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Abstract 
M a n y tasks can be formulated i n the mathematical framework of weighted finite state trans
ducers ( W F S T ) . Th is is also the case for automatic speech recognition ( A S R ) . Nowadays, 
A S R makes extensive use of composed probabil ist ic models - called decoding graphs or 
recognition networks. They are constructed from the ind iv idua l components v i a W F S T 
operations like composit ion. Each component is a probabil ist ic knowledge source that con
strains the search for the best path through the composed graph - called decoding. The 
usage of a coherent framework guarantees, that the resulting automata w i l l be op t imal in 
a well-defined sense. W F S T s can be opt imized wi th the help of determinization and min
imizat ion i n a given semi-ring. The application of these algorithms results in the opt imal 
structure for un-pruned search and the op t imal dis t r ibut ion of weights for pruned search is 
achieved by applying a weight pushing algori thm. The goal of this thesis is to further de
velop the recipes and algorithms for the construction of op t imal recognition networks. We 
introduce an alternative weight pushing algori thm, that is suitable for an important class 
of models - language model transducers, or more generally cyclic W F S T s and W F S T s wi th 
failure (back-off) transitions. We also present a recipe to construct recognition networks, 
which are suitable for decoding backwards i n time, and which, at the same time, are guar
anteed to give exactly the same probabilities as the forward recognition network. For that 
purpose, we develop an algori thm for exact reversal of back-off language models and their 
corresponding language model transducers. We apply these backward recognition networks 
in an opt imizat ion technique: In a static network decoder, we use it for a two-pass decoding 
setup (forward search and backward search). Th is approach is called tracked decoding and 
allows to incorporate the first pass decoding into the second pass decoding by tracking hy
potheses from the first pass lattice. This technique results i n significant speed-ups, since it 
allows to decode wi th a variable beam width , which is most of the t ime much smaller than 
the baseline beam. We also show that it is possible to apply the algorithms in a dynamic 
network decoder by using the incrementally refining recognition setup. Th is addit ional ly 
leads to a par t ia l parallel ization of the decoding. 
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Automat i c speech recognition, L V C S R decoding, recognition networks, weighted finite state 
transducers, N-gram language models, weight pushing 
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Abstrakt 
P o m o c í m a t e m a t i c k é h o formalismu váhovaných konečných s t avových p ř e v o d n í k ů (weighted 
hnite state transducers W F S T ) m ů ž e bý t fo rmulována ř a d a ú loh vče tně a u t o m a t i c k é h o 
rozpoznáván í řeči (automatic speech recognition A S R ) . Dnešn í A S R s y s t é m y široce využí
vají s ložených p r a v d ě p o d o b n o s t n í c h m o d e l ů n a z ý v a n ý c h dekódovac í grafy nebo rozpozná 
vací s í tě . T y jsou z j edno t l i vých komponent k o n s t r u o v á n y p o m o c í W F S T operac í , n a p ř . kom
pozice. K a ž d á komponenta je zde zdrojem zna los t í a omezuje vyh ledáván í nejlepší cesty 
ve s loženém grafu v operaci zvané dekódován í . Využ i t í k o h e r e n t n í h o t eore t i ckého r á m c e 
garantuje, že výs l edná s t ruktura bude o p t i m á l n í podle def inovaného kr i t é r ia . W F S T mo
hou bý t v r á m c i d a n é h o polookruhu (semi-ring) op t ima l i zovány p o m o c í determinizace a 
minimalizace. Apl ikací t ě ch to a lg o r i tmů z í skáme o p t i m á l n í s t rukturu pro p roh ledáván í , 
o p t i m á l n í distribuce vah je pak z í skána apl ikací "weight pushing" algori tmu. Cí lem t é t o 
p ráce je zdokonalit postupy a algoritmy pro konstrukci o p t i m á l n í c h rozpoznávac ích sít í . 
Zavád íme a l t e r n a t i v n í weight pushing algoritmus, k t e r ý je v h o d n ý pro dů lež i tou t ř í d u mod
elů - p ř e v o d n í k y j azykového modelu (language model transducers) a obecně pro všechny 
cyklické W F S T a W F S T se zá ložn ími (back-off) p řechody . P ř e d s t a v u j e m e t a k é z p ů s o b 
konstrukce rozpoznávac í s í tě v h o d n é pro dekódován í z p ě t n ě v čase, k t e r é p r o k a z a t e l n ě pro
dukuje ty s a m é p r a v d ě p o d o b n o s t i jako d o p ř e d n á síť. K tomuto účelu jsme vyv inu l i algo
ritmus pro e x a k t n í reverzi back-off j azykových m o d e l ů a p ř ev o d n ík ů , k t e r é je reprezentu j í . 
P o m o c í z p ě t n ý c h rozpoznávac ích sítí optimalizujeme dekódován í : ve s t a t i c k é m d e k o d é r u je 
v y u ž í v á m e pro d v o u s t u p ň o v é dekódován í ( d o p ř e d n ě a z p ě t n é vyh l edáván í ) . Tento p ř í s t u p 

- "sledovací" dekódován í (tracked decoding) — umožňu je zahrnout výs ledky vyh l edáván í 
z p r v n í h o s t u p n ě do d r u h é h o s t u p n ě tak, že se sledují h y p o t é z y obsažené v r o z p o z n á v a c í m 
grafu (lattice) p r v n í h o s t u p n ě . V ý s l e d k e m je p o d s t a t n é zrychlení dekódován í , p ro tože tato 
technika umožňu je p r o h l e d á v a t s va r i ab i ln ím p r o h l e d á v a c í m paprskem (search beam) - ten 
je pově t š inou mnohem užší než u z á k l a d n í h o p ř í s t u p u . Ukazujeme rovněž , že uvedenou tech
n iku je m o ž n é využ í t v d y n a m i c k é m d e k o d é r u t í m , že p o s t u p n ě z j emňujeme rozpoznáván í . 
To navíc vede i k čás t ečné paralelizaci dekódován í . 
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Chapter 1 

Introduction 

1.1 Motivation: search graphs and decoding networks 
The applicat ion I had in m i n d while wr i t ing this thesis was the search for the best path 
through a composed probabil ist ic model, represented as weighted finite state acceptor 
( W F S A ) or transducer ( W F S T ) . The task can be for example the decoding of the most 
probable sequence of words i n large vocabulary automatic speech recognition ( L V C S R ) . 
However, the approach presented here can also be used in other tasks, which can be formu
lated i n the W F S T framework, as e.g. in finding the most probable sentence in statist ical 
machine translation and finding the most probable pronunciat ion of a spelled word in 
grapheme-to-phoneme conversion. 

Automat ic speech recognition ( A S R ) can be formulated in the W F S T framework [Al-
lauzen et al.(2004)], [Mohri et al.(2008)]. Nowadays, A S R makes extensive use of composed 
W F S T s , called decoding graphs or recognition networks. W F S T s are used to represent the 
language model ( L M ) , the pronunciat ion lexicon and the Hidden M a r k o v Models ( H M M ) in 
a unified framework. These component W F S T s are integrated into a single W F S T by the 
composit ion operation. E a c h component is a probabil ist ic knowledge source that constrains 
the search for the best path through the composed graph. This search is called decoding. 
The usage of a coherent framework guarantees, that the resulting automata w i l l be opti
ma l in a well defined sense. W F S T can be opt imized by operations like determinization 
and min imiza t ion in a given semi-ring. The application of these algorithms results in the 
opt imal (deterministic and minimal) structure for un-pruned search. 

A n opt imized recognition network can contain up to mill ions of states, and the resulting 
search state space (trellis) is even several orders of magnitude larger. G i v e n the complexity 
of most of the tasks, the resulting huge search spaces cannot be explored exhaustively. It 
is necessary to use heuristic pruning techniques. In this case, we have to dist inguish search 
errors, which are due to the incomplete exploration of the search space (e.g. through search 
beams and other pruning techniques), from modeling errors, which are due to insufficient 
(or bad) t ra ining data or due to inaccurate models (independence assumptions, choice of 
dis tr ibut ion, smoothing, . . . ) . In general, the goal is to reduce the amount of search errors 
at given run-time requirements (decoding speed). Th is can be achieved by operations like 
weight pushing, which a im to distribute the weights along the path i n a way that is opt imal 
for pruned search. 

The goal of this thesis is to further develop the recipes and algorithms for the con
struction of opt imal recognition networks. We a im to find the op t imal trade-off between 
improving search speed and reducing search errors. 
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1.2 Claims of the thesis 
The focus of this thesis is the construction of op t imal forward and backward recognition 
networks and the development of decoding techniques that combine forward and backward 
decoding to achieve speed-ups. We introduce the idea of symmetr ical ly decoding forwards 
and backwards i n time. For some tasks, the pruned backward search can be more efficient 
than the forward search. Moreover, we show, that the search errors of forward and backward 
search are mutual ly independent. To concentrate on search errors rather than on modeling 
errors, we require both decoding passes to be symmetric - i.e. bo th models are equally 
powerful and are constructed to assign exactly the same probabilities to hypotheses. Th is 
guarantees that each difference in comparing the results of forward and backward decoding 
corresponds to a search error. For most of the t ime frames in beam search decoding, a very 
narrow beam is sufficient. Therefore, we decode wi th a variable beam wid th - using a small 
baseline beam and only increasing it in places, where the forward and backward searches 
disagree. Decoding wi th a variable beam w i d t h results i n significant speed-ups. 

The main contributions of this thesis can be summarized i n the following points: 

• Symmetric forward and backward decoding: To speed-up the decoding, as op
posed to multi-pass recognition techniques [Nguyen et al.(1993)], we use forward and 
backward recognition passes which are equally powerful. Equa l ly powerful forward 
and backward decoding has been used before for the purpose of system combination 
[Li et al.(2009)] and confidence estimation [Jouvet and Fohr(2014)]. However, we 
require that the forward and backward recognition networks assign exactly the same 
probabil i ty scores, which allows us to detect search errors, to recombine par t ia l paths 
and to incorporate the first pass into the second pass. 

• W F S T s resulting from back-off and interpolated language models: We show, 
that the common practice to convert interpolated L M s into back-off L M s , when storing 
them i n the A R P A file format, leads to problems i n the construction of the recognition 
network i n the log-probabili ty semi-ring. We give details about the approximation 
and the correct handling of back-off arcs and explain "missing" N-grams. 

• Alternative weight pushing algorithm: We give the theoretical justification and 
explain details of the alternative weight pushing algori thm, that is suitable for an 
important class of models - language model transducers, or more generally cyclic 
W F S T s and W F S T s wi th failure (back-off) transitions. 

• Construct ion of symmetric backward recognition networks: We present a 
recipe to construct recognition networks, which are suitable for decoding backwards 
in time, fulfill the cri teria of determinism and similar size, and which, at the same 
time, are guaranteed to give exactly the same probabilit ies as the forward recognition 
network. 

• Exact back-off language model reversal: For the purpose of constructing back
ward recognition networks, we develop an algori thm for exact reversal of back-off 
language models and their corresponding language model transducers, which is val id 
for bo th types of approximations: using epsilon arcs or using failure arcs. We show 
the derivation of the formulas by a series of steps guaranteeing W F S T equivalence, 
as well as the derivation from Bayes' rule. 
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• Tracked decoding and variable beam width: We develop a two-pass decoding 
setup (forward search and backward search), that allows to incorporate the hrst pass 
decoding into the second pass decoding by tracking hypotheses from the first pass 
lattice. Th is technique allows to decode wi th a variable beam width , which is most 
of the t ime much smaller than the smallest single-pass beam at the same word error 
rate. The beam is only increased i n areas, where forward and backward decoding 
disagree. 

• Speed-up and parallelization: We have implemented the backward recognition 
networks for both static and dynamic network decoders and show experiments that 
demonstrate significant speed-ups in both cases. A p p l y i n g the incrementally refining 
recognition setup of [Nolden et al.(2013)] addit ional ly leads to a par t ia l parallel ization 
of the decoding. 

1.2.1 C o n t r i b u t i o n a n d a u t h o r s h i p 

M y work on the topic of this thesis started at the K a l d i workshop 2010, where I was 
part of the team implementing a W F S T based speech decoder. Several implementat ion 
designs were tested, finally the one from Danie l Povey was the simplest and fastest and 
was used further on as the ma in K a l d i decoder. The outcome of these efforts is described 
in the common paper [Povey ct al.(2011)]. In the K a l d i workshop 2011, I was part of 
the team, whose task was to add lattice generation to the K a l d i decoder. Aga in , several 
approaches were discussed and implemented, and the final format of the lattices was decided. 
I conducted the experiments exploring the properties of the new K a l d i lattice generation 
[Povey et al.(2012)]. 

W h i l e I was at an internship at Microsoft Research ( M S R ) , under supervision of Danie l 
Povey, we developed the technique of forward-backward decoding. The original idea came 
up i n discussions w i t h Dan ie l Povey and Geoffrey Zweig. I developed a recipe for the 
generation of backward decoding networks (section 5.2), together w i th an in i t i a l reversal 
a lgori thm for bi-gram language models and I ran a series of experiments exploring the 
properties of forward and backward decoding and an analysis of the pruning behavior of 
the K a l d i decoder. 

Dur ing the internship, my task was to come up wi th a method for guiding the second 
pass decoding wi th the results from the first pass. For that purpose, I developed the graph-
arc lattices and the algori thm to construct them from the K a l d i lattices (section 5.4.3). 
I also designed the tracked decoding algori thm (section 5.4), implemented it and ran the 
experimental val idat ion of tracked decoding on a smaller L M . 

Afterwards, I implemented the tracked decoding into the K a l d i toolki t and continued 
the experiments by switching to a larger L M . Together w i th Dan ie l Povey, we developed the 
in i t i a l reversal a lgori thm for W F S T s resulting from A R P A L M s wi th epsilon arcs. I derived 
the formulas for this approach in the first part of section 4.4. I also explained the presence of 
missing N-grams i n the L M (section 4.3) and showed how to correctly deal w i th them i n the 
forward and backward models. Th is approach for L M reversal was used i n a more thorough 
evaluation of the tracked decoding, which we published i n [Ilannemann et al.(2013)]. In this 
thesis, I also analyze the contr ibution of the different pruning parameters of the technique 
(section 5.4.5). 

Since the standard weight pushing algori thm was failing for higher order L M s , together 
wi th Danie l Povey, we discussed several approaches to weight pushing. The final idea of 
using the matr ix power method was suggested by Dan ie l Povey and Sanjeev Khudanpur 
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and first implemented into the K a l d i toolki t by Ehsan Var ian i and Pegah Ghahrmani . 
However, we only mentioned it very briefly i n [Hannemann et al.(2013)] without giving 
much explanation. In chapter 3, I provide a theoretical justification of the algori thm from 
the theory of Markov chains and non-negative matrices and explain the derivation of the 
algori thm i n detail . I generalized the algori thm to be able to push towards the final state 
and show the relation between the test for stochasticity and the propagation i n the matr ix-
vector mult ipl icat ion. 

After we published the forward-backward decoding, the authors of [Nolden et al.(2013)] 
showed that it is possible to use our recipe for generating the exactly matching back
ward models [Hannemann et al.(2013)] in an incremental forward-backward decoding setup. 
W h i l e I was at my second internship at M S R under the supervision of Jasha Droppo, to
gether w i th the authors of [Maleki et al.(2014)], we were looking for a way to implement 
the approach of [Maleki et al.(2014)] in a parallel speech decoder for L V C S R . Real iz ing the 
analogy of the approach of decoding mis-matching portions of speech [Nolden et al.(2013)] 
and the approach of decoding chunks [Maleki et al.(2014)], I implemented the incremental 
forward-backward decoding into the M S R recognizer and ran experiments to analyze the 
potential of using the incremental decoding for the parallel ization of the decoding (section 
5.3). 

Since the in i t i a l a lgori thm for the reversal of A R P A L M s was only for transducers using 
the epsilon-arc approximation for back-off arcs, together w i th Jasha Droppo, I developed 
the constructive approach for L M reversal described in section 4.2 and showed that it is 
also val id for failure arcs. Afterwards, I also derived the proof for correctness i n section 4.4 
by a series of pushing operations and the derivation of the L M reversal from Bayes' rule in 
section 4.5. 

1.2.2 S t r u c t u r e of the thesis 

This thesis is organized as follows: 

• Chapter 2 introduces the basic concepts and necessary definitions for automatic 
speech recognition, weighted finite state transducers, language models and the con
struction of recognition networks. 

• Chapter 3 provides the theoretical framework of the alternative weight pushing 
algori thm by deriving it from the theory of Markov chains and non-negatives matrices. 

• Chapter 4 describes the constructive approach for the exact reversal of back-off 
language models as well as the formal proof and derivation. 

• Chapter 5 Expla ins the application of the forward and backward recognition net
works in speed-up techniques. 

— Section 5.2 explains the construction of the symmetric backward recognition 
network from its components. 

— Section 5.3 shows experiments w i th the incremental decoding i n a dynamic 
network decoder. 

— Section 5.4 explains the tracked decoding and shows experiments exploring its 
parameters. 

• Chapter 6 Summarizes the findings in this thesis. 
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Chapter 2 

Weighted finite state transducers 
and LVCSR decoding 

2.1 Automatic speech recognition 

The task i n automatic speech recognition ( A S R ) is to recognize the words uttered in a 
segment of recorded audio and to correctly transcribe them to their corresponding textual 
word form. W = wi, ,wn is the (unknown) uttered sequence of words (usually from a 
fixed vocabulary V ) . The encoding and transmission of the audio signal introduces errors 
due acoustic deviations of the channel (microphone, telephone network, etc.). The resulting 
audio w i l l be recorded, and then some acoustic analysis (feature extraction) is performed, 
resulting i n the sequence of acoustic vectors X = xi,... ,xm, called acoustic observation. 
The task in A S R is to decode the observation X to the (possibly wrong) word sequence W . 

The dominant approach to A S R is statist ical pattern matching - i.e. to learn patterns 
from tra ining examples and for the recognition, the observation is compared against the 
trained patterns and classified according to the goodness of match. To decode an utterance, 
we search for the word sequence W wi th the m a x i m u m a-posteriori probabi l i ty ( M A P ) given 
the acoustics. Th is results in the fundamental equation of speech recognition: 

P ( W ) H X I W ) 
W = a r g m a x P ( W l X ) = a rgmax — - — , \ (2.1) 

w v 1 ' B w P ( X ) v ' 
Since the posterior probabil i ty P ( W | X ) is difficult to model, we applied Bayes' rule. 

The probabi l i ty of the observation sequence -P (X) for a part icular utterance doesn't depend 
on the hypothesized word sequence and doesn't influence the a rgmax. P ( X | W ) is called 
the acoustic model, which computes the l ikel ihood that the observation X w i l l be produced, 
when the speaker utters the words W and P ( W ) is the language model, which is the prior 
probabil i ty that the speaker utters the word sequence W . 

Commonly, the acoustic model is a hidden Markov model ( H M M , example i n figure 
2.1). A first-order H M M is defined by a finite set of states Si £ Q, the state transi t ion 
probabilities aij = P(sj\si), a set of emission symbols x £ X (in our case continuous, but 
can be also discrete) and the emission probabilit ies bi(xt) = p(xt\si). The state transitions 
P(si+i\si) model the temporal structure of speech. The sequence of states is not observed. 
The emission probabilities model the acoustic observations P(xi\si), i.e. the sequence of 
emission symbols is observed. In the H M M framework, a common approximation is to 
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Figure 2.1: Three-state left-to-right Hidden Markov Model with depicted one-dimensional 
continuous emission probabilities and a selected path through it (figure from Lukds Burget). 

search for the op t imal state sequence S instead of searching for the op t imal word sequence: 

m—1 

W » a rgmax ]J P{xi\si)P{si+1\si) (2.2) 
s 

i=0 

In the most simple case of isolated word recognition, the H M M s model whole words 
and i n decoding, the V i t e r b i a lgori thm searches for best pa th for each H M M separately, 
and then the scores of the best paths are compared. In connected speech recognition, we 
construct a composite model of the word models and the language model ( L M ) functions 
as a grammar, which constrains which words can follow each other. This is the most simple 
form of a recognition network. 

0 1 2 3 t 

Time 

Figure 2.2: Viterbi search in composite model [Young et al.(2006)]. Each word is repre
sented with a left-to-right HMM, and the final states of words are connected to the initial 
states according to the LM. The initial and final states are not tied to an observation (non-
emitting). Therefore, during decoding, the word connections are followed within the same 
time frame. 

If there are too many words in the vocabulary to reliably estimate a l l word models on 
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the t ra ining data, it is necessary to use H M M s that model sub-word units (e.g. phonemes) 
instead of whole words. In this case, we need a mapping from words to phonemes, which is 
given in the form of a pronunciat ion lexicon. We give a smal l example: 

ONE w ah n 
TWO t uw 
THREE th r i y 

Given this example pronunciation lexicon, figure 2.3 shows the corresponding simple 
recognition network for connected speech recognition w i t h phoneme sub-word units. 

Figure 2.3: Simple phoneme-based recognition network. Words are modeled by phonemes 
(sil: silence) and bi-gram probabilities are applied at word transitions (figure from Lukas 
Bürget). Each phoneme is modeled by a three-state HMM, thus in the figure, we show only 
the transitions connecting the phoneme models and words. 

In figure 2.4, we summarize the basic structure of an A S R system. The recognition 
network is a composit ion of the L M (accepting word sequences), the pronunciat ion lexi
con (mapping the words to phonemes), and the H M M structure, modeling the temporal 
structure of the phonemes. We conceptually split the H M M s into the H M M structure 
(transition probabilit ies ajj), which are considered as part of the static recognition network 
and emission probabilities bi(ot), which produce the acoustic likelihoods scores p{xi\si) for 
each frame, and are usually applied dynamical ly during the recognition. 

HMM structure pronunciation 
lexicon 

language 
model P ( W ) 

recognition network 

T 

speech input 
decoding: search for 
best hypothesis W = 
argmaxwP(W) • P ( X | W ) 

recognized text 

Figure 2.4: Components of automatic speech recognition 
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2.2 Speech recognition decoding 

The algori thm [Vitcrbi(1967)] that is used for the search for the best path through the 
recognition network belongs to the class of algorithms called dynamic programming [Bell-
man(1952)]. In this class of algorithms, we can reduce the global task of finding the best 
path, to the task of recursively solving the sub-problem of choosing the predecessor w i th 
the best par t ia l pa th up to this t ime. Figure 2.5 shows this for the V i t e r b i algori thm. 

State 

Pij = max (Vi-i,k * tkJ) 

Figure 2.5: Dependencies and parallelism in the Viterbi algorithm. Left: Viterbi algorithm 
applied to an HMM in isolated word recognition [Young et al.(2006)] Right: Dependencies 
in time-synchronous Viterbi search: The sub-problem of finding the max token in the cur
rent time step depends on all incoming arcs from the previous time step (stage) [Maleki 
et al.(20U)]. 

The V i t e r b i a lgori thm [Viterbi(1967)] is a special form of the single source shortest path 
problem (SSSP) , which has been extensively studied [Gibbons(1985)], [Cormen et al.(2009)]. 
A s seen i n the left part of figure 2.5, the search graph (in the example the H M M out-most 
left) unfolds to the trellis structure of search states, where each H M M state is copied for 
each t ime step. Often, the V i t e r b i a lgori thm is implemented as a token passing algori thm 
[Young et al.(1989)]. We think of a token as a record of a part icular state i n the H M M that 
is active on a part icular t ime frame and contains the accumulated score of the par t ia l path 
explored so far (as well as a back-pointer). 

A s opposed to figure 2.5, the search graphs used i n L V C S R (seen as composite H M M ) 
are usually huge and the resulting number of search states i n the trellis is an order of 
magnitude higher. Therefore, we would not construct the full trellis, but bu i ld it frame by 
frame. Every graph state i n a part icular t ime frame can only be reached by states from 
the previous t ime frame (figure 2.5). Th is special dependency structure is used in the time-
synchronous V i t e r b i algorithms, which are applied in the majori ty of speech decoders. The 
advantage is, that only scores of paths of the same length need to be compared, and only 
the states of the current frame need to be kept i n memory. 

Alternatively, we can represent the state transitions i n a matr ix P , where each entry 
Pij represents the sum of a l l transitions from state i to state j . G i v e n a vector of forward 
(Viterbi) probabilit ies for each state at a certain t ime, the vector of forward probabilit ies 
for the next t ime step is obtained by "mul t ip lying" the mat r ix P^ ( tropical semi-ring, 
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explained in next section 2.3). The weights of the mat r ix Pij need to be computed at each 
t ime step - the transi t ion probabilit ies are fixed, but we need to evaluate the emission 
probabilities bj(ot) given the observation at the current t ime step. Usually, the probabilities 
are computed on-the-fly by combining the so called acoustic scores (bj(ot)) w i th the so called 
graph scores (a^ , containing L M and H M M transitions). 

Due to the huge search spaces when using large vocabularies or context-dependency, it 
is usually not efficient or not possible at a l l to perform an exhaustive search. In this case, 
pruning needs to be applied (e.g. beam search [Lowerre(1976)]). The choice of an efficient 
pruning strategy is the dominant factor i n determining the recognizer speed. Typical ly , only 
a percent of the states of the search graph are active at each t ime frame and as a result, for 
the straight forward implementation, their data structures are scattered in memory, which 
leads to cache failures and slow memory access. Thus, the application of pruning changes 
the properties of the basic S S S P fundamentally and the algori thm design becomes more 
complex. 

2.3 Weighted finite state transducers 

Throughout this work, we think of weighted finite state acceptors/transducers ( W F S A / W F S T ) 
as having a set of states w i th one distinguished start s tate 1 . E a c h state has a final weight 
(or 0 (infinite cost) for non-final states) and there is a set of arcs between the states, where 
each arc has an input label (for W F S T also an output label), and a weight. Formally, we 
introduce a W F S A [Mohri(1997)], [Mohri and Riley(2001)] as: 

A = (£, Q, i, F, E, A, p) over a semi-ring ( K , ffi, <g), 0,1) (2.3) 

A semi-ring [Kuich and Salomaa(1986)] is an algebraic structure - it is a r ing that may 
lack negation. It has two associative operations © and <8> that are closed over the set K , they 
have identities 0 and 1, respectively. (8) distributes over © and 0 is an annihilator. W h e n 
the weights represent probabilities, the appropriate semi-ring is the probabi l i ty semi-ring 
(M+,+, x , 0 , 1 ) 2 . For numerical stability, often log-probabilities are used, which results in 
the log semi-ring (R U oo, ®iog, +, oo, 0) w i th Va , b G M U oo, a ®iog b = — log(exp(—a) + 
exp(—&)). W h e n we use the V i t e r b i approximation, we replace the ®iog w i t h the m i n i m u m 
and the resulting semi-ring is the t ropical semi-ring ( M + U oo, min , +, oo, 0). A special class 
of semi-rings are divisible semi-rings, i.e. Va , 6 G K , a f f i & ^ O : 3ai G K : a = (a ©6) ® a\. In 
other words, a\ is the remainder of the divis ion of a by a © 6 and we introduce the inversion 
operation: a\ = (a © 6 ) _ 1 © a. 

A W F S A is given by: 

• an alphabet or label set E 

• a finite set of states Q 

• an initial state i G Q 

• a set of final states F C Q 

• a finite set of transitions £ C Q x ( S U e ) x K x Q 

• an initial weight X 

• and a final weight p(q) 

*As used in the OpenFST toolkit: www.openfst.org 
2Sometimes, it is used in a more general sense, not limiting the numbers to between zero and one. 
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A transi t ion t = (p[i\, l[t],w[t], n[t]) G E can be represented as an arc from the source state 
p[t] to the destination state n[t], w i th the label l[t] and weight w[t], which is typical ly a 
probabil i ty (or log-probabil i ty). Transitions labeled wi th the empty string e consume no 
input. For each state q G Q, E[q] denotes the set of transitions leaving q. The transi t ion 
weights can be also represented i n form of the transi t ion matr ix P j j G \Q\ x \Q\, where 
each entry pij = w[t] contains the sum of weights of a l l transitions t from state i = p[t] to 
state j = n[t]. If no corresponding transi t ion exists, the entry is 0. 

