
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

USING METADATA TO OPTIMIZE THE SURICATA
IDS/IPS
OPTIMALIZACE SYSTÉMU SURICATA PROSTŘEDNICTVÍM METADAT

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR ANDREI SHCHAPANIAK
AUTOR PRÁCE

SUPERVISOR Ing. LUKÁŠ ŠIŠMIŠ
VEDOUCÍ PRÁCE

BRNO 2023

Institut: Department of Computer Systems (UPSY)

Student: Shchapaniak Andrei

Programme: Information Technology

Specialization: Information Technology

Category: Networking

Academic year: 2022/23

Assignment:

1. Study the DPDK library, DPDK Prefilter, and open-source Intrusion Detection System (IDS) /
Intrusion Prevention System (IPS) Suricata.

2. Analyze the storing and reading options of packets' metadata.
3. Design a module for DPDK Prefilter software for metadata extraction of the network packets.

Propose how metadata can be passed between the systems and used by the Suricata IDS/IPS.
4. Implement the proposed metadata design in Suricata and DPDK Prefilter. Test the created

implementation.
5. Discuss achieved results and the possibilities of further improvements.

Literature:
Dle pokynů vedoucího.

Requirements for the semestral defence:
Points 1 to 3 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Šišmiš Lukáš, Ing.

Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.

Beginning of work: 1.11.2022

Submission deadline: 10.5.2023

Approval date: 31.10.2022

Bachelor's Thesis Assignment
144390

Using Metadata to Optimize the Suricata IDS/IPSTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
As the Internet continues to grow and evolve, cyber-attacks have become more harmful
and severe. Therefore, it is important to have effective detection and prevention systems.
The need for such systems is becoming more demanding because the damage caused by
cyber-attacks can be devastating to individuals and organizations. This motivates the
development of high-performance detection and prevention systems that are able to detect
and prevent cyber-attacks in a more effective way. Specifically, this thesis is focused on one
of such systems – Suricata. It is an open-source IDS/IPS system that is widely used in the
industry due to its advanced capabilities and flexibility. The ultimate goal of the thesis
is to design, implement and evaluate the transmission of per-packet metadata. Metadata
could be added by smart network interface cards (SmartNICs). DPDK Prefilter was used
in conjunction with Suricata to simulate the specialized hardware. It can simulate the
transmission of metadata to Suricata. The impact of metadata and the results of the
experimental evaluation will be discussed in detail at the end of this bachelor’s thesis.

Abstrakt
Jak Internet stále roste a vyvíjí se, kybernetické útoky se stávají škodlivějšími a závažnějšími.
Je tedy důležité mít účinné systémy detekce a prevence. Potřeba takových systémů se stává
urgentnější, protože škody způsobené kybernetickými útoky mohou být pro jednotlivce i
organizace katastrofické. Toto motivuje k vývoji vysoce výkonných systémů detekce a
prevence, které jsou schopny efektivněji detekovat a bránit kybernetickým útokům. Tato
bakalářská práce se konkrétně zaměřuje na jeden z těchto systémů – Suricatu. Jedná se
o IDS/IPS systém s otevřeným kódem, který je v průmyslu široce používán díky svým
pokročilým schopnostem a flexibilitě. Základním cílem této práce je navrhnout, implemen-
tovat a vyhodnotit přenos metadat pro každý paket. Metadata mohou být přidána pomocí
chytrých síťových karet (SmartNICs). DPDK Prefilter byl použit společně se Suricatou
k simulaci specializovaného hardwaru. On dokáže simulovat přenos metadat do Suricaty.
Dopad metadat a výsledky experimentálního hodnocení budou podrobně popsány na konci
této bakalářské práce.

Keywords
Suricata, AF_PACKET, DPDK, Prefilter, IDS, IPS, Suricata optimization, Metadata,
eBPF, Network monitoring

Klíčová slova
Suricata, AF_PACKET, DPDK, Prefilter, IDS, IPS, Optimalizace Suricaty, Metadata,
eBPF, Monitorování sítě

Reference
SHCHAPANIAK, Andrei. Using Metadata to Optimize the Suricata
IDS/IPS. Brno, 2023. Bachelor’s thesis. Brno University of Technology, Faculty of Infor-
mation Technology. Supervisor Ing. Lukáš Šišmiš

Rozšířený abstrakt
Sítě jsou nedílnou součástí moderního světa a hrají klíčovou roli v přenosu dat a informací. S
nástupem internetu se výrazně změnil způsob, jakým lidé komunikují a získávají informace,
což ovlivnilo mnoho aspektů života. Jednou z největších výhod modernizace sítí a internetu
je zlepšení efektivity a rychlosti komunikace a přenosu dat. Lidé mohou snadno komunikovat
s lidmi na druhé straně světa, sdílet informace a získávat nové znalosti a zkušenosti. Moderní
sítě umožňují také vzdálenou práci a vzdělávání, což se v poslední době ukázalo jako velmi
užitečné.

S narůstající závislostí na internetu se zvyšuje i počet hrozeb, které ohrožují bezpečnost
uživatelů. Mezi tyto hrozby patří například škodlivý software, phishing, ransomware a další.
Tyto hrozby mohou způsobit ztrátu dat, finanční škody a narušení soukromí uživatelů.
Proto je důležité být opatrný a chránit se proti těmto hrozbám. Existují různé způsoby,
jak se chránit proti hrozbám na internetu. Mezi tyto nástroje patří například firewally,
antivirové programy nebo nástroje pro detekci podezřelých činností v sítích. Jedním z
takových softwarových nástrojů jsou IDS/IPS systémy. Tyto nástroje slouží k detekci a
prevenci útoků v počítačových sítích.

Tato práce je zaměřena na provedení experimentů se Suricatou. To je jeden z několika
vysoce výkonných softwarových nástrojů s otevřeným kódem, který se využívá pro moni-
torování sítě a detekci hrozeb. Výhodou Suricaty je vysoká výkonnost, která je dosažena
kvalitní multi-vláknovou architekturou. Suricata čelí významnému problému zpracování
veškerého příchozího síťového provozu v reálném čase, což může vést k zmeškání hrozeb
nebo falešných poplachů. K řešení tohoto problému stále probíhají různé výzkumy, které
se zaměřují na zlepšení výkonu Suricaty.

Pokročilé síťové karty mohou obsahovat hardwarové offloady, které mohou pomoci Suri-
catě v rychlejším zpracování paketů. Metadáta, jako jsou extra informace o paketu, mohou
být přenesena z hardwaru do Suricaty. Vývoj hardwaru je ale složitý a vyhodnocení, jaká
metadata mohou Suricatě nejvíce pomoci, může být velmi užitečné. Avšak před tím, než
se implementuje v hardware, je vhodné to otestovat v softwaru, protože to bude méně
nákladné. Pro tyto účely existuje DPDK Prefilter, který umožňuje simulaci hardwarových
funkcí v softwaru.

Cílem práce bylo navrhnout, implementovat a vyhodnotit použití metadat v rámci sys-
tému DPDK Prefilter. Tento nástroj má možnost simulovat použití hardwarových offloadů
přímo v softwaru. Výsledky této práce mohou hrát důležitou roli při dalším rozšiřování
možností Suricaty, které mohou být spojeny s metadaty.

V první kapitole bakalářské práce je představen systém Suricata. Na začátku je popsána
jeho architektura a části, ze kterých se skládá. V další sekci je rozepsána dekódovací část
podrobněji, protože na ni především byla zaměřena metadata. Pak je uveden krátký přehled
o Internetu a síťových paketech, znalost kterých pomůže čtenáři porozumět účelu metadat.
Poté se pokračuje strukturou detekčních pravidel. Detekční pravidla byla jedním z důvodů,
proč byla metadata reprezentována jako informace ze síťových hlaviček. Další sekce obsahují
informace o různých způsobech fungování vláken v Suricatě a modulech pro příjem paketů.
AF_Packet a DPDK moduly jsou probrány do hloubky spolu s jejich navazujícími částmi.
Také celá subsekce vysvětluje princip fungování eBPF filtru a jeho role v Suricatě.

V další kapitole je představen DPDK Prefilter. Hlavním účelem tohoto nástroje je
simulace hardware funkcionality v softwaru. Navíc DPDK Prefilter je dobrým nahrazením
eBPF filtru, protože řeší problém blokování sdílené eBPF mapy mezi Suricatou a eBPF
programem. Na začátku kapitoly je krátce vysvětleno, co je DPDK Prefilter a jaké má
výhody. Také je ukázáno jeho zapojení se Suricatou pomocí DPDK front. V první sekci

se probírá jeho architektura. Další sekce rozvádí téma o dekodovací části DPDK Prefiltru.
V této sekci je také zmíněn proces dekódování paketů a bypasování celých toků na základě
zpráv od Suricaty, kterými určuje, který tok má být bypasován. Třetí sekce popisuje způsob
zapojení a meziprocesorovou komunikaci mezi Suricatou a DPDK Prefiltrem.

Třetí kapitola popisuje motivaci této práce, krátký návrh implementace a použití meta-
dat. První sekce uvádí do tématu jak metadata mohou pomoci Suricatě a kde metadata
mohou být uložena. Další sekce je věnována návrhu metadat, kde je ukázána jejich struk-
tura a zdůrazněn důvod výběru metadat jako dat ze síťových hlaviček. Třetí sekce ukazuje
proces ukládání metadat do paketů. V další sekci je popsán průběh dohody na stejných
metadatech mezi dvěma systémy. To je nutný krok, aby nedošlo k nekonzistenci dat a
dalším chybám. V poslední sekci jsou probírány konfigurační soubory pro Suricatu a DPDK
Prefilter. To je nutné pro pochopení, co bude přidáno do těchto souborů a proč.

Poslední kapitola popisuje implementaci a testování metadat. V první sekci jsou pop-
sány jednotlivé soubory, které byly přidány do projektu. Také celá subsekce je věnována
implementaci způsobu procházení přes metadata a jejich nastavení. Další sekce je věnována
integračním testům. Tyto testy slouží pro evaluaci, zda metadata neovlivnily detekční
modul Suricaty. Pro tyto účely se používal program suricata-verify, pro který byly
napsány další integrační testy. Poslední sekce popisuje testy na výkonnost a jejich výsledky.
DPDK Prefilter byl spouštěn se Suricatou při různých konfiguracích. Pak se posílaly pakety
s různou rychlostí. Na konci sekce jsou zobrazeny grafy pro porovnání.

