l state:

It is given by:

3 The algorithm for weight pushing in the log semi-ring provided with OpenFST www.openfst.org might
still work for some smaller models (e.g. LMs with small vocabulary), if the delta parameter is chosen to
be sufficiently small. We observed that typically as soon as the WFSA contains states with a huge fan-out
(S> 1000), the algorithm fails to converge.

(3.9)

M = (Q, F, E, A) over a semi-ring (K , ffi, <g>, 0,1). (3.10)

33

http://www.openfst.org

• a set of states Q

• a set of final or absorbing states F C Q

• a set of transitions E C Q x IK x Q

• an initial weight X

A transi t ion t = (p[t],w[t],n[t\) G E is seen as a move (step) from the source state
p[t] to the destination state n[t] w i th weight «;[£]. Markov chains were introduced wi th
probabilities as weights, thus, in this section, we only consider the probabil i ty semi-ring
(M G [0,1], +, x, 0,1). Usually, the transi t ion weights are represented in form of the transi
t ion matr ix P j j G \Q \ x \ Q\, where each entry pij = w[t] contains the weight of the transi t ion
t from state i = p[t] to state j = n[t]. If the corresponding transi t ion doesn't exist, the
entry is 0. In place of the in i t i a l weight A, one can add a super-ini t ial state i w i th outgoing
weights defined by A - as done in the W F S A definition (equation 2.3). Instead of having a
final weight p as i n equation 2.3, a M a r k o v chain can be seen as having a super-final state
/ ' and transitions from / G F to / ' w i th pfj/ = p[f]. The literature on Markov chains
doesn't use the term final state, but instead uses the term absorbing state, which is a state
that cannot be left, i.e. it has a self-loop probabi l i ty of one. A l l other states are called
transient. A Markov chain is absorbing if it has at least one absorbing state and from every
state it is possible to reach an absorbing state. If we represent an W F S A as M a r k o v chain
by using the sum of a l l arcs from state i to state j as entry p^ i n the transi t ion mat r ix
P, we see, that every t r i m (connected) W F S A corresponds by definition to an absorbing
Markov chain.

Representing the transi t ion weights i n a mat r ix has the advantage, that we can elegantly
(n)

compute the outcome of a process after several steps: The i j t h entry p\- of the matr ix P n

(n-th power of the matr ix) gives the probabil i ty that the M a r k o v chain, starting in state
qi, w i l l be i n state qj after n steps [Grinstead and Snell(1997)]. The function A wi th the
probabil i ty of starting i n a particular state can be represented as a state probabil i ty vector
A. Similar , if v is the row vector w i th elements v\ representing the probabil i ty of being in
state qi at a certain t ime n, then:

v (n) = A p n (3.11)

A n important class of Markov chains are ergodic Markov chains [Grinstead and Snell(1997)],
also called irreducible. A M a r k o v chain is ergodic, if it is possible to go from any state to
any state (not necessarily in one move). In this case, the corresponding W F S A consists
only of one strongly connected component, and there are no absorbing final states. A n
important sub-class of ergodic Markov chains are regular chains (also called pr imit ive) . A
Markov chain is called a regular chain i f there exists some positive n for which the power
P n of the transi t ion matr ix has only positive elements 4 . In other words, it is possible to
go from any state to a l l other states (including self-loop) in exactly n steps. Every regular
chain is ergodic, but not a l l ergodic chains are regular - see the example i n figure 3.3.

A n absorbing Markov chain is not ergodic. Th is holds for W F S A s , which are absorbing
Markov chains w i th only the final states being absorbing states. However, i f the W F S A is
t r i m (every state can be reached on a successful path), we can make the W F S A ergodic by
connecting the final states / G F to the in i t i a l state i. Now, every state can be reached
from any other state, by going over any of the final states.

4When talking about probabilities, this means not zero.

34

a 1 — a 0
0 b 1 - 6

1 - c 0 c

Figure 3.3: Example of an ergodic Markov chain and its corresponding transition matrix. If
o > O A t > O A c > 0 , then it can be easily shown that already for P 2 (n = 2) all pf^ > 0,
so that the Markov chain is also regular. That means any state can be reached from any state
with a maximum of two steps. For that reason, with n —> oo, the state distribution approaches an
equilibrium, according to the proportion of a, b and c. Ifa = b = c = 0 (removing the self-loops),
the chain is no longer regular. It is still obvious that every state can be reached from any other state,
but the matrix P becomes a permutation matrix, which means that the state distribution oscillates
between three different configurations, but never converges. From this example, it is easy to see, that
adding self-loops, i.e. increasing the values on the diagonal makes an ergodic chain a regular one.

In a next step, i f P is the transi t ion mat r ix of an ergodic Markov chain, then we can
obtain the transi t ion mat r ix of a regular chain by:

P' = /feI + (l - / f e) P , 0 < k< 1, keM (3.12)

Since the ergodicity guarantees, that every state can be reached, interpolating wi th the
identity mat r ix I guarantees, that the diagonal elements p'u > 0 are positive, which means,
that it is possible to take self-loops to stay i n every state. Thus, after n steps, when all
states of the ergodic chain have been reached, P / n w i l l have a l l elements pos i t ive 5 . It is
easy to see, that P ' and P have the same eigenvectors v 6 (P'v = k'v):

0 = (p ' - f c ' i) v = (ki + (i-k)P-k'i) v = (i-/fe) (p - y r ^ 1) v (3 - 1 3)

The fundamental l imi t theorem for regular chains [Grinstead and Snell(1997)] says that
if P is the transi t ion matr ix of a regular Markov chain, then w i t h n —> oo, the powers
P n approach a l imi t ing mat r ix W w i th a l l rows containing the same vector w where al l
components of w are positive and sum to one:

W = l i m P n . (3.14)

This states that the probabil i ty of being in state qj (the j t h entry of v) i n the long run
is independent of the start ing state qi (vj —>• Wj). F r o m this, it follows that w P = w, and
any row vector v w i th v P = v is a constant mult iple of w.

The unique normalized vector w is called fixed row vector and represents the stationary
distribution of the process. In other words, there is just one stationary distr ibut ion, i.e. only
one left eigenvector corresponding to the eigenvalue one 7 , that solves the equation v P =
v. F r o m equation 3.14, it follows that for any in i t i a l probabi l i ty vector A, the process
approaches the fixed row vector w for n —> oo:

5 Once a state is entered with some probability, the non-zero self-loop guarantees that is possible to stay
in all successive time steps.

6If k <C 1 or k' —> 1, then also the eigenvalue will be very similar.
7There can be other eigenvectors, whose eigenvalue (absolute value) are smaller than one, which will

vanish with lim^-joo P™.

35

l i m A P " = A W = w. (3.15)
n—¥00

Given equation 3.12, we can convert every ergodic chain into a regular chain w i t h the
same eigenvector. Thus it is also clear, that there is only one str ict ly positive fixed vector
for ergodic Markov chains. However, this fixed vector has a slightly different interpretation
[Grinstead and Snell(1997)]:

I + p + p2 i i p n
A „ = — — , l i m A „ = W , (3.16)

71 + 1 n—>-oo

where W is a matr ix , a l l of whose rows are equal to the unique fixed probabi l i ty vector
w for P . Therefore, the i j t h entry of the matr ix A n gives the expected value of the
proport ion of times that the process is i n state qj in the first n steps, when start ing from
state qi. A s already seen i n figure 3.3, for ergodic M a r k o v chains that are not regular, the
state dis t r ibut ion doesn't converge. However, the state dis t r ibut ion averaged over t ime does
converge. The law of large numbers for ergodic Markov chains [Grinstead and Snell(1997)]
states, that the proport ion of times that an ergodic chain is i n state qj in n steps - Hj{n) -
is independent of the start ing state g«:

P (\Hj(n) -Wj\> e) -)• 0, Ve > 0. (3.17)

So far, we were dealing wi th regular M a r k o v chains, i.e. we assumed that P is a row-
stochastic matrix, where every row sums to one. Now, we want to generalize equation 3.14
to the case, where P is not normalized. A generalization of the results on Markov chains is
given wi th in the theory of non-negative matrices [Bcrman and Shaked-Monderer(2012)]. A
non-negative matrix is a mat r ix wi th a l l entries pij > 0. In the same way as the transi t ion
matr ix Pjj of Markov chains, every non-negative matr ix can be associated to a directed
graph, w i th the only difference, that the transi t ion weights are no longer l imi ted to be in
the interval [0,1] and that the mat r ix is not required to be row-stochastic. The Perron the
orem [Berman and Shaked-Monderer(2012)] states, that for every non-negative pr imit ive
(i.e. regular) matr ix P , the m a x i m u m eigenvalue p(P) (also called spectral radius) is posi
tive, s imple 8 , singular (only one eigenvalue of this modulus) and has a positive eigenvector
(called left and right Perron vector, whose normalized entries sum to one). For n —> oo,
the mat r ix converges:

l i m (-^) = L , L = x T y , x y T = 1, (3.18)

where x and y are positive right and left eigenvectors: P x T = p (P) x T , x > 0, y P =
p(P)y, y > 0. F r o m this, it follows that for any in i t i a l probabil i ty vector A, the ratio of
state weights i n A w i l l converge 9 to a vector proport ional to the left eigenvector y:

l i m A (-j^) = A L = (A x T) y = cy. (3.19)

8 The algebraic multiplicity is one. Algebraic multiplicity is the number of times an eigenvalue appears
in the characteristic polynomial of a matrix.

9We don't know p(P), but independent of the normalizing constant, the ratio of the components of vector
A will converge to the ratio in the left eigenvector. To achieve numerical stability, we need to normalize,
and we could normalize A to unit length or to the first component being one.

36

Similarly, for any in i t i a l probabil i ty vector A, i f we mul t ip ly from the right, the ratio of
state weights i n A w i l l converge to a vector proport ional to the right eigenvector x T :

l im
n—¥co

L A = x (y\7 (3.20)

If the mat r ix P is not regular, but non-negative and irreducible (ergodic), the Perron-
Frobenius theorem [Bcrman and Shaked-Monderer(2012)] states, that the m a x i m u m (ab
solute value) eigenvalue p(P) is s t i l l positive, simple (algebraic mul t ip l ic i ty one) and has
a positive eigenvector (called Perron vector). There are no non-negative eigenvectors for
P except for multiples of the Perron vector. A l l of them have eigenvalues wi th modulus
p(P), however, there can be several complex eigenvalues wi th this m a x i m u m modulus. The
eigenvalues w i t h modulus p(P) are p(P) e 2 m l l k w i th I = 0,1,... ,k — 1 and k is called the
index of cyclicity.

W i t h the help of a permutat ion matr ix R , every non-negative mat r ix P can be converted
into the Frobenius form:

R T P R

0

Pl2
0

0
0

0

P23

0
0

0
0

Pfc-lfe
0

(3.21)

where the O-matrices on the diagonal are square. This means, that every non-negative
matr ix w i t h index of cycl ic i ty k > 1 (i.e. ergodic but not regular) corresponds to a directed
graph, whose states can be clustered into k stages, where the states of stage I + 1 can only
be reached by the states of stage I. Th is can be seen i n the example in figure 3.3. W h e n
a = b = c = 0, there are three alternating stages wi th one state each.

3.3 Alternative weight pushing algorithm

In section 3.1, we motivated the need to make the W F S A stochastic through the use
of a weight pushing algori thm. We showed, that for the (log-) probabil i ty semi-ring, the
generic (exact) a lgori thm for fc-closed semi-rings is not applicable, and the generic algori thm
for closed semi-rings (all-pair-shortest-path) is not feasible for W F S A s wi th big strongly
connected components (which is the case for W F S A s based on N-gram L M s) . We showed,
that the convergence of the approximate iterative algori thm depends on the weight in a
loop (equation 3.9). If the weight of a loop U[TT] > 1 (or the sum of several loops meeting
in the same state), the algori thm fails to converge. A s already explained, this can be the
case for e-style back-off L M s , when the weights were taken from a back-off L M (section
2.5.1). Thus, we need a weight pushing algori thm, that w i l l also succeed for those kinds of
W F S A s .

We represent the W F S A i n the probabil i ty semi - r ing 1 0 by using the transi t ion mat r ix
Pij, where pij is the sum of the weight of a l l transitions between state i and state j . The
transi t ion matr ix is usually sparse (contains 0 for a l l non-existing transitions). Our solution
is based on the theory of non-negative matrices and ergodic Markov chains as introduced in
section 3.2. The fundamental l imi t theorem for regular chains i n equation 3.15 suggests an

1 0 Even for the implementation, we found it more convenient to use actual probabilities instead of negative
logs, as used in the log-semi-ring.

37

iterative algori thm to find the stationary dis tr ibut ion. This is similar to the power method
for finding the dominant eigenvector w of the mat r ix P , by starting from a random or
uniform positive vector v and iterating by let t ing v (- P v each time.

If the W F S A is not normalized, the generalization is given by the Perron theorem in
equation 3.18. Since we do not know the normal iz ing spectral radius p (P) i n advance, we
re-normalize the resulting vector v at each step so that vj is 1, where / is the in i t i a l state
of the W F S A 1 1 . B y equation 3.19, we know that i f we iterate uT <— u T P , we converge
to a mult iple of the dominant left eigenvector y. This corresponds to a mult iple of the
stationary dis t r ibut ion w of the normalized chain and also corresponds to the m i n i m u m
distance from the in i t i a l state i n the probabil i ty semi-ring. The law of large numbers for
Markov chains (equation 3.17) tells us, that the elements of this vector correspond to the
average proport ion of times that the chain is in each of the states in the long run. If we
instead iterate v < - P v (equation 3.20), it results in the dominant right eigenvector of P ,
which, i n the probabil i ty semi-ring, is the m i n i m u m distance towards the final states (or
the super-final state).

The Perron theorem is only true for regular chains, but as explained i n section 3.2, we
can make every t r i m W F S A ergodic by connecting the final states / £ F to the in i t i a l
state I12. Tha t means we modify one column i n the t ransi t ion matr ix : i f j is the in i t i a l
state, then pij is set to the final-probability p[i] of state i. A s a second step, we need to
guarantee, that the resulting ergodic W F S A is also regu la r 1 3 . We can make the W F S A
regular by interpolating P wi th the identity matr ix (equation 3.12). Alternat ively, we can
modify the i terat ion to v < - P v + A : v 1 4 . The parameter k is set to a smal l value (0.1) to
not slow down the convergence too much. This a lgori thm is very efficient i n practice, it
generally converges wi th in several tens of iterations.

A t the end, we have a vector v w i th vj = 1, and a scalar c > 0, such that

c v = P v . (3.22)

The vector v contains the dis t r ibut ion of average state occupancies and is used as the
potential function V(q) : Q —> K — 0 for the re-weighting operation (equation 3.2). Th is
means we compute a modified transi t ion mat r ix P * , by lett ing

Pij = PijVi/vj, (3.23)

and transforming the final probabilities by p* = piVj/vi, where vj is the potential of the
in i t i a l state. Us ing the re-weighting wi th the potential function V guarantees, that the
resulting W F S A is equivalent to the original one.

If we apply the left Perron eigenvector as potential function i n the re-weighting operation
(equation 3.2), it results i n pushing the weight towards the final state, or more precisely in
making the W F S A input stochastic. Tha t means, either a l l incoming arcs sum to one, i f
the to ta l weight is one, or more generally they sum to the same quanti ty for a l l states. If
we use the right Perron eigenvector as potential function i n the re-weighting, it results in

n A n y normalization will lead to the same eigenvector. Actually, in the implementation, we normalize to
unit length, as in the matrix power algorithm.

1 2 This acts like an arc from the super-final state to the initial state with probability one. It will not
change an already stochastic WFSA, since all components of the resulting eigenvector will be equal.

1 3 That is, we want index of cyclicity one. This is, for example, necessary for linear WFSAs (in figure 3.3),
which have several multiple eigenvalues with the same magnitude but different complex phases.

1 4 More exact would be (1 — k) P v + k v, but it doesn't affect the result.

38

pushing the weights towards the in i t i a l state and i n making the W F S A output stochastic -
i.e. a l l outgoing arcs sum to one (or more generally to the same quantity).

We show this by wr i t ing one element of equation 3.22 as

cvi = ^pijVj, (3.24)
3

by d iv id ing by Vi, it easily follows that c = ^2jP*j- This means each row of the modified
matr ix P * sums to c (modulus of the eigenvalue of the Perron vector). In the classical weight
pushing algori thm [Mohri and Riley(2001)], we assume a stochastic W F S A (equation 2.6),
so that after weight pushing, a l l outgoing transitions of a state "sum to" 1 i n the given
semi-ring. Our solution is to use a modified pushing operation, which results in a W F S A ,
for which the transitions out of a l l states (and the final probabil i ty p) "sum to" the same
quantity c:

VqeQA 0 Me] ®p[q]=c. (3.25)
\eeE[q\)

This means that the left-over weight, which is usually added to the in i t i a l or final states
and which can cause the standard algori thm to fail, is now uniformly "smeared" a l l over
the W F S A .

A l g o r i t h m 1 gives the pseudo-code of the alternative weight pushing a l g o r i t h m 1 5 . The
main program consists of the flat in i t ia l iza t ion of the vector v, then we iterate unt i l conver
gence {Iterate) and finally apply the reweighting operation (ModifyFst). The heart of the
algori thm is the function Propagate, which is bo th used i n the test for stochasticity (TestAc-
curacy) and in the main iterative algori thm (Iterate). The only difference is, whether the
outgoing arcs are reweighted wi th the potential function (prob- v[d]/v[s]) or the propagated
probabil i ty mass is summed from the destination states of the outgoing arcs (prob • v[d]).
Notice also the symmetry of pushing towards the final or towards the in i t i a l state - we
only have to switch the role of source and destination s ta te 1 6 . The stopping cri terion in
TestAccuracy is the ratio between the m a x i m u m and m i n i m u m arc sum - which should
converge to one.

Our algori thm is i n practice an order of magnitude faster than the more generic al
gor i thm for conventional weight-pushing [Mohri and Riley(2001)], when applied to cyclic
W F S A s . The speed of the algori thm is determined by the convergence of the matr ix power
method, i terating by repeatedly mul t ip ly ing the state dis t r ibut ion vector w i th the (sparse)
transi t ion matr ix , i.e. going through al l states in a pre-defined order every t ime. The con
vergence of the mat r ix power method depends on the ratio between the biggest p (P) and
the second biggest eigenvalue.

Mohr i ' s a lgori thm (3.2) is similar to a backward (Viterbi-l ike) a lgori thm on the given
semi-ring, using the new relaxation condit ion (equation 3.8) to propagate the probabil i ty
mass and to update the queue. A state is put to the queue, i f the accumulated probabil i ty
mass has changed more than the delta parameter since the last visi t . The queue is processed
according to the queue policy un t i l it is empty. For the queue method, the proofs for
convergence of the mat r ix power algori thm can no longer be applied.

1 5 The algorithm assumes that the weights were stored in the log-semi-ring.
1 6 We check if the log-ratio is below the threshold. We do not test at each iteration, to save the time of

re-weighting the arcs.

