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Vyhodnocení kvality řečového signálu bez
reference

Abstrakt

Tato bakalářská práce se zabývá odhadem metrik pro kvalitu
řečového signálu bez reference. Odhad je založen na realných dat-
ech a je postaven na vytvoření neuronové sítě. Konkrétně odhadu-
jeme odstup signálu od šumu, čas dozvuku T60 a srozumitelnost
řeči metrikou STOI (Short-Time Objective Intelligibility). Práce
porovnává odhad těchto metrik s a bez reference. Model je testován
na různých datových sadách a je diskutována přesnost odhadu.
Odhad kvality řečového signálu bez reference umožňuje přenést
měření kvality řečového signálu do praktických situací mimo umělé
laboratorní podmínky.
Klíčová slova: odhad metrik bez reference, kvalita řeči, neuronové
sítě, zpracování signálu, metriky kvality

Non-intrusive speech quality assessment

Abstract

This bachelor thesis deals with the estimation of metrics for speech
signal quality without reference. Estimation is based on real data
and implemented through a neural network. Specifically, we es-
timate signal-to-noise ratio, T60 reverberation time, and speech
intelligibility using the STOI (Short-Time Objective Intelligibility)
metric. The work compares estimation of the metrics with and
without reference. The model is tested on different datasets, and
the estimation accuracy is discussed. The estimation of speech sig-
nal quality without reference enables to transfer the measurement
of speech signal quality to practical situations outside artificial lab-
oratory conditions.
Keywords: estimation of metrics without reference, speech qual-
ity, neural networks, signal processing, quality metrics
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1 Introduction and motivation

The world has changed quickly; people become surrounded by more than just com-
puters. Today, artificial intelligence does not just imitate human thinking—it ex-
pands its capabilities. It analyses problems and comes up with a solution that a
person could offer. Thanks to artificial intelligence, previously time-consuming and
challenging tasks have been accelerated and simplified. This has its positive and neg-
ative sides, let me focus on the positive ones mainly in this work. The importance
of audio signals cannot be overestimated — they inform about the world around,
provide entertainment, provide security, and help with communication. The variety
of sounds encounter daily needs complex processing to get helpful information and
filter out the noise.

A signal is a function of one or more independent variables. Digital signal pro-
cessing (DSP) is a way of processing signals with a representation of a sequence
of numbers based on digital methods using digital computing technology. DSP
prefabricated concept for rearranging signals using operations such as analysing,
processing, modifying and synthesising to improve their usefulness. The frequent
tasks of audio processing are for example speech recognition, which aims to tran-
scribe speech recording into text or event detection, which aims to find some es-
sential sounds such as a siren or a gun shot. In the context of speech processing,
it is useful to evaluate the quality of the signal. Processing of undistorted signals
provides higher confidence about the results and might decrease complexity/cost
of any involved algorithms. The algorithmic evaluation of speech quality is carried
out through metrics such as Signal-to-Noise Ratio (SNR), Intelligibility of Speech
recognition (STOI) and reverberation level (T60).

Traditionally, these metrics require a reference undistorted speech. This signal
is used to compare and estimate distortion in the processed audio. In practice, a
reference signal is often unavailable, which limits these metrics usability to labora-
tory conditions where artificial mixtures of sounds can be accurately controlled and
reproduced. Moreover, non-intrusive solution does not require a reference signal,
so it is independent on artificial and laboratory-created signals. The creation and
subsequent expansion of neural network-based estimator may facilitate evaluation
of speech signals under wide range of conditions.

The absence of a reference signal offers both challenges and opportunities. The
obvious benefit is the cessation of dependence on practically unavailable speech and
noise components, which will help to increase the usage of these metrics in practical
applications. The lack of reference signals means that the quality of system will
depend on an initial set of training and evaluation data - the vulnerability of the
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data in training may lead to a tendency to estimate metrics in practice incorrectly.
In the first section of work, there is a discussion about the used metrics from

the general point of view and comparison of intrusive and non-intrusive methods
for their measurement. It also includes briefly discussion about existing methods
for non-intrusive metric estimation and introduce the solution. The second section
describes augmentation of training data for chosen data-driven solution and proposes
the network architecture of the estimator. The third part of the thesis describes
origin of the speech and noise data used, design of the experiments and methods
and metrics used for their evaluation. The fourth part concludes the thesis.

1.1 Metrics
• SNR

Signal-to-noise Ratio is an objective measure for speech quality assessment in
noisy conditions. It is an objective measure, which does not take any human
perception into consideration. This dimensionless value is equal to the ratio of
the useful signal power to the noise power. We measure and know the signal
x, which consists of the (in practice unknown) components s and v according
to the formula x = s + v, where s is the useful speech signal and v is the
unwanted noise.
Based on these components SNR is calculated by the following formula:

S = 10 · log10
σ2
s

σ2
v

, (1.1)

where σ2
s is an average useful signal power, σ2

v is an average noise signal power.
In this form it is expressed in decibels.
It’s important to mention that that the aforementioned components are avail-
able only under laboratory conditions. In practical applications, the compo-
nents are unavailable and must be estimated.

• STOI Short-Time Objective Intelligibility (STOI) is an objective metric for
measuring speech quality under noisy and reverberant conditions. It approxi-
mate speech intelligibility. It attempts to compare clean and distorted/noisy
speech signal and quantifies their similarity into range 0 to 1. High STOI
corresponds to intelligible undistorted speech signal and vice versa.
The computation of STOI is based on the following steps [1]. The analysed
speech is first decomponsed into DFT-based one-third octave bands. The next
step is to compare the short-time (384 ms) temporal envelope segments of the
clean and degraded speech using a correlation coefficient. Before compari-
son, the short-time envelopes of the degraded speech are first normalised and
clipped. These short-time intermediate measures of speech intelligibility are
then averaged to produce a scalar value that is expected to have a monotoni-
cally increasing relationship with the intelligibility of the speech.
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• T60 Metric T60 is a measurement of reverberation. Reverberation is the con-
tinuation of sound in a space after a sound source has stopped due to reflected
sound waves mixing with the direct sound. High reverberation interferes with
speech intelligibility and clarity in speech processing. The amount of rever-
beration is generally quantified using Reverberation Time, which is the time
it takes for the sound to decrease by 60 dB after the sound activity stopped.
It is affected by [2] the room size, the total surface area, and the type of ma-
terials on these surfaces. Soft, rough materials absorb sound better, reducing
reverberation time and making speech clearer.
The effect of reverberation is not only due to its attenuation of sound. It
also modifies temporal and spectral characteristics of speech, which causes
problems with performance in a reverberant environment when using speech
recognition systems or hearing aids. The understanding and adaptation to
reverberation are necessary to improve speech procession.

1.2 Intrusive vs non intrusive assessments
Intrusive assessments [3] involve a direct interaction with the system by introduc-
ing a known reference signal alongside the test signal. It allows a detailed analysis
of the sound quality through direct comparisons. This method calculates a distance
between the clean (reference) and the contaminated (test) signals to estimate sound
quality. The calculation can be objective as in the case of SNR, or perceptual as
in the case of STOI. The accuracy of intrusive methods generally achieves higher
correlation with subjective evaluations due to the availability of the reference signal,
which provides a direct measure against distortions, noise, and other degradation.
However, this approach requires access to original, undistorted signals, which are
not usually available, thus limiting its application in real-world environments.

Non intrusive assessment [3] does not interact directly with the system or the
signals being evaluated. Instead, it relies on the analysis of the contaminated signal
alone. This method employs advanced algorithms and models, such as neural net-
works, to predict the quality of speech without the need of a reference signal. For
instance, the ITU-T Recommendation P.563 [4] outlines a standard for non-intrusive
perceptual speech quality assessment, which is designed for practical applications
where direct signal comparison is not feasible. Non-intrusive methods are partic-
ularly beneficial in situations where continuous system operation is critical, such
as in real-time communication and network monitoring, offering a balance between
performance and practicality without the disruption of the system functioning.

