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Abstract
This thesis deals with testing the security and performance of PoS-based protocols. Com-
parison of ProPos, Algorand, Hedera, Ouroboros and Tezos is presented on theoretical level
in terms of performance, attack vulnerabilities and attacks mitigation. This thesis includes
a simulation framework for testing Algorand, ProPos and Hedera protocols. The simula-
tion framework is created using Omnet++ 5.4.1. Focus of the simulation experiments is on
the performance of the selected protocols. Based on the results of the experiments a few
improvements are discussed.

Abstrakt
Tato práce se zabývá testováním výkonu a bezpečnosti konsensus protokolů typu Proof-of-
Stake (PoS). Na teoretické úrovni porovnává protokoly ProPos, Algorand, Hedera, Ouroboros
a Tezos z pohledu výkonu, možností útoků a obraně proti těmto útokům. Součástí práce
je implementace simulačního frameworku v Omnet++ 5.4.1 pro provádění simulačních ex-
perimentů s protokoly ProPos, Algorand a Hedera. Simulace se zabývají zejména výkonem
těchto protokolů. Na základě zjištěných výsledků jsou navržena určitá vylepšení.
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Rozšířený abstrakt
Tato práce se zabývá především Proof-of-Stake (PoS) konsenzus protokoly používanými v
decentralizovaných systémech v kombinaci s technologií blockchain. Výsledkem je teoretické
porovnání PoS protokolů a dále vytvoření simulačního testbedu, ve kterém jsou protokoly
simulovány. Na základě výsledků jsou diskutována možná vylepšení protokolů.

Práce nastiňuje i další protokoly používané k dosažení konsenzu a jejich rozdíly. Blockchain-
ové systémy používající konsensuz protokoly založené na PoS jsou stále na vzestupu, protože
přináší určité výhody oproti protokolům typu Proof-of-Work (PoW). Tím, že jde o velmi
mladé odvětí, nejsou ještě všechny vlastnosti PoS protokolů ani dalších konsenzus protokolů
dostatečně prozkoumány. Cílem této práce je najít vylepšení již existujících protokolů využí-
vajících princip PoS. Testbed implementovaný v rámci této práce testuje a experimentuje
s protokoly Algorand, ProPos a Hedera a nabízí možnost jak pomocí simulací snadno zk-
oušet vlastnosti těchto protokolů při různých parametrech sítě nebo nastavení samotných
protokolů.

Konsenzus protokoly fungují v úzkém spojení s blockchain technologií, proto je uveden
přehled této technologie, její typy, fungování a využití. Jedna kapitola je věnována Bitcoinu,
protože výrazně ovlivnil směr vývoje v tomto odvětví. Dále se práce zabývá možnostmi
dosahování konsenzu v decentralizovaných systémech a konkrétními konsenzus protokoly
(proof-of-stake, proof-of-resource, proof-of-importance a dalšími). Popisuje jejich fungování,
proč byl daný protokol vytvořen (jaký problém se snaží řešit) i důležité metriky pro jejich
porovnávání. Důraz je kladen na bezpečnost popsaných typů protokolů. Jsou uvedeny
známé útoky na různé protokoly a možnosti prevence nebo minimalizace těchto útoků.

V kapitole 4 jsou popsány vybrané PoS protokoly ProPos, Algorand, Hedera, Ouroboros
a Tezos. Je popsáno jak každý protokol dosahuje konsenzu a vlastnosti protokolu, např.
jestli je zaměřen na co největší propustnost nebo větší decentralizaci apod. U každého
protokolu se práce zabývá možnostmi útoků. Jsou popsány mechanismy, kterými protokol
útok znemožňuje nebo alespoň výrazně snižuje pravděpodobnost jeho úspěšného provedení.
Dále je popsán teoretický výkon každého protokolu vyjádřený jako propustnost nebo počet
transakcí za vteřinu. Veškerá data jsou získána z publikací autorů daného protokolu.

V kapitole 5 je krátký přehled již existujících testbedů pro testování blockchainových
systémů a různých konsenzus protokolů.

Dále už následuje popis vytvořeného testbedu. Práce popisuje návrh testbedu a jeho
vnitřní design. Testbed je založen na simulačním nástroji Omnet++ 5.4.1 a simulace
probíhaly na běžném pracovním počítači se systémem Ubuntu 18.04. Je popsán i způ-
sob simulace sítě, tzn. propojení uzlů a jejich komunikace včetně transportní vrstvy.

V kapitole 7 jsou výsledky experimentů prováděných s protokoly Algorand, ProPos a
Hedera. Pro každý protokol bylo provedeno několik experimentů. Každý experiment se
skládal z mnoha simulačních běhů, ve kterých se měnil daný parametr. Především byl
testován výkon protokolů a jak se chovají při různém počtu nefunkčních nodů, dále pak
chování protokolů ProPos a Algorand v síti s vysokou latencí a výkon protokolu Hedera. V
případě protokolu Algorand byl simulován i útok na protokol. Výsledky jsou prezentovány
v podobě grafů a tabulek. Na základě výsledků je uvedeno porovnání protokolů a návrh
možných vylepšení.
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Chapter 1

Introduction

Blockchain technology gain its popularity with decentralized peer-to-peer digital currency
Bitcoin. The properties of decentralized blockchain technology like immutability make it
ideal for creating and exchanging digital assets. Since Bitcoin was created, many more
decentralized applications have been emerging constantly showing that cryptocurrencies
are not the only use case.

Consensus protocols are setting rules for building blockchain structure and ensures in-
tegrity and security of the network. In Bitcoin consensus is achieved using Proof-of-Work
mechanism which is very energy consuming. To solve this problem, Proof-of-Stake proto-
cols were introduced in 2011. These days more and more applications and cryptocurrencies
are using PoS as it is seen as favorable alternative to PoW.

Because the use of a blockchain technology in modern applications is still in its early
stages and as the number of projects using PoS mechanism is increasing rapidly, it is hard
to evaluate all the important properties like security, throughput, finality and more. On
top of that projects with different use cases are using very different approaches of reaching a
consensus. In today’s decentralized systems there is always some kind of trade-off between
security, throughput and scalability.

1.1 Goals
This thesis has several goals. First being a theoretical comparison of some of the well
known implementations of PoS projects in terms of throughput, scalability, security, failure-
tolerance, liveness, safety, finality and more. Then to design testbeds for simulation of
selected PoS implementations and evaluate the results with focus on security. And finally
to propose some improvements based on the simulation results and to validate the improve-
ments using simulation.

1.2 Organization
Chapter 2 briefly describes blockchain technology as it is used today. There is a short
description of the design of Bitcoin, the first blockchain project with a mass usage. Then
types of blockchain are discussed in more detail with their use cases.

Chapter 3 is all about consensus protocols, how they work, their properties and types.
Well known attacks and their possible mitigations are also discussed in this chapter.
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In Chapter 4 theoretical analysis of some existing PoS systems is presented. Consensus
algorithm of each PoS project is described so that its properties can be seen better. Some
properties (e.g. throughput, finality) were tested experimentally by previous research and
the results are included this chapter. Theoretical comparison of PoS projects that are
described here is then presented in a form of a table.

Chapter 5 deals with existing simulation testbeds Vibes, Bitcoin Simulator and Sim-
block, their use cases, properties and limitations.

In Chapter 6 the created testbed is presented. There is a description of how the testbed
works with an explanation of the important design choices.

Then in Chapter 7 all simulation experiments performed are explained. The protocols
tested are Algorand, ProPos and Heder. The results of the experiments are also presented
and discussed in this chapter and the protocols are compared.
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Chapter 2

Blockchain technology

2.1 Blockchain overview
Blockchain technology is very similar to a distributed ledger. It is a distributed database
spread across nodes that are connected through P2P network. In blockchain however, the
data are organized into blocks. When new block is created, it is cryptographically linked
to the current most recent block. This ensures that when a block becomes a part of a
blockchain it cannot be changed in the future because it would break the links between all
following blocks. There is not a signle universally accepted definition of blockchain but we
can list the key properties as follows [7]:

• data redundancy – each node has its own copy of the blockchain;

• transaction requirements check and validation;

• recording and storing the transactions in sequentially ordered blocks, creation of which
is ruled by a consensus algorithm;

• transactions based on public-key cryptography and a transaction scripting language.

In case of cryptocurrencies, blocks contain transactions where each transaction may
represent a transfer of crypto-tokens, application code (smart contracts) or other data. All
nodes need to agree who will be the creator of a new block. Typically, this process is not
strict, but randomness is involved. This means more than one new block could be created
at the same time leading to multiple different versions of the blockchain (i.e., fork). This is
undesirable situation because the same transaction may be present in multiple blocks. To
resolve the situation longest chain rule could be used which means that every user always
take the longest chain as valid. Transactions from the block that was on shorter branch
are then returned to the mempool. In Figure 2.1 illustration of a simple fork is shown.
In reality multiple branches with the same length may exist. The sooner the blockchain
solution can resolve the fork, the faster the finality can be reached. Consensus algorithm
describes a way to resolve such a situation as well as rules for creating a new valid block
with ordered transactions.

While blockchain technology brings many advantages over traditional systems, there is
number of drawbacks as well. Blockchain based systems often operate in trustless environ-
ment meaning nodes cannot trust each other. This is a problem when new node is connected
to the network or when a node is offline for some time. In attempt to synchronize with the
network, a node has to choose a valid version of the blockchain among all the blockchains
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Figure 2.1: Example of a blockchain fork. The side chain cannot keep up whith the main
chain and will be discarded [19].

presented to her by other nodes. Consensus algorithms are designed to solve this issue.
Different approaches of the algorithms are discussed in more detail in Chapter 3.

Smart contracts

Smart contract is a term that in regard to the blockchain technology refers to an application
code stored in the blockchain and executed by the network nodes (miners, stakers, etc.).
The key properties of the smart contracts are the immutability of the computer code and
their decentralized execution. Any user can view the code of the smart contract and can
verify how the smart contract operates.

Smart contracts can manage cryptocurrency tokens and perform automatic tasks as well
as communicate with each other. By linking more smart contracts complex decentralized
applications are created. Smart contracts are often used to build trust in the system
because of their public nature. The most notable project that supports smart contract
today is Ethereum [57].

2.2 Blockchain use cases
Blockchain technology is not only used in the financial sector nowdays but many more
areas including data storing and replication, data verification, voting in elections, lottery,
marriage registrations, product tracing, identity management, temper-proof event logging
and more [7]. In this section a few notable use cases are described.

Financial

Cryptocurrencies are taking advantage of the blockchain features such as immutability and
enabling transfer of digital assets (crypto-tokens), between two parties without a middleman
or a central authority. By design it should be almost impossible to censor transactions or
seize crypto-tokens by force. The transfer of value is especially beneficial in interbank or
global transactions where the conventional solutions may be more expensive and take more
time.

Smart contracts enable much more possibilities for cryptocurrencies aside from value
transfer. For example a lending and borrowing of the tokens. The lender provides an
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amount of the tokens for a period of time and gets an interest on his investment. The
borrower gets the tokens but needs to lock a collateral as a guarantee. The collateral may
be in the form of tokens of different kind than the ones that were borrowed and typically
has greater value than borrowed funds. The idea is that the loan has to be secured by the
collateral at all times even when the value of the collateral fluctuate over the time.

Another area taking advantage of smart contracts is decentralized exchanges. This type
of exchange is using smart contracts to settle an exchange of the cryptocurrency tokens
between two parties. The advantage over centralized exchanges is the elimination of middle
man (in this case the exchange) that the users need to trust with their funds.

Data management and verification

A blockchain can also be used for storing data that are duplicated among many nodes.
This approach reduces the risk of outages and hardware failures. Because of the duplicity
of the data among the nodes, the data are always available even if some nodes go offline.
Another advantage is data integrity and full history of edits. These properties are achieved
by the nature of the blockchain itself. Example of a project that use blockchain in this way is
Storj (Metadisk): Blockchain for Distributed Cloud Storage [48]. Other use cases related to
data storage on blockchain include identity data management, tamper-proof event logging,
content or product timestamping, healthcare record storing and more [8].