A path in A is a sequence of consecutive transitions TT = t\... tn w i th n[£j] = p[ti+i],i = 
1 , . . . , n — 1. A successful path is a path from the in i t i a l state i to one of the final states 
/ G F. The label of a path IT is the concatenation of the labels of its constituent transitions: 
l[ir] = l[t\] .. .l[tn] and the weight associated to TT is the ^ -p roduc t of the in i t i a l weight, 
the weights of its constituent transitions and the final weight p{n[tn\) of the state / = n[tn] 
reached by TT: 

W[TT] = A <g> w[ti] <g>... <g> w[tn] <g) p(n[tn]) (2.4) 

The total weight of an W F S A is the sum of a l l successful paths from the in i t i a l state i 
to a l l of the final states F: 

wtot= 0 w[ir] (2.5) 
V-7r,p[7r]=i,n[7r] = /G.F 

A symbol sequence is accepted by A i f there exists at least one successful path TT labeled 
wi th x = 1[TT]. The weight associated by A to the sequence x is then the © - s u m of the 
weights of a l l the successful paths TT labeled w i t h x. In the same way, the weight of a set of 
paths is the © - s u m of the weights of the ind iv idua l paths. A state q is accessible i f there 
is a path from the in i t i a l state i to q. A state q is co-accessible if there is a path from q 
to a final state / G F. A W F S A is trim or connected if it contains neither inaccessible nor 
co-inaccessible states. A W F S A is stochastic, i f the transitions out of each state q (and the 
final-probability) "sum to one" i n the given semi-ring: 

\/qeQ,( 0 w[e] j ®p[q\ = l (2.6) 

It is only possible to make the W F S A stochastic if the to ta l weight of the entire W F S A 
is 1. Otherwise, there is a left-over weight that must be handled. In practice this may be 
discarded, or put on the in i t i a l or final states of the W F S A . 

W F S T s generalize W F S A s by replacing the single transi t ion label by a pair {i, o) of an 
input label and an output label: 

A = (A, B, Q, i, F, E, X, p) over a semi-ring ( K , ffi, <g), 0,1) (2.7) 

, where A is the finite input alphabet, B is the final output alphabet, and a transi t ion 
t = (p[t],i[i\, o[t],w[t],n[t]) G E has an input label i[t] and an output label o[t]. 

A W F S T associates pairs of symbol sequences and weights, i.e. it represents a weighted 
binary relation between symbol sequences. Two W F S A s are equivalent if they associate the 
same weight to each input string, i.e. weights may be distr ibuted differently along the paths 
of two equivalent acceptors [Mohri and Riley(2001)]. Two W F S T s are equivalent i f they 
associate the same output sequence and weights to each input sequence, i.e. the dis t r ibut ion 
of the weight or output labels along paths need not be the same i n the two W F S T s . 
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There might be some confusion about the terms "weight" and "cost". Usually, by 
mentioning "weights" in this thesis, we refer to a general probabi l i ty representation i n any 
semi-ring, and by mentioning "costs" (not to be confused wi th cost functions i n e.g. Bayes 
decision rule), we refer to probabilities in the log- or t ropical semi-rings, where a cost is a 
floating point number that typical ly represents a negated log-probability. 

2.4 Weighted finite state transducer based decoding 

Also L V C S R can be formulated i n the framework of weighted finite state acceptors/trans
ducers ( W F S A / W F S T ) [Allauzen et al.(2004)], [Mohri ct al.(2008)]. A s seen in figure 2.6, 
the H M M search graph can be represented as W F S T . We refer to this W F S T as the H M M 
structure transducer H. The input labels are identifiers of probabil i ty density functions 
( P D F - i d s , often context-dependent H M M states). 

pdfl:<eps>/a_ll pdf2:<eps>/a_22 pdf3:<eps>/a_33 

0 
^ . pdfl:aa/1.0 f j \ pdf2:<eps>/a_12 f ^ A pdO:<eps>/a_23 f ^ \ <eps>:<eps>/a_34 

Figure 2.6: WFST H corresponding to three-state left-to-right HMM from figure 2.1. The 
notation of an arc is „input: output/weight", where „<eps>" stands for the e (no sym
bol). Instead of attaching the emission probabilities to the state, we attach them to the 
incoming arcs of a state. Thus, the input labels correspond to identifiers of probability den
sity functions (PDF-ids). During decoding, the PDF-ids are used to evaluate the emission 
probabilities assigned to the destination state of the arc. The acoustic likelihood score is 
combined (®) with the weight of the arc, corresponding to the transition probability aij. 
The output label is the identity of the phoneme (aa). The final arc is non-emitting (<eps> 
input). In composite models, it can serve to interconnect the individual (sub-word HMM) 
models according to the pronunciation lexicon and the LM. 

1/4.86 1/4.16 1/5.23 

Figure 2.7: Acceptor U describing the acoustic scores of the utterance [Povey et al.(2012)]. 

To decode an utterance of T frames in the W F S T framework, i.e. to find the most l ikely 
state sequence through the trellis, we construct an acceptor ( W F S A ) U, as i n figure 2.7. It 
has T + l states, w i th an arc for each combination of (time, P D F - i d ) . The weights on these 
arcs correspond to negated and scaled acoustic log-l ikel ihoods 3 . We construct the trellis S 

3In figure 2.7, we represented the acoustic likelihoods (which can be very small numbers) in the negative 
log-semi-ring, while in figure 2.6, we showed the weights the probability semi-ring for illustrational purposes. 
Of course, the composition must be done with both weights in the same semi-ring. 
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wi th W F S T composit ion [Povey et al.(2012)]: 

S = UoH. (2.8) 

The trellis has approximately T + l times more states than H. The decoding problem 
is equivalent to finding the best path through S, which can be done wi th the shortest 
path algori thm i n the corresponding semi-ring. The best path is represented as a linear 
W F S T . The output symbol sequence of this best path represents the decoding result, i.e. the 
recognized sequence of phonemes (and words) 4 . The input symbol sequence of the best 
path represents the sequence of P D F - i d s used for each t ime frame. If there is a direct 
correspondence between the P D F - i d and the state i n the H transducer (for example i f 
p d f l = 1, pdf2 = 2, pdf3 = 3 i n figure 2.6), we obtain the sequence of states as well . This is 
called the state-level alignment. A s done in the K a l d i toolkit [Povey et al.(2011)], the input 
labels can be constructed i n such a way, that they represent the P D F - i d , the graph state 
and the transi t ion number, so that a l l this information w i l l be available i n the state-level 
alignment. We refer to these identifiers as K a l d i transition-ids. 

In practice, S is not searched exhaustively, but beam pruning is used. Let B be the 
searched subset of S, containing a subset of the states and arcs of S obtained by some 
heuristic pruning procedure. W h e n we do V i t e r b i decoding w i t h beam-pruning, we are 
finding the best path through B. Since a L V C S R system can have up to ten-thousands of 
P D F - i d s and there are typical ly hundreds to thousands of frames i n an utterance, it is not 
very pract ical to construct U in advance. Also , due to pruning, just a subset of P D F - i d s 
needs to be evaluated for each frame. Therefore, we are dynamical ly composing U during 
decoding. This corresponds to combining (®) the acoustic l ikel ihood score wi th the arc 
weights (transition probabilities, called graph score) on-the-fly. 

Conceptually, we split H M M s (containing transi t ion probabilit ies and emission prob
abilities) into the H M M structure transducer H (figure 2.6) and the acoustic model (the 
emission probabilities, which produce the acoustic likelihoods scores p{xi\Si) for each frame). 
The H M M structure transducer H represents the transitions, i.e. the part of the H M M net
work, that is fixed for a l l t ime steps. It maps from a sequence of acoustic unit identifiers 
(e.g. one P D F - i d per frame) to a sequence of phonemes. 

Nowadays, instead of phonemes as sub-word acoustic units, usually we use context-
dependent phonemes. Mos t often, tri-phones are used (including the current phoneme and 
one to the left and to the right) . Thus, the basic bui ld ing block of the graph (figure 2.6) are 
tri-phone H M M s . In this case, an addi t ional component is needed: the phoneme-to-context-
phoneme mapping. Due to data sparsity not a l l possible context-dependent phonemes can 
be observed sufficiently often i n training, usually, a clustering algori thm (e.g. decision tree) 
is applied to reduce the number of units to t rain. 

2.4.1 D e c o d i n g g r a p h c o n s t r u c t i o n in the K a l d i too lk i t 

Already i n figure 2.4, we indicated the bui ld ing blocks of a recognition network: the H M M 
structure, the pronunciat ion lexicon and the L M . Instead of the simple three-state H M M in 
figure 2.6, now, we use a recognition network composed of thousands of sub-word H M M s , 
connected according to the phoneme-to-context-phoneme mapping, the pronunciat ion lex
icon and the L M . We represent each component as W F S T . The standard recipe for the 
decoding graph construction is [Mohri et al.(2008)]: 

HCL G = mm(det(H 0C0L0G)), (2.9) 

4In our example just "aa", but for composite models, we obtain the sequence of phoneme HMMs used. 
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here, H, C, L and G are the components, which are created separately and are integrated 
into a single WFST(HCLG) (called decoding graph) wi th W F S T composit ion (denoted 
as o). H, C , L and G represent the H M M structure, the phonetic context-dependency 
transducer, the lexicon transducer and the L M (grammar), respectively. A s in figure 2.6, 
the result is a "fully expanded" graph, where the arcs correspond to H M M transitions, the 
input labels are the identifiers of P D F - i d s (context-dependent H M M states), and the output 
labels represent words as accepted by the L M . For both the input and output labels, the 
special symbol e may appear, meaning "no label is present." In the following, we briefly 
describe the H, C and L transducers. The G transducer is described in detail in section 
2.5. Unless otherwise mentioned, the experiments in this work were conducted wi th the 
K a l d i toolkit [Povey et al.(2011)] 5 . 

The H M M structure transducer H was already described i n figure 2.6, but here, we 
extend our model to an ergodic loop of many sub-word H M M s . A n example w i l l be given 
in the upper part of figure 5.6. A s a part icular i ty of the K a l d i toolki t [Povey et al.(2011)], 
the H M M structure transducer is created without self-loops (called Ha) to reduce the size 
of the model . The self-loops are added i n a final step. 

The context-dependency transducer C is a mapping from context-dependent phonemes 
to phonemes. Figure 2.8 explains how to construct a deterministic mapping and figure 2.9 
shows the full context W F S T C for the toy example w i t h only two phonemes. F r o m this 
example, it is clear, that C is huge, and therefore it is often constructed and composed 
on-the-fly. 

Figure 2.8: One path of the context-dependency transducer C, mapping from context-dependent 
phonemes to phonemes. We compose it with the lexicon WFSTL from the right, i.e. we think of the 
phonemes being generated from the lexicon. Therefore, the output symbols are actually the input of 
the mapping, which might be confusing. Upper sequence: Given the word 'cat' and its pronunciation 
'k ae t', the naive implementation would be to have one arc for each phoneme (output symbol) and 
put the corresponding tri-phone on the input label. The tri-phone encoding 'k-ae-t' means that 'ae' 
is the center phoneme, with 'k' and t' as left and right context. This naive implementation results in 
a FST, that is not deterministic (given the output symbols). Lower part: The deterministic solution 
[Mohri et al.(2008)] is to delay the tri-phone symbols until all its constituting phonemes have been 
observed. To compensate the delay, we introduce a special end-of-sequence symbol '$' on the last 
arc. 

The lexicon W F S T is a mapping from words to phoneme sequences. We give an example 
taken from Vas i l Panayotov's b l o g 6 . We are given the following pronunciat ion lexicon: 

5 The graph construction is only described very briefly in [Povey et al. (20 ], so whenever we cite this 
paper, we also refer to the official Kaldi documentation http://kaldi-asr.org/doc/graph.html. 

6http://vpanayotov.blogspot.cz/2012/06/kaldi-decoding-graph-construction.html 
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<eps>-y-<eps>:$ 

Figure 2.9: Deterministic context-dependency transducer C, mapping from context-dependent 
phonemes to phonemes, shown for only two phonemes 'x' and 'y'. We compose it with the lexicon 
WFST L from the right and with the HMM transducer H from the left. The tri-phone encoding 
'x-y-z' means that 'y' is the center phoneme, with 'x' and 'z' as left and right context. '$' is the 
end-of-sequence symbol. 

Figure 2.10: Pronunciation lexicon transducer L. The first arc for each word (starting from state 
1) outputs the word identifier. The last arc of a word is looped back to the word initial state 1, so that 
all possible words can follow. There is an optional silence (sil) at the begin of the sentence and in 
between words. Thus, we 'split' the word-final arc, either looping back to state 1 with log-probability 
-log(0.5) or going over state 2 and producing a silence (sil). The '#0' is a disambiguation symbol 
forwarded from the G transducer. 

ache ey k 
Cay k ey #1 
K. k ey #2 

The symbols #1 and #2 are disambiguation symbols [Mohri(1997)]. Wi thou t adding 
them, the resulting W F S T would not be determinizable, since the phoneme sequence 'k 
ey' can result i n two different words. Therefore, we insert auxi l iary phone symbols disam
biguating the two possible homophones before the determinizat ion 7 . We also need to add 

disambiguation symbols need to be passed through the C and H transducers by adding self-loops at 
each state, and after determinizing the final WFST HCLG, we replace them by e. 
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disambiguation symbols if a phoneme sequence can be a prehx of another. The resulting 
lexicon W F S T is shown in hgure 2.10. 

So far, we have introduced the W F S T components Ha, C and L. The remaining W F S T 
G is explained i n the following section. The final formula for the graph creation i n K a l d i is 
(asl - add self loops, rds - remove disambiguation symbols): 

HCLG = asl{min{rds{det{Ha o min{det{C o min{det{L o G)))))))) (2.10) 

2.5 Back-off language models as finite state automata 

The A R P A language model ( L M ) format is one of the most widely used standards for 
encoding N-gram back-off L M s i n text form. The A R P A format has most probably been 
created by Douglas B . P a u l [Paul and Baker(1992)] from M I T L inco ln Labs for the D A R P A 
Spoken Language System (SLS) community - hence its name. A wide class of L M s can be 
encoded i n the A R P A format - including e.g. interpolated L M s . 

Stat is t ical language models estimate the probabil i ty of a word sequence W (usually 
sentence or utterance): 

P(W) = P(Wl,w2,...,wN) (2.11) 

P(W) = P(wi)P(w2\wi)P(w3\wi,W2) .P(wN\wi, ... ,WN-i), 

where the terms P{wi\ . . . ) are the condit ional probabilit ies of words given their history. 
N-gram L M s approximate the condit ional probabil i ty of a word by shortening the history 
to the previous N — 1 words: 

m 

P(wi... wm) « Yl P(wi\wi-N+1... Wi-i) (2-12) 
i=l 

Every history corresponds to a possible state of the search space. Even i f more powerful 
L M s are available today (based e.g. on the maximum-entropy principle or on recursive neural 
networks), often they are s t i l l approximated wi th iV-gram models, since long histories lead 
to intractable search spaces. 

Stat is t ical smoothing techniques are applied to the dis t r ibut ion of counts, since it is 
not possible to observe a l l possible word sequences ( iV-gram, including history) sufficiently 
often i n the t ra ining texts. O n top of that, typical ly models of different iV-gram order are 
combined. E i the r different orders of history are interpolated, or the higher order model 
performs backing-off by leaving out the first word in the history and looking-up the shorter 
history i n the lower order model . This process is repeated recursively un t i l the words in 
the context are found. 

N-gram L M s can be expressed as weighted finite state acceptors ( W F S A ) - each L M 
history corresponds to one state of the automaton (hi = Wi-N+i • • • Wi-i)- N-g ram L M s can 
be conveniently integrated into the speech decoding process - the search space is defined by 
the W F S A corresponding to the N-gram L M . However, the number of possible states of a 
model of order iV wi th a vocabulary size V is VN_1 and the number of possible arcs (and N -
grams) is VN, which becomes clearly intractable for higher orders of iV (typical vocabulary 
sizes go into the hundreds of thousands). A s a consequence, A R P A language models only 
store the probabilit ies of those N-grams that occur sufficiently often. The probabil i ty of 
other N-grams is estimated by recursively „backing-off" to models of lower order (N — 1) 
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that use shortened histories (leaving out the first word of the history). Back-off L M s were 
introduced by S. K a t z [Katz(1987)]: 

i f C ( w i - N + 1 ...Wi) > k 

otherwise 
(2.13) 

Here, d is the amount of discounting applied ([Katz(191 ] used Good-Tur ing smooth
ing), C is the occurrence count of the given N-gram i n the t raining corpus and k is the 
cut-off frequency (min imum number of occurrences). aWi_n+1,„Wi_1 is the so called back-off 
weight, which is dependent on the current history. It usually corresponds to the sum of 
probabil i ty mass that was discounted from al l N-grams sharing the same history and is 
now available to be re-distributed by the lower order dis t r ibut ion Piower, that can be recur
sively defined in exactly the same way as Pxatz- Alternat ively, a different type of back-off 
dis t r ibut ion can be used, as e.g. i n Kneser-Ney smoothing [Kneser and Ney(1995)]. 

W2/P(W2\wi) 

Figure 2.11: Weighted finite state acceptor (WFSA) implementation of a bi-gram LM. Left: fully 
connected model (V x V arcs) Right: WFSA approximation of a bi-gram back-off model [Mohri 
et al.(2008)], just showing the representation of transitions leaving state w\. The bi-gram W\W2 was 
seen sufficiently often during training and is thus represented by a direct link between the history 
states W\ and W2- The bi-gram W1W3 was not seen sufficiently often, thus the model backs-off to 
the history-less state "bo" with the cost of the back-off weight a{w\). No symbol is consumed in 
this transition - indicated by the e-symbol. Leaving the back-off state, the lower order (uni-gram) 
probabilities are applied (P{wz)). The approximation with the back-off state can greatly reduce the 
number of arcs, but it also introduces non-determinism. If e would be a regular label, the WFSA 
would be deterministic (only a single outgoing arc per label in each state). However, since e doesn't 
consume any symbol, the bi-gram w\W2 can be either formed by taking the arc w\ —> W2 or by going 
over the back-off arc: wi —> bo —> W2-

A s seen i n figure 2.11, back-off L M s can be represented as W F S A , but since not a l l 
possible history states and arcs can be specified for higher N and V, usually an approxi
mate structure wi th back-off arcs is used [Allauzen et al.(2003)], [Mohri et al.(2008)]. The 
probabilities P'{wi\hi) and the back-off weights a (equation 2.13) are pre-computed, and 
only those are stored i n the A R P A format. For each N-g ram (e.g. t r i -gram abc) w i th 
C{abc) > k, an A R P A file contains an entry i n the form ^P'{c\ab) abc a(abc)\ where 
P'(c\ab) is the discounted probabil i ty P(c\ab), and a(abc) is the back-off weight of backing-
off from the higher order N-g ram abc to the shortened history be. Thus, i f C{abcd) < k 

PKatz(vJi\Wi-N+1 . . . Wi-l, 

P'(Wi\hi) d Wi-N+l-.-Wi 

C(WJ-N+1 . ..Wj-iWj) 

C ( w i - N + 1 . ..Wi-i) 

a Wi-N+l---VJ i_i • Plower(Wi\Wi-N+2 • • • Wi-1, 
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then P(d\abc) = a(abc)P(d\bc). For the highest order, there are no explicit history states. 
For example i n a t r i -gram L M , we don't create states for every tr i-gram, but we use the 
tri-grams as connections between bi-gram states (e.g. the t r i -gram abc connects the states 
ab and be). 

We can interpret the highest order (e.g. tri-gram) connections i n an alternative way: 
we could create the highest order (tri-gram) history state as target of the transit ion, but 
there would only be the possibil i ty of immediately backing-off to the corresponding lower 
order (bi-gram) state. In this interpretation, the back-off weights for the highest order 
iV are assumed to be always one (zero in log-domain), and therefore there is no need to 
specify them. T h i s interpretation has the advantage, that there are only two types of arcs: 
going towards a higher order by extending the history, and backing-off to lower orders by 
shortening the history. This simplifies some derivations in chapter 4. Figure 2.12 shows an 
example A R P A text file and the corresponding W F S A . 

\data\ 
ngram 1=4 
ngram 2=2 
ngram 3=2 

\l-grams: 
-5.234679 a -3.3 
-3.456783 b 
0.0000000 <s> -2.5 
-4.333333 </s> 

\2-grams: 
-1.45678 a b -3.23 
-1.30490 <s> a -4.2 

\3-grams: 
-0.34958 <s> a b 
-0.23940 a b </s> 
\end\ 

Figure 2.12: Left: Definition of a tri-gram ARPA back-off language model. For each N-gram 
'abc', there is an entry in the form 'P'(c\a, b) abc a(a,b,c)', where P'(c\a, b) is the discounted 
probability P(c\a, b), and a(a, b, c) is the back-off weight of backing-off from a higher order N-gram 
to the shortened history abc. The probabilities are by convention given as logarithms to the basis 
of two. Right: The WFSA resulting from the tri-gram back-off ARPA LM defined on the left. 
The highest-order N-grams (tri-grams) behave slightly differently than lower-order N-grams: The 
transition for tri-gram <s>ab is going from state <s>a to state ab. In an alternative interpretation, 
this is equivalent to going to an imaginary state <s>ab and immediately backing-off to state ab. If for 
some reason the bi-gram ab would be missing in the ARPA file (removed line —1.45678ab — 3.23'), 
the state ab would be created as target state for the tri-gram abc, however, the arc from a to ab would 
not exist, and the back-off arc from ab to b would be with zero cost. 

2.5.1 Diff icult ies w i t h the representat ion of back-off arcs 

A s seen i n figure 2.11, the approximate structure of back-off arcs w i t h the symbol e in
troduces non-determinism. Therefore, it is important to pay attention to the computat ion 
of the arc weights of the L M W F S T G. The same structure (figure 2.11) can be used to 
represent both back-off L M s and interpolated L M s . We compare the formulas for both 
models: 
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Pbacko (w\h) = i P ' ( W i \ h i ) ifC(wi,hi)>k , 2 1 4 -
backoff \ i\ i) y abo(hi) • Piower(wi\hi) otherwise 

Pint{Wi\hi) = P'\lVi\hi) + aint(hi) • Piower(wi\hi) ( 2 -!5) 

hi = W i - N + 2 . • -Wi-i. ( 2-16) 

We observe, that the only pr inc ipal difference is the incorporation of the lower order 
probabilities - either we add them i n the interpolated L M , or we decide to use them based 
on the condit ion C(wi,hi) > k. Tha t means, in the back-off L M , we should not use the 
lower order dis t r ibut ion, i f the higher order N-g ram was observed sufficiently often. This 
has the important consequence, that the back-off weights a are computed differently in 
both cases: 

aintihi) = l - J 2 P ' ( w i \ h i ) (2-17) 

abo(hi) = ^ a U h l l ( (2.18) 

otintihi) is computed so that Pint(wi\hi) forms a va l id dis t r ibut ion by assuming, that 
we always add the lower order dis t r ibut ion PiOWer- Th is means, i f we compute P'(wi\hi), 
ctint(h-i) and PiOWer(wi\hi) for an interpolated L M , and use it as arc weights i n the L M 
transducer G, we should always take the sum of a l l possible paths which accept the same 
symbol sequence. For example, i n figure 2.11, we should sum the arc w\ —>• u>2 and the path 
going over the back-off arc: w\ —>• bo —>• u>2 to correctly obtain the weight for the bi-gram 
w\W2- If we use the t ropical semi-ring i n decoding, which only picks the best of the possible 
paths, we do not obtain the correct probabili ty. Us ing the (log-) probabil i ty semi-ring is 
also incorrect, since for orders higher than bigram, after backing-off more than once, the 
original context is lost and the lower-order paths w i l l not continue wi th the correct state. 

Pa r t ly to avoid this problem and par t ly since the A R P A format is the most commonly 
used file format (which was designed for back-off L M s ) , many popular L M tool -k i t s 8 convert 
the probabilities of interpolated L M s to back-off L M s before saving them to the A R P A file: 

P"(wi\hi) = Pint(wi\hi) = P'(wi\hi) + aint(hi) • Piower(wi\hi) (2.19) 

a » ( „ ) _ 1 - E f M W ( M 0 ) 

Z^Wi\C{wi,hi)<=k Flower\wi\hi) 

That means, we use the interpolated probabil i ty Pint(wi\hi) instead of P'{wi\hi). In case 
Plower is itself an interpolated probability, we have to recursively add al l lower orders. The 
resulting model can be used as a back-off L M . Its origin as an interpolated L M is no longer 
visible when stored in the A R P A format. 

If we would just use Pmt{i"i\hi), without changing the back-off weights a"(hi), the 
decoding in the t ropical semi-ring would produce the correct result, since it is guaranteed 
for interpolated L M s , that Pint(wi\hi) > ctint{hi) • Piower(wi\hi)- However, to interpret 
the model as a back-off L M , the back-off weights a"(hi) are re-computed. Therefore, if the 
original counts are no longer available (only A R P A given), the original interpolation weights 
aint are los t 9 , and the decoding i n the t ropical semi-ring is not guaranteed to produce the 
correct result, since it is now possible that Pint(wi\hi) < a"(hi) • Piower(wi\hi)10. 

For example SRILM http://www.speech.sri.com/projects/srilm/. 
9We could reverse-engineer the equations, but due to complexities like missing N-grams and pruning, 

this is non-trivial. 
1 0 In rare cases, where C(wi, hi) > k for almost all wi, it is even possible, that a"(hi) > 1.0. 
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Lucki ly , this is not happening very frequently, and w i l l not have a big impact e.g. on word 
error rates. For back-off L M s , ab0{hi) (equation 2.18) is computed under the assumption, 
that we only back-off, i f C(wi, hi) <= k. Therefore, when we compute P'(wi\hi), a\>0{hi) and 
Plower{wi\hi) for a back-off L M (or convert an interpolated L M to a back-off representation 
as in equation 2.20) and use these as arc weights i n G , we should only take the back-off 
arcs i f there is no corresponding arc w i t h the higher-order N-gram. For example, in figure 
2.11, we are not allowed to use the back-off arc w\ —>• bo —>• u>2, because there is a b i -
gram arc w\ —> u>2- In other words, for these models, when we represent back-off arcs 
w i th e, we do not obtain the correct probability, neither w i th the probabil i ty semi-ring, 
which is summing a l l possible paths, nor w i th the t ropical semi-ring (taking only the best 
path). W h e n decoding w i t h the t ropical semi-ring, we would incorrectly take the back-off 
path i f P'{wi\hi) < abo(hi) • Piower(wi\hi)11. A s already said, luckily, this does not happen 
very frequently, and most often, this inconsistency for the t ropical semi-ring is neglected. 
[Allauzen et al.(2003)] introduce an algori thm to obtain a back-off W F S T G', that produces 
correct results i n the t ropical semi-ring, even when using e-arcs. 

A n exact and deterministic implementat ion of back-off L M s wi th W F S A would require a 
different type of arc. The so called failure arcs were introduced for efficient str ing matching 
[Aho and Corasick(1975)]. Usually, in the literature (e.g. [Allauzen et al.(2003)]), a special 
arc label ip (or (f>) is used to mark failure arcs. A failure arc doesn't consume any symbol 
and it has the semantic interpretation, that it can only be taken, i f no other symbol on 
any of the other out-going arcs of the same state can be accepted. This works similar to 
the 'default' case i n a C-language ' switch ' statement. [Allauzen ct al.(2003)] shows how 
to evaluate paths through W F S T s wi th failure arcs. These failure-arc-type W F S A accept 
sequences of words wi th exactly the same probabilities as when correctly implemented as 
a back-off L M i n any of the L M tool-kits. The algori thm that we are going to develop in 
chapter 4 w i l l work for both, e- and failure-arc-type W F S A . Figure 2.13 shows an example 
of a t r i -gram back-off L M implemented wi th failure arcs, and explains, why failure arcs 
contradict the M a r k o v assumption. 

A s explained, there are correct solutions for W F S T s generated from back-off L M s , when 
working i n the t ropical semi-ring. This is true when taking the probabilities as estimated 
for a back-off L M or when converting an interpolated L M to a back-off L M . However, 
during the construction of the recognition network (section 2.4.1), we usually work i n the 
(log-) probabil i ty semi-ring - most important are the determinization and weight pushing 
operations. W h e n we compute the arc weights for back-off L M s , but implement the back
offs arcs w i th e, the summation of the redundant back-off paths i n the probabi l i ty semi-ring 
actually has the consequence, that the probabilities of outgoing arcs do not sum to one, but 
to a sl ightly higher value, i.e. the resulting W F S A is no longer stochastic. Since the L M 
W F S A has cycles, the weight of a cycle can be greater than one, which causes the W F S A 
to have an infinite to ta l weight (equation 2.5). A s we w i l l see i n section 3.1, this can cause 
the conventional weight pushing algori thm to fail. 

The correct solution would be to implement weight pushing (i.e. the shortest path 
algorithm) and the determinization for W F S A wi th failure arcs, i.e. respecting the semantics 
of failure arcs. A s seen in figure 2.13, this is a non-t r ivia l task, since failure arcs violate the 
Markov assumption, i.e. when following a failure arc, we have to remember the history of 
arcs to be able to choose the successor arcs co r rec t ly 1 2 . 

