
Technische Hochschule Deggendorf
Faculty of Angewandte Informatik

The University of South Bohemia in České Budějovice
Faculty of Science

Degree Master Artificial Intelligence and Data Science

GRAMMATIKFEHLERKORREKTUR

MIT D E E P REINFORCEMENT LEARNING

G R A M M A R ERROR CORRECTION

USING D E E P REINFORCEMENT L E A R N I N G

Master's thesis to obtain the academic degree:

Master of Science (M.Sc.)

at the Technical University of Deggendorf
and the University of South Bohemia

Presented by:
Raj Kumar Rana
Matriculation number:
12102667

On: 18. Januar 2023

Supervisor:
Prof. Dr. Andreas Fischer

Co-Supervisor:
Tom Cvjetkovic, M.Sc
Mentorium GmbH

Declaration

T E C H N I S C H E
H O C H S C H U L E
D E G G E N D O R F

Name of the student: Raj Kumar Rana

Name of the supervisor: Prof. Dr. Andreas Fischer

Topic of the thesis:

Grammar Error Correction using Deep Reinforcement Learning

1. I hereby declare that I have written the final thesis independently in accordance with § 35
Para. 7 RaPO (examination regulations for the universities of applied sciences in Bavaria,
BayRS 2210-4-1-4-1-WFK) and have not yet submitted it elsewhere for examination pur­
poses, no other than have used the specified sources or aids and have marked literal and
analogous quotations as such. I declare that I am the author of this qualification thesis
and that in writing it I have used the sources and literature displayed in the list of used
sources only.

Deggendorf, 18.01.2023

Date Signature of student

2 Release of the thesis:

£g5 Thesis in full is released immediately

O Release of the thesis in full is postponed

O Full version to be archived and shortened version to be released

Deggendorf, 18.01.2023

Date Signature of student

Annotation

R. K. Rana, "Grammar error correction using deep reinforcement learning," M.S. thesis, in En­

glish, Faculty of Applied Computer Science, Deggendorf Institute of Technology, Deggendorf
Germany and Faculty of Science, University of South Bohemia, České Budějovice, Czech re­

public, Jan. 2023, p. 44

Annotation:
Reinforcement Learning (RL) method was used to fine­tune a sequence­to­label model for the
Grammar Error Correction (GEC) task. Required components of RL like the environment, re­

ward function and policy gradient algorithm were implemented. A n action­search algorithm
was implemented to mitigate the training instability due to the high dimension of the state
and action spaces. The action­search algorithm used the world model to guide the policy with
action selection. The results of our models trained with Supervised Learning (SL) and RL were
compared to other GEC systems on three GEC benchmarks.

I declare that I am the author of this qualification thesis and that in writing it I have
used the sources and literature displayed in the list of used sources only.

Deggendorf, . J 8 : 0 1 : 2 0 2 3 i t ^ . .
Date Signature of student

v

Abstract

In this thesis, we investigate the potential benefit of fine-tuning a sequence-to-label model for a
grammar error correction task using deep reinforcement learning instead of traditionally used
supervised learning. We show that the iterative error correction method used in the evaluation
stage by the recent sequence-to-label models can also be incorporated in the training stage by
formulating it as a sequential task and optimizing the model using a reinforcement learning
algorithm. We created a reinforcement learning environment for the grammar error correction
task and implemented an action-search algorithm to utilize the world model and update the
model using a policy gradient algorithm. By using reinforcement learning, we demonstrate
the potential to eradicate the requirement to manually label the data for the supervised learn­
ing method and utilize the self-learning ability of reinforcement learning from simple parallel
datasets of correct and incorrect sentences.

vii

C o n t e n t s

Abstract v i i

1 Introduction 1

1.1 Motivation 1
1.2 Outline 1

2 Related Works 3

3 Background Knowledge 5
3.1 N-gram 5
3.2 Grammar Error Correction 5

3.2.1 Rule-Based Approach 6
3.2.2 Classification-Based Approach 6
3.2.3 Machine-Translation Approach 6
3.2.4 Edit-Based Approach 7

3.3 GEC Evaluation Metrics 8
3.3.1 GLEU 8
3.3.2 M2 8
3.3.3 ERRANT 10

3.4 BERT 10
3.5 RoBERTa H
3.6 Supervised Learning 12
3.7 Reinforcement Learning 12

4 Methodology 17
4.1 Datasets I 7

4.1.1 PIE Synthetic 17
4.1.2 W&I+LOCNESS 17

4.2 Data Processing 18
4.2.1 Data Formats 18
4.2.2 Data Filtering 20

4.3 Models 22
4.3.1 Model Architecture 22
4.3.2 Training Procedure 24

5 Implementation 27
5.1 GEC RL Environment 27
5.2 Reward Function 28

ix

Contents

5.3 Action Search Algorithm 30
5.4 REINFORCE Algorithm 33

6 Evaluation 35
6.1 Benchmarks 35

6.1.1 CoNLL-2014 35
6.1.2 JFLEG 35
6.1.3 BEA-2019 36

6.2 Results 36

7 Conclusion and Future Works 39

8 Appendix 4 1

8.1 Data Filtering Parameters 41
8.2 Training Details 42

x

1 Introduction

Written communication is essential at almost every professional level like education, work and
research. Poor grammar can hinder the readers' understanding and affect the credibility of the
writer. However, like every other skill, improving one's writing skills requires a lot of time and
exercise. By identifying and correcting errors, Grammar Error Correction (GEC) systems can
aid language learners to improve their skills and confidence in writing in a foreign language.
Users, who do not have time to study and improve their grammar skills, can also benefit from
GEC systems. In general, GEC systems enhance the quality, effectiveness and ease of written
communication.

1.1 Motivation

Recent GEC systems[2], [3] approached the GEC task as a sequence labelling task, where the
model predicts the edit operation labels for input tokens instead of directly generating the out­
put tokens. The edit labels consist of labels to delete, insert or replace tokens. Compared to
the popular neural machine translation (NMT) approach, this approach has faster inference
speed[2], [3] with comparative results. Since each token can only be updated once by its edit
label, multiple iterations of corrections are applied to correct the grammar errors in the sen­
tence. However, the training stage of these systems does not implement this iterative method to
update the model weights and the model is only trained on the first iteration of correction due
to the limitation of the Supervised Learning (SL) method. On the other hand, Reinforcement
Learning (RL) methods are suitable for training models on sequences of events. By implement­
ing deep RL 1 method on the GEC task, the iterative correction methods can be incorporated
into the training process. Since the model will be trained using a reward function in RL, man­
ually labelling the edit labels in the training data will not be required anymore. Even though
RL has been used in other language processing tasks[4], there has been only one research on
solving GEC using deep RL[5]. In this thesis, we introduce the required framework to solve
GEC as an RL task and investigate its effectiveness over the traditional SL approach for GEC.
The source code of this thesis is publicly available2.

1.2 Outline

This section outlines the organization of the chapters in this thesis. Chapter 2 discusses pre­
vious researches that relate to our work in this thesis. Chapter 3 covers the background in­
formation necessary for understanding the contents of this thesis, including grammar error

'Deep RL refers to Reinforcement Learning using Artificial Neural Networks (ANN) from Deep Learning (DL).
2Source code: h t tps : / / g i t h u b . com/RajK853/DRL-GEC

1

1 Introduction

correction and its approaches, pre-trained BERT models and an overview of supervised learn­
ing and reinforcement learning techniques. Chapter 4 provides details on the dataset used in
this thesis, including the process of filtering it and the model architecture. Chapter 5 describes
the reinforcement learning environment and its reward function, the action search algorithm
and the reinforcement learning algorithm implemented in this thesis. Chapter 6 presents a brief
description of the GEC benchmarks and compares the results of our experiments with other
GEC systems on these benchmarks. Chapter 7 concludes the work in this thesis and suggests
potential directions for future research.

2

2 Related Works

[6] implemented a sequence-to-sequence approach to use edit operation tags to keep or delete
tokens from the input sentence. The motivation behind using the edit operations was to re­
move the redundant decoding of the tokens that stay the same in the input and output sen­
tences. Therefore, their decoder used a relatively smaller auto-regressive transformer layer
that generated the K E E P and D E L E T E tags along with some additional phrases for the output
sentence. [2] and [3] implemented a sequence-to-label approach to only generate edit tags for
each token in the input sentence. They introduced additional tags to insert, replace and trans­
form tokens. [3] also implemented high-level tags to transform the case of a token, the tense
of a verb and the noun number. Both [2] and [3] used an iterative correction method to cor­
rect the errors in the sentence which allows the GEC model to detect and correct errors which
became more evident after correcting other errors in the sentence. A l l of these methods used
SL on labelled datasets and to the best of our knowledge, only [5] investigated fine-tuning a
GEC system using deep RL. Our approach differs from [5] in terms of the neural network model,
model architecture and RL environment. Similar to [3], we use a sequence-to-label architecture
with a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model as
the encoder instead of a sequence-to-sequence architecture with a bidirectional Gated Recur­
rent Unit (bi-GRU)[7] as the encoder and decoder. Finally, we optimize our model using our
own RL environment for GEC which uses a different reward function from [5].

3

3 Background Knowledge

3.1 N-gram

An n-gram is a contiguous sequence1 of n items from a given sequence. In Natural Language
Processing (NLP), the items can be words, syllables or characters and the value of n deter­
mines the size of the n-gram. For instance, the different n-grams of tokens for the sentence
"This is a really great sentence ."is shown in Table 3.1. N-grams are used in NLP to analyze the
frequency and distribution of word combinations. They are used in a variety of NLP tasks
including language modelling[8], [9], information retrieval[10], machine translation^ 1], text
classification^] and sentiment analysis[13].

n Name N-gram

1 Unigram This, is, a, really, great, sentence,.
2 Bigram This is, is a, a great, great sentence, sentence .
3 Trigram This is a, is a great, a great sentence, great sentence .
4 Four-gram This is a great, is a great sentence, a great sentence .

Table 3.1: N-grams of a sample sentence

3.2 Grammar Error Correction

Grammar Error Correction (GEC) is the process of detecting and correcting grammar errors in
a sentence. Modern GEC systems are expected to not only fix grammatical and spelling errors
but also improve the overall fluency of the corrected text. There have been several methods
proposed for GEC systems. This section will briefly discuss each of the methods shown in
Figure 3.1.

Original She see Tom is catched by policeman in park at last night.

Corrected She saw Tom caught by a policeman in the park last night.

Table 3.2: Example of Grammar Error Correction

' A contiguous sequence is a set of consecutive items in the same order as in the original set.

5

3 Background Knowledge

G E C

Rule-Based
Classification-

Based
Machine-

Translation
Edit-Based

Statistical Neural

Figure 3.1: Taxonomy of GEC approaches

3.2.1 Rule-Based Approach

One of the earliest methods for GEC[14], [15] involved using manually created grammar rules
and tools such as parsers and lexical resources like lookup tables and lexicons to identify and
fix specific grammar mistakes in texts. While these methods worked well for specific gram­
mar errors, developing and maintaining these grammar rules is time-consuming and labour-
intensive. Not to mention that these systems were incapable of handling complex grammar
errors correctly.

3.2.2 Classification-Based Approach

These approaches use Machine Learning (ML) algorithms to train a classifier on a large dataset
to detect different types of errors[16]-[18]. For each grammar category, a separate model is
trained to classify errors only from that particular category. For instance, a classifier to correct
article errors can have three output classes to update an article into "a'V'an", "the" or "no-
article". While these methods could handle more errors than the rule-based methods, they
required heavy feature engineering and using a separate classifier for each category makes it
difficult to handle complex errors that depend on the errors from other categories.

3.2.3 Machine-Translation Approach

In recent years, a lot of GEC methods have been proposed to handle GEC as a machine transla­
tion task. Instead of translating text from a source language to a target language, it attempts to
translate from ungrammatical text into grammatically correct text. Statistical Machine Trans­
lation (SMT) and Neural Machine Translation (NMT) are two different machine translation
approaches used for GEC.

• SMT: This is a traditional approach of using statistical models for machine transla­
tion^ 0-]. Statistical models like the translation model and language model are trained
on a large corpus of parallel texts2 to learn the probabilistic model to generate candidate
translations and to score and select the most likely translation. [20] introduced a hybrid

2In GEC, a parallel text refers to a pair with correct and incorrect sentences.

6

3.2 Grammar Error Correction

system of utilizing the rule-based and SMT-based approaches along with a big language
model.