39

A l g o r i t h m 1 Pseudo-code of the alternative weight pushing algorithm.

void Main () {
vector<double , num_states> v = 1 / sqr t (num_states) / / f l a t i n i t
for (a l l s t a t e s s) :

for (a l l arcs a rc l e a v i n g s) :
prob = exp(—arc. weight) / / conver t to p r o b a b i l i t y semi —ring
p r e d e c e s s o r s [t] . a d d (tuple(s, prob))

f i n a l = exp(— f i n a l w e i g h t (s))
p r edeces so r s [i n i t i a l _ s t a t e] . add(tuple(s, f i n a l)) / / force e r g o d i c i t y

I t e r a t e (backwards , d e l t a) / / u n t i l s t a t i o n a r y d i s t r i b u t i o n found
Mod i fyFs t (backwards) / / weight pushing o p e r a t i o n

}

double Test Accuracy (bool backwards) { / / tes t s t o c h a s t i c i t y
vector<double , num_states> s tate_sums =

Propaga te (backwards , do_ rewe igh t ing)
return l og (max (s ta te_sums) / min (s ta te_sums))

}

void I t e r a t e (bool backwards , d e l t a) {
for (maximal 2000 i t e r a t i o n s) :

vector<double , num_states> new_v =
Propagate (backwards , n o t . r e w e i g h t i n g)

new_v += 0.1 * v / / regula r , us ing power method (M + 0.1*1)
v = new_v / sqr t (new_v dot new_v) / / r e n o r m a l i z e wi th L2—norm
if (t est _i t e ra t i o n and Test Accuracy () <= d e l t a) :

return / / has converged
output wa rn ing : D i d not converge!

void Mod i fyFs t (bool backwards) { / / weight pushing o p e r a t i o n
v = — log(v) / / conver t to log — p r o b a b i l i t y
for (a l l s t a t e s s) :

for (a l l arcs a rc l e a v i n g s) :
if (backwards)

a r c . weight = a r c . weight + (v [t] — v [s]) / / ou tgo ing n o r m a l i z a t i o n
else // forwards

a r c . weight = a r c . weight + (v [s] — v [t]) / / incoming n o r m a l i z a t i o n
if (backwards)

f i n a l w e i g h t (s) = f i n a l w e i g h t (s) + (v [i n i t i a l _ s t a t e] — v [s])
else

f i n a l w e i g h t (s) = f i n a l w e i g h t (s) + (v [s] — v [i n i t i a l _ s t a t e])
}

vector<double> Propagate (bool backwards , bool r e w e i g h t i n g) {
for (a l l s t a t e s d) :

for (a l l (s t a t e s, prob) i n p redeces so r s [d]) :
if (backwards) {

if (r e w e i g h t i n g)
s tate_sums [s] += prob * v[d] / v [s]

else
state_sums [s] += prob * v[d] / / v_j = sum_i v _ i * p _j i .
/ / summing i n the source s ta te —> d i s t a n c e to the f i n a l . s t a t e
/ / pushing the weights towards the i n i t i a l s ta te

} else { / / forwards
if (r e w e i g h t i n g)

s tate_sums [d] += prob * v [s] / v[d]
else

state_sums [d] += prob * v [s] / / v _ i = sum_j v_j * p _j i
/ / summing i n d e s t i n a t i o n s ta te —> d i s t ance to i n i t i a l s ta te
/ / pushing the weights towards the f i n a l . s t a t e

}
return s tate_sums

}

40

Apar t from that, bo th algorithms use different in i t i a l distr ibutions. Mohr i ' s a lgori thm
starts from the in i t i a l state, the new algori thm uses a uniform or a random vector as in i t i a l
state dis t r ibut ion. Also , a different test for convergence is used. Mohr i ' s a lgori thm uses the
delta relaxation and the new algori thm checks the m i n i m u m and m a x i m u m over a l l states
of the sum of the outgoing weights of a state. However, bo th differences can be considered
minor.

One issue wi th the alternative weight pushing algori thm is that it was derived under
the assumption, that a l l arcs i n the W F S T are of the same type. The transi t ion matr ix
Pij treats a l l arcs i n the same way. The L M transducer, which accepts/emits sequences of
words, actually consists of arcs w i th a word label, and arcs representing the back-off arcs,
that don't accept any symbol . Therefore, there are mult iple paths through the model w i th
different number of arcs to accept the same word sequence. We can see this in analogy to
composite H M M s , which have emit t ing and non-emitt ing arcs, which are computed i n two
separate steps in the fo rward /Vi te rb i algori thm.

Another related open problem to derive a weight pushing algorithm, i.e. a shortest
distance algori thm i n the log-semi-ring, which respects the special semantics of failure arcs.
Under this interpretation, the back-off L M would be correctly normalized and the total
weight of the transducer would be one. Due to the incorrect interpretation of back-off
L M (section 2.5.1), we are pushing weights that are greater than one. In case a state has
a single outgoing arc, this results i n a negative arc weight (when represented as negated
log-probabili ty), which can cause problems for several graph algorithms and their common
implementations.

3.4 Experimental validation

We measure the effect of the new weight pushing algori thm by constructing a full recognition
network (HCLG, section 2.4.1). In addi t ion to the forward network, we construct a back
ward network (section 5.2) as the composit ion of the reversed components. The language
model is reversed according to chapter 4, but the resulting transducer is not yet stochastic.
We want to emphasize, that this is not just a reversed L M W F S T . A s w i l l be explained in
chapter 4 W F S T reversal is not feasible to L M W F S T , but we have to use the algori thm
explained in the same chapter. The outcome of the L M reversal is not yet normalized, thus
we want to apply weight pushing. The generic weight pushing algori thm (figure 3.2) is not
applicable i n this case, therefore, we apply the new weight pushing algori thm described in
this chapter. We measure the decoding performance of the backward network wi th and
without applying the new weight pushing algori thm to the reversed language model before
the composit ion of HCLG. The experiment was done using K a l d i ' s Switchboard recipe
(egs/swbd/s5c/tri3/). We report the performance on the Eval2000 data set , using a
speaker-independent tri-phone G M M model on L D A transformed M F C C features and a
language model trained on Switchboard. We test on two different recognition networks of
different sizes (using a bi-gram and t r i -gram L M) . The real-time-factor was measured on a
single core of a Intel(R) C o r e (T M) i5-2500 C P U at 3 .30GHz wi th 8 G B of memory.

A s seen from figures 3.4, the applicat ion of the weight pushing is crucial for the perfor
mance - the un-pushed backward language model performs much worse. We also compare
to the performance of the forward graph. Since a l l components, including the language

1 7 The decoding parameters are set to: rescore-acoustic-score 13.0, word insertion penalty 0.0, acoustic
scale 1/12, max-active 7000, lattice-beam 6.0.

41

o

E
ID

o

E

0

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

34

HCLG forward

HCLG backward push G

HCLG backward

39 40

word error rate

i i i

HCLG forward

HCLG backward push G -

HCLG backward

i

36 38 40

word error rate
42 44 46

Figure 3.4: Decoding performance of backward decoding network reported on the Eval2000 data
set with a GMM model. We tested it using a bi-gram LM (top) and a tri-gram LM (bottom).
Shown is the relation between word error rate and real-time-factor. Better performance is indicated
by curves closer to the lower left corner. We compare the performance of the backward decoding
network (HCLG backward) with and without the application of the new weight pushing algorithm.
For comparison, we also show the performance of the forward decoding network (HCLG forward).
In this case, no weight pushing is necessary.

model, are stochastic (except for the issues wi th back-off arcs mentioned above) and thus
should have opt imal performance, it is not necessary to apply weight pushing. A s explained
in chapter 5, the performance of the forward and backward graphs is not necessarily the
same, depending e.g. on properties of language and domain (here conversational Engl ish) .
However, the comparison indicates, that the weight pushing results i n a network, that is
not far from the opt imal performance.

42

3.5 Conclusions

To achieve an opt imal pruning behavior, it is desirable that the given W F S T is stochastic.
If the W F S T is stochastic or has a similar op t imal weight dis t r ibut ion, we showed that it is
necessary to perform weight pushing. G iven the theoretical background for weight pushing,
we showed why the standard algori thm is either inefficient for the type of models used
or fails to converge at a l l . B y explaining the connection between non-negative matrices
and ergodic Markov chains, we motivated an alternative weight pushing algori thm, that
always converges and is much more efficient for the given task of opt imiz ing language
model transducers.

43

Chapter 4

Exact reversal of ARPA back-off
language models

We present details about how to exactly reverse A R P A back-off language models (L M) . For
the purpose of searching for the best path through composed probabil ist ic models forwards
and backwards in t ime and to combine these searches, it is desirable to have a backwards
language model, that assigns exactly the same scores as the forward language model, while
at the same t ime it has the same properties of being deterministic, stochastic and of min ima l
size to guarantee an opt imal search. We show an approach to construct such a backwards
L M , which is va l id when using failure arcs and also when using epsilon arcs to represent the
back-off structure as weighted finite state acceptor. This means that the weight of a path
in the backward L M W F S A is equal to the corresponding forward L M W F S A , independent
of the origin of the weights, i.e. whether estimated as interpolated, converted interpolated
or back-off L M . We test the reversal a lgori thm on language models of different sizes and
on different corpora and we compare it to t ra ining a language model on the t ime reversed
t ra ining texts.

4.1 Motivation: forwards and backwards search

The application that we had in m i n d while investigating into this k ind of models was the
search for the best path through a composed probabil ist ic model . Th is can be for example
the decoding of the most probable sequence of words i n large vocabulary automatic speech
recognition (L V C S R) . However, the reversed language models presented here can also be
used i n many other tasks as e.g. i n finding the most probable sentence i n statist ical machine
translation. G iven the complexity of most of the tasks, it is necessary to use heuristic
pruning techniques, which introduce search errors. A s w i l l be explained in more detail in
section 5.1, the search errors of searching forwards and backwards are mutual ly independent.
Therefore, backward search has the potential to find the best path, even i f it was pruned
by the forward search.

B o t h models, forward and backward, should be equally powerful, i.e. have roughly the
same accuracy and run-time requirements, and have similar structure, size and level of
determinism to guarantee an opt imal search. If bo th models, forward and backward, assign
exactly the same probabilities to a hypothesis, it has the advantage, that the results of
forward and backward decoding can be compared or combined (section 5.1). To be able to
compare and combine the scores of par t ia l results (paths), also the model structure (the

44

distr ibut ion of weights along paths) should be s imilar i n the forward and backward model.
Our assumption is that we are given a composed forward graph HCLGfwd (section 2.4.1),

where one of the components is an L M acceptor G (section 2.5). The task is to obtain a
backward graph HCLGbwd that fulfills a l l of the above mentioned requirements. A s w i l l be
explained i n more detai l i n section 5.2, the solution is to reverse each component separately
and then construct the backward graph HCLG^d i n analogy to the forward graph. The
t r iv ia l solution to apply W F S T reversal is not sufficient, since the resulting graph would
not have a similar level of determinism and not have a similar dis t r ibut ion of weights as
the forward graph, i.e. it would show sub-optimal behavior when used in a pruned search.
A s we w i l l see i n this chapter, especially the (reversed) L M component would introduce a
great degree of local ambiguity - the word context is delayed i n the reversed model (section
4.2) and might result in falsely pruned paths.

To reverse the L M acceptor G turns out to be a complex task - this is the topic dealt
w i th i n this chapter. The task is to construct an L M acceptor Gbwd, that assigns exactly
the same scores as Gfwd (to the reversed utterances). A g a i n , a t r iv i a l solution is to apply
W F S A reversal to Gfwd (followed by epsilon removal, determinization, and weight pushing
in the log semi-ring - as explained i n section 3.1, this is needed to achieve opt imal pruning
behavior and makes the W F S A stochastic). However, for L M s of higher order than b i -
gram, this approach fails. A s explained i n section 4.2, this is because of the delayed word
context and different backing-off states. Addi t iona l ly , as already explained in section 3.1,
the conventional weight pushing cannot be applied to W F S A s resulting from L M s , but we
should use the alternative weight pushing (section 3.3). Thus, to achieve opt imal search
behavior, we need to construct an L M acceptor Gbwd w i th similar structure as the forward
acceptor Gfwd that assigns exactly the same scores to the reversed utterances, and that also
makes it possible to compare par t ia l word sequences of forward and backward decoding.

Another t r i v i a l solution would be to t ra in a new model on the reversed t raining texts
(e.g. [Tang and Cristo(2008)]) - given that those are s t i l l available. Th is does however not
result in exactly the same scores for the same utterances, since there is usually no such
constraint applied i n the L M es t imat ion 1 . Since we wanted exactly the same scores, we
d id not follow this approach further. Also , it would make our approach inconvenient to
use in cases where the original L M text is no longer available. To determine the impact of
those score differences, we compare an exactly reversed tr i -gram model to a t r i -gram model
trained on the reversed t ra ining texts. We test the L M reversal a lgori thm on language
models of different sizes.

4.2 Construction of an exactly reversed language model

In section 2.5, we explained how N-gram back-off language models are represented as
weighted finite state automata and stored in the A R P A format. In this section, we show
how to construct a backward L M , that has the same properties as the forward L M - i.e. it
is deterministic (except for the e-arcs), has the same size and a similar structure. The
algori thm presented here is va l id for failure arcs and for epsilon arcs.

1 Based on the idea that Kneser-Ney models apply a constraint for the marginal distributions to estimate
the probabilities in the L M , we assume that it is possible to formulate another type of constraint, that
the L M probabilities should be estimated in such a way, that when estimated on reversed training texts
and applying the exact reversal algorithm presented here, it should give the same probabilities as when
estimating the normal forward L M .

45

The W F S A corresponding to the forward L M accepts a sequence of words and accu
mulates the weights along the path - see figure 4.1. If the probabi l i ty semi-ring is used,
the path weight is the product of the ind iv idua l probabilit ies. If logari thmic probabilit ies
are used, the path weight is the sum of the ind iv idua l scores. Two W F S A are equal, i f
they accept the same set of sequences wi th the same path weights. Thus, it is possible
to distribute the weights differently along the path, as long as the to ta l product (or sum
for logari thmic weights) stays the same for a l l paths. W h e n we directly apply F S A rever
sal, which basically corresponds to swapping the source and destination states of the arcs,
the resulting structure would be highly non-deterministic. In the example (figure 4.1), we
would start backwards from the final state. A l l incoming arcs into the final state (only one
example is shown) have the label </s>. Thus, we would have to apply the t r i -gram proba
bi l i ty P(</s> |c, d) after only having seen only one symbol of the t r i -gram (</s>). However,
only after two more symbols d, c have been seen, the destination state can be determined
unambiguously. For that reason, it would be logical to delay the application of the weight
(probabili ty), un t i l a sufficient number of symbols have been consumed to unambiguously
determine the destination state. For a t r i -gram L M , this means delaying the weights by
two steps. Figure 4.2 shows the corresponding path i n the backward L M .

<s>:l/^a:P(a\<s>)/^b:P(b\<s>a)/~yz : P(c\a,b)/~^d : P(d\b,c)s~y£/g>:P(</s>\c,<)/fT\
> (<s>) " * (< s >7 ~ * (ab) > (be) > (cd) > \d</s>)

Figure 4.1: Example of a forward path through a tri-gram language model - every state cor
responds to a history of the two last symbols consumed. The model accepts the sequence a, b, c, d
(input symbols) and the path weight is the product of the individual probabilities. For simplicity,
sentence-start and sentence-end are treated here as ordinary symbols. Only one path is shown, but
the reader has to keep in mind, that there e.g. multiply arcs entering the final state, all with the
same label.

e:P(o|<s>)
75ta<s>i >\<8>l

</s>AS~\ d . i /^^c:P(</s>|c,d) /^6:P(d|6,c) /^a:P(c|a,6) /^<s>:P(6|<s>a)-P(a|<s>) />~\
>(</s>p^-»</s>rf >(dc ——>(cb) ——•(ba ><s>

Figure 4.2: The backward path corresponding to the path in figure 4-1- Additionally to reversing
the path, the weights/probabilities have been delayed by two steps. Therefore, two arcs with prob
ability one have been inserted at the beginning. To compensate, we could add two e-arcs at the
end (as depicted in dashed), where the last arc corresponds to backing-off to a history-less state
at the sentence beginning (now end). Instead of introducing back-off arcs at the end of the sen
tence, we can collapse the probabilities of all the lower-order back-offs onto one arc, i.e. we use
P(b\<s>a) • P(a\<s>) • P(<s>) (we assumed P(<s>) = 1 before). This is well in line with the com
mon WFST LM implementation, which assumes, that the state reached by an N-gram containing
the sentence-end symbol is a final state.

W h e n certain N-grams do not have sufficient coverage in the t ra ining corpus and are
approximated by backing-off to lower order N-grams (see figure 4.3), the sequence of the
weights in the backward L M is again exactly reversed as i n the forward L M , and the same

46

Figure 4.3: The same example of a forward path as in figure 4-1, but with backing-off. The thick
arcs correspond to the path in fig. 4-1 and further arcs have been added to illustrate the structure of
the back-off LM. Since the N-gram bed was not seen sufficiently often, it is approximated by backing-
off to state c with back-off weight a(b, c) and then using the bi-gram cd with probability P(d\c). The
failure-arc (symbolized by tp) doesn't consume any symbol, but this arc is chosen for all symbols,
that have no outgoing arc out of the same state ('default' clause). For the non-deterministic WFSA
approximation, we would use the symbol e instead and not consume a symbol either. The state 0
corresponds to the history-less back-off state when backing-off to uni-grams.

Figure 4.4: The backward structure corresponding to figure 4-3. The thick arcs correspond to the
path in fig. and all solid arcs are reversed arcs from fig. 4-3- Dashed arcs have been added to
illustrate further structure of the backward model. Similar as in figure 4.2, the weights have been
delayed by two steps. Compared to the forward structure in figure 4-3, the sequence of weights is
exactly reversed. The probability on an arc between two particular states is the same in the forward
and backward model. I.e. compare the forward arcs be — c — cd in fig. 4-3 to the backwards arcs
dc — c — cb in this figure (cb corresponds to be). However, since all labels are off by two states in the
backward model, the back-off probability a(b,c) is now actually applied on a bi-gram arc with a label
(b) and the bi-gram probability P(d\c) is applied on a back-off arc with tp. Since all backward-tri-
grams ending in cb (like deb, heb) share b as last label, it is logical to first back-off from the history
(dc, he) to the common history c and then apply the common label b. Since the reverse order of the
weights has been preserved, the bi-gram probabilities serve now as back-off weights, and the former
back-off weights serve as bi-gram probabilities. The same holds for the history-less state 0 - the
uni-gram back-off weight a(l) and the uni-gram probability P{c) have switched their role.

47

delay of the weights is applied to make the model determinis t ic 2 . However, the sequence of
the labels for back-off arcs is changed - back-off weights and lower-order N-grams change
their role. The reason for that is we always have to back-off to a common history before
consuming the next label - so the failure-arc (symbolized by ip) in the backward model takes
the lower-order N-g ram probabil i ty (from the forward model) and the label-arc takes the
former back-off weight. Figure 4.4 shows this i n the construction of a backward back-off
L M from hgure 4.3.

Figure 4.4 shows that it is possible to construct a backward L M , that has the same size
and structure as the forward L M and is deterministic. F r o m the construction, we observe,
that a forward L M can be transformed into a backward L M by a series of relatively simple
steps: Since the sequence of labels is processed i n reversed order, the names of a l l states and
N-grams are reversed (abc becomes cba). The N-grams of the highest order do not have
back-off weights, and thus they stay unchanged (arcs appear s imilar in the forward and
backward models). However, for a l l lower-order N-grams, the role of the back-off weight
and the N-g ram probabil i ty changes. W h e n represented i n the A R P A format (hgure 2.12),
the transformation becomes even simpler: For a l l lower-order N-grams, the whole line is
reversed, and for the highest-order N-gram, only the N-g ram is reversed. E . g . for a t r i -gram
L M , a bi-gram entry P(b\a) ab a(a,b) becomes a(a,b) ba P(b\a) and a t r i -gram entry
P(c\a,b) abc becomes P(c\a,b) cba. The symbols for sentence begin and sentence end
have to be exchanged, and special care has to be taken for N-grams starting and ending
a sentence. For a l l N-grams ending a sentence, we mul t ip ly a l l lower-order probabilities
(e.g. for N-gram ba</s>we use P(b\a,<s>) • P(a|<s>), times P(<s>) i f not one).

