
Technische Hochschule Deggendorf 
Faculty of Angewandte Informatik 

The University of South Bohemia in České Budějovice 
Faculty of Science 

Degree Master Artificial Intelligence and Data Science 

GRAMMATIKFEHLERKORREKTUR 

MIT D E E P REINFORCEMENT LEARNING 

G R A M M A R ERROR CORRECTION 

USING D E E P REINFORCEMENT L E A R N I N G 

Master's thesis to obtain the academic degree: 

Master of Science (M.Sc.) 

at the Technical University of Deggendorf 
and the University of South Bohemia 

Presented by: 
Raj Kumar Rana 
Matriculation number: 
12102667 

On: 18. Januar 2023 

Supervisor: 
Prof. Dr. Andreas Fischer 

Co-Supervisor: 
Tom Cvjetkovic, M.Sc 
Mentorium GmbH 





Declaration 

T E C H N I S C H E 
H O C H S C H U L E 
D E G G E N D O R F 

Name of the student: Raj Kumar Rana 

Name of the supervisor: Prof. Dr. Andreas Fischer 

Topic of the thesis: 

Grammar Error Correction using Deep Reinforcement Learning 

1. I hereby declare that I have written the final thesis independently in accordance with § 35 
Para. 7 RaPO (examination regulations for the universities of applied sciences in Bavaria, 
BayRS 2210-4-1-4-1-WFK) and have not yet submitted it elsewhere for examination pur­
poses, no other than have used the specified sources or aids and have marked literal and 
analogous quotations as such. I declare that I am the author of this qualification thesis 
and that in writing it I have used the sources and literature displayed in the list of used 
sources only. 

Deggendorf, 18.01.2023 

Date Signature of student 

2 Release of the thesis: 

£g5 Thesis in full is released immediately 

O Release of the thesis in full is postponed 

O Full version to be archived and shortened version to be released 

Deggendorf, 18.01.2023 

Date Signature of student 





Annotation 

R. K. Rana, "Grammar error correction using deep reinforcement learning," M.S. thesis, in En­

glish, Faculty of Applied Computer Science, Deggendorf Institute of Technology, Deggendorf 
Germany and Faculty of Science, University of South Bohemia, České Budějovice, Czech re­

public, Jan. 2023, p. 44 

Annotation: 
Reinforcement Learning (RL) method was used to fine­tune a sequence­to­label model for the 
Grammar Error Correction (GEC) task. Required components of RL like the environment, re­

ward function and policy gradient algorithm were implemented. A n action­search algorithm 
was implemented to mitigate the training instability due to the high dimension of the state 
and action spaces. The action­search algorithm used the world model to guide the policy with 
action selection. The results of our models trained with Supervised Learning (SL) and RL were 
compared to other GEC systems on three GEC benchmarks. 

I declare that I am the author of this qualification thesis and that in writing it I have 
used the sources and literature displayed in the list of used sources only. 

Deggendorf, . J 8 : 0 1 : 2 0 2 3 i t ^ . . 
Date Signature of student 

v 





Abstract 

In this thesis, we investigate the potential benefit of fine-tuning a sequence-to-label model for a 
grammar error correction task using deep reinforcement learning instead of traditionally used 
supervised learning. We show that the iterative error correction method used in the evaluation 
stage by the recent sequence-to-label models can also be incorporated in the training stage by 
formulating it as a sequential task and optimizing the model using a reinforcement learning 
algorithm. We created a reinforcement learning environment for the grammar error correction 
task and implemented an action-search algorithm to utilize the world model and update the 
model using a policy gradient algorithm. By using reinforcement learning, we demonstrate 
the potential to eradicate the requirement to manually label the data for the supervised learn­
ing method and utilize the self-learning ability of reinforcement learning from simple parallel 
datasets of correct and incorrect sentences. 
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1 Introduction 

Written communication is essential at almost every professional level like education, work and 
research. Poor grammar can hinder the readers' understanding and affect the credibility of the 
writer. However, like every other skill, improving one's writing skills requires a lot of time and 
exercise. By identifying and correcting errors, Grammar Error Correction (GEC) systems can 
aid language learners to improve their skills and confidence in writing in a foreign language. 
Users, who do not have time to study and improve their grammar skills, can also benefit from 
GEC systems. In general, GEC systems enhance the quality, effectiveness and ease of written 
communication. 

1.1 Motivation 

Recent GEC systems[2], [3] approached the GEC task as a sequence labelling task, where the 
model predicts the edit operation labels for input tokens instead of directly generating the out­
put tokens. The edit labels consist of labels to delete, insert or replace tokens. Compared to 
the popular neural machine translation (NMT) approach, this approach has faster inference 
speed[2], [3] with comparative results. Since each token can only be updated once by its edit 
label, multiple iterations of corrections are applied to correct the grammar errors in the sen­
tence. However, the training stage of these systems does not implement this iterative method to 
update the model weights and the model is only trained on the first iteration of correction due 
to the limitation of the Supervised Learning (SL) method. On the other hand, Reinforcement 
Learning (RL) methods are suitable for training models on sequences of events. By implement­
ing deep RL 1 method on the GEC task, the iterative correction methods can be incorporated 
into the training process. Since the model will be trained using a reward function in RL, man­
ually labelling the edit labels in the training data will not be required anymore. Even though 
RL has been used in other language processing tasks[4], there has been only one research on 
solving GEC using deep RL[5]. In this thesis, we introduce the required framework to solve 
GEC as an RL task and investigate its effectiveness over the traditional SL approach for GEC. 
The source code of this thesis is publicly available2. 

1.2 Outline 

This section outlines the organization of the chapters in this thesis. Chapter 2 discusses pre­
vious researches that relate to our work in this thesis. Chapter 3 covers the background in­
formation necessary for understanding the contents of this thesis, including grammar error 

'Deep RL refers to Reinforcement Learning using Artificial Neural Networks (ANN) from Deep Learning (DL). 
2Source code: h t tps : / / g i t h u b . com/RajK853/DRL-GEC 
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1 Introduction 

correction and its approaches, pre-trained BERT models and an overview of supervised learn­
ing and reinforcement learning techniques. Chapter 4 provides details on the dataset used in 
this thesis, including the process of filtering it and the model architecture. Chapter 5 describes 
the reinforcement learning environment and its reward function, the action search algorithm 
and the reinforcement learning algorithm implemented in this thesis. Chapter 6 presents a brief 
description of the GEC benchmarks and compares the results of our experiments with other 
GEC systems on these benchmarks. Chapter 7 concludes the work in this thesis and suggests 
potential directions for future research. 
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2 Related Works 

[6] implemented a sequence-to-sequence approach to use edit operation tags to keep or delete 
tokens from the input sentence. The motivation behind using the edit operations was to re­
move the redundant decoding of the tokens that stay the same in the input and output sen­
tences. Therefore, their decoder used a relatively smaller auto-regressive transformer layer 
that generated the K E E P and D E L E T E tags along with some additional phrases for the output 
sentence. [2] and [3] implemented a sequence-to-label approach to only generate edit tags for 
each token in the input sentence. They introduced additional tags to insert, replace and trans­
form tokens. [3] also implemented high-level tags to transform the case of a token, the tense 
of a verb and the noun number. Both [2] and [3] used an iterative correction method to cor­
rect the errors in the sentence which allows the GEC model to detect and correct errors which 
became more evident after correcting other errors in the sentence. A l l of these methods used 
SL on labelled datasets and to the best of our knowledge, only [5] investigated fine-tuning a 
GEC system using deep RL. Our approach differs from [5] in terms of the neural network model, 
model architecture and RL environment. Similar to [3], we use a sequence-to-label architecture 
with a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model as 
the encoder instead of a sequence-to-sequence architecture with a bidirectional Gated Recur­
rent Unit (bi-GRU)[7] as the encoder and decoder. Finally, we optimize our model using our 
own RL environment for GEC which uses a different reward function from [5]. 
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3 Background Knowledge 

3.1 N-gram 

An n-gram is a contiguous sequence1 of n items from a given sequence. In Natural Language 
Processing (NLP), the items can be words, syllables or characters and the value of n deter­
mines the size of the n-gram. For instance, the different n-grams of tokens for the sentence 
"This is a really great sentence ."is shown in Table 3.1. N-grams are used in NLP to analyze the 
frequency and distribution of word combinations. They are used in a variety of NLP tasks 
including language modelling[8], [9], information retrieval[10], machine translation^ 1], text 
classification^] and sentiment analysis[13]. 

n Name N-gram 

1 Unigram This, is, a, really, great, sentence,. 
2 Bigram This is, is a, a great, great sentence, sentence . 
3 Trigram This is a, is a great, a great sentence, great sentence . 
4 Four-gram This is a great, is a great sentence, a great sentence . 

Table 3.1: N-grams of a sample sentence 

3.2 Grammar Error Correction 

Grammar Error Correction (GEC) is the process of detecting and correcting grammar errors in 
a sentence. Modern GEC systems are expected to not only fix grammatical and spelling errors 
but also improve the overall fluency of the corrected text. There have been several methods 
proposed for GEC systems. This section will briefly discuss each of the methods shown in 
Figure 3.1. 

Original She see Tom is catched by policeman in park at last night. 

Corrected She saw Tom caught by a policeman in the park last night. 

Table 3.2: Example of Grammar Error Correction 

' A contiguous sequence is a set of consecutive items in the same order as in the original set. 