1 1 This might be the case, if P(wi, W2) <S P(wi)P(w2). 
1 2 In the composite recognition network HCLG, the number of past arcs to be remembered can be quite 

high, since the arcs with word label can be farther apart. 
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Figure 2.13: Weighted finite state acceptor (WFSA) implementation of a tri-gram back-off LM 
using failure arcs. Only selected arcs are shown. A failure-arc, indicated by ip, doesn't consume 
any symbol and it can only be taken, if no other symbol on any of the other out-going arcs of the 
same state can be accepted. I.e. we can not take the arc (v) —> (v,w), since there is a direct arc 
(u,v) —?• (v, w). Failure arcs have the peculiarity that the decision, which arc to take, is made based 
on the current symbol, but the symbol is only consumed later in the next non-failure arc. If there 
are several failure-arcs in a row (e.g. backing-off (u,v) —> (v) —> (bo)), we compare the same input 
symbol (w) several times against the outgoing arcs of different states (v and bo). Therefore, the 
decision to not take the arc (bo) —> (w) is based on the fact, that there exists an arc (u,v) —> (v,w). 
This contradicts the Markov property of the model, because after backing-off (u,v) —> (v), due to the 
Markov assumption, it is not possible to decide in state bo, whether we came originally from (u, v) 
or from some other state (x,v), or just from (v). Therefore, to correctly implement the semantics 
of failure arcs, completely different algorithms are necessary. 

Since, to the best of our knowledge, determinization and shortest path algorithms for 
failure arcs i n the probabil i ty semi-ring are not yet available, we conclude, that there is no 
absolutely correct way to construct recognition networks. W h e n using (b ig ram 1 3 ) interpo
lated L M s , we should not convert the probabilities to a back-off L M , as it is usually done. 
We would compose the recognition network i n the log-semi-ring, i.e. apply determinization 
and weight pushing i n the log-semi-ring. Once the final recognition network is obtained, 
we apply the algori thm i n [Allauzen et al.(2003)] (section "Exact offline representation") 
to obtain a W F S T , that can be correctly used for decoding in the t ropical semi-ring. For 
back-off L M s , the si tuat ion is worse. We would have to convert the back-offs L M s to an 
interpolated L M for the purpose of bui ld ing and opt imizing the recognition network i n the 
log-semi-ring. W i t h o u t going into details, this is not always possible. Therefore, we have to 
be aware of the fact, that when interpreted i n the log-semi-ring (using e arcs), these models 
are not stochastic and can have an infinite to ta l weight. This has important consequences 
for the weight pushing algori thm (section 3.1). Therefore, we present an alternative weight 
pushing algori thm (section 3.3), that can handle this problem. 

1 3 For higher order interpolated LMs we would have to introduce context-specific back-off states to make 
sure we continue the back-off paths with the right context. 
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2.6 Parallel Speech Decoding 

Dur ing the last decade, Moore 's law, the trend of increasing clock rates by reducing transis
tor gate lengths, has slowed down and the power consumption of chips has become a major 
issue [Horowitz et al.(2005)]. There seems to be a Pareto relation [Horowitz et al.(2005)] 
between increasing performance and increased power consumption. Therefore, it is more 
efficient to run more units or cores i n parallel at a lower clock speed instead of a single core 
running at higher clock speed. A s a result, there is a need for parallel algorithms, which 
can efficiently use mult iple cores that are usually present i n recent systems. 

The challenge i n parallel izat ion is to divide the task into sub-problems, that are as 
independent of each other as possible - to minimize the communicat ion between the tasks 
and to avoid wait ing times. A t the same time, each of the sub-problems should be of 
approximately the same computat ional complexity to achieve a good load balancing and 
thus work efficiently. The m a x i m u m possible speed-up i n parallel ization is determined by 
the proport ion of code that needs to be run serially (Amdahl ' s law). Depending on the size 
of the sub-problems that can be identified as being independent, we can distinguish coarse 
level and fine-grained parallelization. We think of fine-grained parallelizations as working 
on the level of ind iv idua l states/arcs/densities or even on instruct ion level, while coarse 
refers to parallel ism among decoding passes or chunks/segments of the utterance. 

2.6.1 Coarse and fine-grained parallelization 

Coarse level parallel ization for L V C S R can be achieved, i f different stages of processing 
or different knowledge sources are distr ibuted to different cores. Speech recognition has 
several stages of processing (feature extraction, acoustic model evaluation, graph search), 
which can be distr ibuted among cores. Another opportuni ty for coarse parallel ization is the 
presence of mult iple acoustic feature sets (acoustic models), where different feature streams 
can be computed on mult iple cores. Coarse level parallel ization has the advantage, that 
the serial algorithms do not need to be changed, i.e. no overhead due to communicat ion 
and extra data structures is introduced. However, the scalabili ty is l imi ted by the number 
of available stages or feature streams and model components, which is usually small . The 
opt imal dis t r ibut ion of computat ion tasks to mult iple cores depends on the task (e.g. size 
of the recognition network, complexity of the acoustic model) and on the processor and 
memory configuration [You et al.(2009)]. A typica l system can have a combinat ion of 
several C P U cores w i th shared memory and a graphic processing unit ( G P U ) , or multiple 
C P U s can be connected over a network. Two recent examples of systems using parallel 
C P U s and G P U s are given i n figure 2.14 and i n [Cardinal et al.(2013)]. 

In a single-threaded system, typical ly the majori ty of t ime is spent i n the acoustic model 
evaluation (e.g. 80% in [You et al.(2009)]). A t the same time, the acoustic model evalu
ation (either G M M or neural networks) is easily parallelizable (e.g. [Dixon et al.(2009)]). 
W h i l e the acoustic model evaluation can be easily parallelized in a fine-grained way [Dixon 
et al.(2009)], the fine-grained parallel ization of the graph search is less t r iv ia l . 

In dynamic programming algorithms (and S S S P ) , the sub-problems that do not depend 
on each other, and thus can be computed i n parallel , form stages or wave-fronts [Maleki 
ct al.(201 ] (see figure 2.5). There are efficient and scalable parallel algorithms to solve 
the general SSSP, many of them are based on the delta-stepping algori thm [Meyer and 
Sanders(2003)]. The idea is, that nodes are assigned to buckets and a l l nodes wi th in a 
bucket are updated at the same time in parallel . A l so the queue (and sorting) operations 
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Figure 2.14: LVCSR implementation on CPU and GPU [Kim et al.(2012)] - acoustic model 
evaluation and graph search is implemented on GPU, language model re-scoring due to memory 
requirements on GPU. 

can be parallelized. There are also recent implementations on G P U s , which are able to 
process huge graphs and achieve significant speed-ups [Davidson et al.(2014)]. 

W h i l e the general S S S P is well parallelizable, this is not true for search in L V C S R . 
A s already pointed out, the arc weights are computed dynamical ly (acoustic scores are 
added). A l so , due to pruning, only a fraction of the states of the recognition network are 
kept i n memory. Thus, the application of pruning changes the properties of the basic SSSP 
fundamentally, which makes it difficult to design a parallel a lgori thm for V i t e r b i search in 
L V C S R , that would be scalable to a high degree of parallel ism and at the same time stays 
efficient. 

Several parallel ization attempts have been made wi th word-based H M M s and recogniz
ers using linear lexica, however, for A S R systems wi th large vocabularies, a lexical-tree or 
more efficient W F S T based decoders are desirable. [Phillips and Rogers(1999)] describe 
an W F S T - b a s e d approach, that introduces fine-grained parallel ism by organizing the data 
structures and grouping the computations according to a state of the recognition network. 
The computations belonging to each state are assigned to a core according to the modulo 
operation, which should achieve uniform load balancing. They achieved a speed-up factor 
of 3..6 on 4..12 processors. 

Another idea was pursued by [Parihar and Hansen(2008)]. They use a lexical-tree based 
decoder, i.e. using the lexicon transducer (uni-gram) and storing the word history wi th each 
token. Then, it is possible to split the lexical tree at the root into several sub-trees for each 
thread. To achieve a good load balancing, the split was done between similar sounding 
phones. However, the approach d id not scale to more than 2-4 threads. 

[You et al.(2009)] present an analysis on several a lgori thm designs to implement fine
grained parallel ism for the V i t e r b i graph search. They showed, that the op t imal algori thm 
design varies w i th the architecture (multi-core C P U vs. G P U ) . [Chong et al.(2009)] im-
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plemented a W F S T based recognizer for a medium sized L V C S R completely on the G P U , 
which already achieved a l l x speed-up. However, i n case huge language models of higher 
order (tri-gram and more) need to be used, the l imi ted memory on the G P U would not be 
sufficient. To solve this, [ K i m et al.(2012)] showed how to uti l ize the C P U i n parallel for 
the language model on-the-fly re-scoring. 

A n alternative architecture is presented i n [Cardinal et al.(2013)] - here, an A-s tar 
algori thm is used for search, and the computat ion of the heuristic is performed on the 
G P U . For that purpose a backward decoding wi th a uni-gram recognition network ( L M 
look-ahead) is performed, which is parallelized by dis t r ibut ing transitions among cores 
according to the destination state (aggregation approach). 

2.6.2 Stage parallelism through rank convergence 

Figure 2.15: Rank convergence in Viterbi algorithm [Maleki et al.(2014)J- Vi contains the scores 
of the states at time i. If at time k, the search converges to only one active state, then all future 
frames depend only on the score of this single state. Therefore, independent of the initialization at 
time i, the resulting vector Vj will be equal, except for an additive offset, which is constant for all 
its components. That means, the rank of state scores is independent of the initialization. 

A n interesting observation concerning V i t e r b i decoding (and many F S T based algo
rithms in general) was made by [Maleki et al.(2014)]: If we would start decoding in the 
middle of a sentence by assigning a random score to a l l states, usually, after a quite l imi ted 
amount of t ime frames (20-50), the a lgori thm converges to a smal l set of active states, 
which is independent of the ini t ia l izat ion at the start frame. We can interpret this as an 
all-pair-shortest-path problem [Cormen et al.(2009)], i.e. finding the shortest pa th between 
any pair of states in the graph. If we represent the possible transitions between states in 
one t ime step as a transi t ion matr ix , each t ime step of the V i t e r b i a lgori thm can be seen 
as a matr ix-matr ix mul t ip l ica t ion of the transi t ion matr ix i n the t ropical semi-ring. The 
observation is, that resulting all-pairs-shortest-path matr ix (containing the score of paths 
between two states) w i l l converge to a matr ix of smal l orthogonal rank after several frames. 
We obtain the V i t e r b i forward score for the final t ime frame by mul t ip ly ing the all-pairs 
matr ix w i th an in i t i a l vector from the left. A s seen in figure 2.15, i f the rank of the all-pairs 
matr ix is one, this leads to the si tuation that the V i t e r b i forward scores for a l l frames after 
the point of convergence are independent of the in i t ia l iza t ion vector (off by a constant). 

This fact can be exploited to parallelize the V i t e r b i a lgori thm across stages - i n other 
words to split it into t ime chunks which can be processed i n parallel . If each randomly 
ini t ia l ized chunk is long enough for the algori thm to converge to a single state at some 
point, then the state sequence after that is independent of the ini t ia l izat ion and only the 
beginning frames of each chunk need to be fixed i n a consecutive parallel fix-up phase. 
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Figure 2.16: Rank convergence in Viterbi algorithm with rank bigger than one [Maleki, unpub
lished]. During the fix-up phase <Si+i, only the values of those input nodes Si that originate from 
different active states (different color) need to be fixed. 

For smal l decoding tasks, this algori thm showed very promising results [Maleki et al.(2014)], 
but for L V C S R , the rank (number of active states) does usually not converge to one, but to 
a smal l number. In this case, the state scores w i l l be linear combinations of vectors resulting 
from the few active states - see figure 2.16. A similar parallel ization can be applied as in 
the singular case, but the fix-up phase gets slightly more complex. Us ing huge networks 
also makes it necessary to introduce state pruning. It is not clear, which states to activate 
during the random ini t ia l izat ion. Therefore, the set of states i n the fix-up phase might only 
be par t ly overlapping w i t h the random-ini t ia l izat ion phase, which complicates the fix-up 
phase of the algorithm. 

A n open research question is whether it is possible to automatical ly detect frames in 
advance, where the rank w i l l converge, and what is the op t imal segmentation into chunks for 
a given task. W h i l e we have no direct answer to that question, we suspect, that at the points 
w i th few remaining active states, the decoding results of a forward and backward search 
w i l l agree (see chapter 5). Therefore, it should be possible to split the segments at points, 
where forward and backward search agree. This leads to an approach to parallelization, 
which is described in section 5.3. 
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Chapter 3 

An alternative weight pushing 
algorithm 

We explain the connection between Markov chains, non-negative matrices and weighted 
finite state acceptors ( W F S A ) . Based on that, we introduce an alternative weight pushing 
algori thm, that is able to deal w i th possibly infinite to ta l weight, and is much more efficient 
for acceptors w i th cycles. Th is alternative weight pushing algori thm is suitable for an 
important class of models - i.e. language model transducers or more generally (cyclic) 
W F S A s wi th failure transitions. 

3.1 Weight pushing algorithm 

A s a prerequisite to this chapter, we assume, that we are able to construct a model ( W F S A ) 
that has some desired properties (i.e. being deterministic and minimal ) . The application 
we had i n mind (chapter 4) was to construct a (back-off) language model ( L M ) acceptor, 
that has the desired size and structure and is deterministic (except for the e-arcs). If we 
want to use the resulting acceptor i n a pruned search (i.e. for L V C S R ) , it is desirable, that 
the acceptor has yet another property - to be (locally) stochastic. 

Two W F S A s are equal, i f they accept the same set of input label sequences wi th the 
same path weights. In other words, two equivalent W F S A s (or W F S T s ) may differ by the 
way the weights (and output labels) are distr ibuted along the path, even if they have the 
same topology wi th the same input labels [Mohri and Riley(2001)]. It was pointed out by 
[Mohri and Riley(2001)], that the dis t r ibut ion of weights along the path plays a crucial 
role i n pruned search. P run ing is typical ly based on the weight accumulated along a path 
explored so far - often it is a combined weight (e.g. acoustic, pronunciat ion and language 
model for L V C S R ) . Typical ly , we prune by l imi t ing the breadth of the search around the 
current best path (called beam pruning). 

[Mohri and Riley(2001)] conjectured, that the op t imal dis t r ibut ion of weights for pruned 
search should be such, that the weights (coming from different knowledge sources such as 
acoustic and language model) are locally synchronized for the sequential decisions, which 
arc to take next. Another common wisdom is, that the knowledge should be applied as 
early as possible in search - to be able to rule out unlikely paths as early as possible. Th is 
manifests itself i n techniques like L M look-ahead [Ortmanns et al.(1996)], which are used in 
L V C S R decoding wi th dynamic networks. For stat ically compiled networks (or monoli thic 
models like the L M W F S A s dealt w i th here), this corresponds to "pushing" the weights as 
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much as possible towards the in i t i a l state. A s shown i n [Mohri et al.(2008)], pushing weights 
towards the in i t i a l state is actually equivalent to making the weights of the outgoing arcs of 
every state sum to one i n the given semi-r ing 1 , i.e. making the W F S A stochastic. W h e n the 
weights are distr ibuted in such a way, the pruned search w i l l be more effective - i.e. a smaller 
beam can be used. However, the overall best path (and accuracy) is s t i l l the same - i n the 
asymptotic case of a very wide beam. [Mohri and Riley(2001)] show substantial speed-ups 
for several tasks in L V C S R , when modifying the transi t ion probabilities of a W F S A in 
such a way, that the weights of paths through the W F S A form a stochastic dis t r ibut ion. 
Therefore, for op t imal pruning i n L V C S R w i t h the probabil i ty semi-ring, we want to obtain 
a W F S A , where weights of outgoing arcs sum to one for each state. 

We give a general definition of weight pushing for W F S A s , where we refer to the def
in i t ion of a W F S A given i n section 2.3. The generalization to W F S T s is given by inter
preting weight-output label pairs as new weights combined by the appropriate semi-ring 
[Mohri(1997)]] 2 . 

Re-weighting [Mohri et al.(2008)] is an operation on W F S A s that alters the weights 
w[ti] of ind iv idua l transitions and the final-probabilities p(n[tn]), while leaving unaffected 
the weights W[TT] of successful paths (i.e. from in i t i a l to final states). The possible ways 
to change the transi t ion weights of a W F S A can be expressed wi th the help of a potential 
function V : Q —> K \ 0, which can be an arbitrary function on states, assigning a value 
of K (except 0) to every state q. G i v e n such a function, we can update the in i t i a l weight 
A, the transi t ion weights w[e] and the final weights p(f) according to the following [Mohri 
and Riley(2001)]: 

A <- A <g) V(i) (3.1) 

Ve€E,w[e] <- [ ^ [ e ] ) ] " 1 ® (w[e] ® V{n[e])) (3.2) 

VfeF,p(f) <- [V(f)]-1 ® p[f] (3.3) 

If the re-weighting is carried out this way, it is easy to see, that the overall weight of a 
successful path is not changed, since the potentials along any successful path cancel each 
other. Thus, the resulting W F S A is equivalent to the original one. The simplest possible 
re-weighting operation is to mul t ip ly (8) a fixed value k to the weights of a l l incoming arcs 
into a part icular state q' and to divide ( _ 1 ) the same value from the weights of a l l arcs 
leaving that state. Th is is achieved wi th the potential function: 

{ 1 _ otherwise (^-4) 

Weight pushing is a special case of re-weighting, that aims to make the W F S A stochastic, 
or i n other words to push the weights as much as possible towards the in i t i a l state. Th is 
is achieved [Mohri and Riley(2001)] by setting the potential function V(q) to the shortest 
distance d[q] from q to any of the final states F: 

Vq G Q, V(q) = d[q] = 0 w[ir] (3.5) 
t6P(<?) 

Here, P(q) is the set of a l l paths from q to any of the final states F. Figure 3.1 shows an 
example of weight pushing i n the t ropical and probabil i ty semi-ring. 

xFor the tropical semi-ring, this means that the maximum over all outgoing arcs is one. 
2 OpenFST uses the Gallic semi-ring, which uses composite weights (ProductWeight) of an output label 

string and the arc weight. For the strings, we use the longest common prefix as © and concatenation as ®. 
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Figure 3.1: Example of weight pushing [Mohri et al.(2008)]. Left: WFSA before applying the 
weight pushing. Center: Weight pushing in the tropical semi-ring (® is the minimum operation 
and <S> is addition). In this case, the potential function is the shortest distance to the final state, 
as computed by a Viterbi algorithm, that runs backwards from the final state. State 1 and 3 can 
be reached with zero cost, state 2 with cost 4- Thus, for each arc we <S> (add) the potential of the 
destination state and _ 1 (subtract) the potential of the source state. Right: Weight pushing in the 
probability semi-ring. The potential function is the sum of all paths meeting in a state, as computed 
by the forward algorithm. 

There are several algorithms to compute the shortest distance, based on the dynamic 
programming principle, whose complexity depends on the semi-ring and the type of W F S A 
that is dealt wi th . For the t ropical semi-ring, a V i t e r b i a lgori thm can be used. If the 
log-probabili ty or probabil i ty semi-ring is used, however, a l l possible paths towards a state 
need to be summed, which is especially difficult, i f the W F S A has cycles. A cycle can be 
followed an infinite amount of times, generating an infinite number of paths that need to 
be summed. So we need to guarantee that the weight of any cycle is W(TT) < 1. In other 
words, we need to be able to compute the closure wl, otherwise the cycle would result 
in an infinite total weight. If a semi-ring fulfills this condit ion for Vic € K , it is called closed 
semi-ring - see [Mohri(2002)] for an exact general definition. If the structure of the W F S A 
is simple, i.e. the cycles are not nested and can be easily identified, the closure operation 
could be direct ly applied. For W F S A s resulting from L M s , this is not true, since the cycles 
are nested in a complex way. 

In [Mohri(2002)], the set of k-closed semi-rings is introduced, which guarantees that the 
max imum number of times a cycle needs to be followed is k: 

k+1 k I 

V a € K , 3 / f e : 0 a i = 0 a i = 0 a i , V l > / f e (3.6) 
i=0 i=0 i=0 

For that class of semi-rings, figure 3.2 presents a generic shortest distance algori thm as 
given by [Mohri(2002)]. The algori thm manages a queue of states S that need to be updated. 
After extracting the state q from the queue, the so called relaxation operation (starting from 
line 10) consists in propagating the accumulated weight update r[q] to a l l arcs e leaving 
the state. For a l l destination states n[e] which meet the relaxation condit ion (line 11), 
i.e. the update is bigger than zero, we update the distance d[n[e]] and the tentative update 
r[n[e]] and add the state to the queue. The algori thm continues unt i l the queue is empty. 
For A:-closed semi-rings, the relaxation condit ion (line 11) makes an update unnecessary, 
if the weight of a loop has already been added k times. The algori thm is thus iterative 
and operates by local ly forwarding weight mass through the W F S A according to the queue 
policy. The algori thm is efficient, if the number k is small , and if the state transi t ion matr ix 
is sparse, i.e. \E\ <C \Q\2-
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G E N E R I C - S I N G L E - S O U R C E - S H O R T E S T - D I S T A N C E (G, S) 

1 for i <- 1 to \Q\ 
2 do d[i] <- r[i] < - 0 

3 d[s] <- r[s] <- T 
4 5 ^ { S } 
5 while 5 ^ 0 
6 do q <— head(S) 
7 D E Q U E U E ( S ' ) 

8 r' <- r[q] 
9 r[q] < - 0 

1 0 for each e e % ] 
1 1 do if d[n[e]] ± d[n[e}} © (r' <g> w[e]) 
1 2 then d[n[e]] <- d[n[e]] © (r' <8) to[e]) 
1 3 »"[n[e]] <- r[ra[e]] © (r' (g> u>[e]) 
1 4 if n[e] <£ S 
1 5 then E N Q U E U E ( , S , n[e]) 
16 d[s] « - 1 

Figure 3.2: Pseudocode of single-source shortest path algorithm used in the generic weight pushing 
algorithm [Mohri(2002)J. The algorithm computes the shortest distance d[q] from the initial state 
s for each state q of the WFSA G. To compute the shortest distance to the final state, we have to 
start with the final state and follow the arcs in the opposite direction. 

For the (log-) probabil i ty semi-ring, there is no k < oo, for which equation 3 .6 would 
hold, but it is s t i l l a closed semi-ring (k —> oo). The generic shortest-distance algori thm 
can't be used i n this case, however, closed semi-rings are covered by the generic F l o y d -
Warsha l l and Gauss-Jordan algorithms [Lehmann(1977)]. These algorithms solve the so 
called algebraic path problem by computing the all-pair shortest distance wi th a t ime com
plexity of 0 ( n 3 ) (n proport ional to the number of states), but they are not as efficient for 
our purpose, since they don't take advantage of the sparsity of the transi t ion matr ix and 
since we are actually just interested i n the distance from one single (start) state. A s soon 
as the W F S A has thousands of states, an algori thm wi th complexity 0 ( n 3 ) is clearly not 
feasible. 

One strategy is to decompose the W F S A into several strongly connected components, 
where any state of a component is reachable by any other state of the same component 
by a path of l imi ted length. In this case, the all-pair shortest distance only needs to be 
computed for each component separately. However, it is relatively easy to see, that a model 
of language such as the N-g ram consists basically of just a single huge strongly connected 
component. Since the history is l imi ted to a few previous words, and even completely erased 
on sentence boundaries, it is obvious that i n principle any sequence of words is repeatable 
after a l imi ted amount of t ime steps. Thus, the complexity of the F loyd-Warsha l l a lgori thm 
cannot be reduced this way. 

The original relaxation condit ion for the generic algori thm (figure 3 . 2 , line 1 1 ) is given 
I'.v: 

d[n[e}} + d[n[e}} ® (r <g> w[e}) ( 3 . 7 ) 

where d is the distance and r' is the tentative update to be propagated, i.e. the weight 
accumulated since the last relaxation of q = p[e\. Thus, (r' ® w[e\) is the weight to be 
added i n the relaxation. To handle also semi-rings that are not fc-closed, [Mohri(2002)] 
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replaces the relaxation condit ion by an approximate test w i th a metric A : 

A(d[n[e]],d[n[e]] © (r' <g> w[e])) > 5 (3.8) 

where 5 > 0 is a positive number used for approximation. For the probabil i ty semi-ring, the 
condit ion simplyfies to (r' x w[e\) > 5. Due to l imi ted machine precision, there is actually 
always some S for which this condit ion w i l l not be met. Thus, w i th a fc-closed semi-ring, a 
cycle w i l l not be followed more than k times, and in our case the algori thm stops updat ing 
as soon as: 

where W[TT] is the weight of the cycle. If I is large (W[TT] —>• 1 or 5 —>• 0) the algori thm w i l l 
iterate for a long time unt i l it converges. For w[ir] > 1, the algori thm fails to converge at 
a l l . In this case, the to ta l weight of the W F S A becomes infinity. 

W h e n we apply the weight pushing algori thm to W F S A that are constructed from back
off language models, we have to dist inguish two cases: A s explained i n section 2.5.1 and 
figure 2.11, the e-style back-off arcs lead to duplicate paths. In case the weights were taken 
from a back-off L M estimated for failure arcs, but the back-off arcs are represented wi th 
e, the outgoing arcs w i l l not exactly sum to one, but to a slightly higher value. W h e n 
occurring i n a loop, the condit ion w[ir] < 1 does no longer hold. Tha t means, the generic 
weight pushing algori thm [Mohri(2002)] as implemented in O p e n F S T w i l l fail to converge, 
because the to ta l weight of the entire W F S A w i l l not be finite. If the weights are correctly 
estimated as interpolated L M , the representation w i t h e arcs results i n a stochastic W F S A . 
However, the weight i n cycles can s t i l l be very close to one, so that the generic algori thm 
is inefficient (equation 3.9). 

3.2 Ergodic Markov chains and non-negative matrices 

In the previous section, we explained why we want a model that has a (locally) stochas
tic weight dis t r ibut ion, and why for W F S A , that are cyclic, the standard weight pushing 
algori thm [Mohri and Riley(2001)] is either inefficient or completely fails to converge 3 , i f 
the total weight of the W F S A is not finite. For this purpose, we need a weight pushing 
algori thm that w i l l always succeed. We show here, that this problem can be solved, if we 
represent the W F S A as an ergodic Markov chain. 

Here, we deal w i t h Markov chains, which are, by definition, already stochastic, and 
thus don't need weight pushing. However, they w i l l serve us for the purpose of introducing 
important concepts and the basic idea of our algori thm. Later , we generalize to non-negative 
matrices. A Markov chain [Grinstead and Snell(1997)] can be defined similar to the W F S A 
(equation 2.3), but discarding the labels S . To have a more flexible definition, every state 
can be a potential in i t i a l state: 

It is given by: 

3 The algorithm for weight pushing in the log semi-ring provided with OpenFST www.openfst.org might 
still work for some smaller models (e.g. LMs with small vocabulary), if the delta parameter is chosen to 
be sufficiently small. We observed that typically as soon as the WFSA contains states with a huge fan-out 
(S> 1000), the algorithm fails to converge. 

(3.9) 

M = (Q, F, E, A) over a semi-ring ( K , ffi, <g>, 0,1). (3.10) 
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• a set of states Q 

• a set of final or absorbing states F C Q 

• a set of transitions E C Q x IK x Q 

• an initial weight X 

A transi t ion t = (p[t],w[t],n[t\) G E is seen as a move (step) from the source state 
p[t] to the destination state n[t] w i th weight «;[£]. Markov chains were introduced wi th 
probabilities as weights, thus, in this section, we only consider the probabil i ty semi-ring 
(M G [0,1], +, x, 0,1). Usually, the transi t ion weights are represented in form of the transi
t ion matr ix P j j G \Q \ x \ Q\, where each entry pij = w[t] contains the weight of the transi t ion 
t from state i = p[t] to state j = n[t]. If the corresponding transi t ion doesn't exist, the 
entry is 0. In place of the in i t i a l weight A, one can add a super-ini t ial state i w i th outgoing 
weights defined by A - as done in the W F S A definition (equation 2.3). Instead of having a 
final weight p as i n equation 2.3, a M a r k o v chain can be seen as having a super-final state 
/ ' and transitions from / G F to / ' w i th pfj/ = p[f]. The literature on Markov chains 
doesn't use the term final state, but instead uses the term absorbing state, which is a state 
that cannot be left, i.e. it has a self-loop probabi l i ty of one. A l l other states are called 
transient. A Markov chain is absorbing if it has at least one absorbing state and from every 
state it is possible to reach an absorbing state. If we represent an W F S A as M a r k o v chain 
by using the sum of a l l arcs from state i to state j as entry p^ i n the transi t ion mat r ix 
P, we see, that every t r i m (connected) W F S A corresponds by definition to an absorbing 
Markov chain. 