1.3 Research of competing methods
Non-intrusive estimation of signal-to-noise ratio, speech intelligibility, and reverber-
ation time are important for systems where the undistorted signal is unavailable.
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Over the years, various methodologies have been explored, each with its own as-
sumptions and computational bases.

Historical Approaches Let me focus on historical SNR estimation. Conventional
methods are based on statistical models of speech and noise components. For ex-
ample WADA-SNR method [5] (the Waveform Amplitude Distribution Analysis),
bases its calculations on the waveform amplitude distribution analysis. It assumes
that the amplitude distribution of clean speech can be approximated by a Gamma
distribution, which contrasts with the Gaussian assumption about background noise.

Modern Approaches In contrast, modern approaches increasingly leverage neural
networks because they can model complex non-linear relationships without explicit
programming for specific noise types. For instance, convolutional neural networks
(CNNs) have been utilised effectively for non-intrusive speech intelligibility predic-
tion, showcasing their robustness across varying acoustic conditions [6].

Non-intrusive methods have been developed also for the assessment of reverber-
ation through T60. One approach to blind T60 estimation [7] involves model-based
methods that utilise statistical models of signal decay to estimate the reverbera-
tion time. These methods typically identify speech decay intervals during silent
pauses and employ algorithms to estimate the decay rates, which are then used to
calculate T60. The maximum likelihood (ML) estimators represent a significant
advancement, balancing estimation accuracy and computational efficiency. These
estimators operate by fitting a model decay to the observed speech signal.

Recurrent and Attention Networks Most recent advancements in neural ap-
proaches include recurrent (RNNs) and attention networks. In addition to con-
volutional networks, which often work in short-time frequency domains, the RNNs
allow processing of speech in time-domain or some combination of approaches.

Recently, the STOI-Net [8] model effectively works without needing a clean
speech reference. This model integrates a convolutional neural network (CNN)
and bidirectional long short-term memory (BLSTM) with a multiplicative attention
mechanism. It performs exceptionally well in real-world conditions where the orig-
inal, undistorted speech is inaccessible, making it highly relevant for non-intrusive
settings. The model effectiveness is demonstrated through its high correlation val-
ues of 97% and 83% for seen and unseen test conditions, respectively, showcasing
its robustness and adaptability across different noise environments.

Moreover, attention mechanisms have changed how models handle sequence-to-
sequence tasks. Self-attention allows the model to weigh the importance of different
words in a sentence irrespective of their positional distance from each other, en-
hancing the model ability to focus on relevant parts of the input sequence when
performing tasks like speech recognition. This capability could improve the predic-
tion of temporal patterns in speech signals.

15



1.4 Formal description of the problem
This thesis mainly focuses on developing a reliable estimator for non-intrusive speech
quality assessment. This will be done experimentally, generating various datasets to
simulate noise and reverberation conditions as described in the introductory sections
of this thesis. These datasets will be used to train and validate models, which will
predict SNR, STOI, and T60 metrics without reference signals.

The task was formulated as a regression problem, i.e., the model attempts to
estimate a precise value of the metrics. Additionally, to analyse the structure of
errors, the evaluation of the models from the classification perspective was also
done. It was measured, whether the model does not confuse undistorted and highly
distorted cases.
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2 Solution description

2.1 Preparation of data
Data were prepared artificially, applying augmentation to clean speech signals. For
signal-to-noise ratio prediction, noised signals with different SNR levels were es-
sential. The Noisy scenario was prepared by combining clean speech with noise
components. Similarly, the Reverberated and Combined scenarios were prepared
using artificial impulse responses and noised components. The Combined scenario
included the noised and reverberated transformations.

It is also essential to highlight that, the ”standard form of the signal” refers to
a signal normalised to have a zero mean and unit variance.

2.1.1 Metrics calculation
SNR calculation

To calculate the SNR metric, it is important to know which part of the signal is of
interest and which is unwanted.

The global SNR is calculated for the whole signal:

SNR = 10 · log10
σ2
s

σ2
v

, (2.1)

where σ2
s is the average signal power and σ2

v is the average noise power, SNR is
a global SNR value.

The local SNR reference values for each second of the signal were calculated
according to the formula:

SNRi = 10 · log10
∑K

k=1 s
2
i,k∑K

k=1 v
2
i,k

, (2.2)

where SNRi is the local SNR value, K is the signal length in seconds, k is the
number of sample, i is a segment index, s is the speech signal and v is the added
noise signal.

STOI calculation

To assess the STOI metric, it’s essential to differentiate between the intelligible part
of the speech and the portions that don’t contribute to understanding. Working with
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the speech signal x, which is a mix of the components (in practice are unknown, and
it has to be estimated somehow): s is an articulate speech and v are background
elements following the equation x = s + v, where s represents the clear speech
component, and v denotes the inarticulate or background noise. In thesis these
components were used to calculate the STOI metric using the py.stoi library [9].

T60 calculation

To compute the T60 metric, which estimates the reverberation time, it was anal-
ysed how the sound persists in the environment after the source has stopped. The
reverberation time, T60 is theoretically defined [2] by the time it takes for the sound
to decay by 60 dB from its initial level.

Figure 2.1 shows the scheme of decay of sound.

Figure 2.1: Decay of sound [10]

In 1898, Wallace C. Sabine (Sabin) developed the reverb time formula, which
remains unchanged and in constant use today.

RT60 =
k · V
A

=
0.161 · V

A
, (2.3)

where RT60 is the reverberation time, k is the factor calculated as 24·ln10

c20
= 0.161(m),

c20 is a speed of sound is 343 m/s, V is the room volume inm3 and A is an equivalent
absorption surface or area in m2.

2.1.2 Noisy scenario augmentation
The augmentation of data for Noisy scenario was carried out using the algorithm
described in this section. For Noisy scenario, noise with varying loudness to speech
was artificially added. This simulates noisy signals with varying SNR/STOI levels.
MATLAB was used for writing the programme, which created the noisy mixtures
and their labels.
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• Signal normalisation: take the original clean signal and normalise it to
bring it to a standard form.

• Noise generation: the length of the original signal is almost always longer
than the length of the noise, so several noises are concatenated to achieve
equal sizes of the original signal and the combined noise. Each noise was also
normalised before processing.

• Calculating the coefficient z: for the combination of the original clean
signal and the noise mixture, a coefficient z is calculated based on the desired
level of global SNR that will be used to amplify or suppress the noise.
Since the dataset will be created with the addition of background noises, the
following formula will be used to calculate the noise gain coefficient according
to the desired level of global SNR after combining the clean and noise signals.

z = 10
−S
20 ·

√∑K
k=1 s

2
k∑K

k=1 v
2
k

, (2.4)

where z is the resulting noise multiplier, S is the desired SNR level of the
resulting signal, K is the signal length, s is the signal with speech, and v is
the signal with noise to be added.

• Modify and store signals: each noise component is multiplied by the ap-
propriate coefficient and added to the original speech component. Separately
created noise combinations are also saved.

• Calculation of local SNR values: local SNR values are calculated for each
second of the signal mixture using the formula for local SNR metric calculation
from the (2.2) equation.

• Calculation of local STOI values: local STOI values for each second of
the signal are calculated separately. The script in the Python programming
language using the pystoi.stoi [9] library was written for this process.

2.1.3 Reverberated scenario augmentation
The augmentation of data for Reverberated scenario was done using the algorithm
described in this section. The reverberation is simulated through convolution of the
speech component and the room impulse response (RIR).