5 



3 Background Knowledge 

G E C 

Rule-Based 
Classification-

Based 
Machine-

Translation 
Edit-Based 

Statistical Neural 

Figure 3.1: Taxonomy of GEC approaches 

3.2.1 Rule-Based Approach 

One of the earliest methods for GEC[14], [15] involved using manually created grammar rules 
and tools such as parsers and lexical resources like lookup tables and lexicons to identify and 
fix specific grammar mistakes in texts. While these methods worked well for specific gram­
mar errors, developing and maintaining these grammar rules is time-consuming and labour-
intensive. Not to mention that these systems were incapable of handling complex grammar 
errors correctly. 

3.2.2 Classification-Based Approach 

These approaches use Machine Learning (ML) algorithms to train a classifier on a large dataset 
to detect different types of errors[16]-[18]. For each grammar category, a separate model is 
trained to classify errors only from that particular category. For instance, a classifier to correct 
article errors can have three output classes to update an article into "a'V'an", "the" or "no-
article". While these methods could handle more errors than the rule-based methods, they 
required heavy feature engineering and using a separate classifier for each category makes it 
difficult to handle complex errors that depend on the errors from other categories. 

3.2.3 Machine-Translation Approach 

In recent years, a lot of GEC methods have been proposed to handle GEC as a machine transla­
tion task. Instead of translating text from a source language to a target language, it attempts to 
translate from ungrammatical text into grammatically correct text. Statistical Machine Trans­
lation (SMT) and Neural Machine Translation (NMT) are two different machine translation 
approaches used for GEC. 

• SMT: This is a traditional approach of using statistical models for machine transla­
tion^ 0-]. Statistical models like the translation model and language model are trained 
on a large corpus of parallel texts2 to learn the probabilistic model to generate candidate 
translations and to score and select the most likely translation. [20] introduced a hybrid 

2In GEC, a parallel text refers to a pair with correct and incorrect sentences. 
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3.2 Grammar Error Correction 

system of utilizing the rule-based and SMT-based approaches along with a big language 
model. 

• NMT: In this approach, a sequence-to-sequence model is trained on a large corpus of 
parallel texts to automatically translate texts. The model uses an encoder-decoder neural 
network architecture as shown in Figure 3.2 where the encoder converts the input sen­
tence into an encoded form which is decoded into the output sentence by the decoder. 
Despite the high computational cost, NMT is the most popular approach because of its 
effectiveness in GEC[21]-[23]. 

nput 
Tokens 

How 

you 

• > 

l_ L. 
<D o 
o o U C a> LU Q 

Output 
Tokens 

-+ How 
> 

you 

Figure 3.2: Sequence-to-Sequence Model Architecture 

3.2.4 Edit-Based Approach 

In this approach, the model predicts the edit operation labels per each token that are expected 
to correct the current sentence. While the set of edit operations varies among the papers[2], [3], 
[6], it usually includes edits to keep, delete, insert and replace the tokens. In this approach, a 
post-processing step is required to apply the edit operations on the input sentence to generate 
the output sentence. The bottleneck of this approach is that the edit labels are hard-coded 
and limited to certain most frequent tokens. Therefore, the selection of the edit operations 
determines the type of errors it can correct. 
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correct are correct 
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Figure 3.3: Sequence-to-Label Model Architecture 
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3 Background Knowledge 

3.3 CEC Evaluation Metrics 

This section will discuss the different evaluation metrics used by the GEC benchmarks in Sec­
tion 6.1. 

3.3.1 GLEU 

Google BLEU (GLEU)[24] is a variant of the BLEU (BiLingual Evaluation Understudy)[25] de­
veloped by Google to automatically evaluate machine translation systems using a set of refer­
ence sentences. The BLEU score is calculated as a harmonic mean of the precision at different 
n-gram levels between the output and the reference sequences. The GLEU score was introduced 
with a modified precision function because the BLEU score was designed for evaluation at the 
corpus level and, therefore, its sentence level score did not correlate well with human evalu­
ation. [26] and [27] introduced the variation of the GLEU score as in Equation 3.1 from [27, 
Equation 1] that can be used as an evaluation metric for the GEC task. Its advantage over the 
other evaluation metrics is that it only requires the source and reference sentences in contrast 
to other metrics that require gold annotations to correct the input sentences. 

G L E U ( C , S, R) = B P • exp w™ l o S P « ( C > 5> R)j t 3- 1) 

. length(fl) 
B P = min [ l , e ^&KC) 

^2 coun te r (ngr am) — max(0, countc,s (ngram) — countc, B (ngram)) 
r r< t->\ ngram£_(CnR) ngram£_(CnS) Pn(C, S, R) = = — r 

2^ countc (ngram) 
(3.2) 

countA,B(ngram) = min(# occurrences of ngram in A, # occurrences of ngram in B) 

where 
C, S and R are the set of candidate output, source and reference sentences respectively, 
B P is the brevity penalty from the BLEU score, 
iV is the maximum size of n-gram, defaults to 4, 
wn is the weight of the given n-gram, defaults to 1/N and 
pn(C, S, R) is the precision of the n-gram. 

3.3.2 M2 

MaxMatch (M2)[28] is an algorithm that automatically extracts phrase-level edits between 
source and reference sentences by achieving the highest overlap with the gold-standard an­
notation. Levenshtein Distance3 is used to construct the edit lattice (Table 3.3) and compute 

3Levenshtein Distance is the minimum number of insertion, deletion and substitution operations required to 
transform one sequence into another sequence. 

8 



3.3 GEC Evaluation Metrics 

the similarity between the spans of the source and reference sentences. The alignment of to­
kens in the source and reference sentences can be achieved by identifying the shortest path 
on this lattice, ranging from the top-left corner to the bottom-right corner. The values along 
the edges of this path are used to determine the token edit operations (keep, delete, insert or 
replace) required to transform the source sentence into the reference sentence. 

Our baseline system feeds a word into PB-SMT pipeline • 

0 1 2 3 4 5 6 7 8 9 10 
Our 1 0 1 2 3 4 5 6 7 8 9 

baseline 2 1 0 1 2 3 4 5 6 7 8 
system 3 2 1 0 1 2 3 4 5 6 7 
feeds 4 3 2 1 0 1 2 3 4 5 6 
word 5 4 3 2 1 1 1 2 3 4 5 
into 6 5 4 3 2 2 2 1 2 3 4 

PB-SMT 7 6 5 4 3 3 3 2 1 2 3 
pipeline 8 7 6 5 4 4 4 3 2 1 2 

• 9 8 7 6 5 5 5 4 3 2 1 

Table 3.3: The Levenshtein matrix from [28, Figure 1] between the source sentence (in the row) 
and the reference sentence (in the column). The highlighted cells indicate the shortest 
path obtained from breadth-first search. 

Let an edit be a triple of {a, b, C} with start-end edit index and correction value or set of 
corrections, G = {gi,..., gn} be a set of gold edits and E = { e i , . . . , en} be a set of system 
edits with maximum overlap with G. Then the system edits are evaluated with the gold edits 
by calculating F0.5 score[29], which is a harmonic mean between the precision P and the recall 
R with more emphasis on the precision P as shown in Equation 3.3. 

1.25 P R 
F ° 5 ~ 0.25 -P + R 

True Positives 
P = 

True Positives + False Positives 

True Positives p _ 
True Positives + False Negatives 

where 

et n gi = {e G ei\3g G gi: match(e, g)} 

match(e, g) 44> e.a = g.a A e.b = g.b A e.C G g.C 

E \ei^gi 
i=l  

n 
E M 
t=i 

E \eiHgi  
i=l  

n 
E \9i\ 
i=i 

(3.3) 

(3.4) 

(3.5) 

9 

file:///eiHgi


3 Background Knowledge 

3.3.3 ERRANT 

By using a rule-based approach for error annotation, ERRor ANnotation Toolkit (ERRANT) [30] 
mitigates the M2 scorer's limitation of manually labelling the error types of extracted edits. 
ERRANT uses the linguistically-enhanced alignment algorithm[31] to extract more realistic 
edits from the parallel source and reference sentences as shown in Figure 3.4. In contrast to 
M2's use of Levenshtein Distance, [31] uses Damerau-Levenshtein, which is an extension of 
Levenshtein that can also handle the transposition of sequences i.e. AB —> BA. Similar to M2, 
ERRANT also uses the E3.5 score between the system and gold edits to evaluate GEC systems. 
[30] highlighted the reliability of the F0.5 score of the ERRANT over M2 by showing that M2's 
F0.5 score overestimates the performance of the GEC system by exploiting the edit boundary 
to maximize true positives and minimize false negatives. 

Levenshtein Distance 

This wide spread propaganda benefits only to the Companys 

1 
This widespread publicity only benefits their companies 0 0 

Damerau-Levenshtein Distance, Linguistic feature and Merging rules 

S o u r c e This wide spread propaganda benefits only to the Companys 

R e f e r e n c e This widespread 0 pjbNcJty only benefits 0 their companies 

Figure 3.4: Comparison of token mappings for the edit extraction with Levenshtein Distance 
and ERRANT's edit extraction method[31, Table 2] 

3.4 BERT 

Bidirectional Encoder Representations from Transformers (BERT) models [32] are transformer-
based[33] Language Models (LM) that are pre-trained on large unlabeled text corpus to learn 
about the hidden representations of the language itself. These pre-trained BERT models can 
be further fine-tuned on specific downstream tasks like Named Entity Recognition (NER) and 
Stanford Question Answering Dataset (SQuAD)[34], [35] via Transfer Learning (TL)4. 