• NMT: In this approach, a sequence-to-sequence model is trained on a large corpus of
parallel texts to automatically translate texts. The model uses an encoder-decoder neural
network architecture as shown in Figure 3.2 where the encoder converts the input sen­
tence into an encoded form which is decoded into the output sentence by the decoder.
Despite the high computational cost, NMT is the most popular approach because of its
effectiveness in GEC[21]-[23].

nput
Tokens

How

you

• >

l_ L.
<D o
o o U C a> LU Q

Output
Tokens

-+ How
>

you

Figure 3.2: Sequence-to-Sequence Model Architecture

3.2.4 Edit-Based Approach

In this approach, the model predicts the edit operation labels per each token that are expected
to correct the current sentence. While the set of edit operations varies among the papers[2], [3],
[6], it usually includes edits to keep, delete, insert and replace the tokens. In this approach, a
post-processing step is required to apply the edit operations on the input sentence to generate
the output sentence. The bottleneck of this approach is that the edit labels are hard-coded
and limited to certain most frequent tokens. Therefore, the selection of the edit operations
determines the type of errors it can correct.

nput
Tokens

How

you

•D
O

HI
re

Token
Labels

Output
Tokens

correct How correct How

correct are correct

—1—>•

are

insert(?) —1—>• you

Figure 3.3: Sequence-to-Label Model Architecture

7

3 Background Knowledge

3.3 CEC Evaluation Metrics

This section will discuss the different evaluation metrics used by the GEC benchmarks in Sec­
tion 6.1.

3.3.1 GLEU

Google BLEU (GLEU)[24] is a variant of the BLEU (BiLingual Evaluation Understudy)[25] de­
veloped by Google to automatically evaluate machine translation systems using a set of refer­
ence sentences. The BLEU score is calculated as a harmonic mean of the precision at different
n-gram levels between the output and the reference sequences. The GLEU score was introduced
with a modified precision function because the BLEU score was designed for evaluation at the
corpus level and, therefore, its sentence level score did not correlate well with human evalu­
ation. [26] and [27] introduced the variation of the GLEU score as in Equation 3.1 from [27,
Equation 1] that can be used as an evaluation metric for the GEC task. Its advantage over the
other evaluation metrics is that it only requires the source and reference sentences in contrast
to other metrics that require gold annotations to correct the input sentences.

G L E U (C , S, R) = B P • exp w™ l o S P « (C > 5> R)j t 3- 1)

. length(fl)
B P = min [l , e ^&KC)

^2 coun te r (ngr am) — max(0, countc,s (ngram) — countc, B (ngram))
r r< t->\ ngram£_(CnR) ngram£_(CnS) Pn(C, S, R) = = — r

2^ countc (ngram)
(3.2)

countA,B(ngram) = min(# occurrences of ngram in A, # occurrences of ngram in B)

where
C, S and R are the set of candidate output, source and reference sentences respectively,
B P is the brevity penalty from the BLEU score,
iV is the maximum size of n-gram, defaults to 4,
wn is the weight of the given n-gram, defaults to 1/N and
pn(C, S, R) is the precision of the n-gram.

3.3.2 M2

MaxMatch (M2)[28] is an algorithm that automatically extracts phrase-level edits between
source and reference sentences by achieving the highest overlap with the gold-standard an­
notation. Levenshtein Distance3 is used to construct the edit lattice (Table 3.3) and compute

3Levenshtein Distance is the minimum number of insertion, deletion and substitution operations required to
transform one sequence into another sequence.

8

3.3 GEC Evaluation Metrics

the similarity between the spans of the source and reference sentences. The alignment of to­
kens in the source and reference sentences can be achieved by identifying the shortest path
on this lattice, ranging from the top-left corner to the bottom-right corner. The values along
the edges of this path are used to determine the token edit operations (keep, delete, insert or
replace) required to transform the source sentence into the reference sentence.

Our baseline system feeds a word into PB-SMT pipeline •

0 1 2 3 4 5 6 7 8 9 10
Our 1 0 1 2 3 4 5 6 7 8 9

baseline 2 1 0 1 2 3 4 5 6 7 8
system 3 2 1 0 1 2 3 4 5 6 7
feeds 4 3 2 1 0 1 2 3 4 5 6
word 5 4 3 2 1 1 1 2 3 4 5
into 6 5 4 3 2 2 2 1 2 3 4

PB-SMT 7 6 5 4 3 3 3 2 1 2 3
pipeline 8 7 6 5 4 4 4 3 2 1 2

• 9 8 7 6 5 5 5 4 3 2 1

Table 3.3: The Levenshtein matrix from [28, Figure 1] between the source sentence (in the row)
and the reference sentence (in the column). The highlighted cells indicate the shortest
path obtained from breadth-first search.

Let an edit be a triple of {a, b, C} with start-end edit index and correction value or set of
corrections, G = {gi,..., gn} be a set of gold edits and E = { e i , . . . , en} be a set of system
edits with maximum overlap with G. Then the system edits are evaluated with the gold edits
by calculating F0.5 score[29], which is a harmonic mean between the precision P and the recall
R with more emphasis on the precision P as shown in Equation 3.3.

1.25 P R
F ° 5 ~ 0.25 -P + R

True Positives
P =

True Positives + False Positives

True Positives p _
True Positives + False Negatives

where

et n gi = {e G ei\3g G gi: match(e, g)}

match(e, g) 44> e.a = g.a A e.b = g.b A e.C G g.C

E \ei^gi
i=l

n
E M
t=i

E \eiHgi
i=l

n
E \9i\
i=i

(3.3)

(3.4)

(3.5)

9

file:///eiHgi

3 Background Knowledge

3.3.3 ERRANT

By using a rule-based approach for error annotation, ERRor ANnotation Toolkit (ERRANT) [30]
mitigates the M2 scorer's limitation of manually labelling the error types of extracted edits.
ERRANT uses the linguistically-enhanced alignment algorithm[31] to extract more realistic
edits from the parallel source and reference sentences as shown in Figure 3.4. In contrast to
M2's use of Levenshtein Distance, [31] uses Damerau-Levenshtein, which is an extension of
Levenshtein that can also handle the transposition of sequences i.e. AB —> BA. Similar to M2,
ERRANT also uses the E3.5 score between the system and gold edits to evaluate GEC systems.
[30] highlighted the reliability of the F0.5 score of the ERRANT over M2 by showing that M2's
F0.5 score overestimates the performance of the GEC system by exploiting the edit boundary
to maximize true positives and minimize false negatives.

Levenshtein Distance

This wide spread propaganda benefits only to the Companys

1
This widespread publicity only benefits their companies 0 0

Damerau-Levenshtein Distance, Linguistic feature and Merging rules

S o u r c e This wide spread propaganda benefits only to the Companys

R e f e r e n c e This widespread 0 pjbNcJty only benefits 0 their companies

Figure 3.4: Comparison of token mappings for the edit extraction with Levenshtein Distance
and ERRANT's edit extraction method[31, Table 2]

3.4 BERT

Bidirectional Encoder Representations from Transformers (BERT) models [32] are transformer-
based[33] Language Models (LM) that are pre-trained on large unlabeled text corpus to learn
about the hidden representations of the language itself. These pre-trained BERT models can
be further fine-tuned on specific downstream tasks like Named Entity Recognition (NER) and
Stanford Question Answering Dataset (SQuAD)[34], [35] via Transfer Learning (TL)4.

As inputs, the BERT model takes in a concatenation of two sequences of tokens x\, x2, • • •, %N
and y i , y 2 , . . ., VM as [CLS], x1, x2, • • •, xN, [SEP], y i , y 2 , . . . , VM, [EOS] where [CLS], [SEP]
and [EOS] are special tokens for the classification task, sequence separator and end of the
sequence respectively. The BERT model is then pre-trained on the following objectives:

4Transfer Learning is the process of using an acquired knowledge from a task to solve another different but related
task.

10

3.5 RoBERTa

Masked Sentence A Masked Sentence B

1
[CLS] «1 [SEP] Vi [EOS]

E[CLS] E , EN E[SEP] E'M E[EOS]

- _ — - -

BERT
— '

C T[SEP] T"[EOS]

I J L J

N S P MLM MLM

Figure 3.5: Overview of pre-training of the BERT model

1. Masked Language Model (MLM): For this task, approximately 15% of the input tokens
are randomly replaced with a special mask token [MASK] and the model is optimized to
predict the original tokens that were replaced with the mask token [MASK].

2. Next Sentence Prediction (NSP): NSP is a binary classification task of determining
whether the two segments in the input sequences follow each other in the original text.
The segments are sampled randomly such that they are either two consecutive sentences
from a text or two sentences from different texts.

3.5 RoBERTa

[36] identified that the BERT model was heavily under-trained and they proposed several modi­
fications to optimize the pre-training of the BERT model, which they called Robustly Optimized
BERT Approach (RoBERTa). The RoBERTa model differs from the BERT models in the follow­
ing ways:

1. Static vs Dynamic Masking: RoBERTa generates masking patterns dynamically for
the M L M task for every pre-training step compared to BERT's approach of generating
10 different masking patterns for each sequence during the data pre-processing stage.

2. No NSP objective: [36] conducted pre-training and fine-tuning experiments on the
RoBERTa model with and without the NSP objective and realized that it may not be
necessary [37]-[39].

11

3 Background Knowledge

3. Larger batch size and learning rate: According to [40] and [41], BERT models can
achieve good results in the benchmarks quickly using larger batch sizes and learning
rates. Therefore, RoBERTa was pre-trained on a batch size of 8k sequences with a learn­
ing rate of le-3 compared to BERT's batch size of 256 sequences with a learning rate of

4. Larger text encoding: RoBERTa uses a byte-level Byte-Pair Encoding (BPE) [42] vo­
cabulary of 50k sub-word units compared to BERT's character-level BPE encoding with
30k vocabulary size.

3.6 Supervised Learning

Supervised Learning (SL) is a type of Machine Learning (ML) 5 where the model is trained on
labelled data. Let X = {x\,..., XN} be a set of input features and Y = {yi,..., TJN} be the
set of output labels, then the model ir with a set of parameters 9 is updated to minimize the
given objective:

The objective function C depends on the category of SL. For the regression task where the
output label yn is a continuous value, the model is updated with objective functions like Mean
Square Error (MSE). Likewise, for the classification task where the output label yn is a class
among N classes, the model outputs a probability distribution over the N classes and it is up­
dated with objective functions like Cross-Entropy (CE). In SL, the goal is to learn a model by
updating it based on the difference between the predicted labels and the true labels. In the end,
the trained model is expected to make accurate predictions for input features that it has not
seen during training, based on the patterns it has learned from the labelled data.

3.7 Reinforcement Learning

Reinforcement Learning (RL) is a branch of ML where the model learns by using its own ex­
perience collected by interacting with an environment. The experience reflects the reward or
punishment the model received for performing certain actions in states of the environment.
RL is suitable for solving sequential tasks where a series of events need to occur to solve a task
like opening a door or parking a car. Algorithm 1 shows very generalized steps of RL and its
different components.

5Machine learning (ML) is a field of artificial intelligence (AT) that enables computers to learn and make decisions
based on data, without being explicitly programmed to do so.

le-4.

(3.6)
n=l

12

3.7 Reinforcement Learning

Algorithm 1 Basic RL
l : Initialize the agent, TTQ
2: Initialize the environment, £
3: Initialize the experience buffer, T> 0
4: for each episode do
5: s <— R E S E T (£) > Reset the environment to get the initial state
6: while not done do > Current episode has not terminated
7: a <— 7T$(s) > Select an action a based on the current state s
8: (r, s', done) <— £{a) > Interact with environment £ to get reward and next state
9: V <— Z> U {(s, a, r, s', done)} > Store current experience to the buffer D

10: s <— s' > Update current state with next state
l i : 6> <— UPDATE(6>, Z>) > Update agent parameters using RL algorithm
12: T> <— 0 > Reset experience buffer

RL can be formulated as the Markov Decision Process (MDP) defined as a tuple (S, A, V, R, 7)
where:

• S is the state space which determines the states of the agent in the environment.

• A is the action space which indicates the set of actions the agent can take in the particular
state of the environment.

• V is the state transition function, V(st+i\st, at), which determines the next state, st+i,
of the agent in the environment given its action, at, at the state, Sf. It can be either
deterministic or stochastic depending on the environment. If an action, at, is applied
to a state, St, several times, a deterministic transition function will always get the same
next state, st+i. Whereas, a stochastic transition function may reach a different next
state, st+i, every time because of some hidden factors of the environment.

• R is the reward function which assigns a reward or punishment value, rt R(st, at),
indicating the quality of the action, at, at the state, Sf.

• 7 is the discount factor which indicates the relative importance of the immediate reward,
rt, versus future rewards, rt+i + • • • + r^, as in Equation 3.7.