Závěr práce je věnován sumarizaci výsledků. Na konci je krátce zmíněno o tématu,
kterým se dá pokračovat v budoucnosti při rozšíření funkčnosti metadat.

Using Metadata to Optimize the Suricata
IDS/IPS

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Mr. Ing. Lukáš Šišmiš. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Andrei Shchapaniak

May 4, 2023

Acknowledgements
I would like to express my sincere appreciation to my supervisor Ing. Lukáš Šišmiš for his
invaluable supervision and provided support to me duration of writing this thesis. I feel
incredibly fortunate to have had him as my supervisor, and I am grateful for his contribution
to both my academic and personal growth.

Contents

1 Introduction 2

2 Suricata 4
2.1 Architecture . 5
2.2 Runmodes . 6
2.3 Capture modes . 6
2.4 Decode module . 11
2.5 Detection rules . 13

3 DPDK Prefilter 16
3.1 Operating stages . 17
3.2 Decode module . 18
3.3 Communication with Suricata . 19

4 Per-packet metadata 23
4.1 Motivation . 23
4.2 Design . 24
4.3 Configuration . 26
4.4 Agreement . 26
4.5 Processing . 27

5 Implementation and evaluation 29
5.1 Implementation . 29
5.2 Integration tests . 31
5.3 Performance tests . 34

6 Conclusion and future work 40

Bibliography 42

1

Chapter 1

Introduction

In the past, people used to communicate and exchange information via conventional meth-
ods. However, as society progressed, there was a growing demand for a more efficient and
effective means of communication and information exchange. In 1969, a military-funded
experiment has brought a global system that is used by a significant part of the world’s pop-
ulation now. Over time computer networks continued improving, resulting in faster data
transfer. However, these improvements have also brought negative consequences. With
the increasing functionality of the Internet, new vulnerabilities for hackers are opening up.
This has become the reason why creating a completely secure system is extremely difficult.
No wonder the common sentiment in the field of cybersecurity is "No single system can be
completely secure".

Before we describe methods of protection, we will define what types of attacks exist
[19]. The most popular are:

• Denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks. A DoS at-
tack is aimed at overwhelming the system’s resources and making them temporarily
unavailable to users. A DDoS attack is also an attack on the system’s resources, but
it originates from many different sources, making it more powerful.

• Man-in-the-middle (MITM) attack. This is a type of attack where the hacker inserts
himself between the communication of two parties who believe that they are directly
communicating with each other.

• Phishing attack. This type of attack is more oriented toward humans. In essence, the
attacker sends fake messages to trick a person into revealing sensitive information.

To be protected against different types of network attacks, people developed different
tools to make the network secure. Examples of such systems are firewalls, antiviruses,
intrusion detection systems (IDS), intrusion prevention systems (IPS), and others.

Now consider IDS and IPS in more detail, because this thesis is focused on one of such
systems. An IDS is a system that monitors network events and analyzes them to detect
security incidents and potential threats. An IPS provides more features because it not only
detects security incidents but also prevents them [3].

Depending on the location of IDS in the entire network, the system is divided into two
types: Network Intrusion Detection System (NIDS) and Host Intrusion Detection System
(HIDS). NIDS monitors all network traffic on a specific segment of the network and can be
placed at various locations within a network. It raises alerts about potential threats while
the HIDS aims to protect individual devices and servers [23].

2

This thesis attempts to introduce the reader to the system Suricata and its potential to
leverage other connected software to enhance its capabilities. It explores the architecture,
modes, and settings of Suricata to provide a comprehensive understanding of the system’s
capabilities.

The goal of this thesis was to explore potential methods of transmitting information
to Suricata, followed by the implementation of one of them. In the end, integration and
performance tests were performed to evaluate the impact of metadata on the functionality
of Suricata.

The results of the metadata evaluation can be used to expand the usage of metadata in
the future. For instance, metadata can contain more valuable information, that optimizes
packet processing in Suricata. Overall, this thesis provides a valuable contribution to the
field of networks and highlights the potential of using metadata to improve the capabilities
of Suricata.

3

Chapter 2

Suricata

Suricata1 is an open-source network analysis and threat detection software used by most
private and public organizations. It was developed by the Open Information Security
Foundation (OISF), which is a nonprofit organization aiming at developing and supporting
open-source security tools.

Suricata is a powerful IDS/IPS tool that can effectively detect and prevent cyber threats
such as network intrusions, malware, and other malicious activity. It provides protection
against various types of attacks such as DDoS attacks, Structured Query Language injec-
tions (SQLi), phishing, and others. One key advantage of Suricata is its ability to work
in combination with other systems such as firewalls, Virtual Private Networks (VPNs),
or Security Information and Event Management (SIEM) systems. Additionally, Suricata
is compatible with various platforms such as Windows, Mac, and Linux, which makes it
flexible to use.

Suricata can run in different environments, including cloud-based, virtualized, and phys-
ical environments. It is configured using a YAML-based configuration file. It offers a set
of different options for setting up the output format, inspected/decoded protocols, DPDK
support and related options, and NIC configuration. The user can achieve high capture
rates by configuring the previously mentioned options.

Suricata can be configured in two main modes [23]:

• IDS. Used for monitoring resources, analyzing traffic, or testing. In this mode, Suri-
cata does not block traffic. Depending on the network connection Suricata can run
in either Host-based IDS (HIDS) or Network IDS (NIDS) modes. The former mode
is usually used for monitoring critical resources on a machine or testing. The latter
mode is mainly used for analyzing traffic and raising alerts.

• IPS. This configuration provides the ability not only to monitor the network but also
to block certain types of traffic.

Despite the fact that Suricata is widely used for network security monitoring, intrusion
detection, and prevention, like any other system, Suricata has its advantages and disadvan-
tages. The main ones are mentioned below [16]:

1https://suricata.io/

4

https://suricata.io/

Advantages:
• Open-source software.

• Real-time traffic analysis and fast
threat detection.

• Can be integrated with other systems.

• Regular updates.

Disadvantages:

• Resource extensive.

• Steeper learning curve.

2.1 Architecture

Capture Decode OutputDetection

Packet

Stream
Reassembly

Log
Records

Threads

Figure 2.1: Suricata architecture.

• Capture module – receives packets from the NIC using packet capture libraries such
as AF_Packet, DPDK, or others. Alternatively, it reads packets from Packet Capture
(PCAP) files using the open-source cross-platform library libpcap2. The packets are
captured in real-time and are passed to the Suricata next module for decoding.

• Decode module – is responsible for decoding incoming packets and extracting impor-
tant data from the packets. This process involves multiple steps, including validating
packet headers to confirm that they are not malformed and decoding the payload to
extract additional information, such as file hashes and strings. Extracted data from
the packet are put into Suricata’s internal representation. This module is described
in detail in Section 2.4.

• Reassembly module – is used to reassemble fragmented packets and reconstruct the
original packet payloads. The packets are tracked in flows to keep information about
the packets belonging to the same TCP stream. This module allows Suricata to detect
stealthy attacks that bypass detection by using packet fragmentation.

• Detection module – identifies potential threats in the incoming packets against a
set of rules. Suricata rules are described in Section 2.5. The module has the ability
to parallelize detection processing for one packet simultaneously in IPS configura-
tion mode. Additionally, the user can write custom Lua scripts for customizing the
behavior of Suricata.

• Output module – is responsible for formatting and outputting the results of the de-
tection module. The module reads events and alerts as input. As output, it prints
statistics in different output formats such as JavaScript Object Notation (JSON),
Eve-JSON, and Comma-Separated Values (CSV).

2https://man7.org/linux/man-pages/man3/libcap.3.html

5

https://man7.org/linux/man-pages/man3/libcap.3.html

2.2 Runmodes
To examine the available runmodes in Suricata, it is necessary to have a comprehensive
understanding of its core building blocks. Suricata is a multi-threaded system consisting of
three "building blocks": thread, thread-module and queue.

A thread is a lightweight process that can be scheduled and run concurrently with other
threads by the operating system [14]. In Suricata, each thread contains thread-modules,
which represent different functional parts of Suricata, and are linked to other threads via
queues. Thread-module and its functional parts are explained in Section 2.1. Queues are
used to transfer packets between threads. Suricata can operate in one or more threads,
and each thread may consist of multiple thread-modules, with only one module running
at a time. Although each thread-module can process only one packet at a time, Suricata
typically consists of multiple threads assigned to a single processor. This allows the Suricata
engine to process multiple packets simultaneously [23]. The configuration of these "building
blocks" is known as the runmode. A thorough understanding of the runmodes, building
blocks, and their interconnections is crucial for configuring Suricata to perform optimally
and efficiently in different systems.

Suricata provides several runmodes such as:

• Workers. For the maximum performance it is recommended to use this runmode,
because the NIC ensures the balanced distribution of packets between Suricata’s pro-
cessing threads. The scheme of this runmode is shown in Figure 2.2.

• Autofp. In order to process PCAP files, or in the case of certain IPS setups, autofp
runmode is used. It contains one or more capture threads, that capture the packets
and perform the packet decoding, after which it is passed on to the flow worker
threads.

• Single. It contains a single packet processing thread. This runmode is mainly used for
development or debugging. However, the number of management threads is unlimited.

2.3 Capture modes
In this section of the thesis, the focus will be on the two widely-used capture modes imple-
mented in Suricata, namely AF_Packet and DPDK. It is aimed at providing a more compre-
hensive understanding of their roles in Suricata’s performance, as well as their respective
strengths and weaknesses. We will delve deeper into the technical details and key differ-
ences between these capture modes, which contribute to the overall efficiency and accuracy
of Suricata’s traffic analysis capabilities.

2.3.1 AF_Packet

AF_Packet3 is a Linux socket used for both receiving and sending raw network packets
directly from the network interface [23]. It is commonly used in Linux network program-
ming to create high-performance applications because it allows bypassing the Linux kernel’s
networking stack and accessing the network interface directly.

3https://man7.org/linux/man-pages/man7/packet.7.html

6

https://man7.org/linux/man-pages/man7/packet.7.html

Once the packet is gathered by the network interface, it is sent to the kernel. Then it
is cloned into user space, but the original packet continues to be processed in the kernel.
Application in the user space must ensure the handling of the received raw packet.

Internet

NIC

Suricata

Packet
Processing
Thread

1

Packet
Processing
Thread

2

Packet
Processing
Thread

N

Management
Threads(s)

Figure 2.2: Runmode workers.

Advantages:
• Can handle multiple packets in a single

system call. It helps to improve perfor-
mance and reduce the number of con-
text switches.