B y introducing the short-hand notat ion P(ABCD) = P(D\A, B,C), we can write the
rules for a four-gram L M in the form of equations:

P(A) = a(A)

a{A) = P{A)
P(BA) = a(AB)

a(BA) = P(AB)

P(CBA) = a(ABC)

a(CBA) = P(ABC)

P(DCBA) = P(DCBA)

(4.1)

4.3 The treatment of missing N-grams

Figure 4.5 shows the L M reversal rules (equation 4.1) applied to a t r i -gram back-off A R P A
L M . W h i l e the rules are rather simple, an addi t ional complexity arises, when representing
A R P A models (back-off N-gram L M s in general) as W F S A s . If there is an N-g ram entry
for abed i n the A R P A , the resulting W F S A needs the back-off states bed, cd and d. Due to
L M pruning, and due to other reasons that we are going to explain i n this section, for some
of the N-grams abed defined i n the A R P A hie, there is no corresponding tr i -gram entry bed
or bi-gram entry cd, i.e. we are not given the probali ty a(bcd) of backing-off abed —>• bed,

2 The model is only truly deterministic, if we use failure arcs, but the construction presented here is also
valid for e-arcs.

48

\data\
ngram 1=4
ngram 2=2
ngram 3=2

Figure 4.5: Upper part: Forward WFSA for the tri-gram back-off ARPA LM (repeated from
figure 2.12). We apply the rules from equation 4-1 (and swap sentence begin/end symbols) to obtain
the backward WFSA (lower part). We see that exactly the same probabilities are used between the
states (e.g. a —> ab in upper model and a —> ba in lower model) and that back-off weights in the
upper model are now on word arcs in the lower model. As already said, an alternative interpretation
of a tri-gram transition ab —> be is to go to an imaginary state abc and immediately backing off to
state be. Therefore, the final state in the upper part is the tri-gram state ab</s>. However, since
this is a final state, there is no way to back-off from it to the state b</s>. Moreover, in the forward
ARPA definition (upper left), the N-gram corresponding to the state b</s> is missing.

neither P(d\b,c). N-grams that are needed for the construction of the W F S A , but not
defined in the A R P A , we cal l missing N-grams.

Dur ing the construction of the recognition graph from the forward L M , missing back-off
states are usually added automatically. For example, in the t r i -gram L M in the upper part
of figure 4.5, the t r i -gram <s>ab leads into the state ab. Let ' s imagine the corresponding
back-off bi-gram ab is not given i n the A R P A file (e.g. due to pruning): In this case, during
the construction of the recognition graph, the state ab needs to be automatical ly created,
as it is the target of the t r i -gram. Since there is no bi-gram probabil i ty for ab (P(b\a) = 0.0,
and no successor bi-grams), we should immediately back-off to state b. Thus, the bi-gram
ab is added wi th back-off weight a(a,b) = 1.0 (zero in log-domain). However, it should
not be possible to reach the newly created state ab from o, since the N-g ram ab is missing
(P(b\a) = 0.0 or minus infinity i n log-domain).

In terms of the W F S A representation of the L M (right part of figure 4.5), this would
mean, that there would be no l ink between a and ab, and the l ink between ab and b would
be added wi th zero cost. In the reversed L M , where forward probabil i ty and back-off weight
change their role, this does lead to the si tuation, that we are able to reach ba from b w i th
a(a, b) = 1.0, but we are not able to back-off from ba to a, since this corresponds to a path

49

that was not present in the forward model (P(b\a) = 0.0). If we would make the missing
N-grams explicit i n the A R P A file, i n the forward A R P A file, the missing N-gram would
result in an entry ' — i n f ab 0.0', and i n the backward A R P A file, this results i n entries of
the type '0.0 ba — i n f . This might seem awkward, because we never have infinte log-back
off weights i n the forward L M , but it is necessary to make the forward and backward L M s
match exactly.

A n example of a missing N-gram is in figure 4.5: For the entry ab</s>, the back-off
state b</s> is missing i n the A R P A . It would be automatical ly added when constructing
the W F S A , but here it is not necessary, since after observing the sentence-end symbol , no
other N-gram can fol low 3 . Even i f we don't need it i n the forward model, it s t i l l has an
effect on the backward model. To make the missing N-g ram explicit i n the forward model
(upper part), we would add it i n such a way, that we can back-off to the missing state b</s>
and from it to the final state </s>. However, b</s> should not be reachable through the
missing N-g ram b —> b</s>. Accord ing to the rule, we create '—inf b</s> 0.0' i n the
forward A R P A . In the reverse model (lower part) , this corresponds to being able to reach
the missing state by the N-gram <s>—><s>b, but not being able to back-off from <s>b to
the lower order state 6, since this corresponds to a path that was not present in the forward
model. Th is results in adding '0.0 </s> b — i n f in the backward A R P A and exactly
corresponds to the state <s>b i n figure 4.5, which can be reached wi th probabil i ty one, but
there can be no back-off arc leaving this state (indicated as dashed arc w i t h infinite cost).
To summarize, we need to add the state <s>b in the reverse model, but the back-off l ink
<s>b —> b is not allowed to have an equivalent backward model.

Miss ing N-grams result from a complex interplay of the type of back-off dis t r ibut ion,
cut-off frequencies and L M pruning (e.g. based on entropy [Stolcke(19! '<)]). A s we have
already explained, the first type of N-grams that are missing i n the A R P A file are back
off N-grams that end a sentence (e.g. b</s>). Otherwise, i f we don't apply pruning, we
would expect that the presence of a higher-order N-gram implies the presence of the lower-
order N-gram (e.g. w i t h a shortened history), since the absolute observation count of the
lower-order N-gram should be equal or higher than the count of the higher-order N-gram.
We encounter missing N-grams, when we use different cut-off frequencies (parameter k in
equation 2.13) for different N-g ram orders. For example, when we use S R I L M ' s default
setting &4 = 1, &3 = fa = fci = 2 for four-gram L M s , we get missing tri-grams for a l l
four-grams, whose back-off t r i -gram was only observed once.

A s we w i l l see now, we also get missing N-grams, if we use lower-order distributions,
which are not based on counts. The dis t r ibut ion for the highest-order N-grams P'(wi\hi)
(equations 2.13, 2.16) is usually based on the counts C(hi,Wi). W h e n back-off models
were introduced [Katz(19i ')], also the lower-order back-off distributions Piower were based
on counts. However, when we have to back-off, we should make use of the fact that this
particular word is unseen in the given context. We would expect a different dis t r ibut ion
of words, than when we were not given that information, i.e. not just expect any frequent
word. In other words, we should use a different type of dis t r ibut ion for Piower{wi\hi) than
for P'(wi\hi). Fol lowing that intui t ion, Kneser-Ney-type L M s [Kneser and Ney(1995)] use
a back-off dis t r ibut ion, where the probabil i ty of a word, unseen i n a certain context, is
proport ional to the number of possible predecessor words types that can occur before that
context:

3 B y convention, a state reached by an N-gram containing the sentence-end symbol is a final state.

50

Pbackoff(Wi\Wi-n+l • • • Wi-l)
Wi—n '. C(wi—n ...Wi)>k\

(4.2)
J2Wi \Wi-n •• C(Wi >i-n ...Wi)>k\'

A s a consequence, we can expect words or phrases, that appear frequently, but only in
very few different contexts, to have a low probabil i ty in the back-off model. For example,
we would not expect the word "Francisco" to appear i n many other contexts than together
w i th "San Francisco", despite the fact that it is a frequent word. For that reason, we often
find higher-order N-grams i n the L M , such as "San Francisco area", for which the back-off
N-gram "Francisco area" is missing. W h e n constructing the backward L M , we w i l l add the
missing N-g ram "area Francisco" w i t h probabil i ty one and infinite back-off weight. This
means, that after observing "area Francisco", we are only able to continue w i t h "San" and
there can be no back-off to "Francisco", which would allow to continue wi th another word.

In fact, when experimenting wi th L M s trained on sentences from the W a l l Street Jour
nal corpus [Paul and Baker(1992)], we observed that any common mult i -word phrase can
result i n missing lower-order N-grams. A n N-gram starting wi th in a mul t i -word phrase has
very few different left contexts, which causes it to have low back-off probabili ty. If the right
context of that N-gram is either almost completely undetermined or completely determined
(e.g. sentence end), a l l N-grams that would continue the phrase fall below the cut-off fre
quency and are thus not present in the L M . Typical ly , a mul t i -word phrase like "on behalf
of" or "New Y o r k C i t y " is followed by a word that introduces lot 's of ambiguity - e.g. "on
behalf of the". If no N-g ram "behalf of the X " is above the cut-off frequency, then also the
back-off N-g ram "behalf of the" is missing in the L M , since the probabil i ty of seeing it in a
new context other than "on" is extremely low. A s already mentioned, also for a l l N-grams
ending a sentence, there is no succeeding N-gram, which is a similar si tuation. It is quite
obvious, that L M pruning (e.g. based on entropy [Stolcke(19i i)]) w i l l increase the number
of missing N-grams. Accord ing to the same principle, N-grams wi th a low probabil i ty in
the back-off dis tr ibut ion, and no successor N-grams (due to pruning) are missing as well.

4.4 Proof: Exact reversal of the language model

We have verified that our "reversed" A R P A L M , and also the corresponding W F S T assigns
the same score to a reversed sentence that our original A R P A L M assigned to the original
sentence. In this section, we sketch a proof for the correctness of the algori thm for reversing
the L M , as presented i n section 4.2. The steps are val id for back-off and interpolated L M s .
We do this by introducing a series of simple transformations, that each guarantee the
equivalence of the L M W F S A (the same sequence of symbols gets the same score):

1. Mod i fy the A R P A model to make the back-off costs zero while maintaining the
sentence-level scores the same,

2. Convert to "max-ent" form, reverse i n the "max-ent" form, which is easy,

3. Convert back to A R P A form [still not normalized per word],

4. Convert to a W F S A , and apply the new weight pushing.

Input to the algori thm is a language model (L M) i n A R P A format 4 , which contains
entries in the form 'p(ABC) ABC a(ABC)\ and its representation as a W F S A (top of

4 A R P A stores log-probabilities, but for simplicity, we show probabilities here.

51

file:///Wi-n

figure 4.5). Here, ABC stands for the three words A,B,C, p is the N-gram weight and a is
the back-off weight. We use the notat ion p(ABC) meaning P{C\A, B). The result of these
steps is a reverse L M that assigns exactly the same scores as the forward L M .

First step: Pushing the back-off costs

(aa)

Figure 4.6: WFSA of a toy tri-gram LM with just three words A, B, C, focusing on the N-grams
that contain AB. On the left, there are states corresponding to histories ending in A, in the center
are N-grams that start with A and on the right are N-grams starting in B. For a vocabulary V = 3,
every state (except for the zero-gram 0) has four incoming and four outgoing arcs. Conceptually, we
see a tri-gram arc AB —> BC as two arcs AB —> ABC with p(ABC) and backing-off ABC —> BC
with a(ABC) = 1.0. In this interpretation, all arcs with word labels go up one level in the hierarchy,
and all back-off arcs go down one level in the hierarchy.

In the first step, we push the weights a() of back-off transitions. We do this using the
simple potential function defined in equation 3.4. Th is means, we mul t ip ly a fixed value k to
the weights of a l l incoming arcs into a part icular state q' and we divide the same value from
the weights of a l l arcs leaving that state. We do so start ing from the uni-gram-back-offs,
and then going upwards to the bi-gram-back-offs, and so on (the highest order back-offs
are 1.0 anyway). In figure 4.6, we show the relevant arcs for this operation: To push the
back-off weight a(A) from the arc A —>• 0, we divide a l l outgoing arcs of the state A by
a (A) (e.g. the arc A —> AB, thus we change p{AB)), and we mul t ip ly a l l incoming arcs of
A by a{A) (e.g. the arc BA —> A, thus we change a{BA)). Push ing the weights from all
uni-gram back-offs results i n a W F S A P ^ i :

pzl(A) = p(A)a(A) (4.3)

azl(A) = 1.0

Pzl(AB) = p(AB)/a(A)

azl(AB) = a(AB)a(B)

Pzl(ABC) = p(ABC)

52

We only write one equation for each type of arcs, i.e. from pz\(AB) = p(AB)/a(A), we
also know that pzi(CB) = p(CB)/a(C), and so on. W i t h our notation, we want to show
the whole W F S A for a l l possible N-gram orders. Therefore, we write also the tr i -gram
probabilities pz\(ABC), which are not affected by this step. If we would have a four-gram
L M , it is clear, that also pzi(ABCD) is not affected. If we would have a bi-gram L M , we
jo in the t r i -gram arc and the t r i -gram back-off arc into one arc, using a(AB) = 1.0:

Pzi,ugram(AB)=Pzl(AB)-azl(AB) = {p{AB)/a{A))-{a{AB)a{B))=p{AB)-a{B)/a{A),

and we would truncate our derivation, since we would already have an W F S A wi th back-off
weights one. For t r i -gram L M s , we apply now a second pushing step, where we push the
weight az\(AB) = a(AB)a(B) from the back-off arc AB —> B. F r o m figure 4.6, we see,
that we divide a l l outgoing arcs of the state AB by az\{AB), and we mul t ip ly a l l incoming
arcs of AB by the same quantity. F r o m figure 4.6, we see, that the arc AB —> ABC is
influenced by AB B and BC -> C , thus both az\(AB) and az\(BC) influence p(ABC).
This step results i n a W F S A Pz2:

Pz2(A)

az2(A)

Pz2(AB)

az2(AB)

Pz2{ABC)

az2(ABC)

p(A)a(A)

1.0
p(AB)a(AB) a(B)

a{A)

1.0
p(ABC)

a(AB) a(B)
a(ABC) a(BC) a(C)

For tri-grams, we use a(ABC) = 1.0 and truncate or derivation wi th :

pZ2,tn9ram(ABC)=Pz2(ABC)az2(ABC) = V { A B C

(\ l { B ^ { C) •
a(AB) a(B)

A clear pattern is observed. To summarize, for an N-gram of any order, by a series of iV — 1
weight pushing steps, we obtain a W F S A P 2 that has a l l back-off weights one (log zero):

pz(A) = p(A)a(A) (4 . 4)

p{AB)a{AB) a(B)
Pz(AB)

Pz(ABC)

a{A)

p(ABC) a(ABC) a(BC) a(C)

a(AB)a(B)

Second step: Convert ing to "max-ent" form

In a second step, we view the W F S A i n a mult ipl icat ive space, which is inspired by the
N-gram features i n a m a x i m u m entropy L M [Bcrgcr ct al.(1996)]. It models the probabil i ty
of an N-gram wi th the help of a set of feature functions fi(hi, Wi):

1
P\(wi\hi) = - " exp I V] \ i f i (h i , W i) I (4.5)

Zx(h,

53

Here, Z\(hi) is the normalizer to form a va l id dis t r ibut ion and Aj is the weight of the
feature function fi(hi,Wi), which i n the simplest case is a binary indicator function, which
can select part icular words and histories (N-grams), but also other types of features can be
used, asking about part-of-speech etc. Here, we assume an indicator function fi for each uni-
gram, bi-gram, t r i -gram and so on. W h e n evaluating the words ABC, a back-off L M would
only consider p(BC), i f there is no p(ABC) i n the L M , i n which case it has to back-off to
history B. O n the other hand, in interpolated L M s , p(ABC) is estimated by interpolating
the N-g ram features of a l l orders. Th is is similar i n a 'maxent-type' model, however, we
don't use additive interpolation, but mul t ip ly (exponential of sum) the feature contributions
of lower orders. Inspired by this, we transform our L M weights into a mult ipl icat ive space,
where a l l N-gram orders contribute:

Pmaxent
(ABC) = pf(ABC) • Pf(BC) • pf(C).

(4.6)

W i t h this step we actually leave the original semi-ring, but we use it just as an inter
mediate step for explanation. W h e n we use a back-off L M , we want to construct the model
so that:

Vz(ABC) Mpz(ABC)
l>mt,,ent(ABC) = { pz(BC) else ifpz(BC) . (4.7)

Pz(C) elsewhere

This can be achieved by setting:

Pf(C)

pf(BC)

Pf(ABC)

Pz(C)

Pz(BC)/Pz(C)

Pz(ABC)/Pz(BC)

(4.8)

The combined weight pushing from back-off arcs and conversion to "max-ent" type
results in:

Pf(A)

Pf(AB)

Pf(ABC)

pj(ABCD)

p(A)a(A)
pjAB) a(AB)

a(A)p(B)
p(ABC) a(ABC)

a(AB) p(BC)
p(ABCD) a(ABCD)

a(ABC)p(BCD)

(4.9)

The advantage is that this 'maxent-type' model can be easily reversed by:

pfr(ABC) = pf(CBA) (4.10)

A s already mentioned i n section 4.2, the sentence begin and end symbols have to be
switched in the A R P A file, and we assign the uni-gram probabil i ty of the former sentence
begin (usually it is ignored, but i n our case it won't be one) to the new sentence begin
(former sentence end). Also , as explained in section 4.3, we have to expl ic i t ly add the
missing back-off states before the reversal (e.g. i f back-off state AB is not present for an

54

entry XAB - see lower part of figure 4.5). In the following equations, we treat pb(AB) = 1.0
if the state AB was added as a missing back-off state.

The resulting reverse maxent-type model can be transformed back to the A R P A - t y p e :

Pb(C) = Pfr(C) (4.11)

pb(BC) = pfr(BC)-pfr(C)

Pb(ABC) = Pfr(ABC) • Pfr(BC) • pfr(C)

The resulting backward L M is then:

Pb(A) = p(A)a(A) (4.12)
p{AB)a{AB)p{A)

Pb(BA)

Pb(CBA)

pb(DCBA)

p(B)

p(ABC) a(ABC) p(AB) p(A)
p(BC)p(B)

p(ABCD) a(ABCD) p(ABC) p(AB) p(A)
p(BCD)p(BC)p(B)

So far, for the conversion to the "max-ent" form, we assumed a back-off L M (equations
4.7, 4.8). If the probabilit ies are represented as an interpolated L M , we want to construct
a model, so that:

r pz(ABC)+pz(BC)+pz(C) iiPz(ABC)

Pmaxent,int
(ABC) = { pz(BC)+pz(C) else i f P z (B C) . (4.13)

I Pz(C) elsewhere
This can be achieved by setting:

Pm(C) = Pz(C) (4.14)

pz(BC)+pz(C) Pm(BC)

pm(ABC)

Pz(C)
pz(ABC)+Pz(BC)+Pz(C)

pz(BC)+pz(C)

Also here, the model can be easily reversed by:

pmr(ABC)=pm(CBA) (4.15)

We can convert the max-ent model for interpolated L M s back wi th :

Pb(C) = Pmr{C) (4.16)

Pb(BC)
— Pmr

(BC)
' Pmr

(C)
Pmr

(C)
Pb(ABC) — Pmr (ABC) ' Pmr (BC) Pmr (BC) ' Pmr (C)

Pb(XABC) = pmr(XABC) • pmr(ABC) - pmr(ABC) • pmr(BC) • pmr(C)
Here, we show also the equation resulting for four-grams, to indicate continuation of

the series. In the further steps, we only continue wi th the equations for back-off L M s , to
save space. 55

Last step: Pushing the forward probabilities to back-off arcs

Now, i n a final step, we take the result for back-off L M s (equation 4.12) and we apply a
similar but inverse operation to what we applied to push the weights from the back-off
arcs (equation 4.4). We can show, that this results exactly i n the algori thm presented in
section 4.2 (equation 4.1). F i r s t , we transform the uni-gram probabilities into the desired
form (equation 4.1) by pushing the p(A). Th is is the equivalent step to equation 4.3, but
this time, we don't push a(A) from the arc ^4—^0, but l/p(A). F r o m figure 4.6 (now we
have to read AB as BA), we see that this affects the arcs to and from the state A (and B),
among them are bi-gram probabilities and bi-gram back-offs:

Pbi(A)

abl(A)

Pbi(BA)

abi(BA)

Pbi(CBA)

abl(CBA)

pbl{DCBA)

abl(DCBA)

a(A)

p(A)

p{AB)a{AB)p(A)p(B)

(4.17)

p(B)
1

p(A)

p(ABC) a(ABC) p{AB) p(A)
p{BC)p{B)

1.0
p(ABCD) a(ABCD) p(ABC) p(AB) p(A)

p{BCD)p{BC)p{B)

1.0.