As inputs, the BERT model takes in a concatenation of two sequences of tokens x\, x2, • • •, %N 
and y i , y 2 , . . ., VM as [CLS], x1, x2, • • •, xN, [SEP], y i , y 2 , . . . , VM, [EOS] where [CLS], [SEP] 
and [EOS] are special tokens for the classification task, sequence separator and end of the 
sequence respectively. The BERT model is then pre-trained on the following objectives: 

4Transfer Learning is the process of using an acquired knowledge from a task to solve another different but related 
task. 
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3.5 RoBERTa 

Masked Sentence A Masked Sentence B 

1 
[CLS] «1 [SEP] Vi [EOS] 

E[CLS] E , EN E[SEP] E'M E[EOS] 

- _ — - -

BERT 
— ' 

C T[SEP] T"[EOS] 

I J L J 

N S P MLM MLM 

Figure 3.5: Overview of pre-training of the BERT model 

1. Masked Language Model (MLM): For this task, approximately 15% of the input tokens 
are randomly replaced with a special mask token [MASK] and the model is optimized to 
predict the original tokens that were replaced with the mask token [MASK]. 

2. Next Sentence Prediction (NSP): NSP is a binary classification task of determining 
whether the two segments in the input sequences follow each other in the original text. 
The segments are sampled randomly such that they are either two consecutive sentences 
from a text or two sentences from different texts. 

3.5 RoBERTa 

[36] identified that the BERT model was heavily under-trained and they proposed several modi­
fications to optimize the pre-training of the BERT model, which they called Robustly Optimized 
BERT Approach (RoBERTa). The RoBERTa model differs from the BERT models in the follow­
ing ways: 

1. Static vs Dynamic Masking: RoBERTa generates masking patterns dynamically for 
the M L M task for every pre-training step compared to BERT's approach of generating 
10 different masking patterns for each sequence during the data pre-processing stage. 

2. No NSP objective: [36] conducted pre-training and fine-tuning experiments on the 
RoBERTa model with and without the NSP objective and realized that it may not be 
necessary [37]-[39]. 
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3 Background Knowledge 

3. Larger batch size and learning rate: According to [40] and [41], BERT models can 
achieve good results in the benchmarks quickly using larger batch sizes and learning 
rates. Therefore, RoBERTa was pre-trained on a batch size of 8k sequences with a learn­
ing rate of le-3 compared to BERT's batch size of 256 sequences with a learning rate of 

4. Larger text encoding: RoBERTa uses a byte-level Byte-Pair Encoding (BPE) [42] vo­
cabulary of 50k sub-word units compared to BERT's character-level BPE encoding with 
30k vocabulary size. 

3.6 Supervised Learning 

Supervised Learning (SL) is a type of Machine Learning (ML) 5 where the model is trained on 
labelled data. Let X = {x\,..., XN} be a set of input features and Y = {yi,..., TJN} be the 
set of output labels, then the model ir with a set of parameters 9 is updated to minimize the 
given objective: 

The objective function C depends on the category of SL. For the regression task where the 
output label yn is a continuous value, the model is updated with objective functions like Mean 
Square Error (MSE). Likewise, for the classification task where the output label yn is a class 
among N classes, the model outputs a probability distribution over the N classes and it is up­
dated with objective functions like Cross-Entropy (CE). In SL, the goal is to learn a model by 
updating it based on the difference between the predicted labels and the true labels. In the end, 
the trained model is expected to make accurate predictions for input features that it has not 
seen during training, based on the patterns it has learned from the labelled data. 

3.7 Reinforcement Learning 

Reinforcement Learning (RL) is a branch of ML where the model learns by using its own ex­
perience collected by interacting with an environment. The experience reflects the reward or 
punishment the model received for performing certain actions in states of the environment. 
RL is suitable for solving sequential tasks where a series of events need to occur to solve a task 
like opening a door or parking a car. Algorithm 1 shows very generalized steps of RL and its 
different components. 

5Machine learning (ML) is a field of artificial intelligence (AT) that enables computers to learn and make decisions 
based on data, without being explicitly programmed to do so. 

le-4. 

(3.6) 
n=l 
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3.7 Reinforcement Learning 

Algorithm 1 Basic RL 
l : Initialize the agent, TTQ 
2: Initialize the environment, £ 
3: Initialize the experience buffer, T> 0 
4: for each episode do 
5: s <— R E S E T ( £ ) > Reset the environment to get the initial state 
6: while not done do > Current episode has not terminated 
7: a <— 7T$(s) > Select an action a based on the current state s 
8: (r, s', done) <— £{a) > Interact with environment £ to get reward and next state 
9: V <— Z> U {(s, a, r, s', done)} > Store current experience to the buffer D 

10: s <— s' > Update current state with next state 
l i : 6> <— UPDATE(6>, Z>) > Update agent parameters using RL algorithm 
12: T> <— 0 > Reset experience buffer 

RL can be formulated as the Markov Decision Process (MDP) defined as a tuple (S, A, V, R, 7 ) 
where: 

• S is the state space which determines the states of the agent in the environment. 

• A is the action space which indicates the set of actions the agent can take in the particular 
state of the environment. 

• V is the state transition function, V(st+i\st, at), which determines the next state, st+i, 
of the agent in the environment given its action, at, at the state, Sf. It can be either 
deterministic or stochastic depending on the environment. If an action, at, is applied 
to a state, St, several times, a deterministic transition function will always get the same 
next state, st+i. Whereas, a stochastic transition function may reach a different next 
state, st+i, every time because of some hidden factors of the environment. 

• R is the reward function which assigns a reward or punishment value, rt R(st, at), 
indicating the quality of the action, at, at the state, Sf. 

• 7 is the discount factor which indicates the relative importance of the immediate reward, 
rt, versus future rewards, rt+i + • • • + r^, as in Equation 3.7. 

In RL, the agent is commonly interchanged with the policy, TTQ, which is a function that 
decides the action, at, for the state, st- The goal of the agent is to learn an optimal policy, 7r*, 
that maximizes the expected return, Gt, which is the sum of the discounted rewards obtained 
by following the policy: 

00 

Gt = Y,ltR{st,at) 
t=o 

= R(st, at) + jR(st+i,at+i) + ^2R(st+2, (H+2) + • • • (3-7) 
= R(st, at) + 7 (R(st+i,at+i) + ^R{st+2, a < + 2 ) + . . . ) 
= R(st,at) + 7 ^ + 1 
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3 Background Knowledge 

Generally, the RL interactions are divided into episodes which end when the environment 
reaches a terminal state or when a predetermined number of steps have been taken. In such a 
case, the goal of the agent is to maximize the expected return it receives over the course of an 
episode. 

Gt = J2j TR(st,at) 
t=o 

(3.8) 

R(st, at) + jGt+i 

where T is the terminal step of an episode and GT = R(ST, O-T) is the return of the terminal 
state. 

The environment in RL provides the agent with the interface to interact with. It determines 
the agent's possible states, actions and rewards and how the agent's actions affect the state of 
the world and how observations are generated. However, the training of the agent depends on 
the type of RL algorithm used to learn from the collected experiences. Figure 3.6 shows the 
taxonomy of RL algorithms based on different categories. In this section, we will discuss very 
briefly each of these categories. 

Policy Optimization 

Policy Gradient 

TRPO <-

PPO •*-

RL Algorithms 

Model-Free 

Q-learning 

DDPG 

TD3 

SAC 

I 
Model-Based 

r 
Learn the Model Give the Model 

World Models AlphaZero 

Figure 3.6: Taxonomy of RL algorithms derived from [43]; Policy Gradient[44], A2C/A3C[45], 
TRPO[46], PPO[47], DDPG[48], TD3[49], SAC[50], DQN[51], C51[52], QR-
DQN[53], HER[54], World Models[55], I2A[56], MBMF[57], MBVE[58] and Alp­
haZero [59] 

• Model-Free vs Model-Based: The model refers to the world model that consists of 
the state transition function V(st+i\st, at) and the reward function R(st, at) of the en­
vironment. Having access to the world model would allow the agent to plan ahead by 
simulating the future outcomes and filtering them to reach the destination with the high­
est cumulative reward. Usually, the agent does not have access to the world model and 
it has to explore the environment to optimize the policy without explicitly learning the 
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world model. An RL algorithm is a model-free algorithm if it does not explicitly learn or 
use the world model. Otherwise, it is a model-based algorithm. 

• Policy Optimization vs Q-learning: Policy optimization refers to the family of meth­
ods where a policy function TT is explicitly defined and its parameters 9 are optimized 
by maximizing the objective function JQ(K) or its local approximation. Similarly, Q-
learning refers to methods that learn the state-action value function, Qe(st, at), which 
indicates the quality of taking action, at, in the state, St- State-action pairs that are ex­
pected to give high rewards in the future will have higher Q-values. Here the policy 7r 
is implicitly defined by taking action with the maximum Q-value for the given state as 
follows: 

at <- aigmaxa£AQ0(st,a) 

However, there are also some algorithms like Soft Actor-Critic (SAC)[50] and Deep De­
terministic Policy Gradient (DDPG)[48] that fall under the grey region between the pol­
icy optimization and Q-learning as they learn both an explicit policy and a Q-function. 