2.3 Bitcoin
First publicly known use of blockchain technology is in design of Bitcoin cryptocurrency [4].
The idea is to enable secure decentralized exchange of digital currency – Bitcoin. The system
is fully decentralized and public meaning anyone can join the network and play a role in
the consensus algorithm execution or read/write from/to blockchain structure.

Bitcoin consensus mechanism (Nakamoto Consensus) is based on a computational power
that nodes spend to be able to create new blocks. The security of Bitcoin is based on belief
that an attacker cannot create fake blocks without other nodes noticing because its validity
is easily verifiable. It is a clever way of choosing a new block creator with fairness when
the nodes do not trust each other.

When a node wants to publish a new block, she needs to add a piece of data (referred
to as nonce) to the block such that hash of the whole block has certain number of leading
zeros. The process of searching for new valid block is known as mining. See Figure 2.2 for
visualization of blockchain structure. The number of leading zeros changes based on the
network total computational power making it harder or easier to find new block. The goal
is to maintain roughly the same time between the blocks.

Note that because of the use of a hash function, creating a valid block takes much more
time than to verify its hash. Creator of a block is rewarded with Bitcoins to compensate
for resources spent. There is an incentive for all nodes to stay synchronized with the
current state of the blockchain at all times because mining on non-valid blockchain is a
waste of resources. When multiple competing blockchains are created each node chooses
the longest chain in terms of number of blocks (longest-chain rule). Consensus mechanisms
based on spending computational power are called Proof-of-Work and are more discussed
in Section 3.3.

Bitcoin and other cryptocurrencies utilizes asymmetric cryptography to verify the iden-
tity of the users of the network. For example when user wants to send some Bitcoins to
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Figure 2.2: Simplified blockchain structure in Bitcoin [16, p. 4]

another user she creates a transaction specifying sender, recipient and amount and then
digitally signs the transaction and broadcasts it to the network. All mining nodes verify
the validity of received transactions in terms of user’s identity and that the user has enough
Bitcoins to satisfy the transaction and only then adds it to the block.

2.4 Types of blockchains
In this thesis blockchains are distinguished based on how new nodes enter the consensus
mechanism as described in [27]:

Permissionless – Any node can join consensus protocol without permission. To make
Sybil attacks as hard as possible Proof-of-Resource consensus protocols are used where the
consensus power of a node is proportional to its resources allocated. Better scalability is
possible because in PoR protocols there is less communication required to reach consensus
than in the PBFT based protocols. Permissionless blockchains are currently used in most
cryptocurrencies (e.g., Bitcoin [4], Ethereum [57]).

Permissioned – In permissioned blockchains there is a rather small group of validating
nodes that are handling transaction validation and are building new blocks. These nodes
are run or approved by centralized authority (e.g., an institution or a company). This way
only approved nodes are contributing to the validation process enhancing system security.
Still, some of the validating nodes may be malicious. Hence Byzantine fault tolerance
is necessary. Practical Byzantine Fault Tolerance protocol (PBFT) [14] is used in many
current blockchain projects.

Permissioned blockchains using PBFT and its variants can commit blocks more quicky
than permissionless blockchains. Transactions are finalized as soon as the block containing
them is added to the blockchain. The problem with these protocols is scalability. This
is because they usually require broadcast messages among all nodes to reach consensus.
PBFT is therefore only suitable for blockchains consisting of a few nodes [52].
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Semi-permissionless – Anyone can join the protocol, but they have to get some form
of permission from a consensus node first. Permission can be granted after locking some
amount of crypto tokens (stake). This allows for better decentralization than in the case
of permissioned blockchains. When a node decides to leave the consensus protocol, the
tokens are unlocked again (usually after some period of time to prevent Sybil attacks). The
consensus power is proportional to the size of the stake. However, in many protocols in
addition to the stake size other metrics are used (e.g. age of staked tokens) to regulate
consensus power of a node. Most common use of semi-permissonless blockchains is by
projects with Proof-of-Stake consensus protocol or its hybrid variants, e.g. PeerCoin [38],
TRON [53].

9



Chapter 3

Consensus protocols

In very simple terms consensus protocol is used to reach consensus on which transactions
to put in the blockchain and in what order. This mechanism is important so that all
nodes always have the same version of a blockchain. Also, consensus protocol must take
into account that there may be malicious or faulty nodes. These could disrupt consensus
protocol execution.

Properties expected from consensus protocol as enumerated by Cachin et al. [10] are
liveness and safety. Other characteristics important when comparing consensus protocols
are finality, throughput and scalability.

• Liveness – Liveness ensures that if a transaction is broadcasted and received by at
least one honest node then it will eventually be delivered to all honest nodes.

• Safety – Safety ensures that if an honest node accepts (or rejects) a transaction then
all other honest nodes make the same decision.

• Finality – Finality up to the block B means all blocks from genesis block up to the
block B cannot be changed or replaced by another chain of blocks. Finality is reached
when there are several successive blocks after block B making any changes to blocks
up to the block B infeasible [27].

• Throughput – In relation to blockchain technology throughput says how much data
can be written to the ledger per time unit. It is usually given in transactions per
second (TPS).

• Scalability – Scalability describes how the properties of the protocol change when
it is used by more users. For example when the protocol scales well, its throughout,
security, finality etc. stays about the same even with much more users using it.

3.1 Failure models
When a node behavior is different from the specification, the node is considered faulty. In
this thesis faulty behavior is classified as in [43]:

Fail stop – A node stops operating completely or continue operating in a way that other
nodes detect its faulty behavior. This kind of failures naturally occur unintentionally, e.g.,
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due to a software bug, connection problem, faulty hardware etc.

Byzantine failure – Node can generate arbitrary data and act in a malicious way coop-
erating with other Byzantine nodes targeting consensus protocol. Therefore it is important
to consider Byzantine failure model in security-critical applications.

3.2 Establishing a consensus
There are two main techniques used to establish a consensus [28]. Combinations of these
two are used as well:

Lottery-based - In lottery-based algorithms, leader is chosen by a lottery. Only leader
can then produce a block and send it to the rest of the network. All other nodes can easily
verify that the block produced is valid and produced by chosen leader. Usually, to elect a
leader, nodes do not need to communicate with each other (e.g., Bitcoin). The advantage
of this technique is scalability, since there is low communication overhead associated with
reaching a consensus. On the other hand, there can be multiple leaders elected. In that
case, more versions of blockchain called forks exist among nodes. To resolve the issue, all
nodes use fork-choice rules. For Bitcoin, longest chain rule is used. Another approach is
the strongest chain rule which calculates the quality of each chain. The algorithm for com-
putation of the blockchain quality varies but usually the blockchain that is harder to create
wins (e.g., hash of the last block has more leading zeros than the hash of a last block in
the competing blockchain). The fork resolution leads to longer time to finality which then
increases the risk of double-spending attacks.

Voting-based - In voting-based algorithms, all nodes vote for blocks. The advantage here
is that when majority of nodes validates a transaction or block finality occurs. The downside
is that each node needs to transfer messages to all other nodes before consensus is reached.
Thus, the more nodes exist in the network, the more time it takes to reach consensus.
Voting-based algorithms provide lower time to finality, but scalability is an issue. Example
of voting-based algorithms are Byzantine Fault Tolerant (BFT) protocols (e.g. PBFT [14],
FastBFT [22], Proteus [40]).

There are combinations of lottery-based and voting-based algorithms that aim to take
the best from both approaches. One way to improve scalability is to choose only small group
of consensus nodes by lottery and these nodes then run voting-based consensus algorithm
(e.g., Algorand [1]).

3.3 Proof-of-Resource protocols
Proof-of-resource (PoR) protocols are based on sacrificing a scarce resource like compu-
tational power (Proof-of-Work), memory storage space (Proof-of-space) or crypto-tokens
(Proof-of-burn). Consensus power of a node is proportional to the amount of resource sac-
rificed. The aim of this approach is to prevent Sybil attacks. In PoR algorithms leader
election mechanism is lottery-based. To ensure fairness the probability of a node to be
chosen as a block producer neeeds to be proportional to the resource sacrificed. In case of
PoW algorithms, the nodes who are trying to produce new blocks are referred to as miners.
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Figure 3.1: Mining power distribution in Bitcoin network 19.11.2020

Consensus algorithm used in Bitcoin is called Nakamoto Consensus (NC) [4]. It is a
PoW based algorithm and in case of a fork, longest chain rule is used. Nodes do not need
to communicate with each other while solving PoW puzzle. This makes NC scalable to
much higher number of nodes than in case of pure BFT protocols. On the other hand,
forks happen much more often which leads to longer time to finality. Another limitation
of NC is in use of PoW which is very energy consuming and thus inefficient. One of the
main properties of Bitcoin is decentralization. However, the miners with low mining power
would have to mine for very long time before they find a block, so they form large groups
called mining pools. This behavior leads to situation where a few mining pools account for
significant portion of all mining power (see Figure 3.11).

Attacks in PoR algorithms

51% attacks - Imagine we have a PoW based system and there is an adversary who is in
control of more than 50% of all the computational power. Then she will be able to secretly
mine a few blocks and then publish them. Since adversary is producing blocks faster, her
published chain will be always longer. In this case adversary is in full control of which trans-
actions will be included in a block and which will not. Furthermore, adversary could then
perform a double-spend attack [27, p. 10]. When she pays for goods with cryptocurrency
and then when it seems that finality was reached she publishes her longer chain exclud-
ing her transaction for said goods. All other nodes adopt this new chain because it is longer.

Selfish mining - It is assumed that when (honest) miner finds a block, she publishes it
immediately. When a dishonest miner finds a block, she can withhold the block and con-
tinue mining on a private blockchain while all other nodes mine on the public blockchain.
If the dishonest miner gets lucky and finds another block, she is now two blocks ahead of
public blockchain and continue mining. When the public blockchain starts to catch up with
the private blockchain and is only one block behind, then the dishonest node publishes her
private blockchain. All nodes accept this blockchain because it is longer. In this situation

1https://btc.com/stats/pool
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honest nodes wasted mining power on public blockchain which was thrown away, while dis-
honest node gets rewards for a few mined blocks. By repeating this process, the dishonest
node gets more rewards than an honest node with the same mining power. Process of selfish
mining is in Figure 3.2. This attack becomes especially feasible when miners group into
mining pool. As it was shown by Ittay Eyal et al. [31] Bitcoin protocol will never be safe
against this attack in case of adversary with only 1/3 or more of consensus power. At time
of writing there is no single Bitcoin mining pool with that much mining power. However
top three mining pools combined have around 41,9%, and top four combined have 52,6%
as shown by Figure 3.1.

Feather-forking – This attack can be used to censor target transaction or any transaction
from a specified user. An adversary publicly announces that she will fork blockchain if the
transaction is included in the last block. Depending of the computational power of the
adversary there is a chance that the adversary succeeds and mine a few blocks faster than
the rest of the network. In this case the fork is adopted and the transaction is censored
because the adversary doesn’t include target transaction. If the adversary doesn’t succeed
she will give up when the main chain is 𝑘 blocks ahead, e.g., two.

Of course the probability of a success of this attack is very low. But a very important
element is that when the adversary publicly announces her intentions, she effectively creates
an incentive for the other miners not to include target transaction because in the case when
the adversary succeeds and her fork is adopted, other miners would waste their mining
power on the other branch.

This attack is not profitable but enables an adversary to choose which transactions will
be confirmed and which will not. [15]

Figure 3.2: Illustration of selfish mining attack in PoR protocol [42].
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3.4 Byzantine-Fault-Tolerant protocols
In BFT protocols consensus is reached when the majority of nodes (typically 2

3) is hon-
est. Example of practical implementation is Practical Byzantine Fault Tolerance Protocol
(PBFT) [14]. Here as long as the condition for maximum dishonest nodes is satisfied, safety
and liveness is ensured.

