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Burrowing behaviour of freshwater crayfish

The crayfish, a  member of Decapoda with worldwide distribution (Kawai and Crandall, 
2016), is the largest mobile invertebrate in freshwater ecosystems, and often considered 
to be a keystone species. Crayfish inhabit a broad array of environments ranging from rivers, 
streams, and lakes to temporary ponds and areas that are seasonally flooded, such as rice-
fields. More than 669 species, in four families, have been identified and play important 
ecological roles as predators and processors of vegetation and carrion as well as being prey 
for species higher in the food-web (Dorn and Wojdak, 2004; MacNeil et al., 1997). The flow of 
energy in aquatic ecosystems is often strongly influenced by their presence (Momot, 1995). 
Crayfish are commercially important (Crandall and De Grave, 2017), in the aquarium trade 
(Faulkes, 2015), as live bait for fishing (DiStefano et al., 2009), and for human consumption 
(Ackefors, 2000). Crayfish are also important as model animals for science and research 
(Oficialdegui, 2000).

The ability to excavate a burrow or to find a suitable shelter is crucial to crayfish survival, 
allowing them to avoid predation and cannibalism by intraspecifics and to survive winter 
or periods of drought. Furthermore, burrows are important also for females carrying eggs. 
A truly non-burrowing crayfish does not exist (Hobbs, 1942; Riek, 1972). Following complex 
criteria for categorization, crayfish have been be classified as primary, secondary, and tertiary 
burrowers (Hobbs, 1942; Riek, 1972). 

Primary burrowers are those that spend most of their life underground, occasionally moving 
above the surface for mating, foraging, or migration to new habitats. Most primary burrowers 
construct complex burrow systems with multiple tunnels, chambers, and entrances (Grow, 
1981; Stoeckel et al., 2011; Suter and Richardson, 1977; Welch et al., 2008). The habitats of 
primary burrowing crayfish range from previously forested residential or industrial areas to 
agricultural flood plains like rice fields (Loughman et al., 2013). They are typically present in 
eastern North America, Australia, and South America (Jones et al., 2007; Noro and Buckup, 
2010). Several primary burrowing crayfish species are considered threatened (Bryant and 
Jackson, 1999). It is estimated that 30% of critically imperilled crayfish in North America are 
primary burrowers, despite representing just 15% of the region’s crayfish species (Hopper and 
Huryn, 2012). Secondary burrowers inhabit open water in areas that are seasonally inundated, 
but remain in burrows when water levels recede. Compared with the primary burrowers, they 
construct fewer tunnels and smaller chambers (Correia and Ferreira, 1995; Noro and Buckup, 
2010). Tertiary burrowers excavate burrows only in the winter or during drought conditions 
and, in rare cases, during the breeding season. The occupation of burrows in tertiary burrowers 
is low compared with that of primary and secondary burrows (Hobbs, 1942; Riek, 1972). 

The red swamp crayfish Procambarus clarkii (Girard, 1852) has been categorized as 
both a secondary and a tertiary burrower (Correia and Ferreira, 1995; Huner et al., 1984). It 
usually constructs a simple burrow having a single tunnel and entrance, but more complex 
systems have been observed (Barbaresi et al., 2004; Correia and Ferreira, 1995; Huner et al., 
1984). Burrows are used seasonally, mostly for reproduction and for shelter during extreme 
temperatures and drought conditions (Hobbs, 1981; Stoeckel et al., 2011). In Australia, 
crayfish of the genus Engaeus excavate burrows or chambers on slopes without connection 
to the water table (Horwitz et al., 1985a; Suter and Richardson, 1977) and cannot be assigned 
to any category proposed by Hobbs (1942). Based on the relationship of burrows with the 
water-table, Horwitz and Richardson (1986) proposed an alternative classification of burrows 
constructed by crayfish in Australia: Type 1, burrows associated with lotic or lentic surface 
waterbodies; Type 2, burrows not contacting surface waters but penetrating the water table; 
and Type 3, burrows that obtain water from surface run-off or percolation and store that water 
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in chambers above the water table (Horwitz and Richardson, 1986). As the research reported 
in this thesis did not include Australian species, I have followed the classification of Hobbs 
(1942) and Riek (1972).

Unresolved ecological gaps in freshwater crayfish burrowing behaviour 

Generally, crayfish construct burrows or seek shelter as protection against conspecifics, 
predators, and adverse environmental conditions (Horwitz and Richardson, 1986; Riek, 1969). 
In addition to shelter, crayfish burrows may be a  source of water; refuge during moulting, 
oviposition, and egg incubation; and protection of offspring (Atkinson and Taylor, 1988; 
Barbaresi et al., 2004; Bergman and Moore, 2003; Growns and Richardson, 1988; Huner et al., 
1984; Richardson and Swain, 1980). Burrows or shelters are critical to crayfish survival, and 
their availability may represent a principle bottleneck in crayfish populations (Hobbs, 1981). 
Although some crayfish species are abundant and widespread globally, many are seriously 
threatened. Crayfish are being threatened by overharvesting, habitat destruction, biological 
invasion, and water pollution (Kawai and Crandall, 2016) and face decline or extinction of 
populations (Richman et al., 2015).

 
The potential effects of drought on crayfish reproduction

Seasonal fluctuations in water conditions can have a  close relationship with faunal life 
cycles, with critical species life history events synchronized to favourable periods (Gasith and 
Resh, 1999). The ability to avoid desiccation by excavating vertical burrows into the hyporheic 
zone might play a significant role in the success of a crayfish species during drought (Kouba 
et al., 2016). In this situation, juveniles of burrow-dwelling crayfish may not survive outside 
parent burrows (Anne and Rasa, 1995; Richardson, 2007). Hence, juveniles of some species 
tend to stay with parents until conditions improve or until reaching sufficient size to excavate 
their own burrows (Hamr and Richardson, 1994; Horwitz et al., 1985b; Linsenmair, 2007). 

Long-term drought is challenging for many freshwater animals, and numerous crayfish 
species evolved to reproduce in burrows (Crandall and De Grave, 2017; Hobbs, 1942; Riek, 
1972). It is often difficult to obtain accurate information of life history traits and behaviours 
of these species (Richardson, 2007). Water quality and levels in crayfish burrows can fluctuate 
widely, and how these conditions impact crayfish survival and reproductive success is little 
known. It is suggested that some crayfish in burrows spend up to 70% of their time in air, due 
to poor water quality (McMahon and Stuart, 1995), and that water in natural burrows serves 
mainly to supply humidity (Huner, 1994). McMahon and Stuart (1995) present evidence that 
crayfish exposed to long periods out of water to escape severely depleted oxygen and enriched 
carbon dioxide levels in the small pools of water typical of burrows eventually so affected that 
recovery may be unlikely. It has recently been documented that P. clarkii do not spawn in the 
absence of free-standing water, and oviposition was delayed until replenishment of water in 
a simulated burrow study (McClain, 2013). Reproductive failure may explain the decline of 
some crayfish species under prolonged drought (Lodge et al., 2000; Taylor et al., 2007). To 
survive drought, crayfish tend to inhabit shelters or burrows where they can remain in contact 
with water or high humidity environments. However, it is not known whether embryogenesis 
or post-embryonic development can occur without free-standing water.

The objective of the research reported in Chapter 2 was to assess the effects of long-term 
drought conditions on crayfish embryogenesis and postembryonic development in burrows, 
when free-standing water was not always available or of suitable quality. Using the marbled 
crayfish Procambarus virginalis as a  model species, experiments were conducted to 1) 
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determine whether embryogenesis in crayfish progresses to the hatching stage in a  high 
humidity environment in absence of standing water, 2) assess postembryonic development in 
a high humidity environment, and 3) determine success of late Stage 2 juvenile metamorphosis 
when animals are re-immersed.

Effects of aquatic contamination on the freshwater crayfish burrowing behaviour

In addition to extreme weather conditions, the quality of surface waters plays an essential 
role in maintaining ecosystem biodiversity and function (Bakker, 2012). Water pollution is 
considered an important driver of global biodiversity decline (Bayen, 2012; Dudgeon et al., 
2006; Manosa et al., 2001), with contamination and deterioration of water quality negatively 
impacting aquatic ecosystems (Affum et al., 2018; Aliko et al., 2018; Sehonova et al., 2018; 
Yao et al., 2015). Pesticides, pharmaceuticals, chemical fertilizers, detergents, petrochemicals, 
and plastics are the most common synthetic pollutants detected and studied (Amoatey and 
Baawain, 2019; Guzzetti et al., 2018; Yang et al., 2017). The negative effects of chemical 
contamination on non-target organisms in the natural environment is the focus of increasing 
attention (Arsand et al., 2018; Costa et al., 2018; Moe et al., 2019). 

The contamination of aquatic environments by pharmaceutically active compounds (PhAC) 
(Ebele et al., 2017) is an increasing concern worldwide (Burkina et al., 2015; Shaaban, 2017). 
Pharmaceuticals reported to pose a  serious threat to non-target aquatic organisms (Biel-
Maeso et al., 2018; Boxall et al., 2012; Corcoran et al., 2010) include psychoactive compounds, 
as well as antihistamines and cardiovascular drugs (Berset et al., 2010; Ebele et al., 2017; 
Irvine et al., 2011; Lindberg et al., 2014; Schafhauser et al., 2018). Their primary source in 
the environment is outflow from wastewater treatment plants (Cunha et al., 2017; Li et al., 
2011) following their incomplete removal (Buchberger, 2007; Golovko et al., 2014; Petrović 
et al., 2003). Reported aquatic concentrations of maternal compounds and metabolites of 
PhACs range from ng to μg/L (Aymerich et al., 2016; Grabicova et al., 2015). In excess of 
600 pharmaceutical substances have been detected worldwide (Küster and Adler, 2014) in 
wastewater, surface water, groundwater, and drinking water (Balakrishna et al., 2017; Li, 2014; 
Simazaki et al., 2015; Sui et al., 2015; Zhang et al., 2018). Although it is widely considered 
that the risk of these compounds to aquatic biota is minimal because of their sub-lethal 
concentrations and rapid degradation in the environment (Richmond et al., 2017), some 
PhACs are reported to show detrimental effects on aquatic organisms, including modification 
of behaviour and disruption of reproduction and development (Furlong et al., 2011; Imeh-
Nathaniel et al., 2017; Mishra et al., 2017). Impacts are documented on algae, zooplankton, 
mussels, shrimp, crayfish, and fish (Brodin et al., 2013; Buřič et al., 2018; Crane et al., 2006; 
Diniz et al., 2015; Douda et al., 2019; González-Ortegón et al., 2016). 

Herbicides have long been heavily used in agriculture and horticulture (El-Nahhal, 2003; 
Goncalves and Alpendurada, 2005; Silva et al., 2019) and are detected in natural waters 
worldwide (Peng et al., 2018; Prosser et al., 2016; Székács et al., 2015; Thurman et al., 
2000), typically at concentrations well below levels lethal to aquatic organisms (Amoatey and 
Baawain, 2019). Nevertheless, sublethal concentrations of herbicides and their metabolites 
may have detrimental effects on non-target organisms (Cook and Moore, 2008; Velisek et 
al., 2016; Velisek et al., 2017), impairing physiology and behaviour (Cook and Moore, 2008; 
Scott and Sloman, 2004). Impacts include alterations to the nervous system (Benli et al., 
2007; Sarikaya and Yılmaz, 2003), biochemical and haematological changes, and impaired 
reproduction and development (Velisek et al., 2014).

Recently, the crayfish has been suggested to be a  valuable model for studies of drug 
addiction (Imeh-Nathaniel et al., 2017; Kubec et al., 2019). Crayfish may become conditioned 
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to prefer environments in which they obtain drugs (Imeh-Nathaniel et al., 2016; Nathaniel et 
al., 2012a; Panksepp and Huber, 2004), and the innate reward system of crayfish is sensitive 
to therapeutic drugs used in humans (Nathaniel et al., 2012b). When injected with a low dose 
of methamphetamine, the rusty crayfish Faxonius rusticus (Girard 1852) showed mobility 
increase to a greater extent than with higher doses, while the higher dose was associated 
with a decrease in mobility (Imeh-Nathaniel et al., 2017). 

The red swamp crayfish Procambarus clarkii is a  primary model species that has been 
used in ecotoxicology studies for decades (Fong and Ford, 2014; Stara et al., 2014; Yu et 
al., 2017). In studies reported in Chapters 3 and 4, we tested the hypothesis that burrowing 
behaviour of the red swamp crayfish would be altered with exposure to PhACs and herbicides 
at concentrations frequently detected in aquatic environments. As representative PhACs, 
we chose methamphetamine (METH) and tramadol (TRA) (1 μg/L), and, as herbicides, 
terbuthylazine (TERB) and metazachlor (META) (2 μg/L). The reported concentration of 
methamphetamine in discharge water in the Czech Republic and Slovakia ranges from 
13 to 1805 ng/L (Mackul’ak et al., 2016) and tramadol from 3.7 to 5300 ng/L (Grabicova et 
al., 2017). The concentration of terbuthylazine in European surface and groundwaters has 
been detected at a range from 0.01 to 13.0 μg/L (Bossi et al., 2002; Chary et al., 2012; Fait 
et al., 2010; Jurado et al., 2012; Lacorte et al., 1998; Rodriguez-Mozaz et al., 2004; Vega et 
al., 2005), and the concentration of metazachlor recorded in natural waterbodies can reach 
100 μg/L (Mohr et al., 2007) with long degradation time, having a half-life in soil of 2.8–114 
days, and in water of 20.6–216 days (Hertfordshire, 2019).

Crayfish competition for shelter as a primary resource 

Finding shelter is critical to the life history of tertiary burrowers that excavate burrows only 
in winter or during drought conditions and, rarely, during the breeding season. It is usually 
a shallow depression under a rock, stone, or log or an abandoned burrow of another species.

Biological invasions represent a  threat to both native crayfish and entire communities, 
which are closely related to their introduction event. In Europe, prior to 1990, these were 
largely driven by the presumed value of non-native species for aquaculture. The involved 
species are often referred to as old non-indigenous crayfish species––Old NICS (Holdich et 
al., 2009). Later, development of the aquarium pet trade resulted introductions into the wild, 
intentionally and accidentally (Chucholl, 2013; Patoka et al., 2014), of species classified as 
New NICS (Furse and Coughran, 2011; Kawai and Crandall, 2016; Richman et al., 2015).

Invasions are increasing in both number of species and their abundance around the world 
(Early et al., 2016), and aquatic ecosystems are often invaded by multiple species that interact 
with one another as well as with native biota (Hudina et al., 2011), a  process known as 
over-invasion (Russell et al., 2014). Life history, niche preference, and adaptation strategies 
of invasive species may overlap, but interactions among them remain largely unexplored. 
In a  novel environment, multiple invaders may alter the ecosystem through additive or 
multiplicative effects (Jackson, 2015; Roy et al., 2014), compounding the impact of interactions 
of individual invasive species with incumbents (Preisser and Elkinton, 2008). However, the 
consequences of multiple invasions is little studied (Russell et al., 2014). Successful invaders 
can be identified by comparative analysis of invading species (Van Kleunen et al., 2010). 
Mechanisms may become clear when animals share identical ecological niches and compete 
for common resources such as food and shelter (Huntingford, 2013). Its current distribution 
provides growing evidence that the emerging marbled crayfish Procambarus virginalis Lyko, 
2017 can compete successfully with established spiny-cheek crayfish Faxonius limosus 
(Rafinesque, 1817) (Chucholl, 2015; Hossain et al., 2018; Lipták et al., 2017; Patoka et al., 
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2016). The calico crayfish Faxonius immunis (Hagen, 1870) is also reported to dominate 
during direct competition for shelter with the spiny-cheek, previously established in the Rhine 
River (Chucholl et al., 2008). Marbled and calico crayfish may currently co-exist in an ecological 
niche, as several reports have confirmed marbled crayfish occurrence in the Rhine River system 
(Chucholl et al., 2012). Linzmaier et al. (2018) found that marbled crayfish were generally 
more aggressive than carapace length–matched spiny-cheek crayfish in agonistic encounters, 
even against larger opponents. Outcome of competition of weight-matched marbled crayfish 
with calico crayfish and spiny-cheek crayfish and direct competition with these species for 
shelter has not been assessed. 

In this study (Chapter 5 and 6) aggression of marbled crayfish during interspecific interactions 
under laboratory conditions was quantified by characterizing their direct agonistic interactions 
and competition for shelter with calico and spiny-cheek crayfish. Differences in aggression 
may predict interactions and outcomes under natural conditions. 

Crayfish burrowing behaviour

Evaluation of methods of casting crayfish burrows

To investigate the basic structure, volume, surface area, and morphology of crayfish burrow 
systems in natural environments, casts of the burrow can be made and removed from the 
surrounding soil. The material used for casts of different species is shown in Table 1. 

Plaster and concrete are inexpensive and readily available, and plaster has been used to cast 
crab burrows (Dembowski, 1926; Hayasaka, 1935), but these materials can only provide a cast 
of the lower portion of burrows and chambers (Lawrence et al., 2001). Gypsum produces good 
results, but it is a challenge to remove complete casts from the soil because of its fragility 
(Noro and Buckup, 2010). Polyurethane foam burrow casts are considerably lighter than the 
concrete and plaster, making them easier to handle and transport (Lawrence et al., 2001). 
However, its rapid reaction with the chemical reagent can produce hardened foam before the 
primary liquid can completely fill the burrow system, and it does not set up well when water is 
present, leading to an incomplete cast (Lawrence et al., 2001; Noro and Buckup, 2010; Welch 
et al., 2008). Polyester resin is useful for studying the burrows of benthic animals (Atkinson 
and Chapman, 1984; Hamano, 1990). In particular, non-polyester resin with the appropriate 
catalyst (Methyl-Ethyl-Acetone Peroxide; Brasnox DM50) can produce a superior cast that is 
robust and easily removed in one piece (Noro and Buckup, 2010). Polyester resin seems to 
be the optimal choice for making burrow casts. Removal of the burrow cast from the soil is 
most commonly accomplished by digging with a small tool (Growns and Richardson, 1988; 
Noro and Buckup, 2010; Stieglitz et al., 2000; Welch et al., 2008). Water pressure is effective 
and can preserve the shape of casts, but some digging is required to remove the burrow cast 
(Lawrence et al., 2001). An industrial high-pressure spray unit can also be used, but has the 
disadvantage of requiring a source of filtered water that is not always available in the field 
(Lawrence et al., 2001).

The volume of a  burrow cast can be measured by water displacement (Growns and 
Richardson, 1988; Katz, 1980; Lim, 2006), mass-density analysis (Atkinson et al., 1987; James 
et al., 1990; Shimoda and Tamaki, 2004), or three-dimensional (3D) laser scanning (Platt et 
al., 2010). Water displacement is usually the simplest method: the cast is fully immersed in 
water, and the volume of the displaced water is that of the burrow cast. However, it is not 
suitable for a plaster cast that will be damaged by water (Tschinkel, 2010). The mass-density 
method requires a casting medium that is stable in density. The weight of the burrow cast 
relative to the density of the material are used to obtain the volume of the cast. The 3D laser 
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scanning method has been integrated into software (Bednarz and McIlroy, 2011; DeSilva, 
2010; Rossi et al., 2008; Strait et al., 2007). An instrument capable of recording and visually 
displaying 3D data is well suited for studies of three-dimensional trace fossils, especially 
burrows. The volume of the burrow cast can be calculated by software from data collected by 
a 3D scanner (Platt et al., 2010). Surface area is an important parameter of the cast, since it 
provides the extent of water-sediment interface (Kinoshita, 2002) and can represent redox 
potential and microbial biomass on walls of subaqueous burrows (Dworschak, 2001). Surface 
area can be calculated by wrapping the cast in a single layer of foil of known weight per unit 
area and weighing the foil (Atkinson and Nash, 1990) or by using software to analyse the data 
collected by the 3D scanner (Platt et al., 2010).

Laboratory protocol for study of crayfish burrowing behaviour
 
Studying burrowing crayfish in a subterranean habitat can present challenges in locating 

burrows, determining whether a burrow is active, identifying species inhabiting the burrow, 
directly observing burrow structure and crayfish behaviour, and manipulating conditions in and 
around burrows. Simulated setups and experimental systems to study burrowing behaviour 
of crayfish in laboratories need to be easy to build, inexpensive, replicable, and amenable to 
manipulation of soil type and water flow, level, and quality. Crayfish within a well-designed and 
executed system should burrow readily, create easily observed burrows and chimney structures 
similar to those found in the wild, and exhibit high survival and growth under favourable 
conditions (Stoeckel et al., 2011). Crayfish survival and behaviour in experimental systems 
should ideally be similar to that in the wild. As an example, to study the burrowing behaviour 
of P. clarkii, McClain (2010) placed a single mature crayfish in a polyethylene container filled 
with soil and water from its previous habitat with an artificial burrow mimicking that in the 
natural world. A more complex artificial setup was devised to study how the burrowing activity 
of P. clarkii altered seepage progression in a river levee, using the species preferred soil for 
burrowing (Haubrock et al., 2019).

Methods employed in the reported research 

Methodological approaches used in the research reported herein were derived from 
systems established at the Laboratory of Freshwater Ecosystems (formerly Laboratory of 
Ethology of Fish and Crayfish), combining evaluation of burrows using gypsum casts and 3D 
scanning with direct observation of species interactions aided by Ethovision software. Studies 
involving environmental contamination included participation of faculty colleagues skilled in 
ecotoxicology and chemistry. 

Aims of the research

Despite the more than one-hundred years of studying burrowing behaviour of individual 
crayfish species, there is much to be discovered about the behaviour ecology of burrowing 
crayfish compared to open water species (Helms et al., 2013). For many species, the basic 
parameters of life history including life span, reproduction frequency and seasonality, brood 
size, and survival rates remain unknown, and extrapolation of information obtained from 
a few well-studied species to such a phylogenetically and geographically diverse group should 
be done with caution. The number of newly described crayfish is increasing yearly. Thus, 
knowledge gaps exist that require deeper investigation.
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Goals and expected results of the research were to:

•	 review recent literature with respect to burrowing in crayfish to compile a comprehensive 
database of current knowledge.

•	 evaluate crayfish reproductive success under drought conditions. The array of factors 
threatening biodiversity and aquatic ecosystems is broad and complex, including climate 
change and severe events such as floods, fires, storms, and long-term drought, with 
far-reaching consequences. Drought is of key importance for hyporheic dwellers like 
crayfish. 

•	 assess the burrowing behaviour of crayfish exposed to a range of contaminants found 
in natural waters. Crayfish are recognized bio-indicators of environmental conditions, 
and are increasingly utilized for assessment of its status. The effects of pollution under 
natural conditions on crayfish has been scarcely studied. 

•	 analyse interspecific interactions under laboratory conditions of the emerging invader 
marbled crayfish P.  virginalis and widely established invasive spiny-cheek F. limosus 
and calico crayfish F. immunis by characterizing their direct agonistic interactions and 
competition for shelter. In crayfish, aggressive behaviour during interspecific interactions 
is a major trait associated with their invasion potential that can be used to estimate the 
ecological consequences of interaction of species sharing a similar niche. Differences in 
aggression may potentially impact their interactions under natural conditions.
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Abstract
1.	 Severe	 weather	 events,	 such	 as	 long‐term	 droughts,	 are	 challenging	 for	 many	
freshwater	species.	To	survive	drought,	freshwater	crayfish	tend	to	inhabit	shel‐
ters	or	burrows	where	they	can	remain	in	contact	with	water	or	high	humidity	en‐
vironments.	However,	it	is	not	known	whether	embryogenesis	or	post‐embryonic	
development	can	occur	without	free	standing	water.

2.	 To	address	this	question,	three	experiments	were	conducted	using	artificial	bur‐
rows	with	 high	 air	 humidity	 and	 using	marbled	 crayfish	 (Procambarus virginalis 
Lyko,	2017)	as	a	model	species.	Marbled	crayfish	are	capable	of	parthenogenetic	
reproduction,	burrow	extensively	and	are	able	to	travel	long	distances	over	land.	
In	the	first	experiment,	ovigerous	females	were	transferred	to	simulated	burrows	
without	free	water,	but	with	high	air	humidity.	A	control	group	of	females	were	
kept	in	burrows	with	free	water.	Successful	hatching	was	achieved	in	both	groups.

3.	 In	the	second	experiment,	ovigerous	females	were	transferred	to	simulated	bur‐
rows	with	no	free	water	but	high	air	humidity	and	post‐embryonic	development	
were	observed.	Following	successful	hatching,	offspring	moulted	to	the	second	
developmental	stage	(stage	2	juveniles).	Stage	2	juveniles	remained	viable	with‐
out	free	water	for	20	days,	but	further	development	was	not	observed.	However,	
when	some	of	these	stage	2	juveniles	were	placed	back	into	fully	aquatic	condi‐
tions	(experiment	3),	they	moulted	to	stage	3	within	4	to	8	days.