• Room Impulse Response (RIR) is a recording of the acoustic characteris-
tics of a space that captures how sound reflects off surfaces and objects within
the room. While it is possible to use measured impulse responses that capture
the acoustic properties of actual rooms, impulse responses for this study are
generated artificially using RIR-Generator [11].
This method generates an impulse response based on the following parameters:
sound velocity in ms, sample frequency, receiver position [x, y, z] in m, source
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position [x, y, z] in m, room dimensions [x, y, z] in m. Figure 2.2 shows a
scheme of the simulated room from the top.
The source position was calculated based on the required distance of the source
from the receiver and the angle at which it would be positioned. Also the
required level of the T60 metric was used as input to RIR generator function.
In determining the location of the sound source, its x and y coordinates were
calculated. The sound source is assumed to lie on a circle with a certain dis-
tance, d, from a reference point and at an angle, α, relative to the room axis.
The coordinates are then found using basic trigonometric relations: for the
x coordinate, it is used x = d cos(α) and for the y coordinate, y = d sin(α).
This approach translates the position of the sound source into a more straight-
forward geometric problem, leveraging the circle radius for distance and the
angle for directional orientation.

Figure 2.2: Layout of the virtual room used for artificial impulse response generation

• Signal normalisation: Take the original clean signal and normalise it to
bring it to a standard form.

• Signal filtration: The convolution of the clean speech signal with the RIR
simulates the reverberation. A script was written in MATLAB programming
language to filter the clean signal by impulse response. The filter function
combines the clean speech signal with the impulse response to model the time
for sounds to bounce around the room and create echoes.

• Calculation of T60 values: T60 metric did not require additional calcula-
tion. The reference values are the same in every second of the signal and are
equal to T60 values used when generating the RIRs.

• Calculation of local STOI values: Local STOI values for each second of
the signal were calculated separately. A script in the Python programming
language using the pystoi.stoi [9] library was written for this process.
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2.1.4 Combined scenario augmentation
The augmentation of data for Combined scenario was done by applying noise to the
previously reverberated signal. This process effectively simulates environments with
both noise and reverberation, making the data realistic for testing speech processing
algorithms, where both noise and reverberation are present. The methodology for
augmenting builds on the techniques detailed in the Noisy scenario augmentation
and the Reverberated scenario augmentation.

• Reverberation addition: Reverberation was applied using augmentation of
the the clean signal from Section 2.1.3.

• Noise addition: Each reverberated signal is then noised using augmentation
of noisy scenario (see Section 2.1.2). This involves: noise generation, coefficient
calculation and signal combination.

• Clone T60 Metrics: Reverberation is unaffected by addition of the noise,
thus the references are duplicated.

• Calculate Local SNR: The local SNR values for each second of the noise-
added reverberated signal mixture are calculated using the equation (2.2) for
local SNR calculation.

• New STOI Calculation: Values are computed to reflect the intelligibility
of the combined noise and reverberation signal. The reference values of STOI
are computed using the original speech component (without reverberation)
and the mixture containing both noise and reverberation.

2.1.5 Spectrogram
Sound is often analysed in the short-term frequency domain, thus using a spectro-
gram. A Mel spectrogram was used for reduction of dimensionality, which essentially
has the same format as an image.

Mel spectrogram calculation includes next steps:

• Short-time Fourier transform (STFT): the audio signal is decomposed into its
frequency components, represented as a standard spectrogram

• Frequencies are converted to the MEL scale according to the formula

m = 2595 · log10(1 +
f

700
), (2.5)

where f is a frequency and m is a calculated MEL value.
The MEL scale assigns a higher value to low frequencies and a lower value to
high frequencies. It attempts to approximate human hearing.

• After converting frequencies to Mels, the spectrogram changes - now low fre-
quencies take up more space and high frequencies are compressed
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• In the final version of the transformed spectrogram, different frequencies are
represented by different colours, and the intensity of the colour reflects the
amplitude at the corresponding frequency

Spectrograms were generated with the following parameters: the size of fast
Fourier transform (FFT) was 512, the window size was 512, the length of hop be-
tween STFT windows was 256, the number of Mel filterbanks was 64, and the sample
rate of the audio signal was 16 kHz. Due to the unique way signals are transformed
into spectrograms, one second was calculated as 62 frames represented in the result-
ing spectrogram. The following formula was used to calculate how many samples
one second of the signal contains in the spectrogram.

d = nm · h− nf , (2.6)

where d is second length, nm is number of Mel filterbanks, h is length of hop
between STFT windows and nf is size of FFT.

The reason of consideration less frames as one second was necessary because of
movement during the creation of spectrogram. If one second would corresponded to
16000 frames, then with each movement of the spectrogram, the references would
move 256 frames away from their real positions, leading to poor network training
and performance.

2.2 Network architecture
The choice of neural network architecture was based on several points: type of
data and type of task. The input data are speech signals transformed into Mel
spectrograms. The goal is to predict the maximum possible accurate SNR, STOI
and T60 values, respectively. This is a regression task.

Figure 2.3 shows the proposed architecture for solving the metrics prediction
problem. The network design follows a hierarchical convolutional structure. The
hyperparameters build on findings from a previous project [12], optimising the net-
work to have enough parameters to learn effectively without overtraining.
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Figure 2.3: The convolutional neural network architecture [13]
where C is the count of outputs according to a specific task.

The network accepts input data of shape 100×1×64×62, where 100 represents
the batch size, and 64×62 corresponds to the dimensions of the spectrogram frames.
The initial convolutional layer comprises 64 filters, which is also the batch size,
followed by batch normalisation. Subsequent convolutional layers expand the feature
space to 128 and then 256 filters, each time applying batch normalisation and max
pooling to condense the feature maps. Global average pooling is implemented post
the final convolutional stage to prepare the data for the fully connected layers.

2.2.1 Loss Function
The mean squared error (MSE), which is the mean square of the difference between
actual and predicted values, was chosen to assess the losses qualitatively. This
indicator shows the deviation from the desired value and indicates the model current
state. MSE is not difficult to calculate, so frequent use does not slow down training.

MSE =
1

N
·

N∑
i=1

(Yi − Ŷi)
2, (2.7)

where Yi is the ith observed value, Ŷi is the corresponding predicted value and
N is the number of observations.

2.2.2 Scaling of output values
A convolutional network was chosen based on the matrix form of the spectrogram
input. Since the MSE loss function is sensitive to the difference in the range of
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individual inputs, it was necessary to normalise them. Without normalisation, only
the metric with the largest range would be trained; in this case, it would be T60. In
preprocessing phase, all the input labels were scaled to fall within the range of ⟨0, 1⟩.
SNR labels, which originally placed in an infinite range, were mapped from ⟨−∞,∞⟩
to a range of ⟨0, 1⟩ before sending it into the network. Similarly, T60 labels were
scaled down by a factor of 0.001 to ensure consistency in the range. In postrocessing
phase, the outputs were converted back to their original scales. SNR outputs were
inversely mapped to the original infinite interval and T60 outputs were multiplied
by 1,000. Unlike these metrics, the STOI metric, which is already calculated within
the required interval, was not preprocessed.

2.2.3 Optimiser and Scheduler
The Adam optimiser, with an initial learning rate of 0.0001, is employed for adjusting
the network weights. To further refine the training, a learning rate scheduler is
utilised, which reduces the learning rate when the validation loss plateaus, ensuring
steady and controlled updates to the model parameters.