Representing the transi t ion weights i n a mat r ix has the advantage, that we can elegantly 
(n) 

compute the outcome of a process after several steps: The i j t h entry p\- of the matr ix P n 

(n-th power of the matr ix) gives the probabil i ty that the M a r k o v chain, starting in state 
qi, w i l l be i n state qj after n steps [Grinstead and Snell(1997)]. The function A wi th the 
probabil i ty of starting i n a particular state can be represented as a state probabil i ty vector 
A. Similar , if v is the row vector w i th elements v\ representing the probabil i ty of being in 
state qi at a certain t ime n, then: 

v ( n ) = A p n (3.11) 

A n important class of Markov chains are ergodic Markov chains [Grinstead and Snell(1997)], 
also called irreducible. A M a r k o v chain is ergodic, if it is possible to go from any state to 
any state (not necessarily in one move). In this case, the corresponding W F S A consists 
only of one strongly connected component, and there are no absorbing final states. A n 
important sub-class of ergodic Markov chains are regular chains (also called pr imit ive) . A 
Markov chain is called a regular chain i f there exists some positive n for which the power 
P n of the transi t ion matr ix has only positive elements 4 . In other words, it is possible to 
go from any state to a l l other states (including self-loop) in exactly n steps. Every regular 
chain is ergodic, but not a l l ergodic chains are regular - see the example i n figure 3.3. 

A n absorbing Markov chain is not ergodic. Th is holds for W F S A s , which are absorbing 
Markov chains w i th only the final states being absorbing states. However, i f the W F S A is 
t r i m (every state can be reached on a successful path), we can make the W F S A ergodic by 
connecting the final states / G F to the in i t i a l state i. Now, every state can be reached 
from any other state, by going over any of the final states. 

4When talking about probabilities, this means not zero. 
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a 1 — a 0 
0 b 1 - 6 

1 - c 0 c 

Figure 3.3: Example of an ergodic Markov chain and its corresponding transition matrix. If 
o > O A t > O A c > 0 , then it can be easily shown that already for P 2 (n = 2) all pf^ > 0, 
so that the Markov chain is also regular. That means any state can be reached from any state 
with a maximum of two steps. For that reason, with n —> oo, the state distribution approaches an 
equilibrium, according to the proportion of a, b and c. Ifa = b = c = 0 (removing the self-loops), 
the chain is no longer regular. It is still obvious that every state can be reached from any other state, 
but the matrix P becomes a permutation matrix, which means that the state distribution oscillates 
between three different configurations, but never converges. From this example, it is easy to see, that 
adding self-loops, i.e. increasing the values on the diagonal makes an ergodic chain a regular one. 

In a next step, i f P is the transi t ion mat r ix of an ergodic Markov chain, then we can 
obtain the transi t ion mat r ix of a regular chain by: 

P' = /feI + ( l - / f e ) P , 0 < k< 1, keM (3.12) 

Since the ergodicity guarantees, that every state can be reached, interpolating wi th the 
identity mat r ix I guarantees, that the diagonal elements p'u > 0 are positive, which means, 
that it is possible to take self-loops to stay i n every state. Thus, after n steps, when all 
states of the ergodic chain have been reached, P / n w i l l have a l l elements pos i t ive 5 . It is 
easy to see, that P ' and P have the same eigenvectors v 6 (P'v = k'v): 

0 = ( p ' - f c ' i ) v = (ki + (i-k)P-k'i) v = (i-/fe) ( p - y r ^ 1 ) v ( 3 - 1 3 ) 

The fundamental l imi t theorem for regular chains [Grinstead and Snell(1997)] says that 
if P is the transi t ion matr ix of a regular Markov chain, then w i t h n —> oo, the powers 
P n approach a l imi t ing mat r ix W w i th a l l rows containing the same vector w where al l 
components of w are positive and sum to one: 

W = l i m P n . (3.14) 

This states that the probabil i ty of being in state qj (the j t h entry of v) i n the long run 
is independent of the start ing state qi (vj —>• Wj). F r o m this, it follows that w P = w, and 
any row vector v w i th v P = v is a constant mult iple of w. 

The unique normalized vector w is called fixed row vector and represents the stationary 
distribution of the process. In other words, there is just one stationary distr ibut ion, i.e. only 
one left eigenvector corresponding to the eigenvalue one 7 , that solves the equation v P = 
v. F r o m equation 3.14, it follows that for any in i t i a l probabi l i ty vector A, the process 
approaches the fixed row vector w for n —> oo: 

5 Once a state is entered with some probability, the non-zero self-loop guarantees that is possible to stay 
in all successive time steps. 

6If k <C 1 or k' —> 1, then also the eigenvalue will be very similar. 
7There can be other eigenvectors, whose eigenvalue (absolute value) are smaller than one, which will 

vanish with lim^-joo P™. 
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l i m A P " = A W = w. (3.15) 
n—¥00 

Given equation 3.12, we can convert every ergodic chain into a regular chain w i t h the 
same eigenvector. Thus it is also clear, that there is only one str ict ly positive fixed vector 
for ergodic Markov chains. However, this fixed vector has a slightly different interpretation 
[Grinstead and Snell(1997)]: 

I + p + p2 i i p n 
A „ = — — , l i m A „ = W , (3.16) 

71 + 1 n—>-oo 

where W is a matr ix , a l l of whose rows are equal to the unique fixed probabi l i ty vector 
w for P . Therefore, the i j t h entry of the matr ix A n gives the expected value of the 
proport ion of times that the process is i n state qj in the first n steps, when start ing from 
state qi. A s already seen i n figure 3.3, for ergodic M a r k o v chains that are not regular, the 
state dis t r ibut ion doesn't converge. However, the state dis t r ibut ion averaged over t ime does 
converge. The law of large numbers for ergodic Markov chains [Grinstead and Snell(1997)] 
states, that the proport ion of times that an ergodic chain is i n state qj in n steps - Hj{n) -
is independent of the start ing state g«: 

P (\Hj(n) -Wj\> e) -)• 0, Ve > 0. (3.17) 

So far, we were dealing wi th regular M a r k o v chains, i.e. we assumed that P is a row-
stochastic matrix, where every row sums to one. Now, we want to generalize equation 3.14 
to the case, where P is not normalized. A generalization of the results on Markov chains is 
given wi th in the theory of non-negative matrices [Bcrman and Shaked-Monderer(2012)]. A 
non-negative matrix is a mat r ix wi th a l l entries pij > 0. In the same way as the transi t ion 
matr ix Pjj of Markov chains, every non-negative matr ix can be associated to a directed 
graph, w i th the only difference, that the transi t ion weights are no longer l imi ted to be in 
the interval [0,1] and that the mat r ix is not required to be row-stochastic. The Perron the
orem [Berman and Shaked-Monderer(2012)] states, that for every non-negative pr imit ive 
(i.e. regular) matr ix P , the m a x i m u m eigenvalue p(P) (also called spectral radius) is posi
tive, s imple 8 , singular (only one eigenvalue of this modulus) and has a positive eigenvector 
(called left and right Perron vector, whose normalized entries sum to one). For n —> oo, 
the mat r ix converges: 

l i m (-^) = L , L = x T y , x y T = 1, (3.18) 

where x and y are positive right and left eigenvectors: P x T = p ( P ) x T , x > 0, y P = 
p(P)y, y > 0. F r o m this, it follows that for any in i t i a l probabil i ty vector A, the ratio of 
state weights i n A w i l l converge 9 to a vector proport ional to the left eigenvector y: 

l i m A (-j^) = A L = ( A x T ) y = cy. (3.19) 

8 The algebraic multiplicity is one. Algebraic multiplicity is the number of times an eigenvalue appears 
in the characteristic polynomial of a matrix. 

9We don't know p(P), but independent of the normalizing constant, the ratio of the components of vector 
A will converge to the ratio in the left eigenvector. To achieve numerical stability, we need to normalize, 
and we could normalize A to unit length or to the first component being one. 
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Similarly, for any in i t i a l probabil i ty vector A, i f we mul t ip ly from the right, the ratio of 
state weights i n A w i l l converge to a vector proport ional to the right eigenvector x T : 

l im 
n—¥co 

L A = x (y\7 (3.20) 

If the mat r ix P is not regular, but non-negative and irreducible (ergodic), the Perron-
Frobenius theorem [Bcrman and Shaked-Monderer(2012)] states, that the m a x i m u m (ab
solute value) eigenvalue p(P) is s t i l l positive, simple (algebraic mul t ip l ic i ty one) and has 
a positive eigenvector (called Perron vector). There are no non-negative eigenvectors for 
P except for multiples of the Perron vector. A l l of them have eigenvalues wi th modulus 
p(P), however, there can be several complex eigenvalues wi th this m a x i m u m modulus. The 
eigenvalues w i t h modulus p(P) are p(P) e 2 m l l k w i th I = 0,1,... ,k — 1 and k is called the 
index of cyclicity. 

W i t h the help of a permutat ion matr ix R , every non-negative mat r ix P can be converted 
into the Frobenius form: 

R T P R 

0 

Pl2 
0 

0 
0 

0 

P23 

0 
0 

0 
0 

Pfc-lfe 
0 

(3.21) 

where the O-matrices on the diagonal are square. This means, that every non-negative 
matr ix w i t h index of cycl ic i ty k > 1 (i.e. ergodic but not regular) corresponds to a directed 
graph, whose states can be clustered into k stages, where the states of stage I + 1 can only 
be reached by the states of stage I. Th is can be seen i n the example in figure 3.3. W h e n 
a = b = c = 0, there are three alternating stages wi th one state each. 

3.3 Alternative weight pushing algorithm 

In section 3.1, we motivated the need to make the W F S A stochastic through the use 
of a weight pushing algori thm. We showed, that for the (log-) probabil i ty semi-ring, the 
generic (exact) a lgori thm for fc-closed semi-rings is not applicable, and the generic algori thm 
for closed semi-rings (all-pair-shortest-path) is not feasible for W F S A s wi th big strongly 
connected components (which is the case for W F S A s based on N-gram L M s ) . We showed, 
that the convergence of the approximate iterative algori thm depends on the weight in a 
loop (equation 3.9). If the weight of a loop U[TT] > 1 (or the sum of several loops meeting 
in the same state), the algori thm fails to converge. A s already explained, this can be the 
case for e-style back-off L M s , when the weights were taken from a back-off L M (section 
2.5.1). Thus, we need a weight pushing algori thm, that w i l l also succeed for those kinds of 
W F S A s . 

We represent the W F S A i n the probabil i ty semi - r ing 1 0 by using the transi t ion mat r ix 
Pij, where pij is the sum of the weight of a l l transitions between state i and state j . The 
transi t ion matr ix is usually sparse (contains 0 for a l l non-existing transitions). Our solution 
is based on the theory of non-negative matrices and ergodic Markov chains as introduced in 
section 3.2. The fundamental l imi t theorem for regular chains i n equation 3.15 suggests an 

1 0 Even for the implementation, we found it more convenient to use actual probabilities instead of negative 
logs, as used in the log-semi-ring. 
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iterative algori thm to find the stationary dis tr ibut ion. This is similar to the power method 
for finding the dominant eigenvector w of the mat r ix P , by starting from a random or 
uniform positive vector v and iterating by let t ing v ( - P v each time. 

If the W F S A is not normalized, the generalization is given by the Perron theorem in 
equation 3.18. Since we do not know the normal iz ing spectral radius p ( P ) i n advance, we 
re-normalize the resulting vector v at each step so that vj is 1, where / is the in i t i a l state 
of the W F S A 1 1 . B y equation 3.19, we know that i f we iterate uT <— u T P , we converge 
to a mult iple of the dominant left eigenvector y. This corresponds to a mult iple of the 
stationary dis t r ibut ion w of the normalized chain and also corresponds to the m i n i m u m 
distance from the in i t i a l state i n the probabil i ty semi-ring. The law of large numbers for 
Markov chains (equation 3.17) tells us, that the elements of this vector correspond to the 
average proport ion of times that the chain is in each of the states in the long run. If we 
instead iterate v < - P v (equation 3.20), it results in the dominant right eigenvector of P , 
which, i n the probabil i ty semi-ring, is the m i n i m u m distance towards the final states (or 
the super-final state). 

The Perron theorem is only true for regular chains, but as explained i n section 3.2, we 
can make every t r i m W F S A ergodic by connecting the final states / £ F to the in i t i a l 
state I12. Tha t means we modify one column i n the t ransi t ion matr ix : i f j is the in i t i a l 
state, then pij is set to the final-probability p[i] of state i. A s a second step, we need to 
guarantee, that the resulting ergodic W F S A is also regu la r 1 3 . We can make the W F S A 
regular by interpolating P wi th the identity matr ix (equation 3.12). Alternat ively, we can 
modify the i terat ion to v < - P v + A : v 1 4 . The parameter k is set to a smal l value (0.1) to 
not slow down the convergence too much. This a lgori thm is very efficient i n practice, it 
generally converges wi th in several tens of iterations. 

A t the end, we have a vector v w i th vj = 1, and a scalar c > 0, such that 

c v = P v . (3.22) 

The vector v contains the dis t r ibut ion of average state occupancies and is used as the 
potential function V(q) : Q —> K — 0 for the re-weighting operation (equation 3.2). Th is 
means we compute a modified transi t ion mat r ix P * , by lett ing 

Pij = PijVi/vj, (3.23) 

and transforming the final probabilities by p* = piVj/vi, where vj is the potential of the 
in i t i a l state. Us ing the re-weighting wi th the potential function V guarantees, that the 
resulting W F S A is equivalent to the original one. 

If we apply the left Perron eigenvector as potential function i n the re-weighting operation 
(equation 3.2), it results i n pushing the weight towards the final state, or more precisely in 
making the W F S A input stochastic. Tha t means, either a l l incoming arcs sum to one, i f 
the to ta l weight is one, or more generally they sum to the same quanti ty for a l l states. If 
we use the right Perron eigenvector as potential function i n the re-weighting, it results in 

n A n y normalization will lead to the same eigenvector. Actually, in the implementation, we normalize to 
unit length, as in the matrix power algorithm. 

1 2 This acts like an arc from the super-final state to the initial state with probability one. It will not 
change an already stochastic WFSA, since all components of the resulting eigenvector will be equal. 

1 3 That is, we want index of cyclicity one. This is, for example, necessary for linear WFSAs (in figure 3.3), 
which have several multiple eigenvalues with the same magnitude but different complex phases. 

1 4 More exact would be (1 — k) P v + k v, but it doesn't affect the result. 
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pushing the weights towards the in i t i a l state and i n making the W F S A output stochastic -
i.e. a l l outgoing arcs sum to one (or more generally to the same quantity). 

We show this by wr i t ing one element of equation 3.22 as 

cvi = ^pijVj, (3.24) 
3 

by d iv id ing by Vi, it easily follows that c = ^2jP*j- This means each row of the modified 
matr ix P * sums to c (modulus of the eigenvalue of the Perron vector). In the classical weight 
pushing algori thm [Mohri and Riley(2001)], we assume a stochastic W F S A (equation 2.6), 
so that after weight pushing, a l l outgoing transitions of a state "sum to" 1 i n the given 
semi-ring. Our solution is to use a modified pushing operation, which results in a W F S A , 
for which the transitions out of a l l states (and the final probabil i ty p) "sum to" the same 
quantity c: 

VqeQA 0 Me] ®p[q]=c. (3.25) 
\eeE[q\ ) 

This means that the left-over weight, which is usually added to the in i t i a l or final states 
and which can cause the standard algori thm to fail, is now uniformly "smeared" a l l over 
the W F S A . 

A l g o r i t h m 1 gives the pseudo-code of the alternative weight pushing a l g o r i t h m 1 5 . The 
main program consists of the flat in i t ia l iza t ion of the vector v, then we iterate unt i l conver
gence {Iterate) and finally apply the reweighting operation (ModifyFst). The heart of the 
algori thm is the function Propagate, which is bo th used i n the test for stochasticity (TestAc-
curacy) and in the main iterative algori thm (Iterate). The only difference is, whether the 
outgoing arcs are reweighted wi th the potential function (prob- v[d]/v[s]) or the propagated 
probabil i ty mass is summed from the destination states of the outgoing arcs (prob • v[d]). 
Notice also the symmetry of pushing towards the final or towards the in i t i a l state - we 
only have to switch the role of source and destination s ta te 1 6 . The stopping cri terion in 
TestAccuracy is the ratio between the m a x i m u m and m i n i m u m arc sum - which should 
converge to one. 

Our algori thm is i n practice an order of magnitude faster than the more generic al
gor i thm for conventional weight-pushing [Mohri and Riley(2001)], when applied to cyclic 
W F S A s . The speed of the algori thm is determined by the convergence of the matr ix power 
method, i terating by repeatedly mul t ip ly ing the state dis t r ibut ion vector w i th the (sparse) 
transi t ion matr ix , i.e. going through al l states in a pre-defined order every t ime. The con
vergence of the mat r ix power method depends on the ratio between the biggest p ( P ) and 
the second biggest eigenvalue. 

Mohr i ' s a lgori thm (3.2) is similar to a backward (Viterbi-l ike) a lgori thm on the given 
semi-ring, using the new relaxation condit ion (equation 3.8) to propagate the probabil i ty 
mass and to update the queue. A state is put to the queue, i f the accumulated probabil i ty 
mass has changed more than the delta parameter since the last visi t . The queue is processed 
according to the queue policy un t i l it is empty. For the queue method, the proofs for 
convergence of the mat r ix power algori thm can no longer be applied. 

1 5 The algorithm assumes that the weights were stored in the log-semi-ring. 
1 6 We check if the log-ratio is below the threshold. We do not test at each iteration, to save the time of 

re-weighting the arcs. 
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A l g o r i t h m 1 Pseudo-code of the alternative weight pushing algorithm. 

void Main () { 
vector<double , num_states> v = 1 / sqr t (num_states) / / f l a t i n i t 
for ( a l l s t a t e s s ) : 

for ( a l l arcs a rc l e a v i n g s ) : 
prob = exp( —arc. weight) / / conver t to p r o b a b i l i t y semi —ring 
p r e d e c e s s o r s [ t ] . a d d ( tuple(s, prob) ) 

f i n a l = exp( — f i n a l w e i g h t ( s )) 
p r edeces so r s [ i n i t i a l _ s t a t e ] . add( tuple(s, f i n a l ) ) / / force e r g o d i c i t y 

I t e r a t e (backwards , d e l t a ) / / u n t i l s t a t i o n a r y d i s t r i b u t i o n found 
Mod i fyFs t (backwards) / / weight pushing o p e r a t i o n 

} 

double Test Accuracy ( bool backwards) { / / tes t s t o c h a s t i c i t y 
vector<double , num_states> s tate_sums = 

Propaga te (backwards , do_ rewe igh t ing ) 
return l og ( max (s ta te_sums) / min (s ta te_sums) ) 

} 

void I t e r a t e ( bool backwards , d e l t a ) { 
for (maximal 2000 i t e r a t i o n s ) : 

vector<double , num_states> new_v = 
Propagate (backwards , n o t . r e w e i g h t i n g ) 

new_v += 0.1 * v / / regula r , us ing power method (M + 0.1*1) 
v = new_v / sqr t (new_v dot new_v) / / r e n o r m a l i z e wi th L2—norm 
if ( t est _i t e ra t i o n and Test Accuracy () <= d e l t a ) : 

return / / has converged 
output wa rn ing : D i d not converge! 

void Mod i fyFs t (bool backwards) { / / weight pushing o p e r a t i o n 
v = — log(v) / / conver t to log — p r o b a b i l i t y 
for ( a l l s t a t e s s ) : 

for ( a l l arcs a rc l e a v i n g s ) : 
if (backwards) 

a r c . weight = a r c . weight + ( v [ t ] — v [ s ] ) / / ou tgo ing n o r m a l i z a t i o n 
else // forwards 

a r c . weight = a r c . weight + (v [ s ] — v [ t ] ) / / incoming n o r m a l i z a t i o n 
if (backwards) 

f i n a l w e i g h t ( s) = f i n a l w e i g h t ( s) + (v [ i n i t i a l _ s t a t e ] — v [ s ] ) 
else 

f i n a l w e i g h t ( s) = f i n a l w e i g h t ( s) + (v [ s ] — v [ i n i t i a l _ s t a t e ]) 
} 

vector<double> Propagate (bool backwards , bool r e w e i g h t i n g ) { 
for ( a l l s t a t e s d ) : 

for ( a l l ( s t a t e s, prob) i n p redeces so r s [d ]) : 
if (backwards) { 

if ( r e w e i g h t i n g ) 
s tate_sums [ s ] += prob * v[d] / v [ s ] 

else 
state_sums [ s ] += prob * v[d] / / v_j = sum_i v _ i * p _j i . 
/ / summing i n the source s ta te —> d i s t a n c e to the f i n a l . s t a t e 
/ / pushing the weights towards the i n i t i a l s ta te 

} else { / / forwards 
if ( r e w e i g h t i n g ) 

s tate_sums [d] += prob * v [ s ] / v[d] 
else 

state_sums [d] += prob * v [ s ] / / v _ i = sum_j v_j * p _j i 
/ / summing i n d e s t i n a t i o n s ta te —> d i s t ance to i n i t i a l s ta te 
/ / pushing the weights towards the f i n a l . s t a t e 

} 
return s tate_sums 

} 
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Apar t from that, bo th algorithms use different in i t i a l distr ibutions. Mohr i ' s a lgori thm 
starts from the in i t i a l state, the new algori thm uses a uniform or a random vector as in i t i a l 
state dis t r ibut ion. Also , a different test for convergence is used. Mohr i ' s a lgori thm uses the 
delta relaxation and the new algori thm checks the m i n i m u m and m a x i m u m over a l l states 
of the sum of the outgoing weights of a state. However, bo th differences can be considered 
minor. 

One issue wi th the alternative weight pushing algori thm is that it was derived under 
the assumption, that a l l arcs i n the W F S T are of the same type. The transi t ion matr ix 
Pij treats a l l arcs i n the same way. The L M transducer, which accepts/emits sequences of 
words, actually consists of arcs w i th a word label, and arcs representing the back-off arcs, 
that don't accept any symbol . Therefore, there are mult iple paths through the model w i th 
different number of arcs to accept the same word sequence. We can see this in analogy to 
composite H M M s , which have emit t ing and non-emitt ing arcs, which are computed i n two 
separate steps in the fo rward /Vi te rb i algori thm. 

Another related open problem to derive a weight pushing algorithm, i.e. a shortest 
distance algori thm i n the log-semi-ring, which respects the special semantics of failure arcs. 
Under this interpretation, the back-off L M would be correctly normalized and the total 
weight of the transducer would be one. Due to the incorrect interpretation of back-off 
L M (section 2.5.1), we are pushing weights that are greater than one. In case a state has 
a single outgoing arc, this results i n a negative arc weight (when represented as negated 
log-probabili ty), which can cause problems for several graph algorithms and their common 
implementations. 

3.4 Experimental validation 

We measure the effect of the new weight pushing algori thm by constructing a full recognition 
network (HCLG, section 2.4.1). In addi t ion to the forward network, we construct a back
ward network (section 5.2) as the composit ion of the reversed components. The language 
model is reversed according to chapter 4, but the resulting transducer is not yet stochastic. 
We want to emphasize, that this is not just a reversed L M W F S T . A s w i l l be explained in 
chapter 4 W F S T reversal is not feasible to L M W F S T , but we have to use the algori thm 
explained in the same chapter. The outcome of the L M reversal is not yet normalized, thus 
we want to apply weight pushing. The generic weight pushing algori thm (figure 3.2) is not 
applicable i n this case, therefore, we apply the new weight pushing algori thm described in 
this chapter. We measure the decoding performance of the backward network wi th and 
without applying the new weight pushing algori thm to the reversed language model before 
the composit ion of HCLG. The experiment was done using K a l d i ' s Switchboard recipe 
(egs/swbd/s5c/tri3/). We report the performance on the Eval2000 data set , using a 
speaker-independent tri-phone G M M model on L D A transformed M F C C features and a 
language model trained on Switchboard. We test on two different recognition networks of 
different sizes (using a bi-gram and t r i -gram L M ) . The real-time-factor was measured on a 
single core of a Intel(R) C o r e ( T M ) i5-2500 C P U at 3 .30GHz wi th 8 G B of memory. 

A s seen from figures 3.4, the applicat ion of the weight pushing is crucial for the perfor
mance - the un-pushed backward language model performs much worse. We also compare 
to the performance of the forward graph. Since a l l components, including the language 

1 7 The decoding parameters are set to: rescore-acoustic-score 13.0, word insertion penalty 0.0, acoustic 
scale 1/12, max-active 7000, lattice-beam 6.0. 

41 



o 

E 
ID 

o 

E 

0 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

34 

HCLG forward 

HCLG backward push G 

HCLG backward 

39 40 

word error rate 

i i i 

HCLG forward 

HCLG backward push G -

HCLG backward 

i 

36 38 40 

word error rate 
42 44 46 

Figure 3.4: Decoding performance of backward decoding network reported on the Eval2000 data 
set with a GMM model. We tested it using a bi-gram LM (top) and a tri-gram LM (bottom). 
Shown is the relation between word error rate and real-time-factor. Better performance is indicated 
by curves closer to the lower left corner. We compare the performance of the backward decoding 
network (HCLG backward) with and without the application of the new weight pushing algorithm. 
For comparison, we also show the performance of the forward decoding network (HCLG forward). 
In this case, no weight pushing is necessary. 

model, are stochastic (except for the issues wi th back-off arcs mentioned above) and thus 
should have opt imal performance, it is not necessary to apply weight pushing. A s explained 
in chapter 5, the performance of the forward and backward graphs is not necessarily the 
same, depending e.g. on properties of language and domain (here conversational Engl ish) . 
However, the comparison indicates, that the weight pushing results i n a network, that is 
not far from the opt imal performance. 
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3.5 Conclusions 

To achieve an opt imal pruning behavior, it is desirable that the given W F S T is stochastic. 
If the W F S T is stochastic or has a similar op t imal weight dis t r ibut ion, we showed that it is 
necessary to perform weight pushing. G iven the theoretical background for weight pushing, 
we showed why the standard algori thm is either inefficient for the type of models used 
or fails to converge at a l l . B y explaining the connection between non-negative matrices 
and ergodic Markov chains, we motivated an alternative weight pushing algori thm, that 
always converges and is much more efficient for the given task of opt imiz ing language 
model transducers. 
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Chapter 4 

Exact reversal of ARPA back-off 
language models 

We present details about how to exactly reverse A R P A back-off language models ( L M ) . For 
the purpose of searching for the best path through composed probabil ist ic models forwards 
and backwards in t ime and to combine these searches, it is desirable to have a backwards 
language model, that assigns exactly the same scores as the forward language model, while 
at the same t ime it has the same properties of being deterministic, stochastic and of min ima l 
size to guarantee an opt imal search. We show an approach to construct such a backwards 
L M , which is va l id when using failure arcs and also when using epsilon arcs to represent the 
back-off structure as weighted finite state acceptor. This means that the weight of a path 
in the backward L M W F S A is equal to the corresponding forward L M W F S A , independent 
of the origin of the weights, i.e. whether estimated as interpolated, converted interpolated 
or back-off L M . We test the reversal a lgori thm on language models of different sizes and 
on different corpora and we compare it to t ra ining a language model on the t ime reversed 
t ra ining texts. 

4.1 Motivation: forwards and backwards search 

The application that we had in m i n d while investigating into this k ind of models was the 
search for the best path through a composed probabil ist ic model . Th is can be for example 
the decoding of the most probable sequence of words i n large vocabulary automatic speech 
recognition ( L V C S R ) . However, the reversed language models presented here can also be 
used i n many other tasks as e.g. i n finding the most probable sentence i n statist ical machine 
translation. G iven the complexity of most of the tasks, it is necessary to use heuristic 
pruning techniques, which introduce search errors. A s w i l l be explained in more detail in 
section 5.1, the search errors of searching forwards and backwards are mutual ly independent. 
Therefore, backward search has the potential to find the best path, even i f it was pruned 
by the forward search. 

B o t h models, forward and backward, should be equally powerful, i.e. have roughly the 
same accuracy and run-time requirements, and have similar structure, size and level of 
determinism to guarantee an opt imal search. If bo th models, forward and backward, assign 
exactly the same probabilities to a hypothesis, it has the advantage, that the results of 
forward and backward decoding can be compared or combined (section 5.1). To be able to 
compare and combine the scores of par t ia l results (paths), also the model structure (the 
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distr ibut ion of weights along paths) should be s imilar i n the forward and backward model. 
Our assumption is that we are given a composed forward graph HCLGfwd (section 2.4.1), 

where one of the components is an L M acceptor G (section 2.5). The task is to obtain a 
backward graph HCLGbwd that fulfills a l l of the above mentioned requirements. A s w i l l be 
explained i n more detai l i n section 5.2, the solution is to reverse each component separately 
and then construct the backward graph HCLG^d i n analogy to the forward graph. The 
t r iv ia l solution to apply W F S T reversal is not sufficient, since the resulting graph would 
not have a similar level of determinism and not have a similar dis t r ibut ion of weights as 
the forward graph, i.e. it would show sub-optimal behavior when used in a pruned search. 
A s we w i l l see i n this chapter, especially the (reversed) L M component would introduce a 
great degree of local ambiguity - the word context is delayed i n the reversed model (section 
4.2) and might result in falsely pruned paths. 