In RL, the agent is commonly interchanged with the policy, TTQ, which is a function that
decides the action, at, for the state, st- The goal of the agent is to learn an optimal policy, 7r*,
that maximizes the expected return, Gt, which is the sum of the discounted rewards obtained
by following the policy:

00

Gt = Y,ltR{st,at)
t=o

= R(st, at) + jR(st+i,at+i) + ^2R(st+2, (H+2) + • • • (3-7)
= R(st, at) + 7 (R(st+i,at+i) + ^R{st+2, a < + 2) + . . .)
= R(st,at) + 7 ^ + 1

13

3 Background Knowledge

Generally, the RL interactions are divided into episodes which end when the environment
reaches a terminal state or when a predetermined number of steps have been taken. In such a
case, the goal of the agent is to maximize the expected return it receives over the course of an
episode.

Gt = J2j TR(st,at)
t=o

(3.8)

R(st, at) + jGt+i

where T is the terminal step of an episode and GT = R(ST, O-T) is the return of the terminal
state.

The environment in RL provides the agent with the interface to interact with. It determines
the agent's possible states, actions and rewards and how the agent's actions affect the state of
the world and how observations are generated. However, the training of the agent depends on
the type of RL algorithm used to learn from the collected experiences. Figure 3.6 shows the
taxonomy of RL algorithms based on different categories. In this section, we will discuss very
briefly each of these categories.

Policy Optimization

Policy Gradient

TRPO <-

PPO •*-

RL Algorithms

Model-Free

Q-learning

DDPG

TD3

SAC

I
Model-Based

r
Learn the Model Give the Model

World Models AlphaZero

Figure 3.6: Taxonomy of RL algorithms derived from [43]; Policy Gradient[44], A2C/A3C[45],
TRPO[46], PPO[47], DDPG[48], TD3[49], SAC[50], DQN[51], C51[52], QR-
DQN[53], HER[54], World Models[55], I2A[56], MBMF[57], MBVE[58] and Alp­
haZero [59]

• Model-Free vs Model-Based: The model refers to the world model that consists of
the state transition function V(st+i\st, at) and the reward function R(st, at) of the en­
vironment. Having access to the world model would allow the agent to plan ahead by
simulating the future outcomes and filtering them to reach the destination with the high­
est cumulative reward. Usually, the agent does not have access to the world model and
it has to explore the environment to optimize the policy without explicitly learning the

14

3.7 Reinforcement Learning

world model. An RL algorithm is a model-free algorithm if it does not explicitly learn or
use the world model. Otherwise, it is a model-based algorithm.

• Policy Optimization vs Q-learning: Policy optimization refers to the family of meth­
ods where a policy function TT is explicitly defined and its parameters 9 are optimized
by maximizing the objective function JQ(K) or its local approximation. Similarly, Q-
learning refers to methods that learn the state-action value function, Qe(st, at), which
indicates the quality of taking action, at, in the state, St- State-action pairs that are ex­
pected to give high rewards in the future will have higher Q-values. Here the policy 7r
is implicitly defined by taking action with the maximum Q-value for the given state as
follows:

at <- aigmaxa£AQ0(st,a)

However, there are also some algorithms like Soft Actor-Critic (SAC)[50] and Deep De­
terministic Policy Gradient (DDPG)[48] that fall under the grey region between the pol­
icy optimization and Q-learning as they learn both an explicit policy and a Q-function.

• Learning vs Using the model: In some environments like classical board games like
Chess, the world model is well-defined and deterministic i.e. the outcomes of the envi­
ronment are only dependent on the agent's actions and not on some hidden factors of
the environment. In such situations, search algorithms can be used on the world models
to efficiently explore the environment and plan the actions[59]. However, for environ­
ments with complex or unknown world models, an approximation of the world model
can be learned and used for planning[57] or generating augmented experiences[55], [58]
to train the policy.

15

4 Methodology

In this chapter, we present the training datasets and the data pre-processing techniques used
to prepare data for the SL and RL methods. We also outline the details of our model and its
training procedure.

4.1 Datasets

The sparsity of public parallel GEC datasets has motivated many to pre-train their GEC models
on a large corpus of artificially generated grammar errors[2], [23], [60], [61] followed by fine-
tuning on a specific target corpus. [23] showed that pre-training on synthetic data followed by
fine-tuning on a target corpus yields better results than fine-tuning on the joint dataset with
synthetic and the target corpus data because the synthetic data dominates over the actual GEC
data in the joint dataset, affecting the model performance. As we result, we also implement the
two-stage training method using synthetic and actual GEC datasets.

4.1.1 PIE Synthetic

[2] introduced a synthetic dataset by introducing grammatical errors into the One Billion Word
benchmark [62]. The incorrect sentences were generated by randomly adding up to five errors
by appending, deleting, replacing or changing the verb tokens in the sentence. For further
details about the process used to generate these synthetic data, please refer to the paper [2].
This public synthetic GEC dataset contains around 44 million pairs of correct and incorrect
sentences. Since these synthetic data do not reflect realistic grammar errors, they are mostly
useful for pre-training the models.

4.1.2 W&I + LOCNESS

The W&I+LOCNESS dataset was created by combining the W&I[63]1 and LOCNESS [64] datasets
for the BEA-2019 Shared Task[65]. The W&I dataset includes writing samples in various for­
mats, such as letters, stories, articles, and essays, produced by non-native English speakers
of varying Common European Framework of Reference for Languages (CEFR) language pro­
ficiency levels. The LOCNESS dataset, on the other hand, contains essays written by native
English speakers. The combined dataset consists of a total of 43,169 sentences from 3,700 texts,
which are divided into train, validation, and test datasets as shown in Table 4.1.

'Write & Improve is an online platform offering writing assistance to non-native English students.

17

4 Methodology

A B C N Total

Train Text 1,300 1,000 700 - 3,000
Sentences 10,493 13,032 10,783 - 34,308

Validation Text 130 100 70 50 350
Sentences 1,037 1,290 1,069 998 4,384

Test Text 130 100 70 50 350
Sentences 1,107 1,330 1,010 1,030 4,477

Total Text 1,560 1,200 840 100 3,700
Sentences 12,637 15,652 12,862 2,018 43,169

Table 4.1: Data distribution of the W&I+LOCNESS dataset. W&I (A, B, C) and LOCNESS (N)
adapted from [65, Table 2]

4.2 Data Processing

4.2.1 Data Formats

The public GEC datasets like W&I+LOCNESS from the BEA-2019 Shared Task[65] are available
in the M2 format as shown below.

s So , I think i f we have to go somewhere on foot ,
A 16 16 |M PREP | | | on | | | REQUIRED | | | -NONE- | | | 0
A 4 5 |R OTHER | | | when | | | REQUIRED | | | -NONE- | | | 1
A 16 16 |M PREP | | | on | | | REQUIRED | | | -NONE- | | | 1
A 17 18 |R NOUN:NUM | | | hats | | | REQUIRED | | | -NONE- | | | 1
A 16 16 |M PREP | | | on | | | REQUIRED | | | -NONE- | | | 2

In M2 format, lines with the test sentences start with S and lines with annotator corrections
start with A. Each annotation line contains the start-end edit token offsets, the ERRANT er­
ror type, the correct edit text, 2 redundant fields and the annotator id. The redundant fields,
- R E Q U I R E D - and NONE, are kept due to some historical reasons from the old CoNLL-2013
Shared Task[66]. In some datasets, there can be more than 1 annotator id per sentence and
applying all the edits from each annotator id can generate different correct sentences. On the
other hand, the PIE synthetic dataset is available as a parallel dataset with separate files for the
correct and incorrect sentences as shown in Table 4.2.

Incorrect

Housing and labor market have not been as
strong .
Pole-position qualifying its that Saturday

Correct

Housing and the labor market have not been
as strong .
Pole-position qualifying is Saturday .

Table 4.2: Example of parallel data from PIE synthetic dataset

To fine-tune our model using SL, we use the data format used by [3]. In this format, the
tokens and their labels are arranged next to each other in the format given in Figure 4.1.

18

4.2 Data Processing

Tokens

* J * 1—; *
I SEPL|||SEPR $KEEP am SEPL|||SEPR IKEEP an SEPL|||SEPR $REPLACE_a Student SEPL|||SEPR STRANSFORMCASELOWER . SEPL|||SEPR IKEEP

Labels

Figure 4.1: GECToR data format

For the fine-tuning stage using RL, we use data in the JSON format with test and reference
sentences as in Figure 4.2. This removes the token labelling requirement from the data and
allows the RL environment to operate only on pairs of test and reference sentences. Not to
mention, this format also supports examples with multiple reference sentences, where the RL
agent will be rewarded if it obtains any of the reference sentences.

{
t e s t : "So , I t h i n k i f we have to go somewhere on foot , we must put our hat . " ,
re fe rences : [

"So , I t h i n k i f we have to go somewhere on foot , we must put on our hat . " ,
"So , I t h i n k when we have to go somewhere on foot , we must put on our hats . "

]

Figure 4.2: JSON data format

Figure 4.3 depicts the data conversion pipeline we use to convert the parallel data format
from PIE Synthetic dataset and the M2 data format from the W&I+LOCNESS dataset into the
JSON format discussed earlier. During this conversion stage, several data filtering methods are
applied to remove noisy data from the datasets. Details about the data filtering are discussed
in the next section. We adapted the data processing functions from [3] to further convert the
dataset into the GECToR format for the SL training stages.

Parallel

PIE Synthetic

M2

JSON ^ GECToR

W&I+LOCNESS

Figure 4.3: Data Format Pipeline

19

4 Methodology

4.2.2 Data Filtering

[67] showed that sequence-to-label GEC models can achieve similar to slightly better results
on the filtered GEC dataset, which has better quality with less quantity. As a result, we employ
the following data filtering methods:

• Number of tokens: Filter sentences based on the minimum and the maximum number
of tokens in the test sentences. In this way, we remove examples that are either too short
to be informative or too long to possibly cause an issue with the GPU during training.

• Improper terminal token: Remove examples whose reference sentences are either not
starting with a capitalized token or the ending tokens are not one of these punctuations,
.!?". In this way, we remove sentence fragments of a single sentence spanning over mul­
tiple examples.

• Test-reference similarity: In order to eliminate test sentences that are flawed or se-
mantically different from the reference sentences, we calculated the token-based simi­
larity between the test and reference sentences using a sequence matcher2.

2 x Number of matching tokens between a and b
"" Number of tokens in a + Number of tokens in b

Test Reference Similarity

You are only relying on i t . It relies on you alone . 0.308
other friends coll poles . The other friends called the police . 0.333
I hope yours news . I look forward to your reply . 0.333

Table 4.3: Examples from W&I+LOCNESS dataset with low similarity

• Ellipsis: Ellipsis indicates the omission of words from a sentence or it adds some pauses
for dramatic effect. Since some of these examples can be incomplete sentences, we re­
move them from the dataset.

Big shot of the week : Just as he thought BP was back . . .
For example , racing games , action games , puzzle games and more . . .
He threw the door open to reveal . . . a lost puppy .

Table 4.4: Examples with an ellipsis from PIE synthetic dataset

2We used S e q u e n c e M a t c h e r from the standard d i f f l i b Python library to calculate the token-level simi­
larity ratio.

20

4.2 Data Processing

In the earlier phase of the thesis, we found some examples in the Lang-8 [68] dataset that have
parenthetical expressions inside brackets only in the reference sentences as shown in Table
4.5. Since they are used to provide additional context information, we remove all parenthetical
expressions from the test and reference sentences.

Test For example , today I ordered some clothes on the internet shop !
Reference For example , today I ordered some clothes online (you do n't say

" internet shop ") .
Cleaned Reference For example , today I ordered some clothes online .

Table 4.5: Removing parenthetical expressions from reference sentence

Additionally, we normalise some tokens like a double apostrophe, ' ', into a quotation, ",
and many more that are included in the data processing script of the BEA-2019 Shared Task
datasets like the W&I+LOCNESS dataset. We also use a spell checker to correct any spelling
errors from the test sentences. The data filtering parameters used to clean our datasets are
listed in Appendix 8.1.