The schedulers for relevant models were configured with reduction factors of
0.95 and 0.1, patiences of 3 and 12 epochs, and a threshold for measuring the new
optimum of 0.0015. The schedulers are responsible for decreasing the learning rate
when the validation loss plateaus. Due to memory constraints, the entire dataset
could not be loaded into memory at once; instead, dividing it into five parts was
necessary, with only one-fifth of the dataset being loaded at a time. Consequently,
what constitutes one training epoch in setup is equivalent to five loadings of these
dataset partitions. This approach differs with smaller datasets, where one epoch
loads the entire dataset simultaneously. This strategy was crucial to accommodate
computational resources.

2.2.4 Practical Usage
The computational experiments were conducted using remote GPUs provided by
Google Colab. The Google Colab Pro version was purchased to access enhanced
computational resources. Specifically, the models were trained on Tesla T4 GPUs
equipped with high-RAM settings, which included 51.0 GB of system RAM, 15.0
GB of GPU RAM, and 201.2 GB of disk space.

Our datasets were primarily hosted on Kaggle and Google Drive. Before pro-
cessing, the datasets were cloned into the Colab environment to ensure efficient
data handling and accessibility. This setup facilitated larger datasets that require
significant memory and processing power.

Regarding software, the project leveraged PyTorch for model development and
torchaudio for audio processing tasks. The essential Python libraries utilised in the
used scripts included:

• Visualisation: matplotlib.pyplot

24



• Google Colab specific functions: files, drive. These libraries were essential
for datasets importing to Google Colab

• PyTorch specific utilities and classes: torch was the main library, which
helped working with tensors, Dataset helped write an UploadArtificialDataset
dataset processing class. This class handles the initial data ingestion, prepares
it for model training, and facilitates retrieval of specific instances of distorted
signals for analysis. DataLoader was used for creation of UploadArtificial-
DataModule, which was responsible for loading parts of dataset

• PyTorch Lightning modules and utilities: pytorch_lightning was used
for writing LitNet class, which describes behaviour of the model,
TensorBoardLogger, ModelCheckpoint and SimpleProfiler were essential
for saving metrics while training, validation and testing the models
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3 Experiments

3.1 Datasets preparation
To train and evaluate the models, datasets had to be prepared. It was required
to test the prediction of metrics in the presence of noise, reverberation and their
combination. A corresponding dataset was created to evaluate each ability. In
addition, when evaluating the quality of the noise model, language dependency
was also evaluated. This added the creation of two additional noise datasets with
different languages from the main one.

Three datasets were created to train and evaluate prediction in noisy conditions:
English (Noisy-En), German (Noisy-Ge) and Korean (Noisy-Ko). The training, val-
idation and test parts were in the English and German datasets, and the Korean one
was used only for testing. The clean datasets were divided into training, validation,
and test parts in the ratio 88:6:6(%). The sizes of the datasets were selected to
be approximately the same for all the language variants to make the results of the
experiments comparable. It is important to note that when creating the Korean
dataset, finding high-quality, clean data was difficult, and this was the reason for
the smaller number of tested seconds in the dataset.

One dataset was created to evaluate estimation in noiseless reverberant condi-
tions (Reveb-En). See section 3.1.2 for detailed description.

One dataset was created to evaluate the estimation of SNR, STOI and T60 in
noisy reverberated conditions. This dataset will be called a Combination English
dataset; see section 3.1.3 for details.

The 3.1 table shows the size of each part of the datasets in seconds.

Table 3.1: Datasets: duration in seconds
Dataset Train Validation Test
Noisy English 1,845,414 127,902 130,812
Noisy German 1,829,796 230,088 126,642
Noisy Korean - - 77,580
Reverberated English 307,569 21,317 21,802
Combined English 1,845,414 127,902 130,812
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3.1.1 Noisy datasets
The clean speech augmentation with noise is described in section 2.1.2. The clean
speech data originates from several databases that differ in language. To each clean
file a noise was added from the DCASE [14] database from the public square and
street subparts.

The noisy English dataset (Noisy-En) utilises clean speech data from the Lib-
rispeech [15] dataset. It contains 100 hours of recordings uttered by various speakers.
Book excerpts are read by different people - the data is independent of the speaker’s
gender and age. The textual information is non-repeating. It is officially confirmed
that there is almost no noise in the data, and it can be considered as clean speech.

When creating the Noisy-En dataset, the size of the original, clean dataset was
artificially increased. The original LibreSpeech dataset was replicated six times,
where each replica corresponded to a different level of global SNR. The main idea
is for the model to see the same utterances with different noise levels, which should
simplify SNR estimation. Clean speech and noise were combined according to six
levels of global SNR: -5 dB, 0 dB, 5 dB, 10 dB, 20 dB and infinite (expressed as 50
dB due to technical reasons).

The chosen SNR levels cover many scenarios, from very noisy to noise-free envi-
ronments. By selecting a balanced range of SNR levels, there is an insurance that
the neural network is nether under-tested in overly simple scenarios nor over-tested
in excessively harsh conditions. The attention was paid to challenging noisy condi-
tions, where SNR is -5 - 0 dB, moderate conditions with 5 and 10 dB SNR, high
clarity with 20dB and ideal conditions without the addition of any noise.

Several experiments were performed to test the neural network functionality to
new data. The main and most representative test was a test on data prepared in
the same way and using the same language as the main training part - the Noisy
English test dataset. Then, two secondary experiments were prepared on datasets
created similarly but based on different languages. There is a wish to test the
language dependence of the model. Since the initial training dataset was created
with English only, it was interesting how the model performs when processing an
unseen language. The mail point was the division of the world languages into related
groups. The structure and logic of languages from the same group are close, which
means that the first test should be performed on a language belonging to the same
group as English: so choosing narrowed down the search group to 6 variants. It was
decided to test on the German dataset.

For the next experiment, a language from a very distant language group had
to be choosen, as well as one that was unique in its structure, speech nature and
patterns. According to these criteria, it was chosen from isolated languages, which
are languages that have been scientifically proven not to belong to any known lan-
guage family and thus form their own. Such languages include Sumerian, Korean
and Hadza. Korean was chosen because of its familiarity.

When creating test datasets for language dependency tests, German and Korean
open datasets were chosen. Although their quality is not as high as that of Lib-
rispeech, they could also be considered clean, which means that the tests will not
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be significantly distorted.
To create Noisy German dataset (Noisy-Ge), several clean speech datasets were

used from the HUI Audio Corpus German [16]. This dataset presents a smaller
variety of speakers. In contrast to the initial English dataset, there are only five
speakers. The complete clean dataset was compiled as a combination of the clean sets
of each speaker. The benefit of this dataset is that the speakers talk about various
topics. The final version of the prepared dataset contains training, validation and
test parts. The dataset was used to train the German language-dependent model in
section 3.4.2.

The Common Voice Korean [17] was used to create the Noisy Korean test
set (Noisy-Ko). This source cannot guarantee the clarity of the data, as anyone
can upload their audio there. Common Voice validates audio recordings before
publishing but is not responsible for their clarity. Only a test part of the dataset
was created because this dataset is only used for testing noisy models.

All tests were performed with previously unused noise instances, but the noises
originated from the same environment as in the noisy training set.

3.1.2 Reverberated dataset
The reverberated dataset (Reverb-En) was created based on the undistorted Lib-
rispeech [15] dataset. The detailed algorithm for creating the training, validation
and test part is presented in the section 2.1.3.

The size of the original clean dataset was not extended when creating Reverb-En.
Different impulse responses were generated for the training/test part of the dataset.
To generate the impulse responses, an artificial RIR generator ([11]) was used. The
free parameters of the RIR generator were set to the following values: sound velocity
was 340 m/s, the frequency was chosen the same as in the original clean files 16000
Hz, receiver position was 3x1x1.25 m, and the simulated room size was 6x6x2.5
m. Each reverberated file featured a different sound source position in the virtual
room. The source-microphone distance ranged within the interval 0.5-2.5 m with
increments of 0.25 m (i.e., 9 distances). There were 7 angular positions available,
ranging from -45◦ to 45◦ degrees with 15◦ increment. The possible positions are de-
picted in Figure 2.2. Test-generated impulse responses were generated with slightly
different conditions: receiver position was 2.5x2.5x1.25 m, the simulated room size
was 5x5x3 m, and distances were from 1 m to 3 m with increments of 0.25 metres.