To reverse the L M acceptor G turns out to be a complex task - this is the topic dealt 
w i th i n this chapter. The task is to construct an L M acceptor Gbwd, that assigns exactly 
the same scores as Gfwd (to the reversed utterances). A g a i n , a t r iv i a l solution is to apply 
W F S A reversal to Gfwd (followed by epsilon removal, determinization, and weight pushing 
in the log semi-ring - as explained i n section 3.1, this is needed to achieve opt imal pruning 
behavior and makes the W F S A stochastic). However, for L M s of higher order than b i -
gram, this approach fails. A s explained i n section 4.2, this is because of the delayed word 
context and different backing-off states. Addi t iona l ly , as already explained in section 3.1, 
the conventional weight pushing cannot be applied to W F S A s resulting from L M s , but we 
should use the alternative weight pushing (section 3.3). Thus, to achieve opt imal search 
behavior, we need to construct an L M acceptor Gbwd w i th similar structure as the forward 
acceptor Gfwd that assigns exactly the same scores to the reversed utterances, and that also 
makes it possible to compare par t ia l word sequences of forward and backward decoding. 

Another t r i v i a l solution would be to t ra in a new model on the reversed t raining texts 
(e.g. [Tang and Cristo(2008)]) - given that those are s t i l l available. Th is does however not 
result in exactly the same scores for the same utterances, since there is usually no such 
constraint applied i n the L M es t imat ion 1 . Since we wanted exactly the same scores, we 
d id not follow this approach further. Also , it would make our approach inconvenient to 
use in cases where the original L M text is no longer available. To determine the impact of 
those score differences, we compare an exactly reversed tr i -gram model to a t r i -gram model 
trained on the reversed t ra ining texts. We test the L M reversal a lgori thm on language 
models of different sizes. 

4.2 Construction of an exactly reversed language model 

In section 2.5, we explained how N-gram back-off language models are represented as 
weighted finite state automata and stored in the A R P A format. In this section, we show 
how to construct a backward L M , that has the same properties as the forward L M - i.e. it 
is deterministic (except for the e-arcs), has the same size and a similar structure. The 
algori thm presented here is va l id for failure arcs and for epsilon arcs. 

1 Based on the idea that Kneser-Ney models apply a constraint for the marginal distributions to estimate 
the probabilities in the L M , we assume that it is possible to formulate another type of constraint, that 
the L M probabilities should be estimated in such a way, that when estimated on reversed training texts 
and applying the exact reversal algorithm presented here, it should give the same probabilities as when 
estimating the normal forward L M . 
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The W F S A corresponding to the forward L M accepts a sequence of words and accu
mulates the weights along the path - see figure 4.1. If the probabi l i ty semi-ring is used, 
the path weight is the product of the ind iv idua l probabilit ies. If logari thmic probabilit ies 
are used, the path weight is the sum of the ind iv idua l scores. Two W F S A are equal, i f 
they accept the same set of sequences wi th the same path weights. Thus, it is possible 
to distribute the weights differently along the path, as long as the to ta l product (or sum 
for logari thmic weights) stays the same for a l l paths. W h e n we directly apply F S A rever
sal, which basically corresponds to swapping the source and destination states of the arcs, 
the resulting structure would be highly non-deterministic. In the example (figure 4.1), we 
would start backwards from the final state. A l l incoming arcs into the final state (only one 
example is shown) have the label </s>. Thus, we would have to apply the t r i -gram proba
bi l i ty P(</s> |c, d) after only having seen only one symbol of the t r i -gram (</s>). However, 
only after two more symbols d, c have been seen, the destination state can be determined 
unambiguously. For that reason, it would be logical to delay the application of the weight 
(probabili ty), un t i l a sufficient number of symbols have been consumed to unambiguously 
determine the destination state. For a t r i -gram L M , this means delaying the weights by 
two steps. Figure 4.2 shows the corresponding path i n the backward L M . 

<s>:l/^a:P(a\<s>)/^b:P(b\<s>a)/~yz : P(c\a,b)/~^d : P(d\b,c)s~y£/g>:P(</s>\c,<)/fT\ 
> (<s>) " * (< s >7 ~ * (ab) > (be) > (cd) > \d</s>) 

Figure 4.1: Example of a forward path through a tri-gram language model - every state cor
responds to a history of the two last symbols consumed. The model accepts the sequence a, b, c, d 
(input symbols) and the path weight is the product of the individual probabilities. For simplicity, 
sentence-start and sentence-end are treated here as ordinary symbols. Only one path is shown, but 
the reader has to keep in mind, that there e.g. multiply arcs entering the final state, all with the 
same label. 

e:P(o|<s>) 
75ta<s>i >\<8>l 

</s>AS~\ d . i /^^c:P(</s>|c,d) /^6:P(d|6,c) /^a:P(c|a,6) /^<s>:P(6|<s>a)-P(a|<s>) />~\ 
>(</s>p^-»</s>rf >( dc ——>( cb ) ——•( ba ><s> 

Figure 4.2: The backward path corresponding to the path in figure 4-1- Additionally to reversing 
the path, the weights/probabilities have been delayed by two steps. Therefore, two arcs with prob
ability one have been inserted at the beginning. To compensate, we could add two e-arcs at the 
end (as depicted in dashed), where the last arc corresponds to backing-off to a history-less state 
at the sentence beginning (now end). Instead of introducing back-off arcs at the end of the sen
tence, we can collapse the probabilities of all the lower-order back-offs onto one arc, i.e. we use 
P(b\<s>a) • P(a\<s>) • P(<s>) (we assumed P(<s>) = 1 before). This is well in line with the com
mon WFST LM implementation, which assumes, that the state reached by an N-gram containing 
the sentence-end symbol is a final state. 

W h e n certain N-grams do not have sufficient coverage in the t ra ining corpus and are 
approximated by backing-off to lower order N-grams (see figure 4.3), the sequence of the 
weights in the backward L M is again exactly reversed as i n the forward L M , and the same 
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Figure 4.3: The same example of a forward path as in figure 4-1, but with backing-off. The thick 
arcs correspond to the path in fig. 4-1 and further arcs have been added to illustrate the structure of 
the back-off LM. Since the N-gram bed was not seen sufficiently often, it is approximated by backing-
off to state c with back-off weight a(b, c) and then using the bi-gram cd with probability P(d\c). The 
failure-arc (symbolized by tp) doesn't consume any symbol, but this arc is chosen for all symbols, 
that have no outgoing arc out of the same state ('default' clause). For the non-deterministic WFSA 
approximation, we would use the symbol e instead and not consume a symbol either. The state 0 
corresponds to the history-less back-off state when backing-off to uni-grams. 

Figure 4.4: The backward structure corresponding to figure 4-3. The thick arcs correspond to the 
path in fig. and all solid arcs are reversed arcs from fig. 4-3- Dashed arcs have been added to 
illustrate further structure of the backward model. Similar as in figure 4.2, the weights have been 
delayed by two steps. Compared to the forward structure in figure 4-3, the sequence of weights is 
exactly reversed. The probability on an arc between two particular states is the same in the forward 
and backward model. I.e. compare the forward arcs be — c — cd in fig. 4-3 to the backwards arcs 
dc — c — cb in this figure (cb corresponds to be). However, since all labels are off by two states in the 
backward model, the back-off probability a(b,c) is now actually applied on a bi-gram arc with a label 
(b) and the bi-gram probability P(d\c) is applied on a back-off arc with tp. Since all backward-tri-
grams ending in cb (like deb, heb) share b as last label, it is logical to first back-off from the history 
(dc, he) to the common history c and then apply the common label b. Since the reverse order of the 
weights has been preserved, the bi-gram probabilities serve now as back-off weights, and the former 
back-off weights serve as bi-gram probabilities. The same holds for the history-less state 0 - the 
uni-gram back-off weight a(l) and the uni-gram probability P{c) have switched their role. 
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delay of the weights is applied to make the model determinis t ic 2 . However, the sequence of 
the labels for back-off arcs is changed - back-off weights and lower-order N-grams change 
their role. The reason for that is we always have to back-off to a common history before 
consuming the next label - so the failure-arc (symbolized by ip) in the backward model takes 
the lower-order N-g ram probabil i ty (from the forward model) and the label-arc takes the 
former back-off weight. Figure 4.4 shows this i n the construction of a backward back-off 
L M from hgure 4.3. 

Figure 4.4 shows that it is possible to construct a backward L M , that has the same size 
and structure as the forward L M and is deterministic. F r o m the construction, we observe, 
that a forward L M can be transformed into a backward L M by a series of relatively simple 
steps: Since the sequence of labels is processed i n reversed order, the names of a l l states and 
N-grams are reversed (abc becomes cba). The N-grams of the highest order do not have 
back-off weights, and thus they stay unchanged (arcs appear s imilar in the forward and 
backward models). However, for a l l lower-order N-grams, the role of the back-off weight 
and the N-g ram probabil i ty changes. W h e n represented i n the A R P A format (hgure 2.12), 
the transformation becomes even simpler: For a l l lower-order N-grams, the whole line is 
reversed, and for the highest-order N-gram, only the N-g ram is reversed. E . g . for a t r i -gram 
L M , a bi-gram entry P(b\a) ab a(a,b) becomes a(a,b) ba P(b\a) and a t r i -gram entry 
P(c\a,b) abc becomes P(c\a,b) cba. The symbols for sentence begin and sentence end 
have to be exchanged, and special care has to be taken for N-grams starting and ending 
a sentence. For a l l N-grams ending a sentence, we mul t ip ly a l l lower-order probabilities 
(e.g. for N-gram ba</s>we use P(b\a,<s>) • P(a|<s>), times P(<s>) i f not one). 

B y introducing the short-hand notat ion P(ABCD) = P(D\A, B,C), we can write the 
rules for a four-gram L M in the form of equations: 

P(A) = a(A) 

a{A) = P{A) 
P(BA) = a(AB) 

a(BA) = P(AB) 

P(CBA) = a(ABC) 

a(CBA) = P(ABC) 

P(DCBA) = P(DCBA) 

(4.1) 

4.3 The treatment of missing N-grams 

Figure 4.5 shows the L M reversal rules (equation 4.1) applied to a t r i -gram back-off A R P A 
L M . W h i l e the rules are rather simple, an addi t ional complexity arises, when representing 
A R P A models (back-off N-gram L M s in general) as W F S A s . If there is an N-g ram entry 
for abed i n the A R P A , the resulting W F S A needs the back-off states bed, cd and d. Due to 
L M pruning, and due to other reasons that we are going to explain i n this section, for some 
of the N-grams abed defined i n the A R P A hie, there is no corresponding tr i -gram entry bed 
or bi-gram entry cd, i.e. we are not given the probali ty a(bcd) of backing-off abed —>• bed, 

2 The model is only truly deterministic, if we use failure arcs, but the construction presented here is also 
valid for e-arcs. 
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\data\ 
ngram 1=4 
ngram 2=2 
ngram 3=2 

Figure 4.5: Upper part: Forward WFSA for the tri-gram back-off ARPA LM (repeated from 
figure 2.12). We apply the rules from equation 4-1 (and swap sentence begin/end symbols) to obtain 
the backward WFSA (lower part). We see that exactly the same probabilities are used between the 
states (e.g. a —> ab in upper model and a —> ba in lower model) and that back-off weights in the 
upper model are now on word arcs in the lower model. As already said, an alternative interpretation 
of a tri-gram transition ab —> be is to go to an imaginary state abc and immediately backing off to 
state be. Therefore, the final state in the upper part is the tri-gram state ab</s>. However, since 
this is a final state, there is no way to back-off from it to the state b</s>. Moreover, in the forward 
ARPA definition (upper left), the N-gram corresponding to the state b</s> is missing. 

neither P(d\b,c). N-grams that are needed for the construction of the W F S A , but not 
defined in the A R P A , we cal l missing N-grams. 

Dur ing the construction of the recognition graph from the forward L M , missing back-off 
states are usually added automatically. For example, in the t r i -gram L M in the upper part 
of figure 4.5, the t r i -gram <s>ab leads into the state ab. Let ' s imagine the corresponding 
back-off bi-gram ab is not given i n the A R P A file (e.g. due to pruning): In this case, during 
the construction of the recognition graph, the state ab needs to be automatical ly created, 
as it is the target of the t r i -gram. Since there is no bi-gram probabil i ty for ab (P(b\a) = 0.0, 
and no successor bi-grams), we should immediately back-off to state b. Thus, the bi-gram 
ab is added wi th back-off weight a(a,b) = 1.0 (zero in log-domain). However, it should 
not be possible to reach the newly created state ab from o, since the N-g ram ab is missing 
(P(b\a) = 0.0 or minus infinity i n log-domain). 

In terms of the W F S A representation of the L M (right part of figure 4.5), this would 
mean, that there would be no l ink between a and ab, and the l ink between ab and b would 
be added wi th zero cost. In the reversed L M , where forward probabil i ty and back-off weight 
change their role, this does lead to the si tuation, that we are able to reach ba from b w i th 
a(a, b) = 1.0, but we are not able to back-off from ba to a, since this corresponds to a path 
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that was not present in the forward model (P(b\a) = 0.0). If we would make the missing 
N-grams explicit i n the A R P A file, i n the forward A R P A file, the missing N-gram would 
result in an entry ' — i n f ab 0.0', and i n the backward A R P A file, this results i n entries of 
the type '0.0 ba — i n f . This might seem awkward, because we never have infinte log-back
off weights i n the forward L M , but it is necessary to make the forward and backward L M s 
match exactly. 

A n example of a missing N-gram is in figure 4.5: For the entry ab</s>, the back-off 
state b</s> is missing i n the A R P A . It would be automatical ly added when constructing 
the W F S A , but here it is not necessary, since after observing the sentence-end symbol , no 
other N-gram can fol low 3 . Even i f we don't need it i n the forward model, it s t i l l has an 
effect on the backward model. To make the missing N-g ram explicit i n the forward model 
(upper part), we would add it i n such a way, that we can back-off to the missing state b</s> 
and from it to the final state </s>. However, b</s> should not be reachable through the 
missing N-g ram b —> b</s>. Accord ing to the rule, we create '—inf b</s> 0.0' i n the 
forward A R P A . In the reverse model (lower part) , this corresponds to being able to reach 
the missing state by the N-gram <s>—><s>b, but not being able to back-off from <s>b to 
the lower order state 6, since this corresponds to a path that was not present in the forward 
model. Th is results in adding '0.0 </s> b — i n f in the backward A R P A and exactly 
corresponds to the state <s>b i n figure 4.5, which can be reached wi th probabil i ty one, but 
there can be no back-off arc leaving this state (indicated as dashed arc w i t h infinite cost). 
To summarize, we need to add the state <s>b in the reverse model, but the back-off l ink 
<s>b —> b is not allowed to have an equivalent backward model. 

Miss ing N-grams result from a complex interplay of the type of back-off dis t r ibut ion, 
cut-off frequencies and L M pruning (e.g. based on entropy [Stolcke(19! '<)]). A s we have 
already explained, the first type of N-grams that are missing i n the A R P A file are back
off N-grams that end a sentence (e.g. b</s>). Otherwise, i f we don't apply pruning, we 
would expect that the presence of a higher-order N-gram implies the presence of the lower-
order N-gram (e.g. w i t h a shortened history), since the absolute observation count of the 
lower-order N-gram should be equal or higher than the count of the higher-order N-gram. 
We encounter missing N-grams, when we use different cut-off frequencies (parameter k in 
equation 2.13) for different N-g ram orders. For example, when we use S R I L M ' s default 
setting &4 = 1, &3 = fa = fci = 2 for four-gram L M s , we get missing tri-grams for a l l 
four-grams, whose back-off t r i -gram was only observed once. 

A s we w i l l see now, we also get missing N-grams, if we use lower-order distributions, 
which are not based on counts. The dis t r ibut ion for the highest-order N-grams P'(wi\hi) 
(equations 2.13, 2.16) is usually based on the counts C(hi,Wi). W h e n back-off models 
were introduced [Katz(19i ')], also the lower-order back-off distributions Piower were based 
on counts. However, when we have to back-off, we should make use of the fact that this 
particular word is unseen in the given context. We would expect a different dis t r ibut ion 
of words, than when we were not given that information, i.e. not just expect any frequent 
word. In other words, we should use a different type of dis t r ibut ion for Piower{wi\hi) than 
for P'(wi\hi). Fol lowing that intui t ion, Kneser-Ney-type L M s [Kneser and Ney(1995)] use 
a back-off dis t r ibut ion, where the probabil i ty of a word, unseen i n a certain context, is 
proport ional to the number of possible predecessor words types that can occur before that 
context: 

3 B y convention, a state reached by an N-gram containing the sentence-end symbol is a final state. 
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Pbackoff(Wi\Wi-n+l • • • Wi-l) 
Wi—n '. C(wi—n ...Wi)>k\ 

(4.2) 
J2Wi \Wi-n •• C(Wi >i-n ...Wi)>k\' 

A s a consequence, we can expect words or phrases, that appear frequently, but only in 
very few different contexts, to have a low probabil i ty in the back-off model. For example, 
we would not expect the word "Francisco" to appear i n many other contexts than together 
w i th "San Francisco", despite the fact that it is a frequent word. For that reason, we often 
find higher-order N-grams i n the L M , such as "San Francisco area", for which the back-off 
N-gram "Francisco area" is missing. W h e n constructing the backward L M , we w i l l add the 
missing N-g ram "area Francisco" w i t h probabil i ty one and infinite back-off weight. This 
means, that after observing "area Francisco", we are only able to continue w i t h "San" and 
there can be no back-off to "Francisco", which would allow to continue wi th another word. 

In fact, when experimenting wi th L M s trained on sentences from the W a l l Street Jour
nal corpus [Paul and Baker(1992)], we observed that any common mult i -word phrase can 
result i n missing lower-order N-grams. A n N-gram starting wi th in a mul t i -word phrase has 
very few different left contexts, which causes it to have low back-off probabili ty. If the right 
context of that N-gram is either almost completely undetermined or completely determined 
(e.g. sentence end), a l l N-grams that would continue the phrase fall below the cut-off fre
quency and are thus not present in the L M . Typical ly , a mul t i -word phrase like "on behalf 
of" or "New Y o r k C i t y " is followed by a word that introduces lot 's of ambiguity - e.g. "on 
behalf of the". If no N-g ram "behalf of the X " is above the cut-off frequency, then also the 
back-off N-g ram "behalf of the" is missing in the L M , since the probabil i ty of seeing it in a 
new context other than "on" is extremely low. A s already mentioned, also for a l l N-grams 
ending a sentence, there is no succeeding N-gram, which is a similar si tuation. It is quite 
obvious, that L M pruning (e.g. based on entropy [Stolcke(19i i)]) w i l l increase the number 
of missing N-grams. Accord ing to the same principle, N-grams wi th a low probabil i ty in 
the back-off dis tr ibut ion, and no successor N-grams (due to pruning) are missing as well. 

4.4 Proof: Exact reversal of the language model 

We have verified that our "reversed" A R P A L M , and also the corresponding W F S T assigns 
the same score to a reversed sentence that our original A R P A L M assigned to the original 
sentence. In this section, we sketch a proof for the correctness of the algori thm for reversing 
the L M , as presented i n section 4.2. The steps are val id for back-off and interpolated L M s . 
We do this by introducing a series of simple transformations, that each guarantee the 
equivalence of the L M W F S A (the same sequence of symbols gets the same score): 

1. Mod i fy the A R P A model to make the back-off costs zero while maintaining the 
sentence-level scores the same, 

2. Convert to "max-ent" form, reverse i n the "max-ent" form, which is easy, 

3. Convert back to A R P A form [still not normalized per word], 

4. Convert to a W F S A , and apply the new weight pushing. 

Input to the algori thm is a language model ( L M ) i n A R P A format 4 , which contains 
entries in the form 'p(ABC) ABC a(ABC)\ and its representation as a W F S A (top of 

4 A R P A stores log-probabilities, but for simplicity, we show probabilities here. 
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figure 4.5). Here, ABC stands for the three words A,B,C, p is the N-gram weight and a is 
the back-off weight. We use the notat ion p(ABC) meaning P{C\A, B). The result of these 
steps is a reverse L M that assigns exactly the same scores as the forward L M . 

First step: Pushing the back-off costs 

(aa) 

Figure 4.6: WFSA of a toy tri-gram LM with just three words A, B, C, focusing on the N-grams 
that contain AB. On the left, there are states corresponding to histories ending in A, in the center 
are N-grams that start with A and on the right are N-grams starting in B. For a vocabulary V = 3, 
every state (except for the zero-gram 0) has four incoming and four outgoing arcs. Conceptually, we 
see a tri-gram arc AB —> BC as two arcs AB —> ABC with p(ABC) and backing-off ABC —> BC 
with a(ABC) = 1.0. In this interpretation, all arcs with word labels go up one level in the hierarchy, 
and all back-off arcs go down one level in the hierarchy. 

In the first step, we push the weights a() of back-off transitions. We do this using the 
simple potential function defined in equation 3.4. Th is means, we mul t ip ly a fixed value k to 
the weights of a l l incoming arcs into a part icular state q' and we divide the same value from 
the weights of a l l arcs leaving that state. We do so start ing from the uni-gram-back-offs, 
and then going upwards to the bi-gram-back-offs, and so on (the highest order back-offs 
are 1.0 anyway). In figure 4.6, we show the relevant arcs for this operation: To push the 
back-off weight a(A) from the arc A —>• 0, we divide a l l outgoing arcs of the state A by 
a (A) (e.g. the arc A —> AB, thus we change p{AB)), and we mul t ip ly a l l incoming arcs of 
A by a{A) (e.g. the arc BA —> A, thus we change a{BA)). Push ing the weights from all 
uni-gram back-offs results i n a W F S A P ^ i : 

pzl(A) = p(A)a(A) (4.3) 

azl(A) = 1.0 

Pzl(AB) = p(AB)/a(A) 

azl(AB) = a(AB)a(B) 

Pzl(ABC) = p(ABC) 
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We only write one equation for each type of arcs, i.e. from pz\(AB) = p(AB)/a(A), we 
also know that pzi(CB) = p(CB)/a(C), and so on. W i t h our notation, we want to show 
the whole W F S A for a l l possible N-gram orders. Therefore, we write also the tr i -gram 
probabilities pz\(ABC), which are not affected by this step. If we would have a four-gram 
L M , it is clear, that also pzi(ABCD) is not affected. If we would have a bi-gram L M , we 
jo in the t r i -gram arc and the t r i -gram back-off arc into one arc, using a(AB) = 1.0: 

Pzi,ugram(AB)=Pzl(AB)-azl(AB) = {p{AB)/a{A))-{a{AB)a{B))=p{AB)-a{B)/a{A), 

and we would truncate our derivation, since we would already have an W F S A wi th back-off 
weights one. For t r i -gram L M s , we apply now a second pushing step, where we push the 
weight az\(AB) = a(AB)a(B) from the back-off arc AB —> B. F r o m figure 4.6, we see, 
that we divide a l l outgoing arcs of the state AB by az\{AB), and we mul t ip ly a l l incoming 
arcs of AB by the same quantity. F r o m figure 4.6, we see, that the arc AB —> ABC is 
influenced by AB B and BC -> C , thus both az\(AB) and az\(BC) influence p(ABC). 
This step results i n a W F S A Pz2: 

Pz2(A) 

az2(A) 

Pz2(AB) 

az2(AB) 

Pz2{ABC) 

az2(ABC) 

p(A)a(A) 

1.0 
p(AB)a(AB) a(B) 

a{A) 

1.0 
p(ABC) 

a(AB) a(B) 
a(ABC) a(BC) a(C) 

For tri-grams, we use a(ABC) = 1.0 and truncate or derivation wi th : 

pZ2,tn9ram(ABC)=Pz2(ABC)az2(ABC) = V { A B C

( \ l { B ^ { C ) • 
a(AB) a(B) 

A clear pattern is observed. To summarize, for an N-gram of any order, by a series of iV — 1 
weight pushing steps, we obtain a W F S A P 2 that has a l l back-off weights one (log zero): 

pz(A) = p(A)a(A) ( 4 . 4 ) 

p{AB)a{AB) a(B) 
Pz(AB) 

Pz(ABC) 

a{A) 

p(ABC) a(ABC) a(BC) a(C) 

a(AB)a(B) 

Second step: Convert ing to "max-ent" form 

In a second step, we view the W F S A i n a mult ipl icat ive space, which is inspired by the 
N-gram features i n a m a x i m u m entropy L M [Bcrgcr ct al.(1996)]. It models the probabil i ty 
of an N-gram wi th the help of a set of feature functions fi(hi, Wi): 

1 
P\(wi\hi) = - " exp I V ] \ i f i ( h i , W i ) I (4.5) 

Zx(h, 
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Here, Z\(hi) is the normalizer to form a va l id dis t r ibut ion and Aj is the weight of the 
feature function fi(hi,Wi), which i n the simplest case is a binary indicator function, which 
can select part icular words and histories (N-grams), but also other types of features can be 
used, asking about part-of-speech etc. Here, we assume an indicator function fi for each uni-
gram, bi-gram, t r i -gram and so on. W h e n evaluating the words ABC, a back-off L M would 
only consider p(BC), i f there is no p(ABC) i n the L M , i n which case it has to back-off to 
history B. O n the other hand, in interpolated L M s , p(ABC) is estimated by interpolating 
the N-g ram features of a l l orders. Th is is similar i n a 'maxent-type' model, however, we 
don't use additive interpolation, but mul t ip ly (exponential of sum) the feature contributions 
of lower orders. Inspired by this, we transform our L M weights into a mult ipl icat ive space, 
where a l l N-gram orders contribute: 

Pmaxent 
(ABC) = pf(ABC) • Pf(BC) • pf(C). 

(4.6) 

W i t h this step we actually leave the original semi-ring, but we use it just as an inter
mediate step for explanation. W h e n we use a back-off L M , we want to construct the model 
so that: 

Vz(ABC) Mpz(ABC) 
l>mt,,ent(ABC) = { pz(BC) else ifpz(BC) . (4.7) 

Pz(C) elsewhere 

This can be achieved by setting: 

Pf(C) 

pf(BC) 

Pf(ABC) 

Pz(C) 

Pz(BC)/Pz(C) 

Pz(ABC)/Pz(BC) 

(4.8) 

The combined weight pushing from back-off arcs and conversion to "max-ent" type 
results in: 

Pf(A) 

Pf(AB) 

Pf(ABC) 

pj(ABCD) 

p(A)a(A) 
pjAB) a(AB) 

a(A)p(B) 
p(ABC) a(ABC) 

a(AB) p(BC) 
p(ABCD) a(ABCD) 

a(ABC)p(BCD) 

(4.9) 

The advantage is that this 'maxent-type' model can be easily reversed by: 

pfr(ABC) = pf(CBA) (4.10) 

A s already mentioned i n section 4.2, the sentence begin and end symbols have to be 
switched in the A R P A file, and we assign the uni-gram probabil i ty of the former sentence 
begin (usually it is ignored, but i n our case it won't be one) to the new sentence begin 
(former sentence end). Also , as explained in section 4.3, we have to expl ic i t ly add the 
missing back-off states before the reversal (e.g. i f back-off state AB is not present for an 
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entry XAB - see lower part of figure 4.5). In the following equations, we treat pb(AB) = 1.0 
if the state AB was added as a missing back-off state. 