Filter Category PIE Synthetic W&I+LOCNESS
Train Validation

Number of tokens 101,391 2,762 290
Improper terminal token 301,465 1,397 161
Test-reference similarity 170,732 3,333 343
Ellipsis 6,349 1 0
Total Filtered 579,937 7,493 794

Table 4.6: Number of sentences filtered out from each dataset

While filtering the PIE synthetic dataset, we process the sentences until we get 2.0M sen­
tences after filtering. Since it does not have validation data, we split it into train-validation
datasets with a 98:2 ratio; the first 1.96M sentences are the training data and the last 400k sen­
tences are the validation data. Similarly, we further filter the W&I+LOCNESS training dataset
to remove unsolvable examples, which have at least 1 $UNKNOWN label. The motivation for
training on only solvable examples is discussed in Section 5.1.

of Sentences PIE Synthetic W&I+LOCNESS # of Sentences
Train + Validation Train Validation

Original 2.58M 34,308 4,384
Filtered 2.0M 26,815 3,590
Only Solvable - 24,734 -

Table 4.7: Dataset sizes after different stages of filtering

21

4 Methodology

4.3 Models

In this section, we will provide details about our model architecture and its output labels. We
will also discuss the multi-stage fine-tuning process using SL and RL to investigate the effect
of different fine-tuning methods.

4.3.1 Model Architecture

GECToR Model Architecture Our Model Architecture

nput
Tokens

How

you

Token
Labels

$KEEP $KEEP

$KEEP $KEEP

SINSERT_? SINSERT_?

Token
Errors

nput
Tokens

How

you

Token
Labels

SKEEP SKEEP

$KEEP $KEEP

SlNSERT_? SlNSERT_?

Figure 4.4: Comparison between GECToR's and our model architectures

Figure 4.4 shows the comparison between the sequence-to-label model architecture used
by [3] and us. [3] experimented with pretrained BERT, RoBERTa and XLNet as the encoders
for their GEC models, among which RoBERTa had a good trade-off between performance and
inference speed. Therefore, we use the RoBERTa-base model as the encoder of our GEC model.
To generate the output tokens in the post-processing stage, [3] used the token labels from the
labelling layer and the token correctness confidences from the error detection layer. In contrast
to that, our post-processing stage only uses token labels since we removed the error detection
layer to ensure that the model can be easily fine-tuned using the RL algorithm. Besides this
difference, we use the same 5k output labels used by [3].

Label Category # of Labels

$KEEP 1
$DELETE 1
$APPEND 1,167
$REPLACE 3,802

$TRANSFORM 27
$MERGE 2

$UNKNOWN 1

Table 4.8: Token labels categories with the number of labels in each

22

4.3 Models

Table 4.8 shows the label categories and the number of labels in each category. Please note
that we have 5001 labels instead of 5k because we included the "$UNKNOWN" label for any
out-of-vocabulary (OOV) labels i.e. labels that are not present among the 5k labels. The source
code of [3]3 implements AllenNLP 4 which handled the OOV labels automatically. The labels
consist of basic transformations like $DELETE, $REPLACE_x and $APPEND_x to delete, replace
or insert tokens in the sentence. Similarly, it consists of high-level transformations, that [3]
called g-transformations, which include transformations like changing the case of the token,
the tense of the verb or a noun from singular to plural and vice versa. The description of each
label category is as follows:

• $KEEP: This label indicates that the token is correct and it does not need to be changed.

• $DELETE: This label removes the token from the sentence.

• $APPEND: These are very specific labels where $APPEND_x will insert the token "x"
after the current token.

. $REPLACE: Like the $ APPEND labels, these labels are very specific labels where $RE-
PLACE_x will replace the current token with "x".

• $TRANSFORM_VERB: These labels change the verb form of the token using a verb
conjugation dictionary5. Each verb consists a total of 20 mapping pairs among the 5 dif­
ferent verb forms; base form (VB), past tense (VBD), gerund or present participle (VBG),
past participle (VBN) and 3rd person singular present (VBZ). For instance, the $TRANS-
FORM.VERB_VB.VBD label will change the verb "abandon" in the base form (VB) into
its past tense (VBD) "abandoned".

• $TRANSFORM_CASE: These labels include operations to change the case of the token.
Table 4.9 shows the verb transformation labels with example transformations.

Label Input Token Output Token

$TRANSFORM_CASE_LOWER Tiger tiger
$TRANSFORM_CASE_UPPER Tiger TIGER
$TRANSFORM.CASE.CAPITAL tiger Tiger
$TRANSFORM.CASE.CAPITAL.l iphone iPhone
$TRANSFORM_CASE_UPPER_-l cds CDs

Table 4.9: Verb Labels examples

• $TRANSFORM_AGREEMENT: These labels change the noun agreement from singular
to plural and vice versa by simply adding and removing the suffix "-s" from the current
token. While this transformation does not work for irregular nouns like "knife" whose

3GECToR source code: h t tps : / / g i t h u b . com/grammarly/gector
4AUenNLP is a library for NLP using Pytorch developed by Allen Institute of AI.
5Source: h t t p s : / / g i t hub . com/gu t f ee l i ng /word fo rms /b lob /mas t e r /word fo rms / en -ve rbs . t x t

23

http://FORM.VERB_VB.VBD
https://github.com/gutfeeling/wordforms/blob/master/wordforms/en-verbs.txt

4 Methodology

plural is "knives", it is out of the scope of this thesis to investigate better noun agreement
transformations. Therefore, we use the same methods from [3] to change the agree­
ment of the token using the $TRANSFORM_AGREEMENT_SINGULAR and $TRANS-
FORM_AGREEMENT_PLURAL labels.

$TRANSFORM_SPLIT_HYPHEN: This is a specific label that splits the current token
into multiple tokens at all positions with a hyphen. An example of this transformation
is changing the token "out-of-the-box" into the tokens "out", "of", "the" and "box".

$MERGE: This category consists of $MERGE_SPACE and $MERGE_HYPHEN labels that
combine the current and the next token into a single token as shown in Table 4.10.

Label Input Tokens Output Token

$MERGE_SPACE every day everyday
$MERGE_HYPHEN cold blooded cold-blooded

Table 4.10: Merge Labels examples

$UNKNOWN: This is the OOV label used for any label that is not present in the set of
labels.

4.3.2 Training Procedure

Fine-Tune

Pre-Train

PIE Synthetic

W&I+LOCNESS

W&I+LOCNESS

Legends

Supervised Learning

Reinforcement Learning

Figure 4.5: Pre-training and fine-tuning stages

As illustrated in Figure 4.5, we pre-train our GEC model on the PIE synthetic dataset using
SL and then fine-tune the pre-trained model on the W&I+LOCNESS dataset using SL and RL
methods. The pre-training stage adjusts the model weights to the token-labelling approach for
the GEC task. Despite the huge amount of data, the grammar errors in the PIE synthetic dataset
do not represent the actual kind of grammar errors. Therefore, we fine-tune the pre-trained
model on the W&I+LOCNESS dataset which contains grammar errors from the writers of dif­
ferent proficiency levels in the English language. The fine-tuning stage adapts the pre-trained
model to more authentic grammar errors. To investigate the difference in the performance of

24

4.3 Models

using SL and RL methods, we fine-tune the pre-trained model on the same dataset using dif­
ferent approaches. During the evaluation of models on benchmark datasets, the model outputs
are generated using a maximum of 10 correction iterations.

For the SL training, we use methods from [3] to process the data into the GECToR format
and their approach of training the model until convergence using the early-stopping strategy to
terminate the training when the validation loss stops decreasing for a given number of epochs.
The model with the lowest validation loss is evaluated on the benchmark datasets. For the RL
training, our model interacts with our RL environment to gather experience for training and we
evaluate the model periodically on the validation dataset using the corpus-level GLEU score.
The model with the highest validation GLEU score is evaluated on the benchmark datasets.
Details about the training hyperparameters are available in Appendix 8.2.

25

5 Implementation

The fine-tuning stage using RL requires an environment with which the policy can interact to
gather experiences. A RL algorithm is used to adapt the policy on these experiences and to
achieve the goal of the environment by maximizing the cumulative reward it receives through
interactions with the environment. However, the reward function alone is not adequate to
guide the policy in our GEC RL environment, given the large dimensionality of the state-action
space. To enable safe and efficient exploration by the policy, we implemented an action search
algorithm. This section will provide a detailed overview of the components used to fine-tune
the policy using RL.

5.1 GEC RL Environment

To fine-tune our policy using RL, we created a custom GEC RL environment using OpenAI's
gym 1 library, which provides a standard API for RL environment development. Our environ­
ment allows interaction with any GEC dataset processed in the JSON format as mentioned in
Section 4.2. Please note that our environment utilizes only the training data from the GEC
dataset since policy evaluation using the validation data is not part of the RL environment.

The datasets used in this thesis have only one reference sentence per test sentence. How­
ever, our environment is also able to accommodate datasets with multiple reference sentences
per test sentence. For every episode, we randomly select an example that includes a test sen­
tence and a set of reference sentences. Trying to correct any grammatical errors in the test
sentence, the policy interacts with it for a maximum of 5 iterations, after which the episode
ends. However, the episode can also terminate early under one of the following conditions:

1. Unchanged tokens: When the current state, St, and next state, st+i, have the same
tokens, the state will not change anymore even if the policy keeps interacting with the
environment for the remainder of the episode. Therefore, we end the episode and return
the reward depending on whether the current state is grammatically correct or not.

2. Low or high token count: Under unfortunate circumstances, the policy might start
modifying the sentences too much by either removing or inserting too many tokens. To
discourage such behaviours, the episode will end early when the next state, st+i, has
less than 3 tokens or more than 1.5 times the token count in the initial state, so.

To ensure that the policy can correct all sentences presented to it, the training dataset con­
sists solely of solvable examples. This is to discourage the policy from getting trapped in a state
where it is unable to continue making corrections, as a result of poor decisions made earlier in
the training episode.

'OpenAI Gym: h t tps : //www. g y m l i b r a r y . dev/

27

5 Implementation

Timestep: G
Howards! 0.889
Source: tSTART My f i r s t day at CU came to me as a surprise .
Output: iSTART My f i r s t day at CU came to me as a surprise .

Timestep: 1
Rewards: 2.880
Sourca: JSTART My f i r s t day at CU cane to [] me [] as a surprise .
Output: JSTART My f i r s t day at CU came as a surprise .

Timestep: 2
Rewards: 1.88G
Sourca: $START My f i r s t day at CU came as a surprise [sAI]
Output: tSTART My f i r s t day at CU came as a surprise to .

Timestep: i;
Rewards: 1.889
Source: $START My f i r s t day at CU came as a surprise to [$AF me] .
Output: $START My f i r s t day at CU came as a surprise to me .

Timestep:
Howards: 10.GOO
Sourca: $START My f i r s t day at CU came as a surprise to me .
Output: $START My f i r s t day at CU came as a surprise to me .

Figure 5.1: Rendering of a sample episode of our GEC RL environment. Timestep: Current
iteration of the episode. Rewards: Reward for the current interaction calculated
using Algorithm 2. Source: Input tokens with action labels (in red) next to their re­
spective token (in green). The keep action labels are not rendered. Output: Tokens
after applying the actions.

5.2 Reward Function

In their paper, [5] used the GLEU score [26] as the reward function to fine-tune their GEC
model using RL. However, using GLEU as the reward function has some drawbacks in GEC.

In this study, we will compare the GLEU score and Levenshtein Distance (LD) of two variants
of the same sentence, one that is shorter and one that is longer. We will see how each of these
metrics performs when applied to these two variants with the same kinds of errors.

Short Reference Albert Einstein wrote his first scholarly paper at just 16 years old !
Long Reference Albert Einstein , a German-born theoretical physicist, wrote his first

scholarly paper at just 16 years old !

Table 5.1: Shorter and longer version of the same sentence.

For both sentence variants, we generated test sentences with the same type of errors as in
Table 5.2, allowing us to evaluate how well each metric can capture the similarity between the
correct and incorrect sentences based on the sentence length and error position. We calculated
GLEU scores using the official scorer from ht tps : / / g i t h u b . com/cnap/gec-ranking. To
calculate the token-level LD between the test and reference sentences, we used the RapidFuzz2

Python library.

2RapidFuzz official repo: h t tps : / / g i t h u b . com/maxbachmann/RapidFuzz

28

5.2 Reward Function

Error Type Description Test Sentence

Type A

Type B

Remove terminal token3

Remove non-terminal token

Albert Einstein wrote his first scholarly
paper at just 16 years old I
Albert Einstein wrote his first scholarly
paper at just 16 years old !

Table 5.2: Different error types based on the removed token's position in the sentence.

From Figure 5.2, it can be seen that the GLEU score tends to give higher scores to longer
sentences with the same types of errors because longer sentences are more difficult to translate
accurately. It also tends to favour errors that occur in the terminal tokens of a sentence, as
these tokens have fewer n-grams when the GLEU score is calculated. In contrast, the LD score
is relatively consistent across sentence lengths and error locations, indicating its robustness
against these factors. Therefore, we use the decrease in LD as our reward function as shown in
Algorithm 2.