Of course, pb\{CBA) and pb\(DCBA) are not affected by this step, but we copy them
from equation 4.12. Now, we transform the bi-gram probabilities by pushing 1/ {p{AB) p{A)).
This also affects the t r i -gram CBA and its back-off arc:

Pb2{A) = a(A)

otb2{A) = P{A)

Pb2(BA) = a(AB)

ab2(BA) = p(AB)

pb2(CBA)
p(ABC) a(ABC) p(AB) p(A)

1

ab2{CBA)
1

p(AB) p(A)

pb2{DCBA)
p(ABCD) a(ABCD) p(ABC) p{AB) p(A)

p(BCD)p(BC)p{B)
ab2(DC B A) = 1.0.

(4.18)

56

The th i rd step is analogous for the tri-grams, by pushing 1/ (p(ABC) p(AB)p(A))\

Pbs(A) = a(A)

= P{A)

Pbs(BA) = a(AB)

abs(BA) = p(AB)

PbsiCBA) = a(ABC)

abs(CBA) = p(ABC)

pb3{DCBA) = p(ABCD) a(ABCD) p(ABC) p(AB) p(A)

ab3(DCBA) = 1 / {p (ABC)p(AB)p (A)) .

(4.19)

For a four-gram L M a(ABCD) = 1.0 and there is only one arc w i t h weight:

pu(DCBA) = pb3(DCBA) ab3(DCBA) = p(ABCD) (4.20)

We see, that the N-gram probabil i ty for the highest order stays the same pb(DCBA) =
p(ABCD), and for a l l lower orders, the N-g ram and back-off probabilities change their
role. Thus, we have shown, that these steps result exactly i n the same solution as i n the
equations 4.1.

4.5 Motivation by Bayes' formula

[Lee and Kawahara(2009)] point out, that the reverse L M can be constructed wi th the
help of Bayes ' rule. However, no details were given, especially it is unclear how to treat
back-offs and back-off states. Here, we t ry to derive the L M reversal using Bayes ' rule. The
basic assumption is that the joint probabil i ty of word sequences should be the same in the
forward and backward models:

pb(wN, ...,wi)= Pf(w1,wN). (4.21)

This sounds reasonable, if the probabilities are based on counts. However, this might
not be the case, if the lower-order probabilities are following another dis t r ibut ion, as e.g. the
left-continuation probabilit ies used in Kneser-Ney language models (equation 4.2). We start
our derivation wi th the uni-grams (pb(A) = p(A)) and bi-grams:

Pb(A) = p(A)

pb(B) = p(B)

Pb(B,A) = p(A,B)

pb(B)pb(A\B) = p(A)p(B\A)

M A { B) = (4 2 2)

57

We continue wi th the tri-grams:

Pb(C,B,A) = P(A,B,C)

pb(C)pb(B\C)pb(A\C,B) = p{A)p{B\A)p{C\A,B)

P(B)P(C\B) = { A) { B l A) { c l A B)

p{C)

n (A \ r m P(A)p(B\A)p(C\A,B) P(A,B,C)
*>MC>B) " p{B)p{C\B) " P(B,C) • (4 - 2 3)

We can generalize this derivation for a l l N-g ram orders. G iven the forward word se
quence , we derive:

/ | \ P(W1,...,WN) I l i l l P ^ i k l " 1) (A 0/1N
pb{wl\wN,wN-l,...,w2) = —. r = — ———r-. (4.24

p (w 2 , . . . , W N) Ui=2P(Wi\W2)

If we compare these formulas to equation 4.12, we see that we derived the same formulas
- except for the addi t ional back-off weights of the forward model . We repeat equation 4.12
here (moving the back-offs for clari ty):

Pbo(A)

Pw(BA)

Pw(CBA)

pb0(DCBA)

p(A)a(A)
p(AB) p(A)

a(AB)
P(B)

p(ABC) p(AB) p(A)
a(ABC)

p(BC)p(B)
p(ABCD) p(ABC) p(AB) p(A)

p(BCD)p(BC)p(B)
• a(ABCD)

W i t h the help of Bayes ' rule, we determined the N-gram probabilities of the reversed
model, but we didn ' t figure out the back-off weights. If we transform our solution to a form,
that exactly retrieves the probabilit ies obtained from Bayes' rule, we can use the resulting
back-off weights as a Bayes'-like solution, i.e. we can assume, that the resulting model is
correctly normalized to sum to one. In a similar series of pushing steps as before, we can
push the former back-off weights a of the forward model, so that the structure of the Bayes'
formula is retrieved. Thus, we start again from equation 4.12, as we d id in equation 4.17,
but instead of pushing l/p(A), we push the back-off weights (l/a(A)) from the uni-grams:

58

Pbi(A)

UbM)

Pbi(BA)

abl(BA)

Pbi(CBA)

abl(CBA)

Pbl(DCBA)

abl (DCBA)

P(A)

a{A)

p(AB)p(A)
• a(AB) a(B)

p(B)

l/a{A)

p(ABC) p{AB) p{A)
p{BC)p{B)

• a(ABC)

1.0

p(ABCD)p(ABC) p(AB) p{A)
p{BCD)p(BC) p{B)

a(ABCD)

1.0.

e push 1/ (a(AB) a(B)) from the bi-grams:

Pb2{A)

«62(^4)

Pb2(BA)

ab2(BA)

Pb2(CBA)

ab2(CBA)

pb2(DCBA)

ab2(DCBA)

p(A)

a(A)

p(AB)p(A)
p(B)

a(AB)a(B)
a(A)

p(ABC) p(AB) p(A)
p(BC)p(B)

1/(a(BC)a(C))
pjABCD) p(ABC) p(AB) p{A)

p{BCD)p(BC)p{B)
1.0.

a(ABC) a(BC) a(C)

a(ABCD)

59

Now, we push 1/ (a(ABC) + a(BC) + a(C)) from the tri-grams:

Pb3(BA)

abS(BA)

PbsiCBA)

ab3(CBA)

Pbs(DCBA)

ab3(DCBA)

p(A)

a(A)
p(AB) p(A)

P(B)
a(AB) a(B)

c\~[A)
p(ABC) p(AB) p(A)

p(BC)p(B)
a(ABC) a(BC) a(C)

a(BC) a(C)
p(ABCD) p(ABC) p(AB) p(A)

p(BCD)p(BC)p(B)
1

• a(ABCD) a(BCD) a(CD) a(D)

a(ABC)a{BC)a{C)'
(4.27)

Now, we would continue 5 :

Pbi(DCBA)

ahi(DCBA)

p(ABCD) p(ABC) pjAB) p(A)
p(BCD)p(BC)p(B)

a(ABCD) a(BCD) a(CD) a(D)

a(ABC) a(BC) a(C)

The general rule for the back-off arcs is then:

nN ,
i=i a{wi

QibiwN^N-!, . . . ,Wi)
<wN)

nN—1 , >
i = 1 a(wi,...,wN-iJ

(4.28)

(4.29)

Together, equations 4.24 and 4.29 give another formalism to construct the backward
L M probabilit ies. The computat ion is slightly more complicated than the simple rule given
in section 4.2, but the resulting probabilit ies are closer to a normalized (stochastic) distr i
bution, so that it should be possible to skip the weight pushing step.

4.6 Conclusions

We motivated the idea of performing a forwards and backwards search through composed
finite state machines and explained that, i n order to construct the backward decoding graph,
we need a reversed language model that has a similar structure and gives similar scores as
the forward L M . We explained the approximation of the L M wi th weighted finite state
acceptors and showed a constructive solution for an algori thm that results in a backward
L M that assigns exactly the same scores as the forward L M . We paid special attention to
the back-off structure and explained how to deal w i th missing N-grams. F ina l ly , we showed

5For the highest order, there would be just one arc, multiplying p • a, e.g. for the four-gram model, there
is an arc from state DCB to state CBA with weight pb(DCBA) • ab{DCBA).

60

1.2

HCLG forward

HCLG backward push G -

HCLG backward text

0
34 35 36 37 38 39 40 41 42 43

word error rate

Figure 4.7: Decoding performance of backward decoding network reported on the Eval2000 data
set with a GMM model and a tri-gram language model. Shown is the relation between word error
rate and real-time-factor. Better performance is indicated by curves closer to the lower left corner.
We compare the performance of the backward decoding network (HCLG backward push G) with the
application of the new weight pushing algorithm to the performance of a tri-gram LM trained on the
reversed training texts (HCLG backward text). For comparison, we also show the performance of
the forward decoding network (HCLG forward). In this case, no weight pushing is necessary.

that the constructive algori thm for the language model reversal can be derived by a series
of steps, where each step guarantees W F S A equivalence, as well as the mot ivat ion from
Bayes' rule w i t h constraints on joint word probabilities.

U p to this point, we are able to construct a backward L M that gives exactly the same
scores for the reversed sentences as the forward L M , and at the same time, has the same size
and a similar structure and is deterministic (except for the e-arcs). For tasks, for which the
backward L M is used i n a pruned search (including L V C S R) , it is desirable that it has yet
another property - (locally) stochasticity. For that purpose, we can apply the alternative
weight pushing algori thm as introduced i n chapter 3.3.

We tested the algorithms on a bi-gram (see section 3.4) and tr i -gram L M and compared
it to the simpler but less exact method of reversing the t ra ining texts. Figure 4.7 shows the
results of the decoding graphs from tr i -gram L M s . The experimental setting is the same as
in section 3.4. The performance of the backward model w i th exact reversal, and the one
resulting from tra ining wi th the reversed t ra ining texts is very similar, however i n the area
wi th low word error rates, the performance of the exact model matches the performance of
the forward model more closely. A s already pointed out, the performance of the forward
and backward model are not necessarily the same, depending on the task (i.e. the properties
of the language). However, the performances of forward and backward models are not far
from each other. We can speculate, that language evolved i n such a way, that humans can
understand it w i th more ease. Therefore, we would expect that language is opt imized to
be easier understandable in the forward t ime direction, than when reversed in time. This
might explain the advantage of the forward decoding.

61

Chapter 5

Combining forward and backward
search in decoding

We introduce a speed-up technique for weighted finite state transducer (W F S T) based
decoders - applicable to both static and dynamic network decoders. The technique is based
on the idea that one decoding pass using a wider beam can be replaced by two decoding
passes wi th smaller beams, decoding forwards and backwards in time. The advantages of
decoding backwards i n t ime is explained i n section 5.1. The approach that is followed in
this thesis is to use forward and backward passes in a decoder that works wi th a variable
beam width , controlled by the (dis)agreement of the two decoding passes. For the purpose
of backwards decoding, we have to construct a backwards decoding network wi th certain
properties, explained in section 5.2. The details of L M reversal have already been explained
in chapter 4.

One possible realization of the variable beam wid th decoding is to run the forward and
backward passes i n parallel , and perform an iterative refinement w i th increased beam wid th
in those places, where forward and backward decoding disagree. This is explored i n section
5.3. Another realization of the basic idea is a technique we cal l tracked decoding, detailed in
section 5.4. The main idea is that the second decoding pass (backwards) can use detailed
information gathered from the first pass (forwards) to increase the decoding beam in places
where the two passes disagree. The speed-up is achieved by using a narrow beam during
the first pass, as well as i n the second pass i n places where no disagreement is detected.
Otherwise the beam is increased to include a l l ' t racked' tokens. In section 5.4.4, we give
an experimental val idat ion of our method on a W a l l Street Journal corpus (W S J) decoding
task. We find that our method gives a substantial speed-up of two to three times or even
more, at the "more accurate" operating points of decoding where search errors are small .

5.1 Introduction: combining forward and backward search

The application that we had i n mind while wr i t ing this thesis was the decoding of the
most probable sequence of words i n L V C S R . G iven the complexity of the task - the search
graph can contain up to mill ions of states - the resulting huge search spaces cannot be
explored exhaustively. It is necessary to use heuristic pruning techniques. In this case, we
have to distinguish search errors, which are due to the incomplete exploration of the search
space, from modeling errors, which are due to insufficient t ra ining data or due to inaccurate
models.

62

fwd: IS SHERMAN ARE CONIFER AND THREE MOST RECENT CASUALTY REPORT
bwd: IS BADGER A REMARK ON VANCOUVER+S MOST RECENT CASUALTY REPORT
r e f : IS THERE A REMARK ON VANCOUVER+S MOST RECENT CASUALTY REPORT
Figure 5.1: Forward and backward speech recognition: Example ASR result on Resource Manage
ment corpus. Bad signal quality at the start of the utterance confused almost the whole utterance in
forward recognition, while it almost didn't harm the backwards decoding (only the immediate word
'there' is mis-recognized). An OOV could cause similar effects.

The most widely used search technique i n L V C S R is the V i t e r b i a lgori thm wi th beam
search [Lowerre(19' i)]. B e a m search is a breadth-first style search, comparing par t ia l paths
of the same length (time-synchronously). A t each t ime only those paths are kept and further
expanded, whose par t ia l pa th score is better than the current best score extended by a beam
wid th . The beam wid th is a trade-off between speed and accuracy.

For many search tasks (e.g. i n planning algorithms) for which the search space cannot
be explored exhaustively, it is known, that i f the average branching factor of the backward
search graph is smaller than that of the forward graph, it is better to perform the search
on the backward graph. For example [Tang and Cristo(2008)] showed, that the amount of
errors i n automatic speech recognition of street-city-state tuples (as used e.g. i n the U S)
can be reduced when performing the search backwards i n time, since this gives a lower
'dynamic task complexi ty ' [Tang and Cristo(2008)]. Since forward search uses the 'history'
and backward search uses the 'future', there is hope that the search errors of searching
forwards and backwards are mutual ly independent. A path that is not promising (low
scores) at the beginning is l ikely to be pruned by forward search, even if it has a high
overall score towards the end. It has a chance not to be pruned by backwards search,
because looking backwards this path has high scores at the beginning (which was the end
in forward search). Figure 5.1 shows a recognition result obtained i n an early stage of our
experiments that demonstrates this si tuation. Figure 5.2 illustrates the potential of forward
and backward search.

In addi t ion to beam search, another strategy to deal w i th the complexity of the task
is to use mult iple decoding passes, which has been a common practice already for a long
t ime (e.g. [Murveit et al.(1993)]). Usua l ly inexpensive and approximate models are used in
a first pass to generate an intermediate representation, which is then 're-scored' using more
complex models. A s intermediate representation, among others, lists of N-best recognition
results or lattices of possible hypothesis sequences are used.

Not only different types of models can be used i n the successive decoding passes, but
also different approaches to search. In [Aust in ct al.(19'], the idea of performing the
second pass backwards in t ime was introduced. A s an intermediate representation, they
use the active words for each t ime frame and the corresponding word end scores, obtained
from a V i t e r b i beam search i n the forward pass using approximate and faster models. The
active words per frame are used to l imi t the word expansion i n the backwards search, which
is also a V i t e r b i search, and the word end scores serve as a good estimate of the path cost
of the remaining speech. Thus the second pass usually takes only a fraction of the t ime of
the first pass, so that more complex algorithms or models can be used. Alternat ively, the
forward pass can be sped up by using approximate models [Nguyen et al.(1993)]. A more
recent re-discovery of the same idea is [Lee et al.(1998)] and [Lee and Kawahara(2009)],
which use a word trellis as intermediate representation and stack decoding (A-star search)
in the backward pass. A l so [Cardinal et al.(2013)] use a uni-gram V i t e r b i backward pass,

6 3

J Good Score

| Bad Score

Forward Beam

Forward Path

Correct Path

-jlC Wrong Word

Correct Word

40 Time / State

| Good Score

| Bad Score

Backward Beam

Backward Path

- Correct Path

Wrong Word

Correct Word

40 Time / State

Figure 5.2: Illustration of forward and backward search [Nolden et al.(2013)]. In the background,
acoustic likelihoods for each state are shown as they evolve over time. Bright colors indicate higher
probability. In the forward search (upper part), the low-score 'valley' around frame 7/8 causes the
correct path (green) to fall out of the beam (dotted). The red path is chosen, but later (frames 20-30)
it turns out to have poor scores. Even if it has better overall scores, the correct path can not be
recovered, since it was already pruned. In the backward search (lower part), the situation is different
- starting from the end, the lower path looks much more promising (frames 30-35) and the upper
path falls out of the beam. The low likelihoods around frame 7/8 do not distract the recognizer
this time, so the backward search does find the correct path. The illustration explains that, to a
certain extent, search errors of forward and backward search are independent. Of course, with a
wide-enough beam, also the forward search would find the overall best path.

which is then used as a heuristic i n A-s tar forward decoding wi th the full language model.
Opposed to these works, this work (hrst published i n [Hannemann et al.(2013)]) focuses

on using forward and backward passes that are balanced or symmetric, i.e. on using models
that are s imilar ly powerful i n both passes. Th is has the advantage that the hypotheses
of bo th passes can be used for comparison or combination. The idea of symmetric passes
was already used by [Li et al.(2009)] and [Abo-Gannemhy et al.(2010)] (see also [Tang

]risto(2008)]). They combine the outputs of the symmetric forward and backward
passes based on L M scores or confidence measures (R O V E R technique 1) . A l s o [Jouvet and

l rThe ROVER [Fiscus(1997)] procedure aligns the different hypotheses and relies on a voting procedure
to determine the best candidate word sequence.

64

Fohr(2013a)] and [Jouvet and Fohr(2013b)] use the framework of [Lee and Kawahara(2009)]
to R O V E R two symmetric passes, and they show that the combination of forward and
backward passes is especially effective i n improving the performance. The follow-up work
[Jouvet and Fohr(2014)] shows, that the comparison of hypotheses from the forward and
backward passes is an effective confidence measure for selecting automatical ly transcribed
data for semi-supervised L V C S R training.

The idea of our work [Ilannemann et al.(2013)] is to speed up the decoding by using the
(dis)agreement of the two symmetric decoding passes - decoding forwards and backwards in
time. In beam search, a constant beam wid th is usually applied to the whole test set. We
however use a decoder w i th a variable beam wid th , that is only increased i n areas, where
the two decoding passes disagree. There are two ways to implement this idea: Inspired by
[Hannemann et al.(2013)], the authors of [Nolden et al.(2013)] showed that the comparison
of the hypotheses of two symmetric forward and backward passes can be used i n incremental
decoding, where the search beam is extended in areas, where the two passes don't agree in
the first run. A s a consequence, the system uses a variable beam wid th and is dynamical ly
focusing only on the parts that are difficult. S imi lar to a l l symmetric techniques mentioned
so far, they use two independent forward and backward passes, which has the advantage
that the two passes can run i n parallel (section 5.3).

In analogy to the non-symmetric techniques, i n this work we want to use the infor
mat ion gathered in the first pass (e.g. forwards) to guide the search of the second pass
(e.g. backwards), as shown i n [Hannemann et al.(2013)]. In this approach, the beam wid th
can be adjusted for every frame, so that a more careful search (increased beam) is only
carried out i n areas where the two passes disagree. The speed-up is achieved by using a
narrow beam during the forward pass, and i n the backward pass i n places where no dis
agreement is detected (section 5.4). The application of the presented methods assumes that
a segmentation or an algori thm for end point detection is given.

5.2 Construction of a reversed decoding graph

The construction of decoding graphs wi th K a l d i was described i n section 2.4.1. If we want
to perform the search i n two symmetric forward and backward decoding passes, we need
two corresponding decoding graphs - HCLGfwd and HCLG^d- B o t h models should be
equally powerful, i.e. have roughly the same accuracy and run-time requirements, and have
similar structure, size and level of determinism to have opt imal pruning behavior. We
also want to compare the probabilities (or scores) of the outputs from the forward and
backward passes (e.g. to estimate the op t imal beam width) . Tha t means, we want two
models HCLGfwd and HCLG^d-, that ideally produce the same overall score for the same
hypothesis in both the forward and the backward passes. Due to the pruned search, bo th
passes can result i n different search errors (due to the different dynamic task complexity
forwards and backwards). However, bo th models should not make different modeling errors,
hence they should assign the same scores to the same hypotheses. We also want to be able
to compare the scores of par t ia l results (paths). Therefore, also the model structure (the
dis tr ibut ion of weights along paths) should be similar in the forward and backward passes.