The resulting reverse maxent-type model can be transformed back to the A R P A - t y p e : 

Pb(C) = Pfr(C) (4.11) 

pb(BC) = pfr(BC)-pfr(C) 

Pb(ABC) = Pfr(ABC) • Pfr(BC) • pfr(C) 

The resulting backward L M is then: 

Pb(A) = p(A)a(A) (4.12) 
p{AB)a{AB)p{A) 

Pb(BA) 

Pb(CBA) 

pb(DCBA) 

p(B) 

p(ABC) a(ABC) p(AB) p(A) 
p(BC)p(B) 

p(ABCD) a(ABCD) p(ABC) p(AB) p(A) 
p(BCD)p(BC)p(B) 

So far, for the conversion to the "max-ent" form, we assumed a back-off L M (equations 
4.7, 4.8). If the probabilit ies are represented as an interpolated L M , we want to construct 
a model, so that: 

r pz(ABC)+pz(BC)+pz(C) iiPz(ABC) 

Pmaxent,int 
(ABC) = { pz(BC)+pz(C) else i f P z ( B C ) . (4.13) 

I Pz(C) elsewhere 
This can be achieved by setting: 

Pm(C) = Pz(C) (4.14) 

pz(BC)+pz(C) Pm(BC) 

pm(ABC) 

Pz(C) 
pz(ABC)+Pz(BC)+Pz(C) 

pz(BC)+pz(C) 

Also here, the model can be easily reversed by: 

pmr(ABC)=pm(CBA) (4.15) 

We can convert the max-ent model for interpolated L M s back wi th : 

Pb(C) = Pmr{C) (4.16) 

Pb(BC) 
— Pmr 

(BC) 
' Pmr 

(C) 
Pmr 

(C) 
Pb(ABC) — Pmr (ABC) ' Pmr (BC) Pmr (BC) ' Pmr (C) 

Pb(XABC) = pmr(XABC) • pmr(ABC) - pmr(ABC) • pmr(BC) • pmr(C) 
Here, we show also the equation resulting for four-grams, to indicate continuation of 

the series. In the further steps, we only continue wi th the equations for back-off L M s , to 
save space. 55 



Last step: Pushing the forward probabilities to back-off arcs 

Now, i n a final step, we take the result for back-off L M s (equation 4.12) and we apply a 
similar but inverse operation to what we applied to push the weights from the back-off 
arcs (equation 4.4). We can show, that this results exactly i n the algori thm presented in 
section 4.2 (equation 4.1). F i r s t , we transform the uni-gram probabilities into the desired 
form (equation 4.1) by pushing the p(A). Th is is the equivalent step to equation 4.3, but 
this time, we don't push a(A) from the arc ^4—^0, but l/p(A). F r o m figure 4.6 (now we 
have to read AB as BA), we see that this affects the arcs to and from the state A (and B), 
among them are bi-gram probabilities and bi-gram back-offs: 

Pbi(A) 

abl(A) 

Pbi(BA) 

abi(BA) 

Pbi(CBA) 

abl(CBA) 

pbl{DCBA) 

abl(DCBA) 

a(A) 

p(A) 

p{AB)a{AB)p(A)p(B) 

(4.17) 

p(B) 
1 

p(A) 

p(ABC) a(ABC) p{AB) p(A) 
p{BC)p{B) 

1.0 
p(ABCD) a(ABCD) p(ABC) p(AB) p(A) 

p{BCD)p{BC)p{B) 

1.0. 

Of course, pb\{CBA) and pb\(DCBA) are not affected by this step, but we copy them 
from equation 4.12. Now, we transform the bi-gram probabilities by pushing 1/ {p{AB) p{A)). 
This also affects the t r i -gram CBA and its back-off arc: 

Pb2{A) = a(A) 

otb2{A) = P{A) 

Pb2(BA) = a(AB) 

ab2(BA) = p(AB) 

pb2(CBA) 
p(ABC) a(ABC) p(AB) p(A) 

1 

ab2{CBA) 
1 

p(AB) p(A) 

pb2{DCBA) 
p(ABCD) a(ABCD) p(ABC) p{AB) p(A) 

p(BCD)p(BC)p{B) 
ab2(DC B A) = 1.0. 

(4.18) 
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The th i rd step is analogous for the tri-grams, by pushing 1/ (p(ABC) p(AB)p(A))\ 

Pbs(A) = a(A) 

= P{A) 

Pbs(BA) = a(AB) 

abs(BA) = p(AB) 

PbsiCBA) = a(ABC) 

abs(CBA) = p(ABC) 

pb3{DCBA) = p(ABCD) a(ABCD) p(ABC) p(AB) p(A) 

ab3(DCBA) = 1 / {p (ABC)p(AB)p (A) ) . 

(4.19) 

For a four-gram L M a(ABCD) = 1.0 and there is only one arc w i t h weight: 

pu(DCBA) = pb3(DCBA) ab3(DCBA) = p(ABCD) (4.20) 

We see, that the N-gram probabil i ty for the highest order stays the same pb(DCBA) = 
p(ABCD), and for a l l lower orders, the N-g ram and back-off probabilities change their 
role. Thus, we have shown, that these steps result exactly i n the same solution as i n the 
equations 4.1. 

4.5 Motivation by Bayes' formula 

[Lee and Kawahara(2009)] point out, that the reverse L M can be constructed wi th the 
help of Bayes ' rule. However, no details were given, especially it is unclear how to treat 
back-offs and back-off states. Here, we t ry to derive the L M reversal using Bayes ' rule. The 
basic assumption is that the joint probabil i ty of word sequences should be the same in the 
forward and backward models: 

pb(wN, ...,wi)= Pf(w1,wN). (4.21) 

This sounds reasonable, if the probabilities are based on counts. However, this might 
not be the case, if the lower-order probabilities are following another dis t r ibut ion, as e.g. the 
left-continuation probabilit ies used in Kneser-Ney language models (equation 4.2). We start 
our derivation wi th the uni-grams (pb(A) = p(A)) and bi-grams: 

Pb(A) = p(A) 

pb(B) = p(B) 

Pb(B,A) = p(A,B) 

pb(B)pb(A\B) = p(A)p(B\A) 

M A { B ) = ( 4 2 2 ) 
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We continue wi th the tri-grams: 

Pb(C,B,A) = P(A,B,C) 

pb(C)pb(B\C)pb(A\C,B) = p{A)p{B\A)p{C\A,B) 

P(B)P(C\B) = { A ) { B l A ) { c l A B ) 

p{C) 

n ( A \ r m P(A)p(B\A)p(C\A,B) P(A,B,C) 
*>MC>B) " p{B)p{C\B) " P(B,C) • ( 4 - 2 3 ) 

We can generalize this derivation for a l l N-g ram orders. G iven the forward word se
quence , we derive: 

/ | \ P(W1,...,WN) I l i l l P ^ i k l " 1 ) ( A 0/1N 
pb{wl\wN,wN-l,...,w2) = —. r = — ———r-. (4.24 

p ( w 2 , . . . , W N ) Ui=2P(Wi\W2 ) 

If we compare these formulas to equation 4.12, we see that we derived the same formulas 
- except for the addi t ional back-off weights of the forward model . We repeat equation 4.12 
here (moving the back-offs for clari ty): 

Pbo(A) 

Pw(BA) 

Pw(CBA) 

pb0(DCBA) 

p(A)a(A) 
p(AB) p(A) 

a(AB) 
P(B) 

p(ABC) p(AB) p(A) 
a(ABC) 

p(BC)p(B) 
p(ABCD) p(ABC) p(AB) p(A) 

p(BCD)p(BC)p(B) 
• a(ABCD) 

W i t h the help of Bayes ' rule, we determined the N-gram probabilities of the reversed 
model, but we didn ' t figure out the back-off weights. If we transform our solution to a form, 
that exactly retrieves the probabilit ies obtained from Bayes' rule, we can use the resulting 
back-off weights as a Bayes'-like solution, i.e. we can assume, that the resulting model is 
correctly normalized to sum to one. In a similar series of pushing steps as before, we can 
push the former back-off weights a of the forward model, so that the structure of the Bayes' 
formula is retrieved. Thus, we start again from equation 4.12, as we d id in equation 4.17, 
but instead of pushing l/p(A), we push the back-off weights (l/a(A)) from the uni-grams: 
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Pbi(A) 

UbM) 

Pbi(BA) 

abl(BA) 

Pbi(CBA) 

abl(CBA) 

Pbl(DCBA) 

abl (DCBA) 

P(A) 

a{A) 

p(AB)p(A) 
• a(AB) a(B) 

p(B) 

l/a{A) 

p(ABC) p{AB) p{A) 
p{BC)p{B) 

• a(ABC) 

1.0 

p(ABCD)p(ABC) p(AB) p{A) 
p{BCD)p(BC) p{B) 

a(ABCD) 

1.0. 

e push 1/ (a(AB) a(B)) from the bi-grams: 

Pb2{A) 

«62(^4) 

Pb2(BA) 

ab2(BA) 

Pb2(CBA) 

ab2(CBA) 

pb2(DCBA) 

ab2(DCBA) 

p(A) 

a(A) 

p(AB)p(A) 
p(B) 

a(AB)a(B) 
a(A) 

p(ABC) p(AB) p(A) 
p(BC)p(B) 

1/(a(BC)a(C)) 
pjABCD) p(ABC) p(AB) p{A) 

p{BCD)p(BC)p{B) 
1.0. 

a(ABC) a(BC) a(C) 

a(ABCD) 
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Now, we push 1/ (a(ABC) + a(BC) + a(C)) from the tri-grams: 

Pb3(BA) 

abS(BA) 

PbsiCBA) 

ab3(CBA) 

Pbs(DCBA) 

ab3(DCBA) 

p(A) 

a(A) 
p(AB) p(A) 

P(B) 
a(AB) a(B) 

c\~[A) 
p(ABC) p(AB) p(A) 

p(BC)p(B) 
a(ABC) a(BC) a(C) 

a(BC) a(C) 
p(ABCD) p(ABC) p(AB) p(A) 

p(BCD)p(BC)p(B) 
1 

• a(ABCD) a(BCD) a(CD) a(D) 

a(ABC)a{BC)a{C)' 
(4.27) 

Now, we would continue 5 : 

Pbi(DCBA) 

ahi(DCBA) 

p(ABCD) p(ABC) pjAB) p(A) 
p(BCD)p(BC)p(B) 

a(ABCD) a(BCD) a(CD) a(D) 

a(ABC) a(BC) a(C) 

The general rule for the back-off arcs is then: 

nN , 
i=i a{wi 

QibiwN^N-!, . . . ,Wi) 
<wN) 

nN—1 , > 
i = 1 a(wi,...,wN-iJ 

(4.28) 

(4.29) 

Together, equations 4.24 and 4.29 give another formalism to construct the backward 
L M probabilit ies. The computat ion is slightly more complicated than the simple rule given 
in section 4.2, but the resulting probabilit ies are closer to a normalized (stochastic) distr i
bution, so that it should be possible to skip the weight pushing step. 

4.6 Conclusions 

We motivated the idea of performing a forwards and backwards search through composed 
finite state machines and explained that, i n order to construct the backward decoding graph, 
we need a reversed language model that has a similar structure and gives similar scores as 
the forward L M . We explained the approximation of the L M wi th weighted finite state 
acceptors and showed a constructive solution for an algori thm that results in a backward 
L M that assigns exactly the same scores as the forward L M . We paid special attention to 
the back-off structure and explained how to deal w i th missing N-grams. F ina l ly , we showed 

5For the highest order, there would be just one arc, multiplying p • a, e.g. for the four-gram model, there 
is an arc from state DCB to state CBA with weight pb(DCBA) • ab{DCBA). 
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1.2 

HCLG forward 

HCLG backward push G -

HCLG backward text 

0 
34 35 36 37 38 39 40 41 42 43 

word error rate 

Figure 4.7: Decoding performance of backward decoding network reported on the Eval2000 data 
set with a GMM model and a tri-gram language model. Shown is the relation between word error 
rate and real-time-factor. Better performance is indicated by curves closer to the lower left corner. 
We compare the performance of the backward decoding network (HCLG backward push G) with the 
application of the new weight pushing algorithm to the performance of a tri-gram LM trained on the 
reversed training texts (HCLG backward text). For comparison, we also show the performance of 
the forward decoding network (HCLG forward). In this case, no weight pushing is necessary. 

that the constructive algori thm for the language model reversal can be derived by a series 
of steps, where each step guarantees W F S A equivalence, as well as the mot ivat ion from 
Bayes' rule w i t h constraints on joint word probabilities. 

U p to this point, we are able to construct a backward L M that gives exactly the same 
scores for the reversed sentences as the forward L M , and at the same time, has the same size 
and a similar structure and is deterministic (except for the e-arcs). For tasks, for which the 
backward L M is used i n a pruned search (including L V C S R ) , it is desirable that it has yet 
another property - (locally) stochasticity. For that purpose, we can apply the alternative 
weight pushing algori thm as introduced i n chapter 3.3. 

We tested the algorithms on a bi-gram (see section 3.4) and tr i -gram L M and compared 
it to the simpler but less exact method of reversing the t ra ining texts. Figure 4.7 shows the 
results of the decoding graphs from tr i -gram L M s . The experimental setting is the same as 
in section 3.4. The performance of the backward model w i th exact reversal, and the one 
resulting from tra ining wi th the reversed t ra ining texts is very similar, however i n the area 
wi th low word error rates, the performance of the exact model matches the performance of 
the forward model more closely. A s already pointed out, the performance of the forward 
and backward model are not necessarily the same, depending on the task (i.e. the properties 
of the language). However, the performances of forward and backward models are not far 
from each other. We can speculate, that language evolved i n such a way, that humans can 
understand it w i th more ease. Therefore, we would expect that language is opt imized to 
be easier understandable in the forward t ime direction, than when reversed in time. This 
might explain the advantage of the forward decoding. 
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Chapter 5 

Combining forward and backward 
search in decoding 

We introduce a speed-up technique for weighted finite state transducer ( W F S T ) based 
decoders - applicable to both static and dynamic network decoders. The technique is based 
on the idea that one decoding pass using a wider beam can be replaced by two decoding 
passes wi th smaller beams, decoding forwards and backwards in time. The advantages of 
decoding backwards i n t ime is explained i n section 5.1. The approach that is followed in 
this thesis is to use forward and backward passes in a decoder that works wi th a variable 
beam width , controlled by the (dis)agreement of the two decoding passes. For the purpose 
of backwards decoding, we have to construct a backwards decoding network wi th certain 
properties, explained in section 5.2. The details of L M reversal have already been explained 
in chapter 4. 

One possible realization of the variable beam wid th decoding is to run the forward and 
backward passes i n parallel , and perform an iterative refinement w i th increased beam wid th 
in those places, where forward and backward decoding disagree. This is explored i n section 
5.3. Another realization of the basic idea is a technique we cal l tracked decoding, detailed in 
section 5.4. The main idea is that the second decoding pass (backwards) can use detailed 
information gathered from the first pass (forwards) to increase the decoding beam in places 
where the two passes disagree. The speed-up is achieved by using a narrow beam during 
the first pass, as well as i n the second pass i n places where no disagreement is detected. 
Otherwise the beam is increased to include a l l ' t racked' tokens. In section 5.4.4, we give 
an experimental val idat ion of our method on a W a l l Street Journal corpus ( W S J ) decoding 
task. We find that our method gives a substantial speed-up of two to three times or even 
more, at the "more accurate" operating points of decoding where search errors are small . 

5.1 Introduction: combining forward and backward search 

The application that we had i n mind while wr i t ing this thesis was the decoding of the 
most probable sequence of words i n L V C S R . G iven the complexity of the task - the search 
graph can contain up to mill ions of states - the resulting huge search spaces cannot be 
explored exhaustively. It is necessary to use heuristic pruning techniques. In this case, we 
have to distinguish search errors, which are due to the incomplete exploration of the search 
space, from modeling errors, which are due to insufficient t ra ining data or due to inaccurate 
models. 
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fwd: IS SHERMAN ARE CONIFER AND THREE MOST RECENT CASUALTY REPORT 
bwd: IS BADGER A REMARK ON VANCOUVER+S MOST RECENT CASUALTY REPORT 
r e f : IS THERE A REMARK ON VANCOUVER+S MOST RECENT CASUALTY REPORT 
Figure 5.1: Forward and backward speech recognition: Example ASR result on Resource Manage
ment corpus. Bad signal quality at the start of the utterance confused almost the whole utterance in 
forward recognition, while it almost didn't harm the backwards decoding (only the immediate word 
'there' is mis-recognized). An OOV could cause similar effects. 

The most widely used search technique i n L V C S R is the V i t e r b i a lgori thm wi th beam 
search [Lowerre(19' i)]. B e a m search is a breadth-first style search, comparing par t ia l paths 
of the same length (time-synchronously). A t each t ime only those paths are kept and further 
expanded, whose par t ia l pa th score is better than the current best score extended by a beam 
wid th . The beam wid th is a trade-off between speed and accuracy. 

For many search tasks (e.g. i n planning algorithms) for which the search space cannot 
be explored exhaustively, it is known, that i f the average branching factor of the backward 
search graph is smaller than that of the forward graph, it is better to perform the search 
on the backward graph. For example [Tang and Cristo(2008)] showed, that the amount of 
errors i n automatic speech recognition of street-city-state tuples (as used e.g. i n the U S ) 
can be reduced when performing the search backwards i n time, since this gives a lower 
'dynamic task complexi ty ' [Tang and Cristo(2008)]. Since forward search uses the 'history' 
and backward search uses the 'future', there is hope that the search errors of searching 
forwards and backwards are mutual ly independent. A path that is not promising (low 
scores) at the beginning is l ikely to be pruned by forward search, even if it has a high 
overall score towards the end. It has a chance not to be pruned by backwards search, 
because looking backwards this path has high scores at the beginning (which was the end 
in forward search). Figure 5.1 shows a recognition result obtained i n an early stage of our 
experiments that demonstrates this si tuation. Figure 5.2 illustrates the potential of forward 
and backward search. 

In addi t ion to beam search, another strategy to deal w i th the complexity of the task 
is to use mult iple decoding passes, which has been a common practice already for a long 
t ime (e.g. [Murveit et al.(1993)]). Usua l ly inexpensive and approximate models are used in 
a first pass to generate an intermediate representation, which is then 're-scored' using more 
complex models. A s intermediate representation, among others, lists of N-best recognition 
results or lattices of possible hypothesis sequences are used. 

Not only different types of models can be used i n the successive decoding passes, but 
also different approaches to search. In [Aust in ct al.(19' ], the idea of performing the 
second pass backwards in t ime was introduced. A s an intermediate representation, they 
use the active words for each t ime frame and the corresponding word end scores, obtained 
from a V i t e r b i beam search i n the forward pass using approximate and faster models. The 
active words per frame are used to l imi t the word expansion i n the backwards search, which 
is also a V i t e r b i search, and the word end scores serve as a good estimate of the path cost 
of the remaining speech. Thus the second pass usually takes only a fraction of the t ime of 
the first pass, so that more complex algorithms or models can be used. Alternat ively, the 
forward pass can be sped up by using approximate models [Nguyen et al.(1993)]. A more 
recent re-discovery of the same idea is [Lee et al.(1998)] and [Lee and Kawahara(2009)], 
which use a word trellis as intermediate representation and stack decoding (A-star search) 
in the backward pass. A l so [Cardinal et al.(2013)] use a uni-gram V i t e r b i backward pass, 
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Backward Path 

- Correct Path 

Wrong Word 

Correct Word 
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Figure 5.2: Illustration of forward and backward search [Nolden et al.(2013)]. In the background, 
acoustic likelihoods for each state are shown as they evolve over time. Bright colors indicate higher 
probability. In the forward search (upper part), the low-score 'valley' around frame 7/8 causes the 
correct path (green) to fall out of the beam (dotted). The red path is chosen, but later (frames 20-30) 
it turns out to have poor scores. Even if it has better overall scores, the correct path can not be 
recovered, since it was already pruned. In the backward search (lower part), the situation is different 
- starting from the end, the lower path looks much more promising (frames 30-35) and the upper 
path falls out of the beam. The low likelihoods around frame 7/8 do not distract the recognizer 
this time, so the backward search does find the correct path. The illustration explains that, to a 
certain extent, search errors of forward and backward search are independent. Of course, with a 
wide-enough beam, also the forward search would find the overall best path. 

which is then used as a heuristic i n A-s tar forward decoding wi th the full language model. 
Opposed to these works, this work (hrst published i n [Hannemann et al.(2013)]) focuses 

on using forward and backward passes that are balanced or symmetric, i.e. on using models 
that are s imilar ly powerful i n both passes. Th is has the advantage that the hypotheses 
of bo th passes can be used for comparison or combination. The idea of symmetric passes 
was already used by [Li et al.(2009)] and [Abo-Gannemhy et al.(2010)] (see also [Tang 

]risto(2008)]). They combine the outputs of the symmetric forward and backward 
passes based on L M scores or confidence measures ( R O V E R technique 1 ) . A l s o [Jouvet and 

l rThe ROVER [Fiscus(1997)] procedure aligns the different hypotheses and relies on a voting procedure 
to determine the best candidate word sequence. 
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Fohr(2013a)] and [Jouvet and Fohr(2013b)] use the framework of [Lee and Kawahara(2009)] 
to R O V E R two symmetric passes, and they show that the combination of forward and 
backward passes is especially effective i n improving the performance. The follow-up work 
[Jouvet and Fohr(2014)] shows, that the comparison of hypotheses from the forward and 
backward passes is an effective confidence measure for selecting automatical ly transcribed 
data for semi-supervised L V C S R training. 

The idea of our work [Ilannemann et al.(2013)] is to speed up the decoding by using the 
(dis)agreement of the two symmetric decoding passes - decoding forwards and backwards in 
time. In beam search, a constant beam wid th is usually applied to the whole test set. We 
however use a decoder w i th a variable beam wid th , that is only increased i n areas, where 
the two decoding passes disagree. There are two ways to implement this idea: Inspired by 
[Hannemann et al.(2013)], the authors of [Nolden et al.(2013)] showed that the comparison 
of the hypotheses of two symmetric forward and backward passes can be used i n incremental 
decoding, where the search beam is extended in areas, where the two passes don't agree in 
the first run. A s a consequence, the system uses a variable beam wid th and is dynamical ly 
focusing only on the parts that are difficult. S imi lar to a l l symmetric techniques mentioned 
so far, they use two independent forward and backward passes, which has the advantage 
that the two passes can run i n parallel (section 5.3). 

In analogy to the non-symmetric techniques, i n this work we want to use the infor
mat ion gathered in the first pass (e.g. forwards) to guide the search of the second pass 
(e.g. backwards), as shown i n [Hannemann et al.(2013)]. In this approach, the beam wid th 
can be adjusted for every frame, so that a more careful search (increased beam) is only 
carried out i n areas where the two passes disagree. The speed-up is achieved by using a 
narrow beam during the forward pass, and i n the backward pass i n places where no dis
agreement is detected (section 5.4). The application of the presented methods assumes that 
a segmentation or an algori thm for end point detection is given. 

5.2 Construction of a reversed decoding graph 

The construction of decoding graphs wi th K a l d i was described i n section 2.4.1. If we want 
to perform the search i n two symmetric forward and backward decoding passes, we need 
two corresponding decoding graphs - HCLGfwd and HCLG^d- B o t h models should be 
equally powerful, i.e. have roughly the same accuracy and run-time requirements, and have 
similar structure, size and level of determinism to have opt imal pruning behavior. We 
also want to compare the probabilities (or scores) of the outputs from the forward and 
backward passes (e.g. to estimate the op t imal beam width) . Tha t means, we want two 
models HCLGfwd and HCLG^d-, that ideally produce the same overall score for the same 
hypothesis in both the forward and the backward passes. Due to the pruned search, bo th 
passes can result i n different search errors (due to the different dynamic task complexity 
forwards and backwards). However, bo th models should not make different modeling errors, 
hence they should assign the same scores to the same hypotheses. We also want to be able 
to compare the scores of par t ia l results (paths). Therefore, also the model structure (the 
dis tr ibut ion of weights along paths) should be similar in the forward and backward passes. 

Given a forward graph HCLGfwd, the task is to obtain a backward graph HCLG^d 
that w i l l assign exactly the same overall score to the same utterance and w i l l fulfill a l l 
the above stated requirements. Because our method treats disagreement between the best 
paths found by the two passes as a search error, we want the backward decoding graph to 
be equivalent to the reverse of the forward one. 
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The t r iv ia l solution to apply W F S T reversal to HCLGfwd is not sufficient, since the 
resulting graph would not have a similar level of determinism and dis t r ibut ion of weights as 
the forward graph, i.e. it would show sub-optimal behavior when used in a pruned search. 
To make the resulting W F S T determinizable, we would have to introduce disambiguation 
symbols [Mohri et al.(2008)] at different places than in the forward graph. A s we already 
explained i n section 4.2, especially the (reversed) L M component would introduce a great 
degree of local ambiguity. 

Instead, the solution is to separately construct the time-reversed versions of H, C , 
L and G, and then to bu i ld a composed model HCLGbwd i n an analogous way as the 
forward graph was constructed (section 2.4.1). Since the resulting HCLGi,wa< is a cyclic 
transducer, the conventional weight pushing algori thm cannot be used in case the total 
weight is greater than one, as was explained in 3.1. We can resort to the alternative weight 
pushing introduced in section 3.3. 

The time-reversed versions of H, C, L and G are again not s imply the W F S T reverses 
of the forward ones, but must be separately constructed. Depending on the task, the 
reversal of each component is of different complexity. The hardest input to reverse was 
the A R P A - f o r m a t L M acceptor G. We have already given an algori thm for creating an 
equivalent but "time-reversed" L M in chapter 4. The reversal of H, C and L is rather 
t r iv ia l [ iannemann et al.(2013)] and is described in the next section. We made the code 
for a l l methods described here available as part of the K a l d i toolkit . 

5.2.1 Reversing L, C and H 

The construction of the reversed pronunciation lexicon transducer Lbwd (phones to words) 
is simple: the ind iv idua l phone sequences (pronunciations) are reversed, and the disam
biguation symbols [Mohri(19! ] (figure 2.10) are introduced after that. The disambigua
t ion symbols now distinguish suffixes (ambiguous sequences at word endings), while in the 
forward case they distinguish prefixes. Figure 5.3 shows a reversed toy lexicon and the 
resulting transducer. 

The context-dependency transducer C b w d (figure 5.4) is constructed in the usual way, 
and looks identical to C f w ( j . After the composit ion of L f w c j o Gbwd> the phonetic context 
window (which are the input symbols for C) is reversed i n t ime (a-b-c to c-b-a). Therefore, 
to look-up the corresponding models ( P D F s ) i n the phonetic decision tree, we have to 
reverse the phonetic context. Then, we look-up using the phoneme context window and the 
H M M state. 

The H M M structure transducer i?bwd ; is constructed i n the same way as -£/fwd, except 
for the reversed phonetic context. The ind iv idua l (three-state) H M M s for each phone 
are constructed separately and the relevant P D F s are looked-up from the decision tree. 
Then , the phone H M M s must be reversed and weight-pushed i n the log-semi-ring (including 
epsilon removal) to make the time-reversed transi t ion probabilit ies of each state stochastic. 
A s seen i n figure 5.5, for the left-to-right H M M s , there is a simpler way to determine 
the transi t ion probabilities of the reversed model: We can assign them i n the reversed 
order. This observation is even true for more complicated symmetric structures. After 
reversing the phone H M M s individual ly, we construct the composite Ha transducer, which 
contains them i n self-loops (example i n figure 5.6). Due to the reversal of ind iv idua l H M M s , 
the ordering of the self-loops and forward transitions changes, which doesn't matter for 
decoding, but needs to be considered when mapping resulting alignments at t ransi t ion 
level. 
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A ax #1 
ABERDEEN n i y d e r b ae 
ABOARD dd r ao b ax 
ABOVE v ah b ax 
ADD dd ae #1 
BOARD dd r ao b #1 

Figure 5.3: Reversing lexicon transducer L. The phone sequences are reversed (upper part), and 
new disambiguation symbols (#1) are inserted afterwards. Then, the lexicon transducer is built in 
the same way as in the forward network (lower part). 

Figure 5.4: One path of the context transducer C. The deterministic version [Mohri et al.(2008)] 
has a delay of two input symbols until the tri-phone-symbol is produced. The C transducer looks 
identically in forward and backward networks. 

1:1/0.61105 2:2/0.44853 3:3/0.524 

3/0.524 2/0.44853 1/0.61105 

Figure 5.5: Reversal of HMM structure for phoneme HMM: Top: forward HMM. We apply 
WFST reversal, weight pushing in the log-semi-ring and epsilon removal to obtain the backward 
HMM (bottom). We observe, that for left-to-right HMMs, the transition probabilities are exactly 
assigned in reverse order. 
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Figure 5.6: Reversing the HMM transducer Ha - upper part: forwards transducer, lower part: 
reversed backwards transducer. Here, we show the mono-phone case, without self-loops. For 
each transducer, we show two mono-phone models (aa, ae) with three-state forward HMMs (Kaldi 
transition-ids 2,4,6 and 8,10,12; the odd numbers are for self-loops - not shown) and the silence 
model (transition ids 284-300, almost ergodic connections between states). The mono-phone mod
els (aa,ae,silence) are reversed individually (including epsilon removal and weight pushing in the 
log-semi-ring) before composing Ha. 