Figure 5.2: Score comparisons based on sentence length and error position

Algorithm 2 Reward Function
Input: St'- Current Tokens, at'- Action, st+v Next Tokens, sref. Reference Tokens
Output: reward: Scalar Reward Value
l : if -i(3 < len(st+i) < 1.5 x len(so)) then > Too low/high number of tokens
2: return -10
3: if st = st+i then > Current and next tokens are same
4: all-keep <— V a G at, a = KEEPJNDEX > Check if all actions are keep-action
5: if st+i = sref and all-keep then > Only keep-actions for correct tokens
6: reward <— 10
7: else > Incorrect tokens and/or not all actions are keep-action
8: reward <— 0
9: else

10: reward <— LevenshteinDistance(st, sref) — LevenshteinDistance(st-\-i, sref)
l i : return reward

3 By terminal tokens, we are referring to the first and last tokens in a sentence.

29

5 Implementation

5.3 Action Search Algorithm

The high dimensionality of the state-action spaces leads to significant variance when sampling
over all the actions using the policy. Since the world model of our GEC RL environment is quite
simple and deterministic, we implement the action search algorithm to mitigate the variance by
simulating the next tokens and filtering the actions to obtain a set of potentially good actions for
each token. It not only prevents unsafe explorations but also implicitly incorporates Grammar
Error Detection (GED)4 by suggesting candidate labels only for incorrect tokens.

Algorithm 3 SearchActions
Input: TTQ: Policy, V: Transition Function, s: Current Tokens, sref. Reference Tokens
Output: a: Action for each token
l : a 4— 0 > Initialize an empty array with same size as current tokens s
2: S i - COpy(s)

3: d <— LevenshteinDistance(s, sref) > Compute edit distance between s and sref

4: e <— EditOperations(s, sref) 5 > Compute set of edit operations to get sref from s

5-. for token index i = len(s),..., 1 do > Loop from the last to the first token
6: etok <— e[i] o Edit type for the ith token of s

l: if e^k = " equal" then > The ith token of s does not need to change
8: a[i] = KEEP-INDEX > Assign the keep-action
9: else

10: d <— G E T C A N D I D A T E A C T I O N S (' P , S, Sref, i, etok, d)

l i : a[i] <— S A M P L E T O K E N A C T I O N (7 T 6 I , S, i, a) > Assign the sampled action
12: s<—V(s, a[i], i) > Update the i t h token of s
13: d LevenshteinDistance(s, sref) > Update edit distance between s and sref

14: return a

The first part of our action search algorithm is the process of finding a set of potential can­
didate actions for a token that can move the current tokens closer to the reference tokens by
decreasing the Levenshtein distance between them. A simple version of this method involves
applying all actions to a token and collecting the actions that result in tokens with a lower
Levenshtein distance to the reference tokens than the Levenshtein distance between the origi­
nal tokens and the reference tokens. Our method optimizes this approach by using a sequence
matcher6 to find the non-matching tokens between the current and reference tokens and get
the type of edit required to change each token into the tokens in the reference sentence as
shown in Figure 5.3. We cluster the actions into the four edit types: equal, delete, insert, and
replace as shown in Table 5.3. This edit-to-action mapping reduces the number of actions to
search for the candidate actions based on the edit type of a token.

4In GED, the objective is to only detect tokens with grammar errors.
6We used S e q u e n c e M a t c h e r from the standard d i f f l i b Python library to identify the edit types.

30

5.3 Action Search Algorithm

Reference Tokens

Current Tokens

Edit Types

1 a m a student

1 a m an student

1 1 1 1

Sequence Matcher

equa l equal rep lace insert

Figure 5.3: Generating edit types for each token using Sequence Matcher.

Edit Type Action Labels

equal $KEEP
delete $DELETE
insert $APPEND
replace $REPLACE

$TRANSFORM
$MERGE
$UNKNOWN

Table 5.3: Edit type to action labels mapping

Algorithm 4 GetCandidateActions
Input: V: Transition Function, s: Current Tokens, sref. Reference Tokens, itoken'- Token

Index, etoken: Token Edit Type, dref. Current Edit Distance
Output: at: Candidate Actions
1

2
3
4
5

6

7

aedit <- Edit2Actions(etoken)
for a € aedü do

S <r- V{S, a, itoken)
d <— LevenshteinDistance(s, sref)
if d < dref then

o <- o U {a}
return a

> Initialize empty set of candidate actions

> Edit type to action mapping as in Table 5.3

> Get s by applying action a at ith token of s

> Between s and s, s is closer to sref

As outlined in Algorithm 5, we choose the action for each token by sampling from a set of
candidate actions rather than sampling from all actions. If a token has no candidate actions,
it is assigned the $UNKNOWN action, indicating that the policy has modified that token and
it could not be recovered anymore using any other actions. Conversely, if there are candidate

31

5 Implementation

actions, we add the $KEEP action to the candidate actions and select one of them randomly
using the policy's output values as the probability weights for the sampling. This allows the
policy to retain errors until it is confident in correcting them, rather than forcing it to fix all
present errors at once.

Algorithm 5 SampleTokenAction
Input: TTQ: Policy, St'- Current Tokens, itoken'- Token Index, at- Candidate Actions
Output: a: Token Action
l : if len(at) = 0 then

2: return UNKNO WNJNDEX > Index of the UNKNOWN label
3: at at U {KEEPJNDEX} > Include keep-action in candidate actions
4: O <— Tt(st) > Predict using the policy
5: Ocandidate ^- 0[it0ken, at] > Candidate labels' raw outputs of the i t h token
6: Pcandidate —̂ softmax(0candidate) > Probability distribution over candidate actions
7: a <— random(at,Pcandidate) > Weighted sampling over candidate actions
8: return a

As illustrated in Figure 5.4, our action search algorithm assists the policy by filtering the
action options from all 5k actions to just a few candidate actions. In the example in Figure 5.4,
all the non-keep candidate actions are equally good because they reduce the LD by 2. However,
the action "$REPLACE_a" will transform the current sentence into "I am a .", which is difficult
to correct in the next iteration. Since only solvable sentences are provided in this stage, only
such a faulty correction by the policy will make sentences unsolvable. Therefore, the policy
must learn to avoid such situations through experience by decreasing the confidence of such
labels in the action sampling stage.

Input
Tokens

Reference
Tokens

•ZED]
Token
Indexes

I
Current
Tokens

Edit
Types

equal

replace

equal

•

GetCand idate Actions

Candidate Actions A LD

; K E E P 0
ST RAN S F O R M _ C A S E _ L O W E R 2

$ R E P L A C E _ a 2
SREPLACE_5lUflent 2

La
Token Action

Candid ate Actions

-Apply the acti ion T ST R A N S F O R M _ C A 5 E _ L O W E R SampleTokenAction

Output
Tokens

Figure 5.4: Action Search Algorithm

32

5.4 REINFORCE Algorithm

5.4 REINFORCE Algorithm

To fine-tune our policy using RL, we implemented the REINFORCE (REward Increment = Non-
negative Factor times Offset REinforcement times Characteristic Eligibility) algorithm [69]. It
is a policy-gradient algorithm that directly optimizes the policy in the direction that increases
the expected reward. It achieves this by performing gradient-descent on the estimated gradient
of the expected reward with respect to the policy parameters as depicted in Equation 5.1.

1 N

i = l

where
VQJ is the estimated gradient of the expected reward w.r.t the policy parameters 9,
Gi is the discounted return at the ith timestep from Equation 3.8

In our task, the state, st, is an array of tokens whose dimension is in the range [1, M] and
its action, at, is also an array of the same dimension. Therefore, Equation 5.1 is adapted as
Equation 5.2 which computes the gradient over the sum of the log probability of token action.

j N M

VEJ = - - ^ G t V ^ l o g T T ^ I s t , ;) (5.2)
t=l 1=1

We implemented the batched version of the REINFORCE algorithm that updates the policy
on minibatches sampled from the experiences collected from multiple episodes. We accumu­
late the gradients from the minibatches and update the policy parameters after all experiences
have been sampled. Therefore, the number of gradient accumulations in our implementation
depends on the total number of experiences collected.

Algorithm 6 Batched REINFORCE Algorithm
Initialize policy with random parameters 9
Initialize gradient buffer g <— 0
Initialize experience buffer T> <— 0
for episode A; = 1,2,... do

r <— {(st, at, rt, s't)}f=1 > Sample episodic trajectory using Algorithm 3
TG {Gt}f=i > Compute discounted returns using Equation 3.8
V «— V U {(st, at, Gt) | (st, at,n, s't) G r, Gt € TG}J=I > Update experience buffer
if k mod K = 0 then > Update every Kth episode

n <— \len(D)/N~\ > Calculate number of mini-batches from the buffer
for mini-batch {(SJ, aj, Gi)}f=l G V do > Sample mini-batches of N items

g <— g + 1 QJ > Accumulate gradients computed using Equation 5.2

9 <— 9 + ag > Update the policy parameters
V —̂ 0 > Reset experience buffer
g <— 0 > Reset gradient buffer

33

6 Evaluation

In this section, we compare the performance of our models against other GEC systems that have
achieved the best results on different GEC benchmarks at the time this thesis was written. We
do not include the results of ensemble models1 to make a reasonable comparison between our
and others' GEC models. Determining the current state-of-the-art (SOTA) GEC system in each
benchmark is difficult because the platforms23 keeping track of the GEC systems are public and
the papers are not consistently tracked across all of these platforms. As a result, we emphasize
that the GEC systems chosen for evaluation may not necessarily reflect the current SOTA GEC
systems. We evaluate the best model from our baseline and RL models using the validation
metrics mentioned in Section 4.3.2.

6.1 Benchmarks

To highlight the strengths and limitations of different GEC systems and promote their further
development, several GEC benchmarks have been introduced. Each of them evaluates the GEC
system using different datasets and metrics. Therefore, it is important to evaluate any GEC
system on multiple benchmarks to compare it with different existing approaches and to eval­
uate the effectiveness of the implemented approach. In this section, we will discuss the GEC
benchmarks used to evaluate our approaches in this thesis.

6.1.1 CoNLL-2014

Computational Natural Language Learning in 2014 (CoNLL-2014) benchmark[29] consists of
50 essays written by 25 non-native English speakers on 2 different topics. Errors in each essay
were annotated by 2 independent annotators. Over the previous CoNLL-2013[66] benchmark,
CoNLL-2014 introduced further changes such as the detection and correction of all 28 grammar
errors instead of just 5 grammar errors and the use of F0.5 score by the M2 scorer instead of
F\ score. F0.5 is used since it emphasizes precision twice as much as recall. GEC system with
high precision is preferred because inaccurate error detection is undesired over missing some
errors.

6.1.2 JFLEG

Johns Hopkins University FLuency-Extended GUG corpus (JFLEG)[70] benchmark was intro­
duced extending the "Grammatical" versus "UnGrammatical" (GUG) corpus[71] to evaluate

'Ensemble models combine the outputs of multiple diverse models to make predictions
2 NLP Progress: h t tps : / / n l p p r o g r e s s . c o m / e n g l i s h / g r a m m a t i c a l e r r o r c o r r e c t i o n . html
3Papers With Code: h t tps : / /paperswi thcode . com/task/grammatical - e r r o r - c o r r e c t i o n

35

6 Evaluation

GEC systems with a focus on fluency-oriented corrections that make the corrected sentences
sound more native. It is a parallel corpus consisting of 754 and 747 sentences in the validation
and test datasets respectively. Each sentence in the dataset has been corrected by 4 different
annotators and the corpus-level GLEU score is used as the evaluation metric.

Original they just creat impression such well that people are drag to buy i t .
Minimal edit They just create an impression so well that people are dragged to buy i t .
Fluency edit They just create such a good impression that people are compelled to buy

i t .

Table 6.1: Difference between minimal and fluency edits

6.1.3 BEA-2019

The Building Educational Applications (BEA) 2019 Shared Task introduced the W&I+LOCNESS
dataset whose test dataset (see Table 4.1) is used as the benchmark dataset. It consists of 350
essays on approximately 50 different topics written by 334 authors consisting of both native
and non-native English speakers. It is the largest GEC benchmark at the moment with essays
from different proficiency levels. It uses the ERRANT F0.5 for the evaluation metrics in order
to provide detailed feedback about the GEC system's performance on different error categories.