4.	 These	results	demonstrated	the	ability	of	marbled	crayfish	to	undergo	terminal	
phases	 of	 embryogenesis,	 including	 hatching,	 as	 well	 as	 early	 post‐embryonic	
development	under	high	air	humidity	conditions	only.	Post‐embryonic	develop‐
ment	was	suspended	in	the	absence	of	free	water,	and	successfully	resumed	when	
re‐immersed.
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1  | INTRODUCTION

Freshwater	 crayfish	 (Crustacea,	Decapoda,	Astacidea)	 are	often	 con‐
sidered	keystone	species	in	aquatic	ecosystems,	and	several	genera	are	
effective	ecosystem	engineers,	with	the	ability	to	modify	the	environ‐
ment	(Creed,	1994;	Geiger,	Alcorlo,	Baltanas,	&	Montes,	2005;	Sanford,	
1999).	They	frequently	represent	particularly	successful	 invasive	spe‐
cies,	such	as	the	red	swamp	crayfish	Procambarus clarkii	(Girard,	1852)	
and	marbled	crayfish	Procambarus virginalis	Lyko,	2017	(Momot,	1995;	
Reynolds,	 Souty‐Grosset,	 &	 Richardson,	 2013;	 Kouba,	 Petrusek,	 &	
Kozák	2014).	Generally,	crayfish	have	evolved	an	ability	to	seek	shelter	
or	construct	burrows	as	protection	against	conspecifics,	predators,	and	
adverse	environmental	conditions	(e.g.	droughts	and	temperature	ex‐
tremes)	(Horwitz	&	Richardson,	1986;	Riek,	1969).	They	also	use	these	
refuges	as	a	source	of	water	or	cover	during	moulting,	oviposition,	and	
incubation	of	eggs,	as	well	as	protection	of	the	offspring	(Atkinson	&	
Taylor,	1988;	Barbaresi,	Tricarico,	&	Gherardi,	2004;	Bergman	&	Moore,	
2003;	 Growns	 &	 Richardson,	 1988;	 Huner,	 Barr,	 &	 Coleman,	 1991;	
Richardson	&	 Swain,	 1980).	 Shelters	 or	 burrows	 are	 therefore	 often	
critical	for	crayfish	survival,	and	their	availability	is	the	principle bottle‐
neck	 in	crayfish	populations	 (Hobbs,	1991).	Extreme	seasonal	 fluctu‐
ations	 in	water	 regime	 can	have	 a	 close	 relationship	with	 the	 faunal	
life	cycles,	whose	important	life	history	events	may	correlate	with	fa‐
vourable	periods	 (Gasith	&	Resh,	1999).	Severe	weather	events	such	
as	 long‐term	drought	may	be	detrimental	 to	aquatic	biota	 (Dudgeon	
et	al.,	2006).	During	severe	drought,	juveniles	of	burrow‐dwelling	cray‐
fish	may	die	outside	parental	burrows	(Anne	&	Rasa,	1995;	Richardson,	
2007).	As	a	result,	juveniles	of	some	species	tend	to	stay	with	parents	
until	external	conditions	improve	or	until	their	body	reaches	sufficient	
size	to	enable	their	own	burrowing	activity	(Hamr	&	Richardson,	1994;	
Horwitz,	Richardson,	&	Cramp,	1985;	Linsenmair,	2007).

Presence	of	water,	or	at	least	high	air	humidity	in	burrows,	may	
be	 important	during	dry	periods.	As	 an	example	of	 successful	 ad‐
aptation,	 crayfish	 of	 the	 genus	Engaeus	 in	 south‐eastern	Australia	
and	Tasmania,	dig	burrows	 in	habitats	ranging	from	open	water	of	
permanent	water	bodies	to	terrestrial	habitats	with	no	free	surface	
water.	They	must	maintain	at	 least	high	air	humidity	 conditions	 in	
their	deep	burrows	to	survive	in	the	latter	case,	only	leaving	the	bur‐
row	to	search	 for	mates	and	 food,	usually	at	night	 (Horwitz	et	al.,	
1985).

With	 many	 species	 of	 crayfish	 having	 evolved	 to	 reproduce	
within	 burrows	 (Crandall	 &	 De	 Grave,	 2017;	 Hobbs,	 1942;	 Riek,	
1972),	 it	 is	 often	 difficult	 to	 obtain	 accurate	 information	 on	 life	
history	 traits	 and	behaviours	 of	 these	 species	 (Richardson,	 2007).	
Water	quality	 and	 levels	 in	 crayfish	burrows	 can	 fluctuate	widely,	
and	 crayfish	 survival	 and	 reproductive	 success	 under	 these	 con‐
ditions	 are	 poorly	 known.	 It	 is	 suggested	 that	 crayfish	 in	 burrows	
spend	up	to	70%	of	their	time	in	air	due	to	the	poor	water	quality	
(McMahon	&	Stuart,	1995)	and	that	water	in	natural	burrows	serves	
mainly	to	supply	100%	humidity	(Huner,	1994).	McMahon	and	Stuart	
(1995)	present	evidence	that	crayfish	exposed	to	 long	periods	out	
of	water	as	a	result	of	severely	depleted	oxygen	levels	and	enriched	
carbon	dioxide	levels	in	small	pools	of	water	(typical	of	water	in	bur‐
rows)	eventually	become	taxed	to	the	point	that	recovery	is	difficult.	
It	has	recently	been	documented	that	spawning	in	P. clarkii cannot 
occur	in	the	absence	of	free	water	and	oviposition	was	delayed	for	
a	period	of	 time	until	 free	water	was	 returned	 in	a	 simulated	bur‐
row	study	(McClain,	2013).	As	a	result,	reproductive	failure	may	ex‐
plain	the	decline	of	some	crayfish	species	(Lodge,	Taylor,	Holdich,	&	
Skurdal,	2000;	Taylor	et	al.,	2007)	under	prolonged	drought.

Given	 the	 physical	 changes	 (e.g.	 ultraviolet	 light,	 high	 tempera‐
ture,	 large	fluctuations	in	salinity,	pH,	and	oxygen)	that	occur	during	
drying	 (Alekseev,	De	Stasio,	&	Gilbert,	2007),	 invertebrates	 living	 in	
intermittent	aquatic	environments	often	show	adaptive	traits	(Lytle	&	
Poff,	2004;	Robson,	Chester,	&	Austin,	2011).	Freshwater	crayfish	are	
capable	of	aerial	 respiration,	 thanks	 to	 the	 structure	of	gills	 that	do	
not	collapse	in	air,	and	thus,	provide	a	bimodal	gas	exchange	surface	
(McMahon,	 2002).	Although	 the	number	of	 studies	 remains	 limited,	
McMahon	 and	 Hankinson	 (1993)	 and	McMahon	 and	 Stuart	 (1995)	
concluded	that	the	burrowing	crayfish	spent	the	majority	of	time	util‐
ising	aerial	 respiration.	There	 is	also	some	evidence	 for	possible	ae‐
rial	respiration	of	crayfish	eggs	during	incubation.	Procambarus clarkii,	
among	others	(Crandall	&	De	Grave,	2017;	Hobbs,	1942;	Riek,	1972),	
frequently	use	burrows	for	oviposition	and	egg	incubation	(Eversole	&	
McClain,	2000;	Huner,	1994),	but	it	seems	that	their	eggs	are	not	al‐
ways	submerged	in	the	groundwater	within	burrows	due	to	low	avail‐
able	levels	of	dissolved	oxygen	and	overall	water	quality.	The	oxygen	
diffuses	directly	from	the	burrow	atmosphere	while	eggs	are	fanned	
by	swimmeret	movements	(Huner	et	al.,	1991).	In	the	case	of	astaci‐
culture	 of	 signal	 crayfish,	 Pacifastacus leniusculus	 (Dana,	 1852),	 and	

5.	 This	similar	ability	to	tolerate	drought‐like	conditions	during	post‐embryonic	de‐
velopment	may	also	occur	in	other	crayfish	species,	especially	primary	burrowers.	
This	unprecedented	life	history	trait	may	be	crucial	for	inhabiting	ecosystems	with	
rapidly	changing	water	regimes.	 In	drying	climates,	 it	may	confer	advantages	on	
some	crayfish	species	(including	some	invasive	species)	over	others.

K E Y WO RD S

burrow,	drought,	hyporheic	dweller,	macroinvertebrate,	ontogeny
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white‐clawed	crayfish,	Austropotamobius pallipes	 (Lereboullet,	1858),	
egg	 storage	 is	 a	 technique	whereby	 fertilised	 eggs	 can	 be	 removed	
from	the	female's	pleopods	and	artificially	stored	in	a	high	humid	envi‐
ronment	for	extended	periods	of	time.	Clearly,	aerial	respiration	is	oc‐
curring	under	these	circumstances.	However,	when	the	12th	stage	of	
embryonic	development	(embryo	with	pulsating	heart,	Zehnder,	1934)	
is	reached,	the	eggs	need	to	be	immersed	for	further	progress	in	em‐
bryogenesis	(Celada	et	al.,	2000;	Pérez	et	al.,	2003).	This	critical	phase	
is	presumably	determined	by	 the	elevated	metabolic	needs,	 such	as	
metabolic	waste	removal	as	well	as	maintaining	 ionic	and	acid–base	
balance	(McMahon,	2002),	in	terminal	phases	of	embryogenesis.	The	
ability	to	respire	in	air	under	high	humidity	conditions	in	crayfish	eggs	
and	early	juveniles	may	be	species‐specific,	which	calls	for	deeper	un‐
derstanding	of	mechanisms	enabling	this	to	occur.

While	 it	 is	becoming	more	obvious	 that	oviposition	 in	crayfish	
is	 hampered	 or	 delayed	 in	 burrows	 lacking	 free	 standing	 water,	
the	effects	of	high	humidity	on	embryogenesis	 is	 largely	unknown	
(McClain,	 2013;	Niksirat,	Kouba,	&	Kozák,	 2014,	 2015).	However,	
survival	and	reproduction	of	crayfish	individuals	in	burrows	over	ex‐
tended	periods	of	time	without	free	water	have	been	demonstrated	
(Jordan,	Babbitt,	McIvor,	&	Miller,	2000;	Kouba	et	al.,	2016;	McClain,	
2013;	McClain	&	Romaire,	2004).	Due	to	 its	exclusively	partheno‐
genetic	mode	of	 reproduction,	 burrowing	behaviour	 and	potential	
invasive	abilities	(Gutekunst	et	al.,	2018;	Scholtz	et	al.,	2003),	P. vir‐
ginalis	 is	 a	 suitable	model	 species	 to	 study	 the	 effect	 of	 seasonal	
water	 level	 fluctuations	 on	 the	 early	 life‐history	 traits	 of	 crayfish	
living	in	intermittent	aquatic	environments	(Hossain,	Patoka,	Kouba,	
&	Buřič,	2018).

Our	objective	was	to	assess	the	effects	of	 long‐term	drought	
conditions	 on	 crayfish	 embryogenesis	 and	 post‐embryonic	 de‐
velopment	 in	burrows	when	free	water	was	not	always	available	
or	of	suitable	quality.	Using	P. virginalis	as	a	model	species,	three	
experiments	were	conducted:	(1)	assess	the	ability	of	embryogen‐
esis	 in	crayfish	to	proceed	to	the	hatching	stage	 in	highly	humid	
environments	 in	absence	of	free	standing	water;	 (2)	assess	post‐
embryonic	 development	 in	 highly	 humid	 environments;	 and	 (3)	
determine	 effectiveness	 of	 late	 stage	 2	 juvenile	metamorphosis	
when	animals	are	re‐immersed.

2  | MATERIALS AND METHODS

2.1 | Study species and experimental design

Mature	females	with	well‐developed	glair	glands	were	held	commu‐
nally	 under	 laboratory	 conditions	 at	 the	 Research	 Institute	 of	 Fish	
Culture	 and	Hydrobiology	 in	Vodňany,	 FFPW	USB,	 Czech	Republic.	
Three	 experiments	 (crayfish	 embryogenesis	 in	 high	 air	 humidity—
Experiment	 1,	 crayfish	 post‐embryonic	 development	 in	 high	 air	 hu‐
midity—Experiment	 2,	 and	 ontogeny	 development	 of	 humid‐reared	
stage	 2	 juveniles	 in	 aquatic	 conditions—Experiment	 3)	were	 carried	
out	in	laboratory	conditions	by	keeping	spawning	females	inside	artifi‐
cial	burrows	mimicking	burrow	habitats	(Figure	1).

The	 animals	 were	 maintained	 in	 aquaria	 within	 a	 recircula‐
tion	 system	 at	 21–22°C,	 in	 a	 14:10	 light:	 dark	 regime,	 and	 fed	
frozen	 chironomid	 larvae	 and	 sliced	 carrot	 in	 excess.	 Crayfish	
were	 checked	 for	 oviposition	 on	 a	 daily	 basis	 from	 August	 to	
October	 2016	 (Experiment	 1)	 and	 from	February	 to	 June	 2017	
(Experiments	2	and	3).	These	periods	 include	seasonal	peaks	 in	
reproduction	 of	 the	 species	 (Vogt,	 2015).	 Females	 with	 well‐
developed	 broods	 only	 (i.e.	 numerous	 healthy‐appearing	 eggs)	
were	 collected	 for	 the	 experiments.	One	day	 after	 observation	
of	 oviposition,	 ovigerous	 females	 were	 gently	 taken	 from	 the	
culture	 system	 and	 held	 individually	 in	 polypropylene	 boxes	
(18	×	13	×	7.5	cm)	covered	with	plastic	lids,	representing	artificial	
burrows	mimicking	burrow	habitats	or	experimental	units	in	the	
subsequent	experiments.

Artificial	burrows	contained	0.5	L	of	aged	tap	water	that	was	
exchanged	twice	a	week.	Some	experimental	groups	were	there‐
after	 transferred	 from	 an	 aquatic	 environment	 to	 experimental	
burrows	with	high	 (>99%)	 air	 humidity	 (measured	by	 a	portable	
weather	 station	WSA‐502,	EMOS).	High	air	humidity	was	main‐
tained	 in	 the	 enclosed	 burrows	 by	 the	 presence	 of	 a	 plastic	
sponge	 (dimensions	 ca.	 50	 ×	 35	 ×	 45	mm)	 containing	 50	ml	 of	
water	and	positioned	in	the	centre	of	the	burrow.	No	free	water	
was	accessible	in	these	burrows.	Burrows	were	kept	in	darkness	
at	 ambient	 laboratory	 temperatures	 (21–22°C).	 Females	 with	
their	brood	were	assigned	randomly	to	the	various	experimental	
treatments	described	below.	To	minimise	disturbances,	and	thus	
stress,	 during	 embryogenesis,	 the	 burrows	 were	 checked	 on	 a	
daily	basis	starting	3	days	before	presumed	hatching	and	contin‐
ued	daily	until	viable	eggs	were	no	longer	present.	Hatching	was	
noted	(when	present)	and	hatchlings	quantified	under	the	various	
treatments.

2.2 | Experimental procedures

2.2.1 | Crayfish embryogenesis in high air 
humidity—Experiment 1

The	 first	 experiment	 tested	 the	 ability	 of	 crayfish	 to	 successfully	
complete	embryogenesis	under	high	air	humidity.	Ovigerous	females	
(n	=	7)	maintained	under	aquatic	conditions	throughout	embryo	de‐
velopment	 (until	hatching)	 represented	a	control	group.	Three	 fur‐
ther	 groups	 (n	 =	 7	 in	 all	 cases)	 simulated	 situations	 of	 free	water	
scarcity	with	females	transferred	to	artificial	burrows	with	high	air	
humidity	 at	different	periods	of	 embryonic	development.	 Females	
were	transferred	from	a	fully	aquatic	environment	to	the	humidity‐
only	burrows	at	3,	10,	and	17	days	following	oviposition.	These	treat‐
ment	groups	are	identified	as	W3d,	W10d,	and	W17d,	respectively.	
If	present,	hatchlings	(stage	1)	were	gently	removed	from	pleopods	
and	 quantified.	 The	 experiment	 was	 terminated	 once	 viable	 eggs	
were	no	longer	present.	Female	biometry	range	was	15.6–27.9	mm	
in	 carapace	 length	 and	 0.9–5.7	 g	 in	weight.	 The	 temperature	was	
21.3	±	0.2°C.
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2.2.2 | Crayfish post‐embryonic development in 
high air humidity—Experiment 2

The	 aim	 of	 Experiment	 2	was	 to	 assess	 the	 ability	 of	 juveniles	 to	
advance	through	the	post‐embryonic	developmental	stages	in	high	
air	humidity.	Handling	of	experimental	animals	was	similar	to	that	in	
the	previous	experiment	 (Experiment	1).	The	control	group	 in	 this	
experiment	consisted	of	ovigerous	females	(n	=	17)	that	were	main‐
tained	 in	fully	aquatic	conditions	within	the	artificial	burrows	until	
independent	 juveniles	 in	 stage	 3	 (Vogt	 &	 Tolley,	 2004)	 appeared.	
Experimental	groups	simulating	situations	of	water	scarcity	were	all	
represented	with	ovigerous	females	that	were	initially	kept	in	fully	
aquatic	conditions	of	artificial	burrows	for	10	days,	followed	by	re‐
positioning	to	high	air	humidity	burrows	after	10	days	as	in	the	group	
W10d	of	Experiment	1.	Since	the	ability	of	offspring	to	reach	stage	1	
(hatching),	stage	2	(first	moult),	and	stage	3	(independent	juveniles)	
under	high	humidity	conditions	was	tested,	the	experimental	groups	
are	indicated	as	W10d‐stage	1,	W10d‐stage	2,	and	W10d‐stage	3,	
respectively.	These	groups	were	represented	by	14,	14,	and	13	fe‐
males,	respectively.

Eggs	 and	 developing	 juveniles	 of	 the	 control	 group	 were	 not	
quantified	 since	 their	 enumeration	 on	 maternal	 pleopods	 would	
be	disturbing	 for	both	 the	 female	and	 the	offspring.	This	 is	unfor‐
tunately	 also	 true	 for	 stage	3	 juveniles	 that	we	 failed	 to	quantify,	
although	 their	 offspring	were	 generally	 numerous.	 Our	 long‐term	
experience	with	the	species	suggests	that	comparable	culturing	con‐
ditions	have	been	sufficient	for	successful	reproduction	under	lab‐
oratory	 conditions.	Commonly	 observed	 fecundity	 of	 similar‐sized	
females	 often	 exceeds	 100	 eggs,	with	 survival	 rates	 of	 hatchlings	
reaching	stage	2	juveniles	in	a	range	of	75–95%	in	aquatic	conditions.	
Meanwhile,	attaining	stage	3	and	4	is	most	often	represented	by	a	
similar	value	of	a	broad	range	between	35	and	75%.	Juveniles	of	the	
other	experimental	groups	reaching	the	respective	target	endpoint	
in	high	air	humidity	were	gently	separated	(using	entomological	for‐
ceps)	from	the	female	pleopods	and	placed	back	in	artificial	burrows	
(without	the	female	or	plastic	sponge)	containing	0.5	L	of	aged	tap	
water,	 exchanged	every	other	day.	Transferred	 juveniles	 remained	
under	 the	 original	 experimental	 treatment	 designation.	 In	 each	 of	
these	 groups,	 survival	 rate	 and	 developmental	 stage	 of	 the	 juve‐
niles	were	checked	daily	once	the	juveniles	were	returned	to	aquatic	

F I G U R E  1  Schematic	figure	of	experimental	setup	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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conditions.	Stage	3	juveniles	were	offered	feed	(defrosted	chirono‐
mid	larvae)	on	a	daily	basis	and	were	monitored	until	reaching	stage	
4,	which	is	signified	by	successful	onset	of	exogenous	feeding	(Vogt	
&	Tolley,	2004).	Achievement	of	stage	4	in	this	experiment	was	con‐
sidered	completion	of	juvenile	ontogeny	of	this	species	(Vogt,	Tolley,	
&	 Scholtz,	 2004),	 which	 implies	 no	 detrimental	 effects	 from	 the	
experimental	conditions.	Females	with	 juveniles	 failing	 to	advance	
to	 the	next	stage	 in	post‐embryogenic	development	after	20	days	
were	 terminated.	Time	 from	oviposition	 to	earliest	observation	of	
each	stage	of	ontogeny	was	recorded.	Female	biometry	for	this	ex‐
periment	ranged	15.3–31.3	mm	in	carapace	length	and	2.1–5.2	g	in	
weight.	The	temperature	was	21.7	±	0.3°C.

2.2.3 | Ontogeny of humid‐reared stage 2 juveniles 
in aquatic conditions—Experiment 3

The	last	experiment	was	a	follow	up	to	Experiment	2.	The	inability	of	
stage	2	juveniles	to	progress	to	stage	3	under	high	humidity	conditions	
(group	W10d‐stage	3	 in	Experiment	2;	 see	Results	below)	 led	us	 to	
investigate	the	ability	of	stalled	stage	2	juveniles	to	advance	to	stage	
3	when	re‐immersed	 (Figure	1).	Therefore,	42	stage	2	 juveniles	 (10,	
15,	and	17	specimens	from	three	females,	respectively)	were	collected	
from	the	stalled	development	group	after	20	days	in	Experiment	2	and	
returned	to	artificial	burrows	with	0.5	L	of	aged	tap	water	 (changed	
every	other	day).	These	were	observed	as	described	for	further	post‐
embryonic	development	in	an	aquatic	environment	in	Experiment	2.

2.3 | Data analysis

Due	 to	 the	 binary	 nature	 of	 the	 data	 (0,	 1	 values,	 meaning	 un‐
successful	 versus	 successful	 hatching),	 we	 implemented	 Firth's	

bias‐reduced	penalised‐likelihood	logistic	regression	to	test	differ‐
ences	between	proportion	of	successful	hatching	among	the	groups	
(Control,	W3d,	W10,	and	W17	in	Experiment	1;	and	Control,	W10d‐
stage	1,	W10d‐stage	2,	 and	W10d‐stage	3	 in	Experiment	2)	with	
weight	of	females	as	a	covariate.	 In	the	same	manner,	general	 lin‐
ear	model	with	Poisson	distribution	was	used	to	analyse	number	of	
hatchlings	in	all	reproducing	females,	which	was	followed	by	Tukey	
post	hoc	test	to	determine	statistical	significance	between	groups.	
Also,	only	 successfully	 reproducing	 females	were	assessed	 in	 this	
way	in	Experiment	1.	In	Experiment	2,	survival	rate	of	juveniles	suc‐
cessfully	 reaching	 secondary	 target	 stages	 3	 and	 4	was	 analysed	
similarly,	 using	 quasi‐binomial	 distribution	 that	 accounts	 for	 data	
overdispersion.	All	 analyses	were	 implemented	 in	R	version	3.2.5	
(R	Core	Team,	2016).

3  | RESULTS

3.1 | Crayfish embryogenesis in high air humidity—
Experiment 1

Successful	hatching	was	observed	 in	all	 treatments	of	Experiment	
1	 (Table	 1).	 Eggs	 of	 all	 females	 in	 the	 control	 and	W17d	 groups	
hatched	successfully,	producing	viable	juveniles.	The	proportion	of	
females	with	hatched	eggs	declined	significantly	 ((Likelihood	Ratio	
Test),	LRT	=	10.59;	df = 4; p	=	0.03)	with	reduced	duration	of	aquatic	
incubation	period,	being	28.6	and	57.1%	in	groups	W3d	and	W10d,	
respectively.	Weight	of	females	did	not	influence	proportion	of	suc‐
cessful	hatching	 (p	=	0.74).	Considering	all	 females	 involved	 in	 the	
test,	the	number	of	hatchlings	(stage	1	juveniles)	per	female	signifi‐
cantly	declined	with	the	duration	of	emersion	(LRT	=	313.25;	df = 3; 
p	<	0.001),	while	fecundity	in	successfully	hatching	females	did	not	

TA B L E  1  Proportion	(and	percentage;	%)	of	stocked	female	crayfish	that	successfully	hatched	eggs,	and	mean	number	(±	SD)	and	range	of	
hatchlings	in	successfully	reproducing	females	in	Experiment	1.	Within	a	column,	values	with	differing	letters	differ	statistically	(p	<	0.05)

Group
Proportion (and percentage) of stocked female 
crayfish with successfully hatching eggs

Mean number (± SD) of hatch‐
lings in all females

Mean number (± SD) and range of hatch‐
lings in successfully reproducing females

Control 7/7	(100%)b 65.4 ± 44.6c 65.4 ± 44.6a	(18–128)

W3d 2/7	(28.6%)a 19.3	±	37.1a 64.5	±	37.5a	(38–97)

W10d 4/7	(57.1%)ab 40.6 ± 45.4b 71.0	±	35.2a	(22–98)

W17d 7/7	(100%)b 68.9 ± 39.2c 68.9 ± 39.2a	(24–123)

TA B L E  2  Proportion	(and	percentage;	%)	of	stocked	females	that	successfully	hatched	eggs,	and	proportion	(and	percentage;	%)	of	
successfully	reproducing	females	with	offspring	that	reached	the	target	post‐embryonic	developmental	stage	(stage	1,	stage	2,	and	stage	3)	
in	Experiment	2.	Within	a	column,	values	with	differing	letters	differ	statistically	(p	<	0.05)

Group
Proportion (and %) of  
females successfully hatching eggs

Proportion (and %) of females with offspring 
reaching target developmental stage

Control 13/17	(76.5%)a 13/13	(100%)b

W10d‐stage	1 9/14	(64.3%)a 9/9	(100%)b

W10d‐stage	2 8/14	(57.1%)a 8/8	(100%)b

W10d‐stage	3 7/13	(53.8%)a 0/7	(0%)a
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differ	significantly	among	groups	(LRT	=	1.29;	df = 3; p	=	0.73),	rang‐
ing	from	64.5	to	71.0.	Weight	of	females	positively	influenced	num‐
ber	of	hatchlings	(p	<	0.001).