5.3 Incremental forward and backward search 

5.3.1 Finding the optimal operating point 

So far, we have explained how to construct a static W F S T based recognition network for 
backward decoding. However, the approach to the construction of the backward decod
ing network described i n this chapter is not l imi ted to static networks. Al ready [Nolden 
et al.(2013)] has applied the reversal of the components described here i n a dynamic network 
decoder. M a n y recent dynamic network decoders are basically compil ing a W F S T based 
recognition network, but leaving out one component, which is then composed dynamically. 
For example, [Soltau and Saon(2009)] use a uni-gram L M (more precisely L M look-up 
scores) to compile a W F S T based recognition network and then apply the higher-order 
N-gram L M dynamically. Since i n our approach, a l l components are reversed individual ly, 
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no change is necessary when dynamical ly composing the components. 
We want to replace one decoding pass wi th a wide beam by a forward and backward 

pass wi th narrow beams. Thus, we must find the right operating point for the forward and 
backward passes. If badly chosen, the two passes w i l l be two times slower than the single 
pass. The beam should be smal l enough to allow for substantial speed-ups, but on the other 
hand, the beam must be big enough to allow for a reasonable comparison of the forward 
and backward paths. For significant portions of the decoding, we would like to find a good 
path w i t h one of the two (forward or backward) passes. If both, forward and backward 
decoding, are completely off, we have to increase the beam everywhere, and there is no 
advantage over the single pass approach. 

Usual ly a decoder doesn't have only a single parameter (beam width) to tune [Low-
crrc(1976)], but a series of parameters, which are not independent of each other. The most 
important parameter is the global beam width , given as a log-constant, indicat ing how much 
the l ikel ihood of par t ia l paths can be worse than the current best par t ia l path before the 
par t ia l path gets pruned out. Th is is called acoustic pruning. Addi t ional ly , most decoders 
apply so called histogram pruning [Stcinbiss ct al.(1994)]. The idea is to l imi t the number 
of hypotheses being generated at a certain point i n t ime. This is an upper l imi t , which is 
applied mainly i n portions of the speech signal w i th high uncertainty. If the best par t ia l 
hypothesis has a low score, too many other bad hypotheses are kept. In this case, too 
much computat ional effort is spent w i th l i t t le chance of actually finding the correct path. 
Thus, by l imi t ing the m a x i m u m active tokens, the computat ion can be significantly reduced 
without much affecting the word error rate. We can select a tightened beam l imi t based on 
a histogram over state hypothesis scores, therefore the name histogram pruning. However, 
for our purposes it is sufficient to th ink of the tokens as being ranked. To effectively l imi t 
the number of tokens to the given upper l imi t (called "max-tokens"), we pick the score of 
the token at rank "max-tokens", and use it as a tightened beam threshold, which we cal l 
the max-tokens beam. A s soon as the number of tokens exceeds the l imi t , this max-tokens 
beam wid th is used for the decoding. 

Depending on the architecture, other tuning parameters might be applied, too. [Nolden 
et al.(2012)] gives an overview of pruning techniques. M a n y decoders predict the max-tokens 
beam based on the max-tokens beam used in the last frame, to avoid generating tokens, 
which w i l l be pruned anyway, [van Hamme and van Aelten(1996)] formulate this approach 
as an adaptive controller. Dynamic decoders usually apply tighter beams on tokens at 
word ends [Steinbiss et al.(1994)]. If the decoder is implemented wi th a re-entrant tree 
and token passing, where lists of tokens are attached to a state of the search network, we 
can impose a l imi t on the m a x i m u m number of tokens assigned to each state (called L M 
state pruning). W h e n dynamical ly composing the recognition network wi th higher-order 
language models, special techniques to deal w i th L M scores might be effective. [Agarwal 
et al.(2014)] describes the use of a language model s lack 2 on top of the beam to 'smear' the 
effect of the L M score over several frames. A l so , parameters like the number of N-best paths 
being generated or the w i d t h of the generated lattice [Povey et al.(2012)] have a significant 
effect on the decoding speed. In our case, we use lattices as intermediate representation 
and we t ry to find a balance between a sufficient depth to contain the relevant hypotheses 
and a m i n i m u m impact on the real-time factor. 

2 The word is used in a similar way as for the slack variables used in support vector machines. 
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5.3.2 Tuning the beam parameters 

We ran in i t i a l experiments to determine the effect of the two most important parameters: 
the beam wid th and the m a x i m u m number of active tokens applied i n the histogram prun
ing. These two parameters are used in almost a l l types of decoders. We ran the experiment 
wi th the Microsoft A r g o n decoder (documented i n [Agarwal ct al.(2014)], Version 2016-02-
17). It is a highly opt imized dynamic network decoder, developed by Microsoft Research 
(mainly Geoffrey Zweig and Jasha Droppo) . We report the results on the H U B 5 2000 
Engl i sh Eva lua t ion Speech database from L D C ( "Eva l 2000"). However, the word error 
rates reported here are not computed wi th the official scoring tools ( N I S T scoring toolki t 
S C T K ) , thus they are about 3% worse than when using this tool . The acoustic model is 
a deep neural network trained on a subset of Switchboard, using 1500 context-dependent 
t ied states. For decoding, we use a t r i -gram language model (7.2 mi l l ion entries) that is 
dynamical ly composed. 

Figure 5.7 summarizes the relation between performance (word error rate - W E R ) and 
speed (real-time-factor - R T F ) on many different operating points (defined by a setting 
of beam wid th and m a x i m u m active tokens - called max-tokens). We observe that both 
parameters depend on each other i n a non- t r iv ia l way. Therefore, we would have to test 
al l possible combinations of parameters and then determine the opt imal W E R and the 
corresponding tuning parameters for each R T F . The resulting curve is sometimes called 
Pareto-optimal. For the forward and backward passes, we want to achieve the most accurate 
decoding using only a fraction of the decoding t ime of the single pass. Thus , start ing from 
a point on the Pareto-opt imal curve wi th low W E R (and high R T F ) , we would move along 
the op t imal curve towards lower R T F . 
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Figure 5.7: Finding the optimal operating point on the real-time-factor and word error rate 
curve, while tuning the maximum number of active tokens (max-tokens) and beam width (beam). 
The settings of beam width and max-tokens are grouped by lines that leave one of the parameters fixed 
while varying the other. All curves 'beam' leave the beam width constant while running experiments 
with different values for max-tokens. For clarity, we don't show the curves for beam width 12,13,15 
which follow a similar trend. The curves 'max-tokens' (black) measure different beam widths for a 
fixed number of max-tokens. 
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One simplified strategy that is used most often is to treat the beam wid th as the main 
parameter that is varied, and to use a high number of max-tokens which is only effective in 
areas of high confusion. F r o m figure 5.7, it is evident (black lines) that this strategy is not 
opt imal i n our case. For the lower R T F s , this setting is sub-optimal, since too many tokens 
are created. The decoder is in the op t imal operating point, when only those tokens are 
generated, that actually have a chance to become the best path. In other words, i n areas of 
high confusion (e.g. due to noisy speech), many tokens are generated, but most probably, 
these portions of speech w i l l result in errors anyway. Therefore, the max-tokens beam was 
introduced. We should set it as low as possible, i.e. to the value, from where the W E R 
starts increasing. F r o m this, it is clear, that when decreasing the acoustic beam to tune 
to a lower R T F (and unfortunately higher W E R ) , we should also decrease the max-tokens 
beam. For this reason, the op t imal setting of max-tokens is to some extent proport ional to 
the the average number of active tokens that we get, i f we decode w i t h a certain acoustic 
beam. 

For the highly opt imized token-passing decoder used here, we observed that the opt imal 
operating point is when we set max-tokens in such a way, that for more than half of the 
frames, the resulting max-tokens beam is smaller than the acoustic beam. Tha t means, max-
tokens (the number of active tokens) is the dominant parameter determining the amount 
of computat ion that needs to be done for each frame. In the lower part of figure 5.8, we 
observe that the opt imal operating point (beam 13, max-tokens 14000) is actually most of 
the t ime dominated by the max-tokens (i.e. the max-tokens beam is smaller than the beam 
13 - gray line). 

If we assume that max-tokens is the main factor determining the computat ion time, 
another simple strategy would be to keep the beam wid th fixed and to change only the 
max-tokens. F r o m figure 5.7, we see that as soon as the beam is wide enough (around 
13-14) this is (almost) the op t imal solution for a wide range of R T F s . O n l y for the higher 
W E R (above 38-39%), this strategy is slightly sub-optimal. We would have to decrease the 
beam wid th as well . W h a t we observe is that along the Pareto-opt imal curve, we have to 
proport ionally increase both the beam wid th and the max-tokens. A s a first approximation, 
it may be sufficient to choose a reasonable operating point and keep one parameter fixed 
while varying the other. 

The A r g o n decoder uses the idea of [van Hamme and van Aelten(1996)], who propose 
an adaptive controller for steering the beam wid th for each frame i n such a way, that the 
resulting number of tokens is approximately equal to the max-tokens parameter. Thus, for 
each frame a different (adaptive) beam is used, which is increased i f less than max-tokens 
have been generated, and decreased, i f too many tokens have been generated. The upper 
l imi t is the acoustic beam width . 

Since i n the op t imal operating point, the max-tokens beam is the l imi t ing parameter, 
it is clear that we w i l l not improve the W E R by increasing the acoustic beam wid th while 
keeping max-tokens fixed. However, what we observed when increasing the beam much 
further is that the W E R actually increased (figure 5.7, red line, beam 30). This (perhaps) 
surprising non-linear effect is a par t icular i ty of the decoder, that most probably results from 
the adaptive beam [van Hamme and van Aelten(1996)]. In the lower part of figure 5.8, we 
see that the resulting max-tokens beam at acoustic beam 30 is most of the t ime lower than 
the max-tokens beam at acoustic beam 13. The dynamical ly adapted beam (steering to 
follow the max-tokens beam) is sometimes narrower than necessary (i.e. under-generates). 
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Figure 5.8: Frame-wise scores for three files from the Eval2000 test set. Utterance boundaries 
are around frame 400 and 880. Compared are two different acoustic beam widths - 13 (black), which 
is about optimal for the RTF/WER and 30 (red), which is over-shooting. Upper part: Numbers 
of active tokens before and after the application of the histogram pruning ('after max-tokens 30' is 
not shown, as it looks very similar to 'after max-tokens 13'). Max-tokens is set to 14000 in both 
cases, which is the optimal setting for beam 13. Lower part: max-tokens beam (after applying the 
max-tokens limit). 

5.3.3 Parallel incremental forward and backward search 

A s introduced i n section 2.6, the parallel ization of the decoding of an utterance into chunks 
seems to be an interesting idea. Accord ing to [Maleki et al.(2014)], it is possible to split 
an utterance at places, where the rank of all-pairs-shortest-path mat r ix w i l l converge to 
one (singular matr ix) . In other words, this happens at frames, where just one token w i l l 
survive. A n open question is whether it is possible to automatical ly detect such frames in 
advance, i n order to find the opt imal segmentation of a given utterance into chunks. A t the 
points w i th low rank, i.e. w i th few remaining active states, a smal l beam should be sufficient 
to decode them. In other words, at those points, we would expect the decoding results of 
the forward and backward search to agree, even i f both run wi th a smal l beam. Therefore, 
a good segmentation for the parallel ization of the decoding is to split the utterance at 
points, where forward and backward search agree. These thoughts lead to an approach to 
parallelization, which is described here. 

The idea of performing a symmetric forward and backward search as introduced in 
section 5.1, first published i n [Hannemann et al.(2013)], was used by [Nolden et al.(2013)] to 
implement an incremental high-level decoding algori thm, that can tune the pruning beam 
for ind iv idua l words i n an unsupervised way. A s opposed to [Hannemann et al.(2013)], 
where the results of the first pass are integrated into the second decoding pass, bo th passes, 
forward and backward search, are run independently and symmetrically. 
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The incremental decoding, as described i n [Noldcn ct al.(2013)] first runs a forward and 
backward decoding on the whole utterance, but w i th a smal l beam. T h e n the decoded 
words are aligned to each other. Words are considered matching, if they have the same 
word identity as well as a matching t ime boundary. A l l non-matching words are grouped 
into continuous segments which are extended by one matching word to the left and to 
the right. The assumption is that the acoustic alignment of words further apart than one 
matching word w i l l have no effect on the alignment and acoustic score of the current word 
to be decoded. The identified segments of non-matching words are then decoded wi th an 
increased beam and the results are integrated into the results of the first pass. This process 
is iterated un t i l the whole utterance matches. Th is way, the beam for each word is tuned to 
the m i n i m u m necessary beam. A s pointed out by [ olden et al.(2013)], for the incremental 
decoding of par t ia l utterances, the left and right L M contexts of the segment need to be 
correctly ini t ia l ized in the decoding. We also need to remember the left and right acoustic 
cross-word contexts, which can be achieved by remembering the states of the recognition 
network at the segment boundaries in the first pass - these can then serve as in i t i a l and 
final states for the second pass decoding. 

We re-implemented the incremental forward-backward decoding i n the Microsoft A r g o n 
decoder (documented in [Agarwal et al.(2014)], Version 2016-02-17), and show an addit ional 
analysis focussing on the parallel ization of the approach. Since the forward and backward 
searches are run independently, this approach has the advantage, that forward and back
ward search can be run in parallel . Figure 5.9 illustrates a parallel implementat ion of the 
incremental decoding. Due to the high-level nature of the incremental forward-backward 
decoding, even each mis-matching segment on its own can be decoded i n parallel using the 
approaches to parallel izat ion described i n section 2.6. 

In figure 5.10, we show an analysis of the incremental forward-backward decoding on the 
Eval2000 database. We ran the experiment w i th the Microsoft A r g o n decoder (documented 
i n [Agarwal et al.(2014)], Version 2016-02-17) and used the setup described i n the last 
section. We observe, that the overall speed-up of the technique w i l l be determined by the 
setup of the first pass (forward and backward) decoding. We choose an operating point 
from the Pareto-opt imal curve i n figure 5.7, that is several times faster than a well-tuned 
baseline (tuned for a trade-off R T F / W E R , around R T F 0.3-0.5), but s t i l l in the area where 
the results of forward and backward decoding are par t ia l ly matching. Us ing such a setting, 
we observe that after the first parallel forward/backward pass, i n average approximately 
50% of the complete utterances agree and thus the decoding can be finished. 

For the utterances that are par t ia l ly mis-matching, we find i n average around 1.5 mis
matching segments ('islands') per file. That means we can achieve a speed-up of 1.5 on 
these utterances, and only a part of the utterance actually needs to be decoded again. 
Therefore, the to ta l amount of t ime spent i n the second pass w i l l be much smaller than 
in the first pass, even if it runs at a higher R T F (increased beam). Similarly, the amount 
of t ime spent i n further iterations w i l l quickly decrease. One could reduce the scheme to 
a two-pass decoding and directly set the beam to the single-pass beam i n the second pass 
(parallel forward/backward), which would s t i l l result in a significant overall speed-up. The 
acoustic model scores i n the parallel forward/backward decoding can be shared, as well 
as they can be shared across the iterations. The amount of t ime spent in calculat ing the 
acoustic scores can be significant, however, for the part icular acoustic model used i n the 
experiments (a D N N implemented on a G P U ) the computat ion of scores consumes only 
ca. 20% of the time, and this could even be further reduced by further parallelization. 
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Figure 5.9: Parallel implementation of incremental forward backward decoding [Nolden 
et al.(2013)]. First (upper part), two cores run a quick initial forward and backward decoding 
of the whole utterance with a narrow beam in parallel, then (center) the results are aligned and mis
matching regions ('islands') are identified (indicated in red). If there are no mis-matching regions, 
the decoding is done. Else (lower part), in a second pass, the identified mis-matching segments are 
decoded in parallel with a wider beam. In this example, there are two 'islands', both of them are 
decoded forwards and backwards, which means four cores can be used in parallel. The results of the 
decoded segments are integrated into the results of decoding the whole utterance, and this process is 
iterated until the results for the whole utterance match. 

5.4 Tracked decoding 

After using independent and parallel forward/backward decoding passes i n the last section, 
in this section, we want to use the information gathered in the first pass (e.g. forwards) to 
guide the search of the second pass (e.g. backwards). In this approach, the beam w i d t h can 
be adjusted for every frame, so that a more careful search is only carried out in the areas 
where the two passes disagree. 

W h i l e analyzing the pruning behavior of the K a l d i decoder on the W a l l Street Journal 
(WSJ) test set, we found that, except for a few points i n t ime, for most of the speech frames 
a narrow beam is sufficient. We analyze the pruning behavior by comparing the score of 
the current best active token at each frame 3 and the score of the token that w i l l u l t imately 
result in the best overall p a t h 4 . Figure 5.11 explains the effect of pruning wi th the help of 
one example utterance, and figure 5.12 quanti tat ively analyzes the score differences between 

3We think of a token as a record of a particular state in H C L G that is active on a particular frame and 
has the accumulated score of the partial path explored so far. 

4 To determine this, we run a decoding using a wide beam, back-track the best path and compute its 
score at each frame. 
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Figure 5.10: The first iteration of the incremental forward-backward decoding on the Eval2000 
test set. The test set has 1831 files, each is decoded with the forward and the backward decoder 
independently. Shown are the number of utterances that have either mis-matching total utterance 
scores ('different scores') or differ in the decoded words ('different words'). We see that requiring 
the exact same score is a stricter criterion than requiring that the same sequence of words are 
decoded. Not shown, but very closely above the line 'different scores' is also the line for 'differing 
state sequences', which is an even stricter criterion. To evaluate these criteria, we selected a set of 
operating points approximating the Pareto-optimal curve from figure 5.7 (resulting in the RTF along 
the x-axis). As a baseline, we assume that the single pass decoding will run at approximately 0.3-0.5 
RTF, where we start approaching the lowest WER (37.3%). Therefore, we show operating points, 
which are two to five times faster than that (corresponds to WER 38.3%~40.3%) - this constitutes 
the speed-up we can expect from the technique (forward and backward decoding run in parallel). As 
seen from figure 5.7, going for even lower RTF would result in much worse WER. The number of 
non-matching stretches of words ('islands', shown as red line) is related to the number of utterances 
with different words (black line). The ratio is between one and two and slightly increasing towards 
the lower RTF. 

the current best and the final best path. Mos t of the time this difference is much smaller 
than the typica l beam wid th between 10 and 15. This suggests that it would be beneficial 
to be able to identify those problematic areas (frames) and to only use the wide beam in 
these areas, while otherwise using a smal l beam. We a im to use the decoding results of an 
in i t i a l forward pass to identify the problematic frames on the backward pass. 

Based on this motivat ion, our approach towards decoding is to do a first pass (which 
happens to be a forward pass) w i t h a narrow beam, and then to do a second pass i n the 
opposite direction, also wi th a narrow beam, but using knowledge obtained during the 
first pass. The first pass outputs a lattice wi th state-level alignments [Povey et al.(2012)]. 
Note that this lattice does not contain a l l par t ia l paths explored in the first pass, but only 
those word-sequences that are wi th in a specified beam of the best word-sequence (posterior 
pruning wi th lattice beam). We want to treat the paths in this lattice i n a special way in 
the second decoding. Tha t is, 

1. We want to avoid pruning out paths that appeared i n the first-pass lattice. 
2. O n frames where we would otherwise have pruned out those paths, we want to increase 

the pruning beam. 
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Figure 5.11: Beam search: example utterance from the WS J Nov'92 test set. We analyze partial 
scores of forward decoding for two different beam widths (beam 11.0 and 19.0). Looking at the score 
of the current best token for each frame, the absolute differences between beam 11.0 and beam 19.0 
are small compared to the overall path score. Therefore, we show relative score differences: 
"partial diff" (yellow): the score difference of current best tokens, decoding with beam 19.0 and 11.0 
"best diff 11" (green): the difference of the current best token (beam 11.0) and the partial score of 
the final best path (beam 11.0) at same frame - i.e. which is only known after finishing the decoding, 
"best diff 19" (magenta): the difference of the current best token (beam 11.0) and the partial score 
of the final best path at beam 19.0. 
We see ("partial diff"), that beginning around frame 325, the search with beam 19.0 found a better 
path, so the difference becomes negative. It is also observable ("best diff 11"), that most of the time, 
the current best partial score is also the score of the (future) best path, which means a small beam 
would be sufficient. Only at a few places, the path that is going to win, is off for a short time. 
Around frame 290, we miss the final winning path ("best diff 19"), if the beam is too small. Not 
immediately, but only after frame 325, this results in better overall scores ("best diff 19" vs. "best 

11"). 

5.4.1 Tracking tokens with an arc-lattice 

Dur ing decoding, we need to be able to identify which active tokens i n our second-pass 
decoder correspond to paths in the first-pass lattice. One possible way to do this would 
be to designate a set of context-dependent H M M states (PDF- ids ) on each frame that are 
"special" because they appear i n the first pass lattices. However, we d id not pursue this 
because it could lead to too many irrelevant tokens being kept in the beam. Instead, we 
chose to identify those paths through the second-pass decoding graph that correspond to 
paths i n the first-pass lattice. We implemented this as a separate step, outside of the decoder 
code. It takes the standard output lattice from the first pass, and processes it into something 
we cal l an arc-lattice, whose symbols identify arcs (see below) i n our second-pass decoding 
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Figure 5.12: Histogram of score differences: Shown are the scores of the current best partial 
path at each frame minus the partial score of the path that is going to be the final best path, not 
necessarily the correct one (decode beam 13.0, WSJ Nov'92 test set at WER 10.8%). 

graph H C L G 2 n d - We explain the arc-lattice generation process below (Section 5.4.3). 
The second-pass decoder, which we w i l l refer to as our tracking decoder, is a lattice-

generating decoder that takes an extra i npu t 5 , namely the arc-lattices for each utterance. 
Let a token be a record of a part icular state in H C L G that is active on a part icular frame. 
Our t racking decoder gives tokens an extra, Boolean property that identifies whether they 
are tracked or not. A tracked token is one that corresponds to a state i n the arc-lattice. 
Tracked tokens are never pruned. Tracked tokens are also used to determine the pruning 
beam used on each frame. 

5.4.2 Beam-width policy 

For the second-pass decoding w i t h the t racking decoder, we use the tracked tokens to 
determine the beam wid th to use for each frame. Here we describe the pol icy we use to 
set the beam width . The decoder has three configurable values that specify how it sets the 
frame-specific beam: the beam, the max-beam and the extra-beam. O n a part icular frame, 
let the score difference between the highest-score token and the lowest-score tracked token 
be D. Then the beam wid th on that frame is given by: 

max(beam, min(max-beam, D + extra-beam)). 

Figure 5.13 illustrates the beam wid th policy. Unless otherwise specified we let extra-beam 
be zero and max-beam be large 6 ; we t ry various values of the beam for our experiments 
here 7 . 

5Usually, inputs are the decoding graph HCLG, the acoustic model and the acoustic features. 
6This is system-specific. We e.g. selected 100 for this task in Kaldi, although this may be too large. 
7For a few utterances, the decoding does not terminate in a final state, when decoding with a small 

beam. This poses a problem for the reversal and the creation of the arc-lattice. In these cases, we used an 
increased final-beam to not prune away the path that leads to the final state. 
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Figure 5.13: Tracked decoding example illustrating the beam width policy. The illustration of 
forward and backward search is repeated from figure 5.2 [Nolden et al.(2013)]. 
a) Single pass backward decoding in reversed time direction; shows the accumulated scores of the 
best path. Towards the left, the partial acoustic scores are worse, thus the accumulated log-scores 
increase faster (solid line: score of best path, dashed: plus beam width). 
b) Single pass forward decoding. At the beginning good acoustic scores, but towards the end the 
partial log-scores increase faster. The overall path is worse due to pruning. 
c) Backward-forward tracked decoding: Paths in the first pass lattice (red) are time-reversed and 
tracked. Since the scores of the tracked tokens are farther off than the initial 2nd pass beam, the beam 
is increased to include all tracked tokens, plus an extra beam. If the beam exceeds the max-beam, it 
is not further increased, but all tracked tokens are still kept. 
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Regardless of the beam-width, we never prune away the tracked tokens. Note that 
even i f we keep the beam equal to the single pass beam dur ing the tracked second pass, our 
method is doing more than s imply choosing the best path from two (forward and backward) 
passes, because for paths found by the first-pass search, it is possible to "recombine" wi th 
paths that were found by the second-pass search. Some parts of the utterance might have 
scores similar to figure 5.13, i.e. be advantageous for backwards decoding; other parts might 
have the opposite characteristic. If par t ia l paths of tracked tokens and second-pass tokens 
meet i n the same state, they can recombine and thus we would continue decoding the rest 
of the utterance wi th the m a x i m u m of the two par t ia l scores (likelihoods). Therefore, the 
combined path can have a better score than either two single paths. 

5.4.3 Generation of the arc-lattice 

A s mentioned above, the arc-lattice is a special k ind of lattice that allows us to identify 
arcs in H C L G 2 n d that were present i n the first-pass lattice. Th is means there is a path 
in the lattice, that went through the corresponding state in H C L G i s t at the given time. 
The arc-lattice is an acceptor F S T , i.e. it has only one symbol on each arc. These symbols 
correspond to arcs i n H C L G 2 n d - We first construct a mapping between integers and the 
ind iv idua l arcs i n H C L G 2 n d ; this involves creating tables for mapping pairs of (node, arc) 
to integers, because the product of (^states) x (maximum #arcs) may be greater than the 
32-bit integer range. 

We now describe how we create the arc-lattice. F i r s t , let us point out that the standard 
K a l d i lattices [Povey et al.(2012)] (and also H C L G ) are W F S T s whose input symbols cor
respond to integers called transition-ids and whose output symbols correspond to words. 
The transition-ids may be mapped to PDF-ids, which correspond to context-dependent 
H M M - s t a t e s (the transition-ids contain more information about the exact t ransi t ion used, 
but this is not needed here). We first map the transition-ids in the input lattice to P D F -
ids, and also map the input symbols of H C L G 2 n d from transition-ids to P D F - i d s . This is 
necessary because the order of self-loops versus "forward transitions" on the forward versus 
backward graphs differ, which makes the sequences of transition-ids differ even for paths 
that are "really" the same; this issue does not arise w i th P D F - i d s . We then change the out
put symbols of H C L G 2 n d (which were previously words) to symbols identifying the arc in 
H C L G 2 n d (integer mapping to (node,arc) pair) . Let the resulting F S T be called H C L G a r c ; 
it has the same structure as H C L G 2 n d but different labels on the arcs. 

After doing the symbol mappings described above, we reverse the first-pass lattice 
LATist to retrieve the labels in reversed t ime order and obtain LATrev. We map the 
input labels from transition-ids to P D F - i d s to correct for the self-loop order, "project it 
on the input" , which means we keep only the input labels (PDF- ids ) and then we remove 
the weights (they w i l l be contained in H C L G 2 n d ) a n d remove epsilon arcs. Now, we can 
compose LATrev o H C L G a r c to obtain a transducer from P D F - i d sequences i n the lattice 
(input) to sequences of symbols for H C L G 2 n d arcs (output). 

Lattice-determinization [Povey et al.(2012)] is an operation i n a special semi-ring, that 
keeps only the best path for a symbol sequence (e.g. the best segmentation), but it is as
signed the weight of a l l paths wi th that symbol sequence. We apply latt ice-determinization 
on the resulting transducer to retain only the best path for each sequence of P D F - i d s in the 
lattice. A s a result, for each sequence of P D F - i d s , we have a single path of H C L G 2 n d arcs. 
Then , we project on the output, i.e. we keep only the output labels corresponding to arcs 
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in HCLG2nd) and we determinize aga in 8 - this t ime on the output labels, i.e. we keep only 
the best path for each arc sequence. The result is an acceptor lattice for H C L G 2 n d arcs 
which we cal l LATarc. Since the first-pass lattice contains the alignments (the sequence 
of P D F - i d s ) , also the resulting arc-lattice contains t iming information (it is a trellis). The 
t iming information is represented i n sequences of HCLG2nd-arcs . For example, we see se
quences of repeated arcs on self-loops, followed by a forward arc. A l g o r i t h m 2 summarizes 
the arc-lattice generation. 

A l g o r i t h m 2 Generation of arc-lattices (graph-state-lattices): 

1. M a p HCLG2nd to P D F - t o - A r c transducer HCLGarc: 

(a) HCLG2nd '• transduces P D F - i d s into words 
(b) Encode HCLG2nd (node-id, arc-id) into output symbols. 
(c) M a p input to be self-loop order independent. 

2. M a p first-pass lattice LATist to LATrev: 

(a) M a p input (self-loops), project on input, remove weights. 
(b) T ime reverse lattice and remove epsilons. 

3. Compose: LATarc = LATrev o HCLGarc: 

(a) Obtains sequences of HCLG2nd arcs for P D F sequence in lattice. 
(b) det(LATarc): Latt ice-determinize (on P D F - i d s ) in special semi-ring 
—>• single HCLG2nd pa th left for each sequence of P D F s . 
(c) Project to HCLG2nd (node, arc) symbols, determinize again. 

—>• The output is an acceptor lattice for HCLG2nd graph arcs. 