Given a forward graph HCLGfwd, the task is to obtain a backward graph HCLG^d
that w i l l assign exactly the same overall score to the same utterance and w i l l fulfill a l l
the above stated requirements. Because our method treats disagreement between the best
paths found by the two passes as a search error, we want the backward decoding graph to
be equivalent to the reverse of the forward one.

65

The t r iv ia l solution to apply W F S T reversal to HCLGfwd is not sufficient, since the
resulting graph would not have a similar level of determinism and dis t r ibut ion of weights as
the forward graph, i.e. it would show sub-optimal behavior when used in a pruned search.
To make the resulting W F S T determinizable, we would have to introduce disambiguation
symbols [Mohri et al.(2008)] at different places than in the forward graph. A s we already
explained i n section 4.2, especially the (reversed) L M component would introduce a great
degree of local ambiguity.

Instead, the solution is to separately construct the time-reversed versions of H, C ,
L and G, and then to bu i ld a composed model HCLGbwd i n an analogous way as the
forward graph was constructed (section 2.4.1). Since the resulting HCLGi,wa< is a cyclic
transducer, the conventional weight pushing algori thm cannot be used in case the total
weight is greater than one, as was explained in 3.1. We can resort to the alternative weight
pushing introduced in section 3.3.

The time-reversed versions of H, C, L and G are again not s imply the W F S T reverses
of the forward ones, but must be separately constructed. Depending on the task, the
reversal of each component is of different complexity. The hardest input to reverse was
the A R P A - f o r m a t L M acceptor G. We have already given an algori thm for creating an
equivalent but "time-reversed" L M in chapter 4. The reversal of H, C and L is rather
t r iv ia l [iannemann et al.(2013)] and is described in the next section. We made the code
for a l l methods described here available as part of the K a l d i toolkit .

5.2.1 Reversing L, C and H

The construction of the reversed pronunciation lexicon transducer Lbwd (phones to words)
is simple: the ind iv idua l phone sequences (pronunciations) are reversed, and the disam
biguation symbols [Mohri(19!] (figure 2.10) are introduced after that. The disambigua
t ion symbols now distinguish suffixes (ambiguous sequences at word endings), while in the
forward case they distinguish prefixes. Figure 5.3 shows a reversed toy lexicon and the
resulting transducer.

The context-dependency transducer C b w d (figure 5.4) is constructed in the usual way,
and looks identical to C f w (j . After the composit ion of L f w c j o Gbwd> the phonetic context
window (which are the input symbols for C) is reversed i n t ime (a-b-c to c-b-a). Therefore,
to look-up the corresponding models (P D F s) i n the phonetic decision tree, we have to
reverse the phonetic context. Then, we look-up using the phoneme context window and the
H M M state.

The H M M structure transducer i?bwd ; is constructed i n the same way as -£/fwd, except
for the reversed phonetic context. The ind iv idua l (three-state) H M M s for each phone
are constructed separately and the relevant P D F s are looked-up from the decision tree.
Then , the phone H M M s must be reversed and weight-pushed i n the log-semi-ring (including
epsilon removal) to make the time-reversed transi t ion probabilit ies of each state stochastic.
A s seen i n figure 5.5, for the left-to-right H M M s , there is a simpler way to determine
the transi t ion probabilities of the reversed model: We can assign them i n the reversed
order. This observation is even true for more complicated symmetric structures. After
reversing the phone H M M s individual ly, we construct the composite Ha transducer, which
contains them i n self-loops (example i n figure 5.6). Due to the reversal of ind iv idua l H M M s ,
the ordering of the self-loops and forward transitions changes, which doesn't matter for
decoding, but needs to be considered when mapping resulting alignments at t ransi t ion
level.

66

A ax #1
ABERDEEN n i y d e r b ae
ABOARD dd r ao b ax
ABOVE v ah b ax
ADD dd ae #1
BOARD dd r ao b #1

Figure 5.3: Reversing lexicon transducer L. The phone sequences are reversed (upper part), and
new disambiguation symbols (#1) are inserted afterwards. Then, the lexicon transducer is built in
the same way as in the forward network (lower part).

Figure 5.4: One path of the context transducer C. The deterministic version [Mohri et al.(2008)]
has a delay of two input symbols until the tri-phone-symbol is produced. The C transducer looks
identically in forward and backward networks.

1:1/0.61105 2:2/0.44853 3:3/0.524

3/0.524 2/0.44853 1/0.61105

Figure 5.5: Reversal of HMM structure for phoneme HMM: Top: forward HMM. We apply
WFST reversal, weight pushing in the log-semi-ring and epsilon removal to obtain the backward
HMM (bottom). We observe, that for left-to-right HMMs, the transition probabilities are exactly
assigned in reverse order.

6 7

Figure 5.6: Reversing the HMM transducer Ha - upper part: forwards transducer, lower part:
reversed backwards transducer. Here, we show the mono-phone case, without self-loops. For
each transducer, we show two mono-phone models (aa, ae) with three-state forward HMMs (Kaldi
transition-ids 2,4,6 and 8,10,12; the odd numbers are for self-loops - not shown) and the silence
model (transition ids 284-300, almost ergodic connections between states). The mono-phone mod
els (aa,ae,silence) are reversed individually (including epsilon removal and weight pushing in the
log-semi-ring) before composing Ha.

5.3 Incremental forward and backward search

5.3.1 Finding the optimal operating point

So far, we have explained how to construct a static W F S T based recognition network for
backward decoding. However, the approach to the construction of the backward decod
ing network described i n this chapter is not l imi ted to static networks. Al ready [Nolden
et al.(2013)] has applied the reversal of the components described here i n a dynamic network
decoder. M a n y recent dynamic network decoders are basically compil ing a W F S T based
recognition network, but leaving out one component, which is then composed dynamically.
For example, [Soltau and Saon(2009)] use a uni-gram L M (more precisely L M look-up
scores) to compile a W F S T based recognition network and then apply the higher-order
N-gram L M dynamically. Since i n our approach, a l l components are reversed individual ly,

6 8

no change is necessary when dynamical ly composing the components.
We want to replace one decoding pass wi th a wide beam by a forward and backward

pass wi th narrow beams. Thus, we must find the right operating point for the forward and
backward passes. If badly chosen, the two passes w i l l be two times slower than the single
pass. The beam should be smal l enough to allow for substantial speed-ups, but on the other
hand, the beam must be big enough to allow for a reasonable comparison of the forward
and backward paths. For significant portions of the decoding, we would like to find a good
path w i t h one of the two (forward or backward) passes. If both, forward and backward
decoding, are completely off, we have to increase the beam everywhere, and there is no
advantage over the single pass approach.

Usual ly a decoder doesn't have only a single parameter (beam width) to tune [Low-
crrc(1976)], but a series of parameters, which are not independent of each other. The most
important parameter is the global beam width , given as a log-constant, indicat ing how much
the l ikel ihood of par t ia l paths can be worse than the current best par t ia l path before the
par t ia l path gets pruned out. Th is is called acoustic pruning. Addi t ional ly , most decoders
apply so called histogram pruning [Stcinbiss ct al.(1994)]. The idea is to l imi t the number
of hypotheses being generated at a certain point i n t ime. This is an upper l imi t , which is
applied mainly i n portions of the speech signal w i th high uncertainty. If the best par t ia l
hypothesis has a low score, too many other bad hypotheses are kept. In this case, too
much computat ional effort is spent w i th l i t t le chance of actually finding the correct path.
Thus, by l imi t ing the m a x i m u m active tokens, the computat ion can be significantly reduced
without much affecting the word error rate. We can select a tightened beam l imi t based on
a histogram over state hypothesis scores, therefore the name histogram pruning. However,
for our purposes it is sufficient to th ink of the tokens as being ranked. To effectively l imi t
the number of tokens to the given upper l imi t (called "max-tokens"), we pick the score of
the token at rank "max-tokens", and use it as a tightened beam threshold, which we cal l
the max-tokens beam. A s soon as the number of tokens exceeds the l imi t , this max-tokens
beam wid th is used for the decoding.

Depending on the architecture, other tuning parameters might be applied, too. [Nolden
et al.(2012)] gives an overview of pruning techniques. M a n y decoders predict the max-tokens
beam based on the max-tokens beam used in the last frame, to avoid generating tokens,
which w i l l be pruned anyway, [van Hamme and van Aelten(1996)] formulate this approach
as an adaptive controller. Dynamic decoders usually apply tighter beams on tokens at
word ends [Steinbiss et al.(1994)]. If the decoder is implemented wi th a re-entrant tree
and token passing, where lists of tokens are attached to a state of the search network, we
can impose a l imi t on the m a x i m u m number of tokens assigned to each state (called L M
state pruning). W h e n dynamical ly composing the recognition network wi th higher-order
language models, special techniques to deal w i th L M scores might be effective. [Agarwal
et al.(2014)] describes the use of a language model s lack 2 on top of the beam to 'smear' the
effect of the L M score over several frames. A l so , parameters like the number of N-best paths
being generated or the w i d t h of the generated lattice [Povey et al.(2012)] have a significant
effect on the decoding speed. In our case, we use lattices as intermediate representation
and we t ry to find a balance between a sufficient depth to contain the relevant hypotheses
and a m i n i m u m impact on the real-time factor.

2 The word is used in a similar way as for the slack variables used in support vector machines.

69

5.3.2 Tuning the beam parameters

We ran in i t i a l experiments to determine the effect of the two most important parameters:
the beam wid th and the m a x i m u m number of active tokens applied i n the histogram prun
ing. These two parameters are used in almost a l l types of decoders. We ran the experiment
wi th the Microsoft A r g o n decoder (documented i n [Agarwal ct al.(2014)], Version 2016-02-
17). It is a highly opt imized dynamic network decoder, developed by Microsoft Research
(mainly Geoffrey Zweig and Jasha Droppo) . We report the results on the H U B 5 2000
Engl i sh Eva lua t ion Speech database from L D C ("Eva l 2000"). However, the word error
rates reported here are not computed wi th the official scoring tools (N I S T scoring toolki t
S C T K) , thus they are about 3% worse than when using this tool . The acoustic model is
a deep neural network trained on a subset of Switchboard, using 1500 context-dependent
t ied states. For decoding, we use a t r i -gram language model (7.2 mi l l ion entries) that is
dynamical ly composed.

Figure 5.7 summarizes the relation between performance (word error rate - W E R) and
speed (real-time-factor - R T F) on many different operating points (defined by a setting
of beam wid th and m a x i m u m active tokens - called max-tokens). We observe that both
parameters depend on each other i n a non- t r iv ia l way. Therefore, we would have to test
al l possible combinations of parameters and then determine the opt imal W E R and the
corresponding tuning parameters for each R T F . The resulting curve is sometimes called
Pareto-optimal. For the forward and backward passes, we want to achieve the most accurate
decoding using only a fraction of the decoding t ime of the single pass. Thus , start ing from
a point on the Pareto-opt imal curve wi th low W E R (and high R T F) , we would move along
the op t imal curve towards lower R T F .

44

43

42

41

CD
-o 40
o
S

39

38

37
0.1

beam 9

beam 10

beam 11

beam 14

beam 30

max-tokens 14000

max-tokens 30000

0.15 0.2 0.25

realtime factor

0.3 0.35

Figure 5.7: Finding the optimal operating point on the real-time-factor and word error rate
curve, while tuning the maximum number of active tokens (max-tokens) and beam width (beam).
The settings of beam width and max-tokens are grouped by lines that leave one of the parameters fixed
while varying the other. All curves 'beam' leave the beam width constant while running experiments
with different values for max-tokens. For clarity, we don't show the curves for beam width 12,13,15
which follow a similar trend. The curves 'max-tokens' (black) measure different beam widths for a
fixed number of max-tokens.

70

One simplified strategy that is used most often is to treat the beam wid th as the main
parameter that is varied, and to use a high number of max-tokens which is only effective in
areas of high confusion. F r o m figure 5.7, it is evident (black lines) that this strategy is not
opt imal i n our case. For the lower R T F s , this setting is sub-optimal, since too many tokens
are created. The decoder is in the op t imal operating point, when only those tokens are
generated, that actually have a chance to become the best path. In other words, i n areas of
high confusion (e.g. due to noisy speech), many tokens are generated, but most probably,
these portions of speech w i l l result in errors anyway. Therefore, the max-tokens beam was
introduced. We should set it as low as possible, i.e. to the value, from where the W E R
starts increasing. F r o m this, it is clear, that when decreasing the acoustic beam to tune
to a lower R T F (and unfortunately higher W E R) , we should also decrease the max-tokens
beam. For this reason, the op t imal setting of max-tokens is to some extent proport ional to
the the average number of active tokens that we get, i f we decode w i t h a certain acoustic
beam.

For the highly opt imized token-passing decoder used here, we observed that the opt imal
operating point is when we set max-tokens in such a way, that for more than half of the
frames, the resulting max-tokens beam is smaller than the acoustic beam. Tha t means, max-
tokens (the number of active tokens) is the dominant parameter determining the amount
of computat ion that needs to be done for each frame. In the lower part of figure 5.8, we
observe that the opt imal operating point (beam 13, max-tokens 14000) is actually most of
the t ime dominated by the max-tokens (i.e. the max-tokens beam is smaller than the beam
13 - gray line).

If we assume that max-tokens is the main factor determining the computat ion time,
another simple strategy would be to keep the beam wid th fixed and to change only the
max-tokens. F r o m figure 5.7, we see that as soon as the beam is wide enough (around
13-14) this is (almost) the op t imal solution for a wide range of R T F s . O n l y for the higher
W E R (above 38-39%), this strategy is slightly sub-optimal. We would have to decrease the
beam wid th as well . W h a t we observe is that along the Pareto-opt imal curve, we have to
proport ionally increase both the beam wid th and the max-tokens. A s a first approximation,
it may be sufficient to choose a reasonable operating point and keep one parameter fixed
while varying the other.

The A r g o n decoder uses the idea of [van Hamme and van Aelten(1996)], who propose
an adaptive controller for steering the beam wid th for each frame i n such a way, that the
resulting number of tokens is approximately equal to the max-tokens parameter. Thus, for
each frame a different (adaptive) beam is used, which is increased i f less than max-tokens
have been generated, and decreased, i f too many tokens have been generated. The upper
l imi t is the acoustic beam width .

Since i n the op t imal operating point, the max-tokens beam is the l imi t ing parameter,
it is clear that we w i l l not improve the W E R by increasing the acoustic beam wid th while
keeping max-tokens fixed. However, what we observed when increasing the beam much
further is that the W E R actually increased (figure 5.7, red line, beam 30). This (perhaps)
surprising non-linear effect is a par t icular i ty of the decoder, that most probably results from
the adaptive beam [van Hamme and van Aelten(1996)]. In the lower part of figure 5.8, we
see that the resulting max-tokens beam at acoustic beam 30 is most of the t ime lower than
the max-tokens beam at acoustic beam 13. The dynamical ly adapted beam (steering to
follow the max-tokens beam) is sometimes narrower than necessary (i.e. under-generates).

71

before max-tokens beam 13 after max-tokens beam 13 before max-tokens beam 30
60000

50000

40000

30000

20000

10000

0

i—r i—i—i—r n — i — i — r i—r

i i i i i i i

- —.—J L— J

i i I I 111 I J I I I

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950100010501100115012001250

frame

beam 13 beam 30

i—i—i—i—i—i—i—n—i—i—i—i—i—i—i—i—r~rn—i—i—i—i—i—r 30

E 25

n 20
I 15
o
% 10
E 5

0 I L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 100010501100115012001250

frame

Figure 5.8: Frame-wise scores for three files from the Eval2000 test set. Utterance boundaries
are around frame 400 and 880. Compared are two different acoustic beam widths - 13 (black), which
is about optimal for the RTF/WER and 30 (red), which is over-shooting. Upper part: Numbers
of active tokens before and after the application of the histogram pruning ('after max-tokens 30' is
not shown, as it looks very similar to 'after max-tokens 13'). Max-tokens is set to 14000 in both
cases, which is the optimal setting for beam 13. Lower part: max-tokens beam (after applying the
max-tokens limit).

5.3.3 Parallel incremental forward and backward search

A s introduced i n section 2.6, the parallel ization of the decoding of an utterance into chunks
seems to be an interesting idea. Accord ing to [Maleki et al.(2014)], it is possible to split
an utterance at places, where the rank of all-pairs-shortest-path mat r ix w i l l converge to
one (singular matr ix) . In other words, this happens at frames, where just one token w i l l
survive. A n open question is whether it is possible to automatical ly detect such frames in
advance, i n order to find the opt imal segmentation of a given utterance into chunks. A t the
points w i th low rank, i.e. w i th few remaining active states, a smal l beam should be sufficient
to decode them. In other words, at those points, we would expect the decoding results of
the forward and backward search to agree, even i f both run wi th a smal l beam. Therefore,
a good segmentation for the parallel ization of the decoding is to split the utterance at
points, where forward and backward search agree. These thoughts lead to an approach to
parallelization, which is described here.

The idea of performing a symmetric forward and backward search as introduced in
section 5.1, first published i n [Hannemann et al.(2013)], was used by [Nolden et al.(2013)] to
implement an incremental high-level decoding algori thm, that can tune the pruning beam
for ind iv idua l words i n an unsupervised way. A s opposed to [Hannemann et al.(2013)],
where the results of the first pass are integrated into the second decoding pass, bo th passes,
forward and backward search, are run independently and symmetrically.

72

The incremental decoding, as described i n [Noldcn ct al.(2013)] first runs a forward and
backward decoding on the whole utterance, but w i th a smal l beam. T h e n the decoded
words are aligned to each other. Words are considered matching, if they have the same
word identity as well as a matching t ime boundary. A l l non-matching words are grouped
into continuous segments which are extended by one matching word to the left and to
the right. The assumption is that the acoustic alignment of words further apart than one
matching word w i l l have no effect on the alignment and acoustic score of the current word
to be decoded. The identified segments of non-matching words are then decoded wi th an
increased beam and the results are integrated into the results of the first pass. This process
is iterated un t i l the whole utterance matches. Th is way, the beam for each word is tuned to
the m i n i m u m necessary beam. A s pointed out by [olden et al.(2013)], for the incremental
decoding of par t ia l utterances, the left and right L M contexts of the segment need to be
correctly ini t ia l ized in the decoding. We also need to remember the left and right acoustic
cross-word contexts, which can be achieved by remembering the states of the recognition
network at the segment boundaries in the first pass - these can then serve as in i t i a l and
final states for the second pass decoding.

We re-implemented the incremental forward-backward decoding i n the Microsoft A r g o n
decoder (documented in [Agarwal et al.(2014)], Version 2016-02-17), and show an addit ional
analysis focussing on the parallel ization of the approach. Since the forward and backward
searches are run independently, this approach has the advantage, that forward and back
ward search can be run in parallel . Figure 5.9 illustrates a parallel implementat ion of the
incremental decoding. Due to the high-level nature of the incremental forward-backward
decoding, even each mis-matching segment on its own can be decoded i n parallel using the
approaches to parallel izat ion described i n section 2.6.

In figure 5.10, we show an analysis of the incremental forward-backward decoding on the
Eval2000 database. We ran the experiment w i th the Microsoft A r g o n decoder (documented
i n [Agarwal et al.(2014)], Version 2016-02-17) and used the setup described i n the last
section. We observe, that the overall speed-up of the technique w i l l be determined by the
setup of the first pass (forward and backward) decoding. We choose an operating point
from the Pareto-opt imal curve i n figure 5.7, that is several times faster than a well-tuned
baseline (tuned for a trade-off R T F / W E R , around R T F 0.3-0.5), but s t i l l in the area where
the results of forward and backward decoding are par t ia l ly matching. Us ing such a setting,
we observe that after the first parallel forward/backward pass, i n average approximately
50% of the complete utterances agree and thus the decoding can be finished.