• Can be bound to specific network inter-
faces. It gives applications more con-
trol over network performance.

• Provides versatility. Provides a level
of abstraction from the kernel side, be-
cause it is hardware independent.

Disadvantages:

• AF_Packet has limited functional-
ity (limited filtering capabilities, the
application must have administrative
privileges).

• Performance loss due to packet cloning.

2.3.2 eBPF and XDP in AF_Packet

The extended Berkeley Packet Filter (eBPF) and Express Data Path (XDP) are two pow-
erful networking technologies widely used in the Linux kernel. They provide a flexible and
efficient way to perform custom packets processing tasks, such as filtering, routing, and
forwarding, with low latency and high throughput.

eBPF is a kernel technology that allows programs to run without the need to change
the kernel source code or add additional modules. In other words, it is a lightweight,
sandbox virtual machine (VM) inside the Linux kernel [7]. It was originally developed

7

as an extension to the classic Berkeley Packet Filter (BPF) technology, which was used
for packet filtering and monitoring in the networking stack. eBPF improves upon BPF
by providing a more powerful and flexible programming model supporting advanced data
structures, control flow constructs and system calls.

XDP is a networking technology that enables high-performance packet processing in the
Linux kernel. It offers to execute the program on the packet that is just received from the
receive rings and allows the eBPF program to define the fate of the packet at the beginning
of the packet processing [9]. XDP can work in three modes within the packet processing
pipeline: hardware, driver and generic.

It is worth noting that the best outcome in terms of XDP program performance can
be achieved when running the program in hardware. In this case, CPU resources saving
is possible because XDP is loaded to the NIC (currently supported by Netronome only
[17]). XDP running in generic mode is more general-purpose and can be used when
card selection is limited. However, Running XDP in generic mode could lead to less
performance compared to operating in hardware. The choice of whether to run XDP in
hardware or software mode depends on factors such as card selection and performance
requirements.

User
Application

NIC

skb
allocXDP

eBPF

Network
Stack

Driver

Userspace

Kernelspace

Figure 2.3: eBPF and XDP in driver mode [2].

Figure 2.3 shows eBPF and XDP in driver mode. That means that the XDP program
runs within the driver itself and processes packets right after they are received off the NIC
and before they are passed to the kernel.

Possible XDP actions [6]:

• XDP_PASS – pass packet further to the network stack.

• XDP_DROP – the simplest and the fastest action, packet is dropped.

• XDP_TX – send the packet back to the same NIC it arrived on.

• XDP_ABORTED – program error, packet is dropped.

8

eBPF in Suricata

Processing all captured packets can be a bottleneck for Suricata’s performance. To solve
this Suricata has an implemented eBPF mechanism in the AF_Packet interface which is
described in Section 2.3.1. eBPF is used in Suricata for the next three purposes [20]:

• Supports any BPF filters.

• Provides load balancing.

• Loads XDP programs.

Using eBPF to filter packets can significantly improve Suricata’s performance by dele-
gating some of the filtering tasks to the kernel. This approach reduces the load on the user
application and makes the use of system resources more efficient.

To address this issue, Suricata can leverage eBPF to filter out unwanted packets before
they reach the user application. This is achieved through the use of eBPF hash tables, also
known as eBPF maps. It is a data structure shared between user space and kernel space,
which allows the passing of information between spaces [20]. eBPF maps are similar to the
flow tables, where each entry contains details such as source and destination IP addresses
and ports, and used the protocol. Suricata may check the map when a packet arrives to
see whether it belongs to the flow that should be ignored. In addition to filtering, the flow
table can also be modified dynamically based on the rules configured in Suricata.

2.3.3 DPDK

DPDK (Data Plane Development Kit)4 is an open-source framework that enables the devel-
opment of high-speed data plane applications. Since 2017, this project has been managed
by Linux Foundation. DPDK provides a programming framework for x86, ARM, and Pow-
erPC processors.

Advantages:
• Running NIC drivers in userspace in-

stead.

• Using hugepages.

• Using Poll Mode Drivers (PMDs).

Disadvantages:

• Because DPDK bypasses the kernel, it
may introduce security risks.

• DPDK is not compatible with all net-
work interface cards.

Another significant advantage is that DPDK can be used in conjunction with NICs from
different manufacturers. Major vendors, such as Intel or Mellanox, integrate native support
of DPDK into the device driver of their cards. NICs of various vendors might require the
installation of a custom device driver to work correctly with DPDK because the framework
needs access to advanced parts of the NIC [24].

DPDK is developed based on the kernel bypassing approach, which consists of offload-
ing packet processing from the OS kernel to userspace applications [4]. It helps to avoid
time-consuming context switching between the application and the kernel and increases
performance.

4https://www.dpdk.org/

9

https://www.dpdk.org/

Environment Abstraction Layer

The Environment Abstraction Layer (EAL) is responsible for gaining access to low-level
resources and abstracting them to reduce the complexity of developing applications. It
provides a generic interface that hides the environment specifics from the applications and
libraries.

From the services listed in [12], the typical ones are:

• DPDK Loading and Launching. The DPDK and its application are linked as a single
application.

• Core Affinity/Assignment Procedures. Assigns execution units to specific cores.

• CPU Feature Identification. Determines at runtime if the current CPU supports
the features.

• System Memory Reservation. Reserves different memory zones.

DPDK applications pass two parts of parameters. In the first part, they pass the
parameters of the EAL library and the second part belongs to the application parameters.
It looks like this:

./name_dpdk_app <EAL_params> -- <APP_params>

A list of EAL parameters is sourced here [11].

Hugepages

In computer systems, memory management plays a significant role in the efficient use of re-
sources. When a process uses memory, the kernel divides Random Access Memory (RAM)
into chunks of 4K bytes called pages, which can be swapped to disk. The management of
virtual memory space by the CPU and the operating system becomes increasingly time-
consuming as the number of pages grows. To optimize this process, current CPU architec-
tures support larger pages, known as Huge pages on Linux, Super Pages on BSD, and Large
Pages on Windows [25]. The main benefit of hugepages is its ability to manage huge-sized
pages in memory in addition to the standard 4KB page size. By enabling Huge pages, the
system has fewer page tables to deal with, and thus, there is less overhead to access/main-
tain them. This leads to enhanced kernel-level performance, which eventually boosts the
application by reducing the number of mapping tables. Therefore, the use of hugepages can
improve system performance for applications with high memory requirements [18].

Poll Mode Drivers

The standard packet path is depicted in Figure 2.4. Initially, NIC drivers use interrupt
mechanisms to process incoming packets. When the NIC receives packets, an interrupt
is triggered, and the kernel is prompted to process them. This method works well when
packets arrive slowly because the delay of context switching can be ignored. However,
when the packet arrival rate is considerable, like in high-speed networks, the processing
performance is significantly reduced [4].

DPDK solved this problem by using the polling-based approach. It provides drivers
called Poll Mode Drivers (PMDs). The main goal of these drivers is to poll network devices

10

for packets. It requires also one of the kernel drivers that can be used as PMD, e.g.
vfio_pci, igb_uio, and uio_pci_generic, to initialize the hardware device. Therefore,
a NIC must be explicitly bound to one of the aforementioned drivers in order to be managed
by DPDK [4].

It is recommended use PMDs only for high-load networks to reduce wasted CPU cycles.

User Space

Application

Stack

Network
Driver

Kernel Space

NIC

Standard

User Space

Application

Stack

Network
Driver

Kernel Space

NIC

DPDK

DPDK Libraries

DPDK PMD

Figure 2.4: A comparison of the traditional way of processing packets in the operating
system vs DPDK [8].

2.4 Decode module
The network is a complex system that consists of numerous protocols, each operating on
a specific layer. The Open Systems Interconnection (OSI) reference model is a conceptual
framework that describes the functions of the networking or telecommunication system
independently from the underlying technology infrastructure [22]. This model defines seven
layers that are described in Figure 2.5, each of these layers performs different functions
in the network. To the right of each layer mentioned some protocols that belong to the
corresponding layer.

Dividing the network into layers simplifies packet parsing for network applications.
Packet parsing is a fundamental process of network applications that involves analyzing the
headers of network packets and extracting relevant information to understand the contents
of the packet.

As shown in Figure 2.6, a network packet is a basic unit of data that is grouped together
and transferred over a computer network. The size and structure of a network packet
depend on the underlying network structure [26]. Understanding these concepts is essential
for developing network applications because it provides an awareness of how information
is transferred over the network. To figure out more about the frame anatomy, size, and

11

contents of different protocol headers, the following article is suitable for understanding the
corresponding things [15].

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

HTTP, DNS,
DHCP

SSL, SSH,
FTP

Sockets,
WinSock

Ethernet, PPP,
Bridge

Coax, Fiber,
Hub, Wireless

IPv4, IPv6,
ARP

TCP, UDP

Figure 2.5: OSI model [22].

User Data

Application Data

L3 Header

L4 Header

L2 Header

L7 Header

Transport Data

Network Data

Frame Data

Figure 2.6: Structure of the network packet.

Packet parsing is an important stage that allows getting all necessary information from
the packet for its next processing. Like other network parsers, Suricata starts from the
second Data Link Layer.

• Layer 2. In addition to the Ethernet protocol, Suricata supports protocols such as
Point-to-Point Protocol (PPP), Cisco High-level Data Link Control (HDLC), and
others.

• Layer 3. On this layer, basic protocols such as Internet Protocol of version 4/6
(IPv4/6), Address Resolution Protocol (ARP), and others are supported. On this
layer, Suricata also checks if the packet has set values for Virtual Local Area Network
(VLAN).

• Layer 4. This layer does not contain a lot of the protocols, therefore Suricata parses
only the main and frequently used protocols such as User Datagram Protocol (UDP),
Transmission Control Protocol (TCP), Internet Control Message Protocol of version
4/6 (ICMPv4/6).

• Layer 7. Now on this layer, protocols such as Secure Sockets Layer/Transport Layer
Security of different versions (SSL/TLS), Secure Shell (SSH), File Transfer Protocol
(FTP), and others are supported. However, it is planned to add support for other
protocols such as Simple Network Management Protocol (SNMP), Session Initiation
Protocol (SIP), and others in the future.

Each packet goes through the decoding module, which is a significant part of Suricata.
During this process, the internal structure of Suricata is filled in. It contains:

• Pointers to the beginning of headers.

• Information from headers such as ports, addresses, protocols, etc.

12

• Information about flow record.

• Other useful information which is used in the next modules.