• Learning vs Using the model: In some environments like classical board games like 
Chess, the world model is well-defined and deterministic i.e. the outcomes of the envi­
ronment are only dependent on the agent's actions and not on some hidden factors of 
the environment. In such situations, search algorithms can be used on the world models 
to efficiently explore the environment and plan the actions[59]. However, for environ­
ments with complex or unknown world models, an approximation of the world model 
can be learned and used for planning[57] or generating augmented experiences[55], [58] 
to train the policy. 
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4 Methodology 

In this chapter, we present the training datasets and the data pre-processing techniques used 
to prepare data for the SL and RL methods. We also outline the details of our model and its 
training procedure. 

4.1 Datasets 

The sparsity of public parallel GEC datasets has motivated many to pre-train their GEC models 
on a large corpus of artificially generated grammar errors[2], [23], [60], [61] followed by fine-
tuning on a specific target corpus. [23] showed that pre-training on synthetic data followed by 
fine-tuning on a target corpus yields better results than fine-tuning on the joint dataset with 
synthetic and the target corpus data because the synthetic data dominates over the actual GEC 
data in the joint dataset, affecting the model performance. As we result, we also implement the 
two-stage training method using synthetic and actual GEC datasets. 

4.1.1 PIE Synthetic 

[2] introduced a synthetic dataset by introducing grammatical errors into the One Billion Word 
benchmark [62]. The incorrect sentences were generated by randomly adding up to five errors 
by appending, deleting, replacing or changing the verb tokens in the sentence. For further 
details about the process used to generate these synthetic data, please refer to the paper [2]. 
This public synthetic GEC dataset contains around 44 million pairs of correct and incorrect 
sentences. Since these synthetic data do not reflect realistic grammar errors, they are mostly 
useful for pre-training the models. 

4.1.2 W&I + LOCNESS 

The W&I+LOCNESS dataset was created by combining the W&I[63]1 and LOCNESS [64] datasets 
for the BEA-2019 Shared Task[65]. The W&I dataset includes writing samples in various for­
mats, such as letters, stories, articles, and essays, produced by non-native English speakers 
of varying Common European Framework of Reference for Languages (CEFR) language pro­
ficiency levels. The LOCNESS dataset, on the other hand, contains essays written by native 
English speakers. The combined dataset consists of a total of 43,169 sentences from 3,700 texts, 
which are divided into train, validation, and test datasets as shown in Table 4.1. 

'Write & Improve is an online platform offering writing assistance to non-native English students. 
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A B C N Total 

Train Text 1,300 1,000 700 - 3,000 
Sentences 10,493 13,032 10,783 - 34,308 

Validation Text 130 100 70 50 350 
Sentences 1,037 1,290 1,069 998 4,384 

Test Text 130 100 70 50 350 
Sentences 1,107 1,330 1,010 1,030 4,477 

Total Text 1,560 1,200 840 100 3,700 
Sentences 12,637 15,652 12,862 2,018 43,169 

Table 4.1: Data distribution of the W&I+LOCNESS dataset. W&I (A, B, C) and LOCNESS (N) 
adapted from [65, Table 2] 

4.2 Data Processing 

4.2.1 Data Formats 

The public GEC datasets like W&I+LOCNESS from the BEA-2019 Shared Task[65] are available 
in the M2 format as shown below. 

s So , I think i f we have to go somewhere on foot , 
A 16 16 |M PREP | | | on | | | REQUIRED | | | -NONE- | | | 0 
A 4 5 |R OTHER | | | when | | | REQUIRED | | | -NONE- | | | 1 
A 16 16 |M PREP | | | on | | | REQUIRED | | | -NONE- | | | 1 
A 17 18 |R NOUN:NUM | | | hats | | | REQUIRED | | | -NONE- | | | 1 
A 16 16 |M PREP | | | on | | | REQUIRED | | | -NONE- | | | 2 

In M2 format, lines with the test sentences start with S and lines with annotator corrections 
start with A. Each annotation line contains the start-end edit token offsets, the ERRANT er­
ror type, the correct edit text, 2 redundant fields and the annotator id. The redundant fields, 
- R E Q U I R E D - and NONE, are kept due to some historical reasons from the old CoNLL-2013 
Shared Task[66]. In some datasets, there can be more than 1 annotator id per sentence and 
applying all the edits from each annotator id can generate different correct sentences. On the 
other hand, the PIE synthetic dataset is available as a parallel dataset with separate files for the 
correct and incorrect sentences as shown in Table 4.2. 

Incorrect 

Housing and labor market have not been as 
strong . 
Pole-position qualifying its that Saturday 

Correct 

Housing and the labor market have not been 
as strong . 
Pole-position qualifying is Saturday . 

Table 4.2: Example of parallel data from PIE synthetic dataset 

To fine-tune our model using SL, we use the data format used by [3]. In this format, the 
tokens and their labels are arranged next to each other in the format given in Figure 4.1. 

18 
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Tokens 

* J * 1—; * 
I SEPL|||SEPR $KEEP am SEPL|||SEPR IKEEP an SEPL|||SEPR $REPLACE_a Student SEPL|||SEPR STRANSFORMCASELOWER . SEPL|||SEPR IKEEP 

Labels 

Figure 4.1: GECToR data format 

For the fine-tuning stage using RL, we use data in the JSON format with test and reference 
sentences as in Figure 4.2. This removes the token labelling requirement from the data and 
allows the RL environment to operate only on pairs of test and reference sentences. Not to 
mention, this format also supports examples with multiple reference sentences, where the RL 
agent will be rewarded if it obtains any of the reference sentences. 

{ 
t e s t : "So , I t h i n k i f we have to go somewhere on foot , we must put our hat . " , 
re fe rences : [ 

"So , I t h i n k i f we have to go somewhere on foot , we must put on our hat . " , 
"So , I t h i n k when we have to go somewhere on foot , we must put on our hats . " 

] 

Figure 4.2: JSON data format 

Figure 4.3 depicts the data conversion pipeline we use to convert the parallel data format 
from PIE Synthetic dataset and the M2 data format from the W&I+LOCNESS dataset into the 
JSON format discussed earlier. During this conversion stage, several data filtering methods are 
applied to remove noisy data from the datasets. Details about the data filtering are discussed 
in the next section. We adapted the data processing functions from [3] to further convert the 
dataset into the GECToR format for the SL training stages. 

Parallel 

PIE Synthetic 

M2 

JSON ^ GECToR 

W&I+LOCNESS 

Figure 4.3: Data Format Pipeline 
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4.2.2 Data Filtering 

[67] showed that sequence-to-label GEC models can achieve similar to slightly better results 
on the filtered GEC dataset, which has better quality with less quantity. As a result, we employ 
the following data filtering methods: 

• Number of tokens: Filter sentences based on the minimum and the maximum number 
of tokens in the test sentences. In this way, we remove examples that are either too short 
to be informative or too long to possibly cause an issue with the GPU during training. 

• Improper terminal token: Remove examples whose reference sentences are either not 
starting with a capitalized token or the ending tokens are not one of these punctuations, 
.!?". In this way, we remove sentence fragments of a single sentence spanning over mul­
tiple examples. 

• Test-reference similarity: In order to eliminate test sentences that are flawed or se-
mantically different from the reference sentences, we calculated the token-based simi­
larity between the test and reference sentences using a sequence matcher2. 

2 x Number of matching tokens between a and b 
"" Number of tokens in a + Number of tokens in b 

Test Reference Similarity 

You are only relying on i t . It relies on you alone . 0.308 
other friends coll poles . The other friends called the police . 0.333 
I hope yours news . I look forward to your reply . 0.333 

Table 4.3: Examples from W&I+LOCNESS dataset with low similarity 

• Ellipsis: Ellipsis indicates the omission of words from a sentence or it adds some pauses 
for dramatic effect. Since some of these examples can be incomplete sentences, we re­
move them from the dataset. 

Big shot of the week : Just as he thought BP was back . . . 
For example , racing games , action games , puzzle games and more . . . 
He threw the door open to reveal . . . a lost puppy . 

Table 4.4: Examples with an ellipsis from PIE synthetic dataset 

2We used S e q u e n c e M a t c h e r from the standard d i f f l i b Python library to calculate the token-level simi­
larity ratio. 
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4.2 Data Processing 

In the earlier phase of the thesis, we found some examples in the Lang-8 [68] dataset that have 
parenthetical expressions inside brackets only in the reference sentences as shown in Table 
4.5. Since they are used to provide additional context information, we remove all parenthetical 
expressions from the test and reference sentences. 

Test For example , today I ordered some clothes on the internet shop ! 
Reference For example , today I ordered some clothes online (you do n't say 

" internet shop " ) . 
Cleaned Reference For example , today I ordered some clothes online . 

Table 4.5: Removing parenthetical expressions from reference sentence 

Additionally, we normalise some tokens like a double apostrophe, ' ', into a quotation, ", 
and many more that are included in the data processing script of the BEA-2019 Shared Task 
datasets like the W&I+LOCNESS dataset. We also use a spell checker to correct any spelling 
errors from the test sentences. The data filtering parameters used to clean our datasets are 
listed in Appendix 8.1. 

Filter Category PIE Synthetic W&I+LOCNESS 
Train Validation 

Number of tokens 101,391 2,762 290 
Improper terminal token 301,465 1,397 161 
Test-reference similarity 170,732 3,333 343 
Ellipsis 6,349 1 0 
Total Filtered 579,937 7,493 794 

Table 4.6: Number of sentences filtered out from each dataset 

While filtering the PIE synthetic dataset, we process the sentences until we get 2.0M sen­
tences after filtering. Since it does not have validation data, we split it into train-validation 
datasets with a 98:2 ratio; the first 1.96M sentences are the training data and the last 400k sen­
tences are the validation data. Similarly, we further filter the W&I+LOCNESS training dataset 
to remove unsolvable examples, which have at least 1 $UNKNOWN label. The motivation for 
training on only solvable examples is discussed in Section 5.1. 