For the utterances that are par t ia l ly mis-matching, we find i n average around 1.5 mis
matching segments ('islands') per file. That means we can achieve a speed-up of 1.5 on
these utterances, and only a part of the utterance actually needs to be decoded again.
Therefore, the to ta l amount of t ime spent i n the second pass w i l l be much smaller than
in the first pass, even if it runs at a higher R T F (increased beam). Similarly, the amount
of t ime spent i n further iterations w i l l quickly decrease. One could reduce the scheme to
a two-pass decoding and directly set the beam to the single-pass beam i n the second pass
(parallel forward/backward), which would s t i l l result in a significant overall speed-up. The
acoustic model scores i n the parallel forward/backward decoding can be shared, as well
as they can be shared across the iterations. The amount of t ime spent in calculat ing the
acoustic scores can be significant, however, for the part icular acoustic model used i n the
experiments (a D N N implemented on a G P U) the computat ion of scores consumes only
ca. 20% of the time, and this could even be further reduced by further parallelization.

73

Figure 5.9: Parallel implementation of incremental forward backward decoding [Nolden
et al.(2013)]. First (upper part), two cores run a quick initial forward and backward decoding
of the whole utterance with a narrow beam in parallel, then (center) the results are aligned and mis
matching regions ('islands') are identified (indicated in red). If there are no mis-matching regions,
the decoding is done. Else (lower part), in a second pass, the identified mis-matching segments are
decoded in parallel with a wider beam. In this example, there are two 'islands', both of them are
decoded forwards and backwards, which means four cores can be used in parallel. The results of the
decoded segments are integrated into the results of decoding the whole utterance, and this process is
iterated until the results for the whole utterance match.

5.4 Tracked decoding

After using independent and parallel forward/backward decoding passes i n the last section,
in this section, we want to use the information gathered in the first pass (e.g. forwards) to
guide the search of the second pass (e.g. backwards). In this approach, the beam w i d t h can
be adjusted for every frame, so that a more careful search is only carried out in the areas
where the two passes disagree.

W h i l e analyzing the pruning behavior of the K a l d i decoder on the W a l l Street Journal
(WSJ) test set, we found that, except for a few points i n t ime, for most of the speech frames
a narrow beam is sufficient. We analyze the pruning behavior by comparing the score of
the current best active token at each frame 3 and the score of the token that w i l l u l t imately
result in the best overall p a t h 4 . Figure 5.11 explains the effect of pruning wi th the help of
one example utterance, and figure 5.12 quanti tat ively analyzes the score differences between

3We think of a token as a record of a particular state in H C L G that is active on a particular frame and
has the accumulated score of the partial path explored so far.

4 To determine this, we run a decoding using a wide beam, back-track the best path and compute its
score at each frame.

74

CD

a; u
£= 03

1800

1600

1400

1200

1000

800

600

400

200

different words
non-matching islands

different scores

0.1 0.11 0.12 0.13 0.14 0.15 0.16

RTF (different beam settings along Pareto curve)
0.17

Figure 5.10: The first iteration of the incremental forward-backward decoding on the Eval2000
test set. The test set has 1831 files, each is decoded with the forward and the backward decoder
independently. Shown are the number of utterances that have either mis-matching total utterance
scores ('different scores') or differ in the decoded words ('different words'). We see that requiring
the exact same score is a stricter criterion than requiring that the same sequence of words are
decoded. Not shown, but very closely above the line 'different scores' is also the line for 'differing
state sequences', which is an even stricter criterion. To evaluate these criteria, we selected a set of
operating points approximating the Pareto-optimal curve from figure 5.7 (resulting in the RTF along
the x-axis). As a baseline, we assume that the single pass decoding will run at approximately 0.3-0.5
RTF, where we start approaching the lowest WER (37.3%). Therefore, we show operating points,
which are two to five times faster than that (corresponds to WER 38.3%~40.3%) - this constitutes
the speed-up we can expect from the technique (forward and backward decoding run in parallel). As
seen from figure 5.7, going for even lower RTF would result in much worse WER. The number of
non-matching stretches of words ('islands', shown as red line) is related to the number of utterances
with different words (black line). The ratio is between one and two and slightly increasing towards
the lower RTF.

the current best and the final best path. Mos t of the time this difference is much smaller
than the typica l beam wid th between 10 and 15. This suggests that it would be beneficial
to be able to identify those problematic areas (frames) and to only use the wide beam in
these areas, while otherwise using a smal l beam. We a im to use the decoding results of an
in i t i a l forward pass to identify the problematic frames on the backward pass.

Based on this motivat ion, our approach towards decoding is to do a first pass (which
happens to be a forward pass) w i t h a narrow beam, and then to do a second pass i n the
opposite direction, also wi th a narrow beam, but using knowledge obtained during the
first pass. The first pass outputs a lattice wi th state-level alignments [Povey et al.(2012)].
Note that this lattice does not contain a l l par t ia l paths explored in the first pass, but only
those word-sequences that are wi th in a specified beam of the best word-sequence (posterior
pruning wi th lattice beam). We want to treat the paths in this lattice i n a special way in
the second decoding. Tha t is,

1. We want to avoid pruning out paths that appeared i n the first-pass lattice.
2. O n frames where we would otherwise have pruned out those paths, we want to increase

the pruning beam.

75

20

15

10

0}
o u

-5 -

-10

-15

1 r
partial diff

b e s t d i f f l l -
b e s t d i f f l 9 -

50 100 150 200 250
frame

300 350 400 450 500

Figure 5.11: Beam search: example utterance from the WS J Nov'92 test set. We analyze partial
scores of forward decoding for two different beam widths (beam 11.0 and 19.0). Looking at the score
of the current best token for each frame, the absolute differences between beam 11.0 and beam 19.0
are small compared to the overall path score. Therefore, we show relative score differences:
"partial diff" (yellow): the score difference of current best tokens, decoding with beam 19.0 and 11.0
"best diff 11" (green): the difference of the current best token (beam 11.0) and the partial score of
the final best path (beam 11.0) at same frame - i.e. which is only known after finishing the decoding,
"best diff 19" (magenta): the difference of the current best token (beam 11.0) and the partial score
of the final best path at beam 19.0.
We see ("partial diff"), that beginning around frame 325, the search with beam 19.0 found a better
path, so the difference becomes negative. It is also observable ("best diff 11"), that most of the time,
the current best partial score is also the score of the (future) best path, which means a small beam
would be sufficient. Only at a few places, the path that is going to win, is off for a short time.
Around frame 290, we miss the final winning path ("best diff 19"), if the beam is too small. Not
immediately, but only after frame 325, this results in better overall scores ("best diff 19" vs. "best

11").

5.4.1 Tracking tokens with an arc-lattice

Dur ing decoding, we need to be able to identify which active tokens i n our second-pass
decoder correspond to paths in the first-pass lattice. One possible way to do this would
be to designate a set of context-dependent H M M states (PDF- ids) on each frame that are
"special" because they appear i n the first pass lattices. However, we d id not pursue this
because it could lead to too many irrelevant tokens being kept in the beam. Instead, we
chose to identify those paths through the second-pass decoding graph that correspond to
paths i n the first-pass lattice. We implemented this as a separate step, outside of the decoder
code. It takes the standard output lattice from the first pass, and processes it into something
we cal l an arc-lattice, whose symbols identify arcs (see below) i n our second-pass decoding

7 6

Figure 5.12: Histogram of score differences: Shown are the scores of the current best partial
path at each frame minus the partial score of the path that is going to be the final best path, not
necessarily the correct one (decode beam 13.0, WSJ Nov'92 test set at WER 10.8%).

graph H C L G 2 n d - We explain the arc-lattice generation process below (Section 5.4.3).
The second-pass decoder, which we w i l l refer to as our tracking decoder, is a lattice-

generating decoder that takes an extra i npu t 5 , namely the arc-lattices for each utterance.
Let a token be a record of a part icular state in H C L G that is active on a part icular frame.
Our t racking decoder gives tokens an extra, Boolean property that identifies whether they
are tracked or not. A tracked token is one that corresponds to a state i n the arc-lattice.
Tracked tokens are never pruned. Tracked tokens are also used to determine the pruning
beam used on each frame.

5.4.2 Beam-width policy

For the second-pass decoding w i t h the t racking decoder, we use the tracked tokens to
determine the beam wid th to use for each frame. Here we describe the pol icy we use to
set the beam width . The decoder has three configurable values that specify how it sets the
frame-specific beam: the beam, the max-beam and the extra-beam. O n a part icular frame,
let the score difference between the highest-score token and the lowest-score tracked token
be D. Then the beam wid th on that frame is given by:

max(beam, min(max-beam, D + extra-beam)).

Figure 5.13 illustrates the beam wid th policy. Unless otherwise specified we let extra-beam
be zero and max-beam be large 6 ; we t ry various values of the beam for our experiments
here 7 .

5Usually, inputs are the decoding graph HCLG, the acoustic model and the acoustic features.
6This is system-specific. We e.g. selected 100 for this task in Kaldi, although this may be too large.
7For a few utterances, the decoding does not terminate in a final state, when decoding with a small

beam. This poses a problem for the reversal and the creation of the arc-lattice. In these cases, we used an
increased final-beam to not prune away the path that leads to the final state.

7 7

1st pass be

time (reversed)

(a) single pass backwards

I Good Score

| Bad Score

Backward Beam

— — Backward Path

Correct Path

• Wrong Word

Correct Word

40 Time / State

[~̂ \ Good Score

| Bad Score

Forward Beam

— — Forward Path

Correct Path

~3<^ Wrong Word

! Correct Word

40 Time / State

| Good Score

| Bad Score

Forward Beam

Forward Path

Wrong Word

Correct Word

time
(c) 1st backwards, 2nd forwards 40 Time / State

Figure 5.13: Tracked decoding example illustrating the beam width policy. The illustration of
forward and backward search is repeated from figure 5.2 [Nolden et al.(2013)].
a) Single pass backward decoding in reversed time direction; shows the accumulated scores of the
best path. Towards the left, the partial acoustic scores are worse, thus the accumulated log-scores
increase faster (solid line: score of best path, dashed: plus beam width).
b) Single pass forward decoding. At the beginning good acoustic scores, but towards the end the
partial log-scores increase faster. The overall path is worse due to pruning.
c) Backward-forward tracked decoding: Paths in the first pass lattice (red) are time-reversed and
tracked. Since the scores of the tracked tokens are farther off than the initial 2nd pass beam, the beam
is increased to include all tracked tokens, plus an extra beam. If the beam exceeds the max-beam, it
is not further increased, but all tracked tokens are still kept.

7 8

Regardless of the beam-width, we never prune away the tracked tokens. Note that
even i f we keep the beam equal to the single pass beam dur ing the tracked second pass, our
method is doing more than s imply choosing the best path from two (forward and backward)
passes, because for paths found by the first-pass search, it is possible to "recombine" wi th
paths that were found by the second-pass search. Some parts of the utterance might have
scores similar to figure 5.13, i.e. be advantageous for backwards decoding; other parts might
have the opposite characteristic. If par t ia l paths of tracked tokens and second-pass tokens
meet i n the same state, they can recombine and thus we would continue decoding the rest
of the utterance wi th the m a x i m u m of the two par t ia l scores (likelihoods). Therefore, the
combined path can have a better score than either two single paths.

5.4.3 Generation of the arc-lattice

A s mentioned above, the arc-lattice is a special k ind of lattice that allows us to identify
arcs in H C L G 2 n d that were present i n the first-pass lattice. Th is means there is a path
in the lattice, that went through the corresponding state in H C L G i s t at the given time.
The arc-lattice is an acceptor F S T , i.e. it has only one symbol on each arc. These symbols
correspond to arcs i n H C L G 2 n d - We first construct a mapping between integers and the
ind iv idua l arcs i n H C L G 2 n d ; this involves creating tables for mapping pairs of (node, arc)
to integers, because the product of (^states) x (maximum #arcs) may be greater than the
32-bit integer range.

We now describe how we create the arc-lattice. F i r s t , let us point out that the standard
K a l d i lattices [Povey et al.(2012)] (and also H C L G) are W F S T s whose input symbols cor
respond to integers called transition-ids and whose output symbols correspond to words.
The transition-ids may be mapped to PDF-ids, which correspond to context-dependent
H M M - s t a t e s (the transition-ids contain more information about the exact t ransi t ion used,
but this is not needed here). We first map the transition-ids in the input lattice to P D F -
ids, and also map the input symbols of H C L G 2 n d from transition-ids to P D F - i d s . This is
necessary because the order of self-loops versus "forward transitions" on the forward versus
backward graphs differ, which makes the sequences of transition-ids differ even for paths
that are "really" the same; this issue does not arise w i th P D F - i d s . We then change the out
put symbols of H C L G 2 n d (which were previously words) to symbols identifying the arc in
H C L G 2 n d (integer mapping to (node,arc) pair) . Let the resulting F S T be called H C L G a r c ;
it has the same structure as H C L G 2 n d but different labels on the arcs.

After doing the symbol mappings described above, we reverse the first-pass lattice
LATist to retrieve the labels in reversed t ime order and obtain LATrev. We map the
input labels from transition-ids to P D F - i d s to correct for the self-loop order, "project it
on the input" , which means we keep only the input labels (PDF- ids) and then we remove
the weights (they w i l l be contained in H C L G 2 n d) a n d remove epsilon arcs. Now, we can
compose LATrev o H C L G a r c to obtain a transducer from P D F - i d sequences i n the lattice
(input) to sequences of symbols for H C L G 2 n d arcs (output).

Lattice-determinization [Povey et al.(2012)] is an operation i n a special semi-ring, that
keeps only the best path for a symbol sequence (e.g. the best segmentation), but it is as
signed the weight of a l l paths wi th that symbol sequence. We apply latt ice-determinization
on the resulting transducer to retain only the best path for each sequence of P D F - i d s in the
lattice. A s a result, for each sequence of P D F - i d s , we have a single path of H C L G 2 n d arcs.
Then , we project on the output, i.e. we keep only the output labels corresponding to arcs

79

in HCLG2nd) and we determinize aga in 8 - this t ime on the output labels, i.e. we keep only
the best path for each arc sequence. The result is an acceptor lattice for H C L G 2 n d arcs
which we cal l LATarc. Since the first-pass lattice contains the alignments (the sequence
of P D F - i d s) , also the resulting arc-lattice contains t iming information (it is a trellis). The
t iming information is represented i n sequences of HCLG2nd-arcs . For example, we see se
quences of repeated arcs on self-loops, followed by a forward arc. A l g o r i t h m 2 summarizes
the arc-lattice generation.

A l g o r i t h m 2 Generation of arc-lattices (graph-state-lattices):

1. M a p HCLG2nd to P D F - t o - A r c transducer HCLGarc:

(a) HCLG2nd '• transduces P D F - i d s into words
(b) Encode HCLG2nd (node-id, arc-id) into output symbols.
(c) M a p input to be self-loop order independent.

2. M a p first-pass lattice LATist to LATrev:

(a) M a p input (self-loops), project on input, remove weights.
(b) T ime reverse lattice and remove epsilons.

3. Compose: LATarc = LATrev o HCLGarc:

(a) Obtains sequences of HCLG2nd arcs for P D F sequence in lattice.
(b) det(LATarc): Latt ice-determinize (on P D F - i d s) in special semi-ring
—>• single HCLG2nd pa th left for each sequence of P D F s .
(c) Project to HCLG2nd (node, arc) symbols, determinize again.

—>• The output is an acceptor lattice for HCLG2nd graph arcs.

Dur ing decoding, a token is tracked and never pruned i f it was reached by a sequence
of HCLG2nd-arcs in the arc-lattice that correspond to a path in the first pass lattice. We
could th ink of it i n this way, that at each t ime step, there is a set of states, which we should
keep i n any circumstances. Since we explore backwards and wi th a wider beam than in the
forward pass, it is possible that these states are reached by other paths than those used in
the arc-lattice, and that these paths (and their corresponding tokens) have a better score
than the those following the arc-lattice. In this case, the tokens recombine, i.e. we only
keep the better token. We implemented it in this way, that the winning token inherits the
status of being tracked, so that we s t i l l keep tracking the path.

It needs to be pointed out, that the implementat ion wi th the external creation of the
arc-lattices is just one possibility. It would be also possible to compute a mapping of
graph states between H C L G i s t and H C L G 2 n d at the t ime of graph construction, and to
provide this mapping together w i th the two graphs as input to the tracked decoding. This
implementation has the advantage, that fewer changes to the decoder had to be made, and
that the memory consumption is smaller.

8Using the standard determinization algorithm.

80

5.4.4 Experimental results

We tested the proposed forward-backward tracked decoding on the W a l l Street Journal
(WSJ) November'92 open-vocabulary test set (333 utterances) using a standard tri-phone
H M M + G M M system (K a l d i recipe ' t r i2a ' [Povey et al.(2011)], t rained on the 'si84' por t ion
of W S J) . The experiments were conducted wi th the extended 146k vocabulary using the
pruned tr i -gram language model 'bd. tgpr ' that was trained on al l W S J t ra ining texts. The
lattices [Povey et al.(2012)] were generated w i t h a lattice beam of 4.0.

We can detect and evaluate search errors by aligning the recognition outputs to a
decoding w i t h a very wide beam. We align the results of both forward and (reversed)
backward decodings wi th the wide-beam-decoding. Table 5.1 shows an example of such an
alignment. We implemented a 4D-Levenshtein edit-distance algori thm for that purpose.
Table 5.2 confirms the in tui t ion that forward and backward search errors are independent.
W i t h the help of the tracked forward-backward decoding, most of the search errors were
eliminated.

f : BRIAN J . KILLING CHAIRMAN OF BELL - ATLANTA X. INVESTMENT
S S

b: BRIAN J . DAILY CHAIRMAN OF BELL AND LAND SIX INVESTMENT
I S S

p: BRIAN J . DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT

w: BRIAN J . DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT
r: BRIAN J . KELLY CHAIRMAN OF BELL - ATLANTIC'S INVESTMENT

Table 5.1: Analysis of search errors on the WSJ Nov'92 test set by aligning forward and backward
search errors (with beam 11.0) against a decoding with a wide beam (29.0).
Shown are the outputs of forward decoding (f), backwards decoding (b) and forward-backward 'ping-
pong' decoding (p), aligned to a decoding with very wide beam (w) and reference transcription (r).
The search errors are indicated by 'ľ for insertion, 'S' for substitution and '-'for deletion.

beam width forward errors backward errors co-occur ping-pong
11.0 144 230 32 14
13.0 84 108 14 6

Table 5.2: Analysis of search errors on WSJ Nov'92 test set by aligning against a wide beam
(29.0). The co-occurrence of an error ('co-occur') means that both, forward and backward pass,
made an error in the same alignment position. It does not necessarily mean that both produced
the same error. With two-pass 'pingpong' decoding, all independent search errors were corrected
(all those that are not co-occurring), and even a good portion of the co-occurring errors could be
removed.

We measured the to ta l elapsed t ime for the two-pass forward and backward (tracked)
decoding and relate it to the word error rate (W E R) . The real-time factor was measured on
a single core of an Intel(R) C P U i5-2500 (3 .3GHz, 8 G B R A M) . The results i n figure 5.14
show, that for the lowest word error rates (W E R < 10.5), the two-pass tracked decoding
runs about 2-3 times faster than the ind iv idua l forward/backward passes at the same W E R .
This corresponds to the "more accurate" operating points of decoding where search errors
are small . However, i n this setup, the speed-ups are diminishing for operating points faster
than « 0.6 real-time using our method. The issue seems to be that if the beams are

81

5

4.5

4 -

- \

N

rt wer forward
rt wer backward -

rt wer pingpong 2*beam var
rt wer pingpong noextra

0.5 -

0
10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

word error rate

Figure 5.14: Performance of tracked decoding: Shown are curves for word error rate vs. real-time
factor on the WSJNov'92 test set. For single-pass decodings, the beam varies between 10-18, for the
two-pass ('pingpong') decoding the beam varies between 7-13. We used extrabeam = 0 and found
maxbeam = 2-beam as a good compromise between speed and accuracy. The lattice-beam is 4.0, but
for beam < 10.0 we decrease it step-wise by 0.5 down to 0.5. As will be explained in section 5.4-5:
We compare the variable-beam decoding ('2beam var', orange) to a decoding without generating
extra tokens in the variable beam ('noextra', red) by setting maxbeam = beam, which shows the
additional benefit of the variable beam over just combining lattices of forward and backward passes.

too narrow, the two decoding passes disagree substantially and too much effort is spent in
decoding wi th a widened beam i n areas that disagree. A l so , [Nolden et al.(2013)] points out
that a too narrow beam could lead to a degenerated search, where both passes produce the
same errors (e.g. focussing on silence and noise models, which are symmetric) . The W E R
curve i n hgure 5.14 is not always smooth, which points to the fact that hxing a search error
does not necessarily mean hxing a word error.