3.2 | Crayfish post‐embryonic development in high 
air humidity—Experiment 2

Three	quarters	(76.5%)	of	females	in	the	control	group	successfully	
hatched	 their	 eggs,	 thus	 attaining	 stage	1	 juveniles	 in	Experiment	
2	(Table	2).	Hatching	was	also	successful	in	the	other	experimental	
groups	that	were	exposed	to	humid	air	following	the	first	10	days	of	
oviposition	in	water.	Embryogenesis	was	completed	with	the	hatch‐
ing	 of	 eggs	 in	 53.8	 to	64.3%	of	 those	 females.	 The	proportion	of	
females	with	hatched	eggs	did	not	differ	among	groups	(LRT	=	2.22;	
df = 4; p	 =	 0.69).	Weight	 of	 females	 did	 not	 influence	 proportion	
of	 successful	 hatching	 (p	 =	 0.58).	 In	 the	 control	 (full	 aquatic)	 and	
W10d‐stage	1	 (aquatic	conditions	after	stage	1)	treatment	groups,	
all	 hatched	 offspring	 advanced	 through	 post‐embryonic	 develop‐
ment	under	aquatic	conditions,	reaching	stage	4.	All	stocks	of	suc‐
cessfully	 hatching	 juveniles	 in	 the	W10d‐stage	2	 treatment	 group	
were	capable	of	moulting	to	stage	2	juveniles	under	high	air	humid‐
ity	conditions,	followed	by	normal	post‐embryonic	development	in	
aquatic	conditions.	Similarly,	hatchlings	of	the	W10d‐stage	3	group	
were	capable	of	moulting	to	stage	2	juveniles	under	high	humidity	
but	were	 unable	 to	 develop	 further	 under	 continued	 high	 humid‐
ity	 (Table	2).	Therefore,	 the	proportion	of	 females	 reaching	 target	
developmental	 stage	 differed	 between	 W10d‐stage	 3	 and	 other	
groups	 (LRT	 =	 26.09;	df = 4; p	 <	 0.001).	 As	 for	 all	 females	 in	 the	
experiment,	weight	of	females	reaching	target	developmental	stage	
did	not	influence	proportion	of	successful	hatching	(p	=	0.98).

Mean	survival	rates	(%	±	SD)	of	marbled	crayfish	hatchlings	that	
successfully	 advanced	beyond	 the	 air	 humidity	 target	 stage	when	
transferred	to	an	aquatic	environment	are	presented	in	Table	3.	 In	
the	control	group	it	took,	on	average,	21.4	and	26.3	days	total	fol‐
lowing	oviposition	for	the	earliest	observation	of	stage	1	and	stage	
2	juveniles	to	appear,	respectively.	Stage	3	juveniles	were	first	ob‐
served	after	31.2	days	on	average	 (Table	4).	 In	 the	W10d‐stage	1	
group,	 the	 mean	 survival	 of	 this	 treatment	 group	 declined	 from	
44.9%	of	juveniles	advancing	past	stage	1	after	transfer	to	aquatic	
conditions	 to	29.0%	 for	 those	 completing	 the	 last	post‐embryonic	
development	stage.	The	time	to	first	observance	of	successful	de‐
velopment	 achievement	 was	 21.5,	 27.1,	 and	 33.3	 days	 following	
oviposition	for	stage	1,	2,	and	3,	respectively.	For	the	W10d‐stage	

2	 treatment	 group,	mean	 survival	 rates	 of	 juvenile	 transferees	 (to	
aquatic	environment)	were	66.2	and	62.1%	for	those	advancing	be‐
yond	stage	2	and	3,	 respectively	 (Table	3).	Time	 to	earliest	obser‐
vation	of	secondary	target	stage	was	non‐significant	among	groups	
(LRT	=	0.10–1.55;	p	 =	 0.46–0.99;	 Table	4).	 Juveniles	 that	moulted	
to	stage	2	under	high	air	humidity	in	the	group	W10d‐stage	3	were	
unable	 to	 further	progress	 in	ontogeny	under	humidity	 conditions	
(Table	3).	Those	offspring	eventually	died	after	remaining	viable	for	
35.3	days	on	average.	Significant	differences	existed	between	sur‐
vival	 rates	 of	 groups	 exposed	 to	 highly	 humid	 conditions	 through	
stage	 2	 (F2,	 21	 =	 42.65,	 p	 <	 0.001)	 and	 stage	 3	 development	 (F1,	
15	=	14.26,	p	=	0.002;	Table	3).	Weight	of	females	did	not	influence	
survival	rate	and	time	to	the	earliest	observation	of	particular	stages.

3.3 | Ontogeny of humid‐reared stage 2 juveniles in 
aquatic conditions—Experiment 3

In	this	experiment,	where	a	total	of	42	stage	2	 juveniles	unable	to	
proceed	to	the	next	moult	were	transferred	to	fully	aquatic	condi‐
tions	 after	 20	 days,	 and	most	were	 able	 to	 resume	 development.	
Eighty‐eight	 percent	 of	 the	 transferred	 animals	 moulted	 within	
4–8	days,	and	further	progressed	normally	to	stage	4	with	feed.

4  | DISCUSSION

Crayfish	have	evolved	to	construct	or	use	burrows	not	only	to	survive	
under	 fluctuating	 aquatic	 habitats,	 but	 perhaps	 also	 to	 reproduce	

TA B L E  3  Survival	rates	(mean	±	SE;	%)	of	marbled	crayfish	
hatchings	successfully	reaching	secondary	target	(Sec.)	stage	2,	
stage	3,	and	stage	4	in	further	developmental	after	transfer	to	an	
aquatic	environment	following	the	primary	treatment	period	in	
Experiment	2.	Within	a	column,	values	with	differing	letters	differ	
statistically	(p	<	0.05)

Group Sec. Stage 2 Sec. Stage 3 Sec. Stage 4

Control n.d. n.d. n.d.

W10d‐stage	1 44.9 ± 20.8 33.8 ± 21.2b 29.0 ± 19.8a

W10d‐stage	2 n.d. 66.2 ± 13.4c 62.1 ± 11.3b

W10d‐stage	3 n.d. 0a NA

Abbreviations:	n.d.,	not	determined;	NA,	not	applicable.
Grey	highlight	denotes	periods	of	aquatic	conditions.

Group Stage 1 (Hatching) Stage 2 Stage 3

Control 10 11.4 ± 0.6a 26.3	(21.4	+	4.9)	±	1.5a 31.2	(26.3	+	4.9)	±	1.4a

W10d‐stage	1 10 11.5 ± 0.5a 27.1	(21.5	+	5.6)	±	1.1a 33.3	(27.1	+	6.2)	±	1.0a

W10d‐stage	2 10 11.5 ± 0.5a 27.4	(21.5	+	5.9)	±	1.2a 35.3	(27.4	+	7.9)	±	3.7a

W10d‐stage	3 10 11.5 ± 0.5a 28.0	(21.5	+	6.5)	±	2.9a NA

Abbreviation:	NA,	not	applicable.
Grey	highlight	denotes	periods	of	aquatic	conditions.

TA B L E  4  Time	(mean	±	SE;	days)	from	
oviposition	to	the	earliest	observation	
of	stage	1	(hatching),	stage	2,	and	stage	
3	juveniles	whether	in	high	humidity	
or	aquatic	conditions	in	Experiment	2.	
Within	a	column,	values	with	differing	
letters	differ	statistically	(p	<	0.05)



- 35 -

High air humidity is sufficient for successful egg incubation and early post-embryonic 
development in the marbled crayfish (Procambarus virginalis)

     |  1609GUO et al.

when	water	is	scarce.	However,	given	the	nature	of	burrowing	cray‐
fish	 and	 the	 difficulty	 of	 working	 with	 naturally	 constructed	 and	
sealed	burrows,	little	is	known	about	how	early	life	history	of	cray‐
fish	in	burrows	is	 influenced	by	environmental	factors.	Our	results	
clearly	demonstrate	that	high	air	humidity	alone	is	sufficient	during	
terminal	phases	of	embryogenesis,	including	the	hatching	period,	in	
marbled	crayfish.	It	is	expected	that	such	adaptation	may	be	a	char‐
acteristic	of	other	crayfish	species	that	have	evolved	within	seasonal	
aquatic	ecosystems.

We	proved	 that	hatchlings	are	capable	of	moulting	 to	 the	sec‐
ond	 developmental	 stage	 under	 high	 air	 humidity	 conditions.	 The	
stage	2	juveniles	remained	viable	for	extended	periods	of	time	but	
did	 not	 develop	 further	 without	 immersion.	When	 transferred	 to	
aquatic	conditions,	 they	moulted	to	the	third	developmental	stage	
in	the	course	of	several	days	and	further	progressed	normally.	This	
survival	trait	enables	marbled	crayfish	to	spread	into	a	wide	range	
of	habitats	 that	experience	situations	of	water	 scarcity	 that	might	
otherwise	be	unsuitable	for	other,	 less	adapted	crayfish	species	as	
well	as	other	aquatic	taxa	(Feria	&	Faulkes,	2011;	Kouba	et	al.,	2016).	
However,	we	expect	that	other	crayfish	species	such	as	the	primary	
burrowers	 and	perhaps	 some	 secondary	burrowers,	 especially	 the	
highly	invasive	P. clarkii,	are	also	capable	of	maintaining	ontogeny	to	
some	degree	without	 free	 standing	water	under	humid	conditions	
in	 a	 burrow.	 Such	 adaptations	 are	 particularly	 valuable	 in	 ecosys‐
tems	with	highly	variable	water	availability	(for	example	intermittent	
freshwater	ecosystems).	Parts	of	Australia	and	North	America	(e.g.	
the	south‐east	of	the	continent)	have	experienced	an	increase	in	the	
frequency	and	duration	of	dry	periods	(Hughes,	2003)	and	are	also	
crayfish	 biodiversity	 hotspots.	 Thus,	 the	 capacity	 of	 adaptations	
such	as	 that	described	here	will	probably	be	of	key	 importance	as	
climatic	 drying	 progresses,	 possibly	 eliminating	 species	 that	 lack	
adaptations	 that	 maintain	 reproduction	 during	 prolonged	 drying	
(Johnston	&	Robson,	2009;	Robson	et	al.,	2011).	Such	drying	events	
may	also	occur	in	previously	unexpected	places	(Kouba	et	al.,	2016),	
which	requires	further	knowledge	of	the	effects	of	drying	conditions	
on	macroinvertebrate	communities	(Robson	et	al.,	2011).

The	variety	of	adaptations	used	by	crustaceans	 for	 surviving	
drying	are	diverse.	In	freshwater	crayfish,	females	frequently	use	
burrows	for	egg	incubation,	especially	in	the	case	of	primary	and	
secondary	 burrowers	 (Hobbs,	 1942;	 Riek,	 1972).	 Females	 tend	
to	 construct	 deeper	 burrows	 compared	 to	males	 and	 frequently	
occupy	 the	 deepest	 parts	 of	 the	 burrow	 during	 egg	 incubation	
(Hazlett,	 Rittschof,	 &	 Rubenstein,	 1974;	 Payne,	 1972).	 Seasonal	
fluctuations	 of	 groundwater	 can	 influence	 the	 depth	 of	 bur‐
rows	 (Helms	 et	 al.,	 2013;	 Stoeckel,	 Cash,	 &	Helms,	 2011).	 Also,	
it	 seems	 that	 the	water	 table	 is	 often	below	 the	bottom	of	 bur‐
rows	 at	 drying	 localities,	 e.g.	 in	 the	 case	 of	P. clarkii,	which	 fre‐
quently	 reproduces	under	 these	 conditions	 (McClain	&	Romaire,	
2004;	Souty‐Grosset	et	al.,	2014).	Crayfish	abilities	 to	 reach	 the	
water	 table	 under	 laboratory	 conditions	 are	 species‐dependent	
(Bovbjerg,	1970;	Dyer,	Worthington,	&	Brewer,	2015).	In	crayfish	
of	 the	 genus	 Engaeus,	 which	 excavate	 burrows	 or	 chambers	 on	
hill	 slopes,	 they	 often	 do	 not	 reach	 the	water	 table	 (Horwitz	 &	

Richardson,	1986;	Suter	&	Richardson,	1977).	In	cases	of	burrows	
above	the	water	table,	water	present	in	the	burrows	is	most	likely	
to	be	perched	from	the	time	of	their	construction	and	settlement,	
or	 perhaps	 periodically	 refreshed	 from	 seepage	 or	 percolation	
from	rainfall.	Chimney‐like	structures	built	by	many	species	from	
the	genera	Cambarus, Engaeus,	and	Geocharax	(Grow	&	Merchant,	
1980;	Horwitz	et	al.,	1985;	March	&	Robson,	2006;	Noro,	Fonseca,	
Buckup,	&	Bond‐Buckup,	2007;	Suter	&	Richardson,	1977)	or	clos‐
ing	of	the	burrow	entrance	by	a	mud	plug,	particularly	in	females	
(Barbaresi	 &	 Gherardi,	 2000;	 Correia	 &	 Ferreira,	 1995;	 Kouba	
et	 al.,	 2016),	 help	 in	maintaining	 suitable	 living	 condition	 inside.	
Aestivation	chambers	 to	maintain	humidity	during	desiccation	 in	
streambeds	 are	 built	 by	 adult	Geocharax	 sp.	 (Chester	&	Robson,	
2011;	Chester	et	al.,	2014).	Furthermore,	the	non‐burrowing	cray‐
fish	Gramastacus insolitus	Riek,	1972	are	 commensal	upon	 larger	
crayfish	species’	burrows	 to	survive	 the	seasonal	drying	of	 their	
habitat	(Johnston	&	Robson,	2009).	Such	behavioural	adaptations	
highlight	the	importance	of	maintaining	humidity	within	burrows.

It	is	reasonable	to	expect	that	immersion	of	eggs	is	essential,	at	
least	 at	 the	 very	 early	 stages	of	 embryonic	development	 (Niksirat	
et	al.,	2014,	2015),	and	it	has	been	documented	that	oviposition	can‐
not occur in P. clarkii	without	free	water	(McClain,	2013).	Artificially	
stored	eggs	of	 the	 signal	 crayfish	and	white‐clawed	crayfish	need	
to	be	transferred	to	aquatic	conditions	once	the	12th	stage	of	em‐
bryonic	development	 is	 attained	 (Celada	et	 al.,	 2000;	Pérez	et	 al.,	
2003).	However,	these	astacids	are	cold‐water	species,	carry	larger	
eggs	and	the	embryogenesis	period	is	much	longer	than	in	marbled	
crayfish	and	other	warm‐water	species	possessing	a	faster	lifecycle	
(Kouba,	Buřič,	&	Petrusek,	2015).	Moreover,	those	astacids	do	not	
exhibit	 the	 ability	 to	 burrow	 extensively	 vertically	 as	 an	 effective	
adaptive	tool	in	situations	of	water	scarcity,	as	can	be	seen	in	numer‐
ous	cambarids	and	parastacids	(Kouba	et	al.,	2016).

Findings	here	of	late	embryonic	and	early	post‐embryonic	crayfish	
development	in	the	absence	of	free	water	for	marbled	crayfish	in	par‐
ticular	are	noteworthy,	as	 it	 is	a	unique	species	with	a	high	 invasion	
potential	due	to	its	parthenogenetic	mode	of	reproduction	(Gutekunst	
et	al.,	2018;	Scholtz	et	al.,	2003).	Crayfish	males	and	females	are	some‐
times	 found	sharing	a	 single	burrow	 in	 sexually	 reproducing	species	
(Horwitz	et	al.,	1985;	Johnston	&	Robson,	2009).	However,	presence	
of	a	male	 in	 the	burrow	 is	not	a	necessary	prerequisite	 for	continu‐
ity	of	reproduction	in	burrows	during	droughts,	given	that	spermato‐
phores	are	attached	on	the	ventral	side	of	females	(in	Astacidae	and	
Parastacidae)	or	deposited	inside	the	annulus ventralis	(in	Cambaridae	
and	 Cambaroididae),	 often	 a	 long	 time	 before	 ovulation	 (Albaugh,	
1973;	Buřič,	Kouba,	&	Kozák,	2013;	Butler	&	Stein,	1985).	Considering	
that	our	trials	utilised	marbled	crayfish	females	with	attached	and	de‐
veloping	eggs,	we	believe	that	our	findings	are	valid	also	for	sexually	
reproducing	species,	thus	covering	both	modes	of	reproduction.	Our	
findings	suggests	that	successful	ontogeny	under	drought‐like	condi‐
tions	for	this	species	 is	primarily	related	to	the	tolerance	of	crayfish	
eggs	to	periods	without	free	water,	which	is	well	in	line	with	adapta‐
tions	of	other	drought‐tolerant	species,	such	as	construction	of	special	
aestivation	burrows	 (Chester	&	Robson,	2011;	Chester	et	al.,	2014),	
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burrow	commensalism	with	other	crayfish	(Johnston	&	Robson,	2009),	
and	 digging	 deeper	 burrows	 to	 the	 water‐level	 during	 dry	 seasons	
(Horwitz	et	al.,	1985;	Riek,	1969).	The	tolerance	to	drought	using	vari‐
ous	traits	is	probably	crucial	for	inhabiting	ecosystems	with	high	water	
level	fluctuations	in	freshwater	crayfish.

5  | CONCLUSION

Our	study	revealed	an	ability	of	marbled	crayfish	to	undergo	terminal	
phases	of	embryogenesis,	including	hatching,	as	well	as	early	post‐
embryonic	development	in	high	air	humidity	alone.	Importantly,	our	
finding	that	stage	2	juveniles	were	able	to	persist	for	a	prolonged	du‐
ration	at	this	stage	under	humid	conditions,	and	that	they	were	able	
to	resume	normal	ontogeny	once	re‐immersed,	greatly	increases	our	
understanding	of	this	species’	resilience	in	habitats	with	variable	hy‐
drology.	A	similar	ability	 to	tolerate	and	reproduce	during	drought	
is	also	expected	to	occur	 in	other	crayfish	species	such	as	the	pri‐
mary	burrowers	or	some	secondary	burrowers,	especially	the	highly	
invasive	P. clarkii.	This	unprecedented	 life	history	 trait	 in	 freshwa‐
ter	crayfish	is	probably	crucial	for	 inhabiting	ecosystems	with	high	
water	 level	fluctuations	and	severe	drought.	 In	the	context	of	bio‐
logical	invasions,	the	magnitude	of	these	adaptations	to	drought	will	
probably	also	contribute	to	species	displacements,	favouring	species	
that	are	better	adapted	to	such	environmental	conditions.
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a b s t r a c t

Pharmaceutically active compounds (PhAC) have been increasingly detected in freshwater and marine
waterbodies worldwide and are recognized as major emerging micropollutant threat to the aquatic envi-
ronment. Despite their low concentrations in the environment, there is evidence of effects on non-target
aquatic organisms in natural habitats. To assess the potential effects of PhACs on its burrowing behavior,
we exposed the red swamp crayfish Procambarus clarkii to methamphetamine or tramadol at the environ-
mentally relevant concentration of 1 lg/L. Methamphetamine-exposed females constructed burrows of
lower depth and volume relative to individual weight than did controls. Tramadol-exposed females con-
sistently exhibited a tendency for smaller burrows, but this difference was not significant. Exposed males
showed a non-significant tendency to excavate larger burrows compared with the control. Control and
tramadol-treated females maintained the natural tendency of constructing relatively deeper and/or
larger-volume burrows compared with males. This sex-related pattern was not detected in the metham-
phetamine group. The rate of human therapeutic PhAC usage is relatively stable year-round, and impacts
on crayfish burrowing can be particularly damaging during periods of drought, when the dilution of
waste waters is reduced, and burrowing becomes a critical survival strategy. Our results suggest that
an increasingly broad range of environmental impacts of PhACs on non-target organisms can be expected
in natural ecosystems.

� 2019 Elsevier B.V. All rights reserved.

1. Introduction

The contamination of aquatic environments by pharmaceuti-
cally active compounds (PhAC) (Ebele et al., 2017) is an increasing
concern worldwide (Burkina et al., 2015; Shaaban, 2017).
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Pharmaceutically active compounds that pose a serious threat to
non-target aquatic organisms (Biel-Maeso et al., 2018; Boxall
et al., 2012; Corcoran et al., 2010) include psychoactive compounds
such as illicit drugs as well as antihistamines, and cardiovascular
drugs (Berset et al., 2010; Ebele et al., 2017; Irvine et al., 2011;
Lindberg et al., 2014; Schafhauser et al., 2018). Their primary
source in the environment is outflow from wastewater treatment
plants (Cunha et al., 2017; Li et al., 2011) following their incom-
plete removal (Buchberger, 2007; Golovko et al., 2014; Petrović
et al., 2003). Reported aquatic concentrations of maternal com-
pounds and metabolites range from ng to lg/L (Aymerich et al.,
2016; Grabicova et al., 2015). In excess of 600 pharmaceutical sub-
stances have been detected worldwide (Küster and Adler, 2014) in
wastewater, surface water, groundwater, and drinking water
(Balakrishna et al., 2017; Li, 2014; Simazaki et al., 2015; Sui
et al., 2015; Zhang et al., 2018). Although it has been widely con-
sidered that the risk of these compounds to aquatic biota is mini-
mal because of their sub-lethal concentrations and rapid
degradation in the environment (Richmond et al., 2017), some
PhACs are reported to show detrimental effects on aquatic organ-
isms including modification of behavior and disruption of repro-
duction and ontogeny (Furlong et al., 2011; Imeh-Nathaniel et al.,
2017; Mishra et al., 2017). Impacts are documented in algae, zoo-
plankton, mussels, shrimp, crayfish, and fish (Brodin et al., 2013;
Buřič et al., 2018; Crane et al., 2006; Diniz et al., 2015; Douda
et al., 2019; González-Ortegón et al., 2016) Figure 1.

Crayfish (Crustacea, Decapoda) are distributed throughout the
world, including in Europe, and are considered keystone species
in the environment (Crandall and De Grave, 2017; Hossain et al.,
2018; Kouba et al., 2014; Perdikaris et al., 2017). They have evolved
the ability to seek shelter and to construct burrows (Horwitz and
Richardson, 1986; Riek, 1969) that provide protection against con-
specifics and predators during vulnerable life stages such as molt-
ing and reproduction (Atkinson and Taylor, 1988; Bergman and
Moore, 2003; Growns and Richardson, 1988; Guo et al., 2019)
and serve as a valuable resource in adverse environmental condi-
tions such as drought and temperature extremes (Haubrock
et al., 2019; Kouba et al., 2016; Richardson and Swain, 1980). The
ability to withstand desiccation by excavating vertical burrows in
the hyporheic zone might play a significant role in the success of
particular crayfish species (Kouba et al., 2016). Crayfish have been
reported to be impacted by PhACs at environmentally relevant
concentrations (Buřič et al., 2018; Hossain et al., 2019; Ložek
et al., 2019), but PhAC effects on burrowing behavior remain
unknown.

The red swamp crayfish Procambarus clarkii (Girard, 1852) is a
primary model species, and is used in research fields including eco-
toxicology (Fong and Ford, 2014; Stara et al., 2014; Yu et al., 2017).
Recently, the value of crayfish as a model for studies of drug addic-
tion has been recognized (Imeh-Nathaniel et al., 2017; Kubec et al.,
2019). Crayfish may become conditioned to prefer environments in
which they obtain drugs (Imeh-Nathaniel et al., 2016; Nathaniel
et al., 2012a; Panksepp and Huber, 2004) and the natural reward
system of crayfish is sensitive to therapeutic drugs used in humans
(Nathaniel et al., 2012b). Rusty crayfish Faxonius rusticus (Girard,
1852) administered a low dose of methamphetamine by injection
showed mobility increased to a greater extent than with higher
doses, while the higher dose exerted a more prominent effect in
increasing immobility (Imeh-Nathaniel et al., 2017).

In this study, we assessed the burrowing behavior of red swamp
crayfish exposed to environmentally relevant concentrations of the
psychoactive compounds methamphetamine and tramadol, both
of which have been frequently detected in aquatic environments
(Baker and Kasprzyk-Hordern, 2013; Grabicova et al., 2017; Koba
et al., 2018). The reported concentration of methamphetamine in
discharge water in the Czech Republic and Slovakia ranged from

13 to 1805 ng/L (Mackul’ak et al., 2016) and tramadol from 3.7
to 5300 ng/L (Grabicova et al., 2017). The wastewater treatment
plants located on small and middle-sized watercourses typically
contribute by 10–25% to the flow rate in the recipients in the Czech
Republic. However, in summer and events of severe droughts, the
flow rates in recipients are dominated by effluents (R. Grabic, pers.
comm.). Thus, we assessed the hypothesis that the burrowing
behavior of the red swamp crayfish is altered after their exposure
to PhACs, using methamphetamine and tramadol at environmen-
tally relevant concentrations as model compounds.

2. Materials and methods

2.1. Test pharmaceuticals

Methamphetamine (METH) and tramadol hydrochloride (TRA)
were obtained from Sigma-Aldrich (USA). Individual stock solu-
tions were prepared in ultra-pure water (aqua-MAX-Ultra system,
Younglin, Kyounggi-do, South Korea) at 10 mg/L and stored at 4 �C.
The exposure solutions of 1 lg/L were prepared by dilution of the
stock solution with aged tap-water. Ultra-pure water and LC/MS
grade acetonitrile (Merck, Germany), both acidified with formic
acid (Sigma-Aldrich), were used as mobile phases for liquid chro-
matography. For calculation of concentration of the studied com-
pounds in water, isotopically labelled methamphetamine-D5

(Lipomed, USA) and tramadol-D3 (Toronto Research Chemicals,
Canada) were used as internal standards. The solubility of
methamphetamine and tramadol in water is 928 mg/L and
750 mg/L, respectively (DrugBank, 2019).

2.2. Experimental animals

Red swamp crayfish were laboratory-cultured at the Research
Institute of Fish Culture and Hydrobiology in Vodňany, FFPW
USB, Czech Republic, where the experimental work was carried
out. Individuals with fully developed chelipeds and no missing per-
eiopods were randomly selected from the culture tanks. Carapace
length and post-orbital carapace length were measured to the
nearest 0.1 mm using digital Vernier calipers and weighed to the
nearest 0.1 g with an electronic balance (Kern & Sohn GmbH, Balin-
gen, Germany). No significant differences were found in the biom-
etry among groups regardless of sex (Table 1).