In general, BFT protocols provide fast time to finality because when all honest nodes
reach consensus on an action, it is very difficult to revert it later (at least 2

3 of nodes
would need to agree on this). The idea behind BFT protocols is that all nodes exchange
messages and only when 2

3 or more are in consensus then the protocol progresses. BFT
without any optimalizations uses broadcast to deliver messages to all nodes. Messaging
complexity is 𝑂(𝑛2) where 𝑛 is the number of nodes in the network. This yields problem with
scalability. There are projects that try to address this issue (e.g., PBFT [14], FastBFT [22],
Proteus [40]). Popular technique used to improve scalability is to limit broadcast and
aggregate messages as they travel through the network.

Attacks related to BFT protocols are variations of 51% attack where attacker compro-
mises more than 1

3 of all nodes. However, attacker does not need to take control of so many
nodes but can use DOS attack to make significant proportion of honest nodes unavailable
and then try to disrupt the protocol with much less effort. Furthermore, as was shown by
Amir et al. [3], in real world scenario the attacker only needs small number of nodes to
make protocol so slow that it becomes practically unusable.

3.5 Proof-of-Stake protocols
The idea behind Proof-of-Stake (PoS) protocols is to use security deposit (i.e., stake) to
participate in consensus mechanism. PoS protocols are semi-permissionless. As long as a
node wants to participate in the consensus, the stake is locked. Node can choose to unlock
the stake at any time. This is great improvement when compared to PoR, where scarce
resource is wasted. There is strong incentive for staking nodes to remain honest because
they would not want to attack blockchain where their stake is locked. PoS is lottery-based,
and the consensus power is proportional to the size of the stake.

Vulnerabilities of PoS algorithms

Mining in PoS is not strictly tied to physical resources as in the case of PoR, which opens
door to different attack vectors. For example, it is possible to mine at more chains at the
same time with almost no extra effort (this is exploited in nothing at stake attack). Small
party of nodes can even overthrow main chain by completely new chain built from genesis
block (long-range attacks). At the time of writing, the security of PoS protocols is not
formally proven.

Nothing at stake – Because the process of electing a leader that mine a block is random,
there are always new forks emerging. The miners lose nothing by mining on more competing
forks at the same time because they do not really spend anything in mining process as
opposed to PoW. The problem with this behavior is that when there are two forks and all
miners mine on both, adversary could make transaction for goods on one chain but not on
the other. Adversary could then stop mining on the chain that contains her transaction.
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After few blocks, this chain becomes shorter and is discarded. This way adversary double-
spent her crypto-tokens.

Nothing at stake vulnerability poses a threat only when significant proportion of miners
mine on more than one chain simultaneously. In current cryptocurrencies miners generally
don’t do that because they don’t want to undermine credibility of the cryptocurrency and
its value. Still this vulnerability could be exploited in the future. One solution to this prob-
lem has been proposed in Slasher algorithm [45]. The idea behind Slasher is that nodes are
punished for mining on more than one chain and the node that spotted this undesirable
behavior first is rewarded.

Long-Range attack – Nature of PoS allows adversary to create fork from block in distant
past or even the genesis block. Adversary can generate chain longer than the main chain
offline and then broadcast it to the network. Alternatively, she could buy or compromise
private keys of a party that had large stake in the past, make fork from that moment in time
and steal the stake. Many variants of this attack are described in [49]. Countermeasures
include:

• Checkpointing – This technique is widely used in PoS blockchains. Only n number of
most recent blocks can be reorganized. This mitigates long-range attacks, but short-
range attacks are still possible. The number of blocks between any two checkpoints
varies among PoS projects, but the goal is to make trade-off between checkpointing
too often and not checkpointing often enough. For example, in case of Feathercoin [23]
checkpoint is created every five blocks (a few minutes). In Casper the Friendly Finality
Gadget [13] checkpoint is every 100th block yielding the time between checkpoints
also a few minutes.

• Chain density statistics – “The expected number of participating players at any step
of the protocol is known; thus alternative protocol execution histories that exhibit
significantly smaller participation can be immediately dismissed as adversarial.” [47]

Stake-Bleeding - In this attack adversary launches long-range attack but at the same time
includes all the transactions from the main chain in the fork. The only difference in chains
is that the adversary makes sure that she is the creator of all blocks in the new chain taking
all the mining fees. If the chain exists for long enough (e.g., a few years), the accumulated
fees can give adversary a consensus power to take control over the chain. Mitigations of
this attack are the same as of long-range attacks (e.g., checkpointing) but also different
techniques such as context-sensitive transactions as proposed by P. Gaži et al. [47].

“Context-sensitive transaction is a transaction that includes the hash of the blockchain
at some recent prior point. It is easy to see that such transactions cannot be transferred
to an alternative blockchain that is privately maintained by a malicious set of stakehold-
ers.” [47]

Grinding attack – In stake grinding attacks, before adversary creates a block, she tests
different contents and headers to influence the odds of being selected as the leader again
in the future. This attack is possible when election process uses past blocks as a source of
randomness. In Ouroboros [35], this attack is mitigated using coin tossing protocol that
collects randomness from all participating nodes and thus cannot be guessed in advance.
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Denial-of-service attack (DOS) - Another strategy that the adversary may try is to
exhaust resources of a node, e.g., CPU, storage or memory by flooding the network with
transactions. If successful the adversary may make the whole network unresponsive and
unable to process any legitimate transactions. A mitigation could be to raise transaction
fee, limit the transaction rate or to ban misbehaving nodes.

The goal of the attack is to eliminate target node from participation in consensus pro-
tocol or to limit target node’s ability to send transactions and interact with the application
layer. When the block proposing node is the target of the attack then the protocol may per-
form significantly slower. Furthermore the adversary may get an unfair reward advantage
by proposing blocks while slowing down or blocking other block proposers. The committee
members may also be the targets of the attack giving the adversary higher proportional
voting power.

DOS attack is a threat to PoR and PoS protocols alike but in PoS there is often a block
proposer and committee members known in advance making the DOS attack more likely. In
the next chapter it is discussed how different PoS protocols mitigate the risk of this attack.
Counter measures include whitelisting peering nodes or an anonymization mechanism, e.g.,
VPN or redirecting the traffic through a DOS protection cloud solution. [27]

Sybil attack – In this type of attack, an adversary creates large number of fake entities
trying to act as more than 1 user at a time. In the Blockchain technology this refers to
creation of multiple nodes by a single user. The goal of the attack is to get an advantage
over honest users. In a permissionless blockchain, an adversary may try to double-vote and
influence the committee voting process in in her favor.

In PoS protocols the sybil attack is mitigated, by only permitting voters to vote under
certain conditions, e.g., voters need to own a cryptocurrency tokens. Since fake tokens can’t
be created by an adversary, she is unable to create sybil entities [27].

Compounding of wealth – When node creates a block, and this block is added to the
main chain, the node gets a reward which increases her chances of being selected as a leader
again in the future. This way nodes that control large amount of particular cryptocurrency
are getting even richer at increasing rate leading to concentration of funds. G. C. Fanti et
al. [21] showed that possible solution to this problem is to use geometric reward function,
where rewards increase geometrically over time.

3.6 Proof-of-Authority protocols
Proof-of-Authority (PoA) was first introduced by Dr. Gavin Woods [37], co-founder of
Ethereum. In PoA the blocks are proposed by one of the trusted nodes called authority.
The authorities aim to reach consensus on the order of transactions created by other nodes
and are taking turns in proposing a block. It is assumed that more than 50% of the
authorities are honest.

The authorities doesn’t stake any coins but they are putting their reputation and iden-
tity on the line. This makes the network more scalable because of the lesser amount of
messages that need to be exchanged but also because the authorities are known in advance.
The cost for the higher performance and scalability is more centralization. The PoA-based
protocols are used in permissioned blockchains as the new authorities need to be accepted
by the other authorities.
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There are similarities between PoA and PoS – instead of coins the nodes are using their
reputation and identity which means they are invested in the network success. But the use
case for PoA is different than for PoS because PoA aims to solve scalability issues in private
blockchains while maintaining some level of decentralization. [36]

3.7 Proof-of-Importance protocols
Proof-of-Importance (PoI) protocols are similar to PoS but the consensus power of each
node is not dependent on node’s stake alone but also on the importance of the node. PoI
is used by NEM [32] where to determine the consensus power of a node importance score
is calculated. The score depends on node’s stake and on node’s transactions. Transactions
that affect the importance score can only be from a recent past, e.g., about 30 days in NEM.
The more transactions with higher value the node executed the higher is her importance
score.

The goal of the protocol is to bring more decentralization and limit the concentration
of funds where a few largest stakeholders are getting all the block rewards and grow even
larger. [2]

3.8 Delegated Proof-of-Stake protocols
Delegated Proof-of-Stake (DPoS) is variation of a pure PoS mechanism. DPoS introduces
group of 𝑁 delegates that sign (forge) the blocks. Delegates are voted on by every transac-
tion in the system. Daniel Larimer, developer of BitShares [5] - first cryptocurrency using
DPoS mechanism - argues that by using decentralized voting DPoS is more democratic than
comparable systems [6].

Probably the biggest drawback of DPoS in current projects (e.g., EOS [20], Lisk [29],
BitShares [5], TRON [53]) is centralization of delegates. For example, when Lisk was
launched, there quickly emerged groups that were doing everything they could to stay
delegates for as long as possible to gather forging rewards (refers to fees for creating/mining
a block in DPoS system) [30]. This led to low turnout of delegates. Properties associated
with this problem are kickback payments and voting fees. When fees for participation in
voting process are too high, many accounts with low balance have no incentive to vote
leaving the whales (accounts with large amounts of funds) with influence (on the voting
process) higher than proportional to their wealth.

Kickback payments are payments that voters receive from a delegate they voted for if
it is elected. The idea is that delegate sends portion of the forging rewards to its voters.
However, the delegate can send the kickback payments only to voters who voted with all
their votes in its favor. Which again leads to low fluctuation of delegates undermining the
principles of decentralization.

3.9 Liquid Proof-of-Stake protocols
Liquid Proof-of-Stake was first used in Tezos [50]. It is very similar to DPoS but any
user can become a validator if she has enough coins. If she doesn’t, she can delegate the
voting rights to someone else. The goal is to offer more decentralization and rotation of the
validators as opposed to DPoS. Switching of the delegate is fast making it easy to delegate
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vote rights to someone else, e.g, in a case when the delegate is misbehaving. The reward is
still proportional to the validator’s stake. The key differences are displayed in Table 3.1.

A disadvantage of LPoS over DPoS is that the validators are not likely to have a server
grade equipment which makes the scalability more challenging.

Liquid PoS (Tezos) Delegated PoS

Delegation
(Purpous)

Optional (minimizes dilution
of small token holders)

Required to elect block pro-
ducers (enables greater scala-
bility)

Validator set Dynamic (Size not fixed) Fixed size (21 in EOS, 101 in
Lisk, 27 TRON)

Design
priorities

Decentralization, accountable
governance, security

Scalability and usable con-
sumer applications

Table 3.1: Key differences of LPoS and DPoS protocols [51].
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Chapter 4

Analysis of existing PoS systems

This chapter presents analysis of some existing PoS projects and their comparison. Focus
is on their properties related to the security and real-world usage.

4.1 ProPoS
ProPos [39] is PoS protocol designed for cryptocurrencies and other blockchain projects.
ProPoS tries to solve high communication overhead, high reward variance and long confir-
mation times. Users choose the block they commit to (and with that also the chain) while
acknowledging all the branches from the main chain (forks). Users are then able to calculate
the probability that the block will be reverted. ProPoS is using GHOST protocol [25] that
calculates (relaxed) PoW weight of a given chain considering all its forks. The advantage
as the authors put it is as follows. “As different chains within a subtree support the same
chain prefix, an advantage of combining GHOST with the most-stake rule is that it requires
an adversary to compete with the entire subtree and not only its main chain, which makes
attacks on safety much more difficult.”