5.4.5 I m p o r t a n c e of b e a m parameters

The proposed decoder has several parameters to tune: forward beam, backward beam,
lattice-beam, extra-beam and max-beam. This section analyzes the importance and typical
settings for those parameters. Since the W E R - R T F curves for single-pass forward and
backward decodings are similar, we typical ly set the forward beam and backward beam to
the same value. In the backward pass (tracked decoding), we have three types of tokens:

• Tokens that are generated i n the normal way wi th in the narrow beam.

• Tracked tokens, which are never pruned.

• E x t r a tokens, which are generated due to the increased variable beam, which is the
difference between the best token and the worst tracked token plus extra beam.

Look ing at the different components of the beam-width-policy (section 5.4.2), there seem
to be two strategies one could pursue: either track many tokens and t ry to combine good
forward and backward paths, while l imi t ing the generation of extra tokens, or just track

8 2

50%

backward search extra beam
forward search arc-graph tracking

Figure 5.15: Profiling the tracked two-pass decoding on a single core CPU. Shown is the percent
age of time spent in different parts of the algorithm at three operating points (beam 8.5 as optimal,
others as not optimal). The first pass is the lattice-generating 'forward search' (which is also our
single-pass baseline) and the second pass can be seen as consisting of a) normal backward decoding
(column 'backward search'), b) generating the arc-lattice ('arc-graph'), c) additionally tracking to
kens from the first pass ('tracking') and d) generating extra tokens within the increased variable beam
('extra beam'). The acoustic scores were not cached between the two passes. The contributions of
'arc-graph' and 'tracking' (together < 20%) could be possibly optimized by a better implementation,
but the two individual passes constitute a lower bound (around 70% of the time is spent there). For
beam 7.0, we used lattice-beam 1.0, and got 11.36% WER at 0.85 RTF. For beam 8.5: lattice-beam
4.0, 10.38% WER at 1.06 RTF. For beam 12.0: lattice-beam 4.0, 10.23% WER at 2.63 RTF.

few tokens and generate many extra tokens up to the variable beam difference. To analyze
the importance of the extra tokens, we can compare the proposed tracked decoding using
the variable beam (which is the distance of the best active token to the worst tracked token
plus the extra-beam) to a decoding without generating extra tokens. We can achieve this
by l imi t ing the beam to maxbeam = beam and thus effectively disabling the variable beam.
Since tokens ' tracked' by the first-pass lattice are kept anyway, this effectively corresponds to
combining the lattices of the forward and backward pass. Figure 5.14 ('2beam' vs. 'noextra')
shows that creating extra tokens wi th in the variable beam gives a substantial improvement
on top of that. Th is shows that the extra tokens are important , especially for the operating
points w i th low W E R s .

To get an insight on the op t imal size of the forward/backward beam, we profiled the
tracked decoding i n figure 5.15. We observe, that the t ime spent i n the two ind iv idua l
decoding passes (without t racking / extra tokens) is the dominant factor - thus we want to
keep this value small . However, i f we reduce the beam too much, we observe (figure 5.14
for error rates > 11.5%) that the two-pass decoding is no longer better than the single-
pass decoding. F r o m figure 5.15 we see, that for narrow beam widths, most of the t ime is
consumed in the generation of extra tokens, which effectively means decoding wi th a higher
beam. Below a certain beam wid th (11% i n figure 5.14) the error rates in the single passes
grow rapidly wi th only l i t t le R T F to gain. Th is means that the divergence between the
best paths from forward and backward decoding is too big, so that the a lgori thm has to
increase the variable beam a lot to track the first pass tokens. The max-beam parameter
l imits the variable beam, so that i n these situations, the decoding is not slowed down too

8 3

much (at the cost of higher W E R) .
W i t h an op t imal setting of the beam, we can reach a significant W E R decrease by just

generating a smal l amount of extra tokens in the variable beam ('extra beam' i n figure
5.15, opt imal around beam 8.5). Th is point corresponds to the turning point in figure
5.14 (around R T F 1.0) - it is the 'sweet spot' . Above that, though l i t t le t ime needs to be
spent for tracking and for generating extra tokens, too much time is spent i n the ind iv idua l
forward/backward decodings, and the overall R T F increases rapidly.

10 10.2 10.4 10.6 10.8 11 11.2 11.4

word error rate

Figure 5.16: Testing the extra-beam: WER vs. real-time factor on WSJ Nov'92 test set using
the bi-gram LM with 5k vocabulary. We set the parameters to lattice-beam 6.0 and max-beam 100.0
and varied the extra-beam from 0.0 to 4-0 'pingpongO.. .4'- All settings of extra-beam resulted in
very similar curves.

In an experiment using a smaller vocabulary, we tested the influence of the extra-beam
parameter. Figure 5.16 suggests, that this parameter doesn't have any significant influence.
It seems that increasing this parameter has a similar effect to s imply decoding w i t h a wider
beam. Therefore, we set the extra-beam to zero i n the further experiments (also i n figure
5.14). Now, in figure 5.17, we investigate the effect of the lattice-beam. We can see, that
pruning the lattice wi th different beams and generating the corresponding arc-lattice has
mainly the effect, that larger lattices result i n higher R T F , visible i n the area wi th the
higher W E R . Thus, we want to make the lattices as smal l as possible. However, for the
most accurate operating points w i th low W E R , we want to have a wider lattice that is more
likely to contain the best path. Figure 5.17 suggests that it seems to be a good strategy to
increase the latt ice-beam linearly w i th the beam. We can set an upper bound of 4.0, which
is enough to get good results i n re-scoring the lattice.

Final ly , after tuning al l other parameters, we investigate different settings of the max-
beam parameter. Figure 5.18 suggests, that the exact setting of the parameter max-beam
doesn't influence the potential speed-up of the technique (the 'sweet-spot'), but mainly
influences the shape of the curve from the 'sweet spot' towards the higher W E R . Us ing no
l imi t for the beam even for huge divergences between forward and backward pass seems
wasteful. Therefore, it seems to be reasonable (figure 5.18) to increase the max-beam slowly
wi th increasing beam. Once a reasonable beam has been reached, the divergence between
forward and backward passes gets smaller, and the max-beam is no longer needed.

84

4

3.5

3

2.5

2

1.5

1

0.5

1 1
"rt_wer_pingpong4"
"rt_wer_pingpong5" -"rt_\

"rt_wer
«er_pingpon
pingpong\

g6" -
/ar"

10 10.2 10.4 10.6 10.8

word error rate

11 11.2 11.4

Figure 5.17: Analyzing the effect of the lattice-beam on WSJ Nov'92 test set using the big bi-gram
LM with 147k vocabulary. We set the parameters to extrabeam = 0.0 and maxbeam = 100.0 and
varied the lattice-beam from 4-0 to 6.0 (curves 'pingpong{4,5,6}'). Then, we tried increasing the
lattice beam linearly from 0.5 to 5.0 (curve 'pingpong-var'), i.e. we started with lattice-beam 0.5 at
beam 6.5 and increased it until we had 5.0 at beam 11.0.

3.5

2.5

1.5

0.5

I I I

pingpong max100 var
pingpong max20 var —

K 1 iy|-»wi iy c- L / c a i 11 v a

i

10 10.2 10.4 10.6 10.8 11

word error rate

11.2 11.4 11.6 11.8

Figure 5.18: Analyzing the effect of different max-beam settings on WSJ Nov'92 test set using the
big bi-gram LM with 147k vocabulary. As already explored, we set the parameters to extrabeam = 0.0
and linearly increased the lattice-beam from 0.5 to a maximum of 4-0. Now, we compare three
strategies of setting max-beam: a) using a fixed max-beam of 100.0 b) using a fixed max-beam
of 20.0 c) changing the max-beam linearly with the beam: maxbeam = 2 • beam. We also tried
maxbeam = beam, which had slightly worse performance for WER > 11.0. We see, that using a
fixed maxbeam leads to a slight increase of RTF for the lowest WER, which indicates, that too many
extra tokens are generated due to the variable beam.

85

5.5 Conclusions

We proposed how to integrate information from two symmetric decoding passes, decoding
forwards and then backwards i n t ime. In order to implement this we needed to construct
reverse decoding networks that assign exactly the same scores as the forward decoding.

We explored two implementations, one approach using an incremental decoding that can
be easily parallelized, and another approach that allows for a more fine-grained steering of
the beam by tracking the paths from a first-pass lattice i n the second pass. More specifically,
in the second pass of tracked decoding, we modify the pruning behavior of the decoder to
treat specially tokens that were part of successful paths i n the first pass, and to increase
the decoding beam for parts of the utterance where the forward and backward decoding
disagree. O u r decoding method results i n a roughly two to three-fold speed-up.

The proposed speed-up method can be applied in any A S R based technology, for exam
ple in the fast generation of lattices for audio indexing. The tracked decoding could be used
to generate lattices that contain certain desired paths (e.g. the reference forced alignment
for discriminative training).

Our algorithms use the W F S T approach [Mohri et al.(2008)] to speech recognition.
For the tracked decoding, other speed-up techniques such as acoustic look-ahead [Nolden
ct al.(2011)] and various types of fast acoustic score computat ion are also applicable. We
expect that those methods can be combined wi th the technique described here and bring
complementary speed-ups.

8 6

Chapter 6

Conclusions

6.1 Summary of the findings
In this thesis, we have introduced the idea of symmetr ical ly decoding forwards and back
wards in time. For tasks like L V C S R decoding, the search space cannot be explored ex
haustively. For some tasks, the pruned backward search is more efficient than the forward
search. Moreover, we showed experimentally that the search errors of forward and back
ward search are mutual ly independent. Forward search prunes based on the "history" and
backward search prunes based on the "future". To be able to concentrate on search errors
rather than on modeling errors, we require both decoding passes to be symmetric - i.e. bo th
models are equally powerful and are constructed to assign exactly the same probabilities
to hypotheses (paths, word sequences). The symmetry of both passes allows us to compare
the recognition results of forward and backward decoding. E a c h difference detects a search
error. We have shown, that for most of the t ime frames in beam search decoding, a very
narrow beam is sufficient to keep the final best path. Therefore, we are able to decode wi th
a variable beam wid th - we use a smal l baseline beam and only increase it i n places, where
the forward and backward searches disagree.

One possible realization of the variable beam wid th decoding is to run the forward and
backward passes in parallel , and to iteratively refine the decoding (by increasing the beam
width) i n places, where both passes disagree. We showed that, for about 50% of the utter
ances, the results already match after the first i teration. For the remaining utterances, the
stretches of mis-matching words (in average 1.5 per utterance) can be decoded i n parallel .
Th is approach is very similar to chunk based decoding and is a high-level technique that can
be applied addit ional ly to other coarse-grained and fine-grained parallel ization techniques.

Another realization of the variable beam wid th is the tracked decoding presented in
this thesis, which runs forward and backward decoding sequentially. D u r i n g the second
pass (tracked decoding, backwards), we are able to identify which active tokens correspond
to paths that were present i n the first-pass lattice. These are called tracked tokens and
they are never pruned, regardless of the beam wid th . We track tokens wi th an acceptor
lattice of graph-states of the backward decoding graph, which is generated from the first
pass lattice wi th a series of W F S T operations. Tracked tokens are used to determine the
variable pruning beam for each frame. In places where disagreement is detected, the beam
is increased to include a l l tracked tokens. Otherwise, i n the second pass, the same narrow
beam is used that was used i n the first pass.

Even if we don't increase the beam in the second pass, our method is doing more than
simply choosing the best path from the two passes because it is possible to "recombine"

8 7

part ia l paths from the first-pass and second-pass search (effectively combining the forward
and backward lattices). O n top of that, the variable beam leads to the generation of extra
par t ia l hypotheses i n areas where both passes disagree, which gives an addit ional speed-up.

Tracked decoding leads to a 2-3 times speed-up compared to a single pass forward
decoding. Since most of the t ime is spent i n the forward and backward decoding wi th the
narrow beam, this beam determines the possible speed-up. It should be smal l enough to
decode at least two times faster than the original single pass, and it should be wide enough
to allow for a reasonable comparison of the forward and backward search results, i.e. either
of the two passes should obtain a solution, that is at least par t ly correct. If we decrease
the beam below a cr i t ical threshold the speed-up vanishes, since an excessive amount of
extra tokens are generated. Thus, we introduce an upper l imi t to the variable beam, which
becomes effective in the areas of higher word error rates. We show that the main tuning
parameters, which are the log beam wid th and the m a x i m u m number of active tokens for
the histogram pruning, are dependent on each other.

Reversal of the recognition network

To construct the backward recognition network, it is not sufficient to apply W F S T reversal
to the forward network, since this w i l l result in highly non-deterministic structures. It is
necessary to construct reverse models for each component separately and to compose the
components i n the same way as i n the forward network. It turned out that the transducers
for H M M structure, context-dependency and pronunciat ion lexicon are rather easy to re
verse, however, the reversal of the L M transducer is difficult. The stochasticity of outgoing
arcs w i l l not be satisfied when reversing the model, i.e. the opt imal weight dis t r ibut ion for
backward search is different from the one used i n forward search. Therefore, we have to
apply weight pushing to the reversed components. Our approach to the construction of
backward recognition networks is not l imi ted to static network decoders. Since a l l com
ponents are reversed individual ly, no change is necessary when dynamical ly composing the
components i n a dynamic network decoder.

To represent N-gram L M s as W F S T s , an approximate structure is necessary, since a
fully connected model is prohibit ive. W h e n representing back-off arcs as either failure arcs
or epsilon arcs, we actually violate the assumptions of the W F S T algorithms. Ei ther , when
using failure arcs, the semi-ring concept is changed and a new class of algorithms is needed.
O n the other hand, when approximating back-offs using epsilon arcs, non-determinism is
introduced. If the weights are taken from back-off L M s , the weight of cycles can be greater
than one and results i n an infinite to ta l weight. A general weight pushing algori thm is based
on the shortest path algori thm i n the given semi-ring. The (log) probabil i ty semi-ring is
not closed (due to cycles), therefore an approximate iterative weight pushing algori thm is
used as the standard weight pushing (e.g. i n O p e n F S T) , whose convergence depends on the
weight i n a loop, which must be smaller than one. However, this is not the case for W F S A
resulting from back-off L M s and the weight pushing algori thm w i l l not converge.

We presented an alternative weight pushing algori thm, which w i l l always converge.
Similar to the power method for finding the dominant eigenvector of a matr ix , we use
the Perron theorem to obtain the dominant right eigenvector of the transi t ion mat r ix of
an ergodic W F S T . This vector represents the m i n i m u m distance towards the final states
(stationary state distr ibut ion) , which we can use as the potential function i n re-weighting.
This results in pushing the weights towards the in i t i a l state and making the W F S A output
stochastic. More precisely, the outgoing arcs sum to the same quantity for a l l states,

8 8

which means that the to ta l weight, causing the standard algori thm to fail, is now uniformly
"smeared" a l l over the W F S A . O u r algori thm is i n practice an order of magnitude faster
than the more generic conventional weight pushing algori thm.

The most difficult component to reverse is the W F S T resulting from the back-off L M .
We require that it assigns exactly the same probabilities as the forward L M . To guarantee
an opt imal search, the backward W F S T should also be deterministic, stochastic and of
min ima l size. Thus, simple W F S T reversal is not sufficient. We derive the construction of
the backward L M satisfying these requirements, which is va l id when using exact back-off
models using failure arcs, and also when approximating them wi th epsilon arcs.

The constructive approach to obtain the backward L M consists of applying the N-gram
probabilities w i th a delay, and to switch the functions of labeled word arcs and back-off
arcs. We also explain the origin of missing N-grams, and how to represent them correctly in
the backward L M . W i t h the help of a series of weight pushing operations and representation
changes of the probabilities, where each step guarantees W F S A equivalence, we show that
our L M reversal a lgori thm can also be derived step by step. B y applying the constraint
that the joint word probabilities should be the same for the forward and backward L M for
al l N-g ram orders, we are able to show that the same algori thm can be derived from Bayes'
rule. The application of weight pushing to the resulting backward L M is crucial for opt imal
performance. We compared this 'exact' L M w i t h a backward L M resulting from training on
the reversed t ra ining texts. The performance of both is very similar, except for low word
error rates, where the exact model performs better - more closely to the forward L M .

6.2 Future work

The proposed speed-up method can be applied i n any A S R based technology, as e.g. in
the fast generation of lattices for audio indexing and the tracked decoding could be used
to generate lattices that contain desired paths, such as the forced-alignment reference for
the discriminative t ra ining of acoustic models. Add i t iona l ly to decoding forwards and
backwards i n time, depending on the task, there might be other ways of decoding, which
could result in independent search errors, and thus lead to addi t ional speed-ups.

The alternative weight pushing algori thm was derived under certain assumptions. In
particular, we assume that a l l arcs i n the W F S T are of the same type. However, there
are "emitting" arcs w i t h a word label, and "non-emitting" arcs representing e.g. the back
off arcs. A n open problem is to derive a weight pushing algori thm respecting the special
semantics of back-off arcs. Under this correct interpretation, if the back-off L M was correctly
normalized, the to ta l weight of the transducer w i l l be one, and we avoid the negative log-
probabilities resulting from pushing weights greater than one. The original K a l d i recipe for
the construction of recognition networks [Povey et al.(2011)] used the assumption, that a l l
components are stochastic, which eliminates the necessity for weight pushing. We want to
find a derivation for the exact L M reversal, which directly produces a properly normalized
stochastic W F S T .

There is some inconsistency between the algorithms for decoding graph construction,
which usually assume the log-semi-ring, and the decoding algorithms, which use the t ropical
semi-ring. Together w i th different interpretations of the failure/epsilon arcs, this opens
several dimensions of design choices, and the different options should be systematically
explored to find a consistent framework for decoding graph construction that results in an
opt imal decoding. W h e n using epsilon arcs for back-offs, the W F S T s resulting from back
off L M s introduce non-determinism to the graph, which results i n mult iple evaluations

89

of the same models dur ing decoding. It is not possible to apply determinization on the
L M transducer, since this would lead to a fully connected N-gram, which is not feasible.
However, i n a prel iminary experiment, we showed, that after the composit ion wi th the
lexicon transducer, it is possible to apply another slightly modified determinization step,
which respects the special semantics of failure arcs. The resulting transducer is bigger, but
s t i l l managable. After this step, the transducer is deterministic, and no special arcs are
needed (e.g. failure arcs) to correctly represent the back-off L M - i.e. the resulting transducer
is consistent w i th the log-semi-ring. Therefore, the resulting W F S T LG is either already
stochastic, or can be normalized wi th the weight pushing i n the log-semi-ring. Thus, many
of the problems to which we point in this thesis could be solved.

90

91

Bibliography

[Abo-Gannemhy et al.(2010)] W . Abo-Gannemhy, I. Lapidot , and H . Guterman, "Speech
recognition using combined forward and backward V i t e r b i search." i n IEEE
Convention of the Electrical and Electronic Engineers in Israel, 2010.