2.3. Experimental design

2.3.1. Exposure to drugs
The crayfish were exposed for seven days to either METH or TRA

at the concentration of ~1 lg/L of pure compound (Table 2), a level
considered environmentally relevant (Baker et al., 2012; Fedorova
et al., 2014; Grabic et al., 2012; Grabicova et al., 2015; Mackul’ak
et al., 2016; Rúa-Gómez and Püttmann, 2012). Individuals main-
tained in pharmaceutical-free aged tap-water served as controls
and were handled in the same way as exposed animals. Crayfish
were stocked individually into clear plastic 2.5 L
(250 � 190 � 70 mm) boxes with lids in ~ 1.0 L of exposure solu-
tion or aged tap-water, temperature 18.3 ± 0.5 �C.

Crayfish were fed commercial feed (Sera Granugreen, Sera,
Heinsberg, Germany) at the rate of 5–7 pellets/animal/day. Boxes
were cleaned daily during aged tap-water or solution change.
The control group boxes were cleaned first to avoid contamination
with tested compounds. Animals that molted or spawned during
the exposure period were removed from the experiment, leaving
22 females and 17 males for the burrowing trial.

The concentration of METH and TRA in exposure solutions and
aged tap-water when freshly prepared and after 24 h in the plastic
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boxes was determined by liquid chromatography with tandem
mass spectrometry (LC–MS/MS) three times over the exposure per-
iod. Water samples (5 mL) were filtered through regenerated cellu-
lose, 0.20 lm pore size (Labicom, Czech Republic), and stored at
�20 �C until analysis.

For analysis, water samples were thawed at room temperature,
the internal standard was added, and samples were analyzed using
Hypersil Gold a Q column (50 � 2.1 mm; 5 mm particles) coupled
with an Accela 1250 pump and a triple stage quadrupole MS/MS
TSQ Quantiva Mass Spectrometer (Thermo Fisher Scientific, USA)
using selected reaction monitoring in positive mode as described
by Douda et al. (2019). The LC-MS/MS parameters are described
in supplementary material (Table S1). Trace Finder 3.3 (Thermo
Fisher Scientific) was used for LC-MS/MS data processing.

The concentration of METH, its metabolite amphetamine, and
TRA in the hepatopancreas of red swamp crayfish was determined
in fresh tissue immediately after removal of crayfish from burrows.
The sample was prepared according to (Grabicova et al., 2018).
Briefly, a 0.5 g sample of tissue was placed 2.0 mL Eppendorf tubes,
and internal standard and extraction solvent were added. After
homogenization (1800 oscillations for 10 min; homogenizer Tis-
sueLyser II, Quiagen, Germany) and centrifugation at 4472 � g
for 5 min (Minispin, Eppendorf, Germany), the supernatant was fil-
tered through 0.45 mm regenerated cellulose (Labicom, CR) and
analyzed by LC-high resolution mass spectrometry using a Q-
Exactive mass spectrometer (Thermo Fisher Scientific, USA) in par-
allel reaction monitoring positive mode. The analytical method is
summarized in supplementary material (Table S2).

2.3.2. Substrate and container preparation for assessment of
burrowing behavior

To create a suitable test substrate, 18.2 kg of sand with moisture
content of 2.1% and 8.4 kg of clay, moisture content 8.6%, were
thoroughly mixed by hand (30% clay wet weight). Aged tap-
water (3.4 L) was added to reach a final moisture content of 15%.
In total, about 270 kg substrate were prepared for the whole exper-
iment in this way. Size distribution of sand and clay particles is
presented in Table S3. Seven kilograms of the resultant mixture
was placed in each of 39 plastic containers (inner diameter = 19.
2 cm, height = 19.7 cm) to a depth of ~ 15.0 cm. To better simulate
natural conditions in which areas of residual water persist in dried
localities (Souty-Grosset et al., 2014), a shallow initial burrow
(diameter 2.6 cm, depth 1.5 cm; volume 8.0 cm3) was created at

the edge of the container and 5 mL aged tap-water was added to
stimulate burrowing in the suggested position, following Kouba
et al. (2016). One crayfish was placed in each container, and the
container was covered by a plastic lid to prevent acute desiccation.
Five 1.0 cm holes, one in the center and four equidistant from one
another at 6.5 cm from the center, allowed ventilation. The air and
sand-clay mixture temperatures were 18.6 ± 0.6 �C and 18.5 ± 0.
6 �C, respectively, recorded hourly using Minikin loggers (Environ-
mental Measuring Systems, Brno, Czech Republic).

2.3.3. Creation and measurement of burrow casts
If removal of crayfish from burrows by hand was not feasible, a

small quantity of carbonated water was added to the burrow to
evict animals. Excess water was removed from the burrow bottom
by blotting with absorbent tissue paper, and gypsum casts were
created of all excavated burrows. Depth of casts was measured to
the nearest 0.1 mm using digital Vernier calipers. Casts were fur-
ther scanned by an Artec SpiderTM hand-held 3D laser scanner
(Artec Group, Luxembourg) with a stated resolution of 0.1 mm
and accuracy of 0.03 mm. The scanner is based on the structured
light principle and provides a 3D mesh of the object as an output,
generated in real world coordinates (mm). The resulting stere-
olithography mesh was imported to Artec Studio v. 10 (Artec
Group, Luxembourg) to calculate the volume of the 3D mesh.

2.4. Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics v.
22.0. As size varies among individual crayfish, volume and depth of
the burrow was assessed relative to specimen weight, following
Kouba et al. (2016). Normality and homoscedasticity of the biom-
etry of the sampled animals by group and sex and the relative
depth and volume of burrows by group and sex were tested using
Kolmogorov-Smirnov (Ghasemi and Zahediasl, 2012) and Breusch-
Pagan tests (Long and Ervin, 2000), respectively. The differences in
biometry of the samples (by group; by sex) and the difference of
mean relative depth and volume of burrows (by group; by sex)
were analyzed by one-way ANOVA, and statistical difference in
means were determined using multiple comparisons as a post
hoc test. Sex differences in animal biometry and relative depth
and volume of burrows were compared through Student’s t-test
in each group. A paired t-test was used to compare concentrations
of tested compounds in the water. In assessing sex differences,

Table 1
Sex, carapace length (CL), post-orbital carapace length (POCL), and weight (W) of red swamp crayfish P. clarkii specimens used in the study. METH (methamphetamine), TRA
(tramadol). Data are presented as mean ± standard deviation; p < 0.05. F, One-Way ANOVA; t, Student’s t-test.

Experimental setup Sex n CL (mm) p POCL (mm) p W (g) p

Control M 6 34.6 ± 3.1 Fgroup = 0.078 0.925 26.2 ± 2.4 Fgroup = 0.209 0.813 11.2 ± 3.6 Fgroup = 0.588 0.561
Fmale = 0.393 0.682 Fmale = 0.483 0.627 Fmale = 1.017 0.387

F 7 35.4 ± 3.2 Ffemale = 0.242 0.788 27.5 ± 2.7 Ffemale = 0.197 0.823 13.3 ± 3.9 Ffemale = 0.498 0.616
METH M 6 34.5 ± 7.1 t7,6,Control = 0.431 0.675 26.7 ± 5.1 t7,6, Control = 0.874 0.401 14.3 ± 10.0 t7,6, Control = 0.995 0.341

F 7 36.2 ± 5.6 t7,6, METH = 0.474 0.646 28.2 ± 4.6 t7,6, METH = 0.494 0.633 15.0 ± 7.9 t7,6, METH = 0.137 0.894
TRA M 5 37.1 ± 5.2 t8,5, TRA = �0.932 0.397 28.8 ± 4.6 t8,5, TRA = �0.795 0.488 19.7 ± 7.6 t8,5, TRA = �1.507 0.198

Table 2
Mean concentration of methamphetamine and tramadol in red swamp crayfish P. clarkii exposure solutions and control water at 0 and 24 h of Control, METH
(methamphetamine), TRA (tramadol). Data are presented as mean ± standard deviation; p < 0.05. t, Paired t-test.

Group n Compound tested Time 0 h (lg/L) Time 24 h (lg/L) t p

Control 3 methamphetamine <LOQ <LOQ – –
tramadol <LOQ <LOQ – –

METH 3 methamphetamine 1.0 ± 0.1 1.0 ± 0.1 0.730 0.248
TRA 3 tramadol 1.0 ± 0.1 1.0 ± 0.1 0.423 0.311

LOQ, limit of quantification. Values for METH ranged from 0.023 to 0.035 lg/L and for TRA 0.025–0.047 lg/L.
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closing of the burrow entrance with a mud plug was assessed as 1
or 0, and we implemented Firth’s bias-reduced penalized-
likelihood logistic regression to test differences among the propor-
tion of females with mud plug in the groups. The null hypothesis
was rejected at p < 0.05 in all cases.

3. Results

All red swamp crayfish in the experiment exhibited burrowing
activity (Fig. 1 and S1). They usually constructed a single vertical
burrow at the site of the provided burrow. Two control females
and one METH male created two burrows, with the deeper one
in the suggested position. No significant difference was found
among groups in closing the burrow entrance with mud plug (like-
lihood ratio = 3.125, df = 2, p = 0.210). The number of females cre-
ating a mud plug to close the burrow entrance was one, one, and
four in Control, METH, and TRA, respectively. No male crayfish con-
structed a mud plug.

There was no significant difference among Control, METH, and
TRA in relative volume and depth of burrow (F13,13,13, relative vol-

ume = 1.140, df = 2, p = 0.331; F13,13,13, relative depth = 0.165, df = 2,
p = 0.849). Significant differences among experimental groups
were detected in the relative volume of burrows created by
females (F7,7,8 = 3.811, p = 0.041), but relative depth remained sim-
ilar (F7,7,8 = 2.828, p = 0.084). Females in Control and TRA groups
usually excavated deeper burrows than in METH (p = 0.035;
p = 0.021) and larger (p = 0.033) and comparable (p = 0.519) bur-
rows compared with that in METH (Fig. 2), respectively. Relative
depth and volume of male burrows was similar among groups
(F6,6,5, relative depth = 0.200, p = 0.821; F6,6,5, relative volume = 0.541,
p = 0.594) (Fig. 2).

In controls, significant differences in relative volume of burrows
was detected between sexes (t7,6 = -2.569, p = 0.037) (Fig. 2), with
the females usually constructing slightly deeper burrows com-
pared with males, without significant difference (t7,6 = -1.325,
p = 0.212). A similar pattern was seen in the TRA group both for

relative depth (t8,5 = -1.319, p = 0.256) and volume (t8,5 = -2.973,
p = 0.026), while sex-related differences were not seen with the
METH treatment (t7,6 = 0.615, p = 0.555; t7,6 = -0.197, p = 0.848,
respectively) (Fig. 2).

The concentrations of methamphetamine, its metabolite
amphetamine, and tramadol in the hepatopancreas of red swamp
crayfish of control and exposed groups at the end of burrowing
were all below limits of quantification with values of METH rang-
ing from 0.18 to 2.8 ng/g, of amphetamine 0.17–0.89 ng/g, and of
TRA 0.2–3.4 ng/g).

4. Discussion

The quality of surface waters plays an essential role in main-
taining ecosystem biodiversity and function (Bakker, 2012). The
effect of PhACs on freshwater crayfish may be devastating, because
the need to find shelter is an essential life history trait, especially
when faced with situations such as long-term drought (Kouba
et al., 2016). Exposure to PhACs is elevated in these situations,
since reduced dilution with lower flow rates are experienced by
the animals (Ma et al., 2017). This is a critical issue for population
dynamics of species. Females of many primary and secondary bur-
rowers (Hobbs, 1942; Riek, 1972) use burrows for oviposition and/
or incubation. Thus, likely to maintain contact with ground water
or remain in an environment sufficiently humid for successful
reproduction (Guo et al., 2019), females tend to construct deeper
burrows than do males and frequently occupy the deepest parts
of the burrow during egg incubation (Hazlett et al., 1974; Kouba
et al., 2016; Payne, 1972). This was observed in the control group
in this study. The relative volume and depth of female red swamp
crayfish burrows was significantly lower in the METH group com-
pared with controls, but this was not observed in the TRA-exposed
group. Considering that the red swamp crayfish is more resistant to
desiccation and possesses burrowing abilities superior to the
native European crayfish species noble crayfish Astacus astacus
(L., 1758), narrow-clawed crayfish Pontastacus leptodactylus s.l.

Fig. 1. Three dimensional scans of red swamp crayfish P. clarkii burrows. METH = methamphetamine, TRA = tramadol. F = female; M = male.

4 W. Guo et al. / Science of the Total Environment 711 (2020) 135138



- 45 -

Psychoactive compounds at environmental concentration alter
burrowing behavior in the freshwater crayfish

(Eschscholtz, 1823), stone crayfish Austropotamobius torrentium
(von Paula Schrank, 1803), and invasive species yabby Cherax
destructor Clark, 1936, spiny-cheek crayfish Faxonius limosus
(Rafinesque, 1817), and marbled crayfish Procambarus virginalis
Lyko, 2017 (Kouba et al., 2016), they might be more resistant to
the effects of PhACs in drought conditions.

Marbled crayfish were found to exhibit significantly lower
velocity and shorter distance moved than controls after exposure
to tramadol at environmentally relevant concentrations (Buřič
et al., 2018). Lower velocity and reduced availability of shelter
or burrows often leads to higher predation risk in the wild
(Holdich et al., 1999; Pecor and Hazlett, 2003; Underwood,
2015), and predicted unstable weather conditions such as severe
drought may increase these situations in the future (Cruz-
McDonnell and Wolf, 2016; Kouba et al., 2016). The imbalance
in sex ratio resulting from reduced availability of shelter or bur-
rows to female crayfish in the wild may lead to a precipitous
decline in crayfish populations (Richman et al., 2015; Sanchez-
Bayo and Wyckhuys, 2019) compounded by the numerous PhACs
in water bodies.

Over 60 PhACs have been reported in tissues of aquatic inverte-
brates as well as some riparian spiders in Australia (Richmond
et al., 2018). Eleven selected PhACs, including tramadol, were
detected in liver and kidney of fish inhabiting a contaminated
stream in the Czech Republic (Grabicova et al., 2017). Behavioral
changes including differences in velocity and distance moved of
shrimp, crayfish, killifish, and European perch exposed to PhACs
have recently been detected at low and environmental concentra-
tions (Barry, 2013; Brodin et al., 2013; Buřič et al., 2018; González-
Ortegón et al., 2016; Hossain et al., 2019). A significant increase in
heart rate was observed in signal crayfish Pacifastacus leniusculus
(Dana, 1852) after a three-week exposure to an environmentally
relevant (1 lg/L) concentration of tramadol (Ložek et al., 2019).
The predatory fish Perca fluviatilis (L., 1758) became more active
after preying upon the invertebrate Coenagrion hastulatum (Charp-
entier, 1825) contaminated with a benzodiazepine (Brodin et al.,
2014).

Effects of methamphetamine and tramadol at environmentally
relevant concentrations were evident. Given the short exposure
period (7 days) and low concentration (~1 lg/L) of tested com-
pounds, we suggest that the observed effects are of serious concern
due to the long-term exposure, fluctuating and potentially higher
concentrations, and multiple sources of PhACs incurred in the nat-
ural environment. The concentration of pharmaceuticals such as
antidepressants consumed by some representative aquatic top-
predators through bioaccumulation may be comparable to as much
as half the recommended human therapeutic dose (Richmond
et al., 2018). The concentration of PhACs in natural ecosystems is
relatively stable year-round, sometimes declining or eliminated
in the short-term due to fluctuation in flowrates (Ma et al., 2017;
Radjenovic et al., 2009). Concentrations may increase during sev-
ere drought because of reduced dilution (K’Oreje et al., 2018) or
sorption into sediment (Aljeboree and Alshirifi, 2018), resulting
in severe impact on non-target aquatic organisms.

5. Conclusions

We documented for the first time a difference in burrowing
behavior of freshwater crayfish exposed to PhACs at an environ-
mentally relevant concentration, which is applicable to other aqua-
tic organisms. Notable, the relative depth and volume of burrows
constructed by methamphetamine-exposed females was signifi-
cantly lower when compared to controls. Tramadol-exposed
females consistently exhibited a tendency to construct smaller
burrows although this was not significant. Owing to the critical
role of surface waters for human use in agriculture, aquaculture,
and domestic water (Bakker, 2012), the potential impact of PhACs
on freshwater biodiversity should not be ignored. Based on crayfish
as a model group and a keystone species of freshwater organisms, a
similar mode of action like burrowing can be expected in other
hyporheic-dwelling aquatic biota such as unionid mussels and
clams and a wide range of aquatic insects. The effects of environ-
mentally relevant concentrations of selected PhACs are evident

Fig. 2. Box-whisker plot of the depth and volume of red swamp crayfish P. clarkii burrows of Control, methamphetamine (METH), and tramadol (TRA) groups relative to
individual crayfish weight. Box limits correspond to upper and lower quartiles, horizontal bar to the median. The * indicates significant differences between sexes in a given
group. Values with differing letters are significantly different within sex among three groups (p < 0.05).
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when tested as single compounds. As aquatic organisms in con-
taminated environments are usually exposed to multiple chemi-
cals (Backhaus, 2014; Schoenfuss et al., 2016), more research is
needed to explore the effect of PhAC cocktails together with abiotic
factors such as temperature and pH on aquatic animals.
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Abstract
In recent decades, chemical herbicide compounds have become increasingly detected in 

fresh and marine waters worldwide and are recognized as a major micropollutant threat to 
aquatic ecosystems. Despite their low concentrations in the environment, there is evidence 
of effects on non-target organisms in natural habitats. To assess their potential effects on 
crayfish burrowing behaviour, we exposed the red swamp crayfish Procambarus clarkii 
to terbuthylazine and metazachlor (representative of triazines and chloroacetanilides, 
respectively) at the environmentally relevant concentration of 2.0 μg/L, with a  28 days 
exposure followed by a 2 days period of burrowing observation. The metazachlor-exposed 
males excavated a higher number of burrows than other tested groups, with comparable depth 
and volume relative to individual specimen weight. Terbuthylazine-exposed males exhibited 
a tendency to excavate larger burrows compared with the control, but this difference was not 
significant. Terbuthylazine-exposed females showed a non-significant tendency to excavate 
larger burrows compared to those of control. The reported characteristic of female crayfish 
in the wild to construct deeper and/or larger-volume burrows compared to males was not 
demonstrated by any group in this experiment, suggesting that our results may have been 
affected by the low number of observations. These results, along with reported evidence of 
negative effects of herbicides at environmental concentrations, indicate a need for further 
research.

 
Keywords: pollution; ecological impact; Procambarus clarkii; macroinvertebrate; 
terbuthylazine; metazachlor 
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Introduction

In addition to overexploitation of natural resources and habitat loss/degradation 
(Arthington et al., 2016; Kominoski et al., 2018), water pollution is considered among the 
most important drivers of global biodiversity decline (Bayen, 2012; Dudgeon et al., 2006; 
Manosa et al., 2001), with frequent incidents of pollution and deterioration of water quality 
impacting aquatic ecosystems (Affum et al., 2018; Aliko et al., 2018; Sehonova et al., 2018; 
Yao et al., 2015). Pesticides, pharmaceuticals, chemical fertilizers, detergents, petrochemicals, 
and plastics are common synthetic pollutants (Amoatey and Baawain, 2019; Guzzetti et al., 
2018; Yang et al., 2017). 

Herbicides have been, and continue to be, heavily used in agriculture and horticulture (El-
Nahhal, 2003; Goncalves and Alpendurada, 2005; Silva et al., 2019) and are detected in natural 
waterbodies worldwide (Peng et al., 2018; Prosser et al., 2016; Székács et al., 2015; Thurman 
et al., 2000). The triazine family of herbicides is widely used in Europe, but some, including 
atrazine, simazine, and propazine, were banned in 2003 due to environmental concerns 
(European Commission, 2003). Nevertheless, these herbicides or their metabolites remain 
detectable in the environment along with other triazines in current use, including terbuthylazine, 
due to their long retention time, with a half-life in biologically active soil of 6.5–149 days and 
in natural waters of 44–196 days (PubChem, 2019). This leads to perdurable leaching and 
detectable levels years after their use is discontinued (Fuhrmann et al., 2014; Tasca et al., 
2018). Triazine herbicides have been largely replaced by supposedly safer chloroacetanilides 
herbicides such as metazachlor, a class commonly used to control weeds in field crops (El-
Nahhal, 2003). Their high water solubility and persistence makes them potentially mobile in 
soil and water phases; hence chloroacetanilide, similar to triazine, contaminates the aquatic 
environment through agricultural run-off and leaching (Lopez-Pineiro et al., 2011; Milan et al., 
2015; Otto et al., 2007; Tasca et al., 2018). Both are detectable in surface and groundwater 
for decades (Hvezdova et al., 2018; Kalkhoff et al., 1998). 

The concentration of terbuthylazine in European surface and groundwaters is reported 
to range from 0.01 to 13.0 μg/L (Bossi et al., 2002; Chary et al., 2012; Fait et al., 2010; 
Jurado et al., 2012; Lacorte et al., 1998; Rodriguez-Mozaz et al., 2004; Vega et al., 2005). The 
concentration of metazachlor in natural waters can reach 100 μg/L (Mohr et al., 2007) with 
a long degradation time, having a half-life in soil of 2.8–114 days, and in water of 20.6–216 
days (Hertfordshire, 2019). Contamination of aquatic ecosystems by herbicides has become 
a pressing environmental problem worldwide (Liu et al., 2000; Silva et al., 2019; von der Ohe 
et al., 2011; Zheng, 2001). Concentrations of the mentioned herbicides in aquatic ecosystems 
are typically well below levels reported lethal to aquatic organisms (Amoatey and Baawain, 
2019), but sublethal concentrations and their metabolites may have shown detrimental 
effects on non-target organisms (Cook and Moore, 2008; Velisek et al., 2016; Velisek et al., 
2017). They may impair the physiology and the behaviour of aquatic animals (Cook and Moore, 
2008; Scott and Sloman, 2004), inducing alterations to the nervous system (Benli et al., 2007; 
Sarikaya and Yılmaz, 2003) and biochemical and hematological changes, as well as impacting 
reproduction and development (Velisek et al., 2014).

Crayfish are cosmopolitan and play a prominent role in ecosystems (Crandall and De Grave, 
2017; Hossain et al., 2018; Perdikaris et al., 2017). They have evolved the ability to seek 
shelter and to construct burrows (Horwitz and Richardson, 1986; Riek, 1969) that provide 
protection against conspecifics and predators during vulnerable life stages such as moulting 
and reproduction (Atkinson and Taylor, 1988; Bergman and Moore, 2003; Growns and 
Richardson, 1988; Guo et al., 2019b) and serve as shelter in adverse environmental conditions 
(Guo et al., 2019b; Richardson and Swain, 1980). The ability to withstand desiccation by 
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excavating vertical burrows into the hyporheic zone is crucial to the survival of some crayfish 
species during severe drought (Kouba et al., 2016). Mobility and burrowing behaviour of 
crayfish are known to be influenced by psychoactive compounds (Buřič et al., 2018; Guo et 
al., 2019a; Hossain et al., 2019; Ložek et al., 2019), but the potential effects of herbicides at 
environmentally relevant levels on burrowing behaviour have not been studied. 

We hypothesized that the burrowing behaviour of the red swamp crayfish Procambarus 
clarkii (Girard, 1852) might be impaired by exposure to two classes of widely used herbicides 
and tested this by analysing effects of terbuthylazine and metazachlor at environmentally 
relevant concentrations under simulated drought conditions.

Material and Methods

Herbicide preparation

Terbuthylazine (TERB, purity 99.4%) and metazachlor (META, purity 99.7%) were obtained 
from Sigma-Aldrich (USA). Individual stock solutions stored at 4 °C were prepared in ultra-
pure water (aqua-MAX-ULTRA system, Younglin, Kyounggi-do, South Korea) at concentrations 
of 6.7 mg/L (TERB) and 7.2 mg/L (META). The exposure concentrations of these herbicides 
of 2  μg/L were prepared by dilution of the stock solution with aged tap water. Ultra-pure 
water and LC/MS grade acetonitrile (Merck, Germany), both acidified with formic acid 
(Sigma-Aldrich), were used as mobile phases for liquid chromatography. The concentration 
of the compounds in water was calculated with isotopically labelled terbuthylazine-D5 
(Toronto Research Chemicals, Canada), carbendazim-D3 (Chiron, Norway), metolachlor-13C6 
(Cambridge Isotope Laboratories, USA), and metazachlor-D6 ESA (HPC Standards, Germany) 
used as internal standards (Table 1). 

Crayfish

Red swamp crayfish Procambarus clarkii were collected from the Sulák brook (47.3855° N, 
18.9435° E) in Érd, Hungary, on 18 July 2019, and transported to the Faculty of Fisheries and 
Protection of Waters, Vodňany, Czech Republic. Crayfish with fully developed chelipeds and 
no missing pereiopods were selected. Carapace length and post-orbital carapace length were 
measured to the nearest 0.1 mm using digital Vernier calipers, and crayfish were weighed to 
the nearest 0.1 g on an electronic balance (Kern and Sohn GmbH, Balingen, Germany).

4.2.3 Experimental protocol 

Crayfish handling and exposure to herbicides

The crayfish following a one-day acclimation were then exposed to either TERB or META for 
28 days at a level considered environmentally relevant (Bossi et al., 2002; Chary et al., 2012; 
Fait et al., 2010; Jurado et al., 2012; Lacorte et al., 1998; Mohr et al., 2007; Rodriguez-Mozaz 
et al., 2004; Vega et al., 2005). Specimens maintained in herbicide-free aged tap water served 
as controls and were handled in the same way as exposed animals. Crayfish were stocked 
individually into clear covered plastic 2.5 L boxes (250×190×70 mm) with two ~1 cm openings 
in one 190 mm wall allowing ventilation. Each box was filled with 1 L exposure solution or 
aged tap water. Water temperature was recorded regularly and was 19.7 ± 1.3 °C. 