# of Sentences PIE Synthetic W&I+LOCNESS # of Sentences 
Train + Validation Train Validation 

Original 2.58M 34,308 4,384 
Filtered 2.0M 26,815 3,590 
Only Solvable - 24,734 -

Table 4.7: Dataset sizes after different stages of filtering 
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4.3 Models 

In this section, we will provide details about our model architecture and its output labels. We 
will also discuss the multi-stage fine-tuning process using SL and RL to investigate the effect 
of different fine-tuning methods. 

4.3.1 Model Architecture 

GECToR Model Architecture Our Model Architecture 

nput 
Tokens 

How 

you 

Token 
Labels 

$KEEP $KEEP 

$KEEP $KEEP 

SINSERT_? SINSERT_? 

Token 
Errors 

nput 
Tokens 

How 

you 

Token 
Labels 

SKEEP SKEEP 

$KEEP $KEEP 

SlNSERT_? SlNSERT_? 

Figure 4.4: Comparison between GECToR's and our model architectures 

Figure 4.4 shows the comparison between the sequence-to-label model architecture used 
by [3] and us. [3] experimented with pretrained BERT, RoBERTa and XLNet as the encoders 
for their GEC models, among which RoBERTa had a good trade-off between performance and 
inference speed. Therefore, we use the RoBERTa-base model as the encoder of our GEC model. 
To generate the output tokens in the post-processing stage, [3] used the token labels from the 
labelling layer and the token correctness confidences from the error detection layer. In contrast 
to that, our post-processing stage only uses token labels since we removed the error detection 
layer to ensure that the model can be easily fine-tuned using the RL algorithm. Besides this 
difference, we use the same 5k output labels used by [3]. 

Label Category # of Labels 

$KEEP 1 
$DELETE 1 
$APPEND 1,167 
$REPLACE 3,802 

$TRANSFORM 27 
$MERGE 2 

$UNKNOWN 1 

Table 4.8: Token labels categories with the number of labels in each 
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Table 4.8 shows the label categories and the number of labels in each category. Please note 
that we have 5001 labels instead of 5k because we included the "$UNKNOWN" label for any 
out-of-vocabulary (OOV) labels i.e. labels that are not present among the 5k labels. The source 
code of [3]3 implements AllenNLP 4 which handled the OOV labels automatically. The labels 
consist of basic transformations like $DELETE, $REPLACE_x and $APPEND_x to delete, replace 
or insert tokens in the sentence. Similarly, it consists of high-level transformations, that [3] 
called g-transformations, which include transformations like changing the case of the token, 
the tense of the verb or a noun from singular to plural and vice versa. The description of each 
label category is as follows: 

• $KEEP: This label indicates that the token is correct and it does not need to be changed. 

• $DELETE: This label removes the token from the sentence. 

• $APPEND: These are very specific labels where $APPEND_x will insert the token "x" 
after the current token. 

. $REPLACE: Like the $ APPEND labels, these labels are very specific labels where $RE-
PLACE_x will replace the current token with "x". 

• $TRANSFORM_VERB: These labels change the verb form of the token using a verb 
conjugation dictionary5. Each verb consists a total of 20 mapping pairs among the 5 dif­
ferent verb forms; base form (VB), past tense (VBD), gerund or present participle (VBG), 
past participle (VBN) and 3rd person singular present (VBZ). For instance, the $TRANS-
FORM.VERB_VB.VBD label will change the verb "abandon" in the base form (VB) into 
its past tense (VBD) "abandoned". 

• $TRANSFORM_CASE: These labels include operations to change the case of the token. 
Table 4.9 shows the verb transformation labels with example transformations. 

Label Input Token Output Token 

$TRANSFORM_CASE_LOWER Tiger tiger 
$TRANSFORM_CASE_UPPER Tiger TIGER 
$TRANSFORM.CASE.CAPITAL tiger Tiger 
$TRANSFORM.CASE.CAPITAL.l iphone iPhone 
$TRANSFORM_CASE_UPPER_-l cds CDs 

Table 4.9: Verb Labels examples 

• $TRANSFORM_AGREEMENT: These labels change the noun agreement from singular 
to plural and vice versa by simply adding and removing the suffix "-s" from the current 
token. While this transformation does not work for irregular nouns like "knife" whose 

3GECToR source code: h t tps : / / g i t h u b . com/grammarly/gector 
4AUenNLP is a library for NLP using Pytorch developed by Allen Institute of AI. 
5Source: h t t p s : / / g i t hub . com/gu t f ee l i ng /word fo rms /b lob /mas t e r /word fo rms / en -ve rbs . t x t 
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4 Methodology 

plural is "knives", it is out of the scope of this thesis to investigate better noun agreement 
transformations. Therefore, we use the same methods from [3] to change the agree­
ment of the token using the $TRANSFORM_AGREEMENT_SINGULAR and $TRANS-
FORM_AGREEMENT_PLURAL labels. 

$TRANSFORM_SPLIT_HYPHEN: This is a specific label that splits the current token 
into multiple tokens at all positions with a hyphen. An example of this transformation 
is changing the token "out-of-the-box" into the tokens "out", "of", "the" and "box". 

$MERGE: This category consists of $MERGE_SPACE and $MERGE_HYPHEN labels that 
combine the current and the next token into a single token as shown in Table 4.10. 

Label Input Tokens Output Token 

$MERGE_SPACE every day everyday 
$MERGE_HYPHEN cold blooded cold-blooded 

Table 4.10: Merge Labels examples 

$UNKNOWN: This is the OOV label used for any label that is not present in the set of 
labels. 

4.3.2 Training Procedure 

Fine-Tune 

Pre-Train 

PIE Synthetic 

W&I+LOCNESS 

W&I+LOCNESS 

Legends 

Supervised Learning 

Reinforcement Learning 

Figure 4.5: Pre-training and fine-tuning stages 

As illustrated in Figure 4.5, we pre-train our GEC model on the PIE synthetic dataset using 
SL and then fine-tune the pre-trained model on the W&I+LOCNESS dataset using SL and RL 
methods. The pre-training stage adjusts the model weights to the token-labelling approach for 
the GEC task. Despite the huge amount of data, the grammar errors in the PIE synthetic dataset 
do not represent the actual kind of grammar errors. Therefore, we fine-tune the pre-trained 
model on the W&I+LOCNESS dataset which contains grammar errors from the writers of dif­
ferent proficiency levels in the English language. The fine-tuning stage adapts the pre-trained 
model to more authentic grammar errors. To investigate the difference in the performance of 
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using SL and RL methods, we fine-tune the pre-trained model on the same dataset using dif­
ferent approaches. During the evaluation of models on benchmark datasets, the model outputs 
are generated using a maximum of 10 correction iterations. 

For the SL training, we use methods from [3] to process the data into the GECToR format 
and their approach of training the model until convergence using the early-stopping strategy to 
terminate the training when the validation loss stops decreasing for a given number of epochs. 
The model with the lowest validation loss is evaluated on the benchmark datasets. For the RL 
training, our model interacts with our RL environment to gather experience for training and we 
evaluate the model periodically on the validation dataset using the corpus-level GLEU score. 
The model with the highest validation GLEU score is evaluated on the benchmark datasets. 
Details about the training hyperparameters are available in Appendix 8.2. 
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5 Implementation 

The fine-tuning stage using RL requires an environment with which the policy can interact to 
gather experiences. A RL algorithm is used to adapt the policy on these experiences and to 
achieve the goal of the environment by maximizing the cumulative reward it receives through 
interactions with the environment. However, the reward function alone is not adequate to 
guide the policy in our GEC RL environment, given the large dimensionality of the state-action 
space. To enable safe and efficient exploration by the policy, we implemented an action search 
algorithm. This section will provide a detailed overview of the components used to fine-tune 
the policy using RL. 

5.1 GEC RL Environment 

To fine-tune our policy using RL, we created a custom GEC RL environment using OpenAI's 
gym 1 library, which provides a standard API for RL environment development. Our environ­
ment allows interaction with any GEC dataset processed in the JSON format as mentioned in 
Section 4.2. Please note that our environment utilizes only the training data from the GEC 
dataset since policy evaluation using the validation data is not part of the RL environment. 

The datasets used in this thesis have only one reference sentence per test sentence. How­
ever, our environment is also able to accommodate datasets with multiple reference sentences 
per test sentence. For every episode, we randomly select an example that includes a test sen­
tence and a set of reference sentences. Trying to correct any grammatical errors in the test 
sentence, the policy interacts with it for a maximum of 5 iterations, after which the episode 
ends. However, the episode can also terminate early under one of the following conditions: 

1. Unchanged tokens: When the current state, St, and next state, st+i, have the same 
tokens, the state will not change anymore even if the policy keeps interacting with the 
environment for the remainder of the episode. Therefore, we end the episode and return 
the reward depending on whether the current state is grammatically correct or not. 

2. Low or high token count: Under unfortunate circumstances, the policy might start 
modifying the sentences too much by either removing or inserting too many tokens. To 
discourage such behaviours, the episode will end early when the next state, st+i, has 
less than 3 tokens or more than 1.5 times the token count in the initial state, so. 