The impulse response for each resulting source position was generated based
on nine selected T60 levels (from 160 ms to 800 ms with increments of 80 ms).
Considering all combinations of distance, angle and T60, 567 impulse responses
were generated. The clean speech dataset was thus divided into 568 parts, where
each part was either augmented with one of the RIRs or kept unmodified.

The Reverb-En dataset was used as the basis for the Combi-En dataset to match
the size of the Noisy-En dataset.
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3.1.3 Combined dataset
The utterances of the combined dataset are distorted by both the reverberation and
the background noise. The process of creating this dataset was divided into several
stages. To include the reverberation, the noiseless data are taken from the Reverb-En
(3.1.2) dataset instead of the original Librispeech. From Reverb-En, the reference
values of the T60 metric were used. Then the size of the Combi-En dataset was
artificially increased similarly to the creation of the Noisy-En (3.1.1) dataset. The
original Reverb-En dataset was replicated six times, where each replica corresponded
to a different level of global SNR (-5 dB up to infinite). The reverberated utterances
were used to compute the SNR labels. However, the STOI labels were created using
the undistorted utterances from the Librispeech [15]. In this way, T60 labels express
only reverberation, SNR represents the noise level over reverberation, and the STOI
metric indicates the overall level of speech intelligibility after reverberation and noise
addition.

This dataset is used to train and evaluate the most complex model, which allows
estimation of all three metrics.

3.2 Transformation into classification problem
When evaluating a regression problem, the key metric is RMSE. A regression prob-
lem involves predicting a continuous variable. It is important that the model gives
an answer as close as possible to the expected value. The values that the model
predicts can take any value on a numerical scale.

In turn, the classification task is to predict the category of a variable. The
output is a class label or a probability of belonging to a particular class. It was
important to look at the problem from a classification point of view, as this helps to
analyse the distribution of errors in the predictions of the models. Small errors are
acceptable, and the model should never confuse very high-quality signals with very
low-quality ones. To achieve this, regression task was converted into a classification
task in the way described in Section 3.2.1. Subsequently, the confusion matrix was
used to reveal the error distribution.

The SNR and T60 within the classification problem was assessed using a confu-
sion matrix.

3.2.1 Definition of classes
Six categories corresponding to the SNR intervals used during training were de-
fined, as detailed in the 3.1.1 subsection. These intervals are: (−∞,−5⟩, (−5, 0⟩,
(0, 5⟩, (5, 10⟩, (10, 20⟩, and (20,∞). Concerning the T60 metric, six categories based
on T60 levels outlined in the 3.1.2 subsection were also defined. These categories
are delineated by the following intervals: ⟨0, 160), ⟨160, 288), ⟨288, 416), ⟨416, 544),
⟨544, 672), ⟨672, 800).

Additionally, a safety margin was defined, which allows to count as a classification
hit estimates that lie at the boundaries of the defined intervals/classes and exhibit
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an acceptable error. The margin for the SNR was set at half the smallest interval
- 2.5dB and the margin for the T60 metric was set to 60 ms. For example, let me
consider a sample with a true SNR belonging to interval ⟨0, 5⟩dB. If the network
estimates that this sample corresponds to any SNR in the interval ⟨−2.5, 7.5⟩ dB,
this is considered as a hit.

3.2.2 Calculation of useful intervals
Boundaries were established for the predicted metrics by defining useful intervals.
This approach stems from an understanding that errors within extreme ranges (i.e.,
those approaching +/- infinity) can be disproportionately large, thereby skewing the
overall accuracy of the model estimates. Specifically, in the calculation of the Root
Mean Square Error (RMSE), deviations from the mean metric value are weighted
more heavily, which could lead to an underestimation of the model precision (see
Section 3.3). To mitigate this, there is a focus on a narrower range—the useful
intervals—where deviations are more meaningful and indicate the model perfor-
mance. By evaluating the metrics within these defined intervals and the full range
of values, there is a gain a more nuanced understanding of the model quality.

The choice of a useful interval for SNR was based on the fact that signals with
SNR higher than 20 dB can be considered undistorted, and for SNR lower than
-5 dB the signal is completely unintelligible. In this regard, errors in the intervals
(−∞,−5⟩ and (20,∞) are assumed less relevant with respect to the performance of
the model.

Useful interval for STOI is based on observation that about 3% of lowest STOI
values correspond to highly noisy speech or noise only intervals of recordings.

Non-speech intervals when evaluating reverberation

The T60 metric is estimated based on the amount of reverberation present in the
speech signal. It cannot be consistently estimated in non-speech intervals. The
evaluation of T60 metric thus can be biased, when the test signal contains a long
period of silence. To analyse the influence of such errors on T60 estimation, the
outputs of the model were also evaluated when limited to speech-only intervals. It
was necessary to exclude seconds with insufficient quality from the estimation. The
decision about the quality of a second was based on the STOI metric: a second
outside the useful interval of this metric is considered to be of non-speech. If a
second is considered to be non-speech, it is not included in the T60 interval. The
non-speech intervals were determined in two ways. An ideal way when the true
STOI labels were used to determine non-speech. Or the practical way, when STOI
estimated by model was used to this end. In other words, the trained model detects
non-speech intervals with no guarantee of correctness.
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3.3 Evaluation metrics
To evaluate the model, the following two metrics were used: RMSE and accuracy.
When evaluating from the regression perspective, the RMSE is used. To analyse
the classification point of view, the accuracy is calculated.

• RMSE calculation
The most representative metric to present the results is Root Mean Square
Error (RMSE). This metric will measure the average deviation between the
estimated and the actual value of a particular metric.

RMSE =

√√√√ 1

K

K∑
i=0

(ûk − uk)2, (3.1)

where RMSE is calculated in the same units as the data used for the calcula-
tion. For example, if the data is measured in meters, it will also be in meters.
ûk is a predicted value in kth second and uk is the corresponding expected
value.

• Accuracy calculation
The accuracy of the model, denoted by a, is calculated using the following
formula:

a =
y

y + ni

· 100, (3.2)

where y is the number of correct predictions, including those within an ac-
ceptable safety margin and ni is the total number of incorrect predictions.

3.3.1 Confusion matrix for SNR and T60 evaluation
The confusion matrix in a classification task has size C×C, where C is the number
of classes. Each column of this matrix represents a correct class, and each row
represents a predicted class. Values on the main diagonal of this matrix indicate
the number of correctly classified examples for each class, while values off the main
diagonal indicate classification errors. Classification errors not only indicate the
existence of an error in prediction, but also show how far the predicted class is from
the correct class. The confusion matrix is diagonal for a perfect classifier. Errors
around the diagonal indicate confusion for close cases.

3.4 Noisy scenario
This Section evaluates precision of SNR and STOI estimates obtained on noisy
speech recordings without reverberation. The noisy model will be the baseline for
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other models in this thesis. It was used to select appropriate parameters and network
architecture for training.

3.4.1 The Noisy-En model
While training the network, the data were evaluated on the Noisy-En validation
dataset 5 times per epoch. More information about the Noisy-En dataset can be
found in the section 3.1.1. The more frequent estimation of the loss function on the
validation dataset is due to the large amount of training data: frequent estimation
on validation data unseen by the network prevents over-training.

The graph of the loss function during model training tends to be a monotonically
decreasing function, albeit with minimal deviation. This indicates a gradual training
of the model.