Crayfish were fed commercial feed (Sera Granugreen; Sera, Heinsberg, Germany) at the 
rate of 5–7 pellets/animal/day and carrot chips at the rate of 0.6 g/animal/day. Boxes were 
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cleaned every other day during the tap water/solution change. The control group boxes 
were cleaned first to avoid contamination with tested compounds. Crayfish that moulted or 
spawned during the exposure period were removed from the experiment, leaving 26 females 
and 32 males for the burrowing trial. 

The concentration of META and TERB in exposure solutions and aged tap water was 
determined by inline SPE-liquid chromatography with tandem mass spectrometry (SPE/LC–
MS/MS) four times during the exposure period. Five mL samples of water were taken from 
boxes at time 0 (before water or solution exchange) and at 48 h (after water or solution 
exchange), filtered through 0.20 μm pore-size regenerated cellulose (Labicom, Czech 
Republic), and stored at -20 °C until analysis. For analysis, water samples were thawed and 
brought to room temperature, the internal standard was added, and samples were analysed 
using SPE/LC-MS/MS with triple stage quadrupole TSQ Quantiva Mass Spectrometer (Thermo 
Fisher Scientific, USA) using selected reaction monitoring in positive and negative modes. The 
SPE/LC-MS/MS parameters are described in supplementary material (Table S1). Trace Finder 
3.3 software (Thermo Fisher Scientific) was used for data processing. 

At the conclusion of the two-day burrowing observation, crayfish were removed from burrows, 
euthanized in an ice bath, and dissected. Tissue was stored at -20 °C, and the concentrations 
of TERB and META in the hepatopancreas and abdominal muscle were determined. Sample 
preparation and analysis followed methods described by Grabicova et al. (2018). Briefly, 0.25 g 
of tissue with addition of internal standard was extracted by a homogenizer (TissueLyser II, 
Quiagen, Germany) at 1800 oscillations/min for 10 min, centrifuged (Minispin, Eppendorf, 
Germany) at 4472g for 5 min, and the supernatant was filtered through 0.45 µm regenerated 
cellulose (Labicom, Czech Republic). Tissue extracts were analysed by LC-high resolution mass 
spectrometry (LC-HRMS) using Q-Exactive mass spectrometer (Thermo Fisher Scientific, USA) 
in parallel monitoring in positive and negative modes. Analytical methods are summarized in 
supplementary material (Table S2).

Substrate and container preparation for assessment of burrowing behaviour
 
To create a suitable test substrate, 13.8 kg of sand with a moisture content of 0.3 % and 

11.5 kg of clay, moisture content 1.6%, were thoroughly mixed by hand (45 % clay wet weight), 
and aged tap water (4.7 L) was added to the mixture (25.3 kg) to reach final moisture content 
of 16.5 %. For size distribution of sand and clay particles see Table S3. The resultant mixture (~ 
15.0 kg) was placed in each of 58 plastic buckets (inner diameter = 21.5 cm, height = 27.5 cm) 
to a depth of ~ 22.0 cm. To better simulate natural conditions in which areas of residual water 
persist in arid sites (Souty-Grosset et al., 2014), a shallow initial burrow (diameter 2.5 cm, 
depth 1.5 cm; volume 7.3 cm3) was created at the edge of the container, and 5 mL aged tap 
water was added to stimulate burrowing in this suggested position, following Kouba et al. 
(2016). 

A single crayfish was placed in each container, and the container was covered with a plastic 
lid with a 2.8 cm opening to prevent acute desiccation of the crayfish and allow ventilation. 
The burrowing observation of the crayfish was two days and then they were removed from 
the burrows for tissues sampling. The air and substrate temperatures were 20.0 ± 1.4 °C and 
20.2 ± 0.2 °C, respectively, recorded hourly using Minikin loggers (Environmental Measuring 
Systems, Brno, Czech Republic). No significant differences were found in the biometry of the 
crayfish used in the burrowing experiment among groups, regardless of sex (Table 2).
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Creation and measurement of burrowing casts 

If manual removal of crayfish from burrows was not possible, a small quantity of carbonated 
water was added to the burrow to evict the animal. Excess water was removed from the 
burrow bottom by blotting with absorbent tissue, and gypsum casts were created. Depth 
of the casts was measured using digital Vernier calipers to the nearest 0.1 mm. Casts were 
further scanned by an Artec Spider™ hand-held 3D laser scanner (Artec Group, Luxembourg) 
with a stated resolution of 0.1 mm and accuracy of 0.03 mm. The scanner is based on the 
structured light principle and provides a 3D mesh image of the object as an output, generated 
in real world coordinates. The resulting stereolithography mesh was imported to Artec Studio 
v. 10 (Artec Group, Luxembourg) to calculate the volume of the 3D mesh.

Statistical analysis

Statistical analyses were performed using Statistica Version 13.0. The volume was the 
sum of all burrows (if present) made by individual crayfish, but only the deepest burrow was 
included in the analysis of depth. As size varies among individual crayfish, volume and depth 
of the burrow were assessed relative to specimen weight, following Kouba et al. (2016). 
Normality and homoscedasticity of the crayfish biometry group and sex, together with the 
relative depth and volume of burrows by group and sex were tested using Kolmogorov-Smirnov 
(Ghasemi and Zahediasl, 2012) and Breusch-Pagan tests (Long and Ervin, 2000), respectively. 
The differences were analysed by one-way ANOVA, followed by multiple comparison of mean 
ranks for all groups as a post hoc test. Sex differences in animal biometry and relative depth 
and volume of burrows were compared in each group using Students t-test. A paired t-test 
was used to compare the concentrations of tested compounds in the water. A general linear 
model (nested) was used to detect differences in the number of burrows made by individual 
crayfish in a given group. The null hypothesis was rejected at p < 0.05 in all cases. 

Results

All red swamp crayfish in the experiment exhibited burrowing activity (Fig. S1). They usually 
constructed a single vertical burrow at the site of the suggested initial shallow burrow. One 
control female, one TERB female, one TERB male, one META female, and six META males each 
created two burrows. A single META male constructed three burrows, with the deepest in the 
suggested position. Mean number of burrows excavated by males in the META group was 
higher than in other groups (F3,52 = 3.495, p = 0.022) (Fig. 1). The number of females creating 
a mud plug to close the burrow entrance was two, four, and one in control, TERB, and META, 
respectively. One control and one META male were also observed to construct a mud plug. 
A chimney-like structure located at the entrance of the burrow was made by five TERB females 
and two males. 

There were no significant differences among groups regarding the relative depth and volume 
of burrow (F18,19,21, relative depth = 1.184, df = 2, p = 0.314; F18,19,21, relative volume = 
0.662, df = 2, p = 0.520). This result was consistent in both males (F10,10,9, relative depth 
= 0.318, p = 0.730; F10,10,9 relative volume = 1.293, p = 0.290) (Fig. 2) and females (F8,9,9, 
relative depth = 1.742, p = 0.198; F8,9,9, relative volume = 0.249, p = 0.782) (Fig. 2). 

In controls, the significant differences in burrow relative depth (t8,10 = 4.685, p = 0.051) 
and relative volume (t8,10 = 0.511, p = 0.485) between sexes observed in the wild was not 
detected (Fig. 2). This was also the case for TERB (t9,10 relative depth = 4.368, p = 0.063; 
t9,10 relative volume = 0.270, p = 0.610) and META groups (t9,12relative depth = 0.025, p = 
0.876; t9,12 relative volume = 1.617, p = 0.219) (Fig. 2). 
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Concentrations of terbuthylazine and its metabolites (terbuthylazine_desethyl, 
terbuthylazine_desethyl-2-hydroxy, and terbuthylazine_hydroxy) as well as concentrations 
of metazachlor and its metabolites (metazachlor ESA and metazachlor OA) were all below 
limits of quantification in crayfish hepatopancreas and abdominal muscle at the end of the 
observation period. The limits of quantification of all chemicals are provided in Table S4. 

Discussion

The quality of surface waters plays an essential role in maintaining ecosystem biodiversity 
and function (Bakker, 2012). The negative effects of pesticides on non-target organisms in 
the natural environment have drawn attention (Amoatey and Baawain, 2019; Mohr et al., 
2007; Stadlinger et al., 2018). Effects of herbicides on the burrowing behaviour of freshwater 
animals is lacking. In the present study, we found that the relative depth and volume of 
burrows created by red swamp crayfish exposed to metazachlor and terbuthylazine were 
comparable to that of control. 

Metazachlor-exposed males excavated a  higher number of burrows than other groups, 
possibly a stress response (Ložek et al., 2019; Matozzo et al., 2004) manifested as anxiety 
behaviour (Buřič et al., 2013). In the wild, the availability of shelter and resources such as 
suitably moist conditions is critical to crayfish (Guo et al., 2019b; Kouba et al., 2016), as 
survival depends not only on health status but also on indirect consequences to behaviour 
patterns influencing reproduction, social interaction, and decision making (Kubec et al., 2019). 
Any effects of herbicides under drought conditions may have disproportionally high impact on 
the red swamp crayfish, if it results in impairment of its greater resistance to desiccation and 
superior burrowing abilities compared to native European crayfish species, as well as to some 
invasive crayfish (Kouba et al., 2016).

Herbicides considered safe by regulatory agencies, like the glyphosate-based, might exert 
cytotoxic effects on the hepatopancreas of non-target crustaceans (de Melo et al., 2019). 
Gill and hepatopancreas pathology, alterations in biochemical parameters of haemolymph, 
oxidative damage to hepatopancreas, and changes in antioxidant biomarkers in muscle and 
hepatopancreas of red swamp crayfish were recorded after 14 days exposure to terbuthylazine-
desethyl, a terbuthylazine degradation product, at the environmental concentration of 2.9 μg/L 
(Stara et al., 2016). Differences from controls in behaviour, including significantly lower values 
of speed and velocity of movement, as well as damage to gill and hepatopancreas, of marbled 
crayfish Procambarus virginalis were found after a 28-day exposure to the environmentally 
relevant concentration of 4.2 μg/L S-metolachlor and its degradation product metolachlor 
OA (Stara et al., 2019). Significantly lower growth and delayed ontogenetic development of 
marbled crayfish were also detected at environmentally relevant concentrations of metazachlor 
and metazachlor OA (Velisek et al., 2020). 

The hepatopancreas is the main organ of detoxification of xenobiotics in crustaceans 
(Vogt, 2002), and the crayfish abdomen is the key organ of forward swimming and other 
activities (Mulloney and Hall, 2000). We found concentrations of selected herbicides in the 
hepatopancreas and abdomen of both control and exposure groups were well below limits of 
quantification. Literature regarding detection of herbicides in hepatopancreas and abdomen 
of crayfish is scarce. Our observation suggests the concentration of these compounds in 
target tissues was below limits of quantification. 

Females of many crayfish species (Hobbs, 1942; Riek, 1972) use burrows for oviposition 
and/or egg incubation, and contact with groundwater or sufficient humidity is crucial to their 
successful reproduction (Guo et al., 2019b). Females of these species tend to construct larger 
and/or deeper burrows than do males and frequently occupy the deepest parts of the burrow 
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during egg incubation (Guo et al., 2019a; Hazlett et al., 1974; Payne, 1972). This pattern was 
not observed in any tested group, including the controls, suggesting that some effects of 
herbicide exposure might remain hidden due to the relatively low number of observations. 

The characteristics and morphology of the burrows excavated by crayfish are closely 
associated with their life history traits (Hartzell, 2019; Palaoro et al., 2016; Williams et al., 
1974). The chimney-like structure is important in enhancing air circulation in the burrow 
through action on wind currents (Hobbs Jr, 1981; Thoma and Armitage, 2008). This type 
of burrowing was observed in five female and two male TREB-exposed crayfish. Mud plug 
closing of the burrow entrance to afford protection from desiccation or predation is also a key 
characteristic (Ilhéu et al., 2003; Souty-Grosset et al., 2014). In a previous study, the mud plug 
construction was found only in burrows of female crayfish (Guo et al., 2019a), but was seen in 
both sexes in the present study, as well as reported by Kouba et al. (2016).

The only apparent manifestation of terbuthylazine and metazachlor on the red swamp 
crayfish behaviour at environmentally relevant concentrations was the significantly higher 
mean number of the burrows excavated by META-exposed males. In burrowing studies, 
a sufficient number of replicates is critical, considering the substantial variation in individual 
specimen responses. Based on crayfish as a model species, a similar stress response might 
be expected in other hyporheic-dwelling aquatic biota, such as unionid mussels and clams 
and a wide range of aquatic insects. These results and those of Guo et al. (2019a) suggest 
that sublethal effects of herbicides and other aquatic contaminants on non-target organisms 
should be further examined. The observed trends in burrowing and the observed effects of 
herbicides at environmental concentrations call for further research, and studies of effects on 
organism behaviour should be an obligatory component of the herbicide registration process.
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Table 1. Concentrations of terbuthylazine and metazachlor in red swamp crayfish exposure solutions 

and control water at 0 and 48 h. TERB, terbuthylazine and META, metazachlor. Data are presented as 

mean ± standard deviation; p < 0.05. t, paired t-test.

Group n Compound tested Time 0 h (μg/L) Time 48 h (μg/L) t p

Control 4
terbuthylazine < LOQ < LOQ ---- ----

metazachlor < LOQ < LOQ ---- ----

TERB 4 terbuthylazine 1.2 ± 0.2 1.4 ± 0.3 -1.732 0.182

META 4 metazachlor 1.4 ± 0.1 1.4 ± 0.1 0.225 0.836

LOQ, limit of quantification, values for META ranged from 0.003 to 0.008 μg/L and for TERB 0.002 to 

0.009 μg/L.

Table 2. Sex, carapace length (CL), and weight (W) of red swamp crayfish Procambarus clarkii used 

in the study. Data are presented as mean ± standard deviation; p < 0.05. F One-Way ANOVA; t, Student’s 

t-test. TERB, terbuthylazine; META, metazachlor.

Experimental 
setup

Sex n CL (mm) p W (g) p

Control
M 10 44.1 ± 6.3 F 

group
 = 0.911 0.408 22.8 ± 10.0 F 

group 
= 0.571 0.569

F 8 45.5 ± 6.3 F 
male

 = 0.218 0.806 22.3 ± 8.8 F 
male 

= 0.175 0.840

TERB
M 10 43.3 ± 6.3 F 

female
 = 1.136 0.339 22.6 ± 11.0 F 

female 
= 1.636 0.217

F 9 41.5 ± 5.6 t 
10,8, Control

 = 0.685 0.736 16.0 ± 4.4 t 
10,8, Control 

= 0.422 0.994

META
M 12 42.3 ± 6.1 t 

10,9, TERB
 = 0.822 0.508 20.5 ± 8.9 t 

10,9, TERB 
= 0.871 0.435

F 9 42.7 ± 4.6 t 
12,9, META

 = 0.504 0.961 20.6 ± 8.7 t 
12,9, META 

= 0.504 0.961



- 64 -

Chapter 4

Figure 1. Number of red swamp crayfish P. clarkii burrows in each treatment by sex. Control (8 females, 

10 males), TERB (terbuthylazine; 9 females, 10 males), and META (metazachlor; 9 females, 12 males). 

Data are presented as mean ± standard deviation. The asterisk indicates significant differences within the 

given group (p < 0.05).

Figure 2. Box-whisker plot of the depth and volume of red swamp crayfish P. clarkii burrows of control, 

terbuthylazine (TERB), and metazachlor (META) groups relative to individual crayfish weight. Box limits 

correspond to upper and lower quartiles, horizontal bar to the median. Values with Differing letters 

indicate significant among-group differences within sex (p < 0.05).
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Figure S1. Depth of red swamp crayfish P. clarkii burrows. TERB, terbuthylazine; META, metazachlor; F, 

female; M, male. Each column represents a single specimen.
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Table S1.  SPE/LC-MS/MS parameters of water samples analysis. 

•	 SPE/LC-MS/MS parameters of water samples. 
•	 Columns: SPE extraction column, YMC C8 (20 x 2.1 mm, 10 µm particles, YMC, 

Chromservis, ČR); analytical column, Hypersil Gold aQ (50 x 2.1 mm, 5 µm particles, 
Thermo Fisher Scientific, USA); LC gradient: Mobile phase A, acidified ultra-pure water; 
mobile phase B, acidified acetonitrile (both 0.1% formic acid); Accela 1250 and 600 
pumps

Accela 1250 pump Accela 600 pump

Time A B Flow Time A B Flow

[min] [%] [%] [µL/min] [min] [%] [%] [µL/min]

0 95 5 350 0 100 0 1100

1 95 5 350 1.05 100 0 1100

3 75 25 400 1.07 0 100 100

8 0 100 400 9 0 100 100

10 0 100 400 10 0 100 1500

10.01 95 5 400 10.1 100 0 1000

13 95 5 350 13 100 0 1000

•	 MS transitions:

Compound Mode
Precursor

m/z
Quan
m/z

Qual
m/z

RT
[min]

IS used

Metazachlor + 278.1 134.11 210.07 6.0 Metolachlor_13C
6

Metazachlor ESA - 322.1 121.14 148.18 4.4 Metazachlor ESA_D
6

Metazachlor OA + 274.1 134.11 162.11 4.2 Carbendazim_D
3

Terbuthylazine + 230.1 104.00 174.07 6.2 Terbuthylazine_D
5

Terbuthylazine_
desethyl

+ 202.1 146.07 104.00 5.3 Terbuthylazine_D
5

Terbuthylazine_
desethyl-2-hydroxy

+ 184.1 128.11 86.11 2.9 Carbendazim_D
3

Terbuthylazine_
hydroxy

+ 212.1 156.11 114.11 4.2 Terbuthylazine_D
5

RT, retention time; IS, internal standard
Duration of method: 13 minutes
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Table S2.  LC-HRMS parameters of crayfish hepatopancreas, abdominal muscle, and food (pellets and 

carrot) samples.

•	 Analytical column: Hypersil Gold aQ (50 x 2.1 mm, 5 µm particles, Thermo Fisher Scientific, 
USA) 

•	 LC gradient: Mobile phase A, acidified ultra-pure water; mobile phase B, acidified 
acetonitrile (both 0.1% formic acid); Accela 1250 pump

Accela 1250 pump

Time A B Flow

[min] [%] [%] [µL/min]

0 100 0 350

3 70 30 350

5 40 60 350

7 0 100 400

8 0 100 400

8.05 100 0 350

10 100 0 350

•	 MS transitions:

Compound Mode
Precursor

m/z
Quan
m/z

Qual
m/z

RT
[min]

IS used

Metazachlor + 278.106 210.0680 134.0965 5.7 Metolachlor_13C
6

Metazachlor ESA - 322.100 120.9603 148.0768 3.8 Metazachlor ESA_D
6

Metazachlor OA + 274.130 134.0963 206.0805 3.6 Carbendazim_D
3

Terbuthylazine + 230.100 174.0540 230.1164 6.0 Terbuthylazine_D
5

Terbuthylazine_desethyl + 202.100 146.0225 202.0850 5.0 Terbuthylazine_D
5

Terbuthylazine_desethyl-
2-hydroxy

+ 184.100 128.0567 184.1191 2.9 Carbendazim_D
3

Terbuthylazine_hydroxy + 212.130 156.0878 212.1501 3.9 Terbuthylazine_D
5

RT, retention time; IS, internal standard
Duration of method: 10 minutes

Table S3. Size distribution of sand and clay particles (analytical laboratory of AGRO-LA Inc. Jindřichův 

Hradec, Czech Republic).

Sand Proportion 
(%)

Clay
Proportion (%)

Size class (mm) Size class (mm)

0.63–0.8 16.6 < 0.4 52.6

0.8–1.0 75.6 0.4–0.5 9.2

1.0–1.25 3.2 0.5–0.63 7.4

1.4–2.0 0.4 0.63–0.8 14.8

>2 0.2 0.8–1.0 16.0
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Abstract Biological invasions are a growing threat

to global biodiversity due to negative impacts on

native biota and ecosystem functioning. Research has

expanded from investigating native and alien species

interactions to examining relationships among alien

species. Invasive crayfish may have similar life

histories, niche preferences, and adaptation strategies,

but their mutual interactions are little understood. This

study aimed to quantify interaction patterns of size-

matched calico crayfish Faxonius immunis, estab-

lished in the Rhine River catchment, and the partheno-

genetic marbled crayfish Procambarus virginalis,

currently spreading throughout Europe. During

agonistic interactions in the absence of shelter,

marbled crayfish won a significant majority of fights

against calico crayfish, but in the presence of shelter

there was no significant difference. When sex of calico

crayfish was considered in the analysis without shelter,

marbled crayfish won a significantly higher number of

fights with female calico crayfish. In the absence of

shelter, marbled crayfish dominated calico crayfish

females in 83.3% and males in 60% of pairs. With

available shelter, the dominance of marbled crayfish

was 100% and 54.5% over female and male calico

crayfish, respectively. The results suggested that sex

and resource availability influence agonistic beha-

viour in the studied crayfish. Marbled crayfish are

confirmed to be competitive against the calico cray-

fish, which has been shown to be dominant over

another serious invader in the Rhine River catchment,

the spiny-cheek crayfish Faxonius limosus. In natural

sympatric populations, the situation may be affected

by factors such as size, reproductive variables, water

temperature, and predation pressure.
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Introduction

Global biodiversity is threatened by various factors,

with biological invasions of critical importance

(Lodge 1993; Chapin et al. 2000; Catford et al.

2012). Species introductions outside their native

ranges are fundamentally driven by human activity,

often related to agriculture, aquaculture, forestry, and

biological control programs (Pimentel et al. 1992;

Savini et al. 2010) as well as to increasing mobility,

tourism, and transportation (Drake and Lodge 2004;

Hall 2010). The number of translocated species is

increasing globally with no signs of abatement (Early

et al. 2016; Seebens et al. 2017). Aquatic ecosystems

are particularly vulnerable, often being invaded by

multiple alien species that interact with native biota as

well as with one another (Ricciardi and Rasmussen

1999; Hudina et al. 2011), a process referred to as

over-invasion (Russell et al. 2014). In a novel

environment, over-invasion can alter an ecosystem

through additive or multiplying effects (Roy et al.

2014; Jackson 2015) and may modify the interaction

of invaders with native species (Preisser and Elkinton

2008). The consequences of multiple invasions are

understudied (Russell et al. 2014). Successful inva-

sions can be elucidated by comparative analysis of

invading species (Van Kleunen et al. 2010), particu-

larly important when organisms share identical eco-

logical niches and resources such as food and shelter

(Wilson 2000; Huntingford 2013).

The invasion mechanisms and potential impact of

invading species may be best assessed by determining

behaviour flexibility and ability to adapt to a new

environment (Wright et al. 2010) as well as the

survival, growth rate, and reproduction processes of

interacting species (Sih et al. 2012; Penk et al. 2017;

Hossain et al. 2019b). Antagonism and aggression are

important features of animal behaviour (Parker 1974;

Manning and Dawkins 2012) that have direct effects

on invader abundance, distribution, and dispersion rate

in a new environment (Hudina et al. 2014). Agonistic

behaviour is principally represented by aggressiveness

in combat (Gherardi 2002) and affects success in

coping with new predators and competitors (Duck-

worth 2008; Hudina and Hock 2012).

Crayfish are considered ecosystem engineers and

ecologically important benthic, polytrophic, omnivo-

rous species in aquatic environments (Momot 1995;

Nyström 2002; Lipták et al. 2019) due to their

relatively large body size and overall biomass, long

lifespan, and grazing and burrowing activity (Usio

et al. 2001; Matsuzaki et al. 2009). Crayfish exhibit

aggressive behaviour, which is closely linked to

invasion success, throughout their lifespan (Sih et al.

2012). Alien crayfish are among the most destructive

of invasive taxa with documented negative impacts at

multiple levels of ecological organization (Twar-

dochleb et al. 2013) and represent a major hazard to

freshwater biodiversity globally (Lodge et al. 2012;

Twardochleb et al. 2013).

In Europe, the Rhine River catchment was histor-

ically inhabited by the native noble crayfish Astacus

astacus (L., 1758), as well as the white-clawed

crayfish Austropotamobius pallipes (Lereboullet,

1858) and, particularly in its upper sections, the stone

crayfish Austropotamobius torrentium (von Paula

Schrank, 1803). These species have largely disap-

peared as a result of crayfish plague outbreaks caused

by an oomycete Aphanomyces astaci Schikora. The

spiny-cheek crayfish Faxonius limosus (Rafinesque,

1817) was introduced into present-day western Poland

as an alternative to endangered native stocks in 1890

with secondary translocations to Germany and France

to compensate for the loss of the commercially

valuable noble crayfish (Holdich et al. 2006). Thanks

to human-assisted translocation and its own dispersal,

spiny-cheek crayfish has reached the Rhine River

system and become dominant in the area. It is not well

documented to what extent the spiny-cheek crayfish

was directly or indirectly responsible for the disap-

pearance of native stock, chiefly noble crayfish

(Tittizer et al. 2000; Chucholl and Dehus 2011), but

it is assumed that its introduction exacerbated the

pathogenic crayfish plague (Holdich et al. 2006). The

spiny-cheek crayfish dominance in the Rhine River

has changed in recent years with the introduction of

the calico crayfish Faxonius immunis (Hagen, 1870),

first recorded in 1993 (Gelmar et al. 2006). The calico

is currently the dominant alien crayfish in the Upper

Rhine system (Herrmann et al. 2018) and has

successfully invaded lentic and lotic habitats including

gravel pit lakes and small canals and brooks. The

initial introduction was assumed to be as fishing bait

used by Canadian soldiers (Gelmar et al. 2006). It is

reported that the calico crayfish dominates spiny-

cheek crayfish during direct competition for shelter

and has displaced it from the areas in which the species

overlapped (Chucholl et al. 2008).
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In the meantime, the parthenogenic apomictic

marbled crayfish Procambarus virginalis Lyko,

2017, following its first appearance in aquarium shop

in Germany in the mid-1990 s (Lukhaup 2001),

became popular in the pet trade. It has subsequently

become established in the wild, particularly in Europe,

through intentional or unintentional releases (Hossain

et al. 2018). Marbled crayfish is listed among the most

invasive species in the European Union (EU Regula-

tion No. 1143/2014, Commission Implementing Reg-

ulation No. 2016/1141). In recent studies, marbled

crayfish showed competitiveness in combat with the

highly aggressive red swamp crayfish Procambarus

clarkii (Girard, 1852) (Jimenez and Faulkes 2011;

Hossain et al. 2019b), itself a prominent invader

worldwide (Souty-Grosset et al. 2016), and with

spiny-cheek crayfish (Linzmaier et al. 2018), although

it exhibits lower aggressiveness towards conspecifics

(Vogt et al. 2004).

