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Chapter 1

Introduction

The main focus of this work is the introduction of the basic concepts of continuum

mechanics and their mathematical description. We are primarily interested in mechanics

of solids. The key concepts are deformation mapping, strain in materials, density models

in elasticity and the corresponding energy functional. The three density models that are

implemented are:

1. The Neo-Hookean density model

2. The Saint Venant-Kirchhoff density model

3. The linear elasticity or the Hookean density model

Furthermore, the goal is to demonstrate the key aspects of mechanics of solids using

practical examples. Therefore, various examples of deformation mappings are created

and are extensively supported by elaborate computations and various visualizations.

The deformation mappings are based on a cuboid reference configuration and include

the following.

1. The deformation into a partial and a whole toroid

2. The deformation into a twist

3. The deformations into two types of hourglass

All computations are calculated in an analytical manner and namely the evaluations

of the energy functional are compared to a numeric solution.

The given mappings are completely prescribed in the whole reference domain and are

not obtained by any energy minimizations or equivalent boundary value problems. Thus,

they might serve as testing benchmarks for various computing tools, for example, by

using the finite element method [5]. Some important concepts such as stress in materials

and practical computations of energy minimizer might be added in forthcoming works.
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The basic theoretical concepts of continuum mechanics are partially taken from the

works [1, 2, 3], and are described in Chapter 2. Chapter 3 includes above mentioned

examples, their visualization, and corresponding analytical computations and their com-

parison to a numeric solution. The codes used for visualizations and numeric computa-

tions were performed in Matlab numeric computing environment [4] utilizing the codes

specifically developed for the purpose of this thesis and the partially adjusted codes of

[5]. The codes and the changes in the codes are listed in the Appendix.

This work was written completely in LATEX, a document preparation system.
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Chapter 2

Basics of continuum mechanics

Continuum mechanics studies mathematical models of continuous materials and their

mechanical behavior when the material undergoes geometrical changes: deformations.

The material is represented by a domain and its deformation is given by a deformation

mapping. Furthermore, continuum mechanics focuses on describing the material changes

by means of the deformation gradient, strain tensors, density models and corresponding

energy functional.

2.1 Deformation mapping

Assume that Ω is a domain in Rn, where n ∈ R is the dimension of the space.

Remark 1 Throughout this thesis, we consider n = 3, therefore, a three-dimensional

space R3. Thus, all aspects in this chapter and in the following chapters are described

in R3.

A deformation of Ω describes the relocation of any point x ∈ Ω during the deformation

process and is given by the mapping

v(x) : Ω→ R3, v(x) =
(
v(1)(x), v(2)(x), v(3)(x)

)
,

and x = (x, y, z) represents the material coordinates.

Similarly, a displacement can be described in terms of v(x) and the displacement

function w(x) : Ω→ R3 is defined as

w(x) = v(x)− id(x), w(x) =
(
w(1)(x), w(2)(x), w(3)(x)

)
,

where id(x) is the identity operator.

Remark 2 We will focus on describing material changes by the deformation mapping

in Chapter 3. The displacement mapping is listed for illustrative purposes.
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Remark 3 The material before a deformation is represented by Ω and is referred to as

the reference configuration, after it is deformed it is called the current configuration.

Furthermore, the Lagrangian description, also known as the material description, is

used, which means that the material is described in terms of the material coordinates.

Figure 2.1: Example of a deformation mapping: deformation of a sphere into an ellipsoid.

Example 1 A deformation mapping v(x) of a sphere into an ellipsoid. The spherical

domain Ω is parametrized by spherical coordinates (r, φ, θ) as follows:

x =x0 + r cos(φ) sin(θ),

y =y0 + r sin(φ) sin(θ),

z =z0 + r cos(θ),

where (x0, y0, z0) represents the centre of the sphere, r ∈ (0, 1] is the radius, and θ ∈ [0, π],

φ ∈ [0, 2π). The deformation is given by the following mapping v(x):

v(1)(x, y, z) =x1 + lx(x− x0),

v(2)(x, y, z) =y1 + ly(y − y0),

v(3)(x, y, z) =z1 + lz(z − z0),

where (x1, y1, z1) represents the center of the ellipsoid and lx, ly, lz are the lengths of the

semi-axes.

The deformation in Fig. 2.1 is visualized for (x0, y0, z0) = (0, 0, 0), (x1, y1, z1) =

(4, 0, 0) and lx = 2.5, ly = lz = 1 with the help of Code - Matlab 1.
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2.2 Deformation gradient

The deformation gradient is one of the main elements in continuum mechanic. It brings

together the reference configuration and the current configuration and creates a relation-

ship between them. The deformation gradient is defined as

F(v) := ∇v =


∂v(1)

∂x
∂v(1)

∂y
∂v(1)

∂z

∂v(2)

∂x
∂v(2)

∂y
∂v(2)

∂z

∂v(3)

∂x
∂v(3)

∂y
∂v(3)

∂z

 . (2.1)

The displacement gradient can be written as

∇w = ∇v− I,

where I ∈ R3×3 is the identity matrix. Thus, the deformation gradient can also be

written in terms of w as follows:

F(w) = ∇w + I =


∂w(1)

∂x
∂w(1)

∂y
∂w(1)

∂z

∂w(2)

∂x
∂w(2)

∂y
∂w(2)

∂z

∂w(3)

∂x
∂w(3)

∂y
∂w(3)

∂z

+ I.

Remark 4 Similarly to the displacement mapping, the displacement gradient is used for

illustrative purposes.

2.3 Types of deformations

The deformation is said to be homogeneous, if F is independent of x, therefore the

deformation mapping v(x) can be expressed as

v(x) = Fx + c,

here c ∈ R3. Furthermore, if F = I the material does not deform.

If the deformation gradient is a function of x, the deformation is called nonhomoge-

neous. Examples of nonhomogeneous deformations are illustrated in Chapter 3.

Example 2 An illustration of a simple homogeneous deformation can be, for example,

the mapping v(x):

v(1)(x, y, z) =sxx+ x2,

v(2)(x, y, z) =syy + y2,
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v(3)(x, y, z) =szz + z2,

where sx, sy, sz, x2, y2, z2 ∈ R. The specific example in Fig. 2.2 is shown for x2, y2 = 0

and z2 = 1 sx = 3
2

and sy, sz = 1, in Ω = (0, 0.2)× (−0.01, 0.01)× (−0.01, 0.01). In this

case the deformation gradient is

F(v) =

x2 0 0

0 y2 0

0 0 z2

 =


3
2

0 0

0 1 0

0 0 1

 .

Here F(v) is indeed independent of x.

(a) Reference configuration

(b) Current configuration

Figure 2.2: Example: a homogeneous deformation of a cuboid.