Process of creating a block is divided into rounds as follows. In the first round the
committee of voters is elected. This is done by sampling all stake units in the system using
pseudorandom function (PRF). The size of the voting committee elected is parameterized.
In the example in ProPoS whitepaper the 1

10 of the total stake is used. Voters can cast as
many votes as they have stake units in the sample. Each vote supports chosen block. Then
in second round the leader is elected. The leader collects the votes and includes them with
the transactions in a block and includes the block in the chain with the biggest weight.

There is incentive for voters to cast the votes during the voting phase and not later
because late votes are marked and not rewarded. Although leaders still include such votes
to strengthen the main chain. Similarly, the leader has incentive to publish the block in
the second round and not later because the block would not be included in the main chain
and the leader would lose on her rewards.

Creators of ProPoS proofed that probabilistic safety is satisfied. In other words when
user commits to a block the probability of overturning the block is below probability 𝑝
chosen by the user. The proof is based on statistical hypothesis testing. In ProPoS check-
points are not determined globally in the blockchain but clients decide which blocks they
consider as checkpoints. Block is a checkpoint when probability of overturning it is below
some predefined small threshold. Then the only way of reverting the checkpoint is manual
reset of the client.
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Figure 4.1: Forks in Propos [39, p. 5].

ProPoS is a fair protocol as shown in the whitepaper [39] in the sense that voters rewards
and leader’s rewards are proportional to their stake.

Authors of ProPoS conducted testing of the protocol in real world environment by
deploying 100 nodes in different geographical locations. Every node peered with up to five
peers. In each round all 100 nodes were voters, and one node was selected as leader. The
size of the block was set to 2 MB. They experimented with different waiting times for votes
and blocks. In the optimal setting they achieved throughput of over 2400 tps. As the
authors note this was achieved while not optimizing the network by techniques like efficient
message dissemination or geographical peer selection.

Possible attacks and their mitigations

Because of the use of PRF, the members of the committee are known in advance, which
make it possible to launch a DOS attack. This risk is mitigated by using an anonymization
layer. This problem is discussed by the authors. They suggest to use a lightweight network-
level anonymity solution like Dandelion[18].

Nothing at stake attack is mitigated in ProPos by punishing the adversary that votes
for more branches or if she votes for a weaker branch. An adversary that publishes more
than 1 block with the same height is also punished by losing her stake. To incentivize the
reporting of a misbehavior, the first user that reported the adversary is rewarded.

Because stake is needed in ProPos to vote and create blocks, a sybil attack on consensus
algorithm is not possible.

To eliminate grinding attack, ProPos is using a random beacon to elect round leaders
and voters. To construct a random beacon, the authors used approach by Dian et al. [46]
where beacons are generated from random values in 𝑘 previous blocks. It is noted in the
ProPos whitepaper [39] that other approaches could be used.

Long range attacks are eliminated by using checkpoints. The checkpoints are not glob-
ally determined in ProPos but every user can choose at which probability of reverting is a
block considered as checkpoint. This value might be pre-defined in the client’s software.

4.2 Hedera
Instead of Blockchain, Hedera uses hashgraph structure to store all events in the net-
work, Figure 4.2. Nodes are using gossip protocol to spread the information about their
view of the hashgraph to others. In Hedera whitepaper [26], the communication mechanism
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Figure 4.2: Directed graph showing gossip history. Vertices are representing gossip events.
When Alice gossips to Bob, this event is represented as vertex in Bob’s column with two
downward edges to the preceding (parent) gossip events [26, p. 74].

is referred to as gossip about gossip, because the information being gossiped is the history
of the gossip itself. There is no leader as in other blockchain solutions. Each node can
create an event containing data (e.g. a transaction).

Idea behind the operation of the system as in Hedera whitepaper [26, p. 23] is following:
All nodes maintain a copy of the state. For instance, each node knows the balances of all
network participants’ crypto accounts. At the end of each round of the algorithm, each node
calculates the new state by processing all transactions that were received in that round and
before. Each node then digitally signs a hash of that shared state, puts it in a transaction,
and gossips it out to the network. Then it collects those signatures from all other nodes.

Definition 1. An event x can see event y if y is an ancestor of x, and the ancestors of x
do not include a fork by the creator of y. [26]

Definition 2. An event x can strongly see event y if x can see y and there is a set S of
events by more than 2/3 of the members such that x can see every event in S, and every
event in S can see y. [26]

Each node creates an event when she wants to send new transaction to the network or
when learned something new from another node. Each event has a round number assigned
when it was created (this number may differ from round number when event was received
decided by consensus). When newly created event in round 𝑟 can see witnesses with stake
more than 2

3 of all stake then it is marked as witness and its round is set to 𝑟 + 1. Witness
is the first event created by a node in a round. This way the algorithm progresses forward
with no need for nodes to send each other messages about start or end of a round. All
nodes will get the information eventually through gossip protocol.

Witness is decided to be famous when many nodes see it by the start of the next round.
Famous witnesses are used to derive consensus order of all other events in given round and
subsequently order of transactions.
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The decision of fame of a witness is made by each node using virtual voting. Virtual
voting means that node calculates what votes would all other nodes have sent based on its
current view of the hashgraph. No real messages need to be transferred. For every witness
a node is periodically trying to decide if it is famous or not until supermajority of more
than 2

3 of weighted votes is reached and the decision is made.
An event is said to be ”received“ in the first round where all the unique famous witnesses

have received it, if all earlier rounds have the fame of all witnesses decided. Its timestamp
is the weighted median of the timestamps of those events where each of those members first
received it [26, p. 83]. Weighted median can be thought of as non-weighted median but all
nodes’ contribution to the data set is proportional to their stake.

A malicious node could try to create a fork by creating two or more events that has the
same parent event. This kind of fork is quickly resolved thanks to concept of strong seeing.
Formal proof can be found in [26, p. 84].

Hashgraph is fair because there is no leader node determining the consensus timestamp.
Fair access is ensured thanks to the random nature of the gossip protocol. And the consensus
timestamps are voted on so they have all the guarantees of being Byzantine.

Throughput of the Hedera network was tested by its authors using different number of
Amazon AWS m4.4xlarge instances hosting hashgraph nodes in different locations. In Fig-
ure 4.3 trade-offs between throughput, latency, number of computers, and geographic dis-
tribution can be seen. The computers were spread across the globe in 8 different locations
(Virginia, Oregon, Canada, Sao Paulo, Australia, Seoul, Tokyo and Frankfurt).

Possible attacks and their mitigations

There is neither voting nor proposing of blocks in Hedera. Still sybil attack could hurt the
system. But the attack is prevented because to construct a hashgraph and confirm and
decide the order of the transactions events are weighted by the stake of their creators.

For long range attack, an adversary could create a fork originating in an arbitrary
distant past and build the hashgraph from there. But there is an address book which
contains public keys of all the nodes and their stake. Every new address book needs to
be signed by nodes that control more than 2/3 of the stake. The genesis address book is
predefined. This leads to a sequence of address books where each is signed by the nodes from
previous address book. This prevents an adversary to create a fork in the past because she
would not have enough stake to continue building the hashgraph. An adversary would need
to create a new genesis address book and create a hashgraph from the very beginning. But
other nodes would not accept this new hashgraph as the genesis address book is predefined.

Because Hedera doesn’t use a blockchain and the longest chain rule as the other proto-
cols, there is no room for nothing at stake attack.

Also there is no committee or leader selection. The voting is virtual and the famousness
of an event is decided by the view of the hashgraph of other nodes. This rules out a
possibility of grinding attack.

4.3 Algorand
Algorand [1] is a cryptocurrency system designed for low latency and great scalability.
Algorand tries to address many issues seen in other PoS projects such as slow fork resolution,
possibility of DoS attack on consensus nodes and high time to finality. Experimental results
suggests that Algorand confirms transactions with latency on the order of a minute.
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Figure 4.3: Hashgraph Latency vs Throughput 8 regions, m4.4xlarge [26, p. 15]

Algorand overview

Algorand nodes communicate using gossip protocol. To reach consensus, Algorand uses
Byzantine agreement protocol called 𝐵𝐴⋆. The algorithm progresses in rounds and in each
round new block is appended to the blockchain. Every round is divided into steps.

Each user may be selected for one or more roles. The roles are: committee member and
block proposer. At the start of each step of a round, user determines if she was selected (user
may be selected for multiple roles). Committee size has to be chosen to achieve a reasonable
trade-off between liveness, safety and performance (in the experiments with 50,000 users,
the authors choose committee size of 10,000 users for final step and 2,000 users for all other
steps). The number of block proposing users in each step is between one and 70 with very
high probability [1, p. 57]. Probability of a user to be selected is proportional to her stake.
The selection process happens locally without any communication between peers needed
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utilizing verifiable random functions (VRFs) [56]. Thanks to VRFs, the outcome of the
selection can be verified by all other users.

Users always listen to gossip and collect all the transactions in case they are selected
to propose a block. Users that are selected to propose a block gossip the block header first
which is small compared to whole block making the propagation time smaller. The block
header contains priority and proofs of selection. Then the block with pending transactions
is sent. Since the selection is random, more users can be selected. In that case, priority
is used to select only one block from all blocks proposed. If consensus is not reached,
then another step is initiated and new committee is selected. When blocks are proposed,
Algorand users discard messages about blocks that do not have the highest priority seen
by that user so far to minimize unnecessary gossip communication.

Note that for every step new committee members are selected and members only send
one message (containing proposed block, priority and proofs). This approach mitigates
DOS attacks, as the committee members are not known in advance.

In each step each member can reach either tentative consensus or final consensus. When
a member reaches final consensus, every other member that reached final or tentative con-
sensus in that round must agree on the same block. Final consensus is reached when more
than 𝑇 ·𝜏 members agree on the same block. Where 𝜏 is expected number of nodes selected
as committee members and 𝑇 > 2

3 is a fraction that defines voting threshold.
Final consensus means that 𝐵𝐴⋆ will not reach consensus on any other block for that

round. Tentative consensus means that 𝐵𝐴⋆ was unable to guarantee safety, either because
of network asynchrony or due to a malicious block proposer [1, p. 60].

The random selection of new committee members and block proposers is based on node’s
private key 𝑠𝑘 and a 𝑠𝑒𝑒𝑑. In round 𝑟 there is publicly known 𝑠𝑒𝑒𝑑𝑟. Every committee
member computes 𝑠𝑒𝑒𝑑𝑟 from 𝑠𝑒𝑒𝑑𝑟−1 and her private key 𝑠𝑘 using VRFs. 𝑠𝑒𝑒𝑑𝑟 is then
distributed with the proposed block. The random selection of user’s role is based on node’s
private key 𝑠𝑘 and 𝑠𝑒𝑒𝑑𝑟−1−(𝑟 mod 𝑅). This means the seed used in selection algorithm is
refreshed every 𝑅 rounds.

Detailed look at 𝐵𝐴⋆

Algorithm 1 shows pseudocode of 𝐵𝐴⋆. There are 2 importatnt procedures - Reduction()
and Binary𝐵𝐴⋆(). In Reduction(), consensus is reached either on the proposed block
with highest priority seen by the majority of committee members or on an empty block.
Reduction() is a two steps process. In the first step, committee members vote for highest
priority block. Then in the second step, they vote for the block that received at least
𝑇 · 𝜏 votes in the previous step. Reduction() ensures that there is at most one non-empty
block that can be returned by Reduction() for all honest users [1, p. 59]. Then in the
Binary𝐵𝐴⋆(), shown in Alg 3, consensus is reached on the block passed to Binary𝐵𝐴⋆() or
an empty block. Reduction ensures that all honest users pass maximum one (all users the
same) non-empty block to Binary𝐵𝐴⋆().