Reports confirming marbled crayfish occurrence in

the Rhine River systems and other parts of Germany

(Chucholl et al. 2012; Herrmann et al. 2018) suggest

the possibility of its coexistence with the calico

crayfish or the potential for displacement of one

species by the other from their ecological system/

niche. No information regarding interactions of mar-

bled and calico crayfish in nature or in laboratory

conditions is available. In the present study, we

characterized agonistic behaviour of calico versus

marbled crayfish to identify differences in aggression

that may affect their interactions in field conditions

potentially causing displacement and over-invasion.

Materials and methods

Experimental animals

Marbled crayfish originated from our laboratory

culture and experienced a similar social structure in

their communal culture tanks. Calico crayfish were

captured during a hydrobiological survey on 11 July

2017 from a pond in proximity to the Rhine River

(Rheinstetten, Germany; 48�58009.600N, 8�17044.000E)
(Ondračková et al. 2018), transferred to a facility of

South Bohemian Research Centre of Aquaculture and

Biodiversity of Hydrocenoses, University of South

Bohemia in České Budějovice and acclimated to

laboratory conditions for 30 days before selection for

experiments.

Acclimation and experimental set-up

To eliminate hierarchical status established in the

stock tanks, all specimens were held individually in

one 250-mL plastic box (163 9 118 9 62 mm),

screened from other crayfish, for 7 days prior to

initiation of the trials. Water temperature was main-

tained at * 20 �C, and crayfish were fed daily

ad libitum on commercial dry aquarium fish feed

enriched with algae (Sera Granugreen, Sera GmbH,

Germany).

Marbled/calico crayfish pairs were randomly

divided into groups with (17 marbled, 11 male, six

female calico) and without (18 marbled, ten male,

eight female calico) shelter. Pairs were size-matched

to within\ 5% wet weight (Aquiloni and Gherardi

2008; Momohara et al. 2013) (Table 1). Sex of calico

crayfish was identified, since it has shown significant

effect on dominance status in adults (Bovbjerg 1956;

Pavey and Fielder 1996).

Crayfish pairs were stocked into oval experimental

arenas (600 L 9 400 W 9 250 H mm) filled with 12

L aged tap water (* 20 �C) and 750 g (dry weight) of

fine aquarium sand. The shelter group was provided

with a halved ceramic plant pot, 94 mm depth with a

60-mm-diameter entrance, placed in the centre of one

side of the arena. Crayfish were placed under trans-

parent perforated plastic cups on opposite sides of the

arena. After 5 min, the cups were removed to enable

crayfish to move and freely interact for a 15 min

period that was recorded using digital video camera

(Sony HDR-CX240, Sony, Japan) mounted on the lid

of the arena. Obtained data were used to quantify the

number of contacts, threats, fights, fight duration, and

avoidance behaviours as well as to identify the fight

initiator and winner (Table S1). Visual evaluation was

carried out according to the methods proposed by

Hossain et al. (2019b) and the ethogrammodified from

Hossain et al. (2019b) and Fořt et al. (2019). Domi-

nance was established as the time at which an agonistic

event led to one crayfish’s persistent avoidance of

fighting, contact, or the proximity of (one body length)

the other.
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Statistical analysis

The interaction outcomes of pairs with and without

shelter were compared using Wilcoxon matched pairs

test. Chi-squared (v2) tests were used to assess the

dominance status of pairs. Fight frequency and

duration and latency to fight initiation of pairs with

and without shelter were compared with Kruskal–

Wallis test. The total number of short and long fights

was analysed with Mann–Whitney U test. A multiple

comparison test was used to determine significant

differences among groups. The null hypothesis was

rejected at a\ 0.05 in all tests. Statistical analyses

were performed using Statistica 13.2 software (Stat-

Soft Inc., Tulsa, USA).

Results

In the absence of shelter when sex of the calico

crayfish was not included in the analysis, there were no

significant differences in contact initiation, fight

initiation, and avoidance behaviours of marbled

crayfish and calico crayfish (Z = 0.67, P = 0.499;

Z = 1.33, P = 0.184; and Z = 1.53, P = 0.124, respec-

tively). Marbled crayfish won a significant (Z = 1.96,

P = 0.049) majority of fights against calico crayfish

(Table 2) and also won a significantly higher number

of fights against calico crayfish females (Z = 2.52,

P = 0.012) (Fig. 1).

In the presence of shelter and without considering

the sex of the calico crayfish, the species did not

significantly vary in avoidance behaviours (Z = 0.73,

P = 0.463), fights won (Z = 0.98, P = 0.328), or

contact initiation (Z = 1.82, P = 0.068). Fight initia-

tion was marginally significant (Z = 1.95, P = 0.051)

with marbled crayfish initiating a higher number of

contacts and fights than calico crayfish (Table 2).

There were no significant differences betweenmarbled

crayfish and calico crayfish males in initiating contact

(Z = 1.01, P = 0.310), avoidance (Z = 0.0,

P = 1.000), fight initiation (Z = 1.213, P = 0.225),

and fightswon (Z = 0.34,P = 0.735) (Fig. 2).Marbled

crayfish showed a tendency to initiate more frequently

the contact (Z = 1.83, P = 0.067) and fights (Z = 1.83,

P = 0.067); however, these remained statistically

insignificant. There were no significant differences in

avoidance behaviours (Z = 1.46, P = 0.144) and fights

won (Z = 1.46, P = 0.144) (Fig. 2).

When calico crayfish sex was excluded from the

analysis, 16 of 18 pairs with shelter and 14 of 17 pairs

without shelter established dominance, with marbled

crayfish dominant significantly more often (v2 testwith-
out shelter = 14.1; P\ 10-3; v2 testwith shelter = 8.2;

P = 0.004). Pairs with no defined dominance were

observed only in interactions of marbled crayfish with

female calico crayfish. Marbled crayfish were signif-

icantly more frequently dominant over female calico

crayfish both with shelter (v2 test = 100.0; P\ 10-5)

and without shelter (v2 test = 44.4; P\ 10-4). In the

presence of shelter, no significant differences were

observed between dominance of marbled crayfish and

calico crayfish males (v2 test = 0.81; P = 0.400). In

the absence of shelter, the dominance of marbled

crayfish was significant (v2 test = 4.0; P = 0.045)

(Table 3).

Table 1 Carapace length

(CL) and weight (W) of

marbled crayfish and calico

crayfish used in interaction

pairs in groups with and

without shelter

Last column shows the

average per cent weight

difference (D) of paired

specimens. Data are

presented as mean ± SD

MC marbled crayfish, CC

calico crayfish

Experimental group Crayfish (n) CL (mm) W (g) D (%)

Without shelter MC (10) 27.9 ± 4.6 6.4 ± 2.6 2.5 ± 1.7

CC (10, male) 28.1 ± 3.8 6.3 ± 2.6

MC (8) 25.4 ± 2.4 4.9 ± 1.2 3.3 ± 1.5

CC (8, female) 26.0 ± 2.0 4.9 ± 1.3

MC (combined) 26.9 ± 3.8 5.8 ± 2.1 2.8 ± 1.6

CC (combined) 27.2 ± 3.2 5.7 ± 2.2

With shelter MC (11) 29.0 ± 5.7 7.0 ± 3.1 2.0 ± 1.8

CC (11, male) 29.3 ± 5.1 7.1 ± 3.3

MC (6) 23.6 ± 2.7 4.0 ± 1.5 2.6 ± 2.1

CC (6, female) 24.4 ± 2.3 3.9 ± 1.5

MC (combined) 27.1 ± 5.6 5.9 ± 3.1 2.2 ± 1.6

CC (combined) 27.6 ± 5.0 6.0 ± 3.3
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Table 2 Agonistic interactions (%) of MC, marbled crayfish and CC, calico crayfish during interaction in the presence and absence

of shelter and without considering the sex of calico crayfish

Group Crayfish Contact initiator (%) Avoidance (%) Fight initiator (%) Winner (%)

Without shelter MC 54.9 ± 22.3 38.7 ± 31.6 58.0 ± 18.9 71.0 ± 34.2a

CC 45.1 ± 22.3 61.3 ± 31.6 42.0 ± 18.9 29.0 ± 34.2b

With shelter MC 66.9 ± 29.4 37.5 ± 48.8 71.2 ± 30.9 61.3 ± 40.8

CC 33.1 ± 29.4 62.5 ± 48.8 28.8 ± 30.9 38.7 ± 40.8

Different superscripts indicate significant differences at P\ 0.05. Values are presented as mean ± SD

Fig. 1 Comparison of agnostic interactions (%) of MC,

marbled crayfish and CC, calico crayfish males and females in

the absence of shelter. Values are presented as median (small

square), percentiles (large box, 25–75%) and min–max (error

bar). Different superscripts indicate significant differences at

P\ 0.05

Fig. 2 Comparison of agnostic interactions (%) of MC,

marbled crayfish and CC, calico crayfish. Male and female in

the presence of shelter. Values are presented as median (small

square), percentiles (large box, 25–75%), and min–max (error

bar). Different superscripts indicate significant differences at

P\ 0.05
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In addition to total fights per pair, latency to initial

fight, total fight duration, and mean duration of fights

did not vary significantly within or between groups

regardless of sex of calico crayfish and presence or

absence of shelter (Table 4). The number of fights

categorized as short (\ 60 s) and long ([ 60 s) did not

significantly vary among groups (Fig. 3).

Discussion

In addition to increasing knowledge of ecological

strategies and adaptability (Lindqvist and Huner 1999;

Holdich et al. 2009), observations of agonistic

behaviour during interspecific interactions can esti-

mate the potential success of an invader (Gherardi

2002; Hudina et al. 2016). Aggressive behaviour is

relevant to ecological consequences, even when two

phylogenetically unrelated species interact in a func-

tionally similar niche (Church et al. 2017). Current

dispersion of marbled crayfish in natural waters

amplifies the importance of assessing its competitive-

ness with previously established invaders (Kawai et al.

2016; Hossain et al. 2018). In spite of its placid

disposition during interactions with conspecifics

(Vogt 2008; Kawai et al. 2016), marbled crayfish

Table 3 Dominance percentage of marbled crayfish and calico crayfish in interactions with the presence and absence of shelter

Group Crayfish Established dominance n, (%) Not established n, (%) Per cent established

Without shelter MC 6 (60.0) 0 (0.0) 60.0a

CC (male) 4 (40.0) 40.0b

MC 5 (62.5) 2 (25.0) 83.3a

CC (female) 1 (12.5) 16.7b

MC 11 (61.1) 2 (11.1) 68.8a

CC (combined) 5 (27.8) 31.2b

With shelter MC 6 (54.5) 0 (0.0) 54.5

CC (male) 5 (45.5) 45.5

MC 3 (50.0) 3 (50.0) 100a

CC (female) 0 (0.0) 0.0b

MC 9 (52.9) 3 (17.6) 64.3a

CC (combined) 5 (29.5) 35.7b

Different superscripts indicate significant differences at P\ 0.05

MC marbled crayfish, CC calico crayfish, n number of pairs

Table 4 Number of fights per pair, time to fight initiation, total fight duration per pair, and mean duration per fight in marbled

crayfish versus calico crayfish with the presence and absence of shelter

Group* Crayfish* Total fights

(n)

Time to fight

(s) initiation

Total fight duration

(s)

Mean fight duration

(s)

Without

shelter

MC 9 CC (male) 4.3 ± 3.1 157.3 ± 164 395.9 ± 241.1 133.4 ± 137.6

MC 9 CC (female) 3.6 ± 1.6 140.7 ± 65.8 439.6 ± 267.4 137.4 ± 127.3

MC 9 CC

(combined)

3.9 ± 2.5 150.5 ± 129.7 425.2 ± 242.4 138.9 ± 126.6

With shelter MC 9 CC (male) 2.5 ± 1.1 159.6 ± 174.2 327.5 ± 322.3 188.7 ± 153.2

MC 9 CC (female) 3.0 ± 1.2 176.6 ± 108.1 395.3 ± 299.6 219.2 ± 211.7

MC 9 CC

(combined)

2.7 ± 1.1 166.2 ± 147.2 351.5 ± 306.7 200.4 ± 169.9

MC marbled crayfish, CC calico crayfish

*No significant difference observed between groups at P\ 0.05. Values are presented as mean ± SD
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have shown competitiveness against wild spiny-cheek

crayfish (Linzmaier et al. 2018) and the red swamp

crayfish (Jimenez and Faulkes 2011; Hossain et al.

2019b), the most successful introduced crayfish

species worldwide (Souty-Grosset et al. 2016; Hossain

et al. 2018).

We found the marbled crayfish to be dominant in

interactions with calico crayfish, which have an

established population of the Rhine River system.

Marbled crayfish won significantly more fights with

calico crayfish females in the absence of shelter. With

available shelter, marbled crayfish were significantly

more active in initiating contact and combat than were

calico crayfish females. This might be due to different

strategies of male and female crayfish during agonistic

interactions (Wofford 2013). However, both with and

without shelter, marbled crayfish were equally active

in interactions with calico crayfish males; hence, they

could overcome lack of sexual dimorphism and

successfully combat either sex of calico crayfish. This

combat success has also been observed in previous

studies in which marbled crayfish showed significantly

higher aggression when compared to both sexes of red

swamp crayfish (Hossain et al. 2019b) as well as size-

matched and larger spiny-cheek crayfish (Linzmaier

et al. 2018).

With and without shelter, the dominance pattern

was more pronounced in pairings with calico crayfish

males than with females. Compared to males (0%),

undefined hierarchy status was higher with calico

crayfish females in the absence (25%) and presence of

shelter (50%). These differences may have been due to

the more aggressive nature (Gherardi 2002) and higher

resource-holding potential of males compared to

females (Dissanayake et al. 2009). The establishment

of hierarchy was also more rapid in pairings with

calico crayfish males than females (Table 3). Females

may show a propensity to conserve energy for

reproduction and care of offspring (Trivers 1972). It

is evident from our findings of dominance establish-

ment that shelter occupancy of marbled crayfish was

equivalent to that of calico crayfish males and

significantly higher than calico crayfish females

(Table 3). Aggressive encounters in laboratory con-

ditions have been shown similar to combat dynamics

of crayfish in nature (Bergman et al. 2003); hence, we

can expect key resources such as shelter to be

frequently seized by marbled crayfish in an area in

which both species occur. This hypothesis may also be

applicable to red swamp and spiny-cheek crayfish,

against which marbled crayfish have shown significant

competition success in laboratory trials (Jimenez and

Fig. 3 Comparison of fight

types (%) of MC, marbled

crayfish and CC, calico

crayfish in the presence and

absence of shelter with

considering the sex of calico

crayfish. Values are

presented as median (small

black square), percentiles

(large box, 25–75%), and

min–max (error bar)
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Faulkes 2011; Linzmaier et al. 2018; Hossain et al.

2019b).

Our observations and results of Linzmaier et al.

(2018) and Hossain et al. (2019b) were in contrast to

Fořt et al. (2019) who reported marbled crayfish to be

less successful in interspecific interactions with signal

crayfish Pacifastacus leniusculus (Dana, 1852) and

yabby Cherax destructor Clark, 1936. The disparities

in aggressiveness might be due to phylogenetic

differences or to variation in chemical communication

systems (Kubec et al. 2018; Fořt et al. 2019).

Linzmaier et al. (2018) found that time spent in

shelter by marbled crayfish compared to spiny-cheek

crayfish varied more with origin of crayfish (cultured/

wild) than with sex. Our study using aquarium-reared

marbled crayfish showed opponent sex to have an

effect on contact initiation, fight initiation, fights won,

and dominance establishment. Total number of fights,

time to initiation of combat, and mean fight duration

did not significantly differ among the crayfish pairs

(Table 4). These outcomes could differ in species of

homogenous origin.

In competition of spiny-cheek crayfish versus

calico crayfish for shelter, calico crayfish were more

successful (Chucholl et al. 2008), whereas, in the

present study, marbled crayfish outcompeted calico

crayfish as they have the highly invasive red swamp

crayfish (Hossain et al. 2019b) and the larger spiny-

cheek crayfish (Linzmaier et al. 2018). The higher

activity and aggressiveness of marbled crayfish shown

against calico, red swamp, and spiny-cheek crayfish

could accelerate their invasiveness by both direct

interactions and competition for resources. Despite the

findings of Bergman et al. (2003), outcomes may

differ in the natural environment, as natural conditions

are more complex in all parameters affecting crayfish.

Linzmaier et al. (2018) found that wild marbled

crayfish were less active than aquarium-reared, and

Chucholl and Pfeiffer (2010) suggested likelihood of

syntopic occurrence of marbled and spiny-cheek

crayfish without displacement. This situation could

soon be apparent, as sympatries are presumed more

likely in the future, with some currently existing

(Lipták et al. 2017; Szend}ofi et al. 2018). So far poorly

understood aspects such as different utilization of

microhabitats or food resources might contribute to

the outcomes of these co-occurrences.

The studied crayfish species exhibit high invasive

potential due to their r-selected life history traits,

particularly when compared with European native

counterparts (Kouba et al. 2014; Hossain et al. 2018).

Both show substantial burrowing ability (Chucholl

2012; Kouba et al. 2016), overland dispersal, omniv-

orous feeding habits (Lipták et al. 2017; Herrmann

et al. 2018) and are carriers of crayfish plague

(Filipova et al. 2013; Keller et al. 2014; Andriantsoa

et al. 2019). Marbled crayfish may have higher

invasion potential based on low demands for living

conditions, short life cycle (Jimenez and Faulkes

2010), parthenogenetic reproduction, prolific breeding

habits, behaviour plasticity (Linzmaier et al. 2018),

and genetic uniformity (Vodovsky et al. 2017; Hossain

et al. 2018, 2019a). Genetic uniformity usually

translates to lower survival in nature due to interac-

tions of lethal alleles, but in marbled crayfish this is

overcome by heterozygous triploidy (Vogt 2015). A

single individual is theoretically sufficient to establish

a new population (Martin et al. 2010). The higher

number of progeny resulting from early maturation

can enhance overspreading (Hossain et al. 2019a). In

Madagascar, marbled crayfish have multiplied in the

invasion area 100-fold in the past decade. Dispersal

was largely driven by human-mediated introductions

and now produces economic value as a food resource

for the local human population, promoting further

translocations. These stocks are carrying the causative

of crayfish plague (Andriantsoa et al. 2019) to which

endemic Astacoides species are presumably sensitive

(Svoboda et al. 2017). Similarly to the red swamp

crayfish, marbled crayfish can become a serious threat

to the aquatic ecosystems worldwide (Putra et al.

2018; Lipták et al. 2019). Besides Europe, the species

appeared in Japan (Kawai and Takahata 2010) and is

thriving in Israel (http://marmorkrebs.blogspot.com/

2019/05/marmorkrebs-in-middle-east.html). Further

records are expected due its persisting popularity in

the pet trade (Faulkes 2015) including Asian countries

(Uderbayev et al. 2017; Guo et al. 2019). Therefore,

strategies limiting further introductions and eradicat-

ing established populations whenever possible are

urgently needed (Patoka et al. 2018; Lidova et al.

2019; Manfrin et al. 2019).

Conclusion

Finally, it could be summarized that marbled crayfish

is able to dominate over size-matched calico crayfish
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and could replace the invasive calico crayfish from its

region of establishment. Over-invasion/replacement

in a similar niche with other invaders may be modified

by life history traits, behavioural plasticity (Reisinger

et al. 2017), adaptability to environmental and

anthropogenic factors, and predator–prey relation-

ships. The competitiveness of marbled crayfish in

agonistic interactions (Jimenez and Faulkes 2011;

Linzmaier et al. 2018; Hossain et al. 2019b) and its life

history traits confer an ability to coexist with or

displace existing invasive crayfish species as well as

native in over-invaded ecosystems. Further research is

needed to understand complex mechanisms in invaded

areas at community and ecosystem levels.
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Agonistic interactions and dominance establishment in

three crayfish species non-native to Europe. Limnologica

74:73–79. https://doi.org/10.1016/j.limno.2018.11.003

Gelmar C, Pätzold F, Grabow K, Martens A (2006) Der Kali-

kokrebsOrconectes immunis am nördlichen Oberrhein: ein
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Patoka J, Magalhães ALB, Kouba A, Faulkes Z, Jerikho R,

Vitule JRS (2018) Invasive aquatic pets: failed policies

increase risks of harmful invasions. Biodiver Conserv

27:3037–3046. https://doi.org/10.1007/s10531-018-1581-

3

Pavey C, Fielder D (1996) The influence of size differential on

agonistic behaviour in the freshwater crayfish, Cherax

cuspidatus (Decapoda: Parastacidae). J Zool 238:445–457.

https://doi.org/10.1111/j.1469-7998.1996.tb05405.x

Penk M, Saul WC, Dick JT, Donohue I, Alexander ME, Linz-

maier S, Jeschke JM (2017) A trophic interaction frame-

work for identifying the invasive capacity of novel

organisms. Methods Ecol Evol 8:1786–1794. https://doi.

org/10.1111/2041-210X.12817

Pimentel D et al (1992) Conserving biological diversity in

agricultural/forestry systems. BioScience 42:354–362.

https://doi.org/10.2307/1311782

Preisser EL, Elkinton JS (2008) Exploitative competition

between invasive herbivores benefits a native host plant.

Ecology 89:2671–2677. https://doi.org/10.1890/08-0299.1

Putra MD et al (2018) Procambarus clarkii (Girard, 1852) and

crayfish plague as new threats for biodiversity in Indonesia.

Aquat ConservMar Freshw Ecosyst 28:1434–1440. https://

doi.org/10.1002/aqc.2970

Reisinger LS, Elgin AK, Towle KM, Chan DJ, Lodge DM

(2017) The influence of evolution and plasticity on the

behavior of an invasive crayfish. Biol Invasions

19:815–830. https://doi.org/10.1007/s10530-016-1346-4

Ricciardi A, Rasmussen JB (1999) Extinction rates of North

American freshwater fauna. Conserv Biol 13:1220–1222.

https://doi.org/10.1046/j.1523-1739.1999.98380.x

Roy H et al (2014) Invasive alien species–framework for the

identification of invasive alien species of EU concern.

European Commission, Brussels

Russell JC, Sataruddin NS, Heard AD (2014) Over-invasion by

functionally equivalent invasive species. Ecology

95:2268–2276. https://doi.org/10.1890/13-1672.1

Savini D, Occhipinti-Ambrogi A, Marchini A, Tricarico E,

Gherardi F, Olenin S, Gollasch S (2010) The top 27 animal

alien species introduced into Europe for aquaculture and

related activities. J Appl Icthyol 26:1–7. https://doi.org/10.

1111/j.1439-0426.2010.01503.x

Seebens H et al (2017) No saturation in the accumulation of

alien species worldwide. Nat Commun 8:14435. https://

doi.org/10.1038/ncomms14435

Sih A, Cote J, Evans M, Fogarty S, Pruitt J (2012) Ecological

implications of behavioural syndromes. Ecol Lett

15:278–289. https://doi.org/10.1111/j.1461-0248.2011.

01731.x

Souty-Grosset C, Anastácio PM, Aquiloni L, Banha F, Choquer

J, Chucholl C, Tricarico E (2016) The red swamp crayfish

Procambarus clarkii in Europe: Impacts on aquatic

ecosystems and human well-being. Limnol Ecol Manag

Inland Waters 58:78–93. https://doi.org/10.1016/j.limno.

2016.03.003

Svoboda J, Mrugała A, Kozubı́ková-Balcarová E, Petrusek A
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Abstract

Biological invasions pose a serious threat to native biota and ecosystem functioning. Life 
histories, niche preference, and adaptation strategies of invasive species may be similar, 
but interactions among them remain unexplored. The co-occurrence of spiny-cheek crayfish 
F. limosus and parthenogenetic marbled crayfish P. virginalis has been reported in Europe, 
and the number of such localities is expected to increase as the latter species expands its 
range. The present study compared the interaction patterns of weight-matched spiny-cheek 
and marbled crayfish P. virginalis in the presence and absence of a strategic resource (shelter) 
in a 15 min interaction. We found that the percentage of marbled vs. spiny-cheek agonistic 
interactions that resulted in established dominance was significantly higher than that of 
spiny-cheek crayfish F. limosus. Marbled crayfish P. virginalis were significantly more likely to 
be dominant in interactions with female spiny-cheek crayfish F. limosus but not with males. 
However, shelter occupancy dominance did not differ in marbled and spiny-cheek crayfish F. 
limosus, regardless of spiny-cheek sex. Marbled crayfish P. virginalis won a significantly higher 
number of fights than spiny-cheek crayfish F. limosus both with and without availability of 
shelter. The total number of fights, mean fight duration, and cumulative fight duration did not 
significantly vary among the groups in both treatments. Marbled crayfish P. virginalis appear 
dominant over size-matched spiny-cheek crayfish F. limosus, with sex and shelter availability 
affecting their interaction. Further research is needed to elucidate mechanisms of marbled 
crayfish P. virginalis invasion at community and ecosystem levels.