The determinant of F is extensively used in the calculations in the examples in the

following chapters. Suppose that det(F) signifies the determinant of the deformation

gradient, also known as the Jacobian determinant.

det(F) = F11F22F33 + F12F23F31 + F13F21F32 − F13F22F31 − F12F21F33 − F11F23F32.

The Jacobian determinant indicates local changes in volume of Ω, more explicitly the

local ratio between the volumes denoted by the current and the reference configurations

of a material. We distinguish the following cases:

◦ det(F) > 0 - Volumes are naturally considered positive values; thus, the volume

ratio is also locally positive.
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◦ det(F) = 1 - The deformation locally preserves the volume. The deformation is

called isochoric, if the volume does not change.

More specifically:

◦ 0 < det(F) < 1 - The volume decreases.

◦ det(F) > 1 - The volume increases.

Furthermore, we also demonstrate two other cases that are physically unrealistic:

◦ det(F) = 0 signifies that the material is locally compressed into a single point, line

or surface.

◦ det(F) < 0 means that the deformation does not preserves the orientation of the

material.

Remark 5 To simplify the notation of F(v) for forthcoming computations, we establish

that its elements can be written as
∂v(1)

∂x
∂v(1)

∂y
∂v(1)

∂z

∂v(2)

∂x
∂v(2)

∂y
∂v(2)

∂z

∂v(3)

∂x
∂v(3)

∂y
∂v(3)

∂z

 =


F11 F12 F13

F21 F22 F23

F31 F32 F33

 . (2.2)

2.4 Strain tensors

Strain tensors indicate how much the reference configuration differs locally from the

current configuration.

The large strain tensor, also called the Green-Lagrange strain tensor is defined as

E(F) :=
1

2
(FTF− I),

where the element FTF is defined as the right Cauchy-Green deformation tensor C

C(F) := FTF.

The small strain tensor is defined as

e(F) :=
1

2
(F + FT )− I.

Remark 6 The small strain tensor is best used to describe deformations, where F→ I.
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Remark 7 It holds

e(F) ≈ E(F) for F→ I.

To show it, the large strain tensor E(F) is linearized by the Taylor series as

E(F) ≈ E(I) +
∂E

∂F
(I)(F− I),

where E(I) = 1
2
(IT I−I) is a zero matrix. The derivative ∂E

∂F
denotes the derivative of the

matrix with respect to a different matrix, so it actually represents a fourth-order tensor.

To compute it efficiently, we take advantage of the Einstein summation notation, where

the indices i, j, k, l,m ∈ {1, 2, 3} are used. It holds

Eij(F) =
1

2
(F T

imFmj − Iij),

eij(F) =
1

2
(Fij + Fji − 2Iij).

Furthermore, the above equations can be written using the Kronecker delta symbol, which

is defined as

δij =

1 if i = j,

0 if i 6= j.

Thus,

Eij(F) =
1

2
(F T

imFmj − δij),

eij(F) =
1

2
(Fij + Fji − 2δij). (2.3)

Moreover,
∂E

∂F
(I)(F− I) ' ∂Eij

∂Fkl
(I)(Fkl − δkl),

where the symbol ' denotes the relation of the tensor object and its components. In the

following computations, the Kronecker delta is also used. Therefore,

∂Eij
∂Fkl

(F) =
1

2

∂(F T
imFmj − δij)
∂Fkl

=
1

2

∂(FmiFmj − δij)
∂Fkl

=

=
1

2

(
∂Fmi
∂Fkl

Fmj + Fmi
∂Fmj
∂Fkl

)
=

=
1

2
(δmkδilFmj + Fmiδmkδjl) =

=
1

2
(δilFkj + Fkiδjl) ,

Therefore we obtain
∂Eij
∂Fkl

(I) =
1

2
(δilδkj + δkiδjl) .
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Thus,

E(F) ' Eij(F) ≈1

2
(δilδkj + δkiδjl) (Fkl − δkl) =

=
1

2
(δilδkjFkl − δilδkjδkl + δkiδjlFkl − δkiδjlδkl) =

=
1

2
(Fij + Fji − 2δij) = eij(F) ' e(F).

It concludes (2.3) and the final formula, where E(F) ≈ e(F) for F → I.

In practical computations, E and e can be expressed from (2.2) as

E =
1

2


F 2

11 + F 2
21 + F 2

31 − 1 F11F12 + F21F22 + F31F32 F11F13 + F21F23 + F31F33

F11F12 + F21F22 + F31F32 F 2
12 + F 2

22 + F 2
32 − 1 F12F13 + F22F23 + F32F33

F11F13 + F21F23 + F31F33 F12F13 + F22F23 + F32F33 F 2
13 + F 2

23 + F 2
33 − 1

 ,

e =
1

2


2(F11 − 1) F12 + F21 F13 + F31

F12 + F21 2(F22 − 1) F23 + F32

F13 + F31 F23 + F32 2(F33 − 1)

 .

2.5 Elastic energy functional

Materials for which there exists a stored energy are called hyperelastic materials. There-

fore, the energy functional of a hyperelastic material is assumed in the form

J(v) =

∫
Ω

W (F(v(x))) dx,

where the density W (F) of the elastic energy is specified for different material models.

As examples we consider the following density models:

(i) The Neo-Hookean density model

WNH(F) = C1

(
||F||2 − 3− 2 ln(det(F))

)
+D1(det(F)− 1)2

is used to describe densities for neo-Hookean materials, which have nonlinear be-

havior.

(ii) The Saint Venant-Kirchhoff density model

WSV K(F) = µ||E(F)||2 +
λ

2
(tr(E(F)))2

9



is one of the simplest nonlinear models to describe hyperelastic materials. And is

the generalization of the following density model.

(iii) The linear elasticity density model or the Hookean density model

WH(F) = µ||e(F)||2 +
λ

2
(tr(e(F)))2.

Here || · || is the Frobenius norm and tr(·) is the trace. To evaluate the above given

symbols we utilize their elementwise forms. These formulas are used mainly for numeric

evaluations.

||F||2 =F 2
11 + F 2

12 + F 2
13 + F 2

21 + F 2
22 + F 2

23 + F 2
31 + F 2

32 + F 2
33,

||E||2 =
1

4

(
F 2

11 + F 2
21 + F 2

31 − 1
)2

+
1

4

(
F 2

12 + F 2
22 + F 2

32 − 1
)2

+

+
1

4

(
F 2

13 + F 2
23 + F 2

33 − 1
)2

+

+
1

2
(F11F12 + F21F22 + F31F32)2 +

1

2
(F11F13 + F21F23 + F31F33)2 +

+
1

2
(F12F13 + F22F23 + F32F33)2 ,

(tr(E))2 =
(
F 2

11 + F 2
12 + F 2

13 + F 2
21 + F 2

22 + F 2
23 + F 2

31 + F 2
32 + F 2

33 − 3
)2
,

||e||2 =(F11 − 1)2 + (F22 − 1)2 + (F33 − 1)2+

+
1

2

(
(F12 + F21)2 + (F13 + F31)2 + (F23 + F32)2

)
,

(tr(e))2 =(F11 + F22 + F33 − 3)2.