Suricata defines internal structures (headers) for each supported network protocol. Up
to the fourth layer, each layer contains the protocol ID of the following header. After
Suricata must estimate the protocol by TCP payload. Therefore parsing of the packet is
like tree traversal. In Figure 2.7 is shown the parsing of the basic TCP packet in Suricata.
Dashed-dotted lines indicate possible combinations of protocols, and the green line indicates
one of them in the case of Ethernet-IPv4-TCP packet.

SLL PPP Ethernet

IPv4 IPv6 ARP

UDP TCP ICMP

Figure 2.7: Example of packet parsing in Suricata in the form of a tree.

2.5 Detection rules
Suricata rule structure consists of 3 logical parts – ACTION, HEADER and RULE OP-
TIONS [21]. Each part of the rule is described in the subsections below.

2.5.1 ACTION

Specifies what will happen with a packet, if the rule matches.
• alert – generate an alert.

• pass – pass current packet without further inspection.

• drop – drop the packet and generate an alert (works in IPS mode only).

• reject[src|dst|both] – send RST/ICMP unreach error to the sender/receiver/both sides
of the communication.

2.5.2 HEADER

Consists of four parts:
• protocol – specifies the protocol to match. Can be chosen one from the basic protocols:

TCP, UDP, ICMP or IP (stands for ’all’) or from application layer protocols: HTTP,
FTP, DNS, or others. The whole list of application layer protocols can be found in
the Suricata manual [21]. The user should enable protocols specified in the rules in
suricata.yaml.

13

• source and destination IP addresses – specifies the source of the traffic and the des-
tination of the traffic, respectively.

Example Meaning
!10.10.10.1 Every IP address but 10.10.10.1

![10.10.10.1, 11.11.11.2] Every IP address but 10.10.10.1 and 11.11.11.2
$HOME_NET Setting of HOME_NET in suricata.yaml

any Arbitrary IP address
10.0.0.0/24 Range from 10.0.0.0 till 10.0.0.255

Table 2.1: Example of defining network hosts.

• source and destination ports – specifies the source and destination ports which traffic
goes through.

Example Meaning
[121, 122] Port 121, 122
[80: 443] Range from 80 till 443
[1000:] From 1000 till the highest port-number

any Arbitrary ports
[5: 88, ![80, 81]] Range from 5-88, except ports 80 and 81

Table 2.2: Example of defining network ports.

• direction – specifies in which way the signature has to match.

Example Meaning
-> Only packets with the same direction can match
<> Match rule both ways

Table 2.3: Example of defining directions.

2.5.3 RULE OPTIONS

Specifies additional details of the rule. These are enclosed by parenthesis and separated by
semicolons. There are many different options, for example:

• msg – gives textual information about the signature.

• sid – defines signature’s ID (must be unique).

• rev – picks the latest rule in case the same sid used by multiple rules.

• priority – defines what signature will be examined first.

• content – defines what the packet must contain to be matched.

• nocase – content search is case insensitive.

• ttl – checks for a specific IP time-to-live value in the header of a packet.

14

The rest of this list can be found here5.
Note that the next signatures are examples and are provided for informational purposes

to show the syntax of signatures.

1. Signature to detect Hypertext Transfer Protocol (HTTP) requests to the domain:

alert http any any -> any any (msg:"HTTP request to
malicious domain"; content:"GET"; nocase; http_host;
content:"example.com"; http_uri; sid:1; rev:1;)

2. File access attempt:

drop tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"File
access attempt"; content:".bash_profile"; nocase;
classtype:attempted-recon; sid:10222; rev:1;)

3. Server Message Block (SMB) protocol:

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"SMB
protocol"; content:"|aa ff 12 34 5f 1a 5e|"; depth:7;
sid:12345; rev:2;)

5https://suricata.readthedocs.io/en/suricata-6.0.9/rules/index.html

15

https://suricata.readthedocs.io/en/suricata-6.0.9/rules/index.html

Chapter 3

DPDK Prefilter

Network attacks are constantly evolving, enabling them to overload networks with a mas-
sive volume of packets. To prevent these large-scale attacks, firewalls or other network
applications should process incoming traffic in the fastest way. One of these prevention
systems is Suricata, which was described in detail in Chapter 2.

To handle more traffic, the network capture program’s processing speed must be in-
creased, or the amount of traffic passed to the application must be controlled. The latter
method motivated the creation of DPDK Prefilter.

Figure 3.1 below shows the way how Suricata communicates with Prefilter. RX and
TX are the receive and transmit channels respectively, that refer to the directions of data
transfer. Only when the IPS mode is enabled the transmit channel is activated. PKT is a
bulk of network packets. Also, the bypass function is implemented between two applications.

NIC DPDK
Prefilter Suricata

PKT

PKT PKT

PKT

Bypass

RX

TXTX

RX

Figure 3.1: Connection of the DPDK Prefilter with Suricata.

Among the benefits, DPDK Prefilter has:

• Filter the incoming traffic.

• Provide asynchronous flow-based bypass before any of the packets of the flow reaches
Suricata.

• Create an opportunity for quick prototyping of hardware functions in software.

• Interconnect systems to create more versatile architecture.

• Add metadata to packets passing through.

16

3.1 Operating stages

LCORE

PREFILTER
INIT INIT RUN STAT_DUMP PREFILTER

CLEAN

Figure 3.2: DPDK Prefilter operating stages.

• PREFILTER_INIT. It is the first part of the DPDK Prefilter. Here is a configuration
of all necessary components. It includes:

– The initialization of the device for packet capture and rings for packet forwarding
to the next device.

– Creation of more threads for capturing and decoding parts to accelerate packet
processing.

– The initialization of the Inter-process communication (IPC) between the DPDK
Prefilter and another system.

– Extraction of the necessary information about rings for each entry from the
YAML-based configuration file. The configuration file contains information about
the memory pool (pre-allocated chunk of kernel memory), NIC configuration (in-
cluding Peripheral Component Interconnect (PCI) addresses of ports, promiscu-
ous mode, support Receive Side Scaling (RSS), Maximum Transmission Unit
(MTU)), and others details.

• LCORE_INIT. This stage is responsible for the configuration variables of the core and
rings for receiving/sending packets. Also, there is necessary memory allocated for
packet buffers and flow tables.

• LCORE_RUN. DPDK Prefilter gets bursts of packets and sends them to the module
that tries to decode the packet and create a flow record. After decoding and possibly
bypassing DPDK Prefilter enqueues packets to bursts and sends them to another
system.

• LCORE_STAT_DUMP. Print to the standard output detailed statistics, including:

– How many packets were captured from the Network Interface Card (NIC) and
from another system (in case DPDK Prefilter operates in IPS mode).

– How many packets were inspected for bypassing, bypassed, enqueued to another
system, and other useful information.

• PREFILTER_CLEAN. The stage is executed on shutdown. DPDK Prefilter frees up
memory that was allocated in previous stages.

17

3.2 Decode module
At the beginning, DPDK Prefilter tries to decode each packet and create a FlowKey record.
This is used to determine if the packet is part of the traffic flow. Traffic flow is the sequence
of packets from a source computer to a destination. Packets from the same traffic flow have
a common five-tuple that consists of protocol, source and destination addresses, and source
and destination ports.

DPDK Prefilter supports decoding of the four protocols only: IPv4, IPv6, TCP, and
UDP. The process of the packet decoding is graphically depicted in Figure 3.3. DPDK
Prefilter decodes each network layer, starting from the second Data Link, and fills up
the necessary variables. If DPDK Prefilter is unable to determine which protocol has the
next layer, it places the packet in the queue for the secondary application. If decoding is
successful, it marks this packet as "inspected" and sends it to a function that determines
if the packet can be bypassed or not. If the packet can not be bypassed, it is placed in the
queue for forwarding to another system.

Decode packet and
compute Flow Key

Can we decode
this packet?

Add packet to the burst
to another system Try to bypass a packet

Bypassing was
successful?

Add packet to the burst
to another system Success

YesNo

NoYes

Figure 3.3: Process of packet decoding in DPDK Prefilter.

3.2.1 Flow bypass

The Suricata system uses the eBPF program to efficiently bypass packets before they reach
user space. As discussed in Subsection 2.3.2, this is achieved by using eBPF maps, which
allow Suricata to communicate with other eBPF programs and define flows that should be
dropped. However, a significant issue arises when a table lookup occurs, as the entire table
becomes locked, and record insertion may be blocked. This can lead to delays and impact
the system’s performance. This standard way of communication is shown in Figure 3.4.

18

To eliminate the problem of a locked table, DPDK Prefilter replaces the XDP/eBPF
program and provides another way of sharing information about flows. Suricata sends
asynchronous messages to DPDK Prefilter about records that should be inserted into the
table. DPDK Prefilter, in turn, utilizes an internal table to bypass packets. This new
approach of communication between two systems is depicted in Figure 3.5. Packets are
searched in the table after decoding and bypassed if necessary.

Suricata

NIC

Driver

Userspace

Kernelspace

eBPF map

XDP / eBPF
program

pass

drop

Figure 3.4: Communication between Suricata and another eBPF program.

Suricata

NIC

Driver

Userspace

Kernelspace

DPDK
Prefilter

pass

drop

asynchronous
messages

Figure 3.5: Communication between Suricata and DPDK Prefilter.

3.3 Communication with Suricata
To achieve maximum performance, it is crucial for two distinct systems to establish a
communication channel between them in the most efficient way. DPDK Prefilter is devel-

19

oped using the DPDK framework, which offers the below-described techniques for effective
system-to-system communication.

3.3.1 Packet rings

DPDK Prefilter uses DPDK rings to transfer packets to and from Suricata. DPDK rings
are defined as a structure rte_ring. The implementation was forked from the FreeBSD
ring buffer1.

DPDK has a ring library, which provides a lockless, multi-producer/multi-consumer
ring buffer implementation. This library is used to transmit and receive packets between
the NIC and the application running in the user space without the need for locks or other
synchronization mechanisms.

Advantages:
• Data is written to the buffer extremely

quick because it requires a single 32-bit
Compare-And-Swap instruction only.

• Versatile and flexible tool in network
programming.

• Lesser number of cache misses when
adding or removing a large number of
objects from the queue. This is be-
cause pointers are stored in a table.

Disadvantages:

• The size of a DPDK ring is fixed at
initialization and cannot be increased
dynamically.

• Having many rings costs more in terms
of memory than a linked list queue.
The buffer always uses the maximum
number of pointers, therefore an empty
ring contains at least N objects [13].