Key words: behavioural interaction, biological invasion, co-occurrence, dominance, 
Procambarus virginalis, Faxonius limosus 

INTRODUCTION 

Freshwater biodiversity is threatened globally (Strayer and Dudgeon, 2010), with biological 
invasions being critical (Catford et al., 2012; Richman et al., 2015; Strayer, 2010). In addition 
to spread of disease such as crayfish plague (Edgerton, 2002; Lodge et al., 2000), aggressive 
interactions of crayfish species are a mechanism of species replacement (Klocker and Strayer, 
2004). An invader may force a less competitive crayfish to leave refuge, making it vulnerable 
to predation (Holdich et al., 1999a; Pecor and Hazlett, 2003; Underwood, 2015). Growth and 
maturation patterns are key components of species success (Garvey et al., 1994; Hill and 
Lodge, 1994; Söderbäck, 1994). European indigenous crayfish species (ICS), being keystone 
organisms of freshwater ecosystems, are severely affected. Entire populations have been lost, 
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and many more substantially reduced, due to direct and indirect effects of non-indigenous 
crayfish species (NICS). Invaders impose strong competitive pressure on native counterparts, 
as documented in spiny-cheek crayfish Faxonius limosus (Rafinesque, 1817) (Buřič et al., 
2009a; Buřič et al., 2009b; Petrusek et al., 2006), signal crayfish Pacifastacus leniusculus 
(Dana, 1852) (Hudina et al., 2016), and red swamp crayfish Procambarus clarkii (Girard, 
1852) (Hossain et al., 2019c; Jackson et al., 2016). These species from pre-1975 introduction 
are referred to as “Old NICS” (Holdich et al., 2009) and are particularly widespread on the 
European continent (Kouba et al., 2014). Devastating effects of Old NICS on ICS have been 
well documented (Holdich et al., 1999b; Kouba et al., 2014). However, more recent crayfish 
invasions, so called “New NICS,” are increasing (Hossain et al., 2018; Kouba et al., 2014). 

Studies assessing the interactions between NICS are appearing but remain limited (Chucholl 
et al., 2008; James et al., 2016). The marbled crayfish Procambarus virginalis Lyko, 2017 is 
an emerging candidate for such research. The species was first discovered in the German 
aquarium trade in the mid-1990s (Scholtz et al., 2003). It is the only known crayfish to 
reproduce via obligate apomictic parthenogenesis, producing genetically uniform offspring 
(Martin et al., 2010). It is also characterised by early maturation and high fecundity (Jimenez 
and Faulkes, 2011; Lipták et al., 2017; Seitz et al., 2005), reproducing throughout the year 
under favourable conditions (Seitz et al., 2005; Vogt et al., 2004). Its high competitiveness has 
been documented (Hossain et al., 2019a; Hossain et al., 2019c; Jimenez and Faulkes, 2011), 
and survival ability at low temperatures shown in laboratory and field conditions (Haubrock 
et al., 2019b; Lipták et al., 2016; Lipták and Vitázková, 2015). It has been listed, together 
with all Old NICS and Faxonius virilis (Hagen, 1870), among the European Union invasive 
alien species of concern according to recent legislation (EU Regulation No. 1143/2014 and 
Commission Implementing Regulation No. 2016/1141). 

Its current distribution provides growing evidence that newly emerging marbled crayfish 
will compete with the already established spiny-cheek crayfish (Chucholl, 2015; Hossain et 
al., 2018; Lipták et al., 2017; Patoka et al., 2016). Linzmaier et al. (2018) found that marbled 
crayfish were generally more aggressive than carapace length matched spiny-cheek crayfish 
in terms of agonistic encounters even against larger opponents. Outcome of competition of 
weight-matched marbled and spiny-cheek crayfish and direct competition of these species for 
shelter has not been conducted. 

The goal of the present study was to determine differences in aggression of P. virginalis 
and F. limosus during interspecific interactions under laboratory conditions by characterising 
their direct agonistic interactions and competition for shelter. Differences in aggression may 
potentially impact their interactions under natural conditions.

MATERIALS AND METHODS

Experimental animals

Marbled crayfish originated from the laboratory culture at the Faculty of Fisheries and 
Protection of Waters USB in Vodňany. Spiny-cheek crayfish were captured in the Elbe River, 
Ústí nad Labem, Czech Republic in early July 2018. Only adult crayfish with fully developed 
claws and without eggs were selected. For fifteen days prior to experimentation, specimens 
were held individually in floating 580L×400W×120H mm perforated plastic boxes with eight 
individual chambers (180×130×100 mm) in troughs with circulating water at ~20 °C. Crayfish 
were fed dry commercial feed for aquarium fish enriched with algae (Sera Granugreen, Sera 
GmbH, Germany), slices of fresh carrot, and pieces of common carp Cyprinus carpio L. 1758. 
Troughs were cleaned daily. 
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Experimental design 

Following the acclimation period, interspecific pairs of size-matched (weight difference < 
5%) specimens were selected. Given the differing body proportions among crayfish species 
and sex, weight is considered the most suitable characteristic for size matching in inter- and 
intra-specific comparisons (Hossain et al., 2019a). Selected specimens were held individually 
in clear 250×190×70 mm plastic boxes containing ~1.0 L aged-tap water covered with a  lid 
for seven days to eliminate any previously established social hierarchy. The animals were fed 
commercial feed with 5-7 pellets of the mentioned dry feed. Boxes were cleaned daily during 
water exchange. The water temperature was 19.3 ± 0.4 °C. Animals that moulted or spawned 
during this period were removed from the experiment.

The crayfish pairs (Table 1) were placed in oval 600L×400W×250H mm plastic arenas 
containing 12L aged tap water at ~20 °C and 750 g (dry weight) fine aquarist sand. For an 
experimental group with shelter, half a ceramic plant pot, 94 mm deep with a 60 mm diameter 
entrance, was placed at the centre of one long side of the arena. Prior to observation, crayfish 
were placed under transparent perforated plastic cups on opposite sides of the arena with the 
equal distance to the shelter. After 5 min acclimatization, the cups were removed to enable 
crayfish to move freely and interact for a 15 min period that was recorded using a digital video 
camera (Sony HDR-CX240, Sony, Japan) mounted under the ceiling. 

An ethogram was generated using methods modified by Hossain et al. (2019a) and Fořt et 
al. (2018) to count the number of contact initiations, the number of fights, fight duration, and 
avoidance behaviours as well as to identify the fight initiator and winner (Fořt et al., 2018; 
Hossain et al., 2019c) (Supplementary Materials Table 1). Dominance establishment was 
determined as the time at which an agonistic event led to persistent avoidance of fighting, 
contact, or remaining within approximately one body length of the other crayfish. Shelter 
occupancy dominance was allocated to the crayfish inside the shelter at the termination of 
the experiment. To support this determination, the number of fights initiated and won was 
also taken into account.

Data analysis

The weight of crayfish pairs was compared using Student matched-pairs test. Chi-squared 
(χ2) tests were used to analyse the values of dominant status percentages with a value of 
50% being no difference). Mann-U Whitney test was used to detect differences in number of 
fights, total fight duration, and mean fight duration of male/female and female/female pairs 
in trials with and without shelter. The null hypothesis was rejected at p < 0.05 in all tests. 
Statistical analyses were performed using IBM SPSS Statistics v. 22.0. 

Results
 
In total, 80.0% (66.7% + 13.3%) and 41.2 % (35.3% + 5.9%) of pairs developed dominant 

status in groups without shelter and with shelter, respectively (Table 2). Marbled crayfish 
were consistently dominant over spiny-cheek crayfish in both conditions (χ2 test without 
shelter = 10.667; p = 0.001; χ2 test with shelter = 7.143; p = 0.008). Pairs without dominance 
status were observed in both conditions (Table 2). Marbled crayfish were significantly more 
likely to exhibit dominance over female spiny-cheek crayfish without shelter (χ2 test = 9.000, 
p  =  0.003) and with shelter (χ2 test = 8.000, p = 0.005), but not over male spiny-cheek 
crayfish (χ2 test = 2.000, p = 0.157; χ2 test = 0.607, p = 0.414 without and with shelter, 
respectively) (Table 2).
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In the shelter condition, 82.3 % (52.9%+29.4%) of pairs developed dominance status (Table 
3). No significant difference was found between marbled crayfish and spiny-cheek crayfish in 
shelter occupancy dominance, although the percentage of marbled was consistently higher 
than spiny-cheek crayfish (χ2 test = 2.286, p = 0.131) (Table 3). Pairs without defined shelter 
occupancy dominance were also observed between marbled crayfish with female and with 
male spiny-cheek crayfish.

The marbled crayfish initiated a significantly higher number of fights (t without shelter = 
6.268, df = 14, p < 0.001; t with shelter = 2.083, df = 16, p = 0.047) and won significantly more 
fights (t without shelter = 6.796, df = 14, p < 0.001; t with shelter = 2.063, df = 16, p =0.049) 
against spiny-cheek crayfish in both absence and presence of shelter (Table 4). There were 
no significant differences in contact initiation (t = 0.780, df = 14, p = 0.449) and avoidance 
(t = -1.140, df = 14, p = 0.273) in the absence of shelter or in contact initiation (t = 1.731, 
df = 16, p = 0. 03) with shelter. The incidence of avoidance behaviours was significantly lower 
in marbled crayfish than in spiny-cheek (t = -2.850, df = 16, p = 0.012) (Table 4).

Number of fights, mean duration of fights, and cumulative fight duration per pair, did not 
significantly vary with shelter condition with respect to sex of spiny-cheek crayfish (Table 5). 
Number of fights, mean duration of fights, and cumulative fight duration per pair without 
shelter were significantly higher than observed with shelter (Z = -2.842, p = 0.005; Z = -2.267, 
p = 0.028; Z = -2.416, p = 0.019, respectively). The number of fights between females without 
shelter was significantly higher than seen in female pairs with shelter available (Z = -2.537 
p = 0.015) (Table 5).   

Discussion

Understanding displacement mechanisms of invasive species can predict their range 
expansion. In crayfish, aggressive behaviour during interspecific interactions is a major trait 
associated with their invasion potential (Capelli and Munjal, 1982; Usio et al., 2001) that can 
be used to estimate the ecological consequences of interaction with species sharing a similar 
niche (Church et al., 2017). We found marbled crayfish to dominate size-matched spiny-
cheek crayfish in agonistic encounters and to exhibit a tendency toward shelter occupancy 
dominance. Studies have shown that marbled crayfish dominate size-matched red swamp 
(Hossain et al., 2019c; Jimenez and Faulkes, 2011) and calico crayfish Faxonius immunis 
Hagen, 1870 (Hossain et al., 2019a). The higher activity and aggressiveness of marbled 
crayfish could facilitate displacement of other NIC species either by direct interaction or 
through competition for resources such as shelter and food. However, the marbled crayfish has 
been reported to be less successful in agonistic interactions with similar-sized signal crayfish 
Pacifastacus leniusculus, Dana, 1852 and the common yabby Cherax destructor Clark, 1936 
(Fořt et al., 2019), suggesting species-specific outcomes in interspecific encounters.

Laboratory results might not accurately reflect behaviour under natural conditions, and 
differences from field conditions have been reported. Linzmaier et al. (2018) found that wild 
marbled crayfish were less active than aquarium-reared during agonistic interactions with 
spiny-cheek crayfish. Still, results of agonistic interactions between crayfish in laboratory trials 
have been found to be consistent with combat  dynamics and replacement patterns observed 
in the field (Davis and Huber, 2007; Vorburger and Ribi, 1999).

We found considerable influence of sex on the crayfish behaviour. Marbled crayfish showed 
significantly lower levels of avoidance behaviour during interactions in the presence of shelter 
than observed in female spiny-cheek crayfish. The marbled crayfish also initiated significantly 
more fights than female spiny-cheek crayfish in the absence of shelter. Marbled crayfish 
established significantly greater dominance over female spiny-cheek crayfish in both shelter 
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conditions, but that was not true of encounters with males. Lack of sexual dimorphism (Buřič 
et al., 2010a; Buřič et al., 2010b) in marbled crayfish most likely contributed to the more 
equal combat between sexes. This is also demonstrated by the longer duration of combat in 
marbled crayfish vs. male spiny-cheek crayfish encounters. Linzmaier et al. (2018), however, 
concluded that the absence of sexual dimorphism in the marbled crayfish does not constrain 
its ability to win agonistic encounters against another species. In accordance to our results 
and above-mentioned studies we can even state that marbled crayfish as only female stock 
are comparable in fights with males of other species, but dominate over their females. 

The ability to occupy shelters or refuges is a  critical trait of freshwater crayfish (Davis 
and Huber, 2007; Kouba et al., 2016; Nakata and Goshima, 2003). Eviction from shelter or 
refuge during aggressive interactions makes a crayfish vulnerable to predation (Garvey et al., 
1994; Hill and Lodge, 1994; Söderbäck, 1994). Although no significant difference in shelter 
occupancy was found between these size-matched specimens, the rate of marbled crayfish 
shelter occupancy dominance was higher than that of spiny-cheek crayfish. This suggests 
that essential resources such as shelter will be more frequently appropriated by marbled 
crayfish when these species co-occur (Linzmaier et al., 2018). It was also found the calico 
crayfish dominant over the spiny-cheek crayfish in competition for shelter, contributing to 
the displacement of the latter (Chucholl et al., 2008). In the present study, the crayfish inside 
the shelter was consistently forced out by the size-matched opponent, suggesting that the 
availability of shelter is critical to both species. The marbled crayfish success in competition 
for shelter against the spiny-cheek might lead to higher mortality of the latter in natural 
conditions due to predation. The spiny-cheek crayfish excavate simple shallow burrows in the 
shoreline of lakes and ponds and along river banks (Hamr, 2002; Holdich and Black, 2007;  
Statzner et al., 2000). Marbled crayfish have been shown to construct larger and deeper 
burrows than do spiny-cheek crayfish when faced with drought (Kouba et al., 2016). Hence, 
the marbled crayfish could be a strong competitor against the spiny-cheek crayfish for shelter 
utilization and burrow construction in natural conditions.

The distribution of marbled crayfish in natural water bodies may expand rapidly as showed 
by the continuous new records in Europe (Andriantsoa et al., 2019). Apart from direct 
aggressive interactions, factors possibly affecting displacement include different response 
to predation (Hazlett, 2003; Söderbäck, 1994), interference with mating (Butler and Stein, 
1985), hybridization (Perry et al., 2001), and favourable life history traits (Hamr, 2002). 

Conclusions

Invaded ecosystems demand increasing attention (Haubrock et al., 2019a; Hossain 
et al., 2019a). Behaviour plasticity of crayfish is a  key factor behind co-existence with, or 
replacement of, invaders by native species sharing overlapping niches (Fields, 20018; Glon et 
al., 2018; Hanshew and Garcia, 2012; Reisinger et al., 2017; Saura-Mas and Benejam, 2019). 
The marbled crayfish is able to dominate size-matched spiny-cheek crayfish, suggesting the 
possibility of its replacement in the wild. The competitiveness of marbled crayfish in agonistic 
interactions with other species (Hossain et al., 2019a; Jimenez and Faulkes, 2011; Linzmaier 
et al., 2018) and its life history traits favour expanding dispersal. Further research is needed 
to elucidate mechanisms of marbled crayfish invasion at community and ecosystem levels.
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Table 1. Number of pairs (n), carapace length (CL), weight (W), and mean percent weight difference 

(D) of size-matched pairs of marbled crayfish (MC) P. virginalis and spiny-cheek crayfish (SC) F. limosus 

used in interactions without and with shelter. Data are shown by mean ± SD; Pairs t-test, p < 0.05.

Experimental 
Conditions

Species n CL (mm) W (g) D (%) p

Without 
shelter

MC
5

29.2 ± 2.6 8.5 ± 2.9
0.5 ± 0.9

 t =0.598;
 p = 0.576SC (male) 27.8 ± 7.7 8.5 ± 2.7

MC
10

28.5 ± 2.6 6.9 ± 1.8
1.5 ± 1.6

t < 0.0001;
p = 1.000SC (female) 28.3 ± 3.9 6.9 ± 1.8

MC (combined)
15

29.0 ± 2.6 7.5 ± 2.4
1.1 ± 1.5

t = 0.355;
p = 0.728SC (combined) 28.1 ± 5.4 7.5 ± 2.3

With shelter

MC
7

29.3 ± 4.3 7.9 ± 3.7
2.2 ± 1.9

t= -0.510; 
p = 0.629SC (male) 29.7 ± 3.3 7.9 ± 3.5

MC
10

29.3 ± 3.0 7.3 ± 2.1
0.6 ± 0.8

t = -1.000; 
p = 0.343SC (female) 30.3 ± 2.9 7.3 ± 2.1

MC (combined)
17

29.3 ± 3.5 7.5 ± 2.7
1.3 ± 1.6

T = -0.837; 
p = 0.416SC (combined) 30.1 ± 3.0 7.5 ± 2.7

Table 2. Dominance establishment in marbled crayfish (MC) P. virginalis and spiny-cheek crayfish (SC) 

F. limosus during interactions with and without shelter. Different superscripts within group indicate 

significant differences; Chi-squared (χ2), p < 0.05.

Group Crayfish
Established 
dominance (%), 
(number of pairs)

Not 
established 
(%)

Percentage of 
establishment (%)

χ2

Without 
shelter

MC 70.0 (7)
20.0 (2)

87.5b χ2 = 9.000, 
p = 0.003SC (female) 10.0 (1) 12.5a

MC 60.0 (3)
20.0 (1)

75.0a χ2 = 2.000, 
p = 0.157SC (male) 20.0 (1) 25.0a

MC (combined) 66.7(10)
20.0 (3)

83.4b χ2 = 10.667; 
p = 0.001SC (combined) 13.3 (2) 16.6a

With 
shelter

MC 40.0 (4)
60.0 (6)

100b χ2 = 8.000, 
p = 0.005SC (female) 0.0 (0) 0a

MC 28.6 (2)
57.1 (4)

66.7a χ2 = 0.607, 
p = 0.414SC (male) 14.3 (1) 33.3a

MC (combined) 35.3 (6)
58.8 (10)

85.7b χ2 = 7.143; 
p = 0.008SC (combined) 5.9 (1) 14.3a
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Table 3. Dominance over shelter of marbled crayfish (MC) P. virginalis vs. spiny-cheek crayfish (SC) 

F. limosus. No significant differences were detected in tested groups; Chi-squared (χ2) test, p < 0.05.

Crayfish
Established dominance 
in % (number of pairs)

Not established 
(%)

Percentage of 
establishment

χ2

MC 60.0 (6)
10.0 (1)

66.7 χ2 test = 2.000; 
p = 0.157SC (female) 30.0 (3) 33.3

MC 42.9 (3)
28.6 (2)

60.1 χ2 test = 0.400; 
p = 0.527SC (male) 28.6 (2) 39.9

MC (combined) 52.9 (9)
17.6 (3)

64.2 χ2 test = 2.286, 
p = 0.131SC (combined) 29.4 (5) 35.8

Table 4. Agonistic bouts of marbled crayfish (MC) P. virginalis vs. spiny-cheek crayfish (SC) F. limosus 

during interactions with and without shelter. Different superscripts within group indicate significant 

differences at p < 0.05. Data are mean ± SD; Wilcoxon matched pairs test, p < 0.05).

Group Crayfish
Contact 
initiator (%)

Avoidance (%)
Fight initiator 
(%)

Winner (%)

Without 
shelter 

MC 51.7 ± 35.7 46.8 ± 39.1 67.7 ± 27.4a 59.3 ± 37.9

SC (male) 48.3 ± 35.7 53.1 ± 39.1 32.3 ± 27.4a 40.6 ± 37.9

MC 61.0 ± 32.8 31.1 ± 37.6 67.1 ± 42.6b 62.5 ± 42.9

SC (female) 38.9 ± 32.8 68.9 ± 37.6 32.8 ± 42.6a 37.5 ± 42.9

MC (combined) 55.9 ± 29.5 39.7 ± 35.0 75.7 ± 15.6b 71.2 ± 12.1b

SC (combined) 44.1 ± 29.5 60.3 ± 35.0 24.3 ± 15.6a 28.8 ± 12.1a

With 
shelter 

MC 62.1 ± 38.9 21.4 ± 35.7 70.2 ± 41.9a 71.4 ± 48.8

SC (male) 37.9 ± 38.9 78.6 ± 35.7 29.7 ± 41.9a 28.6 ± 48.8

MC 56.2 ± 48.7 5.5 ± 17.3a 50.0 ± 52.7a 40.0 ± 51.6

SC (female) 43.8 ± 48.7 94.5 ± 17.3b 50.0 ± 52.7a 60.0 ± 51.6

MC (combined) 69.0 ± 36.9 18.6 ± 31.6b 78.7 ± 37.1b 75.0 ± 46.3b

SC (combined) 31.0 ± 36.9 81.4 ± 31.6a 21.3 ± 37.1a 25.0 ± 46.3a
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Table 5. Mean number of fights, mean fight duration, and mean cumulative fight duration in marbled 

crayfish (MC) P. virginalis vs. spiny-cheek crayfish (SC) F. limosus during interactions between the without 

and with shelter treatments. Different superscripts within group indicate significant differences at p < 

0.05, by sex and by combined data of the parameters between the two groups. Data are mean ± SD, *, ** 

for the combined number of fights, cumulative fight duration, and mean fight duration in a column. a, b 

for number of fights in female vs female pairs in a column. (Mann-U Whitney test to detect a) differences 

between male vs. female pairs in with and without shelter treatment in a column; b) the difference of 

the data of same sex (by male and by female) and combined data between with and without shelter 

treatment in a column).

Group Crayfish Number of fights 
Cumulative fight 
duration (s)

Mean duration/
fight (s)

Without 
shelter 

MC x SC (male) 4.6 ± 2.1 304.4 ± 215.5 71.5 ± 48.6

MC x SC (female) 2.5 ± 2.2b 160.7 ± 183.6 57.2 ± 24.2

MC x SC (combined) 3.2 ± 2.3** 195.6 ± 199.8** 68.7 ± 34.4*

With shelter 

MC x SC (male) 1.6 ± 2.4 118.1 ± 236.1 63.1 ± 38.5

MC x SC (female) 0.4 ± 0.5a 40.9 ± 46.8 102.3 ± 65.2

MC x SC (combined) 0.9 ± 1.7* 72.7 ± 157.5* 85.5 ± 55.3**

Supplementary Materials Table 1. Definitions of the events described in present study.

Event Definition

Contact
Touch with claws, body (carapace, abdomen) rather than antennae and 
antennules

Avoidance
Retreat from an approaching crayfish that has not exhibited threatening 
behaviour

Threat Approach with signs of warning-mainly raising, waving and shaking claws

Winner
The individual that did not retreat from the fight or that left the opponent that 
assumed a body down posture or remined motionless. In the very few cases 
when both individuals retreated simultaneously no winner was scored

Tail flip avoidance Avoidance with bending tail and rapid backward
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General discussion

The effects of drought on crayfish reproduction 

Crayfish have evolved to construct or use burrows not only to survive under fluctuating 
aquatic conditions, but possibly to reproduce when water is scarce. However, given the nature 
of burrowing crayfish and the challenges of conducting observations of naturally constructed 
and sealed burrows, little is known about how early life history of crayfish in burrows is 
influenced by environmental factors. My research (Chapter 2) clearly demonstrated that high 
air humidity alone is sufficient during late phases of embryogenesis, including the hatching 
period, in marbled crayfish. Importantly, the finding that juveniles could remain at Stage 2 
for 20 days under humid conditions, and resume normal development when re-immersed, 
greatly increases our understanding of species resilience in habitats with variable hydrology. 
I  speculate that such adaptation may be a characteristic of other crayfish species that have 
evolved in seasonal aquatic ecosystems.

The adaptations of crustaceans to avoid desiccation are diverse. Crayfish females, especially 
primary and secondary burrowers, often use burrows for egg incubation (Hobbs, 1942; Riek, 
1972). Females of most species tend to construct deeper burrows compared to males and 
frequently occupy the deepest parts of the burrow during egg incubation (Hazlett et al., 1974; 
Payne, 1972). Seasonal fluctuations in groundwater can influence burrow depth (Helms et 
al., 2013; Stoeckel et al., 2011). The water table may be lower than burrows in dry localities, 
as in seen those of P. clarkii, which frequently reproduce under dryconditions (McClain and 
Romaire, 2004; Souty-Grosset et al., 2014). Crayfish ability to excavate into a simulated water 
table under laboratory conditions is species-specific (Dyer et al., 2015). Crayfish of the genus 
Engaeus, which excavate burrows or chambers on slopes, often do not reach the water table 
(Horwitz and Richardson, 1986; Suter and Richardson, 1977), and water in the burrows is 
most likely present at the time of their excavation, or perhaps periodically refreshed from 
seepage or percolation from rainfall. 

Chimney-like structures built by many species of the genera Cambarus, Engaeus, and 
Geocharax (Grow, 1981; Grow and Merchant, 1980; Horwitz et al., 1985; Noro et al., 2007; 
Suter and Richardson, 1977) and closing of the burrow entrance by a mud plug, particularly 
seen in females (Barbaresi and Gherardi, 2006; Correia and Ferreira, 1995) and observed in my 
research (Chapters 3 and 4), helps maintain suitable living conditions. Estivation chambers 
to maintain humidity during drying of streambeds are built by adult Geocharax sp. (Chester 
and Robson, 2011; Strachan et al., 2014). The non-burrowing crayfish Gramastacus insolitus 
Riek, 1972 is dependent on burrows of larger crayfish species to survive seasonal drought 
(Johnston and Robson, 2009). Such behavioural adaptations highlight the importance of 
maintaining humidity to crayfish survival. 