2.5.1 Material parameters

We deal with isotropic materials, which are materials whose properties are the same

regardless of the direction in which they are oriented. Various pairs of material parame-

ters can be used to describe isotropic materials. In this work, we will describe materials

in terms of Young’s modulus E and Poisson’s ratio ν. The Lamé parameters λ and µ,

referred to as Lamé’s first parameter and Lamé’s second parameter, respectively, can be

expressed as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.
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Furthermore, the bulk modulus K is introduces as

K =
E

3(1− 2ν)
.

The material constants C1, D1 in the Neo-Hookean density WNH(F) are expressed as

C1 =
µ

2
, D1 =

K

2
.

Poisson’s ratio represents the ratio of the change in width to the change of length of

a material. The values of Poisson’s ratio range from 0 to 0.5. If ν = 0.5, the material is

considered incompressible. Young’s modulus represents the stiffness of a material when

a force is applied.

Example 3 Values of the Poisson’s ratio ν and the Young’s modulus for various mate-

rials [6] are provided in the table below:

Material E [GPa] ν
Steel 190-210 0.27-0.3
Aluminum alloys 70-79 0.33
Rubber 0.0007-0.004 0.45-0.49
Polyethylene 0.7-1.4 0.4

In examples in Chapter 3, we consider Young’s modulus and Poisson’s ratio of steel:

E = 190 GPa, ν = 0.27. (2.4)
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Chapter 3

Examples of deformations

In this chapter, there are shown practical examples of different deformations which use

the concepts of Chapter 2. All deformations and corresponding computations consider

a general cuboid domain:

Ω = (0, lx)× (− ly
2
,
ly
2

)× (− lz
2
,
lz
2

), lx, ly, lz > 0.

The following figures and graphs are, however, visualized for specific values of lx, ly, lz.

We assume that lx = 0.2, ly = lz = 0.01, therefore, the cuboid domain Ω (see Fig. 3.1) is

Ω = (0, 0.2)× (−0.005, 0.005)× (−0.005, 0.005).

Furthermore, the material parameters of steel (2.4) are considered in the following com-

putations.

Figure 3.1: The cuboid domain Ω.

3.1 Deformation into a partial and a whole toroid

The deformation of a cuboid domain Ω is prescribed by the deformation mapping v(x) =(
v(1)(x), v(2)(x), v(3)(x)

)
, where

v(1)(x, y, z) =(z +
lx
α

) sin(
α

lx
x),

v(2)(x, y, z) =y,

12



v(3)(x, y, z) =(z +
lx
α

) cos(
α

lx
x)− lx

α
.

This deformation preserves the length lx of the axis that is on the x-axes of the original

cuboid domain (see Fig. 3.1), and depends on the angle α ∈ (0, 2π]. For α ∈ (0, 2π) the

cuboid deforms into a partial toroid, e.g. in Fig. 3.2 (a), and for α = 2π the cuboid

becomes a whole toroid, e.g. in Fig. 3.2 (b).

(a) α = π
2

(b) α = 2π

Figure 3.2: Deformation into a partial toroid and a whole toroid for different angles α.

3.1.1 Deformation gradient and determinant

Using the definition (2.1), the deformation gradient for this deformation is

F(v) =


(z α

lx
+ 1) cos( α

lx
x) 0 sin( α

lx
x)

0 1 0

−(z α
lx

+ 1) sin( α
lx
x) 0 cos( α

lx
x)

 .

This deformation is nonhomogeneous, since the deformation gradient is dependent on

the variables x and z. Furthermore, for α→ 0, F = I, indicating that the cuboid domain

does not deform. The determinant is expressed as

det(F) = (z
α

lx
+ 1) cos2(

α

lx
x) + (z

α

lx
+ 1) sin2(

α

lx
x) = z

α

lx
+ 1

and is dependent on z. Therefore, the volume change depends on z. In this case, the

natural condition of the locally positive volume change is met:

det(F) = z
α

lx
+ 1 > 0 ∀z, α, lx.

13



◦ The volume increases for z > 0.

◦ The volume is preserved for z = 0.

◦ The volume decreases for z < 0.

The values of the determinant are depicted in Fig. 3.3 (a) for α = π
2

and in Fig. 3.3 (b)

for α = 2π.

(a) α = π
2

(b) α = 2π

Figure 3.3: The determinant for different angles α.

Next, we use the deformation gradient to compute ||F||2, which is used to evaluate

the Neo-Hookean density:

||F||2 = 2 +

(
z
α

lx
+ 1

)2

.

3.1.2 Strain tensors

The large and the small strain tensors and their corresponding || · ||2 and (tr(·))2 are

expressed as

E =
1

2


(z α

lx
+ 1)2 − 1 0 0

0 0 0

0 0 0

 , ||E||2 = (tr(E))2 =
1

4

(
(z
α

lx
+ 1)2 − 1

)2

,

e =
1

2


2
(

(z α
lx

+ 1) cos( α
lx
x)− 1

)
0 −z α

lx
sin( α

lx
x)

0 0 0

−z α
lx

sin( α
lx
x) 0 2

(
cos( α

lx
x)− 1

)
 ,

14



||e||2 =

(
(z
α

lx
+ 1) cos(

α

lx
x)− 1

)2

+

(
cos(

α

lx
x)− 1

)2

+
1

2

(
z
α

lx
sin(

α

lx
x)

)2

,

(tr(e))2 =

(
(z
α

lx
+ 2) cos(

α

lx
x)− 2

)2

.

3.1.3 Energy densities

The different density models can be expressed as

WNH(F) =C1

((
z
α

lx
+ 1

)2

− 1− 2 log(z
α

lx
+ 1)

)
+D1

(
z
α

lx

)2

, (3.1)

WSV K(F) =
1

4
(µ+

λ

2
)

(
(z
α

lx
+ 1)2 − 1

)2

, (3.2)

WH(F) =µ

((
(z
α

lx
+ 1) cos(

α

lx
x)− 1

)2

+

(
cos(

α

lx
x)− 1

)2

+
1

2

(
z
α

lx
sin(

α

lx
x)

)2
)

+

+
λ

2

(
(z
α

lx
+ 2) cos(

α

lx
x)− 2

)2

. (3.3)

For the density models, similarly to for the deformation gradient, α→ 0 should indicate

that the cuboid domain does not deform. This is reflected in the values of densities

which satisfy WNH → 0,WSV K → 0,WH → 0 for α→ 0.

The density values are visualized for the angles α = π
2

and α = 2π in Fig. 3.4. Fur-

thermore, the values of the Neo-Hookean model and the Saint Venant-Kirchhoff model

reach similar values. However, the linear elasticity model shows an unrealistic distribu-

tion of densities.