Let’s break down ideal case scenario when the network is not partitioned and superma-
jority of users are honest. As already stated, new committee of users is selected for every
voting. The voting occurs two times in Reduction() and then five times in Binary𝐵𝐴⋆().
That is seven vote casting in total. Four out of five vote castings in Binary𝐵𝐴⋆() algorithm
occur at the same time. Which means these votes can be sent in one message reducing
the number of messages gossiped through the network. The total number of messages with
votes sent in a round is (2 + 1 + 1) · 𝜏 .
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Algorithm 1: 𝐵𝐴⋆(ctx, round, block)
ℎ𝑏𝑙𝑜𝑐𝑘 ← 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑,𝐻(𝑏𝑙𝑜𝑐𝑘))
ℎ𝑏𝑙𝑜𝑐𝑘⋆ ← 𝐵𝑖𝑛𝑎𝑟𝑦𝐵𝐴 ⋆ (𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, ℎ𝑏𝑙𝑜𝑐𝑘)

𝑟 ← CountVotes(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝐹𝐼𝑁𝐴𝐿, 𝑇𝐹𝐼𝑁𝐴𝐿, 𝜏𝐹𝐼𝑁𝐴𝐿, 𝜆𝑆𝑇𝐸𝑃 )
if ℎ𝑏𝑙𝑜𝑐𝑘⋆ = 𝑟 then

return ⟨𝐹𝐼𝑁𝐴𝐿,𝐵𝑙𝑜𝑐𝑘𝑂𝑓𝐻𝑎𝑠ℎ(ℎ𝑏𝑙𝑜𝑐𝑘⋆)⟩
else

return ⟨𝑇𝐸𝑁𝑇𝐴𝑇𝐼𝑉 𝐸,𝐵𝑙𝑜𝑐𝑘𝑂𝑓𝐻𝑎𝑠ℎ(ℎ𝑏𝑙𝑜𝑐𝑘⋆)⟩

Attack vectors

When adversarial stake is below 1
3 (and reasonable assumptions about the network are

met) Algorand guarantees safety and liveness. Mitigation of some of the attack vectors are
described in the next section. However, what adversary can achieve is slowing down the
progress of the consensus protocol making block time and time to finality longer. When
adversary is chosen to propose a block, she gossips only the header with block priority and
proofs and does not send the actual block. If the block’s priority happens to be the highest
among all proposed blocks, then users reach consensus on the adversarial block using only
the information from the header and are waiting for the block itself. The timeout for
block reception used in the Algorand whitepaper[1] is 1 minute. After the timeout, there
is a fallback to an empty block. This way the adversary can slow down the progress of
Algorand significantly even with stake smaller than 1

3 . Results of experiments with this
type of attack are in Section 7.1.

Mitigation of some attack vectors

Computing 𝑠𝑒𝑒𝑑𝑟 requires that every user’s secret key 𝑠𝑘𝑢 is chosen well in advance of the
selection seed used in that round, i.e., 𝑠𝑒𝑒𝑑𝑟−1−(𝑟 mod 𝑅) [1, p. 56]. This is done to limit
adversary’s ability to manipulate the committee selection process and eliminate grinding
attack.

When network is partitioned, the adversary can prevent reaching a consensus in some
part of the network and force users to agree on empty blocks. In that case the 𝑠𝑒𝑒𝑑𝑟 is
computed using cryptographic hash function. Adversary can then compute seeds for future
rounds in advance and choose secret keys so that she has higher probability of being selected
as a committee member or block proposer (or both).

To mitigate such attack following mechanism is described in Algorand whitepaper [1,
p. 56]: Algorand relies on “weak synchrony” assumption (In every period of length 𝑏, there
must be a strongly synchronous period of length 𝑠 < 𝑏). Whenever user runs committee
selection algorithm, Algorand checks the timestamp included in the agreed-upon block for
round 𝑟 − 1 − (𝑟 mod 𝑅), and uses the keys (and associated weights) from the last block
that was created 𝑏-time before block 𝑟−1−(𝑟 mod 𝑅). The lower bound 𝑠 on the length of a
strongly synchronous period should allow for sufficiently many blocks to be created in order
to ensure with overwhelming probability that at least one block was honest. This ensures
that, as long as s is suitably large, an adversary 𝑢 choosing a key 𝑠𝑘𝑢 cannot predict the
seed for round 𝑟.
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Algorithm 2: Binary𝐵𝐴⋆(ctx, round, block_hash)
𝑠𝑡𝑒𝑝← 1
𝑟 ← 𝑏𝑙𝑜𝑐𝑘_ℎ𝑎𝑠ℎ
𝑒𝑚𝑝𝑡𝑦_ℎ𝑎𝑠ℎ← 𝐻(𝐸𝑚𝑝𝑡𝑦(𝑟𝑜𝑢𝑛𝑑,𝐻(𝑐𝑡𝑥.𝑙𝑎𝑠𝑡_𝑏𝑙𝑜𝑐𝑘)))
while 𝑠𝑡𝑒𝑝 < 𝑀𝑎𝑥𝑆𝑡𝑒𝑝𝑠 do

CommitteeVote(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝑠𝑡𝑒𝑝, 𝜏 𝑆𝑇𝐸𝑃 , 𝑟)
𝑟 ← CountVotes(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝑠𝑡𝑒𝑝, 𝑇𝑆𝑇𝐸𝑃 , 𝜏 𝑆𝑇𝐸𝑃 , 𝜆𝑆𝑇𝐸𝑃 )
if 𝑟 = 𝑇𝐼𝑀𝐸𝑂𝑈𝑇 then

𝑟 ← 𝑏𝑙𝑜𝑐𝑘_ℎ𝑎𝑠ℎ

else if 𝑟 ̸= 𝑒𝑚𝑝𝑡𝑦_ℎ𝑎𝑠ℎ then
for 𝑠𝑡𝑒𝑝 < 𝑠′ ≤ 𝑠𝑡𝑒𝑝 + 3 do

CommitteeVote(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝑠′, 𝜏 𝑆𝑇𝐸𝑃 , 𝑟)

if step = 1 then
CommitteeVote(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝐹𝐼𝑁𝐴𝐿, 𝜏𝐹𝐼𝑁𝐴𝐿, 𝑟)

return r
step++

CommitteeVote(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝑠𝑡𝑒𝑝, 𝜏 𝑆𝑇𝐸𝑃 , 𝑟)
𝑟 ← CountVotes(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝑠𝑡𝑒𝑝, 𝑇𝑆𝑇𝐸𝑃 , 𝜏 𝑆𝑇𝐸𝑃 , 𝜆𝑆𝑇𝐸𝑃 )
if 𝑟 = 𝑇𝐼𝑀𝐸𝑂𝑈𝑇 then

𝑟 ← 𝑒𝑚𝑝𝑡𝑦_ℎ𝑎𝑠ℎ

else if 𝑟 = 𝑒𝑚𝑝𝑡𝑦_ℎ𝑎𝑠ℎ then
for 𝑠𝑡𝑒𝑝 < 𝑠′ ≤ 𝑠𝑡𝑒𝑝 + 3 do

CommitteeVote(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝑠′, 𝜏 𝑆𝑇𝐸𝑃 , 𝑟)
return r

step++

CommitteeVote(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝑠𝑡𝑒𝑝, 𝜏 𝑆𝑇𝐸𝑃 , 𝑟)
𝑟 ← CountVotes(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝑠𝑡𝑒𝑝, 𝑇𝑆𝑇𝐸𝑃 , 𝜏 𝑆𝑇𝐸𝑃 , 𝜆𝑆𝑇𝐸𝑃 )
if 𝑟 = 𝑇𝐼𝑀𝐸𝑂𝑈𝑇 then

if CommonCoin(𝑐𝑡𝑥, 𝑟𝑜𝑢𝑛𝑑, 𝑠𝑡𝑒𝑝, 𝜏 𝑆𝑇𝐸𝑃 ) = 0 then
𝑟 ← 𝑏𝑙𝑜𝑐𝑘_ℎ𝑎𝑠ℎ

else
𝑟 ← 𝑒𝑚𝑝𝑡𝑦_ℎ𝑎𝑠ℎ

step++

Another possible attack the authors outlined in the whitepaper is that consensus could
get stuck if the honest users are split into two groups and are voting for different blocks.
Neither group is large enough to reach consensus on their own. Adversary can then make
any user vote as she wants by sending the user adversary’s votes just before the timeout
expires to cross the threshold for reaching consensus or not sending any votes to the user
at all and let the timeout expire. To mitigate this attack, common coin mechanism is used.
When user’s timeout expires common coin is used to choose whether user commits to the
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block with highest priority or empty block. The binary value of the coin is predominantly
the same for all users. This way adversary cannot know how other users vote in advance
when the timeout expires.

The sybil attack is eliminated by choosing commitee members and block proposers based
on their stake by VRF.

Long-range attacks are often mitigated by a checkpointing mechanism. There are no
checkpoints in Algorand but because the 𝐵𝐴⋆ algorithm requires a sufficient fraction of
stakeholders to vote in each step, LRA is not feasible [47].

Nothing-at-stake attack in Algorand is not possible because the finality is reached in
every round. There are no forks that adversary could vote for simultaneously.

Forks resolution

When network is not partitioned for some time, forks may be created. This does not violate
safety as described in Algorand whiepaper [1, p. 62].

To resolve these forks, Algorand periodically proposes a fork that all users should agree
on, and uses 𝐵𝐴⋆ to reach consensus on whether all users should, indeed, switch to this
fork [1, p. 62]. The fork proposing process is similar to block proposing and follows recovery
protocol [1, p. 62].

In order for 𝐵𝐴⋆ to reach consensus on one of the forks, all Algorand users must use
the same seed and user weights. This means that Algorand must use user weights and seeds
from before any possible forks occurred [1, p. 62].

As mentioned before Algorand relies on the weak synchrony assumption. Meaning in
every period of length 𝑏 (e.g. 1 day), there must be a strongly synchronous period of length
𝑠 < 𝑏. Using this assumption Algorand takes the seed from the most recent block from the
next-to-last complete 𝑏-long period and weights from the last block that was agreed upon
at least 𝑏-long time before it [1, p. 62].

Algorand performance

Latency of transaction confirmation was tested by authors [1, p. 64] using 1,000 Amazon’s
EC2 m4.2xlarge virtual machines, each of which had 8 cores and up to 1 Gbps network
throughput. 50 users run on each virtual machine and users proposed 1 MB blocks. The
results can be seen in the Figure 4.4. More tests were conducted with much bigger blocks.
With increasing block size the confirmation time raises very slowly as shown by Figure 4.5.

4.4 Ouroboros
Ouroboros [35] is a PoS protocol, where the authors focus on formal specification of its prop-
erties and prove the protocol has these properties under certain assumptions. Ouroboros is
currently used by cryptocurrency project Cardano [11]. However, many features are yet to
be implemented.

Ouroboros overview

Ouroboros protocol is proceeding in slots (rounds). There is a block produced in each slot.
Slots are grouped into epochs. All epochs have the same (parameterized) length (number of
slots). The block producer for each slot is elected by stakeholder committee. The committee
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Figure 4.4: Latency for one round of Algo-
rand, with 5,000 to 50,000 users. [1, p. 66]

Figure 4.5: Latency for one round of Algorand
as a function of the block size. [1, p. 66]

is refreshed every epoch. The probability of a stakeholder to be elected is proportional to
its stake.

During each epoch the leaders are participating in coin-flipping mechanism based on
public verifiable secret sharing (PVSS) [41]. This way at the end of the epoch common
random string is generated. The string is then used in subsequent epoch for committee and
leaders election. This also means that slot leaders for an epoch are known ahead of time.

Leaders are responsible for publishing blocks only but not for data they contain. The
transactions and other data are handed to the leaders by input endorsers. Input endorsers
are elected in the same way as the slot leaders. In each slot, the slot endorser endorses
input to be included in the next slot. The advantage is that input endorser may endorse
data from 𝑑 previous input endorsers (𝑑 previous slots) that were not included in any block
yet. Where 𝑑 is a parameter of the protocol [35, p. 52]. In case the input endorser fail to
endorse an input the slot leader publishes an empty block.