Figure 3.1: Noisy-En model: training loss function

The loss function on validation data does not run as smoothly as when it is eval-
uated on training data. The validation loss exhibits decreasing trend with random
fluctuations.

When looking in detail at the loss functions, around epoch 37, the onset is
observed of model over-training, increasing in frequency of loss oscillations and in-
creasing in model error on the validation data.

Figure 3.2: Noisy-En model: validation loss function

Despite the fact that the training took multiple epochs, the validation evaluation
indicates the best model after 37 epochs.
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Table 3.2: Noisy-En model: Average RMSE Values for English test dataset
English

SNR (dB) 3.44
STOI 0.11

SNR in useful interval (dB) 1.85
STOI in useful interval 0.09

Table 3.2 presents the results of RMSE estimation for Noisy-En test dataset
either for full range of data and for data corresponding to the usefull intervals.
The results indicate that the RMSE of the SNR metric is lower than 2 dB when
considering the useful intervals only. This suggests a reliable performance of the
proposed estimator.

The following Table 3.3 presents the performance of the English model when
evaluating the SNR from the classification point of view. It was wanted to measure
the accuracy of the estimator as a classifier. The accuracy and RMSE in each
interval were calculated.

The results showed that most of the errors are around the diagonal, so the
network confuses mostly close cases. The confusion of mainly close cases indicates
a well trained network.

Table 3.3: Noisy-En model on English test dataset: Confusion and classification
accuracy for SNR

(−∞,−5⟩ (−5, 0⟩ (0, 5⟩ (5, 10⟩ (10, 20⟩ (20,∞)
(−∞,−5⟩ 12142 381 58 10 1 0
(−5, 0⟩ 3143 18393 430 24 1 0
(0, 5⟩ 232 1009 19675 708 20 0
(5, 10⟩ 5 68 615 18210 1027 1
(10, 20⟩ 0 0 22 386 20187 1010
(20,∞) 0 2 2 1 688 31249

Accuracy (%) 78.2 92.6 94.6 94.2 92.0 96.9
RMSE (dB) 7.52 1.9 1.64 1.62 2.15 3.43

This experiment represents a matched training-test scenario, where both training
and test sets share the same language. The SNR prediction accuracy exceeded 90%
on all evaluated intervals except ⟨−5,−∞), whose accuracy reached 78.2%. This
behaviour of the model can be explained by two factors:

• the smaller number of data, in contrast to the other classes,

• the complicating evaluation of highly noisy signals

It is also important to note that signals with SNR values less than -5 dB are con-
sidered highly distorted, and precise estimations of noise levels become less critical
in such conditions. Excellent prediction results for the SNR metric are presented
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for the (20,∞) interval. In general, high prediction performance for higher quality
signals is a distinctive feature of the model. The model must accurately identify
signals of significantly differing qualities to avoid extremely incorrect predictions,
such as mistaking a signal with a quality of 25 dB for one at -5 dB.

3.4.2 Language dependency
Language dependency of Noisy-En model There is an eager to find out, if the
Noisy-En model would be functional on datasets, its language wasn’t part of training.
So, the performance of a Noisy-En model was explored, when applied to datasets in
languages different from the training language. While testing the Noisy-En model
on Noisy-Ge and Noisy-Ko test datasets in Table 3.4, there was an observation that
on related datasets, Noisy-En and Noisy-Ge, the model performed similarly. Still,
it performs significantly worse on the Noisy-Ko dataset.

Table 3.4: Noisy-En model: Average RMSE Values for English, German, and Korean
test datasets

SNR (dB) STOI SNR in useful STOI in useful
interval (dB) interval

English test
3.44 0.11 1.85 0.09

German test
3.25 0.12 2.01 0.09

Korean test
4.94 0.17 2.68 0.14

In the analysis, the Noisy-En model performance on Noisy-Ge test data is doc-
umented in Table 3.5. The model achieved a classification accuracy of 78.43% for
the (−∞,−5⟩ SNR category, reaching up to 96.67% in the (20,∞) range, with cor-
responding RMSE values from 7.61 dB to 2.81 dB across the SNR intervals. The
results are similar to Noisy-En performance on the Noisy-En test dataset in Table
3.3, where accuracy for the (−∞,−5⟩ category reaches up 78.2% with 7.52 RMSE
value and 96.9% with 3.43 RMSE value in the (20,∞).
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Table 3.5: Noisy-En model on German test dataset: Confusion and classification
accuracy for SNR

(−∞,−5⟩ (−5, 0⟩ (0, 5⟩ (5, 10⟩ (10, 20⟩ (20,∞)
(−∞,−5⟩ 11840 513 76 16 5 0
(−5, 0⟩ 3018 18187 608 26 4 0
(0, 5⟩ 230 865 19063 1082 33 0
(5, 10⟩ 3 55 480 17524 1417 1
(10, 20⟩ 3 1 15 342 19081 1048
(20,∞) 2 0 2 3 580 30477

Accuracy 78.43% 92.69% 94.17% 92.27% 90.35% 96.67%
RMSE (dB) 7.61 1.96 1.67 1.69 2.29 2.81

The following Table 3.6 presents the performance of the Noisy-En model when
estimating SNR on the Noisy-Ko test dataset from the classification point of view.
The model predictions on the Noisy-Ko test dataset were highly effective with the
highest accuracy of 93.67% in the (20,∞) SNR interval and RMSE of 3.56 dB,
while the lowest accuracy reached out 82.63% with a higher RMSE value 8.12 dB
in the interval (−∞,−5⟩. Almost for each category the accuracy decreased on 5-
8% against Noisy-En testing in Table 3.3, but improvement of accuracy for interval
(−∞,−5⟩ was detected. It increased from 78.2% on Noisy-En to 82.63% on Noisy-
Ko dataset. The overall degradation in the quality of the predictions was caused
by significant language difference between english and korean. Testing of other
mismatched conditions, such as different noise types, is beyond the scope of the
thesis.

Table 3.6: Noisy-En model on Korean test dataset: Confusion and classification
accuracy for SNR

(−∞,−5⟩ (−5, 0⟩ (0, 5⟩ (5, 10⟩ (10, 20⟩ (20,∞)
(−∞,−5⟩ 9579 746 143 34 8 61
(−5, 0⟩ 1834 10127 744 97 11 4
(0, 5⟩ 173 690 10569 1061 108 5
(5, 10⟩ 5 48 408 9458 1179 17
(10, 20⟩ 0 5 26 284 10610 1126
(20,∞) 1 3 3 13 383 17937

Accuracy (%) 82.63 87.16 88.87 86.40 86.27 93.67
RMSE (dB) 8.12 2.18 1.85 1.91 2.44 3.56

Noisy-Ge model training motivation Given the results of Noisy-En language de-
pendency testing, there is an aim to verify if a model trained specifically for another
language, in this case German, termed Noisy-Ge, would show improved performance
on German datasets. It was compared to Noisy-En model performance on English
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datasets. This step was crucial to determine if targeted training could mitigate the
effects of language variation.

Noisy-Ge model training When observing the loss function on the training dataset
(3.3), a decreasing trend of the function is visible. This reflects that the training
process is proceeding correctly.

Figure 3.3: Noisy-Ge model: training loss function

There are small oscillations in the validation loss function, but there is a decreas-
ing trend over-training manifests. This indicates that training is successful and the
model can see similar patterns in the training and validation data.

Figure 3.4: Noisy-Ge model: validation loss function

Noisy-Ge model experiments The Table (3.7) shows RMSE on the full sets of
tested data as well as on useful intervals during the testing of both: Noisy-En and
Noisy-Ge models.