The value of the energy functional for different density models reads (detailed eval-

uations of integrals are omitted):

JNH(v) =

∫
Ω

WNH(F) dx =

=

∫ lz
2

− lz
2

∫ ly
2

− ly
2

∫ lx

0

(
C1

((
z
α

lx
+ 1

)2

− 1− 2 ln(z
α

lx
+ 1)

)
+D1

(
z
α

lx

)2
)

dx dy dz =

= C1lxly

(
α2l3z
12l2x

+ 2lz − 2(
lx
α

+
lz
2

) ln(1 +
αlz
2lx

) + 2(
lx
α
− lz

2
) ln(1− αlz

2lx
)

)
+D1

α2lyl
3
z

12lx
,

(3.4)
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(a) NH density for α = π
2

(b) NH density for α = 2π

(c) SVK density for α = π
2

(d) SVK density for α = 2π

(e) H density forα = π
2

(f) H density for α = 2π

Figure 3.4: The values of the Neo-Hookean densities, the Saint Venant-Kirchhoff densities
and the linear elasticity densities visualized for the angles α = π

2
and α = 2π.
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JSV K(v) =
1

4
(µ+

λ

2
)

∫
Ω

(
(z
α

lx
+ 1)2 − 1

)2

dx =
ly
4

(µ+
λ

2
)

(
α4l5z
80l3x

+
α2l3z
3lx

)
, (3.5)

JH(v) =

∫ lz
2

− lz
2

∫ ly
2

− ly
2

∫ lx

0

(
µ

((
(z
α

lx
+ 1) cos(

α

lx
x)− 1

)2

+

(
cos(

α

lx
x)− 1

)2

+

+
1

2

(
z
α

lx
sin(

α

lx
x)

)2
)

+
λ

2

(
(z
α

lx
+ 2) cos(

α

lx
x)− 2

)2
)

dx dy dz =

=µlxlylz

((
α2l2z
48l2x

+
1

4

)(
1

α
sin(2α) + 2

)
− 4

α
sin(α) +

5

2
+

+
1

4α
sin(2α) +

α2l2z
48l2x

(
1− 1

2α
sin(2α)

))
+

+
λ

2
lxlylz

((
α2l2z
48l2x

+ 1

)(
1

α
sin(2α) + 2

)
− 8

α
sin(α) + 4

)
.

(3.6)

3.1.4 Evaluation of exact and approximate energies

The approximate values of the energy functional can be alternatively computed nu-

merically using [5] for various levels of uniform mesh refinements in the finite element

discretization of the cuboid domain. The higher the mesh level, the finer mesh is applied.

mesh level number of nodes number of elements
1 369 960
2 2,025 7,680
3 13,041 61,440
4 92,769 491,520
5 698,049 3,932,160

By the choice level=∞, we denote the exact value of the energy functional computed

independently in (3.4), (3.5) and (3.6) with the help of Code - Matlab 4. In the following

tables, we can clearly see how the numeric values converge to the exact solution. The

convergence is used to verify the results of the solution.

◦ The energy functional values for the Neo-Hookean density model.

mesh level α = π
2

α = 2π
1 2,503.497615 40,044.019563
2 1,733.613962 27,772.705833
3 1,541.121847 24,699.438950
4 1,492.997492 23,930.780059
5 1,480.966321 23,738.592914
∞ 1,476.955923 23,674.529961
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◦ The energy functional values for the Saint Venant-Kirchhoff density model.

mesh level α = π
2

α = 2π
1 2,119.312486 33,974.529251
2 1,445.407271 23,204.270785
3 1,276.889944 20,501.154260
4 1,234.758049 19,824.714483
5 1,224.224915 19,655.563230
∞ 1,220.713856 19,599.175807

◦ The energy functional values for the linear elasticity density model.

mesh level α = π
2

α = 2π
1 1,476,891.836962 9,772,410.814876
2 1,476,068.045306 9,770,433.678206
3 1,475,862.102017 9,769,937.659739
4 1,475,810.616484 9,769,813.546628
5 1,475,797.745119 9,769,782.511568
∞ 1,475,793.454665 9,769,772.165945

Figure 3.5: The comparison of exact energies.

The comparison of exact energy densities is illustrated in Fig. 3.5 for angles α ∈
(0, 2π] with the help of Code - Matlab 2. The values of J(v) are shown on a logarithmic

scale for better visualization, since the values of the linear elasticity energy reach high

values compared to the other energies.

Remark 8 The linear elasticity model is shown only for illustrative purposes, since the

deformation is very different from the identity deformation. In this case, it causes an

unrealistic distribution of densities (see Fig. 3.4 (e), (f)) and reaches unrealistically high

values of energies (see Fig. 3.5).
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3.2 Deformation into a twist

The deformation of a cuboid domain Ω is prescribed by the deformation mapping v(x):

v(1)(x, y, z) =x,

v(2)(x, y, z) =y cos(
α

lx
x) + z sin(

α

lx
x),

v(3)(x, y, z) =− y sin(
α

lx
x) + z cos(

α

lx
x).

The deformation mapping determines how much Ω (see Fig. 3.1) twists around the x-

axis depending on the angle α. The deformation is visualized for α = 2π in Fig. 3.6 (a)

and for α = 4π in Fig. 3.6 (b).

(a) α = 2π

(b) α = 4π

Figure 3.6: Deformation into a twist for different angles α.

3.2.1 Deformation gradient and determinant

F(v) =


1 0 0

−y α
lx

sin( α
lx
x) + z α

lx
cos( α

lx
x) cos( α

lx
x) sin( α

lx
x)

−y α
lx

cos( α
lx
x)− z α

lx
sin( α

lx
x) − sin( α

lx
x) cos( α

lx
x)

 .

The deformation gradient F(v) is a function of x, therefore, the deformation is nonho-

mogeneous. The cuboid domain Ω does not deform, if the deformation gradient F = I,

which is met for α = 0. Furthermore, the determinant det(F) = 1, which signifies that

the volume is preserved. Therefore, the deformation is isochoric in Ω.

det(F) = cos2(
α

lx
x) + sin2(

α

lx
x) = 1.
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From the deformation gradient ||F||2 is expressed as

||F||2 = 3 +
α2

l2x
(y2 + z2).

3.2.2 Strain tensors

The large and the small strain tensors and their corresponding || · ||2 and (tr(·))2 are

expressed as

E =
1

2


α2

l2x
(y2 + z2) z α

lx
−y α

lx

z α
lx

0 0

−y α
lx

0 0

 ,

||E||2 =
1

4

α4

l4x
(y2 + z2)2 +

1

2

α2

l2x
(y2 + z2), (tr(E))2 =

1

4

α4

l4x
(y2 + z2)2,

e=
1

2


0 α

lx
(z cos( α

lx
x)− y sin( α

lx
x)) α

lx
(−y cos( α

lx
x)− z sin( α

lx
x))

α
lx

(z cos( α
lx
x)− y sin( α

lx
x)) 2(cos( α

lx
x)− 1) 0

α
lx

(−y cos( α
lx
x)− z sin( α

lx
x)) 0 2(cos( α

lx
x)− 1)

 ,

||e||2 = 2(cos(
α

lx
x)− 1)2 +

α2

2l2x
(y2 + z2), (tr(e))2 = 4(cos(

α

lx
x)− 1)2.