The number of messages related to PVSS is increasing with 𝑐2 where 𝑐 is the size of
the committee. To limit the committee size (and communication complexity) there is a
minimum stake requirement for users to be committee members. On the other hand, the
committee size needs to be large enough so that when users are elected for committee
randomly, there is still more than 1

2 of honest committee members with overwhelming
probability [35, p. 52].

In Ouroboros stake delegation is possible. When user’s stake is not large enough or she
simply doesn’t want to participate in the committee, the stake can be delegated without
losing control of the coins.

The authors of Ouroboros are focused on two main properties, liveness and persistence
(finality) [35, p. 2]. In order for protocol to have these and other desired properties, the
portion of adversaries must remain strictly below 1

2 . Note that in most PoS protocols the
limit is 1

3 of all users.

Possible attacks and their mitigations

The forking attacks are very limited in Ouroboros because the probability of successful fork
is decreasing exponentially with the length of the fork (if there is < 50% of adversarial
users) [35, p. 18].
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Grinding attacks are not possible because the coin tossing protocol based on PVSS
ensures unbiased uniform randomness as discussed in [35, p. 43]. For the same reason the
sybil attacks are mitigated.

51% attack is possible when the adversary holds more than 50% of the overall stake (or
the stake is delegated to her). This is better than in case of PoS protocols discussed earlier
where the threshold is only 33, 33%.

Long range attack is mitigated by slot leaders rejecting blocks generated far ahead of
time. Also when the longest-chain rule is applied the depth of newly adopted chain is
limited. So the users do not adopt chain generated by adversary all the way from genesis
block.

Nothing at stake attacks is mitigated by ignoring very deep forks. In addition to that the
authors put forward a proof that adversary cannot successfully fork and mine on multiple
chains see [35, p. 18, p. 60].

Ouroboros performance

Ouroboros performance was tested by its authors and the results can be found in the
whitepaper [35, p. 61]. Various parameters of the protocol were set to get optimal per-
formance but in different setting, the results may vary. Transaction confirmation time is
within 5 minutes with 10% adversarial stake.

The experiments were conducted using 10, 20, 30 and 40 nodes (Amazon’s EC2 c4.2xlarge
instances) with similar results. Setting different slot durations were also not significant.
With 40 nodes and slot duration of 5 seconds, the network achieved median value of 257.6
transactions per second [35, p. 63].

4.5 Tezos
Tezos [50] is a project focused on encouraging users to be part of a governance of the system.
The consensus algorithm of Tezos is Liquid Proof-of-Stake (LPoS) which is very similar to
DPoS but the number of delegates is not fixed. Authors of Tezos claim that this feature
allows for greater decentralization.

To choose a node that has the right to create a block Tezos uses follow the coin strategy.
To improve efficiency of follow the coin procedure, coins are grouped into rolls and infor-
mation about the rolls ownership is stored in a database. A roll is just a certain amount of
coins. A user can own more rolls. When the coins move between users, a roll can be broken
down. But whenever there is enough coins in the user’s account, the roll is formed again.

Blocks are grouped into cycles and each cycle consists of 2048 blocks. Target block time
is 1 minute. Duration of the cycle is therefore around 34 hours. When creating a block,
the producer has to lock a certain amount of tokens for next 7 cycles. These tokens are a
security deposit that can be forfeited in a case when the creator mints more than 1 block
with the same height. Creator of any next block (within the 7 cycles window) can denounce
this misbehavior by including a proof of double signing in her block and receive a reward.
The reward is not amount of the full security deposit but only a portion of it. This prevents
an adversary to denounce her own misbehavior when it is exposed by another user and try
to get the reward first in a compensation of the security deposit lost.

Blockchain protocol of Tezos is composed of 3 distinct protocols [50]:

• The network protocol that broadcasts transactions and blocks.
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• The transaction protocol that specifies what makes a transaction valid.

• The consensus protocol that is responsible for reaching a consensus on blocks and
transactions.

This way the consensus protocol is separate from the network shell and can be changed
or replaced by another protocol in the future as long as the interface to the network shell is
correct. Users can amend the consensus protocol by proposing and voting for amendments.
For example it is possible to replace the current PoS protocol by a PoW protocol. Even
the voting procedure itself can be changed by an amendment. Authors of Tezos argue that
this mechanism is better than to create forks when the core of the protocol is updated.

Similarly to Ouroboros there is a focus on the formal verification and correctness of
smart contracts and their efficiency. These properties are satisfied by a functional program-
ming language OCaml [33] used by Tezos. OCaml is fast and has unambiguous syntax. To
make implementation more lightweight and to minimize errors, the operations have only
access to standard library and may not make any system call.

Possible attacks and their mitigations

Tezos is immune to Sybil attacks because of the follow the coin strategy. To get voting
power a stakeholder needs to own the coins or be a delegate with other user’s voting rights.

A countermeasure for nothing at stake attack is the punishment for double signers as
was already discussed. This approach is similarly to the Slasher algorithm [45].

Grinding attack on Tezos should not be possible because the randomness for follow the
coin mechanism is gathered from all the blocks in last cycle. A cycle consists of 2048 blocks
making it extremely expensive to influence the seed.

Forks are mitigated by using a clock mechanism that dictates when a user can publish
a block. This mechanism ensures that on a branch with small fraction of users, the block
rate is very low. More details can be found in the Tezos whitepaper [50, p. 11].
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4.6 Comparing performance of selected POS systems

Throughput Scalability Liveness Time to finality

Propos 2,400 tx/s
(~360 kB/s) Medium Proven 15 s – 1 minute

Hedera 400,000 tx/s
(~40 MB/s) Very High Proven 6 s

Algorand 1,000 tx/s
(~208 kB/s) High Proven ~22 s

Ouroboros ~260 tx/s High Proven 5 – 20 minutes

Tezos ~40 tx/s Medium – 1 minute

Table 4.1: Comparison of the claimed performance of selected protocols.

The best performing protocol among selected in Table 4.1 in terms of TPS is Hedera.
This protocol is designed to minimize the consensus overhead and focuses on the scalability
and throughput.

On the other hand Tezos and Ouroboros are focus more on decentralization, security
and other capabilities of the protocol so the throughput is much lower and time to finality
longer. It is possible that the scalability of these protocol will be improved by future
upgrades.

Algorand and ProPos are competing protocols and their properties are similar. Claimed
TPS of ProPos is higher than of Algorand but the tests were conducted without an anonymiza-
tion solution which is needed in the public blockchain to prevent DOS attack. The authors
of ProPos propose to use a lightweight network level anonymization.
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Chapter 5

Consensus protocols simulation
testbeds

When design a blockchain consensus protocol, it is hard to think of all the problems that
may arise when it is deployed in the real world, especially when communication over the
network is involved. For better understanding, testing and simulation of these protocols, the
simulation testbeds are used. Part of this work is dedicated to testing a few PoS protocols
and then evaluating and comparing results. In this chapter some of the existing simulation
testbeds are described.

5.1 Bitcoin Simulator
Bitcoin Simulator framework [24, 9] is built using ns-3 simulation environment. Its main
purpose is to simulate PoW consensus protocols and evaluate their security and perfor-
mance.

The framework consists of a blockchain instance and a blockchain security model. A
blockchain instance is a representation of the PoW blockchain with given consensus and
network parameters, e.g., block generation times, network delays, block size, data propa-
gation mechanism, etc. Thanks to this settings, the Bitcoin Simulator is not limited to
simulate only Bitcoin but virtually any PoW blockchain. The network layer is simulated
as a relay network. To make the simulations more realistic, authors used data from real
Bitcoin network statistics e.g., block size distribution and average number of nodes in the
network [9].

The output of the blockchain instance is analyzed in the security model using Markov
Decision Processes for double-spending and selfish mining. The analysis takes into account
the adversarial mining power, impact of eclipse attacks, block rewards [24].
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Figure 5.1: Components of the Bitcoin Simulator framework [24].

5.2 Vibes
Vibes [54] is a configurable blockchain simulator for large-scale P2P networks. Vibes sim-
ulates blockchain communication protocol on event level. Simulated nodes communicate
with each other only by sending messages. The properties and topology of the network is
configurable.

The core of the application is written in Scala programming language with use of Akka
toolkit. The graphical user interface runs in a web browser. After the simulation the
results are visualized graphically. User can view statistics of the simulated network, like
throughput, propagation delay etc. as well as all the transactions and blocks. According
to the authors, a user can simulate thousands of nodes on high-end powerful PC.

Figure 5.2: Vibes interface showing simulation results [55, p. 62].
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5.3 Simblock
SimBlock [44] is a blockchain network simulator focused on testing the throughput and
performance. User can set network bandwidth and propagation delay, number of nodes,
block size, block generation interval. Nodes can be divided into different locations to
simulate network delay between geographical regions.

User can also specify behavior of nodes so different consensus algorithms can be sim-
ulated. The mining is simulated by generating blocks with the same probability as if the
nodes were actually mining.

Simblock is event driven Java based application. One of its limitations is that the
simulations are done on block level, not transactions level. On the other hand, this permits
for simulating high number of nodes (around 10,000 is still possible). The authors compared
their results with an already existing simulator and also with real world data with very
similar outputs [44, p. 327].
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Chapter 6

Simulation testbed design

The goal of the simulation testbed is to experiment with the protocols and compare them in
terms of performance and security. Protocols selected for testing are Algorand, Propos and
Hedera. To mimic conditions of real world scenarios, nodes are connected in peer-to-peer
style network. Data transmission delayes are modeled using TCP latency approximation
from [12]. Meaning the transmission delays are calculated rather than to simulate TCP/IP
stack. For more details about TCP model used see section 6.4.

When finding suitable simulation framework, two simulators were considered, ns-3 and
OMNeT++. They are both fairly similar, but OMNeT++ was chosen for having better
IDE and easier custom module implementation. Simulation experiments are performed
using OMNeT++ 5.4.1 on Ubuntu 18.04 machine. On modern PC, the created testbed is
capable of running experiments with thousands of nodes.

6.1 OMNeT++ framework
OMNeT++ is a C++ framework for building network simulation models. Its modular
architecture allows for assembling models from existing modules. Modules can be simple
or compound. Compound modules are created by nesting other modules (simple or com-
pound). Modules communicate with each other by sending messages. Messages can be
sent through defined channel or directly if needed. A module can also send a message to
itself which is useful for modeling waiting for a specific time interval. For example, if a
network node represented by its module needs to wait for 5 seconds and then take some
kind of action, it schedules a message to itself for simulationTime + 5s. Then when the
message arrives, the module performs the action. Every message has its kind and optionally
a payload with arbitrary data.

Simulation runs consist of a series of discrete events. All the events are stored in a data
structure called FES (Future Event Set). During the simulation run, events from FES are
executed in the order of their timestamps. A typical event is an arrival of a message to a
module. During the handling of the message, the module can add an event to FES (e.g.,
scheduling a new message) or remove an event from FES (e.g., canceling a message).

The structure of the simulation model is described in NED language (NEtwork Descrip-
tion). NED is used to specify what modules are present in the network and properties of
module’s connections, i.e., network topology. Every module itself has a corresponding de-
scription in the NED file containing outline of its parameters. The parameters (e.g., number
of nodes, connections bandwidth) are used for configuring the network and other modules.
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Figure 6.1: High-level architecture of OMNeT++ framework.

User can adjust simulation parameters in the initialization file to perform simulations with
specific settings.

OMNeT++ inner structure is displayed in Figure 6.1. The Model component library
includes C++ implementations for all the simple or compound modules and all classes
needed by the modules (e.g., channels, message types, etc.). Simulation model is the
model that is set up for the simulation. This model contains objects (modules, channels,
etc.) that are all instances of the components in the model component library [34].

6.2 Testbed architecture
Testbed architecture can be seen in Figure 6.2. There are essential modules created for
running the simulation and collecting the data. Modules are communicating via message
exchange with coordination by the OMNeT++ class Simulation. Parameters for all the
modules are in initialization file omnetpp.ini. There are several configurations in the file
with different parameters’ values for different simulation scenarios. Each protocol has a set
of specific parameters, e.g., committee sizes and then there are parameters for the TCP
model and for the network.