The ring buffer consists of two pointers: a producer pointer and a consumer pointer.
The NIC uses the producer pointer to enqueue packets into the ring buffer, while the
application uses the consumer pointer to dequeue packets from the buffer. These pointers
navigate through the ring buffer in a circular manner. When they reach the end, they get
back to the beginning of the buffer [13].

Obj1 Obj2 Obj3

cons_head
cons_tail prod_tail

prod_head

Figure 3.6: Ring structure.

DPDK provides several different types of rings such as [13]:

• Multi-producer/Multi-consumer (MP/MC). The default mode of the ring. In this
mode, multiple threads can enqueue/dequeue objects to/from the ring. It is usually
the most suitable and fastest synchronization mode with one thread per core.

1https://svnweb.freebsd.org/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=
markup

20

https://svnweb.freebsd.org/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup
https://svnweb.freebsd.org/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup

• Single-producer/Single-consumer (SP/SC). In this mode, only one thread at a
time is allowed to enqueue/dequeue objects to/from the ring.

• MP/MC with Relaxed Tail Sync (RTS) mode. The tail value is increased not by
every thread that finished enqueue/dequeue, but only by the last one. That allows
threads to avoid spinning on ring tail value and improve average enqueue/dequeue
times on overcommitted systems.

• MP/MC with Head/Tail Sync (HTS) mode. In that mode enqueue/dequeue opera-
tion is fully serialized: at any given moment only one enqueue/dequeue operation can
proceed.

3.3.2 Inter-process communication

Inter-process communication (IPC) is a flexible and powerful mechanism provided by the
operating system that allows multiple processes to communicate with each other. This
communication can be used for exchanging data, coordinating activities, or synchronizing
execution.

Operating systems, network communication, and distributed computing are just a few
of the many applications that make use of IPC. In modern operating systems, IPC enables
processes to communicate with the kernel and other processes. In network communication,
IPC is used for exchanging data between network devices. In distributed computing, IPC is
used to coordinate the activities of processes running on different systems to work together
toward a common goal.

Inter-process communication occurs between DPDK Prefilter and Suricata in different
ways:

• DPDK rings. They offer a unidirectional data channel that enables data exchange
between two or more processes. They are used for messages or packet transferring.

• Shared memory. The two processes share a common space or memory location known
as a buffer. There the configuration is placed, which is available for two systems
without the overhead of copying data.

• Message passing. In this method, processes communicate with each other without
the aid of shared memory. Once a communication link has been established, they can
start exchanging messages. It is well-suited for systems that require fault tolerance
and scalability. It requires also careful design to ensure correct synchronization and
message delivery.

DPDK Prefilter uses both asynchronous and synchronous requests to communicate with
the secondary application. These requests are provided by the DPDK framework. Both
types of requests trigger named callback on the receiver side, which is called from within a
dedicated IPC or interrupt thread that is separate from EAL lcore threads [10].

Asynchronous requests are helpful when a program does not require a response to keep
working. This means that the program can continue to perform other tasks while waiting for
the response. In contrast, synchronous requests are used when the program needs a response
from another system to keep functioning. Synchronous requests block the caller thread until
the response is received. The differences between synchronous and asynchronous requests
are illustrated in Figure 3.7.

21

Time

App 1 App 1 App 2App 2

Asynchronous
communication

Synchronous
communication

Request1

Response1

Request

Response

Wait

Request2

Response2

Figure 3.7: Comparison of asynchronous and synchronous requests.

22

Chapter 4

Per-packet metadata

This chapter is focused on a comprehensive overview of metadata usage in Suricata. The
first section of the chapter describes the motivation behind this thesis and its primary
objectives, setting the stage for further topics. The following sections describe metadata
implementation. That involves design of metadata structures, method for metadata stor-
age, negotiation process between two applications, and configuration of metadata. These
sections offer a detailed account of the various aspects required for the successful integra-
tion of metadata into the Suricata system. The final section of this chapter presents the
proposal for the metadata structure. This section provides a brief overview of the funda-
mental structures and functions needed for the effective implementation of metadata in the
system.

4.1 Motivation
There are several approaches to how applications can be optimized. It can be the elimi-
nation of bottlenecks thanks to code profiling tools such as perf and Intel VTune, using
appropriate data structures and algorithms, managing memory well, or parallelizing pro-
cesses. Applications can be further improved by e.g. hardware acceleration. SmartNICs can
aid the software application by filtering out unwanted traffic. They can also add auxiliary
data to individual packets to reduce the processing path within the application.

However, creating the hardware is an expensive and time-consuming process. DPDK
Prefilter was developed to simulate the potential performance gains of hardware acceler-
ation. The goal of this thesis is to extend this concept by designing and implementing
metadata that can be passed between DPDK Prefilter and Suricata.

Metadata support can cover a broad set of problems. To test and evaluate metadata
support, the use case of extracted information from network headers was selected. The
main reason for this choice is the Suricata rules described in Section 2.5. Each rule contains
matching values such as protocol, port, IP address, and other details. This information can
be found during packet processing, and therefore, the decoding module plays a crucial role
in correctly matching rules with each packet.

Since metadata is unique for each packet, it makes sense to include them with each
packet. One possible method of transmitting metadata with packets is shown in Figure 4.1.
As shown in this Figure, metadata is generated by DPDK Prefilter described in Chapter 3
and is sent to Suricata and vice versa. The only difference from the standard architecture,

23

shown in Figure 3.1, is sending packets supplemented by metadata instead of raw packets.
How metadata is stored will be discussed in the next sections.

The use of metadata can provide additional insights into packet processing, which can
be beneficial in optimizing network performance. The proposed investigation of metadata
transmission to Suricata can help to expand this topic and transmit more valuable data.
This can help to improve and make the processing and filtering of packets more efficient.

NIC DPDK
Prefilter Suricata

META_NIC PKT

PKT PKT

PKT

META_SC

META_PF

Bypass

RX

TXTX

RX

Figure 4.1: Adding metadata to packets.

4.2 Design
The aim of this thesis is to explore the usefulness of metadata generated by DPDK Pre-
filter. For these purposes, a framework DPDK is used along with its internal structures for
processing network traffic. For instance, the rte_mbuf1 data structure is used to repre-
sent the network packet. It contains a private data space that can be allocated during the
creation of the memory pool using the rte_mempool_create()2 function. The size of the
private data space will be statically defined in the configuration file of DPDK Prefilter.
This private space is a great place for metadata since the application defines this space
while creating the mempool, and no external interference occurs as it is statically allocated.

As mentioned earlier, four fundamental network protocols have been selected as meta-
data values for Suricata. These protocols include IPv4, IPv6, TCP, and UDP. The offloads
associated with each of these protocols are illustrated in Figure 4.2.

• Network Layer protocols. The primary offloads for protocols IPv4 and IPv6
consist of IP addresses. Additionally, the IPv4 protocol includes IP options like Loose
Source Route (LSR), Record Route, Strict Source Route (SSR), and others.

• Transport Layer protocols. The primary offloads for protocols IPv4 and IPv6
consist of port numbers, byte length for rapid access to the payload, and payload
length. Moreover, the TCP protocol includes TCP options like Maximum Segment
Size (MSS), Window Scaling, Selective Acknowledgment (SACK), and others.

In the absence of metadata, Suricata relied on packet parsing to extract required values
from network headers. These values were used by the detection module for matching rules.
However, with the inclusion of metadata, Suricata no longer needs to parse packets as the
necessary values are transmitted by DPDK Prefilter as metadata. This means that packet

1https://doc.dpdk.org/api/structrte__mbuf.html
2https://doc.dpdk.org/api/rte__mempool_8h.html#a503f2f889043a48ca9995878846db2fd

24

https://doc.dpdk.org/api/structrte__mbuf.html
https://doc.dpdk.org/api/rte__mempool_8h.html#a503f2f889043a48ca9995878846db2fd

decoding is now performed only once in both systems, rather than being repeated for each
individual application. This approach allows the elimination of redundant parsing, which
can reduce the time it takes to process packets.

priv
space

IPV6

src_addr

dst_addr

IPV4

src_addr

dst_addr

ipv4_vars

TCP

src_port

dst_port

payload_len

l4_len

tcp_vars

UDP

src_port

dst_port

payload_len

l4_len

ipv4
metadata

ipv6
metadata

udp
metadata

tcp
metadata

rest of the DPDK structure rte_mbuf

matchedRules

rules_sid []

cnt_rules

matched
Rules

from Prefilter from Suricata

Figure 4.2: Metadata design.

Also, a motivation to choose tcp_vars as metadata is shown in Figure 4.3. It is an
output of the tool perf top. The function DecodeTCPOptions() uses 2.49% of CPU
resources. Using metadata it is possible to almost completely eliminate the load of the
function to 0%.

Figure 4.3: CPU load under TCP-focused traffic.

4.2.1 Metadata in IPS mode

In the IPS mode, packets are transmitted back to DPDK Prefilter. It is essential for blocking
or preventing malicious traffic from entering the network. This is achieved through a
process called packet dropping, where packets that match certain rules are discarded before
they can reach their intended destination. Suricata can assign metadata for the secondary
application, which is DPDK Prefilter in this case. It is depicted on the right side of Figure
4.2. This metadata contains a total count of matched rules for the current packet and the
array of the corresponding signature IDs, which Suricata gets during the detection process.

Adding metadata to the system allows Suricata to provide useful information to other
applications about network packets or related data. Specifically, DPDK Prefilter can use
this information to perform further traffic analysis.

25

4.3 Configuration
These systems, as mentioned in Chapters 2 and 3, use YAML-based configuration files for
the setup of all the necessary variables for the next correct work. A section of metadata
is added to the configuration file, which is divided into three subsections:

• What metadata DPDK Prefilter can send to Suricata. In case when metadata is
extracted from network headers, the user can specify what protocols data should be
sent to Suricata from.

• What metadata Suricata can send to DPDK Prefilter. Here, the user can specify
what data can be sent to DPDK Prefilter back. This option is used only in IPS mode.

• What size of private space does the system need.

metadata:
offloads-from-pf-to-suri:

IPV4: <yes/no>
IPV6: <yes/no>
TCP: <yes/no>
UDP: <yes/no>

offloads-from-suri-to-pf:
matchedRules: <yes/no>

private_space_size: <u_int>

Both DPDK Prefilter and Suricata extract parameters from the specified configurations
and load them into their internal structures. Each offload is represented by a single bit,
and the collective arrangement of these bits forms a number that corresponds to the desired
system configuration.