3.2.3 Energy densities

The different density models can be expressed as

WNH(F) =C1
α2

l2x
(y2 + z2), (3.7)

WSV K(F) =(µ+
λ

2
)
α4

4l4x
(y2 + z2)2 + µ

α2

2l2x
(y2 + z2), (3.8)

WH(F) =(2µ+ 2λ)(cos(
α

lx
x)− 1)2 + µ

α2

2l2x
(y2 + z2). (3.9)

For the density models, similarly as for the deformation gradient, α → 0 should

indicate that the cuboid domain Ω does not deform. This is reflected in the values of

densities which satisfy WNH → 0,WSV K → 0,WH → 0 for α → 0. The density values

are visualized for angles α = 2π in Fig. 3.7 and α = 4π in Fig. 3.8.
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(a) NH density for α = 2π

(b) SVK density for α = 2π

(c) H density for α = 2π

Figure 3.7: The values of the Neo-Hookean densities, the Saint Venant-Kirchhoff densities
and the linear elasticity densities visualized for the angle α = 2π.

The energy functional for different density models reads (detailed evaluations of in-

tegrals are omitted):

JNH(v) = C1(
α

lx
)2

∫
Ω

(y2 + z2) dx =
C1α

2

12lx
(l3ylz + lyl

3
z), (3.10)

JSV K(v) =(µ+
λ

2
)
α4

4l4x

∫
Ω

(y2 + z2)2 dx +
µα2

2l2x

∫
Ω

(y2 + z2) dx =

=(µ+
λ

2
)
α4lylz

4l3x
(
l4y
80

+
l2yl

2
z

72
+
l4z
80

) + µ
α2lylz
24lx

(l2y + l2z),

(3.11)
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JH(v) =(2µ+ 2λ)

∫
Ω

(cos(
α

lx
x)− 1)2 dx + µ

α2

2l2x

∫
Ω

(y2 + z2) dx =

=(2µ+ 2λ)lxlylz(
1

4α
sin(2α)− 2

α
sin(α) +

3

2
) + µ

α2lylz
24lx

(l2y + l2z).

(3.12)

(a) NH density for α = 4π

(b) SVK density for α = 4π

(c) H density for α = 4π

Figure 3.8: The values of the Neo-Hookean densities, the Saint Venant-Kirchhoff densities
and the linear elasticity densities visualized for the angle α = 4π.
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3.2.4 Evaluation of exact and approximate energies

The approximate values of energy functional can be computed numerically using [5] and

the exact values are computed in (3.10), (3.11) and (3.12) with the help of Code - Matlab

4 and 5.

◦ The energy functional values for the Neo-Hookean density model.

mesh level α = 2π α = 4π
1 24,666.362864 99,346.942080
2 15,379.611952 61,504.398878
3 13,072.405018 52,274.515304
4 12,496.509502 49,981.536171
5 12,352.592280 49,409.198291
∞ 12,304.624909 49,218.499638

◦ The energy functional values for the Saint Venant-Kirchhoff density model.

mesh level α = 2π α = 4π
1 25,060.703942 105,563.672992
2 15,675.087145 66,217.204313
3 13,316.675712 56,179.830149
4 12,726.320289 53,657.799967
5 12,578.684365 53,026.497315
∞ 12,529.468205 52,815.992372

◦ The energy functional values for the linear elasticity density model.

mesh level α = 2π α = 4π
1 9,774,817.690771 9,828,032.699710
2 9,770,634.468914 9,811,655.726785
3 9,769,586.638993 9,807,529.372266
4 9,769,324.554882 9,80,6495.770146
5 9,769,259.025938 9,806,237.243671
∞ 9,769,237.182253 9,806,151.056981

Figure 3.9: The comparison of exact energies.
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The comparison of exact energy densities is illustrated in Fig. 3.9 for angles α ∈
(0, 4π] with the help of Code - Matlab 2 and 3. The values of J(v) are shown on a

logarithmic scale, since the values of the linear elasticity energy reach high values in

comparison to the other energies.

Remark 9 Similarly as in the previous example, the linear elasticity model is shown

only for illustrative purposes.

3.3 Deformation into a hourglass

This section focuses on examples of physically unrealistic deformations, therefore the

computation of strain tensors, densities and the evaluation of exact and approximate

energies are omitted. The deformation gradient and the determinant of the deformation

gradient and their significance is discussed.

The layers of the cuboid domain Ω are colored to illustrate how the material deforms

(see Fig. 3.10).

Figure 3.10: The coloured cuboid domain to show how the material deforms.

3.3.1 Hourglass: type 1

The deformation of a cuboid domain Ω is prescribed by the deformation mapping v(x):

v(1)(x, y, z) =x,

v(2)(x, y, z) =y,

v(3)(x, y, z) =(−2x

lx
+ 1)z.

Figure 3.11: Deformation into hourglass: type 1.
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The deformation represents an unrealistic deformation, where the material changes

its orientation at x = lx
2

(see Fig. 3.11).

Deformation gradient and determinant

The deformation gradient is expressed as

F(v) =


1 0 0

0 1 0

−2z
lx

0 −2x
lx

+ 1

 .

The determinant of the deformation gradient is

det(F) = −2x

lx
+ 1.

The determinant changes the sign for x = lx
2

, therefore the deformation for x > lx
2

does

not preserve the orientation of the material. Furthermore, for x = lx
2

det(F) = 0,

which signifies that the material is compressed to a single line (see Fig. 3.12).

Figure 3.12: Values of determinant.

3.3.2 Hourglass: type 2

The deformation of a cuboid domain Ω is prescribed by the following deformation map-

ping v(x):

v(1)(x, y, z) =x,

v(2)(x, y, z) =(−2x

lx
+ 1)y,

v(3)(x, y, z) =(−2x

lx
+ 1)z.
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Deformation gradient and determinant

The deformation gradient can be expressed as

F(v) =


1 0 0

−2y
lx
−2x

lx
+ 1 0

−2z
lx

0 −2x
lx

+ 1


The determinant of the deformation gradient is

det(F) = (−2x

lx
+ 1)2 ≥ 0 ∀x, lx.

For x = lx
2

det(F) = 0,

which signifies a case of an unrealistic deformation, where the material is compressed to

a single point (see Fig. 3.13).