There is a tendency for lower quality predictions on the tested datasets with
languages that were not part of the training. Predictions for the datasets with close
languages came out better than those with distant languages. So it could be said
that language has some effect on the accuracy of the results, but the estimation also
works with unseen languages.
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Table 3.7: Noisy-En and Noisy-Ge models: Average RMSE Values for English,
German, and Korean test datasets

SNR (dB) STOI SNR in useful STOI in useful
interval (dB) interval

English test
Noisy-Ge 4.00 0.12 2.45 0.10
Noisy-En 3.44 0.11 1.85 0.09

German test
Noisy-Ge 2.97 0.10 1.97 0.08
Noisy-En 3.25 0.12 2.01 0.09

Korean test
Noisy-Ge 5.03 0.17 2.89 0.15
Noisy-En 4.94 0.17 2.68 0.14

In the useful interval, the best results are achieved on Noisy-En test dataset,
followed by a closely related language, and the poorest on a linguistically distant
language. This progression aligns with the expectations based on linguistic similar-
ities.

3.4.3 Case study: analysis of a single sentence
In order to understand and present the quality of the model predictions, this section
discusses specific example of prediction when analysing a single test utterance. Along
with the analysis, the creation of the test sample, as described in section 2.1, is
demonstrated as well. The output will be discussed for the signal with filename
”8465-246943-0010.flac”. This sample signal lasts 14 seconds and has a sampling
frequency of 16kHz.

Creation of an artificial mixture The first step was to load and normalise the
signal. For precise evaluation of the experiments, it was necessary to create combi-
nations of clean speech and noise in the same way as in the training part of dataset.
Our network is designed to process 62 frames of a spectrogram as input i.e., aprox-
imately 1s of the signal. To align the input signal with this requirement, it was
trimmed to have a sample count that is an exact multiple of this frame number. For
the signal in question, this results in 14 seconds.
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Figure 3.5: Clean normalised signal

In the next step, a noise component of the mixture is selected from the dataset of
available noises. Should the noise component be shorter than the speech, the noise
component is created by concatenation of several normalised noises.

Figure 3.6: Normalised noise component of the same length as the speech

Then the coefficient z was calculated same way as it is described in section
2.1.2 according to the global SNR equal to 10 dB. The noise was amplified by this
coefficient and summed with the speech signal.

Figure 3.7: Combination of clean signal and noise

Using the known components of the noisy mixture, the reference values of SNR
and STOI were computed. These serve as ground truth to compare with the output
of the network.
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Processing of the mixture The time-domain mixture is subsequently transformed
into the MEL spectrogram before sending it to the model for evaluation.

Figure 3.8: Noisy mixture transformed into a MEL spectrogram

The graphs bellow show that the network is able to accurately estimate the
metrics during the course of the whole signal. It is also important to note that the
graphs indicate that the model is able to compute the non-speech segment of the
signal successfully. Notably, the network capability to identify non-speech segments
is evidenced by its return of significantly negative SNR values and STOI figures
approaching zero. The reference global SNR is 10 dB. Speech is a non-stationary
signal, meaning it changes its energy/variance over time; hence, the actual SNR
oscillates around 10 dB throughout the signal’s duration.

Figure 3.9: Prediction graphs

Tables 3.8 and 3.9 provide illustrative examples of the predictions of the SNR
and STOI metrics for the tested audio file. Metrics values were rounded to integers
in the case of SNR estimation and to 1 decimal point in the case of STOI estimation.
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Table 3.8: Comparison of expected and predicted SNRs
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Expected (dB) 9 9 8 6 8 9 -31 15 10 9 12 13 13 7
Predicted (dB) 8 7 8 4 8 8 -15 14 10 10 11 12 13 7

Table 3.9: Comparison of expected and predicted STOIs
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Expected 0.9 0.9 0.9 0.9 0.9 0.8 0.0 1 1 1 1 1 1.0 1
Predicted 0.9 0.9 0.9 0.8 0.9 0.9 0.1 1 1 1 1 1 0.9 1

3.5 Noiseless scenario with reverberation
This part of the work presents results in predicting T60 a STOI metrics using noise-
less reverberated utterances. The model Reverb-En is trained; training and vali-
dation utilize the Reverb-En dataset from Section 3.1.2. For estimation of T60 in
noisy conditions see the following Section 3.6.

The loss function on the training dataset is decreasing, indicating that the model
is capable of learning from the training data.

Figure 3.10: Loss function while training on reverberated dataset

The loss function on the validation data tends to oscillate, although it has a
decreasing trend. The application of a learning rate scheduler has introduced a
significant modification to the validation loss curve, resulting in attenuation of the
oscillations.

Figure 3.11: Loss function while validation on reverberated dataset
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The evaluation of the Reverb-En model via RMSE of the T60 a STOI estimates is
presented in Table 3.10. Process of speech/non-speech intervals selection is described
in the 3.2.2 section.

Table 3.10: Reverb-En model: Average RMSE Values for test Reverberated dataset
RMSE parameter Value

STOI 0.10
T60 (ms) 61.92

T60 in speech intervals (Ideal) (ms) 56.80
T60 in speech intervals (Practical) (ms) 58.13

A slight improvement was observed in the quality of predictions at speech in-
tervals in the table 3.10. The values at speech intervals of the T60 metric can be
considered as equal, due to a small difference of 1.33 ms. This indirectly indicates
that the model can also serve as a speech activity detector.

The model on the uniformity of RMSE values was also evaluated. The Table
3.11 represents confusion matrix of the classifier. The evaluation was performed by
transforming the regression problem into a classification problem as described in the
3.2 section.

The calculations take into account a safety margin of 40 ms as discussed previ-
ously.

Table 3.11: Reverb-En model: Confusion and classification accuracy for T60
⟨0, ⟨160, ⟨288, ⟨416, ⟨544, ⟨672,
160) 288) 416) 544) 672) 800)

⟨0, 160) 1613 222 27 1 2 1
⟨160, 288) 15 4372 68 1 8 9
⟨288, 416) 9 78 4701 637 45 17
⟨416, 544) 6 11 42 1798 1373 38
⟨544, 672) 0 4 10 42 3290 834
⟨672, 800) 0 2 5 4 90 2425

Accuracy (%) 98.17 93.24 96.87 72.41 68.43 72.95
RMSE (ms) 49.2 40.7 43.5 56.6 72.3 94.2

High accuracy in intervals with lower reverberations could be seen. Interval with
smallest reverberations ⟨0, 160) ms accuracy achieved 98.17%. High accuracy per-
sists in low reverberated intervals but gradually decreases through the mid-range
intervals. Correspondingly, the RMSE increases as the reverberation level. The
RMSE is lowest at 40.7 ms for the low reverberated interval ⟨160, 288) and escalates
to 94.2 ms for the high reverberated interval (⟨672, 800) ms). The non-diagonal
elements of the table show that there is considerable confusion between adjacent
intervals. This confusion increases with higher reverberated intervals. The intervals
from ⟨416, 544) ms onward exhibit not only lower accuracy but also the highest rates
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of misclassification. The model tends to underestimate reverberation time by low-
ering predictions to lower neighbouring intervals. Despite all challenges, the model
performs effectively, as even an RMSE of 90 ms is considered good. The confu-
sion matrix remains primarily block diagonal, indicating minimal misclassifications
between very high and very low T60 intervals.

3.6 Combination scenario
This chapter focuses on the final model within the scope of the thesis. The model
trained on the Combi-En dataset (3.1.3) predicts all three metrics: SNR, STOI, and
reverberation.

The loss function on the training data has a decreasing trend, similar to the loss
functions on Noisy models from Sections (3.4) and Reverberation models (3.5). This
demonstrates the ability of the model to learn despite the increasing complexity of
the task.

Figure 3.12: Loss function while training on combinated dataset

When analysing the validation loss function from Figure 3.13, a general decreas-
ing trend with a slight oscillation is observed.