To ensure that the policy can correct all sentences presented to it, the training dataset con­
sists solely of solvable examples. This is to discourage the policy from getting trapped in a state 
where it is unable to continue making corrections, as a result of poor decisions made earlier in 
the training episode. 

'OpenAI Gym: h t tps : //www. g y m l i b r a r y . dev/ 
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Timestep: G 
Howards! 0.889 
Source: tSTART My f i r s t day at CU came to me as a surprise . 
Output: iSTART My f i r s t day at CU came to me as a surprise . 

Timestep: 1 
Rewards: 2.880 
Sourca: JSTART My f i r s t day at CU cane to [ ] me [ ] as a surprise . 
Output: JSTART My f i r s t day at CU came as a surprise . 

Timestep: 2 
Rewards: 1.88G 
Sourca: $START My f i r s t day at CU came as a surprise [sAI ] 
Output: tSTART My f i r s t day at CU came as a surprise to . 

Timestep: i; 
Rewards: 1.889 
Source: $START My f i r s t day at CU came as a surprise to [$AF me] . 
Output: $START My f i r s t day at CU came as a surprise to me . 

Timestep: 
Howards: 10.GOO 
Sourca: $START My f i r s t day at CU came as a surprise to me . 
Output: $START My f i r s t day at CU came as a surprise to me . 

Figure 5.1: Rendering of a sample episode of our GEC RL environment. Timestep: Current 
iteration of the episode. Rewards: Reward for the current interaction calculated 
using Algorithm 2. Source: Input tokens with action labels (in red) next to their re­
spective token (in green). The keep action labels are not rendered. Output: Tokens 
after applying the actions. 

5.2 Reward Function 

In their paper, [5] used the GLEU score [26] as the reward function to fine-tune their GEC 
model using RL. However, using GLEU as the reward function has some drawbacks in GEC. 

In this study, we will compare the GLEU score and Levenshtein Distance (LD) of two variants 
of the same sentence, one that is shorter and one that is longer. We will see how each of these 
metrics performs when applied to these two variants with the same kinds of errors. 

Short Reference Albert Einstein wrote his first scholarly paper at just 16 years old ! 
Long Reference Albert Einstein , a German-born theoretical physicist, wrote his first 

scholarly paper at just 16 years old ! 

Table 5.1: Shorter and longer version of the same sentence. 

For both sentence variants, we generated test sentences with the same type of errors as in 
Table 5.2, allowing us to evaluate how well each metric can capture the similarity between the 
correct and incorrect sentences based on the sentence length and error position. We calculated 
GLEU scores using the official scorer from ht tps : / / g i t h u b . com/cnap/gec-ranking. To 
calculate the token-level LD between the test and reference sentences, we used the RapidFuzz2 

Python library. 

2RapidFuzz official repo: h t tps : / / g i t h u b . com/maxbachmann/RapidFuzz 
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5.2 Reward Function 

Error Type Description Test Sentence 

Type A 

Type B 

Remove terminal token3 

Remove non-terminal token 

Albert Einstein wrote his first scholarly 
paper at just 16 years old I 
Albert Einstein wrote his first scholarly 
paper at just 16 years old ! 

Table 5.2: Different error types based on the removed token's position in the sentence. 

From Figure 5.2, it can be seen that the GLEU score tends to give higher scores to longer 
sentences with the same types of errors because longer sentences are more difficult to translate 
accurately. It also tends to favour errors that occur in the terminal tokens of a sentence, as 
these tokens have fewer n-grams when the GLEU score is calculated. In contrast, the LD score 
is relatively consistent across sentence lengths and error locations, indicating its robustness 
against these factors. Therefore, we use the decrease in LD as our reward function as shown in 
Algorithm 2. 

Figure 5.2: Score comparisons based on sentence length and error position 

Algorithm 2 Reward Function 
Input: St'- Current Tokens, at'- Action, st+v Next Tokens, sref. Reference Tokens 
Output: reward: Scalar Reward Value 
l : if -i(3 < len(st+i) < 1.5 x len(so)) then > Too low/high number of tokens 
2: return -10 
3: if st = st+i then > Current and next tokens are same 
4: all-keep <— V a G at, a = KEEPJNDEX > Check if all actions are keep-action 
5: if st+i = sref and all-keep then > Only keep-actions for correct tokens 
6: reward <— 10 
7: else > Incorrect tokens and/or not all actions are keep-action 
8: reward <— 0 
9: else 

10: reward <— LevenshteinDistance(st, sref) — LevenshteinDistance(st-\-i, sref) 
l i : return reward 

3 By terminal tokens, we are referring to the first and last tokens in a sentence. 
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5.3 Action Search Algorithm 

The high dimensionality of the state-action spaces leads to significant variance when sampling 
over all the actions using the policy. Since the world model of our GEC RL environment is quite 
simple and deterministic, we implement the action search algorithm to mitigate the variance by 
simulating the next tokens and filtering the actions to obtain a set of potentially good actions for 
each token. It not only prevents unsafe explorations but also implicitly incorporates Grammar 
Error Detection (GED)4 by suggesting candidate labels only for incorrect tokens. 

Algorithm 3 SearchActions 
Input: TTQ: Policy, V: Transition Function, s: Current Tokens, sref. Reference Tokens 
Output: a: Action for each token 
l : a 4— 0 > Initialize an empty array with same size as current tokens s 
2: S i - COpy(s) 

3: d <— LevenshteinDistance(s, sref) > Compute edit distance between s and sref 

4: e <— EditOperations(s, sref) 5 > Compute set of edit operations to get sref from s 

5-. for token index i = len(s),..., 1 do > Loop from the last to the first token 
6: etok <— e[i] o Edit type for the ith token of s 

l: if e^k = " equal" then > The ith token of s does not need to change 
8: a[i] = KEEP-INDEX > Assign the keep-action 
9: else 

10: d <— G E T C A N D I D A T E A C T I O N S ( ' P , S, Sref, i, etok, d) 

l i : a[i] <— S A M P L E T O K E N A C T I O N ( 7 T 6 I , S, i, a) > Assign the sampled action 
12: s<—V(s, a[i], i) > Update the i t h token of s 
13: d LevenshteinDistance(s, sref) > Update edit distance between s and sref 

14: return a 

The first part of our action search algorithm is the process of finding a set of potential can­
didate actions for a token that can move the current tokens closer to the reference tokens by 
decreasing the Levenshtein distance between them. A simple version of this method involves 
applying all actions to a token and collecting the actions that result in tokens with a lower 
Levenshtein distance to the reference tokens than the Levenshtein distance between the origi­
nal tokens and the reference tokens. Our method optimizes this approach by using a sequence 
matcher6 to find the non-matching tokens between the current and reference tokens and get 
the type of edit required to change each token into the tokens in the reference sentence as 
shown in Figure 5.3. We cluster the actions into the four edit types: equal, delete, insert, and 
replace as shown in Table 5.3. This edit-to-action mapping reduces the number of actions to 
search for the candidate actions based on the edit type of a token. 

4In GED, the objective is to only detect tokens with grammar errors. 
6We used S e q u e n c e M a t c h e r from the standard d i f f l i b Python library to identify the edit types. 
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5.3 Action Search Algorithm 

Reference Tokens 

Current Tokens 

Edit Types 

1 a m a student 

1 a m an student 

1 1 1 1 

Sequence Matcher 

equa l equal rep lace insert 

Figure 5.3: Generating edit types for each token using Sequence Matcher. 

Edit Type Action Labels 

equal $KEEP 
delete $DELETE 
insert $APPEND 
replace $REPLACE 

$TRANSFORM 
$MERGE 
$UNKNOWN 

Table 5.3: Edit type to action labels mapping 

Algorithm 4 GetCandidateActions 
Input: V: Transition Function, s: Current Tokens, sref. Reference Tokens, itoken'- Token 

Index, etoken: Token Edit Type, dref. Current Edit Distance 
Output: at: Candidate Actions 
1 

2 
3 
4 
5 

6 

7 

aedit <- Edit2Actions(etoken) 
for a € aedü do 

S <r- V{S, a, itoken) 
d <— LevenshteinDistance(s, sref) 
if d < dref then 

o <- o U {a} 
return a 

> Initialize empty set of candidate actions 

> Edit type to action mapping as in Table 5.3 

> Get s by applying action a at ith token of s 

> Between s and s, s is closer to sref 

As outlined in Algorithm 5, we choose the action for each token by sampling from a set of 
candidate actions rather than sampling from all actions. If a token has no candidate actions, 
it is assigned the $UNKNOWN action, indicating that the policy has modified that token and 
it could not be recovered anymore using any other actions. Conversely, if there are candidate 
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5 Implementation 

actions, we add the $KEEP action to the candidate actions and select one of them randomly 
using the policy's output values as the probability weights for the sampling. This allows the 
policy to retain errors until it is confident in correcting them, rather than forcing it to fix all 
present errors at once. 