Figure 3.13: The values of determinant.
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Chapter 4

Conclusion

Within the thesis we introduced the key concepts of continuum mechanics and suc-

cessfully demonstrated them in practical examples that were specifically developed to

support the aspects of the theoretical part from Chapter 2. The examples were ex-

tensively provided with elaborate computations and visualizations. All computations

were calculated in an analytical manner and the values of elastic energy functional were

compared to the corresponding numeric solution.

Own Matlab codes were developed and used for visualizations and computations.

Also other Matlab codes [5] were used and adjusted for the same purposes. The codes

were listed and described in the Appendix.

Forthcoming works might also incorporate the concepts and calculations of stress and

energy minimizers of materials.
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Appendix

In this part we will show and describe the codes used in Chapter 2 and Chapter 3 to

visualize deformations, corresponding values of deformation gradients, density models

and energy functionals. As well the codes to numerically evaluate the values are listed.

Some own codes were developed specifically for the thesis and are shown in the Section

A. The other codes in Section B represent parts of codes that replace corresponding parts

of codes provided in [5].

All codes were performed in Matlab numeric computing environment [4]

A New own codes

The following Code - Matlab 1 illustrates the deformation of a sphere into an ellipsoid

seen in Chapter 2, Example 1.

Code - Matlab 1: A deformation of a sphere into an ellipsoid.

1 c l o s e a l l

2 theta=l i n s p a c e (0 , pi , 4 0 ) ; phi=l i n s p a c e (0 ,2∗ pi , 4 0 ) ;

3 [ theta , phi ]= meshgrid ( theta , phi ) ;

4 x0=0; y0=0; z0 =0; r =1;

5 X=x0+r .∗ cos ( phi ) .∗ s i n ( theta ) ; %s p h e r i c a l c oo rd ina t e s

6 Y=y0+r .∗ s i n ( phi ) .∗ s i n ( theta ) ;

7 Z=z0+r .∗ cos ( theta ) ;

8 s u r f (X,Y, Z)

9 a x i s on ; a x i s t i g h t ;

10 x l a b e l ( ’ x ’ ) ; y l a b e l ( ’ y ’ ) ; z l a b e l ( ’ z ’ ) ; a x i s image ;

11 s e t ( get ( gca , ’ z l a b e l ’ ) , ’ r o t a t i on ’ , 0 )

12 hold on

13 x1=4; y1=0; z1 =0; rx = 2 . 5 ; ry = 1 ; rz = 1 ;

14 X= x1+rx ∗(X−x0 ) ; %mapping in to an e l l i p s o i d

15 Y = y1+ry ∗(Y−y0 ) ;

16 Z = z1+rz ∗(Z−z0 ) ;

17 s u r f (X,Y, Z)

18 hold o f f

19 view ( −25 ,16)
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The values of energies to graphically compare the Neo-Hookean, the Saint Venant-

Kirchhoff and the linear elasticity density models of the deformation into a partial and

a whole toroid are computed by using the trapezoidal rule in Code - Matlab 2

Code - Matlab 2: A comparison of the energy values - a toroid deformation.

1 c l o s e a l l

2 l x =0.2 ; l y =0.01; l z=ly ; % cuboid geometry

3 E = 190 e9 ; nu = 0 . 2 7 ; % mate r i a l parameters f o r s t e e l

4 mu=E/(2∗(1+nu) ) ; lambda=E∗nu/((1+nu) ∗(1−2∗nu) ) ;

5 K= E/(3∗(1 −2∗nu) ) ; C 1=mu/2 ; D 1=K/2 ;

6 nx=50; ny=50; nz=ny ; % d i s c r e t i z a t i o n

7 xx=l i n s p a c e (0 , lx , nx ) ; yy=l i n s p a c e (− l y /2 , l y /2 , ny ) ; zz=yy ;

8 [XX,YY, ZZ]= meshgrid ( xx , yy , zz ) ;

9 a lphas=l i n s p a c e (0 ,2∗ pi , 1 00 ) ; % sequence o f alpha parameters

10 f o r i =1:numel ( a lphas )

11 alpha=alphas ( i ) ;

12 a l=alpha / lx ; % new v a r i a b l e

13 % d e n s i t i e s − formulas ( 3 . 1 ) , ( 3 . 2 ) , ( 3 . 3 ) from bc t h e s i s

14 W NH=@(x , y , z ) C 1 ∗ ( ( z∗ a l +1).ˆ2−1−2∗ l og ( z∗ a l +1) )+D 1∗( z∗ a l ) . ˆ 2 ;

15 W SVK=@(x , y , z ) (mu+lambda /2) /4∗ ( ( z∗ a l +1) .ˆ2 −1) . ˆ 2 ;

16 W H=@(x , y , z ) mu∗ ( ( ( z∗ a l +1) .∗ cos ( a l ∗x ) −1) . ˆ2 . . .

17 +(cos ( x∗ a l ) −1) .ˆ2+1/2∗( z∗ a l .∗ s i n ( x∗ a l ) ) . ˆ 2 ) . . .

18 +lambda /2∗ ( ( z∗ a l +2) .∗ cos ( a l ∗x ) −2) . ˆ 2 ;

19 % numerica l i n t e g r a l s us ing t r a p e z o i d a l r u l e in 3 dimensions

20 J NH( i )=trapz ( zz , t rapz ( yy , t rapz ( xx ,W NH(XX,YY, ZZ) ) ) ) ;

21 J SVK( i )=trapz ( zz , t rapz ( yy , t rapz ( xx ,W SVK(XX,YY, ZZ) ) ) ) ;

22 J H ( i )=trapz ( zz , t rapz ( yy , t rapz ( xx ,W H(XX,YY, ZZ) ) ) ) ;

23 end

24 semi logy ( alphas , J NH , ’− ’ , a lphas , J SVK , ’− ’ , a lphas , J H , ’− ’ , ’ LineWidth ’ , 2 )

25 x l a b e l ( ’\ a lpha ’ ) ; y l a b e l ( ’ J (\ a lpha ) ’ ) ;

26 l egend ( ’NH’ , ’SVK’ , ’H’ , ’ Locat ion ’ , ’ nor thwes t ’ )

To graphically compare the energies for the deformation into a twist the line 9 from the

previous code:

’alphas=linspace(0,2*pi,100);’ is changed to ’alphas=linspace(0,4*pi,100);’, and

the lines 13− 18 are substituted by Code - Matlab 3.

Code - Matlab 3: Densities for a twist.