This binary representation enables an efficient method of configuring the system. This
approach allows a high degree of flexibility and adaptability. Moreover, using binary rep-
resentation simplifies the process of comparing and evaluating different configurations.

4.4 Agreement
Before DPDK Prefilter starts receiving packets and transmitting them to Suricata, both of
them must reach a consensus on the used offloads. This synchronization is a necessary step
when one system wants to transmit some information to another. This process is illustrated
in Figure 4.4.

26

Legend

Prefilter Suricata

P_offloads
S->P_offloads

S_offloads
P->S_offloads

P_offloads
S->P_offloads

IPS_final = S_offloads & S->P_offloads

Perform:

IDS_final = P_offloads & P->S_offloadsIDS_final
IPS_final

S_offloads = offloads supported by Suricata

P_offloads = offloads supported by Prefilter

S->P_offloads = desired offloads by Prefilter from Suricata

IPS_final = offloads will being set by Suricata
IDS_final = offloads will being set by Prefilter

P->S_offloads = desired offloads by Suricata from Prefilter

Figure 4.4: Process of agreement on metadata between Suricata and DPDK Prefilter.

In the beginning, each system only knows information from its respective configuration
file. Consequently, DPDK Prefilter transmits this information to Suricata. Suricata then
computes the final offloads based on the received data. As was described in Section 4.3,
individual bits are responsible for specific offloads. Therefore, the most effective method
for determining the same offloads for both systems is the application of the logical and
(&). This process is a simple and rapid two-way handshake.

To facilitate this stage, IPC communication is used, as described in Section 3.3.2, and
a shared context is created. The shared context is a structure containing common vari-
ables that are used by both systems. Subsequently, each system assigns the corresponding
variables to its internal structures.

4.5 Processing
In the previous sections, a comprehensive examination of what metadata looks like, its pur-
pose and application, and the architectures of systems that utilize metadata were covered.
The next step is to propose an accelerated processing method for metadata to avoid bot-
tlenecks in the code. The most interesting stages of metadata processing will be considered
in the following subsections.

4.5.1 Filling in metadata

The following structure represents the metadata from DPDK Prefilter shown in Figure 4.2.

27

struct MetadataToSuri {
<uint32_t> metadata_set[CNT_METADATA_TO_SURI];
<metadata_ipv4_t> metadata_ipv4;
<metadata_ipv6_t> metadata_ipv6;
<metadata_tcp_t> metadata_tcp;
<metadata_udp_t> metadata_udp;
<PacketEngineEvents> events;

}

The first variable in this context is an array called metadata_set. It is used by Suricata
to read metadata. It helps to avoid accessing non-filled offloads. DPDK Prefilter fills in this
array after packet decoding. The following four variables correspond to metadata for each
protocol, respectively. During packet decoding, these variables are filled in with relevant
information. The last variable in this structure is designated as events, which is used
to detect any errors that occur during packet decoding. If a packet error is detected, the
corresponding flag is set within this variable.

4.5.2 Traversing

This subsection focuses on a method designed to optimize both the reading and writing
of metadata. To illustrate this point, let’s consider a scenario where Suricata has sixteen
different offloads available, but only one is enabled for transmission between systems. In
order to find and set this specific offload, it would be necessary to iterate through all sixteen
offloads to identify the required one. It is a time-consuming and inefficient process. In case
of high-speed network traffic, unnecessary conditional statements can affect the performance
and throughput of the system. Figure 4.5 below illustrates a method that minimizes the
need for excessive searching and looping.

4 153210 14

3210

Future offloadsIPv4 IPv6 UDP TCP

0 3offloads indexes that
Suricata requested

offloads enum

Figure 4.5: A scenario where metadata is only filled for IPv4 and TCP protocols.

An array of indexes is created for both DPDK Prefilter and Suricata after the final
offloads between the systems are determined. The array contains values from offloads
enum. Using these values it is possible to have quick and efficient access to the offloads,
without the need to iterate through the entire array and waste time searching for the
required offload.

28

Chapter 5

Implementation and evaluation

Chapter 4 introduces a proposed design for metadata, building upon the knowledge gained
in the previous chapter. This serves as a foundation for further development. The sub-
sequent chapter delves into the integration tests, which are primarily aimed at verifying
that Suricata’s behavior remains consistent with or without metadata. This section also
described the principles of the performed tests and the tool used to perform them.

The final section primarily focused on performance tests, wherein Suricata and DPDK
Prefilter will be running with different configuration settings to see if the integration of
metadata has not degraded the performance of Suricata. Additionally, this section pro-
vides comprehensive details regarding the testing environment, tools, and PCAP files used
throughout the process.

5.1 Implementation

5.1.1 Added source files

• src/metadata.{c,h} – contains functions responsible for the detection of the next
protocol.

• src/metadata-l3-ipv4.{c,h} – decodes information from the IPv4 protocol, such
as IP addresses, next protocol, and IP options.

• src/metadata-l3-ipv6.{c,h} – decodes information from the IPv6 protocol, such
as IP addresses.

• src/metadata-l4-udp.{c,h} – decodes information from the UDP protocol, such
as ports, and payload header length.

• src/metadata-l4-tcp.{c,h} – decodes information from the TCP protocol, such
as ports, payload header length, and TCP options.

5.1.2 Brief summary

This section offers a succinct summary of the process which applications write and read
metadata through. Graphically, this process is depicted in Figure 5.1. When applications
agree on the same metadata, DPDK Prefilter initiates packet capturing. The packet go-
ing through the program reaches the function FlowKeyExtendedInitFromMbuf(), which
is discussed in detail in Section 3.2. If the packet remains undecoded, it is enqueued

29

into the packet burst for Suricata without metadata. Otherwise, if the packet is success-
fully decoded, the function SetMetadataToMbuf() is called. This function is responsi-
ble for extracting information from network headers and filling in the metadata into the
packet as well. Then this packet is enqueued to the packet burst also. The function
ReceiveDPDKLoop() is responsible for receiving and translating raw packets into the in-
ternal structure. If the metadata is stored in the packet, Suricata processes it using the
function ReadAndFillMetadata() and fills in the corresponding variables. Suricata uses
a flag variable, which enables it to skip decoding functions in cases when information from
network headers has already been obtained.

Raw
packet

FlowKeyExtended
InitFromMbuf()

Has the packet
been decoded?

No Yes

SetMetadata
ToMbuf()

Immediately enqueued to
the burst for Suricata.

Metadata is not filled in

Metadata Raw
packet

rte_mbuf

DPDK Prefilter

Suricata

ReceiveDPDK
Loop()

 Does the packet
contain metadata?

Yes No

ReadAndFill
Metadata()

Suricata will decode the
packet itself and fill in the
corresponding variables

Figure 5.1: Process of filling in metadata into the packet.

30

5.2 Integration tests
Before the changes are included in the program, it is necessary to make sure that it works
properly. For these purposes, developers use integration tests. They evaluate whether
different components of a software system can work together correctly. Their goal is to
identify and isolate issues that may arise from the interactions between the components, and
to ensure that the system works as expected. Suricata-verify, described in Subsection
5.2.1, is a tool to perform Suricata integration tests.

5.2.1 Suricata-verify

Suricata-veriy1 is command-line tool that comes with Suricata. Its main purpose is to
validate and verify the state of Suricata after configuration changes. This helps ensure that
new versions of Suricata do not contain errors. If Suricata generates expected alerts, the
test is considered successful; otherwise, the test fails.

Each test consists of the next parts:

• test.yaml – is a configuration file used by suricata-verify to define a test case. It
contains information about the test, including the name of the test, arguments for
Suricata, expected output, possible shell code that will be run after the test, and
any additional parameters useful for the test. Expected output is defined as label:
data, which should match with statistics in the eve.json.

• test.rules – contains rules in Suricata’s format described in Section 2.5. It is used
to trigger specific behaviors or events that are expected to occur when Suricata is
functioning correctly.

• input.pcap – packet capture file in the PCAP format that contains network packets
for Suricata testing.

• suricata.yaml – the main configuration file for Suricata. It contains various config-
uration options that define how Suricata operates, such as the network interface to
listen on, the logging options, runmode, and more.

Extension for DPDK Prefilter

In order to integrate DPDK Prefilter into suricata-verify, several changes had to be
made. These changes included modifying the default arguments for Suricata, adding two
additional parameters to the main function run(), and adjusting the test running pro-
cess. These changes enable validation and verification of the functionality of the metadata,
ensuring that it works as estimated.

./run.py --testdir <path_to_prefilter_tests> --prefilter [--metadata] -j 1

• --prefilter

– Instead of reading packets from a PCAP file, it runs Suricata in the DPDK
runmode.

1https://github.com/OISF/suricata-verify

31

https://github.com/OISF/suricata-verify

– DPDK Prefilter, Suricata and tcpreplay2 are run using subprocess.Popen()3

function.

• --metadata – defines which configuration file DPDK Prefilter will use. There are two
configuration files prefilter_metadata.yaml and prefilter_no_metadata.yaml
in the folder with a test.

5.2.2 New prefilter tests

As described in the previous subsection, these tests are performed by comparing the ex-
pected results of an application with the actual results obtained after running it. To gener-
ate the expected responses, DPDK Prefilter and Suricata were executed without metadata
using identical configurations and PCAP files.

Tests that check the functionality of metadata are provided below. Each test includes
a brief description, the rule used for generating the alert, and the network packet created
using Scapy4 python library.

IPV4

• Description: This test is aimed at IPv4 metadata. The rule will match if the meta-
data contains correct information about IP addresses and options. IPOption(bytes([
0x83, 0x03, 0x04])) sets the Loose Source and Record Route (LSRR) option into
the IP header. In this case, 0x83 represents the type of option, 0x03 is the length of
the route data and 0x04 is the pointer into the route data [1].

• Rule:

alert ip 211.56.70.12 20 -> 192.168.0.100 80 (msg:"Test IPv4 metadata
options"; ipopts:lsrr; content:"Contains LSRR option in the IP header";
sid:140502; rev:1;)

• Packet:

L3 = IP(dst="192.168.0.100",src="211.56.70.12",
options=IPOption(bytes([0x83, 0x03, 0x04])))

L4 = TCP(sport=20, dport=80)
DATA = Raw("Contains LSRR option in the IP header")

IPV6

• Description: This test is focused on IPv6 metadata. As Suricata rules do not
support the IPv6 address format, we can use the content keyword to ensure that
the addresses are correctly transmitted using metadata.