After each simulation run, an XML file is created. The file contains timestamped
events tied to the execution of the consensus protocol, such as block proposal, voting events,
appending of a block, etc. This file is then used for calculating statistics used for experiment
evaluation in the Chapter 7. The processing of the file is done by a script in Python.

All the source code in C++ class files for modules described below was created as a
part of this thesis. For the hash calculation a library Crypto++ was used[17].
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Description of testbed modules

Simulation manager - Simulation manager object is an instance of class cSimulation.
Simulation manager initializes the simulation and creates instance of Network module, man-
ages FES (Future Event Set), simulation time and others.

Network module - Creates all the modules used in the simulation. Number of Node in-
stances can be set in the initialization file. This module holds parameters that are specific
for the whole simulation and not a single Node, e.g., number of faulty Nodes, number of
adversarial Nodes, total amount of stake etc.

Node - Each Node behaves as an independent instance of the application of interest (Al-
gorand, ProPos, Hedera) and contains its simplified implementation.

Communication module (TCP model) - Manages data transmissions between Nodes
over the network. Uses TCP model to simulate TCP connections. Messages between Nodes
always go through Communication module. The module offers direct message sending (with
no delay) for special control messages.

Statistics collector - This module is used by other modules to save statistical data. At
the start of the simulation, Statistics collector creates XML file and saves parameters spe-
cific for the current run (from omnetpp.ini file). OMNeT++ provides tools for collecting
statistics already, but these are limited and are not suitable for complex data recording
such as view of a blockchain for specific Node.

Topology manager - Dynamically creates connections between Nodes at the start of the
simulation. This process happens after all the Nodes are initialized.

Figure 6.2: Simulation testbed architecture.
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6.3 Network
When simulating PoS protocols, Nodes are connected in peer-to-peer style network. The
topology can be described in the NED file of the Network module, but in the created testbed
the connections between Nodes are created dynamically instead. This approach allows for
greater control over the topology.

The connections are generated pseudo-randomly by Topology manager module. Seed
value for the pseudo random number generator is parameterized. This way the same network
can be generated for multiple simulation runs. The number of peers is also parameterized.
Created network is a simplistic version of peer-to-peer network without any switches or
routers. All the connections are made equal with the same throughput, latency, etc. and
they do not change during the simulation.

The process of creating a network in Topology manager can be described as follows.
Topology manager iterates over all the nodes in order and for every node picks another
random node and makes the connection. If the picked node already has specified number
of peers then another node is picked at random and the connection is created. Topology
manager always connects nodes without creating a network partitions.

6.4 TCP latency modeling

Parameter Meaning Value
LossRate loss rate of the transmission 0.0001%

DelayACK ACK delay for first segment 100 ms
MSS Maximum Segment Size 1448 B
𝑤𝑚𝑎𝑥 maximum window size in segments 1000
𝑤1 initial window size in segments (at the start of slow start) 2
𝛾 rate of exponential growth of the congestion window 2

RTT Round Trip Time 10 ms
𝑡0

average duration of the first timeout in a sequence
of one or more successive timeouts

500 ms

Table 6.1: Description of TCP model parameters with values for achieving transfer speed
of 1 Gb/s

The TCP latency approximation model from [12] was used to model data transfer using
TCP/IP. The model is calculating data transfer delay for a data of given size. Tests con-
ducted in the original paper suggests the model is accurate for short and long TCP data
flows. The calculation is done by breaking down a TCP data transfer into several stages
and calculating delay for each stage separately. Final delay is given by:

𝐸[𝑇 ] = 𝐸[𝑇𝑠𝑠] + 𝐸[𝑇𝑙𝑜𝑠𝑠] + 𝐸[𝑇𝑐𝑎] + 𝐸[𝑇𝑑𝑒𝑙𝑎𝑐𝑘]

where 𝐸[𝑇𝑠𝑠] is expected delay of TCP slow start phase, 𝐸[𝑇𝑙𝑜𝑠𝑠] is the expected additional
delay caused by retransmissions or fast recoveries that happens at the end of the slow start
phase, 𝐸[𝑇𝑐𝑎] is the expected time to send the rest of the data after slow start and 𝐸[𝑇𝑑𝑒𝑙𝑎𝑐𝑘]
is the expected delay of the first delayed ACK - it is the time between the arrival of a single
segment and the ACK for that segment (100 ms for BSD-derived stacks, and 150 ms for
Windows) [12].
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All the parameters for the model are displayed in Table 6.1 with values used for modeling
data transfer speed of 1 Gb/s. Comparison of the estimated transfer delay and delay
observed in real-world tests are in [12, p. 1749].
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Chapter 7

Simulation experiments

Decentralized blockchain systems aim to replace centralized solutions in variety of use cases.
One of the challenges in doing so is that the decentralized solutions tend to be much slower.
The experiments in this thesis were made to check mainly the performance but also the
security of the selected protocols. Namely time to finality, throughput and performance
were tested under different network conditions and an attack on Algorand.

When testing ProPos and Algorand the experiments were made with 500 nodes, 50 of
which were participating in the consensus agreement, i.e., they had a chance to be elected
as a committee members for voting or for block proposing. Experiments with Hedera were
conducted with 50 nodes only because all nodes in the system are participating in reaching
a consensus.

In all the experiments, the nodes were connected to 8 randomly selected peers and the
block size was set to 1 MB (there are no blocks in Hedera protocol). More implementation
choices are described in the following sections for every protocol separately. The TCP
connection parameters for ideal network used in the experiments are in section 6.4.

7.1 Algorand
Implementation logic of Algorand protocol is made the same as in [1]. Namely algorithms
𝐵𝐴⋆, Reduction and Binary𝐵𝐴⋆ were implemented. Each node is autonomous and stores
her version of the blockchain locally. Nodes are communicating using gossip protocol with
no aggregations. There is one exception in Binary𝐵𝐴⋆ algorithm, before final step the node
is voting 3 or 4 times in a row at the same time. In the simulation testbed, the node sends
only one message carrying all the votes (three or four) as it would in the real application.

All cryptographic procedures like signatures, proofs, verifications etc. are not imple-
mented because this is not important for the purpose of conducted experiments. Vote
message size is set to 355 B, which corresponds to the data the message carries as described
in [1, Algorithm 4]. Message with block propose proof is 200 B [1, p. 7]. Transactions are
not sent at all. Instead each block is treated as though it contains maximum number of
transactions up to the block’s capacity.

Algorand is using VRF for selecting committee members, block producers and creating
block priority. VRF is generating uniformly distributed numbers and is run locally by each
node. In the simulation testbed, the same is achieved with C++ generator minstd_rand0.
The generation is also done by each node individually and the numbers are uniformly
distributed. Seed for the generator can be set in the configuration file.
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Time to finality with faulty nodes in Algorand

In this experiment, Algorand was simulated with different faulty nodes count. Each node
that was set to faulty didn’t send any messages to other nodes and discarded every received
message. Time to finality was then calculated as a time from one confirmed block (block
with final consensus reached) to the next confirmed block. Average and maximum values
can be seen in the table in Figure 7.1.

Rounds in Algorand proceeds in steps. In each step 68,5%, of committee votes is needed
to proceed and in final step, 74% of committee votes is needed to reach final consensus on
a block [1, p. 12]. The results are shown in Figure 7.1. It can be seen that the more faulty
nodes there, are the longer it takes nodes to gather enough votes for crossing the threshold
of 68,5% or 74%. The time to finality is growing, but when there is less than 26% of faulty
nodes, it is on average still under 12s. After the 26% mark, the time to finality is getting
very long because it takes several rounds to reach a final consensus on a block and there
are many tentative blocks in between. Results of this experiment suggest that Algorand
tolerates byzantine nodes very well but only when there is less than 26% of them in the
system.

Faulty 

nodes

Average 

time to 

finality [s]

Max time 

to finality 

[s]

0% 11,38 11,48

10% 11,66 11,7

15% 11,7 11,8

20% 11,7 11,7

22% 11,78 11,91

24% 11,94 12,12

26% 37,89 137,95

Figure 7.1: Correlation between number of faulty Algorand nodes and time to finality.

In Figure 7.2 we can see how block rate decreases with the increasing number of faulty
nodes. There are two metrics, one is a rate of blocks with final consensus and the other
is all block including the ones with only tentative consensus. The difference between these
metrics can be seen again from 26% of faulty nodes when there is often not enough votes
to confirm a block as final, but tentative blocks are still created. Then from 28% of faulty
nodes, the protocol is unable to proceed further.

This problem could be solved by detecting offline nodes and changing the pool from
which the committee is elected periodically, e.g., every hour. Or by changing the pool when
the number of votes in 𝑛 last rounds is below some threshold and there is a risk that there
may not be enough votes in the future rounds.
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When the block rate is about 5 blocks per minute, block size is 1 MB and transaction
size is 250 B then the throughput of Algorand is ≈ 330 TPS. Note that this is not the best
throughput that can be achieved because the experiment was done with 1 MB block size,
but larger blocks could be used.

Figure 7.2: Correlation between number of faulty Algorand nodes and block time.

Attacks on Algorand

It is very hard and unlikely to create a fork in Algorand because if the network is syn-
chronous then finality is reached within one round. This makes Algorand resistant against
nothing at stake attack and long range attacks. Grinding attack is also mitigated as was
already discussed in section 4.3.

In this thesis another type of attack was implemented where an adversary aims to slow
down the protocol as much as possible. When the adversary is not chosen as a block
producer she is trying to slow down the protocol by not voting for any block other than
the adversarial block. When the adversary is chosen as a block producer, it only sends
the proof message with block header but never creates and sends the actual block. When
other nodes receive the block header, they continue with the round normally and vote for
the adversarial block. The nodes expect to get the block not later than 1 minute after the
start of a round. If the timeout of 1 minute is up, nodes fall back to the empty block. As
a result, the protocol is slowed down because of waiting for a block that never arrives and
furthermore no new transactions are added to the blockchain in that round.

The effect of this attack on block rate is shown in Figure 7.3. We can see that the block
rate is dropping significantly quicker with an active adversary compared to the scenario
where the nodes are faulty but not attacking the protocol. A countermeasure for this attack
could be a punishment for the malicious node in a form of seizing (part of) her staked coins
or remove the adversarial node from future elections. Lowering the timeout for receiving a
block would not prevent this type of attack, but the impact would be reduced.
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Figure 7.3: Comparison of influence of adversary and faulty nodes on block time.

7.2 ProPos
A round in ProPos consists of only two phases. Time of each phase can be set in the
configuration file of the testbed. Times in the whitepaper [39] are 1,5s for voting phase
and 4s for block propagation phase. Election of voters and a leader in a round is done by
PRF (pseudorandom sampling). In the created testbed, PRF is implemented using C++
generator minstd_rand0 and the seed for the generator is taken from the last block in the
main chain. If the chosen leader fails to produce a block then the seed is updated and in
next round, new committee and leader is chosen. Sending of the headers of the block is not
discussed in ProPos whitepaper (unlike with Algorand) so in the simulation a leader sends
only a full block. Size of the block is 1 MB and size of the vote message is set to 355 B.

Every node stores her blockchain view individually with all the forks that are known to
the node. Virtual blocks are different for every node because they contain votes that the
node received but that are not included in any standard block yet (any standard block that
the node knows about). Anonymization layer was not implemented for ProPos as it was
not discussed in [39]. Note that for a real world use of ProPos, an anonymization layer is
required to mitigate DOS attacks on committee members and leaders.

Time to finality with faulty nodes in ProPos

Time to finality is calculated as a time between block creation and first commit to this
block by any node. From these times, the average and maximum is calculated.

As expected, with the number of faulty nodes increasing the time to finality is growing.
This is because there are less and less votes contained in each block so that it takes more
and more rounds before a block can be committed.