1 % d e n s i t i e s − formulas ( 3 . 7 ) , ( 3 . 8 ) , ( 3 . 9 ) from bc t h e s i s

2 W NH=@(x , y , z ) C 1∗ a l ˆ2∗( y.ˆ2+ z . ˆ 2 ) ;

3 W SVK=@(x , y , z ) (mu+lambda /2) /4∗ a l ˆ4∗( y.ˆ2+ z . ˆ 2 ) .ˆ2+mu/2∗ a l ˆ2∗( y.ˆ2+ z . ˆ 2 ) ;

4 W H=@(x , y , z ) (2∗mu+2∗lambda ) ∗( cos ( a l ∗x ) −1).ˆ2+mu/2∗ a l ˆ2∗( y.ˆ2+ z . ˆ 2 ) ;

To evaluate the exact energy values for a deformation into a toroid Code - Matlab 4 is

used, where the values are further verified by using the symbolic computing. The line 6:

’alpha=2*pi;’ can be replaced by a different choice of the angle α, e.g. ’alpha=pi/2;’.
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Code - Matlab 4: Exact energy values for a toroid.

1 c l o s e a l l

2 l x =0.2 ; l y =0.01; l z=ly ; % cuboid geometry

3 E = 190 e9 ; nu = 0 . 2 7 ; % mate r i a l parameters f o r s t e e l

4 mu=E/(2∗(1+nu) ) ; lambda=E∗nu/((1+nu) ∗(1−2∗nu) ) ;

5 K= E/(3∗(1 −2∗nu) ) ; C 1=mu/2 ; D 1=K/2 ;

6 alpha=2∗pi ; % angle o f d e f l e c t i o n − given

7 a l=alpha / lx ; % abbrev i a t i on

8 % der ived e n e r g i e s ( 3 . 4 ) , ( 3 . 5 ) , ( 3 . 6 )

9 J NH=C 1∗ l x ∗ l y ∗( a l ˆ2∗ l z ˆ3/12+2∗ l z −2∗( l x / alpha+l z /2) ∗ l og (1+ l z ∗ a l /2) . . .

10 +2∗( l x /alpha−l z /2) ∗ l og (1− l z ∗ a l /2) )+D 1∗ alpha ˆ2∗ l y ∗ l z ˆ3/12/ lx

11 J SVK=ly /4∗(mu+lambda /2) ∗ ( ( alpha ) ˆ4∗ l z ˆ5/(80∗ l x ˆ3)+(alpha ) ˆ2∗ l z ˆ3/(3∗ l x ) )

12 J H=mu∗ l x ∗ l y ∗ l z ∗ ( ( a l ˆ2∗ l z ˆ2/48+1/4) ∗(1/ alpha ∗ s i n (2∗ alpha ) +2) . . .

13 −4/alpha ∗ s i n ( alpha ) +5/2+1/4/alpha ∗ s i n (2∗ alpha ) . . .

14 +a l ˆ2∗ l z ˆ2/48∗(1−1/2/ alpha ∗ s i n (2∗ alpha ) ) ) . . .

15 +lambda/2∗ l x ∗ l y ∗ l z ∗ ( ( a l ˆ2∗ l z ˆ2/48+1) ∗(1/ alpha ∗ s i n (2∗ alpha ) +2) . . .

16 −8/alpha ∗ s i n ( alpha ) +4)

17 %v e r i f i c a t i o n o f e n e r g i e s above us ing formulas ( 3 . 1 ) , ( 3 . 2 ) , ( 3 . 3 )

18 W NH=@(x , y , z ) C 1 ∗ ( ( z∗ a l +1).ˆ2−1−2∗ l og ( z∗ a l +1) )+D 1∗( z∗ a l ) . ˆ 2 ;

19 W SVK=@(x , y , z ) (mu+lambda /2) /4∗ ( ( z∗ a l +1) .ˆ2 −1) . ˆ 2 ;

20 W H=@(x , y , z ) mu∗ ( ( ( z∗ a l +1) .∗ cos ( a l ∗x ) −1) . ˆ2 . . .

21 +(cos ( x∗ a l ) −1) .ˆ2+1/2∗( z∗ a l .∗ s i n ( x∗ a l ) ) . ˆ 2 ) . . .

22 +lambda /2∗ ( ( z∗ a l +2) .∗ cos ( a l ∗x ) −2) . ˆ 2 ;

23 %symbol ic computing

24 syms x y z

25 expr NH=W NH(x , y , z ) ;

26 expr SVK=W SVK(x , y , z ) ;

27 expr H=W H(x , y , z ) ;

28 J NH comp=double ( i n t ( i n t ( i n t ( expr NH , z ,[ − l z /2 l z / 2 ] ) , y ,[ − l y /2 ly / 2 ] ) , . . .

29 x , [ 0 l x ] ) )

30 J SVK comp=double ( i n t ( i n t ( i n t ( expr SVK , z ,[ − l z /2 l z / 2 ] ) , y ,[ − l y /2 ly / 2 ] ) , . . .

31 x , [ 0 l x ] ) )

32 J H comp=double ( i n t ( i n t ( i n t ( expr H , z ,[ − l z /2 l z / 2 ] ) , y ,[ − l y /2 ly / 2 ] ) , . . .

33 x , [ 0 l x ] ) )

To evaluate the exact energy values for a deformation into a twist the following changes

are made in Code - Matlab 4. The lines 8-16 are replaced by Code - Matlab 5 and the

lines 17-22 by Code - Matlab 3.

Code - Matlab 5: Derived energies for a twist.

1 % der ived e n e r g i e s ( 3 . 1 0 ) , ( 3 . 1 1 ) , ( 3 . 1 2 )

2 J NH=C 1∗ alpha ˆ2/12/ lx ∗( l y ˆ3∗ l z+ly ∗ l z ˆ3)

3 J SVK=(mu+lambda /2) ∗ alpha ˆ4∗ l y ∗ l z /4/ lx ˆ3∗( l y ˆ4/80+ ly ˆ2∗ l z ˆ2/72+ l z ˆ4/80) . . .

4 +mu∗ alpha ˆ2∗ l y ∗ l z /24/ lx ∗( l yˆ2+ l z ˆ2)

5 J H=(2∗mu+2∗lambda ) ∗ l x ∗ l y ∗ l z ∗(1/4/ alpha ∗ s i n (2∗ alpha ) . . .

6 −2/alpha ∗ s i n ( alpha ) +3/2)+mu∗ alpha ˆ2∗ l y ∗ l z /24/ lx ∗( l yˆ2+ l z ˆ2)
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B Interpreted codes

The codes in this subsection represent the adjustments which were made in codes pro-

vided in [5], more specifically only the folder ’benchmark2 3D elasticity’ is used.

The values of the material parameters E and ν are changed to the values correspond-

ing to steel. The change is made in the code ’benchmark2 setup.m’.

Code - Matlab 6: Material parameters.

1 E = 190 e9 ; nu = 0 . 2 7 ;

The examples use a different reference configuration Ω than the configuration used in

[5], thus the proportions of Ω are adjusted in ’setup project and subproject 3D.m’

from the subfolder ’setups’ (see Code - Matlab 7).

Code - Matlab 7: Proportions of Ω.