2https://tcpreplay.appneta.com/
3https://docs.python.org/3/library/subprocess.html
4https://scapy.net/

32

https://tcpreplay.appneta.com/
https://docs.python.org/3/library/subprocess.html
https://scapy.net/

• Rule:

alert ip any any -> any any (msg:"Test IPv6 metadata"; ipv6.hdr;
content:"|fe c2 00 00 00 00 00 00 00 00 00 00 00 00 10 12 fd da
cf d2 00 00 00 00 00 00 00 00 00 00 12 34|"; sid:112233; rev:1;)
options"; ipopts:lsrr; content:"Contains LSRR option in the IP
header"; sid:140502; rev:1;)

• Packet:

L3 = IPv6(dst="fdda:cfd2::1234", src="fec2::1012", nh=58)
L4 = ICMPv6EchoRequest()

UDP

• Description: This test is focused on UDP metadata. Since this protocol does not
have options, the test is aimed at verifying the correctness of the transmitted metadata
such as ports and the length of the UDP header. It can be verified by searching a
substring in the data, whose location is determined by the keywords offset and
depth.

• Rule:

alert udp 127.0.0.1 8080 -> 192.168.0.1 1234 (msg:"Test UDP
metadata"; content:"Tim Berners-Lee"; offset:43; depth:15;
sid:123456; rev:1;)

• Packet:

L3 = IP(dst="192.168.0.1", src="127.0.0.1", proto=17)
L4 = TCP(sport=8080, dport=1234)
DATA = Raw("The first website was published in 19991 by

Tim Berners-Lee")

TCP

• This test is aimed at TCP metadata. The test focuses not only on verifying the
correctness of the transmitted ports but also on TCP options as metadata, which
play an important role in network traffic and are often set in the TCP header. The
variable tcp_options contains the Maximum Segment Size (MSS) option with a
value of 1460 [5]. This information is required for matching a Suricata rule.

• Rule:

alert tcp 211.56.70.12 3223 -> 192.168.0.100 80 (msg:"Test TCP
metadata options"; window:8192; tcp.mss:1460; tcp.hdr;
content:"|02 04|"; sid:777777; rev:1;))

33

• Packet:

tcp_options = [(TCP_OPTION_MSS, struct.pack(’>H’, 1460)),
(TCP_OPTION_NOP, bytes([])),
(TCP_OPTION_WNDSCL, bytes([])),
(TCP_OPTION_WNDSCL, bytes([0x00]))]

L3 = IP(dst="192.168.0.100", src="211.56.70.12")
L4 = TCP(sport=3223, dport=80, flags=TCP_SYN_FLAG,
options=tcp_options)

5.3 Performance tests
Performance tests evaluate how well an application performs under specific conditions. The
goal of performance testing is to identify and isolate any performance-related issues, and
to measure the overall speed of the system.

The performance tests in this section are primarily focused on measuring throughput.
It’s essential to conduct tests whenever changes are made to accurately assess their impact
on the program. With the addition of metadata, Suricata no longer needs to decode some
protocols, as the necessary information is readily available within the metadata. However,
including metadata and utilizing it has added conditional statements to Suricata’s code,
making it difficult to predict the effects on its performance.

5.3.1 Tool for packet replay – Trex

Trex5, also known as Traffic Generator, is a powerful open-source tool used for generating
network traffic and performance testing. It can be used to simulate various types of network
traffic, such as:

• Stateless replay – network communication where each individual packet is han-
dled independently because the network device does not keep any record or state
information about the previous communication.

• Stateful replay – network communication where the network device keeps track
of the state of the communication. It makes an impact on the handling of received
packets. In summary, this type of network traffic is used for testing specific network
scenarios in a controlled and repeatable environment.

• Real-world traffic emulation – network communication including traffic with dif-
ferent packet sizes, traffic with varying inter-packet gaps, and traffic with different
protocols. Usually, it is helpful for evaluating the performance of network devices and
applications under typical network usage scenarios.

Trex is a powerful tool that can generate traffic at high rates and handle millions of
packets per second on a single server, making it suitable for testing high-speed networks.
It is useful for testing the performance of network devices.

5https://trex-miner.com/

34

https://trex-miner.com/

Python was chosen as the scripting language for tests because it has a vast number of
third-party libraries available. Additionally, Python has a dedicated Application Program-
ming Interface (API) for Trex, known as trex-api6. To replay packets using this tool is
necessary to perform the following steps:

• Create an object of CTRexClient class. It defines the client side of further interac-
tion with TRex and connects it to the listening daemon-server. It provides methods
for starting and stopping traffic, configuring traffic profiles, and retrieving traffic
statistics.

• Create an object of STLClient class. It allows using functions for stateless mode.
It provides methods for configuring traffic profiles, generating traffic, and retrieving
traffic statistics. Stateless mode is selected because it is the only one which packets
can be replayed on the port of specified NIC in.

• Call the function push_remote()7. It pushes PCAP files to the remote device.

5.3.2 Testing environment

Server specification:

• OS: Oracle Linux Server 8.6

• CPU: 6 cores Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz

• RAM: 64 GB

• NIC:

1. 2 port Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network
Connection – used by Trex to replay packets.

2. 2 port Intel Corporation Ethernet Controller X710 for 10GbE
SFP+ – used by DPDK Prefilter to receive packets.

Suricata Prefilter

NIC1

NIC2

Trex

CPU NUMA 1

CPU NUMA 0

Server

Figure 5.2: Testing scheme.
6https://pypi.org/project/trex-api/
7https://trex-tgn.cisco.com/trex/doc/cp_stl_docs/api/client_code.html?highlight=

push_remote#trex.stl.trex_stl_client.STLClient.push_remote

35

https://pypi.org/project/trex-api/
https://trex-tgn.cisco.com/trex/doc/cp_stl_docs/api/client_code.html?highlight=push_remote#trex.stl.trex_stl_client.STLClient.push_remote
https://trex-tgn.cisco.com/trex/doc/cp_stl_docs/api/client_code.html?highlight=push_remote#trex.stl.trex_stl_client.STLClient.push_remote

The testing scheme is illustrated in Figure 5.2. In this setup, Trex is used to generate
packets and send them to one NIC. The packets are then forwarded to another NIC, where
they are read by DPDK Prefilter.

5.3.3 Tests description

Tests work in the following way. DPDK Prefilter runs with Suricata in two configurations:

1. 1 thread worker DPDK Prefilter + 1 thread worker Suricata

2. 1 thread workers DPDK Prefilter + 3 thread workers Suricata

Each configuration has four subconfigurations:

1. Suricata without rules + DPDK Prefilter with metadata.

2. Suricata without rules + DPDK Prefilter without metadata.

3. Suricata with a set of rules + DPDK Prefilter with metadata.

4. Suricata with a set of rules + DPDK Prefilter without metadata.

Dividing the configurations is necessary because Suricata’s detection module requires a
significant amount of CPU resources, which in turn depends on the number of detection
rules. When testing Suricata without rules, there is a chance of observing a minor advantage
in utilizing metadata as it aims to transfer information from network headers. However,
this advantage may not hold when testing with a large set of detection rules, which can
consume a significant amount of resources.

Each subconfiguration contains an array of packet transmission rates, which are used to
replay packets to DPDK Prefilter. The tests are repeated three times for each transmission
rate, and the average value of processed packets with that speed is calculated. This helps
to ensure that the results are consistent.

5.3.4 PCAP file

It is crucial to have easily repeatable traffic for performance tests. This traffic should be
diverse and simulate real-time traffic, as it contributes to more accurate test results. Ideally,
real traffic gathered from a network device should be used for this purpose. For metadata
tests, the following PCAP file was used. The output of the capinfos tool is shown below.
This is a command-line utility that provides various information about PCAP files.

File encapsulation: Ethernet
Packet size limit: file hdr: 65535 bytes
Number of packets: 1,000
File size: 776 MB
Data size: 760 MB
Capture duration: 1.123194 seconds
Data byte rate: 676 MBps
Data bit rate: 5,413 Mbps
Average packet size: 760.03 bytes
Average packet rate: 890 kpackets/s

36

5.3.5 Tests results

The following subsection presents the results of a series of tests conducted to evaluate the
impact of metadata on the performance of Suricata. The primary objective of these tests is
to ascertain whether the integration of metadata degrades the performance of Suricata, as
well as to identify any potential performance improvements that may be realized through
its use.

260 280 300 320 340 360 380
Transmit speed [Mbps]

65

70

75

80

85

90

95

100

Pr
oc

es
se

d
pa

ck
et

s [
%

]

Using metadata for IPv4, IPv6, TCP, UDP protocols
Without metadata

Figure 5.3: Enabled rules, 1 Prefilter worker – 1 Suricata worker.

37

1000 1500 2000 2500 3000 3500 4000
Transmit speed [Mbps]

60

65

70

75

80

85

90

95

100

Pr
oc

es
se

d
pa

ck
et

s [
%

]

Using metadata for IPv4, IPv6, TCP, UDP protocols
Without metadata

Figure 5.4: Disabled rules, 1 Prefilter worker – 1 Suricata worker.

7500 8000 8500 9000 9500 10000
Transmit speed [Mbps]

95

96

97

98

99

100

Pr
oc

es
se

d
pa

ck
et

s [
%

]

Using metadata for IPv4, IPv6, TCP, UDP protocols
Without metadata

Figure 5.5: Disabled rules, 1 Prefilter worker – 3 Suricata worker.

38

750 800 850 900 950 1000 1050
Transmit speed [Mbps]

70

75

80

85

90

95

100
Pr

oc
es

se
d

pa
ck

et
s [

%
]

Using metadata for IPv4, IPv6, TCP, UDP protocols
Without metadata

Figure 5.6: Enabled rules, 1 Prefilter worker – 3 Suricata worker.

The aforementioned four figures provide valuable insights into the impact of metadata
on Suricata. It is evident that the integration of metadata does not degrade the performance
of Suricata. In some cases, a minor performance improvement was even observed, further
demonstrating the feasibility of metadata support in Suricata. These results serve as a
strong foundation for future research and development in the field of metadata within
Suricata.

An improvement is more noticeable on the graphs representing Suricata’s operation
without rules compared to those with rules enabled. The reason for this is that when the
rules are enabled, Suricata allocates a lot of resources to the detection module for tasks
such as pattern matching. In the absence of rules, resources are distributed more uniformly
throughout Suricata, enabling it to process more incoming packets. However, it is important
to understand that network header parsing is not the main part of Suricata. The purpose
of these graphs is to demonstrate the successful implementation of metadata in Suricata,
rather than to emphasize its impact on overall performance.