Benchmark # of Sentences Metrics

CoNLL-2014
JFLEG (test)

BEA-2019

1,381
747

4,477

M2 F 0.5

GLEU
ERRANT F0.5

Table 6.2: Comparison of GEC benchmarks

6.2 Results

On the JFLEG benchmark, [5] showed that their RL model outperformed their SL model. [22]
demonstrated that incorporating the BERT's representation and the output of a BERT fine-
tuned as a GED model as the additional input features can benefit sequence-to-sequence GEC
systems. [72] introduced a Neural Verification Network (VERNet) to effectively estimate the
token level quality from multiple hypothesises generated from sequence-to-sequence GEC sys­
tems. [21] introduced gT5, the GEC version of the mT5[73]4, by performing multilingual GEC
in English, Czech, German and Russian. Using the large gT5-xxl model, they generated a new
variant of Lang-8[68] GEC dataset called cLang-8, whose target sentences are the output sen­
tences of the gT5-xxl model. [21] showed that just fine-tuning on the cLang-8 dataset can
substitute the typical multi-stage training of GEC systems.

4mT5 is the multilingual version of T5 (Text-To-Text Transfer Transformer) [74].

36

6.2 Results

Model BEA-2019 (F 0 5) CONLL-2014 (F0.5) JFLEG test (GLEU)

Neural RL Model [5] - - 53.98
BERT-fuse GED [22] 65.6 62.6 61.3
ELECTRA-VERNet [72] 68.77 63.43 62.07
GECToR (RoBERTa-base) [3] 71.5 64.0 -
T5-base [21] 69.38 65.05 -
T5-xxl [21] 75.88 68.75 -
Baseline Model (our) 60.38 ± 0.41 61.65 ± 0.24 60.14 ± 0.20
RL Model (our) 64.00 ± 0.89 63.62 ± 0.39 57.88 ± 0.43

Table 6.3: Comparison of GEC systems on different benchmarks. Our model scores are the
mean and standard deviation from five experiments.

According to the results of our experiments in Table 6.3, our RL model outperforms our base­
line model on the BEA-2019 and CONLL-2014 benchmarks. The RL model has the advantage
of interacting with sentences during training, which allows it to see new sentences that are
not present in the dataset and adapt to them. In contrast, the SL model only sees the sentences
present in the training dataset. However, the baseline model shows better performance on the
JFLEG test benchmark, which also evaluates the fluency of the generated texts. This indicates
that the outputs from the RL model are not as fluent as those from the SL model and the RL
model's ability to adapt to new sentences comes at the expense of fluency. Despite having a
smaller fine-tuning dataset, our RL model's performance on some benchmarks is comparable
to other GEC methods. These results highlight the strengths and weaknesses of both models
on different benchmarks.

The ERRANT scorer of the BEA-2019 benchmark generates a very detailed report over its 24
error categories. From Figure 6.1, we can see that on average the RL model has higher precision
and Fn.5 scores than the baseline model while the baseline model has higher recall than the RL
model. From these scores, we can also identify the error categories where the baseline and RL
models struggled the most.

For instance, the Fn.5 scores of both models are very low in the contraction category, CONTR,
which includes transforming contractions like "n't" and '"m" into their full forms "not" and
"am" respectively. Investigating the input and output sentences for contractions revealed that
out of 613 input sentences with contractions, there were still 484 output sentences which con­
tained contractions. Table 6.4 shows the number of different contractions present in one of the
RL model's outputs in the BEA 2019 benchmark. Please note that number for '"s" is high be­
cause '"s" can also be a part of a possessive noun as in Table 6.5. This highlighted the limitation
of our data processing pipeline which did not process the contractions properly.

Similarly, the RL models' Fn.5 scores have a huge fluctuation in the verb inflection category,
VERB : I N F L , indicating an unusual difference in their ability to correct verb errors. We do
not know the cause because verb inflection errors are harder to detect in the model outputs
than contraction errors. Since the gold annotations of the BEA-2019 test dataset are not publicly
available, we cannot know the difference between the model outputs and the correct sentences.

37

6 Evaluation

Error-Category

Figure 6.1: Mean Precision, Recall and F0.5 with the 95% confidence interval of the baseline and
RL models in the BEA-2019 benchmark

Contraction # of Tokens
J
s 298

n't 138
'm 55
'11 27
're 17
've 14
'd 11

Table 6.4: Number of contractions present in the model output of the BEA-2019 benchmark

's as contraction Not only that, he's a responsible and reliable guy .
's in possessive noun The philosopher's stone was pulverized into dust.

Table 6.5: Usage of "'s" as contraction and in possessive noun

38

7 Conclusion and Future Works

In this thesis, we developed the GEC RL environment using a Levenshtein Distance based
reward function. The parallel data used by our environment does not require manually la­
belling the error labels in the training data. Therefore, it removes the possibility to hinder the
sequence-to-label GEC model's performance due to labelling issues in the training data. We
also implemented the action search method to mitigate the issues of high-dimensional state-
action spaces in RL. In this way, we present the potential benefit of fine-tuning a sequence-to-
label GEC model using RL. In future works, the following directions would be interesting:

1. Since RL training is sensitive to hyperparameters and requires more training to con­
verge, we used a smaller dataset and a relatively simple RL algorithm in this thesis to
quickly examine our ideas. Therefore, the next promising step would be to fine-tune the
model on larger GEC datasets using more advanced RL algorithms like Proximal Policy
Optimization (PPO)[47].

2. In this thesis, we pre-train the model using SL. However, pre-training and fine-tuning
the model using only RL can mitigate the limitations of manual data labelling in SL and
take full advantage of RL's ability to learn from its own experience.

3. One of the bottleneck of using the sequence-to-label GEC model is a large number of very
specific edit labels. Optimizing and reducing the number of predefined labels required
by the sequence-to-label model can improve its performance.

4. Our action search algorithm is quite simple and it does not benefit much from test sen­
tences without any errors since it will always generate keep labels for them. Therefore,
a better search algorithm like Monte-Carlo Tree Search (MCTS)[75] can bring further
improvements.

39

8 Appendix

8.1 Data Filtering Parameters

This section discusses the data filtering parameters used while converting the data into JSON
format. The command to convert the W&I+LOCNESS dataset from its M2 format to our JSON
format is as follows:

py thon m2_to_json . py \
- -m2_path M2_PATH \ # Path to the input M2 file
- - j s o n _ p a t h JSON_PATH \ # Path to the output JSON file
- - m i n _ l e n M I N . L E N \ # Minimum number of tokens in a sentence

- - r e m o v e - e l l i p s i s # Remove ellipsis from the sentences

To convert the PIE synthetic dataset into the JSON format, we created a Jupyter Notebook
file "notebooks/PIE_to_JSON.ipynb". The notebook file is specifically created to process and
filter the parallel texts from the PIE synthetic dataset using the same hyperparameters used to
convert M2 files into JSON files. It also splits the data into train-validation datasets.

Hyperparameter PIE Synthetic W&I+LOCNESS Description

min_len 5 Minimum number of tokens in
a sentence

max_len 50 Maximum number of tokens in
a sentence

min_sim 0.8 Minimum similarity between
source and target sentences

only_proper_sent True Allow examples with only
proper target sentences

spelLcheck False True Check and correct spelling er­
rors in source and target sen­
tences

remove_ellipsis True Remove ellipsis from source
and target sentences

Table 8.1: Data Filtering Hyperparameters

41

8 Appendix

8.2 Training Details

The hyperparameters used in our experiments are saved in YAML format under the subdirec­
tory c o n f i g s which can be used to reproduce our results using the following commands:

python t r a i n _ s l . p y c o n f i g s / s l . p r e t r a i n . yaml # SL Pre-Training
python t r a i n _ s l . p y c o n f i g s / s l _ f i n e t u n e . yaml # SL Fine-Tuning
python t r a i n . r l . p y c o n f i g s / r l . f i n e t u n e . yaml # RL Fine-Tuning

For our experiments, we used a cloud system with 52 GB R A M and NVIDIA T4 GPU to
pre-train and fine-tune our model, which uses RoBERTa-base as the encoder. To optimize the
utilization of our hardware resources, we employed Pytorch's gradient accumulation and au­
tomatic mixed precision techniques. Using gradient accumulation, we could train our model
on bigger batch sizes by adding the gradients of several mini-batches. Likewise, automatic
mixed precision further reduces the GPU requirements and increases training speed by casting
the floating point operations into a low-precision float-16 format. Pytorch's implementation
of automatic mixed precision attempts to mitigate the potential loss of accuracy due to lower
precision floating operations by only casting certain regions that can work with float-16 oper­
ations.

Table 8.2 shows approximate training time for different stages of our experiment. The result
for the pre-training is only from one experiment whereas the fine-tuning results are the mean
time of 5 experiments.

Stage Average training time

Pre-Training
SL Fine-Tuning
RL Fine-Tuning

47 hours
40 mins
24 hours

Table 8.2: Approximate training time for different stages

2We use the term "cold" epochs to indicate the training epochs when the transformer encoder weights are frozen
so that only the final layers are trained. So "warm" epochs are the training epochs when both the transformer
encoder and the final layers are fine-tuned.

2 A sentence is solvable i f it can be converted into its reference sentence using the actions possible by the sequence-
to-label model.

42

8.2 Training Details

Hyperparameter Pre-Train Fine-Tune Description

Dropout 0.1 Dropout Rate before the final
layer

Cold epochs 2 0 Number of cold epochs1

Total epochs 20 Maximum number of training
epochs

Optimizer Adam [76] Gradient-based optimizer
Learning rate (cold 1.0 x 10" 3 Optimizer learning rate in cold
epochs) epochs
Learning rate (warm 1.0 x 10" 5 Learning rate in warm epochs
epochs)
Patience 1 epoch 5 epochs Number of epochs without im­

provement to terminate the
training before total epochs

Batch size 128 320 Training batch size
Accumulation Size 2 5 Number of iterations to accu­

mulate gradient
Datasets PIE Synthetic W&I+LOCNESS Training datasets
Keep Correct Exam­ False True Training dataset contains al­
ples ready correct sentences if set to

"True". Otherwise, it only con­
tains sentences with errors.

Only Solvable Exam­ False True Training dataset contains only
ples solvable sentences2if set to

"True". Otherwise, it contains
all sentences

Table 8.3: SL pre-training and fine-tuning hyperparameters

43

8 Appendix

Hyperparameter Fine-Tune Description

Gamma (7) 0.95 Discount factor in Equation 3.8
Dropout 0.1 Dropout rate before the final layer
Optimizer Adam Gradient-based optimizer
Learning rate 1.0 x 10" 5 Optimizer learning rate
Episodes 1 x 106 Total number of episodes
Batch size 64 Mini-batch size
Update interval 200 Episodes Interval to update the model using RL algo­

rithm
Evaluation interval 1 x 10 4 Episodes Interval to evaluate the model
Environment ID gec_lev_dist-vl Environment id for the GEC environment with

particular reward function
Datasets W&I+LOCNESS Datasets to load in the GEC environment
Only Solvable Examples True Training dataset contains only solvable sen­

tences if set to 'True'. Otherwise, it contains
all sentences

Table 8.4: RL fine-tuning Hyperparameters

44

Bibliography

[1] R. K. Rana, "Grammar error correction using deep reinforcement learning," M.S. the­

sis, in English, Faculty of Applied Computer Science, Deggendorf Institute of Technol­

ogy, Deggendorf, Germany and Faculty of Science, University of South Bohemia, České
Budějovice, Czech republic, Jan. 2023, p. 44.

[2] A. Awasthi, S. Sarawagi, R. Goyal, S. Ghosh, and V. Piratla, Parallel iterative edit models
for local sequence transduction, 2019. DOI: 10 . 48550/ARXIV. 1910 . 02893. [Online].
Available: ht tps : / / a r x i v . org/abs/1910 . 02893.

[3] K. Omelianchuk, V. Atrasevych, A. Chernodub, and O. Skurzhanskyi, "GECToR ­ gram­

matical error correction: Tag, not rewrite," in Proceedings of the Fifteenth Workshop on
Innovative Use of NLP for Building Educational Applications, Seattle, WA, USA —> Online:
Association for Computational Linguistics, Jul. 2020, pp. 163-170. DOI: 10 . 1 8 6 5 3 / v l /
2020 . bea- 1 . 16. [Online]. Available: ht tps : / / a c l a n t h o l o g y . org/2020 . bea-
1.16.

[4] V. Uc­Cetina, N . Navarro­Guerrero, A. Martin­Gonzalez, C. Weber, and S. Wermter, "Sur­

vey on reinforcement learning for language processing," Artificial Intelligence Review,
Jun. 2022. DOi: 10. 1007/sl0462-022-10205-5.

[5] K. Sakaguchi, M . Post, and B. Van Durme, "Grammatical error correction with neural
reinforcement learning," in Proceedings of the Eighth International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), Taipei, Taiwan: Asian Federation
of Natural Language Processing, Nov. 2017, pp. 366-372. [Online]. Available: ht tps :
/ / ac lan tho logy .org/117-2062.