Algorithm 5 SampleTokenAction 
Input: TTQ: Policy, St'- Current Tokens, itoken'- Token Index, at- Candidate Actions 
Output: a: Token Action 
l : if len(at) = 0 then 

2: return UNKNO WNJNDEX > Index of the UNKNOWN label 
3: at at U {KEEPJNDEX} > Include keep-action in candidate actions 
4: O <— Tt(st) > Predict using the policy 
5: Ocandidate ^- 0[it0ken, at] > Candidate labels' raw outputs of the i t h token 
6: Pcandidate —̂ softmax(0candidate) > Probability distribution over candidate actions 
7: a <— random(at,Pcandidate) > Weighted sampling over candidate actions 
8: return a 

As illustrated in Figure 5.4, our action search algorithm assists the policy by filtering the 
action options from all 5k actions to just a few candidate actions. In the example in Figure 5.4, 
all the non-keep candidate actions are equally good because they reduce the LD by 2. However, 
the action "$REPLACE_a" will transform the current sentence into "I am a .", which is difficult 
to correct in the next iteration. Since only solvable sentences are provided in this stage, only 
such a faulty correction by the policy will make sentences unsolvable. Therefore, the policy 
must learn to avoid such situations through experience by decreasing the confidence of such 
labels in the action sampling stage. 

Input 
Tokens 

Reference 
Tokens 

•ZED] 
Token 
Indexes 

I 
Current 
Tokens 

Edit 
Types 

equal 

replace 

equal 

• 

GetCand idate Actions 

Candidate Actions A LD 

; K E E P 0 
ST RAN S F O R M _ C A S E _ L O W E R 2 

$ R E P L A C E _ a 2 
SREPLACE_5lUflent 2 

La 
Token Action 

Candid ate Actions 

-Apply the acti ion T ST R A N S F O R M _ C A 5 E _ L O W E R SampleTokenAction 

Output 
Tokens 

Figure 5.4: Action Search Algorithm 
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5.4 REINFORCE Algorithm 

5.4 REINFORCE Algorithm 

To fine-tune our policy using RL, we implemented the REINFORCE (REward Increment = Non-
negative Factor times Offset REinforcement times Characteristic Eligibility) algorithm [69]. It 
is a policy-gradient algorithm that directly optimizes the policy in the direction that increases 
the expected reward. It achieves this by performing gradient-descent on the estimated gradient 
of the expected reward with respect to the policy parameters as depicted in Equation 5.1. 

1 N 

i = l 

where 
VQJ is the estimated gradient of the expected reward w.r.t the policy parameters 9, 
Gi is the discounted return at the ith timestep from Equation 3.8 

In our task, the state, st, is an array of tokens whose dimension is in the range [1, M] and 
its action, at, is also an array of the same dimension. Therefore, Equation 5.1 is adapted as 
Equation 5.2 which computes the gradient over the sum of the log probability of token action. 

j N M 

VEJ = - - ^ G t V ^ l o g T T ^ I s t , ; ) (5.2) 
t=l 1=1 

We implemented the batched version of the REINFORCE algorithm that updates the policy 
on minibatches sampled from the experiences collected from multiple episodes. We accumu­
late the gradients from the minibatches and update the policy parameters after all experiences 
have been sampled. Therefore, the number of gradient accumulations in our implementation 
depends on the total number of experiences collected. 

Algorithm 6 Batched REINFORCE Algorithm 
Initialize policy with random parameters 9 
Initialize gradient buffer g <— 0 
Initialize experience buffer T> <— 0 
for episode A; = 1,2,... do 

r <— {(st, at, rt, s't)}f=1 > Sample episodic trajectory using Algorithm 3 
TG {Gt}f=i > Compute discounted returns using Equation 3.8 
V «— V U {(st, at, Gt) | (st, at,n, s't) G r, Gt € TG}J=I > Update experience buffer 
if k mod K = 0 then > Update every Kth episode 

n <— \len(D)/N~\ > Calculate number of mini-batches from the buffer 
for mini-batch {(SJ, aj, Gi)}f=l G V do > Sample mini-batches of N items 

g <— g + 1 QJ > Accumulate gradients computed using Equation 5.2 

9 <— 9 + ag > Update the policy parameters 
V —̂ 0 > Reset experience buffer 
g <— 0 > Reset gradient buffer 
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6 Evaluation 

In this section, we compare the performance of our models against other GEC systems that have 
achieved the best results on different GEC benchmarks at the time this thesis was written. We 
do not include the results of ensemble models1 to make a reasonable comparison between our 
and others' GEC models. Determining the current state-of-the-art (SOTA) GEC system in each 
benchmark is difficult because the platforms23 keeping track of the GEC systems are public and 
the papers are not consistently tracked across all of these platforms. As a result, we emphasize 
that the GEC systems chosen for evaluation may not necessarily reflect the current SOTA GEC 
systems. We evaluate the best model from our baseline and RL models using the validation 
metrics mentioned in Section 4.3.2. 

6.1 Benchmarks 

To highlight the strengths and limitations of different GEC systems and promote their further 
development, several GEC benchmarks have been introduced. Each of them evaluates the GEC 
system using different datasets and metrics. Therefore, it is important to evaluate any GEC 
system on multiple benchmarks to compare it with different existing approaches and to eval­
uate the effectiveness of the implemented approach. In this section, we will discuss the GEC 
benchmarks used to evaluate our approaches in this thesis. 

6.1.1 CoNLL-2014 

Computational Natural Language Learning in 2014 (CoNLL-2014) benchmark[29] consists of 
50 essays written by 25 non-native English speakers on 2 different topics. Errors in each essay 
were annotated by 2 independent annotators. Over the previous CoNLL-2013[66] benchmark, 
CoNLL-2014 introduced further changes such as the detection and correction of all 28 grammar 
errors instead of just 5 grammar errors and the use of F0.5 score by the M2 scorer instead of 
F\ score. F0.5 is used since it emphasizes precision twice as much as recall. GEC system with 
high precision is preferred because inaccurate error detection is undesired over missing some 
errors. 

6.1.2 JFLEG 

Johns Hopkins University FLuency-Extended GUG corpus (JFLEG)[70] benchmark was intro­
duced extending the "Grammatical" versus "UnGrammatical" (GUG) corpus[71] to evaluate 

'Ensemble models combine the outputs of multiple diverse models to make predictions 
2 NLP Progress: h t tps : / / n l p p r o g r e s s . c o m / e n g l i s h / g r a m m a t i c a l e r r o r c o r r e c t i o n . html 
3Papers With Code: h t tps : / /paperswi thcode . com/task/grammatical - e r r o r - c o r r e c t i o n 
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6 Evaluation 

GEC systems with a focus on fluency-oriented corrections that make the corrected sentences 
sound more native. It is a parallel corpus consisting of 754 and 747 sentences in the validation 
and test datasets respectively. Each sentence in the dataset has been corrected by 4 different 
annotators and the corpus-level GLEU score is used as the evaluation metric. 

Original they just creat impression such well that people are drag to buy i t . 
Minimal edit They just create an impression so well that people are dragged to buy i t . 
Fluency edit They just create such a good impression that people are compelled to buy 

i t . 

Table 6.1: Difference between minimal and fluency edits 

6.1.3 BEA-2019 

The Building Educational Applications (BEA) 2019 Shared Task introduced the W&I+LOCNESS 
dataset whose test dataset (see Table 4.1) is used as the benchmark dataset. It consists of 350 
essays on approximately 50 different topics written by 334 authors consisting of both native 
and non-native English speakers. It is the largest GEC benchmark at the moment with essays 
from different proficiency levels. It uses the ERRANT F0.5 for the evaluation metrics in order 
to provide detailed feedback about the GEC system's performance on different error categories. 

Benchmark # of Sentences Metrics 

CoNLL-2014 
JFLEG (test) 

BEA-2019 

1,381 
747 

4,477 

M2 F 0.5 

GLEU 
ERRANT F0.5 

Table 6.2: Comparison of GEC benchmarks 

6.2 Results 

On the JFLEG benchmark, [5] showed that their RL model outperformed their SL model. [22] 
demonstrated that incorporating the BERT's representation and the output of a BERT fine-
tuned as a GED model as the additional input features can benefit sequence-to-sequence GEC 
systems. [72] introduced a Neural Verification Network (VERNet) to effectively estimate the 
token level quality from multiple hypothesises generated from sequence-to-sequence GEC sys­
tems. [21] introduced gT5, the GEC version of the mT5[73]4, by performing multilingual GEC 
in English, Czech, German and Russian. Using the large gT5-xxl model, they generated a new 
variant of Lang-8[68] GEC dataset called cLang-8, whose target sentences are the output sen­
tences of the gT5-xxl model. [21] showed that just fine-tuning on the cLang-8 dataset can 
substitute the typical multi-stage training of GEC systems. 

4mT5 is the multilingual version of T5 (Text-To-Text Transfer Transformer) [74]. 
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6.2 Results 

Model BEA-2019 (F 0 5) CONLL-2014 (F0.5) JFLEG test (GLEU) 

Neural RL Model [5] - - 53.98 
BERT-fuse GED [22] 65.6 62.6 61.3 
ELECTRA-VERNet [72] 68.77 63.43 62.07 
GECToR (RoBERTa-base) [3] 71.5 64.0 -
T5-base [21] 69.38 65.05 -
T5-xxl [21] 75.88 68.75 -
Baseline Model (our) 60.38 ± 0.41 61.65 ± 0.24 60.14 ± 0.20 
RL Model (our) 64.00 ± 0.89 63.62 ± 0.39 57.88 ± 0.43 

Table 6.3: Comparison of GEC systems on different benchmarks. Our model scores are the 
mean and standard deviation from five experiments. 