Results of the experiments are in Figure 7.4. We can see that average time to finality
starts at 16,5s and then it is increasing quite rapidly. There is a spike at 33% mark of
faulty nodes because it is often the case that there is not more than 66% of expected votes
included in each block. When the number of faulty nodes exceeds 33% the time to finality
becomes very high and protocol stops proceeding further.
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0% 16,5 16,5

5% 22 27,5

10% 26,04 33

15% 29,14 38,5

20% 38,55 49,5

25% 63,27 82,5

30% 67,43 82,5

33% 82 264

Figure 7.4: Correlation between number of faulty ProPos nodes and time to finality.

7.3 Performance of ProPos and Algorand in a slow network
The goal of this experiment was to see what effect has the network latency on ProPos and
Algorand. Connections between nodes are all the same but their latency can be set in the
configuration in a form of round-trip time (RTT). This is a time it takes for a packet to go
from one node to its peer and back. Then the time to finality of ProPos and Algorand was
measured for different RTTs.

The results of a comparison of the protocols are in Figure 7.5. One obstacle in the
testing appeared with ProPos. With RTT = 300 ms, the protocol was unable to continue.
In ProPos, the time for the phases is defined by the protocol and with higher RTT, this time
was not enough to propagate blocks through the network. To continue with the experiment,
the time for the second phase of ProPos round was increased from 4s to 11s. Then with
RTT further increasing, the phases times had to increase as well. The times used in this
experiment were found out experimentally and are shown in Table 7.1.

With Algorand, no such adjustments were needed because when the finality is not
reached in a step of a round then the round continues with the next step until the final
or at least tentative consensus is reached. This mechanic is also important for node’s
synchronization. For example, when one node is ahead of the others, it can’t get enough
votes in a step to reach a consensus, so the node continues with the next step until enough
nodes catch up and the consensus can be reached.

As we can see from the results, the time to finality was growing faster for ProPos than
for Algorand. This is because in ProPos finality was reached after 3 rounds. This means
that when the duration of the round was increased by ∆ the time to finality increased by
≈ 3∆. In Algorand, a final consensus is reached in every round and the time to finality is
increasing slower.
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RTT ∆1 ∆2 Average time to finality
0 – 100ms 1,5s 4s 16,5s

300ms 1,5s 11s 37,5s
600ms 2s 21s 69s
800ms 2,5s 27,5s 90s
1200ms 3,3s 41s 132,9s

Table 7.1: ProPos phases times for different network latency.

RTT 300ms could be a time measured in practice when the nodes are in different
continents or if the connection is slow. Based on the simulation, when RTT is 300ms, the
time to finality in ProPos is 37,5s but in Algorand it’s only 13,6s. The experiment was
done with 500 nodes, and number of peers was 8. This means the average number of hops
for data to reach every node was log8(500) ≈ 3. For 10 000 nodes we get log8(10000) ≈ 4, 4
hops so the time to finality would increase further.

RTT [ms]

Average 

time to 

finality 

Algorand 

[s]

Average 

time to 

finality 

ProPos 

[s]

10 11,37 16,5

50 11,68 16,5

100 12,1 16,5

300 13,58 37,5

600 19,88 69

800 29,8 90

1200 88,65 132,9

Figure 7.5: Comparison of Algorand and ProPos with different network latency.

7.4 Hedera
Testbed for Hedera is designed in a way that all nodes are constantly sending each other
messages. A message carries all new information about a hashgraph that the node has. In
practice, a transaction data is also part of the message. The size of the message was set to
200 B. Note that with Hedera in the created testbed, the gossip protocol was implemented
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in a way that nodes are sending their peers messages in given time intervals, but they
are not immediately gossiping all received messages. The number of peers suggested in
whitepaper [26] is 5 but in the experiments in this thesis, 8 peers were used for better
comparison to ProPos and Algorand.

Every node is trying to confirm an event (transaction) as soon as her can. In the
experiments, the time to finality is measured as a time between an event creation and its
first confirmation by any node.

Performance of Hedera

Hedera aims to minimize communication overhead for reaching a consensus. Performance
of Hedera protocol is more dependent on network conditions, node’s processing power and
total number of nodes in the system. To put it simply, the more the nodes communicate
with each other, the faster the protocol confirms transactions because the faster the nodes
update their view of the hashgraph.

In the Figure 7.6 the chart shows correlation of time to finality and number of messages
each node sends hers peers per second. In the simulations, an ideal network with RTT 10
ms was used. As we can see with a rate of 10 messages per second, the time to finality can
be as low as ≈ 2s.

In practice, there needs to be a trade-off between the message rate and the performance
of the protocol (time to finality, throughput) because of the network limitations. One
possible solution is to choose a group of master nodes where each has large number of peers
and an excellent connectivity. This solution would bring higher performance but for the
cost of greater centralization.

Event/s

Average 

time to 

finality [s]

Max time 

to finality 

[s]

1 7,18 8,63

2 4,57 5,48

3 3,48 4,26

4 3,04 3,73

5 2,81 3,53

10 2,14 2,72

Figure 7.6: Correlation between events per second created by each node and time to finality.
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Time to finality with faulty nodes in Hedera

The experiments with Hedera were done with 50 nodes only, because with more nodes the
number of messages in the system rise exponentially. The message sending rate was set to
10 and the network parameters were ideal.

As we can see in Figure 7.7, in these conditions the time to finality is growing relatively
slowly – to 3s on average when there is 30% of non-functioning nodes. With 33% of faulty
nodes and or more, the protocol is not able to continue further as no events are ever
confirmed. This is because there is no randomness involved (as with VRF in Algorand or
PRF in ProPos) hence the stake owned by faulty nodes is always missing and there is no
possibility of events confirmation.

Faulty 

nodes [%]

Average 

time to 

finality [s]

Max time 

to finality 

[s]

0 2,14 2,72

10 2,27 2,88

15 2,35 2,98

20 2,5 3,18

25 2,66 3,38

30 3,09 3,88

Figure 7.7: Correlation between number of faulty Hedera nodes and time to finality.

7.5 Comparison of selected protocols
All three protocols tested in this thesis have their strengths and weaknesses. Only a few
properties were tested. In practice, a protocol may be superior to others even though based
on theoretical analysis and simulations it seems worse. At the time of writing, Algorand
and Hedera networks are deployed and functional.

In Table 7.2 there is comparison of a few performance specific properties. Throughput
and finality given is achieved in ideal network conditions and for block size of 1 MB.

The number of consensus messages is the number of messages that were sent (and
gossiped) in the network per second and that are not transaction messages. For Algorand
in every round the number of consensus messeges sent is 26𝑁 + 𝑘𝑁 ≈ 𝑘𝑁 where 𝑁 is the
total number of nodes and 𝑘 is a committee size. There are on average 26 block proposers
in every round and each message needs to reach every node by gossip protocol. With round
time of 11,38s this gives 𝑘𝑁

11,38 consensus messages. Now when the network is synchronous,
there are 4 steps in a round. In each step, a committee is elected. In Algorand whitepaper[1]
and the simulations, the committee size is 1

25𝑁 for 3 standard steps and then 1
5𝑁 for the
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Throughput Time to finality Number of consensus messages
Algorand 87 kB/s ≈ 350 TPS 11,38s ∼ 0.35𝑘𝑁/s ≈ 𝑁2

36 /s

ProPos 180 kB/s ≈ 730 TPS 16,5s ∼ 0.18𝑘𝑁/s ≈ 𝑁2

55 /s

Hedera — 2,14s ∼ 10 · 8𝑁/s

Table 7.2: Comparison of selected PoS protocols with data from experiments.

𝑁 - Number of nodes in the system
𝑘 - Number of voting committee members

final step. This gives us 𝑘 = 3𝑁
25 + 𝑁

5 = 8𝑁
25 . Finally the number of consensus messages is

8𝑁2

25*11,38 ≈
𝑁2

36 .
For ProPos a similar calculation can be performed. There are only 2 steps in a round in

ProPos and only 1 node is sending a block. With a round time of 5,5s we have 𝑁+𝑘𝑁
5,5 ≈ 𝑘𝑁

5,5

messages per second. In ProPos whitepaper the suggested committee size is 𝑁
10 . This gives

us 𝑁2

55 consensus messages per second.
For Hedera the number of consensus messages is simply 𝑟 ·𝑝 ·𝑁/s where 𝑟 is the message

sending rate and 𝑝 is the number of peers and the messages are not immediately gossiped
further. When every node sends 10 messages per second to its 8 peers we have 10 · 8𝑁/s.

It is hard to compare Hedera to the ProPos and Algorand based on the simulations
in this thesis because the simulations for Hedera were performed with 50 nodes only. In
this setting, the time to finality is much lower compared to the other two protocols and
the number of consensus messages is also very low. This is because the messages are not
immediately gossiped when received. But with more nodes, e.g., 10 000, the time to finality
would not be so great and techniques that bring more overall communication would have
to be used. Comparison of consensus message sending of selected protocols is in Figure 7.8.

Figure 7.8: Consensus messages and network size.
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Chapter 8

Conclusion

This thesis described blockchain technology, its properties and its current use cases. The
main area of interest were techniques and protocols used for reaching a consensus in dis-
tributed systems. Problems of different solutions and attacks on PoS consensus protocols
were discussed. A few PoS protocols were described and compared theoretically inTable 4.1,
mostly based on results obtained in their whitepapers.

As part of this thesis, the simulation testbed for experimenting with Algorand, ProPos
and Hedera was implemented. The testbed is created in OMNeT++ and thanks to its
modular design can be extended by more protocols in the future. The testbed allows for
configuring variety of parameters for each protocol and also the parameters of the network.
The goal of the testbed is to perform simulations for testing the consensus layer of a
blockchain system. For this reason, the operation of a given protocol is not simulated on
a transaction level, but focuses on the operation of the consensus protocol itself and the
handling of blocks and building the blockchain. Results of the simulations created using
the testbed are in Chapter 7.

Results of the simulations suggest that Algorand tolerates faulty nodes very well if
there is less than 26% of them. With block size of 1 MB, time to finality is about 12s and
throughput is ≈ 330 TPS. In another simulation, an attack on Algorand was tested. An
adversary was able to significantly slow down the protocol even with adversarial stake only
around 10%.

With ProPos, the simulations also focused on the effect of faulty nodes on time to
finality. Based on the results in Figure 7.4, faulty nodes in the network have larger effect
on time to finality in ProPos, but the protocol can operate up to the 33% of faulty nodes.
With all nodes honest and synchronous network, the throughput is about a double than
the throughput of Algorand ≈ 730 TPS.

Then ProPos and Algorand were compared with changing network latency. With Pro-
Pos, the times to wait in each of the two steps were extended because otherwise the protocol
could not proceed. In practice, with changing network conditions, the waiting times could
be dynamic so the protocol would adapt automatically. The waiting times would extend
when the network is asynchronous and then when the network is synchronous again the
times would be reduced allowing the protocol to perform better.

With Hedera protocol, faulty nodes and time to finality was also tested. Results showed
that the time to finality is decreasing relatively slowly, similarly to Algorand but Hedera can
operate until there is 33% or more of the nodes faulty. Results of the simulations showed
that Hedera performance is changing with the number of messages the nodes are sending
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each other – the more they send the faster the finality is achieved. This means that Hedera
is more dependent on the network conditions than ProPos and Algorand.

Then the protocols were compared using all the results from the simulations. From the
tested protocols, Hedera seems to be the most efficient with lower time to finality and higher
TPS. The goal of the Hedera protocol is get near a theoretical limit where only sending of
the transactions is enough to reach a consensus on the transactions and their order.

Next directions for work in this thesis is to perform more simulation scenarios with a
goal of optimizing the protocols. For example, it could be useful to create a distributed
simulation of Hedera and test its scalability. Another area the created testbed could be
improved in, is an implementation of sharding.
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Appendix A

Included CD contents

• Text of this thesis

• Source code of the thesis in LATEX

• Source codes of the created testbed in C++

• Source codes of the scripts to analyze data in Python

• Raw simulation results data
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