Findings of late embryonic and early postembryonic crayfish development in the absence of 
free-standing water are particularly noteworthy for marbled crayfish, as it is a unique species 
with a high invasion potential due to its parthenogenetic mode of reproduction (Gutekunst 
et al., 2018; Scholtz et al., 2003a). Crayfish males and females are sometimes found sharing 
a burrow in sexually reproducing species (Horwitz et al., 1985; Johnston and Robson, 2009). 
However, the presence of a male in the burrow is not a necessary prerequisite for reproduction 
in burrows during drought, given that spermatophores are attached to the ventral area of 
females (in Astacidae and Parastacidae) or deposited inside the annulus ventralis (in Cambaridae 
and Cambaroididae) prior to ovulation (Albaugh, 1973; Buřič et al., 2013). It is probable that 
results of my studies utilizing marbled crayfish females with attached and developing eggs, 
are valid for sexually reproducing species. Our findings suggest that successful development 
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under drought-like conditions for marbled crayfish is primarily related to the tolerance of the 
eggs to periods without free-standing water, similar to adaptations of other drought-tolerant 
crayfish species, such as those constructing aestivation burrows (Chester and Robson, 2011; 
Strachan et al., 2014), co-opting burrows of other crayfish (Johnston and Robson, 2009), and 
digging burrows below the water level during dry seasons (Horwitz et al., 1985). Resistance 
to drought is critical to inhabiting ecosystems with high fluctuations in water level in crayfish. 

The effects of water contamination on crayfish burrowing behaviour 

The quality of surface waters plays an essential role in maintaining ecosystem biodiversity 
and function (Bakker, 2012). I chose two PhACs, methamphetamine and tramadol and two 
commonly used herbicides, terbuthylazine and metazachlor, at environmental concentrations 
to explore their possible effects on non-target organisms by studying burrowing behaviour 
of the red swamp crayfish P. clarkii. I reported for the first time that depth and volume of 
burrows constructed by methamphetamine-exposed females was significantly lower than of 
unexposed controls. Tramadol-exposed females consistently exhibited a tendency to excavate 
smaller burrows compared with controls, although this was not significant (Chapter 3). Impact 
of herbicides on burrowing behaviour was less clearly manifested, although male crayfish 
exposed to META constructed a significantly higher number of burrows than did other groups 
(Chapter 4).

The effect of the investigated contaminants may be devastating to crayfish, as the need 
for shelter is an essential life history trait (Kouba et al., 2016). Female primary and secondary 
burrowers (Hobbs, 1942; Riek, 1972) use burrows for oviposition and/or incubation. Most 
likely to maintain contact with water or remain in an environment sufficiently humid for 
successful reproduction (Chapter 2), in general, females tend to construct deeper burrows 
than do males and frequently occupy the deepest parts of the burrow during egg incubation 
(Hazlett et al., 1974; Kouba et al., 2016; Payne, 1972). This was observed in the control group 
in research reported in Chapter 3 but not in any exposure group. It was also not seen in 
the herbicide study controls, suggesting that effects of herbicide exposure might remain 
hidden due to a low number of observations (Chapter 4). The volume and depth of female 
red swamp crayfish P.  clarkii burrows relative to body size was significantly lower in the 
METH group compared with controls, but this was not observed in the TRA-exposed group 
(Chapter 3). However, metazachlor-treated males excavated a  higher number of burrows 
than did other groups (Chapter 4). This may be an anxiety behaviour (Buřič et al., 2013) 
related to stress resulting from the exposure (Ložek et al., 2019; Matozzo et al., 2004). In the 
wild, the availability of shelter and resources such as suitably moist conditions is critical to 
crayfish (Guo et al., 2019; Kouba et al., 2016), as the survival of an individual does not depend 
only on health status but also is the indirect consequence of behaviour patterns involving 
reproduction, social interaction, and decision making (Kubec et al., 2019). Considering its 
greater resistance to desiccation and superior burrowing abilities, the impact of the selected 
contaminants under severe drought on the red swamp crayfish may be more pronounced 
than on the native European noble crayfish Astacus astacus (L., 1758), narrow-claw crayfish 
Pontastacus leptodactylus s.l. (Eschscholtz, 1823), and stone crayfish Austropotamobius 
torrentium (von Paula Schrank, 1803), and on the invasive yabby Cherax destructor Clark, 
1936, spiny-cheek crayfish, and marbled crayfish (Kouba et al., 2016). 

In an earlier experiment, I found marbled crayfish to exhibit significantly lower velocity and 
move shorter distances than controls after exposure to tramadol at environmentally relevant 
concentrations (Buřič et al., 2018). Stara et al. (2016) recorded gill and hepatopancreas 
pathology, alterations in biochemical parameters of haemolymph, oxidative damage to 
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hepatopancreas, and changes in antioxidant biomarkers in muscle and hepatopancreas 
of red swamp crayfish after 14 days exposure to terbuthylazine-desethyl, a  terbuthylazine 
degradation product, at the environmental concentration of 2.9 μg/L (Stara et al., 2016). 
Differences in behaviour, including significantly lower speed and velocity compared with 
controls, as well as gill and hepatopancreas pathology, were observed in marbled crayfish 
after a 28-day exposure to S-metolachlor and its degradation product metolachlor OA at the 
environmentally relevant concentration of 4.2 μg/L (Stara et al., 2019). Significantly lower 
growth and delayed development were detected in marbled crayfish larvae exposed to 
environmentally relevant concentrations of metazachlor and metazachlor OA (Velisek et al., 
2020). Lower velocity and reduced utilization of shelter or burrows often leads to higher 
losses to predation in the wild (Holdich et al., 1999; Pecor and Hazlett, 2003; Underwood, 
2015), and unstable weather conditions associated with climate change may compound 
these effects on crayfish in the future (Cruz-McDonnell and Wolf, 2016; Kouba et al., 2016).

More than 60 PhACs have been reported in tissue of aquatic invertebrates and in some riparian 
spiders in Australia (Richmond et al., 2018). Eleven selected PhACs, including tramadol, were 
detected in liver and kidney of fish inhabiting a contaminated stream in the Czech Republic 
(Grabicova et al., 2017). Behaviour changes, including differences in velocity and distance 
moved, in shrimp, crayfish, killifish, and European perch exposed to PhACs have recently 
been reported at exposures to low and environmentally relevant concentrations (Barry, 2013; 
Brodin et al., 2013; Buřič et al., 2018; González-Ortegón et al., 2016; Hossain et al., 2019b). 
The hepatopancreas is the main organ of detoxification of xenobiotics in crustaceans (Vogt, 
2002), and swimmerets on the crayfish abdomen functions in forward swimming and other 
behaviours (Mulloney and Hall, 2000). In Chapter 4, the concentration of selected herbicides 
found in hepatopancreas and abdomen of both control and exposed crayfish were below the 
limits of quantification. Reports of analyses of herbicide accumulation in hepatopancreas and 
abdomen of crayfish are scarce; however, a significant increase in heart rate was observed 
in signal crayfish Pacifastacus leniusculus Dana, 1852 after a  three-week exposure to an 
environmentally relevant (1 μg/L) concentration of tramadol (Ložek et al., 2019). 

The predatory European perch Perca fluviatilis (L., 1758) became more active after preying 
on the invertebrate Coenagrion hastulatum (Charpentier, 1825) contaminated with the 
psychoactive drug, benzodiazepine (Brodin et al., 2014). 

Emerging contaminants and micro-pollutants comprise a  vast and expanding array of 
anthropogenic compounds that are commonly present in water but have only recently been 
identified as significant water pollutants (Gomes et al., 2018). These contaminants contain 
a variety of synthetic compounds extensively used in cosmetics, pesticides, pharmaceuticals, 
and personal care products (Luo et al., 2014) that are widely considered indispensable to 
modern society. Environmental concentrations may increase during drought because of 
reduced dilution of treated waste waters (K’Oreje et al., 2018) or sorption into sediment 
(Aljeboree and Alshirifi, 2018), resulting in severe impact on non-target organisms. 

Except for the effects of water comtaminations of the burrrowing behaviour in freshwater 
crayfish, their agonsitic behaviour may be also affected by comtaminants like herbiciedes. For 
example, metolachlor may be interfering with the ability of crayfish to receive or respond to 
social signals and thus affect certain agonistic behaviors (Cook and Moore, 2008). In crayfish, 
these social signals are important in establishing dominance, which in turn has an impact on 
an individual’s ability to find and use mates, food, and habitat space like shelter, which also 
reflected in Chapter 5 and Chapter 6. 
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Competition for shelter in crayfish

Crayfish need to leave shelter for foraging, migration, and mating. Understanding 
displacement mechanisms of invasive species can predict their range expansion. Along with 
investigation into ecological strategies and adaptability (Holdich et al., 2009; Lindqvist and 
Huner, 1999), the potential success of an invader may be assessed through agonistic behaviour 
during interspecific interactions (Gherardi, 2002; Hudina et al., 2016). In crayfish, aggressive 
behaviour against heterospecifics is a major trait influencing their invasion potential (Capelli 
and Munjal, 1982; Usio et al., 2001) that can be used to estimate the ecological consequences 
of interactions of species sharing a  similar niche (Church et al., 2017). My research found 
marbled crayfish to dominate size-matched calico crayfish (Chapter 5) and spiny-cheek 
crayfish (Chapter 6) in agonistic encounters. The higher activity and aggressiveness of 
marbled crayfish could facilitate displacement of other non-indigenous crayfish species 
either by direct interaction or through competition for resources such as shelter and food. 
The marbled crayfish has been reported to be less successful in agonistic interactions with 
similar-sized signal crayfish and the common yabby (Fořt et al., 2019), suggesting species-
specific dynamics at play in the encounters. In spite of its calm disposition during interactions 
with conspecifics (Kawai et al., 2016), marbled crayfish showed competitiveness against wild 
spiny-cheek crayfish (Linzmaier et al., 2018) as well as against red swamp crayfish, the most 
successful introduced crayfish species worldwide (Hossain et al., 2019c; Jimenez and Faulkes, 
2011).

Aggressive behaviour has ecological consequences, even when two phylogenetically 
unrelated species interact in a functionally similar niche (Church et al., 2017). Current dispersion 
of marbled crayfish in natural waters worldwide amplifies the importance of assessing its 
invasiveness and competitiveness with respect to established widespread invaders (Hossain 
et al., 2018; Kawai et al., 2016). Eviction from refuge during aggressive interactions makes 
a crayfish vulnerable to predation (Garvey et al., 1994; Hill and Lodge, 1994; Söderbäck, 1994). 
Although no significant difference in shelter occupancy was found between size-matched 
specimens, the rate of marbled crayfish shelter occupancy dominance was higher than that 
of spiny-cheek crayfish (Chapter 6). This suggests that essential resources such as shelter will 
be more frequently appropriated by marbled crayfish when these species co-occur (Linzmaier 
et al., 2018). The calico crayfish has been demonstrated to be dominant over the spiny-cheek 
crayfish in competition for shelter, contributing to the displacement of the latter (Chucholl et 
al., 2008). In a shelter-behaviour study of marbled and spiny cheek crayfish (Chapter 6) any 
crayfish within a shelter was invariably forced out by a size-matched opponent, suggesting 
that the availability of shelter is critical to both species. 

The marbled crayfish success in competition for shelter against the spiny-cheek might lead 
to higher mortality of the latter in natural conditions due to predation. Spiny-cheek crayfish 
excavate simple shallow burrows at the shoreline of lakes and ponds and along river banks 
(Hamr, 2002; Statzner et al., 2000). Marbled crayfish are reported to construct larger and 
deeper burrows than spiny-cheek crayfish when faced with drought (Kouba et al., 2016) 
and, hence, could be a  strong competitor against the spiny-cheek crayfish under natural 
conditions. Laboratory results might not accurately reflect behaviour under natural conditions, 
and differences from field conditions have been reported: Linzmaier et al. (2018) found that 
wild marbled crayfish were less active than aquarium-reared during agonistic interactions 
with spiny-cheek crayfish. Nevertheless, results of agonistic interactions between crayfish in 
laboratory trials have been found to be consistent with combat dynamics and replacement 
patterns observed in the field (Davis and Huber, 2007; Vorburger and Ribi, 1999).
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Considerable influence of sex on crayfish behaviour was also found (Chapter 6). Marbled 
crayfish showed significantly lower levels of avoidance behaviour during interactions in the 
presence of shelter than observed in female spiny-cheek crayfish. The marbled crayfish also 
initiated a  significantly greater number of fights than female spiny-cheek crayfish in the 
absence of shelter. Marbled crayfish established significantly greater dominance over female 
spiny-cheek crayfish regardless of shelter availability, but that was not true in encounters 
with males. Lack of sexual dimorphism (Buřič et al., 2010a; Buřič et al., 2010b) of marbled 
crayfish P. virginalis most likely contributed to the more equal combat between sexes and this 
was also reflected in the longer duration of combat in marbled crayfish vs. male spiny-cheek 
crayfish encounters. Linzmaier et al. (2018) concluded that the female-only characteristic 
of marbled crayfish does not constrain its ability to prevail in agonistic encounters against 
another species. Our results and the cited studies demonstrate that marbled crayfish are 
competitive in fights with males of other species, and dominate over their females. 

The distribution of marbled crayfish in natural waters may expand rapidly (Andriantsoa et al., 
2019). In addition to direct aggressive interactions, factors potentially affecting displacement 
include responses to predation (Hazlett, 2003; Söderbäck, 1994), interference with mating 
(Butler and Stein, 1985), hybridization (Perry et al., 2001), and life history traits (Hamr, 2002). 
The marbled crayfish is a unique species with a high invasion potential, especially due to its 
parthenogenetic mode of reproduction (Gutekunst et al., 2018; Scholtz et al., 2003b), high 
fecundity (Lipták et al., 2017), early maturation (Hossain et al., 2019a; Seitz et al., 2005), 
potential for year-round reproduction (Seitz et al., 2005; Vogt et al., 2004), and tolerance 
to a broad range of food sources and habitats (Lipták et al., 2019). Our results suggest that 
marbled crayfish would be successful in agonistic encounters with calico crayfish (Chapter 5), 
spiny-cheek crayfish (Chapter 6), and red swamp crayfish (Hossain et al., 2019c; Jimenez and 
Faulkes, 2011), but the situation may be modified by life history traits, behavioural plasticity 
(Reisinger et al., 2017), and adaptability to environmental and anthropogenic factors. 
Therefore, more research is needed to understand the complex mechanisms operating in 
invaded regions at community and ecosystem levels. 

Conclusions

This thesis incorporates results of five studies investigating egg incubation and early 
postembryonic development in the marbled crayfish in high air humidity; the effects of selected 
psychoactive compounds and herbicides in water at environmentally relevant concentrations 
on the burrowing behaviour of the red swamp crayfish; and the direct interactions and 
competition for shelter of marbled crayfish vs. spiny-cheek and calico crayfish.

 
The main conclusions drawn from these studies are:
1.	 Marbled crayfish can complete final phases of embryogenesis, including hatching, as 

well as early postembryonic development in high air humidity alone. Juveniles can 
remain at stage 2 for as long as 20 days on average under humid conditions, resuming 
development when re-immersed. This trait enables marbled crayfish to occupy a wide 
range of habitats that experience water scarcity and might be unsuitable for other, less 
adapted crayfish species as well as other aquatic taxa.

2.	 Exposure to PhACs at environmentally relevant concentrations is associated with atypical 
burrowing behaviour in red swamp crayfish, with methamphetamine-exposed females 
excavating burrows reduced in both depth and volume. Tramadol exposure of females 
may also result in their digging smaller burrows. Burrow size can be critical to survival of 
the individual and of the community through consequences to reproduction. 
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3.	 Exposure to the herbicides terbuthylazine and metazachlor at environmentally relevant 
concentrations does not appear to exert a  major influence on the burrowing of red 
swamp crayfish, although it may be associated with stress-induced hyper-activity.

4.	 Sex and resource availability may influence agonistic behaviour in crayfish. Marbled 
crayfish are equal to or superior in competition with the calico crayfish, which is, in 
turn, dominant over the serious invader, the spiny-cheek crayfish. This suggests that 
the marbled crayfish may out-compete incumbent NICS for food, shelter, and other 
resources in natural habitats.

5. The predisposition to compete for shelter does not differ in marbled and spiny-cheek 
crayfish irrespective of spiny-cheek sex, but marbled crayfish are generally dominant 
in interactions with female spiny-cheek crayfish, suggesting the potential for their 
replacement in the wild. 
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English summary

Burrowing behaviour in crayfish

Wei Guo

A key survival trait of crayfish is the ability to find shelter or excavate a burrow to provide 
protection against predators and refuge from environmental extremes. They also use these 
refuges as a source of water or cover during moulting, oviposition, and egg incubation, as well 
as protection of offspring. Shelters or burrows are therefore critical to crayfish survival, and 
their unavailability is the principle bottleneck in crayfish population.

This study revealed the ability of marbled crayfish to undergo final phases of embryogenesis, 
including hatching, and early postembryonic development in high air humidity alone. 
Importantly, our finding that juveniles were able to remain at Stage 2 for a prolonged duration 
under humid conditions, and resume normal development when re-immersed, greatly 
increases our knowledge of this species’ resilience in habitats with variable hydrology. A similar 
ability to tolerate and reproduce during drought is expected to occur in other crayfish species 
classified as primary burrowers and some secondary burrowers, especially the highly invasive 
red swamp crayfish Procambarus clarkii. This unprecedented life history trait in crayfish is likely 
crucial for inhabiting ecosystems with highly fluctuating water levels or periods of drought. 
In the context of biological invasions, the adaptations to drought will potentially contribute 
to species displacement, favouring species that are better adapted to such environmental 
conditions (Chapter 2). 

In addition to extreme climate conditions, water pollution is considered among the most 
important drivers of global biodiversity decline, with frequent incidents of contamination and 
deterioration of water quality impacting aquatic ecosystems. Atypical burrowing behaviour 
of crayfish exposed to pharmaceutically active compounds (PhAC) at an environmentally 
relevant concentration was documented for the first time, results that might be applicable 
to other aquatic organisms. Notably, the depth and volume of burrows constructed by 
methamphetamine-exposed females were significantly lower compared to controls. Tramadol-
exposed females also consistently exhibited a tendency to dig smaller burrows although this 
was not significant. The role of surface waters for human use in agriculture, aquaculture, and 
domestic water  is critical, and the potential impact of PhACs on freshwater biodiversity should 
not be ignored. The effects of environmentally relevant concentrations of selected PhACs 
were evident when tested as single compounds (Chapter 3). Selected herbicides (Chapter 
4), terbuthylazine and metazachlor, at environmentally relevant concentrations did not show 
a demonstrable effect on crayfish, with the exception of the significantly higher number of 
burrows excavated by metazachlor-exposed males compared to other groups. A similar stress 
response to aquatic contamination might be expected in other hyporheic-dwelling aquatic 
biota such as unionid mussels, clams, and a wide range of aquatic insects. Based on results of 
these studies (Chapters 2, 3, and 4), we suggest that sublethal effect of PhACs, herbicides, 
and other aquatic contaminants including chemical fertilizers, detergents, petrochemicals, 
and plastics on non-target organisms should be investigated. The potential adverse effects 
of herbicides at environmental concentrations calls for further research, and should be an 
obligatory part of the herbicide registration process.

In addition to water pollution and extreme weather conditions, freshwater biodiversity is 
threatened globally with biological invasions, and increasing attention is focused on invaded 
ecosystems. Behaviour plasticity of crayfish is a  key factor behind co-existence with, or 
replacement of, native species by invaders sharing overlapping niches. The marbled crayfish 
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P. virginalis is able to dominate size-matched established non-native calico crayfish Faxonius 
immunis (Chapter 5), spiny-cheek crayfish Faxonius limosus (Chapter 6), and red swamp 
crayfish P. clarkii, suggesting the potential of marbled crayfish to replace these species in 
the wild. Further research is needed to elucidate mechanisms of marbled crayfish invasion at 
community and ecosystem levels.

These data represent basic scientific information valuable for practical application. The 
outcomes of interactions among crayfish under laboratory conditions can be critical to 
evaluating over-invaded communities and ecosystems harbouring invasive species that share 
similar life histories, niche preference, and adaptation strategies.
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Czech summary

Norovací chování u raků

Wei Guo

Pro sladkovodní druhy raků je schopnost tvorby nor nebo nalezení vhodného úkrytu jedním 
z nejdůležitějších faktorů zajišťujících jejich přežití. Nory a úkryty poskytují řadu dalších funkcí, 
jako je ochrana před predátory a ochrana před extrémními podmínkami prostředí. Tato útočiště 
také používají jako zdroj vody nebo úkryt při svlékání, kladení a  inkubaci vajíček, stejně tak 
i při ochraně potomků. Úkryty nebo nory jsou proto často důležité pro přežití raků a  jejich 
dostupnost patří k limitujícím faktorům račích populací.

Naše studie odhalila schopnost raků mramorovaných P. virginalis podstoupit terminální fáze 
embryogeneze, včetně líhnutí a  také raný postembryonální vývoj pouze při vysoké vlhkosti 
vzduchu. Důležité je naše zjištění, že juvenilové ve 2. vývojovém stadiu byli ve vlhku schopni 
dlouhodobě přežívat a při vysazení zpět do vodního prostředí normálně pokračovali ve svém 
vývoji. Tyto skutečnosti výrazně zvyšují naše chápání odolnosti tohoto druhu v  lokalitách 
s  proměnlivými hydrologickými podmínkami. Podobné  schopnosti tolerance a  reprodukce 
během sucha můžeme očekávat i  u  jiných druhů raků, jako jsou primárně a  sekundárně 
norující druhy, ale třeba i vysoce invazivní rak červený P. clarkii. Tato bezprecedentní vlastnost 
sladkovodních raků je pravděpodobně klíčovým faktorem pro obývání ekosystémů s vysokými 
výkyvy hladiny vody a  během období extrémního sucha. V  kontextu biologických invazí 
bude úroveň těchto adaptací pravděpodobně také přispívat k nahrazování některých druhů 
a zvýhodnění těch, které jsou lépe přizpůsobeny takovým podmínkám prostředí (kapitola 2).

Kromě extrémních výkyvů počasí, jako jsou dlouhodobá období sucha, je znečištění vody 
považováno za  jeden z  nejdůležitějších faktorů poklesu globální biodiverzity, s  častými 
incidenty znečištění a  zhoršení kvality vody s  dopady na  vodní ekosystémy. Poprvé jsme 
popsali rozdíly v chování při norování sladkovodních raků vystavených působení farmaceuticky 
aktivních sloučenin (PhACs) v  koncentracích relevantních pro životní prostředí, což je 
aplikovatelné i pro jiné vodní organizmy. Zejména relativní hloubka a objem nor vybudovaných 
samicemi vystavenými methamphetaminu byla ve  srovnání s  kontrolami průkazně nižší. 
Samice exponované v  tramadolu konzistentně vykazovaly tendenci k menším norám, rozdíl 
však nebyl průkazný. Vzhledem k  rozhodující úloze povrchových vod pro lidské použití 
v  zemědělství, akvakultuře a  domácímu použití by se neměl ignorovat potenciální dopad 
PhACs na  sladkovodní biodiverzitu. Účinky vybraných PhACs v  relevantních koncentracích 
pro životní prostředí jsou evidentní při testování jednotlivých sloučenin (kapitola 3). 
Účinek vybraných herbicidů terbuthylazinu a  metazachloru v  environmentálně relevantních 
koncentracích se u  sladkovodních raků projevoval méně (kapitola 4). Zjistili jsme však, že 
počet nor vybudovaných samci exponovaných v  metazachloru byl signifikantně vyšší než 
v jiných skupinách. V případě studií norovacího chování u raků je rozhodující dostatečný počet 
opakování s ohledem na značnou variabilitu individuálních odpovědí. Na základě modelové 
skupiny raků lze podobný způsob stresové reakce na kontaminaci vodního prostředí očekávat 
i  u  jiných vodních organizmů potenciálně využívajících i  hlubší vrstvy dna (hyporeál), jako 
jsou mlži a  mnoho druhů vodního hmyzu. Na  základě výsledků v  této a  dalších studiích 
(kapitola 2) navrhujeme, aby bylo subletálním účinkům PhAC, herbicidů a dalších kontamintů 
na necílové vodní organizmy věnováno více pozornosti. Potenciální nepříznivý účinek herbicidů 
v environmentálně relevantních koncentracích vyžaduje další výzkum a také jejich odpovědné 
vypoužívání. Hodnocení těchto účinků by mělo být součástí jejich registračního procesu.
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Czech summary

Kromě znečištění vody a  extrémních výkyvů počasí je globálně ohrožena sladkovodní 
biodiverzita také biologickými invazemi, což zvyšuje pozornost věnovanou invadovaným 
ekosystémům. Plastičnost chování raků je klíčovým faktorem koexistence nebo nahrazení 
původních druhů druhy invazivními, jež sdílejí ekologické niky. Rak mramorovaný je schopen 
vytlačit stejně velké raky kalikové F. immunis (kapitola 5), raky pruhované F. limosus (kapitola 
6) a  raky červené, což naznačuje možnost druhových změn ve volné přírodě. Další výzkum 
je nutný k pochopení mechanizmů invaze raka mramorovaného jak na úrovni komunity, tak 
i celých ekosystémů. 

Prezentovaná data představují zajímavý pohled jak z vědeckého hlediska, tak i pro praktické 
využití. Například výsledky interakcí mezi zmiňovanými druhy raků v laboratorních podmínkách 
mohou být použity například jako pontenciální důkaz při hodnocení napadených komunit 
a  ekosystémů invazivními druhy sdílejícími podobné životní historie, preference ekologické 
niky a adaptační strategie.
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