According to the results of our experiments in Table 6.3, our RL model outperforms our base­
line model on the BEA-2019 and CONLL-2014 benchmarks. The RL model has the advantage 
of interacting with sentences during training, which allows it to see new sentences that are 
not present in the dataset and adapt to them. In contrast, the SL model only sees the sentences 
present in the training dataset. However, the baseline model shows better performance on the 
JFLEG test benchmark, which also evaluates the fluency of the generated texts. This indicates 
that the outputs from the RL model are not as fluent as those from the SL model and the RL 
model's ability to adapt to new sentences comes at the expense of fluency. Despite having a 
smaller fine-tuning dataset, our RL model's performance on some benchmarks is comparable 
to other GEC methods. These results highlight the strengths and weaknesses of both models 
on different benchmarks. 

The ERRANT scorer of the BEA-2019 benchmark generates a very detailed report over its 24 
error categories. From Figure 6.1, we can see that on average the RL model has higher precision 
and Fn.5 scores than the baseline model while the baseline model has higher recall than the RL 
model. From these scores, we can also identify the error categories where the baseline and RL 
models struggled the most. 

For instance, the Fn.5 scores of both models are very low in the contraction category, CONTR, 
which includes transforming contractions like "n't" and '"m" into their full forms "not" and 
"am" respectively. Investigating the input and output sentences for contractions revealed that 
out of 613 input sentences with contractions, there were still 484 output sentences which con­
tained contractions. Table 6.4 shows the number of different contractions present in one of the 
RL model's outputs in the BEA 2019 benchmark. Please note that number for '"s" is high be­
cause '"s" can also be a part of a possessive noun as in Table 6.5. This highlighted the limitation 
of our data processing pipeline which did not process the contractions properly. 

Similarly, the RL models' Fn.5 scores have a huge fluctuation in the verb inflection category, 
VERB : I N F L , indicating an unusual difference in their ability to correct verb errors. We do 
not know the cause because verb inflection errors are harder to detect in the model outputs 
than contraction errors. Since the gold annotations of the BEA-2019 test dataset are not publicly 
available, we cannot know the difference between the model outputs and the correct sentences. 
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6 Evaluation 

Error-Category 

Figure 6.1: Mean Precision, Recall and F0.5 with the 95% confidence interval of the baseline and 
RL models in the BEA-2019 benchmark 

Contraction # of Tokens 
J 
s 298 

n't 138 
'm 55 
'11 27 
're 17 
've 14 
'd 11 

Table 6.4: Number of contractions present in the model output of the BEA-2019 benchmark 

's as contraction Not only that, he's a responsible and reliable guy . 
's in possessive noun The philosopher's stone was pulverized into dust. 

Table 6.5: Usage of "'s" as contraction and in possessive noun 
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7 Conclusion and Future Works 

In this thesis, we developed the GEC RL environment using a Levenshtein Distance based 
reward function. The parallel data used by our environment does not require manually la­
belling the error labels in the training data. Therefore, it removes the possibility to hinder the 
sequence-to-label GEC model's performance due to labelling issues in the training data. We 
also implemented the action search method to mitigate the issues of high-dimensional state-
action spaces in RL. In this way, we present the potential benefit of fine-tuning a sequence-to-
label GEC model using RL. In future works, the following directions would be interesting: 

1. Since RL training is sensitive to hyperparameters and requires more training to con­
verge, we used a smaller dataset and a relatively simple RL algorithm in this thesis to 
quickly examine our ideas. Therefore, the next promising step would be to fine-tune the 
model on larger GEC datasets using more advanced RL algorithms like Proximal Policy 
Optimization (PPO)[47]. 

2. In this thesis, we pre-train the model using SL. However, pre-training and fine-tuning 
the model using only RL can mitigate the limitations of manual data labelling in SL and 
take full advantage of RL's ability to learn from its own experience. 

3. One of the bottleneck of using the sequence-to-label GEC model is a large number of very 
specific edit labels. Optimizing and reducing the number of predefined labels required 
by the sequence-to-label model can improve its performance. 

4. Our action search algorithm is quite simple and it does not benefit much from test sen­
tences without any errors since it will always generate keep labels for them. Therefore, 
a better search algorithm like Monte-Carlo Tree Search (MCTS)[75] can bring further 
improvements. 
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8 Appendix 

8.1 Data Filtering Parameters 

This section discusses the data filtering parameters used while converting the data into JSON 
format. The command to convert the W&I+LOCNESS dataset from its M2 format to our JSON 
format is as follows: 

py thon m2_to_json . py \ 
- -m2_path M2_PATH \ # Path to the input M2 file 
- - j s o n _ p a t h JSON_PATH \ # Path to the output JSON file 
- - m i n _ l e n M I N . L E N \ # Minimum number of tokens in a sentence 

- - r e m o v e - e l l i p s i s # Remove ellipsis from the sentences 

To convert the PIE synthetic dataset into the JSON format, we created a Jupyter Notebook 
file "notebooks/PIE_to_JSON.ipynb". The notebook file is specifically created to process and 
filter the parallel texts from the PIE synthetic dataset using the same hyperparameters used to 
convert M2 files into JSON files. It also splits the data into train-validation datasets. 

Hyperparameter PIE Synthetic W&I+LOCNESS Description 

min_len 5 Minimum number of tokens in 
a sentence 

max_len 50 Maximum number of tokens in 
a sentence 

min_sim 0.8 Minimum similarity between 
source and target sentences 

only_proper_sent True Allow examples with only 
proper target sentences 

spelLcheck False True Check and correct spelling er­
rors in source and target sen­
tences 

remove_ellipsis True Remove ellipsis from source 
and target sentences 

Table 8.1: Data Filtering Hyperparameters 
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8 Appendix 

8.2 Training Details 

The hyperparameters used in our experiments are saved in YAML format under the subdirec­
tory c o n f i g s which can be used to reproduce our results using the following commands: 

python t r a i n _ s l . p y c o n f i g s / s l . p r e t r a i n . yaml # SL Pre-Training 
python t r a i n _ s l . p y c o n f i g s / s l _ f i n e t u n e . yaml # SL Fine-Tuning 
python t r a i n . r l . p y c o n f i g s / r l . f i n e t u n e . yaml # RL Fine-Tuning 

For our experiments, we used a cloud system with 52 GB R A M and NVIDIA T4 GPU to 
pre-train and fine-tune our model, which uses RoBERTa-base as the encoder. To optimize the 
utilization of our hardware resources, we employed Pytorch's gradient accumulation and au­
tomatic mixed precision techniques. Using gradient accumulation, we could train our model 
on bigger batch sizes by adding the gradients of several mini-batches. Likewise, automatic 
mixed precision further reduces the GPU requirements and increases training speed by casting 
the floating point operations into a low-precision float-16 format. Pytorch's implementation 
of automatic mixed precision attempts to mitigate the potential loss of accuracy due to lower 
precision floating operations by only casting certain regions that can work with float-16 oper­
ations. 

Table 8.2 shows approximate training time for different stages of our experiment. The result 
for the pre-training is only from one experiment whereas the fine-tuning results are the mean 
time of 5 experiments. 

Stage Average training time 

Pre-Training 
SL Fine-Tuning 
RL Fine-Tuning 

47 hours 
40 mins 
24 hours 

Table 8.2: Approximate training time for different stages 

2We use the term "cold" epochs to indicate the training epochs when the transformer encoder weights are frozen 
so that only the final layers are trained. So "warm" epochs are the training epochs when both the transformer 
encoder and the final layers are fine-tuned. 

2 A sentence is solvable i f it can be converted into its reference sentence using the actions possible by the sequence-
to-label model. 
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8.2 Training Details 

Hyperparameter Pre-Train Fine-Tune Description 

Dropout 0.1 Dropout Rate before the final 
layer 

Cold epochs 2 0 Number of cold epochs1 

Total epochs 20 Maximum number of training 
epochs 

Optimizer Adam [76] Gradient-based optimizer 
Learning rate (cold 1.0 x 10" 3 Optimizer learning rate in cold 
epochs) epochs 
Learning rate (warm 1.0 x 10" 5 Learning rate in warm epochs 
epochs) 
Patience 1 epoch 5 epochs Number of epochs without im­

provement to terminate the 
training before total epochs 

Batch size 128 320 Training batch size 
Accumulation Size 2 5 Number of iterations to accu­

mulate gradient 
Datasets PIE Synthetic W&I+LOCNESS Training datasets 
Keep Correct Exam­ False True Training dataset contains al­
ples ready correct sentences if set to 

"True". Otherwise, it only con­
tains sentences with errors. 

Only Solvable Exam­ False True Training dataset contains only 
ples solvable sentences2if set to 

"True". Otherwise, it contains 
all sentences 

Table 8.3: SL pre-training and fine-tuning hyperparameters 
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8 Appendix 

Hyperparameter Fine-Tune Description 

Gamma (7) 0.95 Discount factor in Equation 3.8 
Dropout 0.1 Dropout rate before the final layer 
Optimizer Adam Gradient-based optimizer 
Learning rate 1.0 x 10" 5 Optimizer learning rate 
Episodes 1 x 106 Total number of episodes 
Batch size 64 Mini-batch size 
Update interval 200 Episodes Interval to update the model using RL algo­

rithm 
Evaluation interval 1 x 10 4 Episodes Interval to evaluate the model 
Environment ID gec_lev_dist-vl Environment id for the GEC environment with 

particular reward function 
Datasets W&I+LOCNESS Datasets to load in the GEC environment 
Only Solvable Examples True Training dataset contains only solvable sen­

tences if set to 'True'. Otherwise, it contains 
all sentences 

Table 8.4: RL fine-tuning Hyperparameters 
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