Dur ing decoding, a token is tracked and never pruned i f it was reached by a sequence 
of HCLG2nd-arcs in the arc-lattice that correspond to a path in the first pass lattice. We 
could th ink of it i n this way, that at each t ime step, there is a set of states, which we should 
keep i n any circumstances. Since we explore backwards and wi th a wider beam than in the 
forward pass, it is possible that these states are reached by other paths than those used in 
the arc-lattice, and that these paths (and their corresponding tokens) have a better score 
than the those following the arc-lattice. In this case, the tokens recombine, i.e. we only 
keep the better token. We implemented it in this way, that the winning token inherits the 
status of being tracked, so that we s t i l l keep tracking the path. 

It needs to be pointed out, that the implementat ion wi th the external creation of the 
arc-lattices is just one possibility. It would be also possible to compute a mapping of 
graph states between H C L G i s t and H C L G 2 n d at the t ime of graph construction, and to 
provide this mapping together w i th the two graphs as input to the tracked decoding. This 
implementation has the advantage, that fewer changes to the decoder had to be made, and 
that the memory consumption is smaller. 

8Using the standard determinization algorithm. 
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5.4.4 Experimental results 

We tested the proposed forward-backward tracked decoding on the W a l l Street Journal 
(WSJ) November'92 open-vocabulary test set (333 utterances) using a standard tri-phone 
H M M + G M M system ( K a l d i recipe ' t r i2a ' [Povey et al.(2011)], t rained on the 'si84' por t ion 
of W S J ) . The experiments were conducted wi th the extended 146k vocabulary using the 
pruned tr i -gram language model 'bd. tgpr ' that was trained on al l W S J t ra ining texts. The 
lattices [Povey et al.(2012)] were generated w i t h a lattice beam of 4.0. 

We can detect and evaluate search errors by aligning the recognition outputs to a 
decoding w i t h a very wide beam. We align the results of both forward and (reversed) 
backward decodings wi th the wide-beam-decoding. Table 5.1 shows an example of such an 
alignment. We implemented a 4D-Levenshtein edit-distance algori thm for that purpose. 
Table 5.2 confirms the in tui t ion that forward and backward search errors are independent. 
W i t h the help of the tracked forward-backward decoding, most of the search errors were 
eliminated. 

f : BRIAN J . KILLING CHAIRMAN OF BELL - ATLANTA X. INVESTMENT 
S . . . . . S 

b: BRIAN J . DAILY CHAIRMAN OF BELL AND LAND SIX INVESTMENT 
I S S 

p: BRIAN J . DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT 

w: BRIAN J . DAILY CHAIRMAN OF BELL - ATLANTA ITS INVESTMENT 
r: BRIAN J . KELLY CHAIRMAN OF BELL - ATLANTIC'S INVESTMENT 

Table 5.1: Analysis of search errors on the WSJ Nov'92 test set by aligning forward and backward 
search errors (with beam 11.0) against a decoding with a wide beam (29.0). 
Shown are the outputs of forward decoding (f), backwards decoding (b) and forward-backward 'ping-
pong' decoding (p), aligned to a decoding with very wide beam (w) and reference transcription (r). 
The search errors are indicated by 'ľ for insertion, 'S' for substitution and '-'for deletion. 

beam width forward errors backward errors co-occur ping-pong 
11.0 144 230 32 14 
13.0 84 108 14 6 

Table 5.2: Analysis of search errors on WSJ Nov'92 test set by aligning against a wide beam 
(29.0). The co-occurrence of an error ('co-occur') means that both, forward and backward pass, 
made an error in the same alignment position. It does not necessarily mean that both produced 
the same error. With two-pass 'pingpong' decoding, all independent search errors were corrected 
(all those that are not co-occurring), and even a good portion of the co-occurring errors could be 
removed. 

We measured the to ta l elapsed t ime for the two-pass forward and backward (tracked) 
decoding and relate it to the word error rate ( W E R ) . The real-time factor was measured on 
a single core of an Intel(R) C P U i5-2500 (3 .3GHz, 8 G B R A M ) . The results i n figure 5.14 
show, that for the lowest word error rates ( W E R < 10.5), the two-pass tracked decoding 
runs about 2-3 times faster than the ind iv idua l forward/backward passes at the same W E R . 
This corresponds to the "more accurate" operating points of decoding where search errors 
are small . However, i n this setup, the speed-ups are diminishing for operating points faster 
than « 0.6 real-time using our method. The issue seems to be that if the beams are 
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Figure 5.14: Performance of tracked decoding: Shown are curves for word error rate vs. real-time 
factor on the WSJNov'92 test set. For single-pass decodings, the beam varies between 10-18, for the 
two-pass ('pingpong') decoding the beam varies between 7-13. We used extrabeam = 0 and found 
maxbeam = 2-beam as a good compromise between speed and accuracy. The lattice-beam is 4.0, but 
for beam < 10.0 we decrease it step-wise by 0.5 down to 0.5. As will be explained in section 5.4-5: 
We compare the variable-beam decoding ('2beam var', orange) to a decoding without generating 
extra tokens in the variable beam ('noextra', red) by setting maxbeam = beam, which shows the 
additional benefit of the variable beam over just combining lattices of forward and backward passes. 

too narrow, the two decoding passes disagree substantially and too much effort is spent in 
decoding wi th a widened beam i n areas that disagree. A l so , [Nolden et al.(2013)] points out 
that a too narrow beam could lead to a degenerated search, where both passes produce the 
same errors (e.g. focussing on silence and noise models, which are symmetric) . The W E R 
curve i n hgure 5.14 is not always smooth, which points to the fact that hxing a search error 
does not necessarily mean hxing a word error. 

5.4.5 I m p o r t a n c e of b e a m parameters 

The proposed decoder has several parameters to tune: forward beam, backward beam, 
lattice-beam, extra-beam and max-beam. This section analyzes the importance and typical 
settings for those parameters. Since the W E R - R T F curves for single-pass forward and 
backward decodings are similar, we typical ly set the forward beam and backward beam to 
the same value. In the backward pass (tracked decoding), we have three types of tokens: 

• Tokens that are generated i n the normal way wi th in the narrow beam. 

• Tracked tokens, which are never pruned. 

• E x t r a tokens, which are generated due to the increased variable beam, which is the 
difference between the best token and the worst tracked token plus extra beam. 

Look ing at the different components of the beam-width-policy (section 5.4.2), there seem 
to be two strategies one could pursue: either track many tokens and t ry to combine good 
forward and backward paths, while l imi t ing the generation of extra tokens, or just track 
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Figure 5.15: Profiling the tracked two-pass decoding on a single core CPU. Shown is the percent
age of time spent in different parts of the algorithm at three operating points (beam 8.5 as optimal, 
others as not optimal). The first pass is the lattice-generating 'forward search' (which is also our 
single-pass baseline) and the second pass can be seen as consisting of a) normal backward decoding 
(column 'backward search'), b) generating the arc-lattice ('arc-graph'), c) additionally tracking to
kens from the first pass ('tracking') and d) generating extra tokens within the increased variable beam 
('extra beam'). The acoustic scores were not cached between the two passes. The contributions of 
'arc-graph' and 'tracking' (together < 20%) could be possibly optimized by a better implementation, 
but the two individual passes constitute a lower bound (around 70% of the time is spent there). For 
beam 7.0, we used lattice-beam 1.0, and got 11.36% WER at 0.85 RTF. For beam 8.5: lattice-beam 
4.0, 10.38% WER at 1.06 RTF. For beam 12.0: lattice-beam 4.0, 10.23% WER at 2.63 RTF. 

few tokens and generate many extra tokens up to the variable beam difference. To analyze 
the importance of the extra tokens, we can compare the proposed tracked decoding using 
the variable beam (which is the distance of the best active token to the worst tracked token 
plus the extra-beam) to a decoding without generating extra tokens. We can achieve this 
by l imi t ing the beam to maxbeam = beam and thus effectively disabling the variable beam. 
Since tokens ' tracked' by the first-pass lattice are kept anyway, this effectively corresponds to 
combining the lattices of the forward and backward pass. Figure 5.14 ( '2beam' vs. 'noextra') 
shows that creating extra tokens wi th in the variable beam gives a substantial improvement 
on top of that. Th is shows that the extra tokens are important , especially for the operating 
points w i th low W E R s . 

To get an insight on the op t imal size of the forward/backward beam, we profiled the 
tracked decoding i n figure 5.15. We observe, that the t ime spent i n the two ind iv idua l 
decoding passes (without t racking / extra tokens) is the dominant factor - thus we want to 
keep this value small . However, i f we reduce the beam too much, we observe (figure 5.14 
for error rates > 11.5%) that the two-pass decoding is no longer better than the single-
pass decoding. F r o m figure 5.15 we see, that for narrow beam widths, most of the t ime is 
consumed in the generation of extra tokens, which effectively means decoding wi th a higher 
beam. Below a certain beam wid th (11% i n figure 5.14) the error rates in the single passes 
grow rapidly wi th only l i t t le R T F to gain. Th is means that the divergence between the 
best paths from forward and backward decoding is too big, so that the a lgori thm has to 
increase the variable beam a lot to track the first pass tokens. The max-beam parameter 
l imits the variable beam, so that i n these situations, the decoding is not slowed down too 
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much (at the cost of higher W E R ) . 
W i t h an op t imal setting of the beam, we can reach a significant W E R decrease by just 

generating a smal l amount of extra tokens in the variable beam ('extra beam' i n figure 
5.15, opt imal around beam 8.5). Th is point corresponds to the turning point in figure 
5.14 (around R T F 1.0) - it is the 'sweet spot' . Above that, though l i t t le t ime needs to be 
spent for tracking and for generating extra tokens, too much time is spent i n the ind iv idua l 
forward/backward decodings, and the overall R T F increases rapidly. 

10 10.2 10.4 10.6 10.8 11 11.2 11.4 

word error rate 

Figure 5.16: Testing the extra-beam: WER vs. real-time factor on WSJ Nov'92 test set using 
the bi-gram LM with 5k vocabulary. We set the parameters to lattice-beam 6.0 and max-beam 100.0 
and varied the extra-beam from 0.0 to 4-0 'pingpongO.. .4'- All settings of extra-beam resulted in 
very similar curves. 

In an experiment using a smaller vocabulary, we tested the influence of the extra-beam 
parameter. Figure 5.16 suggests, that this parameter doesn't have any significant influence. 
It seems that increasing this parameter has a similar effect to s imply decoding w i t h a wider 
beam. Therefore, we set the extra-beam to zero i n the further experiments (also i n figure 
5.14). Now, in figure 5.17, we investigate the effect of the lattice-beam. We can see, that 
pruning the lattice wi th different beams and generating the corresponding arc-lattice has 
mainly the effect, that larger lattices result i n higher R T F , visible i n the area wi th the 
higher W E R . Thus, we want to make the lattices as smal l as possible. However, for the 
most accurate operating points w i th low W E R , we want to have a wider lattice that is more 
likely to contain the best path. Figure 5.17 suggests that it seems to be a good strategy to 
increase the latt ice-beam linearly w i th the beam. We can set an upper bound of 4.0, which 
is enough to get good results i n re-scoring the lattice. 

Final ly , after tuning al l other parameters, we investigate different settings of the max-
beam parameter. Figure 5.18 suggests, that the exact setting of the parameter max-beam 
doesn't influence the potential speed-up of the technique (the 'sweet-spot'), but mainly 
influences the shape of the curve from the 'sweet spot' towards the higher W E R . Us ing no 
l imi t for the beam even for huge divergences between forward and backward pass seems 
wasteful. Therefore, it seems to be reasonable (figure 5.18) to increase the max-beam slowly 
wi th increasing beam. Once a reasonable beam has been reached, the divergence between 
forward and backward passes gets smaller, and the max-beam is no longer needed. 
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Figure 5.17: Analyzing the effect of the lattice-beam on WSJ Nov'92 test set using the big bi-gram 
LM with 147k vocabulary. We set the parameters to extrabeam = 0.0 and maxbeam = 100.0 and 
varied the lattice-beam from 4-0 to 6.0 (curves 'pingpong{4,5,6}'). Then, we tried increasing the 
lattice beam linearly from 0.5 to 5.0 (curve 'pingpong-var'), i.e. we started with lattice-beam 0.5 at 
beam 6.5 and increased it until we had 5.0 at beam 11.0. 
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Figure 5.18: Analyzing the effect of different max-beam settings on WSJ Nov'92 test set using the 
big bi-gram LM with 147k vocabulary. As already explored, we set the parameters to extrabeam = 0.0 
and linearly increased the lattice-beam from 0.5 to a maximum of 4-0. Now, we compare three 
strategies of setting max-beam: a) using a fixed max-beam of 100.0 b) using a fixed max-beam 
of 20.0 c) changing the max-beam linearly with the beam: maxbeam = 2 • beam. We also tried 
maxbeam = beam, which had slightly worse performance for WER > 11.0. We see, that using a 
fixed maxbeam leads to a slight increase of RTF for the lowest WER, which indicates, that too many 
extra tokens are generated due to the variable beam. 
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5.5 Conclusions 

We proposed how to integrate information from two symmetric decoding passes, decoding 
forwards and then backwards i n t ime. In order to implement this we needed to construct 
reverse decoding networks that assign exactly the same scores as the forward decoding. 

We explored two implementations, one approach using an incremental decoding that can 
be easily parallelized, and another approach that allows for a more fine-grained steering of 
the beam by tracking the paths from a first-pass lattice i n the second pass. More specifically, 
in the second pass of tracked decoding, we modify the pruning behavior of the decoder to 
treat specially tokens that were part of successful paths i n the first pass, and to increase 
the decoding beam for parts of the utterance where the forward and backward decoding 
disagree. O u r decoding method results i n a roughly two to three-fold speed-up. 

The proposed speed-up method can be applied in any A S R based technology, for exam
ple in the fast generation of lattices for audio indexing. The tracked decoding could be used 
to generate lattices that contain certain desired paths (e.g. the reference forced alignment 
for discriminative training). 

Our algorithms use the W F S T approach [Mohri et al.(2008)] to speech recognition. 
For the tracked decoding, other speed-up techniques such as acoustic look-ahead [Nolden 
ct al.(2011)] and various types of fast acoustic score computat ion are also applicable. We 
expect that those methods can be combined wi th the technique described here and bring 
complementary speed-ups. 
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Chapter 6 

Conclusions 

6.1 Summary of the findings 
In this thesis, we have introduced the idea of symmetr ical ly decoding forwards and back
wards in time. For tasks like L V C S R decoding, the search space cannot be explored ex
haustively. For some tasks, the pruned backward search is more efficient than the forward 
search. Moreover, we showed experimentally that the search errors of forward and back
ward search are mutual ly independent. Forward search prunes based on the "history" and 
backward search prunes based on the "future". To be able to concentrate on search errors 
rather than on modeling errors, we require both decoding passes to be symmetric - i.e. bo th 
models are equally powerful and are constructed to assign exactly the same probabilities 
to hypotheses (paths, word sequences). The symmetry of both passes allows us to compare 
the recognition results of forward and backward decoding. E a c h difference detects a search 
error. We have shown, that for most of the t ime frames in beam search decoding, a very 
narrow beam is sufficient to keep the final best path. Therefore, we are able to decode wi th 
a variable beam wid th - we use a smal l baseline beam and only increase it i n places, where 
the forward and backward searches disagree. 

One possible realization of the variable beam wid th decoding is to run the forward and 
backward passes in parallel , and to iteratively refine the decoding (by increasing the beam 
width) i n places, where both passes disagree. We showed that, for about 50% of the utter
ances, the results already match after the first i teration. For the remaining utterances, the 
stretches of mis-matching words (in average 1.5 per utterance) can be decoded i n parallel . 
Th is approach is very similar to chunk based decoding and is a high-level technique that can 
be applied addit ional ly to other coarse-grained and fine-grained parallel ization techniques. 

Another realization of the variable beam wid th is the tracked decoding presented in 
this thesis, which runs forward and backward decoding sequentially. D u r i n g the second 
pass (tracked decoding, backwards), we are able to identify which active tokens correspond 
to paths that were present i n the first-pass lattice. These are called tracked tokens and 
they are never pruned, regardless of the beam wid th . We track tokens wi th an acceptor 
lattice of graph-states of the backward decoding graph, which is generated from the first 
pass lattice wi th a series of W F S T operations. Tracked tokens are used to determine the 
variable pruning beam for each frame. In places where disagreement is detected, the beam 
is increased to include a l l tracked tokens. Otherwise, i n the second pass, the same narrow 
beam is used that was used i n the first pass. 

Even if we don't increase the beam in the second pass, our method is doing more than 
simply choosing the best path from the two passes because it is possible to "recombine" 
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part ia l paths from the first-pass and second-pass search (effectively combining the forward 
and backward lattices). O n top of that, the variable beam leads to the generation of extra 
par t ia l hypotheses i n areas where both passes disagree, which gives an addit ional speed-up. 

Tracked decoding leads to a 2-3 times speed-up compared to a single pass forward 
decoding. Since most of the t ime is spent i n the forward and backward decoding wi th the 
narrow beam, this beam determines the possible speed-up. It should be smal l enough to 
decode at least two times faster than the original single pass, and it should be wide enough 
to allow for a reasonable comparison of the forward and backward search results, i.e. either 
of the two passes should obtain a solution, that is at least par t ly correct. If we decrease 
the beam below a cr i t ical threshold the speed-up vanishes, since an excessive amount of 
extra tokens are generated. Thus, we introduce an upper l imi t to the variable beam, which 
becomes effective in the areas of higher word error rates. We show that the main tuning 
parameters, which are the log beam wid th and the m a x i m u m number of active tokens for 
the histogram pruning, are dependent on each other. 

Reversal of the recognition network 

To construct the backward recognition network, it is not sufficient to apply W F S T reversal 
to the forward network, since this w i l l result in highly non-deterministic structures. It is 
necessary to construct reverse models for each component separately and to compose the 
components i n the same way as i n the forward network. It turned out that the transducers 
for H M M structure, context-dependency and pronunciat ion lexicon are rather easy to re
verse, however, the reversal of the L M transducer is difficult. The stochasticity of outgoing 
arcs w i l l not be satisfied when reversing the model, i.e. the opt imal weight dis t r ibut ion for 
backward search is different from the one used i n forward search. Therefore, we have to 
apply weight pushing to the reversed components. Our approach to the construction of 
backward recognition networks is not l imi ted to static network decoders. Since a l l com
ponents are reversed individual ly, no change is necessary when dynamical ly composing the 
components i n a dynamic network decoder. 

To represent N-gram L M s as W F S T s , an approximate structure is necessary, since a 
fully connected model is prohibit ive. W h e n representing back-off arcs as either failure arcs 
or epsilon arcs, we actually violate the assumptions of the W F S T algorithms. Ei ther , when 
using failure arcs, the semi-ring concept is changed and a new class of algorithms is needed. 
O n the other hand, when approximating back-offs using epsilon arcs, non-determinism is 
introduced. If the weights are taken from back-off L M s , the weight of cycles can be greater 
than one and results i n an infinite to ta l weight. A general weight pushing algori thm is based 
on the shortest path algori thm i n the given semi-ring. The (log) probabil i ty semi-ring is 
not closed (due to cycles), therefore an approximate iterative weight pushing algori thm is 
used as the standard weight pushing (e.g. i n O p e n F S T ) , whose convergence depends on the 
weight i n a loop, which must be smaller than one. However, this is not the case for W F S A 
resulting from back-off L M s and the weight pushing algori thm w i l l not converge. 

We presented an alternative weight pushing algori thm, which w i l l always converge. 
Similar to the power method for finding the dominant eigenvector of a matr ix , we use 
the Perron theorem to obtain the dominant right eigenvector of the transi t ion mat r ix of 
an ergodic W F S T . This vector represents the m i n i m u m distance towards the final states 
(stationary state distr ibut ion) , which we can use as the potential function i n re-weighting. 
This results in pushing the weights towards the in i t i a l state and making the W F S A output 
stochastic. More precisely, the outgoing arcs sum to the same quantity for a l l states, 
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which means that the to ta l weight, causing the standard algori thm to fail, is now uniformly 
"smeared" a l l over the W F S A . O u r algori thm is i n practice an order of magnitude faster 
than the more generic conventional weight pushing algori thm. 

The most difficult component to reverse is the W F S T resulting from the back-off L M . 
We require that it assigns exactly the same probabilities as the forward L M . To guarantee 
an opt imal search, the backward W F S T should also be deterministic, stochastic and of 
min ima l size. Thus, simple W F S T reversal is not sufficient. We derive the construction of 
the backward L M satisfying these requirements, which is va l id when using exact back-off 
models using failure arcs, and also when approximating them wi th epsilon arcs. 

The constructive approach to obtain the backward L M consists of applying the N-gram 
probabilities w i th a delay, and to switch the functions of labeled word arcs and back-off 
arcs. We also explain the origin of missing N-grams, and how to represent them correctly in 
the backward L M . W i t h the help of a series of weight pushing operations and representation 
changes of the probabilities, where each step guarantees W F S A equivalence, we show that 
our L M reversal a lgori thm can also be derived step by step. B y applying the constraint 
that the joint word probabilities should be the same for the forward and backward L M for 
al l N-g ram orders, we are able to show that the same algori thm can be derived from Bayes' 
rule. The application of weight pushing to the resulting backward L M is crucial for opt imal 
performance. We compared this 'exact' L M w i t h a backward L M resulting from training on 
the reversed t ra ining texts. The performance of both is very similar, except for low word 
error rates, where the exact model performs better - more closely to the forward L M . 

6.2 Future work 

The proposed speed-up method can be applied i n any A S R based technology, as e.g. in 
the fast generation of lattices for audio indexing and the tracked decoding could be used 
to generate lattices that contain desired paths, such as the forced-alignment reference for 
the discriminative t ra ining of acoustic models. Add i t iona l ly to decoding forwards and 
backwards i n time, depending on the task, there might be other ways of decoding, which 
could result in independent search errors, and thus lead to addi t ional speed-ups. 

The alternative weight pushing algori thm was derived under certain assumptions. In 
particular, we assume that a l l arcs i n the W F S T are of the same type. However, there 
are "emitting" arcs w i t h a word label, and "non-emitting" arcs representing e.g. the back
off arcs. A n open problem is to derive a weight pushing algori thm respecting the special 
semantics of back-off arcs. Under this correct interpretation, if the back-off L M was correctly 
normalized, the to ta l weight of the transducer w i l l be one, and we avoid the negative log-
probabilities resulting from pushing weights greater than one. The original K a l d i recipe for 
the construction of recognition networks [Povey et al.(2011)] used the assumption, that a l l 
components are stochastic, which eliminates the necessity for weight pushing. We want to 
find a derivation for the exact L M reversal, which directly produces a properly normalized 
stochastic W F S T . 

There is some inconsistency between the algorithms for decoding graph construction, 
which usually assume the log-semi-ring, and the decoding algorithms, which use the t ropical 
semi-ring. Together w i th different interpretations of the failure/epsilon arcs, this opens 
several dimensions of design choices, and the different options should be systematically 
explored to find a consistent framework for decoding graph construction that results in an 
opt imal decoding. W h e n using epsilon arcs for back-offs, the W F S T s resulting from back
off L M s introduce non-determinism to the graph, which results i n mult iple evaluations 
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of the same models dur ing decoding. It is not possible to apply determinization on the 
L M transducer, since this would lead to a fully connected N-gram, which is not feasible. 
However, i n a prel iminary experiment, we showed, that after the composit ion wi th the 
lexicon transducer, it is possible to apply another slightly modified determinization step, 
which respects the special semantics of failure arcs. The resulting transducer is bigger, but 
s t i l l managable. After this step, the transducer is deterministic, and no special arcs are 
needed (e.g. failure arcs) to correctly represent the back-off L M - i.e. the resulting transducer 
is consistent w i th the log-semi-ring. Therefore, the resulting W F S T LG is either already 
stochastic, or can be normalized wi th the weight pushing i n the log-semi-ring. Thus, many 
of the problems to which we point in this thesis could be solved. 
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Appendix A 

Scripts and executables in the 
Kaldi toolkit 

Most of the algorithms and recipes described in this thesis have been integrated into the 
K a l d i toolki t . The master script invoking the scripts for single pass backward and two-pass 
tracked decoding can be found i n e g s / w s j / s 5 / l o c a l / r u n _ f w d b w d . sh . 

However, since the u t i l s / directory is l inked to a l l experiment directories e g s / , the 
described scripts can be accessed from al l recipes. D u r i n g the preparation of the train
ing/decoding directories, the first step is to reverse the lexicon. This is done wi th pro
v id ing the — r e v e r s e option to u t i l s / p r e p a r e _ l a n g . s h . For the preparation of 
the decoding directory, we use the script u t i l s / r e v e r s e _ l m . s h , which creates a new 
l a n g _ t e s t / directory w i t h the reversed L M transducer. It is very similar to the normal 
u t i l s / p r e p a r e _ l a n g _ t e s t . sh , i.e. creating the L M W F S T wi th s r c / b i n / a r p a 2 f s t , 
however, the heart of it is a ca l l to u t i l s / r e v e r s e _ a r p a . p y , which takes as input a 
textual L M i n A R P A format and outputs the exactly reversed L M in A R P A format. In 
this python script, we first read the A R P A file, add missing N-grams (section 4.3) and i n a 
second pass we create the backward L M . 

A t the end of u t i l s / r e v e r s e _ l m . sh , we apply the alternative weight pushing algo
r i thm to make the W F S T stochastic. One part icular i ty is that a r p a 2 f s t doesn't support 
the representation of back-off arcs of missing N-grams (section 4.3) in the backward L M . 
Therefore, we have to manually remove these arcs. To make a sanity check that everything 
went right, we can use the script u t i l s / r e v e r s e _ l m _ t e s t . s h , which generates random 
word sequences from the forward L M , reverses them and checks, that they are assigned the 
same scores in the forward and backward L M (including different ways of backing-off). 

The last step towards the creation of a backward recognition network is to compose the 
HCLG transducer from the ind iv idua l components w i th the script u t i l s / m k g r a p h . s h , 
which also has an option - - r e v e r s e . After the lexicon transducers and L M transducers 
are already reversed, the only th ing left to do is the reversal of the H M M transducer - the 
— r e v e r s e option is passed further to the executable s r c / b i n / m a k e - h - t r a n s d u c e r . 
The relevant source code is actually i n s r c / h m m / h m m - u t i l s . c c . Here, the context 
window into the decision tree is reversed (section 5.2.1), and the ind iv idua l (context-phone) 
H M M s are reversed and pushed, before composing them as Ha transducer. 

The forward/backward decoding is done wi th the script s t e p s / d e c o d e _ f w d b w d . s h . 
In case of a simple backward decoding (using s r c / g m m b i n / g m m - l a t g e n - f a s t e r ) we 
use the — r e v e r s e option, and the only two things that need to be changed compared 
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to a forward decoding is the t ime reversal of the acoustic features w i t h the executable 
s r c / f e a t b i n / r e v e r s e - f e a t s (where the code is actually i n 
s r c / f e a t / f e a t u r e - f u n c t i o n s . cc), and the reversal of the decoded text i n the scoring 
script s t e p s / s c o r e _ k a l d i . sh (called by l o c a l / s c o r e . sh). 

To use the tracked decoding, we run the first pass as just described (—beam is the 
baseline beam wid th and — l a t b e a m is the lattice pruning beam), and then we decode in 
the opposite direction, using the — f i r s t _ p a s s opt ion as an addit ional input, followed 
by the first pass decoding directory, from which we take the lattices. 

The script s t e p s/decode_fwdbwd. sh has two addi t ional options --extra_beam 
and —max_beam, which set the extra beam and the beam l imi t (section 5.4.2), respectively. 
If the — f i r s t _ p a s s opt ion is given, we convert the first pass lattice to the graph-arc ac
ceptor lattice (section 5.4.3) and use the executable src/gmmbin/gmm-latgen-tracking 
to perform the tracked decoding. A l l the necessary source code for the arc-lattice generation 
is i n s r c / l a t b i n / l a t t i c e - a r c g r a p h . cc, which compiles also to the corresponding 
executable. 

In s r c / d e c o d e r / l a t t i c e - t r a c k i n g - d e c o d e r . {cc,h} is the implementat ion of 
the t racking decoder. The arc-lattice is read as standard W F S A . The central method 
L a t t i c e T r a c k i n g D e c o d e r : : Decode () gets it as an input parameter. E a c h token 
(represented as a s t r u c t Token) has an addi t ional component, the state in the arc-
lattice. The main methods inside Decode () , that realize the decoding and tracking are 
P r o c e s s E m i t t i n g () and P r o c e s s N o n e m i t t i n g () , which are called alternately. The 
beam wid th pol icy (section 5.4.2) is implemented i n the method GetCutOf f () , where the 
variable e x t r a _ c u t o f f is computed, as well as i n P r o c e s s N o n e m i t t i n g () . 
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