[6] E. Malmi, S. Krause, S. Rothe, D. Mirylenka, and A. Severyn, Encode, tag, realize: High­

precision text editing, 2019. DOI: 10 . 48550/ARXIV. 1909 . 01187. [Online]. Available:
h t t p s : / / a r x i v . o r g/abs/1909.01187.

[7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation of gated recurrent neu­

ral networks on sequence modeling, 2014. DOI: 10 . 48550/ARXIV. 1412 . 3555. [Online].
Available: ht tps : / / a r x i v . org/abs/1412 . 3555.

[8] A. Bakhtin, A. Szlam, M . Ranzato, and E. Grave, Lightweight adaptive mixture of neural
and n­gram language models, 2018. DOI: 10 . 48550/ARXIV . 1804 . 07705. [Online].
Available: ht tps : / / a r x i v . org/abs/1804. 07705.

[9] C. Chelba, M . Norouzi, and S. Bengio, N­gram language modeling using recurrent neural
network estimation, 2017. DOI: 10 . 48550/ARXIV. 1703 . 10724. [Online]. Available:
h t t p s : / / a r x i v . o r g/abs/1703.10724.

45

https://arxiv.org/abs/1909.01187
https://arxiv.org/abs/1703.10724

Bibliography

[10] E. Miller, D. Shen, J. Liu, and C. Nicholas, "Performance and scalability of a large-scale
n-gram based information retrieval system," Journal of Digital Information; Vol 1, No 5
(2000), vol. l j a n . 2000.

[11] M . Federico and M . Cettolo, "Efficient handling of n-gram language models for statistical
machine translation," in Proceedings of the Second Workshop on Statistical Machine Trans­
lation, Prague, Czech Republic: Association for Computational Linguistics, Jun. 2007,
pp. 88-95. [Online]. Available: ht tps : / / a c l a n t h o l o g y . org/W07-0712.

[12] W. Cavnar and J. Trenkle, "N-gram-based text categorization," Proceedings of the Third
Annual Symposium on Document Analysis and Information Retrieval, May 2001.

[13] F. Aisopos, G. Papadakis, and T. Varvarigou, "Sentiment analysis of social media content
using n-gram graphs," in Proceedings of the 3rd ACM SIGMM international workshop on
Social media, 2011, pp. 9-14.

[14] G. Sidorov, A. Gupta, M . Tozer, D. Catala, A. Catena, and S. Fuentes, "Rule-based system
for automatic grammar correction using syntactic n-grams for English language learning
(L2)," in Proceedings of the Seventeenth Conference on Computational Natural Language
Learning: Shared Task, Sofia, Bulgaria: Association for Computational Linguistics, Aug.
2013, pp. 96-101. [Online]. Available: ht tps : / / a c l a n t h o l o g y . org/wi3-3613.

[15] J. C. Park, M . Palmer, and C. Washburn, "An English grammar checker as a writing
aid for students of English as a second language," in Fifth Conference on Applied Natural
Language Processing: Descriptions of System Demonstrations and Videos, Washington, DC,
USA: Association for Computational Linguistics, Mar. 1997, pp. 24-24. DOI: 10.3115/
974281. 974296. [Online]. Available: h t tps : / / a c l a n t h o l o g y . org/A97-2014.

[16] N.-R. H A N , M . CHODOROW, and C. LEACOCK, "Detecting errors in english article
usage by non-native speakers," Natural Language Engineering, vol. 12, no. 2, pp. 115-
129, 2006. DOi: 10. 1017/S1351324906004190.

[17] A. Rozovskaya, K.-W. Chang, M . Sammons, D. Roth, andN. Habash, "The Illinois-Columbia
system in the CoNLL-2014 shared task," in Proceedings of the Eighteenth Conference on
Computational Natural Language Learning: Shared Task, Baltimore, Maryland: Associa­
tion for Computational Linguistics, Jun. 2014, pp. 34-42. DOI: 10. 3115 / v l/wl4-1704.
[Online]. Available: h t tps : / / a c l a n t h o l o g y . org/wl4-1704.

[18] Z. Kaili, C. Wang, R. Li , Y. Liu, T. Hu, and H. Lin, A simple but effective classification model
for grammatical error correction, 2018. DOI: 10 . 48550/ARXIV. 1807 . 00488. [Online].
Available: h t tps : / / a r x i v . org/abs/1807 . 00488.

[19] C. Brockett, W. B. Dolan, and M . Gamon, "Correcting ESL errors using phrasal SMT tech­
niques," in Proceedings of the 21st International Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Computational Linguistics, Sydney, Aus­
tralia: Association for Computational Linguistics, Jul. 2006, pp. 249-256. DOI: 10.3115/
1220175 .1220207. [Online]. Available: ht tps : / / a c l a n t h o l o g y . org/P06-1032.

46

Bibliography

[20] M . Felice, Z. Yuan, 0. E. Andersen, H. Yannakoudakis, and E. Kochmar, "Grammatical er­
ror correction using hybrid systems and type filtering," in Proceedings of the Eighteenth
Conference on Computational Natural Language Learning: Shared Task, Baltimore, Mary­
land: Association for Computational Linguistics, Jun. 2014, pp. 15-24. DOI: 1 0 . 3 1 1 5 /
V 1 / W 1 4 - 1 7 0 2 . [Online]. Available: h t tps : / / a c l a n t h o l o g y . o r g / w l 4 - 1 7 0 2 .

[21] S. Rothe, J. Mallinson, E. Malmi, S. Krause, and A. Severyn, "A simple recipe for multi­
lingual grammatical error correction," in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), Online: Association for Computa­
tional Linguistics, Aug. 2021, pp. 702-707. DOI: 10 . 1 8 6 5 3 / v l / 2 0 2 1 . a c l - s h o r t . 89.
[Online]. Available: h t tps : / / a c l a n t h o l o g y . o r g / 2 0 2 1 . a c l - s h o r t . 89 .

[22] M . Kaneko, M . Mita, S. Kiyono, J. Suzuki, and K. Inui, "Encoder-decoder models can
benefit from pre-trained masked language models in grammatical error correction," in
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
Online: Association for Computational Linguistics, Jul. 2020, pp. 4248-4254. DOI: 10 .
18653 / v l / 2 0 2 0 . a c l - main . 391 . [Online]. Available: h t tps : / / a c l a n t h o l o g y .
o r g / 2 0 2 0 . a c l - m a i n . 3 9 1 .

[23] S. Kiyono, J. Suzuki, M . Mita, T. Mizumoto, and K. Inui, "An empirical study of incorpo­
rating pseudo data into grammatical error correction," in Proceedings of the 2019 Confer­
ence on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China: Associ­
ation for Computational Linguistics, Nov. 2019, pp. 1236-1242. DOI: 1 0 . 1 8 6 5 3 / v l / D 1 9 -
1119 . [Online]. Available: h t tps : / / a c l a n t h o l o g y . o r g / D 1 9 - 1 1 1 9 .

[24] Y. Wu, M . Schuster, Z. Chen, et al, Google's neural machine translation system: Bridging
the gap between human and machine translation, 2016. DOI: 1 0 . 4 8 5 5 0 / A R X i v . 1 6 0 9 .
0 8 1 4 4 . [Online]. Available: h t tps : / / a r x i v . o r g / a b s / 1 6 0 9 . 0 8 1 4 4 .

[25] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, "Bleu: A method for automatic evaluation
of machine translation," in Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, Philadelphia, Pennsylvania, USA: Association for Computa­
tional Linguistics, Jul. 2002, pp. 311-318. DOI: 10 . 3 1 1 5 / 1 0 7 3 0 8 3 . 1 0 7 3 1 3 5 . [Online].
Available: h t tps : / / a c l a n t h o l o g y . o r g / P 0 2 - 1040 .

[26] C. Napoles, K. Sakaguchi, M . Post, and J. Tetreault, "Ground truth for grammatical error
correction metrics," in Proceedings of the 53rd Annual Meeting of the Association for Com­
putational Linguistics and the 7th International Joint Conference on Natural Language Pro­
cessing (Volume 2: Short Papers), Beijing, China: Association for Computational Linguis­
tics, Jul. 2015, pp. 588-593. DOI: 1 0 . 3 1 1 5 / v l / P 1 5 - 2 0 9 7 . [Online]. Available: h t tps :
/ / a c l a n t h o l o g y . o r g / P 1 5 - 2 0 9 7 .

[27] C. Napoles, K. Sakaguchi, M . Post, and J. Tetreault, Gleu without tuning, 2016. DOI: 10 .
4 8 5 5 0 / A R X I V . 1605 . 0 2 5 9 2 . [Online]. Available: h t tps : / / a r x i v . o r g / a b s / 1 6 0 5 .
0 2 5 9 2 .

47

Bibliography

[28] D. Dahlmeier and H. T. Ng, "Better evaluation for grammatical error correction," in Pro­
ceedings of the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Montreal, Canada: Associa­
tion for Computational Linguistics, Jun. 2012, pp. 568-572. [Online]. Available: h t tps :
/ /ac lanthology.org/N12-1067.

[29] H. T. Ng, S. M . Wu, T. Briscoe, C. Hadiwinoto, R. H. Susanto, and C. Bryant, "The CoNLL-
2014 shared task on grammatical error correction," in Proceedings of the Eighteenth Con­
ference on Computational Natural Language Learning: Shared Task, Baltimore, Maryland:
Association for Computational Linguistics, Jun. 2014, pp. 1-14. DOI: 10.3115 / v l / w l 4 -
1701. [Online]. Available: h t tps : / / a c l a n t h o l o g y . org/wl4-1701.

[30] C. Bryant, M . Felice, and T. Briscoe, "Automatic annotation and evaluation of error types
for grammatical error correction," in Proceedings of the 55th Annual Meeting of the Asso­
ciation for Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada: Asso­
ciation for Computational Linguistics, Jul. 2017, pp. 793-805. DOI: 10 .18653 / v l/P17-
1074. [Online]. Available: h t tps : / / a c l a n t h o l o g y . org/P17- 1074.

[31] M . Felice, C. Bryant, and T. Briscoe, "Automatic extraction of learner errors in ESL sen­
tences using linguistically enhanced alignments," in Proceedings ofCOLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers, Osaka, Japan:
The COLING 2016 Organizing Committee, Dec. 2016, pp. 825-835. [Online]. Available:
h t tps : / / ac lan tho logy .o rg/C16-1079.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirec­
tional transformers for language understanding," ArXiv, vol. abs/1810.04805, 2019.

[33] A. Vaswani, N . Shazeer, N . Parmar, et at, Attention is all you need, 2017. DOI: 10 . 485 50/
A R X I V . 1706. 03762. [Online]. Available: h t tps : / / a r x i v . org/abs/1706. 03762.

[34] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, Squad: 100,000+ questions for machine
comprehension of text, 2016. DOI: 10 . 48550/ARXlv. 1606 . 05250. [Online]. Available:
h t t p s : / / a r x i v . o r g / a b s/1606.05250.

[35] P. Rajpurkar, R. Jia, and P. Liang, Know what you don't know: Unanswerable questions
for squad, 2018. DOI: 10 . 48550/ARXIV. 1806 . 03822. [Online]. Available: h t tps :
/ / a r x i v . o r g / a b s/1806.03822.

[36] Y. Liu, M . Ott, N. Goyal, et at, Roberta: A robustly optimized bert pretraining approach,
2019.DOI: 10. 48550/ARXIV. 1907.11692. [Online]. Available: h t tps : / / a r x i v . o rg /
abs/1907.11692.

[37] M . Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, Spanbert: Improving
pre-training by representing and predicting spans, 2019. DOI: 10 . 48 5 5 0 / A R X I V . 1907 .
10529. [Online]. Available: h t tps : / / a r x i v . org/abs/1907 .10529.

[38] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, Xlnet: Generalized
autoregressive pretraining for language understanding, 2019. DOI: 10 . 4 8 5 5 0 / A R X I V .
1906. 08237. [Online]. Available: h t tps : / / a r x i v . org/abs/1906. 08237.