1 params . l x = 0 . 2 ; params . l y = 0 . 0 1 ; params . l z = 0 . 0 1 ;

B.1 Codes for deformations

In the Matlab codes the angle α is represented by ’alpha max’. For example, sup-

pose that ’alpha max=pi/2∗turning’ and ’alpha max=2∗pi∗turning’ correspond

to α = π
2

and α = 2π, respectively. The following codes represent the changed parts in

’benchmark2.m’, which replace the lines in Code - Matlab 8.

Code - Matlab 8: A deformation into a twist.

1 turn ing = 1 ; alpha max = pi /2∗ turn ing ; l x = params . l x ;

2 f 1 = @(x , y , z ) x ;

3 f 2 = @(x , y , z ) cos ( alpha max∗x/ lx ) .∗ y + s i n ( alpha max∗x/ lx ) .∗ z ;

4 f 3 = @(x , y , z ) −s i n ( alpha max∗x/ lx ) .∗ y + cos ( alpha max∗x/ lx ) .∗ z ;

The homogeneous deformation from Chapter 2, Example 2 can be depicted with Code -

Matlab 9.

Code - Matlab 9: A homogeneous deformation.

1 sx =3/2; sy =1; sz =1; x2=0; y2=0; z2 =1;

2 f 1 = @(x , y , z ) sx∗x+x2 ;

3 f 2 = @(x , y , z ) sy∗y+y2 ;

4 f 3 = @(x , y , z ) sz ∗z+z2 ;

The deformation into a partial toroid, e.g. for ’alpha max=pi/2∗turning’, and a

whole toroid, for ’alpha max=2∗pi∗turning’, is defined in Code - Matlab 10.
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Code - Matlab 10: A deformation into a partial and a whole toroid.

1 turn ing = 1 ; alpha max = pi /2∗ turn ing ; l x = params . l x ;

2 f 1 = @(x , y , z ) ( z+lx /alpha max ) .∗ s i n ( alpha max∗x/ lx ) ;

3 f 2 = @(x , y , z ) y ;

4 f 3 = @(x , y , z ) ( z+lx /alpha max ) .∗ cos ( alpha max∗x/ lx )−l x /alpha max ;

The deformation into a hourglass: type 1 is described in Code - Matlab 11 and the

deformation into a hourglass: type 2 in Code - Matlab 12.

Code - Matlab 11: A deformation into a hourglass: type 1.

1 l x = params . l x ;

2 f 1 = @(x , y , z ) x ;

3 f 2 = @(x , y , z ) y ;

4 f 3 = @(x , y , z ) z .∗( −2∗x/ lx +1) ;

Code - Matlab 12: A deformation into a hourglass: type 2.

1 l x = params . l x ;

2 f 1 = @(x , y , z ) x ;

3 f 2 = @(x , y , z ) y .∗( −2∗x/ lx +1) ;

4 f 3 = @(x , y , z ) z .∗( −2∗x/ lx +1) ;

B.2 Codes for different density models

Other changes are made in ’densityGradientVector.m’ to evaluate and illustrate the

values of the different density models. The part in Code - Matlab 13 is replaced by the

following codes depending on the density model.

Code - Matlab 13: Neo-Hookean density model.

1 % determinant term

2 J = F{1 ,1} .∗F{2 ,2} .∗F{3 ,3} + F{1 ,3} .∗F{2 ,1} .∗F{3 ,2} + . . .

3 F{1 ,2} .∗F{2 ,3} .∗F{3 ,1} − F{1 ,3} .∗F{2 ,2} .∗F{3 ,1} − . . .

4 F{1 ,2} .∗F{2 ,1} .∗F{3 ,3} − F{1 ,1} .∗F{2 ,3} .∗F{3 ,2} ;

5 % tr ac e term

6 I = F{1 ,1} . ˆ2 + F{1 ,2} . ˆ2 + F{1 ,3} . ˆ2 + . . .

7 F{2 ,1} . ˆ2 + F{2 ,2} . ˆ2 + F{2 ,3} . ˆ2 + . . .

8 F{3 ,1} . ˆ2 + F{3 ,2} . ˆ2 + F{3 , 3} . ˆ 2 ;

9 % d e n s i t i e s

10 d e n s i t i e s = params . C1∗( I −3 −2∗ l og ( J ) ) + params . D1∗( J −1) . ˆ 2 ;

The linear elasticity density model is shown in Code - Matlab 14.

Code - Matlab 14: Linear elasticity density.

1 eNormSq=(F{1 ,1}−1) .ˆ2+(F{2 ,2}−1) .ˆ2+(F{3 ,3}−1) . ˆ 2 + . . .

2 (1/2) ∗ ( (F{1 ,2}+F{2 ,1}) .ˆ2+(F{1 ,3}+F{3 ,1} ) .ˆ2+(F{2 ,3}+F{3 ,2} ) . ˆ 2 ) ;

3 eTraceSq=(F{1 ,1}+F{2 ,2}+F{3 ,3}−3) . ˆ 2 ;

4 d e n s i t i e s =(params .mu) ∗eNormSq+1/2∗(params . lambda ) ∗ eTraceSq ;
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The code for the Saint Venant-Kirchhoff model is shown in Code - Matlab 15.

Code - Matlab 15: Saint Venant-Kirchhoff density.

1 ENormSq=(1/4) ∗ ( (F{1 ,1} .ˆ2+F{2 ,1} .ˆ2+F{3 ,1} .ˆ2 −1) . ˆ 2 + . . .

2 (F{1 ,2} .ˆ2+F{2 ,2} .ˆ2+F{3 ,2} .ˆ2 −1) . ˆ 2 + . . .

3 (F{1 ,3} .ˆ2+F{2 ,3} .ˆ2+F{3 ,3} .ˆ2 −1) . ˆ 2 ) + . . .

4 (1/2) ∗ ( (F{1 ,1} .∗F{1 ,2}+F{2 ,1} .∗F{2 ,2}+F{3 ,1} .∗F{3 ,2} ) . ˆ 2 + . . .

5 (F{1 ,1} .∗F{1 ,3}+F{2 ,1} .∗F{2 ,3}+F{3 ,1} .∗F{3 ,3} ) . ˆ 2 + . . .

6 (F{1 ,2} .∗F{1 ,3}+F{2 ,2} .∗F{2 ,3}+F{3 ,2} .∗F{3 ,3} ) . ˆ 2 ) ;

7 ETraceSq =(1/4) ∗(F{1 ,1} .ˆ2+F{1 ,2} .ˆ2+F{1 , 3} . ˆ 2 + . . .

8 F{2 ,1} .ˆ2+F{2 ,2} .ˆ2+F{2 , 3} . ˆ 2 + . . .

9 F{3 ,1} .ˆ2+F{3 ,2} .ˆ2+F{3 ,3} .ˆ2 −3) . ˆ 2 ;

10 d e n s i t i e s =(params .mu) ∗ENormSq+1/2∗(params . lambda ) ∗ETraceSq ;
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