39

Chapter 6

Conclusion and future work

This work is aimed at Suricata. Suricata is a high-performance open-source software used for
network monitoring and threat detection. Suricata faces a significant problem of processing
all incoming network traffic in real-time, which can lead to missed threats. Transmitting
additional information or reducing the amount of analyzed traffic can be used to accelerate
Suricata and solve this problem. Advanced network cards can help Suricata in faster packet
processing using the former method. However, hardware development is complex, and it
may be helpful to evaluate what additional information is useful before it is implemented
in hardware. Testing it in software before implementation can be less expensive. DPDK
Prefilter can be used for these purposes, allowing the simulation of hardware functions in
software.

The goal of this bachelor’s thesis was to come up with a possible approach for transmit-
ting metadata to the Suricata IDS/IPS system. After that, the next steps were implement-
ing metadata support for both the Suricata and DPDK Prefilter applications, composing
integration and performance tests, and evaluating the impact of different metadata param-
eters on the overall packet processing of Suricata.

Additional work was conducted in the form of integration and performance tests, which
enriched the results of this study. Although not originally included in the assigned task,
these extra tests served as proof of the proposed method’s successful functionality.

The integration tests fully covered the added metadata support for Suricata. The test
results demonstrate that the metadata was accurately integrated into Suricata without
compromising the system’s integrity.

Since packet header information is not a complex task in Suricata, it was not expected
that it brings huge performance benefits. The implementation of metadata is versatile, en-
abling the straightforward addition of new metadata for both DPDK Prefilter and Suricata.
Metadata can be therefore added on a per-packet basis without any significant cost. This
statement is supported by the data from performance tests. This proves the value of meta-
data that can be transmitted to Suricata encapsulated in each packet. The implementation
of metadata is versatile, enabling the straightforward addition of new metadata for both
DPDK Prefilter and Suricata.

The results of performance tests highlight the potential of metadata as a method of
transmitting additional information with network traffic to Suricata. The extensible imple-
mentation of metadata enables the addition of new metadata offloads, facilitating future
work that could involve various experiments with different metadata. This would help in
identifying the information that Suricata requires to accelerate the processing of network
packets.

40

One potential extension could involve transmitting information for string pattern match-
ing. With a large number of rules in place, Suricata demands significant CPU resources
to identify patterns among all rules. Performing a portion of pattern matching in hard-
ware and subsequently supplying metadata for Suricata could play a significant role in
optimization.

Another potential extension could involve encrypted traffic. When Suricata encounters
encrypted traffic, it cannot identify the protocol from the Application Layer (seventh layer)
and instead relies on machine learning-based estimation techniques. If metadata included
information about the Application Layer along with the packet, it could potentially enhance
packet bypassing based on the protocol.

41

Bibliography

[1] Internet Protocol [RFC 791]. RFC Editor, september 1981. DOI: 10.17487/RFC0791.
Available at: https://www.rfc-editor.org/info/rfc791.

[2] Amaral, T. A. Navarro do, Rosa, R. V., Moura, D. F. C. and Esteve
Rothenberg, C. Run-Time Adaptive In-Kernel BPF/XDP Solution for 5G UPF.
Electronics. 2022, vol. 11, no. 7. DOI: 10.3390/electronics11071022. ISSN 2079-9292.
Available at: https://www.mdpi.com/2079-9292/11/7/1022.

[3] Ashtari, H. Intrusion Detection System vs. Intrusion Prevention System: Key
Differences and Similarities [online]. March 2022 [cit. 2022-12-24]. Available at:
https://www.spiceworks.com/it-security/network-security/articles/ids-vs-ips/.

[4] Belkhiri, A., Pepin, M., Bly, M. and Dagenais, M. Performance analysis of
DPDK-based applications through tracing. Journal of Parallel and Distributed
Computing [online]. 2023, vol. 173, p. 1–19, [cit. 2023-02-19]. DOI:
https://doi.org/10.1016/j.jpdc.2022.10.012. ISSN 0743-7315. Available at:
https://www.sciencedirect.com/science/article/pii/S0743731522002271.

[5] Borman, D. TCP Options and Maximum Segment Size (MSS) [RFC 6691]. RFC
Editor, july 2012. DOI: 10.17487/RFC6691. Available at:
https://www.rfc-editor.org/info/rfc6691.

[6] Brouer, J. D. Prototype Kernel documentation - XDP Actions [online]. [cit.
2023-02-28]. Available at: https://prototype-kernel.readthedocs.io/en/latest/
networking/XDP/implementation/xdp_actions.html.

[7] Chockalingam, L. What Is eBPF and Why Does It Matter for Observability?
[online]. [cit. 2023-03-02]. Available at:
https://newrelic.com/blog/best-practices/what-is-ebpf.

[8] Coders, P. What is DPDK? [online]. [cit. 2023-02-12]. Available at:
https://www.packetcoders.io/what-is-dpdk/.

[9] Foundation, L. BPF and XDP Reference Guide - Program Types [online]. [cit.
2023-02-28]. Available at: https://docs.cilium.io/en/stable/bpf/progtypes/#xdp.

[10] Foundation, L. Getting Started Guide for Linux: 43. Multi-process Support [online].
[cit. 2023-02-25]. Available at:
https://doc.dpdk.org/guides/prog_guide/multi_proc_support.html.

[11] Foundation, L. Getting Started Guide for Linux: 9. EAL parameters [online]. [cit.
2023-01-2]. Available at:
https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html.

42

https://www.rfc-editor.org/info/rfc791
https://www.mdpi.com/2079-9292/11/7/1022
https://www.spiceworks.com/it-security/network-security/articles/ids-vs-ips/
https://www.sciencedirect.com/science/article/pii/S0743731522002271
https://www.rfc-editor.org/info/rfc6691
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/xdp_actions.html
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/implementation/xdp_actions.html
https://newrelic.com/blog/best-practices/what-is-ebpf
https://www.packetcoders.io/what-is-dpdk/
https://docs.cilium.io/en/stable/bpf/progtypes/#xdp
https://doc.dpdk.org/guides/prog_guide/multi_proc_support.html
https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

[12] Foundation, L. Programmer’s Guide: 4. Environment Abstraction Layer [online].
[cit. 2023-02-12]. Available at:
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html.

[13] Foundation, L. Programmer’s Guide: 8. Ring Library [online]. [cit. 2023-02-20].
Available at: https://doc.dpdk.org/guides/prog_guide/ring_lib.html.

[14] GeeksforGeeks. Thread in Operating System [online]. [cit. 2023-02-12]. Available at:
https://www.geeksforgeeks.org/thread-in-operating-system/.

[15] Goss, M. 12 common network protocols and their functions explained. [online].
august 2020, [cit. 2023-02-19]. Available at:
https://www.techtarget.com/searchnetworking/feature/12-common-network-
protocols-and-their-functions-explained.

[16] Help, S. T. Top 10 BEST Intrusion Detection Systems (IDS) [online]. [cit.
2023-02-27]. Available at:
https://www.softwaretestinghelp.com/intrusion-detection-systems/.

[17] Jakub Kicinski, N. V. EBPF Hardware Offload to SmartNICs: cls bpf and XDP.
[online]. september 2019, [cit. 2023-03-16]. Available at:
https://legacy.netdevconf.info/1.2/papers/eBPF_HW_OFFLOAD.pdf.

[18] KernelTalks. What are the huge pages in Linux? [online]. [cit. 2023-02-13].
Available at: https://kerneltalks.com/services/what-is-huge-pages-in-linux/.

[19] Melnick, J. Top 10 Most Common Types of Cyber Attacks [online]. May 2018 [cit.
2022-12-24]. Available at:
https://blog.netwrix.com/2018/05/15/top-10-most-common-types-of-cyber-attacks.

[20] OISF. Suricata documentation - 19.4 eBPF and XDP [online]. [cit. 2023-02-28].
Available at:
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html.

[21] OISF. Suricata documentation - 6.1 Rules format [online]. [cit. 2023-02-15]. Available
at: https://suricata.readthedocs.io/en/suricata-6.0.0/rules/intro.html.

[22] Raza, M. OSI Model: The 7 Layers of Network Architecture. [online]. june 2018,
[cit. 2023-02-19]. Available at: https://www.bmc.com/blogs/osi-model-7-layers/.

[23] Šišmiš, L. Optimization of the Suricata IDS/IPS. Brno, CZ, 2021. Master’s thesis.
Brno University of Technology, Faculty of Information Technology. Available at:
https://www.fit.vut.cz/study/thesis/23479/.

[24] Šuráň, J. Evaluation of rte_flow Network Interface Cards Support. Brno, CZ, 2022.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Available at: https://www.fit.vut.cz/study/thesis/24818/.

[25] Wiki, D. Hugepages [online]. [cit. 2023-02-15]. Available at:
https://wiki.debian.org/Hugepages.

[26] Yasar, K. and Zola, A. Network packet. [online]. july 2022, [cit. 2023-02-19].
Available at: https://www.techtarget.com/searchnetworking/definition/packet.

43

https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html
https://doc.dpdk.org/guides/prog_guide/ring_lib.html
https://www.geeksforgeeks.org/thread-in-operating-system/
https://www.techtarget.com/searchnetworking/feature/12-common-network-protocols-and-their-functions-explained
https://www.techtarget.com/searchnetworking/feature/12-common-network-protocols-and-their-functions-explained
https://www.softwaretestinghelp.com/intrusion-detection-systems/
https://legacy.netdevconf.info/1.2/papers/eBPF_HW_OFFLOAD.pdf
https://kerneltalks.com/services/what-is-huge-pages-in-linux/
https://blog.netwrix.com/2018/05/15/top-10-most-common-types-of-cyber-attacks
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/suricata-6.0.0/rules/intro.html
https://www.bmc.com/blogs/osi-model-7-layers/
https://www.fit.vut.cz/study/thesis/23479/
https://www.fit.vut.cz/study/thesis/24818/
https://wiki.debian.org/Hugepages
https://www.techtarget.com/searchnetworking/definition/packet

	Introduction
	Suricata
	Architecture
	Runmodes
	Capture modes
	Decode module
	Detection rules

	DPDK Prefilter
	Operating stages
	Decode module
	Communication with Suricata

	Per-packet metadata
	Motivation
	Design
	Configuration
	Agreement
	Processing

	Implementation and evaluation
	Implementation
	Integration tests
	Performance tests

	Conclusion and future work
	Bibliography