48

https://aclanthology.org/C16-1079
https://arxiv.org/abs/1606.05250

Bibliography

G. Lample and A. Conneau, Cross-lingual language model pretraining, 2019. DOI: 10 .
4 8 5 5 0 / A R X I V . 1901. 07291. [Online]. Available: h t tps : / / a r x i v . o rg /abs/1901.
07291.
M . Ott, S. Edunov, D. Grangier, and M . Auli, "Scaling neural machine translation," in
Proceedings of the Third Conference on Machine Translation: Research Papers, Brussels,
Belgium: Association for Computational Linguistics, Oct. 2018, pp. 1-9. DOI: 10.18653/
vl/W18-6301. [Online]. Available: h t t p s : / / a c l a n t h o l o g y . org/W18-6301.
Y. You, J. Li , S. Reddi, et al, Large batch optimization for deep learning: Training bert in
76 minutes, 2019. DOI: 10 . 4 8 5 5 0 / A R X I V . 1904 . 00962. [Online]. Available: h t tps :
/ / a r x i v . o r g / a b s/1904.00962.
R. Sennrich, B. Haddow, and A. Birch, "Neural machine translation of rare words with
subword units," in Proceedings of the 54th Annual Meeting of the Association for Compu­
tational Linguistics (Volume 1: Long Papers), Berlin, Germany: Association for Computa­
tional Linguistics, Aug. 2016, pp. 1715-1725. DOI: 10. 18653 / v l/P16-1162. [Online].
Available: h t t p s : / / a c l a n t h o l o g y . org/P16- 1162.
J. Achiam, Accessed: 05-01-2023, 2018. [Online]. Available: h t t p s : / / s p i n n i n g u p .
o p e n a i . c o m / e n / l a t e s t / s p i n n i n g u p / r l i n t r o 2 . h t m l .
R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, "Policy gradient methods for
reinforcement learning with function approximation," in Advances in Neural Informa­
tion Processing Systems, S. Solla, T. Leen, and K. Müller, Eds., vol. 12, MIT Press, 1999.
[Online]. Available: h t tps : / / p r o c e e d i n g s . n e u r i p s . c c / p a p e r / 1 9 9 9 / f i l e /
464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.
V. Mnih, A. P. Badia, M . Mirza, et al., Asynchronous methods for deep reinforcement learn­
ing, 2016. DOI: 10 . 48550/ARXIV. 1602 . 01783. [Online]. Available: h t tps : / / a r x i v .
org/abs/1602.01783.
J. Schulman, S. Levine, P. Moritz, M . I. Jordan, and P. Abbeel, Trust region policy op­
timization, 2015. DOI: 10 . 4 8 5 5 0 / A R X I V . 1502 . 05477. [Online]. Available: h t tps :
/ / a r x i v . o r g / a b s/1502.05477.
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy opti­
mization algorithms, 2017. DOI: 10 . 4 8 5 5 0 / A R X I V . 1707 . 06347. [Online]. Available:
h t t p s : / / a r x i v . o r g / a b s/1707.06347.
T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., Continuous control with deep reinforcement
learning, 2015. DOI: 10 . 4 8 5 5 0 / A R X I V . 1509 . 02971. [Online]. Available: h t tps : / /
a rx iv .o rg /abs/1509.02971.
S. Fujimoto, H. van Hoof, and D. Meger, Addressing function approximation error in actor-
critic methods, 2018. DOI: 10. 48550/ARXIV. 1802 . 09477. [Online]. Available: h t tps :
/ / a r x i v . o r g / a b s/1802.09477.
T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor, 2018. DOI: 10. 48550/ARXIV.
1801. 01290. [Online]. Available: h t tps : / / a r x i v . org/abs/1801. 01290.

49

https://arxiv.org/abs/1707.06347

Bibliography

[51] V. Mnih, K. Kavukcuoglu, D. Silver, et at, Playing atari with deep reinforcement learning,
2013. DOI: 1 0 . 4 8 5 5 0 / A R X I V . 1 3 1 2 . 5 6 0 2 . [Online]. Available: h t tps : / / a r x i v . o rg /
a b s/1312.5602.

[52] M . G. Bellemare, W. Dabney, and R. Munos, A distributional perspective on reinforcement
learning, 2017. DOI: 1 0 . 4 8 5 5 0 / A R X I V . 1 7 0 7 . 0 6 8 8 7 . [Online]. Available: h t tps : / /
a r x i v . o r g / a b s/1707.06887.

[53] W. Dabney, M . Rowland, M . G. Bellemare, and R. Munos, Distributional reinforcement
learning with quantile regression, 2017. DOI: 1 0 . 4 8 5 5 0 / A R X I V . 1 7 1 0 . 1 0 0 4 4 . [Online].
Available: h t tps : / / a r x i v . o r g / a b s/1710 . 1 0 0 4 4 .

[54] M . Andrychowicz, F. Wolski, A . Ray, et ah, Hindsight experience replay, 2017. DOI: 1 0 .
4 8 5 5 0 / A R X I V . 1 7 0 7 . 0 1 4 9 5 . [Online]. Available: h t tps : / / a r x i v . o r g / a b s/1707 .
0 1 4 9 5 .

[55] D. Ha and J. Schmidhuber, World models, 2018. DOI: 1 0 . 5 2 8 1 / Z E N O D O . 1 2 0 7 6 3 1 . [On­
line]. Available: h t tps : / /zenodo . o r g / r e c o r d/1207631.

[56] T. Weber, S. Racaniere, D. P. Reichert, et al, Imagination-augmented agents for deep re­
inforcement learning, 2017. DOI: 1 0 . 4 8 5 5 0 / A R X I V . 1 7 0 7 . 0 6 2 0 3 . [Online]. Available:
h t t p s : / / a r x i v . o r g / a b s/1707.06203.

[57] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning, 2017. DOI: 1 0 . 4 8 5 5 0 /
A R X I V . 1 7 0 8 . 0 2 5 9 6 . [Online]. Available: h t tps : / / a r x i v . o r g / a b s/1708 . 0 2 5 9 6 .

[58] V. Feinberg, A. Wan, I. Stoica, M . I. Jordan, J. E. Gonzalez, and S. Levine, Model-based
value estimation for efficient model-free reinforcement learning, 2018. DOI: 1 0 . 4 8 5 5 0 /
A R X I V . 1 8 0 3 . 0 0 1 0 1 . [Online]. Available: h t tps : / / a r x i v . o r g / a b s/1803. 0 0 1 0 1 .

[59] D. Silver, T. Hubert, J. Schrittwieser, et al., Mastering chess and shogi by self-play with a
general reinforcement learning algorithm, 2017. DOI: 1 0 . 4 8 5 5 0 / A R X I V . 1 7 1 2 . 0 1 8 1 5 .
[Online]. Available: h t tps : / / a r x i v . o r g / a b s/1712 . 0 1 8 1 5 .

[60] F. Stahlberg and S. Kumar, "Synthetic data generation for grammatical error correction
with tagged corruption models," in Proceedings of the 16th Workshop on Innovative Use of
NLP for Building Educational Applications, Online: Association for Computational Lin­
guistics, Apr. 2021, pp. 37-47. [Online]. Available: ht tps : / / a c l a n t h o l o g y . o r g /
2021 . b e a-1.4.

[61] R. Grundkiewicz, M . Junczys-Dowmunt, and K. Heafield, "Neural grammatical error cor­
rection systems with unsupervised pre-training on synthetic data," in Proceedings of the
Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, Flo­
rence, Italy: Association for Computational Linguistics, Aug. 2019, pp. 252-263. DOI: 1 0 .
1 8 6 5 3 / v l / W 1 9 - 4 4 2 7 . [Online]. Available: ht tps : / / a c l a n t h o l o g y . o r g/W19-4427.

[62] C. Chelba, T. Mikolov, M . Schuster, et al, One billion word benchmark for measuring
progress in statistical language modeling, 2013. DOI: 1 0 . 4 8 5 5 0 / A R X I V . 1 3 1 2 . 3 0 0 5 .
[Online]. Available: h t tps : / / a r x i v . o r g / a b s/1312 . 3 0 0 5 .

50

https://arxiv.org/abs/1707.06203

Bibliography

[63] H. Yannakoudakis, 0. Andersen, A. Geranpayeh, T. Briscoe, and D. Nicholls, "Develop­
ing an automated writing placement system for esl learners," Applied Measurement in
Education, vol. 31, Apr. 2018. DOI: 1 0 . 1 0 8 0 / 0 8 9 5 7 3 4 7 . 2 0 1 8 . 1 4 6 4 4 4 7 .

[64] S. Granger, "The computer learner corpus: A versatile new source of data for sla re­
search," 1998.

[65] C. Bryant, M . Felice, 0. E. Andersen, and T. Briscoe, "The BEA-2019 shared task on gram­
matical error correction," in Proceedings of the Fourteenth Workshop on Innovative Use of
NLP for Building Educational Applications, Florence, Italy: Association for Computational
Linguistics, Aug. 2019, pp. 52-75. DOI: 1 0 . 1 8 6 5 3 / v l / W 1 9 - 4 4 0 6 . [Online]. Available:
h t t p s : / / a c l a n t h o l o g y . o r g/W19-4406.

[66] H. T. Ng, S. M . Wu, Y. Wu, C. Hadiwinoto, and J. Tetreault, "The CoNLL-2013 shared task
on grammatical error correction," in Proceedings of the Seventeenth Conference on Compu­
tational Natural Language Learning: Shared Task, Sofia, Bulgaria: Association for Compu­
tational Linguistics, Aug. 2013,pp. 1-12. [Online]. Available: h t tps : / / a c l a n t h o l o g y .
o r g/W13-3601.

[67] M . Tarnavskyi, "Improving sequence tagging for grammatical error correction," Ucu.edu.ua,
2021. D O I : h t tps : / / e r . u c u . edu . ua /handle /1 /2707 . [Online]. Available: h t tps :
/ /e r .ucu.edu.ua/handle/1 /2707.

[68] T. Mizumoto, M . Komachi, M . Nagata, and Y. Matsumoto, "Mining revision log of lan­
guage learning SNS for automated Japanese error correction of second language learn­
ers," in Proceedings of 5th International Joint Conference on Natural Language Process­
ing, Chiang Mai, Thailand: Asian Federation of Natural Language Processing, Nov. 2011,
pp. 147-155. [Online]. Available: h t tps : / / a c l a n t h o l o g y . o r g / 1 1 1 - 1 0 1 7 .

[69] R. J. Williams, "Simple statistical gradient-following algorithms for connectionist rein­
forcement learning," Machine Learning, vol. 8, pp. 229-256, 2004.

[70] C. Napoles, K. Sakaguchi, and J. Tetreault, "JFLEG: A fluency corpus and benchmark
for grammatical error correction," in Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, Valen­
cia, Spain: Association for Computational Linguistics, Apr. 2017, pp. 229-234. [Online].
Available: h t tps : / / a c l a n t h o l o g y . o r g/E17- 203 7 .

[71] M . Heilman, A. Cahill, N . Madnani, M . Lopez, M . Mulholland, andj. Tetreault, "Predicting
grammaticality on an ordinal scale," in Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), Baltimore, Maryland:
Association for Computational Linguistics, Jun. 2014, pp. 174-180. DOI: 1 0 . 3 1 1 5 / v l /
P 1 4 - 2 0 2 9 . [Online]. Available: h t tps : / / a c l a n t h o l o g y . o r g / P 1 4 - 2 0 2 9 .

[72] Z. Liu, X . Yi, M . Sun, L. Yang, and T.-S. Chua, "Neural quality estimation with multi­
ple hypotheses for grammatical error correction," in Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Online: Association for Computational Linguistics, Jun. 2021,
pp. 5441-5452. DOI: 1 0 . 1 8 6 5 3 / v l / 2 0 2 1 . naac l - main . 429. [Online]. Available:
h t t p s : / / a c l a n t h o l o g y . o r g /2021 . n a a c l - m a i n.429.

51

https://aclanthology.org/W19-4406
http://Ucu.edu.ua
https://aclanthology.org/2021.naacl-main.429

Bibliography

[73] L. Xue, N . Constant, A. Roberts, et at, Mt5: A massively multilingual pre-trained text-
to-text transformer, 2020. DOI: 10 . 48550/ARXIV. 2010 . 11934. [Online]. Available:
h t t p s : / / a r x i v . o r g / a b s/2010.11934.

[74] C. Raffel, N . Shazeer, A. Roberts, et al, Exploring the limits of transfer learning with a
unified text-to-text transformer, 2019. DOI: 10 . 48550/ARXIV. 1910 . 10683. [Online].
Available: h t tps : / / a r x i v . org/abs/1910 .10683.

[75] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, "Monte-carlo tree search: A new frame­
work for game ai.," Jan. 2008.

[76] D. P. KingmaandJ. Ba, Adam: A method for stochastic optimization, 2014. DOI: 10 . 485 50/
ARXIV. 1412 . 6980. [Online]. Available: ht tps : / / a r x i v . org/abs/1412 . 6980.

52

https://arxiv.org/abs/2010.11934