Figure 3.13: Loss function while validation on combined dataset

The quality of the model was assesed using the test part of the Combi-En dataset.
For each predicted metric, RMSE was calculated both on the full dataset and on
useful intervals.

Table 3.12 provides the average RMSEs for various parameters measured both
in the overall test and in useful intervals.

42



The SNR and STOI metrics prediction did not show significant changes be-
tween the Noisy-En and Reverb-En models in the comparative analysis. Specifically,
RMSE for SNR was 3.44 dB in the Noisy-En model and slightly improved to 2.97
dB in the Combi-En model. This could be explained by adjustments of scheduler
parameters while training the Combi-En model, which are: lower factor 0.1 and
more extended patience 12. Similarly, STOI remains consistent at approximately
0.11 across all trained models.

However, a notable observation was the high decrease in the quality of T60
predictions in the Combi-En model 86.15 ms compared to the Reverb-En model
61.92 ms. This suggests that accurately predicting reverberation levels, represented
by the T60 metric, could be a more significant challenge. This increased difficulty
primarily stems from reverberation masked by noise, which skews the reverberation
estimates.

This difficulty in T60 estimation might be attributed to more than just the
complexity of the problem. Still, it could also be due to the smaller dataset size
available for T60 measurements at each noise level.

Table 3.12: Models: average RMSE Values in dB for test datasets
Value

Combi-En
SNR (dB) 2.97
STOI 0.11

T60 (ms) 86.15
SNR in useful interval (dB) 1.97
STOI in useful interval 0.10

T60 in speech intervals (Ideal) (ms) 75.50
T60 in speech intervals (Practical) (ms) 79.46

Noisy-En
SNR (dB) 3.44
STOI 0.11

SNR in useful interval (dB) 1.85
STOI in useful interval 0.09

Reverb-En
STOI 0.10

T60 (ms) 61.92
T60 in speech intervals (Ideal) (ms) 56.80

T60 in speech intervals (Practical) (ms) 58.13

From the comparison of the tables with the prediction results of the SNR metric
on the Noisy-En test dataset (3.3) and on the Combi-En test dataset (3.13), there
is no significant change in the quality of the predictions. The highest accuracy on
Combi-En model is observed in the highest SNR interval (20,∞) with 96.64%. The
accuracy in the lowest interval is also high, 81.13%, indicating robust performance
in extremely noisy conditions. Accuracy tends to increase as SNR increases. RMSE
values vary across SNR intervals, with the lowest error at 1.7 dB for the (5, 10⟩
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interval and the highest at 6.6 dB for the (−∞,−5⟩ interval, reflecting greater
prediction difficulty at lower SNRs. Despite the increased complexity of the problem,
the table still has a diagonal character. The accuracy of the selected SNR intervals
has slightly decreased, manifested in the increase of substitutions to neighbouring
intervals.

Table 3.13: Combi-En model: Confusion and classification accuracy for SNR
(−∞,−5⟩ (−5, 0⟩ (0, 5⟩ (5, 10⟩ (10, 20⟩ (20,∞)

(−∞,−5⟩ 13058 474 34 4 1 0
(−5, 0⟩ 2691 17899 448 15 0 0
(0, 5⟩ 333 1649 19309 697 21 0
(5, 10⟩ 13 110 1121 17415 918 2
(10, 20⟩ 0 2 55 810 20696 1080
(20,∞) 0 0 0 1 830 31114

Accuracy (%) 83.13 88.90 92.09 91.94 92.12 96.64
RMSE (dB) 6.6 2.1 1.8 1.7 2.2 2.0

Table 3.14 presents the estimation accuracy for T60 values obtained from the
Combi-En test set. Accuracy is generally highest along the diagonal of the con-
fusion matrix, highlighting where predictions are most precise. Accuracy varies
notably across different intervals, with the highest accuracy observed at 93.40% for
the ⟨0, 160) interval, demonstrating excellent performance in predicting very low
reverberation times. Conversely, the lowest accuracy is 62.81% for the ⟨672, 800)
interval, suggesting challenges in predicting the highest reverberation times.

RMSE values further illuminate the average magnitude of errors across predic-
tions. The lowest RMSE is 60.9 ms for the ⟨288, 416) interval, indicating more
accurate predictions in this range. In contrast, the highest RMSE, observed in
the ⟨672, 800) interval, is 127.6 ms, signifying less reliability in those predictions.
Notably, moderate to high reverberation intervals, specifically from ⟨416, 544) to
⟨672, 800), where a substantial number of estimates fall into adjacent lower cate-
gories, indicating that the network tends to underestimate the level of reverbera-
tion. This is particularly evident for intervals ⟨544, 672) and ⟨672, 800), where many
predictions incorrectly fall into adjacent lower categories. The model accuracy de-
crease as the T60 increase, but RMSE demonstrates, that the real predictions are
still usable.

The lower prediction performance of the T60 metric may be due to the smaller
training dataset. The training dataset was replicated six times due to noise but
the reverberation dataset size was not (because of necessity of saving original T60
labels). For more details on the selection of impulse responses, see the Section 3.1.2.
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Table 3.14: Combi-En model: Confusion and classification accuracy for T60
⟨0, ⟨160, ⟨288, ⟨416, ⟨544, ⟨672,
160) 288) 416) 544) 672) 800)

⟨0, 160) 9207 3739 107 12 58 51
⟨160, 288) 315 22555 837 119 212 153
⟨288, 416) 180 1331 25880 3500 722 316
⟨416, 544) 107 335 1583 9570 7656 842
⟨544, 672) 46 150 619 1468 18630 6056
⟨672, 800) 3 24 92 229 1570 12526

Accuracy (%) 93.40 80.17 88.88 64.24 64.58 62.81
RMSE (ms) 94.8 69.8 60.9 74.7 89.1 127.6

Interesting nuance is that the interval from ⟨0, 160) ms shows a high accuracy
but also a high RMSE. This could be explained by the nature of the T60 metric
itself. T60 measurements in this interval are tightly bounded by 0. As a result,
even small prediction errors can result in relatively high RMSE values. The range
is limited and it makes each error proportionally significant.
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4 Conclusion

To perform non-intrusive speech quality assessment, a data-driven model based on
convolutional neural network was trained. T60 reverberation time, SNR signal-
to-noise ratio and STOI speech intelligibility were predicted without the need for
reference signals by models.

The models are able to return high accurate SNR predictions on all considered
noisy datasets either with or without reverberation. Moreover, combined model
even predicts little better than the noisy one, despite the fact, that it resolves more
complex task. STOI predictions are stable on all trained models and vary from
0.10 up to 0.12. One exception is the noisy Korean test set (which contains unseen
language) where STOI metric reaches up 0.17. So, some language dependency in
Noisy models was assumed. With regard to reverberation time detection, the model
gives reliable results on both noiseless and noisy datasets with reverberation. Both
models exhibit high RMSE on signals with high reverberation. The T60 metric
predictions on the noisy reverberated dataset are worse than on the noiseless dataset
due to the complexity of the task. As the T60 metric suffers the most from adding
noise in the Combined dataset, a decision to extend the training set was made to
enhance estimation in the future work.

In the next phase of development, i.e., for diploma thesis, we will concentrate on
development of recurrent neural network architecture, with a focus on integrating
attention mechanisms such as self-attention. These advancements are expected to
enhance the model temporal analysis capabilities, thereby providing a more dynamic
and context-aware assessment of speech quality. This approach is not only projected
to improve accuracy across all levels of reverberation but also to enhance the model
utility in real-world, variable acoustic settings.
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Appendix

The source code used to train the models and the sample dataset is located at
https://github.com/mothspaws/BP-2024.
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