[Agarwal et al.(2014)] A . Agarwa l , E . Akchur in , C . Basoglu, G . Chen , S. Cyphers ,
J . Droppo, A . Eversole, B . Guenter, M . Hi l lebrand, R . Hoens, X . Huang, Z . Huang,
V . Ivanov, A . Kamenev, P . Kranen , O . Kuchaiev, W . Manousek, A . May, B . M i t r a ,
O . Nano, G . Navarro, A . Or lov, M . Padmilac , H . Parthasarathi , B . Peng,
A . Reznichenko, F . Seide, M . L . Seltzer, M . Slaney, A . Stolcke, Y . Wang, H . Wang,
K . Yao , D . Y u , Y . Zhang, and G . Zweig, " A n introduct ion to computat ional networks
and the computat ional network toolki t ." Tech. Rep . MSR-TR-2014-112 , August
2014. [Online]. Available:
http:/ /research.microsoft .com/apps/pubs/default .aspx?id=226641

[Aho and Corasick(1975)] A . V . A h o and M . J . Corasick, "Efficient string matching: an
aid to bibliographic search." Communications of the ACM, vol . 18, no. 6, pp.
333-340, 1975.

[Allauzen et al.(2003)] C . Al lauzen , M . M o h r i , and B . Roark, "Generalized algorithms for
constructing statist ical language models." in Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics - Volume 1, ser. A C L '03.
Stroudsburg, P A , U S A : Associa t ion for Computa t iona l Linguist ics , 2003, pp. 40-47.

[Allauzen et al.(2004)] C . Al lauzen , M . M o h r i , M . Riley, and B . Roark, " A generalized
construction of integrated speech recognition transducers." in Proceedings IEEE
International Conference on Acoustics, Speech, and Signal Processing, 2004-
(ICASSP '04), vol . 1, M a y 2004, pp. 1-761-4 vol.1.

[Austin et al.(1991)] S. A u s t i n , R . Schwartz, and P . Placeway, "The forward-backward
search algori thm." in Proc. ICASSP, 1991, pp. 697-700.

[Bellman(1952)] R . Be l lman , " O n the theory of dynamic programming." Proceedings of
the National Academy of Sciences, vol . 38, no. 8, pp. 716-719, 1952.

[Berger et al.(1996)] A . L . Berger, V . J . D . P ie t ra , and S. A . D . P ie t ra , " A max imum
entropy approach to natural language processing." Computational Linguistics, vol .
22, number 1, pp. 39-71, 1996.

[Berman and Shaked-Monderer(2012)] A . Be rman and N . Shaked-Monderer,
"Non-negative matrices and digraphs." i n Computational Complexity, R . A . Meyers,
E d . Springer New York , 2012, pp. 2082-2095.

92

http://research.microsoft.com/apps/pubs/default.aspx?id=226641

[Cardinal et al.(2013)] P . Card ina l , P . Dumouchel , and G . Boulianne, "Large vocabulary
speech recognition on parallel architectures." IEEE Transactions on Audio, Speech,
and Language Processing, vol . 21, no. 11, pp. 2290-2300, Nov 2013.

[Chong et al.(2009)] J . Chong, E . Gonina , Y . Y i , and K . Keutzer , " A fully data parallel
W F S T - b a s e d large vocabulary continuous speech recognition on a graphics
processing unit ." in Interspeech 2009, 10th Annual Conference of the International
Speech Communication Association, September 2009.

[Cormen et al.(2009)] T . H . Cormen, C . E . Leiserson, R . L . Rivest , and C . Stein,
Introduction to Algorithms, Third Edition. M I T press, 2009.

[Davidson et al.(2014)] A . Davidson, S. Baxter , M . Gar land , and J . D . Owens,
"Work-efficient parallel G P U methods for single-source shortest paths." i n 2014
IEEE 28th International Parallel and Distributed Processing Symposium. I E E E ,
2014, pp. 349-359.

[Dixon et al.(2009)] P . D i x o n , T . Oonishi , and S. Furu i , "Fast acoustic computations
using graphics processors." i n ICASSP 2009. IEEE International Conference on
Acoustics, Speech and Signal Processing, A p r i l 2009, pp. 4321-4324.

[Fiscus(1997)] J . G . Fiscus, " A post-processing system to yie ld reduced word error rates:
Recognizer Output Vo t ing Er ro r Reduct ion (R O V E R) . " i n Proceedings 1997 IEEE
Workshop on Automatic Speech Recognition and Understanding, Dec 1997, pp.
347-354.

[Gibbons(1985)] A . Gibbons , Algorithmic graph theory. Cambridge Univers i ty Press,
1985.

[Grinstead and Snell(1997)] C . M . Grinstead and J . L . Snell , Introduction to Probability,
2nd ed. Amer i can Mathemat ica l Society, G N U General P u b l i c License, Ju ly 1997.

[Hannemann et al.(2013)] M . Hannemann, D . Povey, and G . Zweig, "Combin ing Forward
and Backward Search i n Decoding." in Proc. ICASSP 2013, 2013, pp. 6739-6743.
[Online]. Available: ht tp: / /www.fi t .vutbr .cz/research/view'pub.php.en?id=10324

[Horowitz et al.(2005)] M . Horowitz , E . A l o n , D . P a t i l , S. Naffziger, R . K u m a r , and
K . Bernstein, "Scaling, power, and the future of C M O S . " i n Electron Devices
Meeting, 2005. IEDM Technical Digest. IEEE International. I E E E , 2005, pp. 7-pp.

[Jouvet and Fohr(2013b)] D . Jouvet and D . Fohr, "Combin ing Forward-based and
Backward-based Decoders for Improved Speech Recogni t ion Performance." in Proc.
Interspeech 2013 - 14th Annual Conference of the International Speech
Communication Association, 2013.

[Jouvet and Fohr(2014)] —, "About Combin ing Forward and Backward-Based
Decoders for Selecting D a t a for Unsupervised Training of Acoust ic Models ." i n Proc.
Interspeech 2014, 2014, pp. 815-819.

[Jouvet and Fohr(2013a)] —, "Analysis and Combina t ion of Forward and Backward
Based Decoders for Improved Speech Transcript ion." i n Text, Speech, and Dialogue,
ser. Lecture Notes in Computer Science, I. Habernal and V . M a t o u š e k , Eds .

93

http://www.fit

Springer B e r l i n Heidelberg, 2013, vol . 8082, pp. 84-91. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40585-3'12

[Katz(1987)] S. M . K a t z , "Es t imat ion of probabilities from sparse data for the language
model component of a speech recognizer." in IEEE Transactions on Acoustics,
Speech and Signal Processing, vol . 35(3), 1987, pp. 400-401.

[K i m et al.(2012)] J . K i m , J . Chong, and I. Lane, "Efficient O n - T h e - F l y Hypothesis
Rescoring i n a H y b r i d G P U / C P U - b a s e d Large Vocabulary Continuous Speech
Recognit ion Engine." i n Proc. Interspeech, 2012, pp. 1183-1186.

[Kneser and Ney(1995)] R . Kneser and H . Ney, "Improved backing-off for M - g r a m
language modeling." in Proc. ICASSP-95, International Conference on Acoustics,
Speech, and Signal Processing, vol . 1, M a y 1995, pp. 181-184.

[Kuich and Salomaa(1986)] W . K u i c h and A . Salomaa, "Semirings, Au toma ta ,
Languages." in EATCS Monographs on Theoretical Computer Science, vol . N o . 5.
Springer-Verlag, Ber l in , Germany, 1986.

[Lee and Kawahara(2009)] A . Lee and T . Kawahara , "Recent development of open-source
speech recognition engine Julius." i n Proc. APSIPA Annual Summit and Conference,
2009.

[Lee et al.(1998)] A . Lee, T . Kawahara , and S. Doshi ta , " A n efficient two-pass search
algori thm using word trellis index." i n Proc. ICSLP, 1998.

[Lehmann(1977)] D . J . Lehmann, "Algebraic structures for transitive closure."
Theoretical Computer Science, vol . 4, pp. 59-76, 1977.

[Li et al.(2009)] T . L i , W . X u , J . Pan , and Y . Y a n , "Improving automatic speech
recognizer of voice search using system combination." i n Sixth International
Conference on Fuzzy Systems and Knowledge Discovery, 2009. FSKD '09, vol . 4,
A u g 2009, pp. 477-480.

[Lowerre(1976)] B . Lowerre, "The Harpy Speech Recogni t ion System." P h . D . dissertation,
Carnegie M e l l o n University, 1976.

[Maleki et al.(2014)] S. M a l e k i , M . Musuva th i , and T. Mytkowicz , "Paral lel izing Dynamic
Programming Through R a n k Convergence." i n Proc. ACM PPoPP'14- A C M
S I G P L A N Sympos ium on Principles and Pract ice of Para l le l P rogramming (P P o P P) ,
February 2014. [Online]. Available:
http:/ /research.microsoft .com/apps/pubs/default .aspx?id=208241

[Meyer and Sanders(2003)] U . Meyer and P . Sanders, "A-stepping: a parallelizable
shortest path algori thm." Journal of Algorithms, vol . 49, no. 1, pp. 114-152, 2003,
1998 European Sympos ium on Algor i thms.

[Mohri(2002)] M . M o h r i , "Semiring frameworks and algorithms for shortest-distance
problems." Journal of Automata, Languages and Combinatorics, vol . 7, pp. 321-350,
M a r c h 2002.

[Mohri(1997)] —, "Finite-state transducers i n language and speech processing."
Computational linguistics, vol . 23, no. 2, pp. 269-311, 1997.

94

http://dx.doi.org/10.1007/978-
http://research.microsoft.com/apps/pubs/default.aspx?id=208241

[Mohri and Riley(2001)] M . M o h r i and M . Riley, " A Weight Push ing A l g o r i t h m for Large
Vocabulary Speech Recognit ion." in Proc. Eurospeech 2001, 7th European
Conference on Speech Communication and Technology, 2001.

[Mohri et al.(2008)] M . M o h r i , F . C . N . Pereira, and M . Riley, "Speech recognition wi th
weighted hnite-state transducers." in Handbook on Speech Processing and Speech
Communication, Part E: Speech recognition, L . Rabiner and F . Juang, Eds .
Heidelberg, Germany: Springer-Verlag, 2008, p. 31.

[Murveit et al.(1993)] H . Murve i t , J . W . Butzberger, V . V . Digalakis , and M . Weintraub,
"Large-vocabulary dicta t ion using SRI ' s decipher speech recognition system:
Progressive search techniques." in Proc. ICASSP Vol. 2, 1993, pp. 319-322.

[Nguyen et al.(1993)] L . Nguyen, R . Schwartz, F . K u b a l a , and P . Placeway, "Search
algorithms for software-only real-time recognition wi th very large vocabularies." in
Proceedings of the Workshop on Human Language Technology, 1993, pp. 91-95.

[Nolden et al.(2011)] D . Nolden, R . Schlü te r , and H . Ney, "Acoust ic look-ahead for more
efficient decoding i n L V C S R . " i n Proc. Interspeech, 2011.

[Nolden et al.(2012)] —, "Extended search space pruning i n L V C S R . " i n Proc.
ICASSP. I E E E , 2012.

[Nolden et al.(2013)] —, "Efficient nearly error-less L V C S R decoding based on
incremental forward and backward passes." in Proceedings ASRU 2013, IEEE
Workshop on Automatic Speech Recognition and Understanding, 2013, pp. 1-6.

[Ortmanns et al.(1996)] S. Ortmanns, H . Ney, and A . E iden , "Language-model look-ahead
for large vocabulary speech recognition." i n Proc. ICSLP 96, Fourth International
Conference on Spoken Language Processing, vol . 4, Oct 1996, pp. 2095-2098.

[Parihar and Hansen(2008)] N . Par ihar and E . Hansen, " A lexical-tree division-based
approach to parallel izing a cross-word speech decoder for multi-core processors." i n
EUSIPCO 2008, 16th European Signal Processing Conference, A u g 2008, pp. 1-5.

[Paul and Baker(1992)] D . B . P a u l and J . M . Baker, "The Design for the W a l l Street
Journal-based C S R Corpus." in DARPA Speech and Language Workshop. M o r g a n
Kaufmann Publishers, 1992.

[Phillips and Rogers(1999)] S. Ph i l l ips and A . Rogers, "Paral lel speech recognition."
International Journal of Parallel Programming, vol . 27, no. 4, pp. 257-288, 1999.

[Povey et al.(2011)] D . Povey, A . Ghoshal , G . Boulianne, L . B ü r g e t , O . Glembek,
N . Goe l , M . Hannemann, P . Mot l icek , Y . Qian , P . Schwarz, J . Silovsky, G . Stemmer,
and K . Vesely, "The K a l d i speech recognition toolki t ." in Proc. ASRU. I E E E , 2011.

[Povey et al.(2012)] D . Povey, M . Hannemann, G . Boulianne, L . B ü r g e t , A . Ghoshal ,
M . Janda, M . Karaf ia t , S. K o m b r i n k , P . Mot l icek , Y . Quian , N . Thang V u ,
K . Riedhammer, and K . Vesely, "Generating exact lattices in the W F S T framework."
in Proc. ICASSP. I E E E , 2012, pp. 4213-4216.

95

[Soltau and Saon(2009)] H . Soltau and G . Saon, "Dynamic network decoding revisited."
in Proc. ASRU 2009, IEEE Workshop on Automatic Speech Recognition
Understanding, Nov 2009, pp. 276-281.

[Steinbiss et al.(1994)] V . Steinbiss, B . - H . Tran, and H . Ney, "Improvements i n beam
search." in Proc. ICSLP, vol . 94, no. 4, 1994, pp. 2143-2146.

[Stolcke(1998)] A . Stolcke, "Entropy-based pruning of backoff language models." in
Proceedings DARPA Broadcast News Transcription and Understanding Workshop.
Morgan Kaufmann , February 1998, pp. 270-274.

[Tang and Cristo(2008)] M . Tang and P . D . Cr is to , "Backward vi terbi beam search for
u t i l iz ing dynamic task complexity information." i n Proc. Interspeech, 2008, pp.
2090-2093.

[van Hamme and van Aelten(1996)] H . van Hamme and F . van Ael ten , " A n
adaptive-beam pruning technique for continuous speech recognition." in Proc. ICSLP
96, Fourth International Conference on Spoken Language Processing, vol . 4, Oct
1996, pp. 2083-2086.

[Viterbi(1967)] A . V i t e rb i , "Error bounds for convolutional codes and an asymptotical ly
op t imum decoding algori thm." IEEE Transactions on Information Theory, vol . 13,
no. 2, pp. 260-269, A p r i l 1967.

[You et al.(2009)] K . Y o u , J . Chong, Y . Y i , E . Gonina , C . J . Hughes, Y . - K . Chen ,
W . Sung, and K . Keutzer , "Paral lel scalabili ty i n speech recognition." IEEE Signal
Processing Magazine, vol . 26, no. 6, pp. 124-135, November 2009.

[Young et al.(1989)] S. J . Young , N . Russell , and J . Thornton, Token passing: a simple
conceptual model for connected speech recognition systems. Cambridge Univers i ty
Engineering Department Cambridge, U K , 1989.

[Young et al.(2006)] S. Young , G . Evermann, M . Gales, T . H a i n , D . Kershaw, X . A . L i u ,
G . Moore , J . Odel l , D . Ollason, D . Povey, V . Valtchev, and P . Woodland , "The H T K
Book. Revised for H T K Version 3.4." 2006.

96

Appendix A

Scripts and executables in the
Kaldi toolkit

Most of the algorithms and recipes described in this thesis have been integrated into the
K a l d i toolki t . The master script invoking the scripts for single pass backward and two-pass
tracked decoding can be found i n e g s / w s j / s 5 / l o c a l / r u n _ f w d b w d . sh .

However, since the u t i l s / directory is l inked to a l l experiment directories e g s / , the
described scripts can be accessed from al l recipes. D u r i n g the preparation of the train
ing/decoding directories, the first step is to reverse the lexicon. This is done wi th pro
v id ing the — r e v e r s e option to u t i l s / p r e p a r e _ l a n g . s h . For the preparation of
the decoding directory, we use the script u t i l s / r e v e r s e _ l m . s h , which creates a new
l a n g _ t e s t / directory w i t h the reversed L M transducer. It is very similar to the normal
u t i l s / p r e p a r e _ l a n g _ t e s t . sh , i.e. creating the L M W F S T wi th s r c / b i n / a r p a 2 f s t ,
however, the heart of it is a ca l l to u t i l s / r e v e r s e _ a r p a . p y , which takes as input a
textual L M i n A R P A format and outputs the exactly reversed L M in A R P A format. In
this python script, we first read the A R P A file, add missing N-grams (section 4.3) and i n a
second pass we create the backward L M .

A t the end of u t i l s / r e v e r s e _ l m . sh , we apply the alternative weight pushing algo
r i thm to make the W F S T stochastic. One part icular i ty is that a r p a 2 f s t doesn't support
the representation of back-off arcs of missing N-grams (section 4.3) in the backward L M .
Therefore, we have to manually remove these arcs. To make a sanity check that everything
went right, we can use the script u t i l s / r e v e r s e _ l m _ t e s t . s h , which generates random
word sequences from the forward L M , reverses them and checks, that they are assigned the
same scores in the forward and backward L M (including different ways of backing-off).

The last step towards the creation of a backward recognition network is to compose the
HCLG transducer from the ind iv idua l components w i th the script u t i l s / m k g r a p h . s h ,
which also has an option - - r e v e r s e . After the lexicon transducers and L M transducers
are already reversed, the only th ing left to do is the reversal of the H M M transducer - the
— r e v e r s e option is passed further to the executable s r c / b i n / m a k e - h - t r a n s d u c e r .
The relevant source code is actually i n s r c / h m m / h m m - u t i l s . c c . Here, the context
window into the decision tree is reversed (section 5.2.1), and the ind iv idua l (context-phone)
H M M s are reversed and pushed, before composing them as Ha transducer.

The forward/backward decoding is done wi th the script s t e p s / d e c o d e _ f w d b w d . s h .
In case of a simple backward decoding (using s r c / g m m b i n / g m m - l a t g e n - f a s t e r) we
use the — r e v e r s e option, and the only two things that need to be changed compared

97

to a forward decoding is the t ime reversal of the acoustic features w i t h the executable
s r c / f e a t b i n / r e v e r s e - f e a t s (where the code is actually i n
s r c / f e a t / f e a t u r e - f u n c t i o n s . cc), and the reversal of the decoded text i n the scoring
script s t e p s / s c o r e _ k a l d i . sh (called by l o c a l / s c o r e . sh).

To use the tracked decoding, we run the first pass as just described (—beam is the
baseline beam wid th and — l a t b e a m is the lattice pruning beam), and then we decode in
the opposite direction, using the — f i r s t _ p a s s opt ion as an addit ional input, followed
by the first pass decoding directory, from which we take the lattices.

The script s t e p s/decode_fwdbwd. sh has two addi t ional options --extra_beam
and —max_beam, which set the extra beam and the beam l imi t (section 5.4.2), respectively.
If the — f i r s t _ p a s s opt ion is given, we convert the first pass lattice to the graph-arc ac
ceptor lattice (section 5.4.3) and use the executable src/gmmbin/gmm-latgen-tracking
to perform the tracked decoding. A l l the necessary source code for the arc-lattice generation
is i n s r c / l a t b i n / l a t t i c e - a r c g r a p h . cc, which compiles also to the corresponding
executable.

In s r c / d e c o d e r / l a t t i c e - t r a c k i n g - d e c o d e r . {cc,h} is the implementat ion of
the t racking decoder. The arc-lattice is read as standard W F S A . The central method
L a t t i c e T r a c k i n g D e c o d e r : : Decode () gets it as an input parameter. E a c h token
(represented as a s t r u c t Token) has an addi t ional component, the state in the arc-
lattice. The main methods inside Decode () , that realize the decoding and tracking are
P r o c e s s E m i t t i n g () and P r o c e s s N o n e m i t t i n g () , which are called alternately. The
beam wid th pol icy (section 5.4.2) is implemented i n the method GetCutOf f () , where the
variable e x t r a _ c u t o f f is computed, as well as i n P r o c e s s N o n e m i t t i n g () .

98

