
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

TEST SUITE OF THE EAS FRAMEWORK
TESTOVACIA SADA FRAMEWORKU EAS

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JULIA MAZÁKOVA
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2023

VYSGKÉ UČENÍ FAKULTA B
j TECHNICKÉ INFORMAČNÍCH

' V BRNĚ TECHNOLOGIÍ I

Z a d á n í b a k a l á ř s k é p r á c e
146849

Ustav: Ustav inteligentních systémů (UITS)

Studentka: Mazákova Júl ia

Program: Informační technologie

Specializace: Informační technologie

Název: Testovací sada f rameworku EAS

Kategorie: Analýza a testování softwaru

Akademický rok: 2022/23

Zadání:

1. Nastudujte testování softwaru a jeho automatizace. Zaměřte se převážně na nižší úrovně
testování dle V-modelu. Seznamte se s frameworkem EAS pro tvorbu webových aplikací.

2. Analyzujte současný stav ověřování kvality frameworku EAS. Navrhněte přístup k testování
frameworku EAS s ohledem na pokrytí kritických částí softwaru a dovednosti vývojového týmu.

3. Navrhněte testovací případy. Implementujte automatickou testovací sadu, klaďte důraz na
udržitelnost a rozšiřitelnost testovací sady.

4. Vyhodnoťte implementovanou testovací sadu.

Literatura:
• IEEE/ISO/IEC 29119-4-2021 International Standard - Software and systems engineering-

Software testing-Part 4: Test techniques

Podrobné závazné pokyny pro vypracování práce viz https://www.fit.vut.cz/study/theses/

Vedoucí práce:

Vedoucí ústavu:

Datum zadání:

Termín pro odevzdání:

Datum schválení:

Smrčka Aleš, Ing., Ph.D.

Hanáček Petr, doc. Dr. Ing.

1.11.2022

10.5.2023

3.11.2022

Fakulta informačních technologií, Vysoké učení technické v Brně / Božetěchova 1/2 / 612 66 / Brno

https://www.fit.vut.cz/study/theses/

Abstract
This work focuses on the software testing of the system with an emphasis on lower layers of
testing, which includes unit and integration testing. The primary objective is to showcase
the testing process using the E A S (Effective Agenda System) framework, starting with
the test plan process followed by the creation of the final test suite that will evaluate the
performance of the system's backend microservices. This test suite covers a significant part
of the system's functionality. The results are stored and analyzed in the final test report.
Performed analysis of the system and the final suite serve as valuable assets in the context
of testing.

Abstrakt
Toto dielo sa zameriava na softvérové testovanie systému s dôrazom na nižšie vrstvy testo­
vania, ktoré zahŕňajú testovanie jednotlivých komponent a integráciu. Hlavným cieľom je
demonštrovať proces testovania na E A S (Efektívny Agendový Systém), začínajúc pláno­
vaním testov a následne vytvorením konečnej testovacej sady, ktorá vyhodnocuje výkon
mikroslužieb systému. Táto testovacia sada pokrýva významnú časť funkcionality systému.
Výsledky sú zobrazené a analyzované vo vygenerovanej testovacej správe. Analýza systému
a konečný report slúžia ako cenný nástroj v rámci testovania.

Keywords
software testing, automation, E A S framework, Test Driven Development, microservice ar­
chitecture, V-model in testing, reporting, unit testing, integration testing

Kľúčové slová
testovanie sofvéru, automatizácia, E A S systém, programovanie riadené testami, architek­
túra mikroslužieb, testovanie podľa V-modelu, správa z testovania, unit testy, integračné
testy

Reference
MAZÁKOVA, Julia. Test Suite of the EAS Framework. Brno, 2023. Bachelor's thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Aleš
Smrčka, Ph.D.

Rozšírený abstrakt
Táto práca sa zaoberá softverovým testovaním a jeho automatizáciou, so zameraním na
nižšie vrstvy testovania, ako je testovanie komponent a integračné testovanie. Pre účel
demonštrácie je proces testovania popísaný na konkrétnom informačnom systéme. Už z
názvu práce vyplýva, že sa jedná o E A S alebo Efektívny Agendový Systém od firmy InQool.
Tento systém je založený na bázi mikroslužbovej architektúry a slúži pre tvorbu webových
aplikácií .

Úvod práce popisuje teóriu potrebnú k otestovaniu tohto systému, so zameraním na
automatické testy, programovanie riadené testovaním, testy komponentov a integračné testy.
Taktiež sú popísané rozličné metódy testovania a nástroje, ktoré sú použité v samotnej
implementácii testovacej sady.

Nasledujúca časť sa venuje analýze testovaného systému. Vlastnosti tohto systému
prinášajú určité riziká a špecifické požiadavky na testovanie. Architektúra tohto systému
prináša oproti klasickému monolitickému riešeniu veľa výhod, ale zároveň zvyšuje kom­
plexnosť riešenia, ktoré sa odráža aj na testovaní. Pre testovanie je potrebné poznať všetky
aspekty daného systému, odhadnúť najväčšie riziká a na ich základe navrhnúť mitigačné
plány. Dôležitý je taktiež aj stav testovania systému v čase analýzy, ktorý bude slúžiť ako
základ pre ďalšie testovanie. Tento stav odráža aj skúsenosti a zvyklosti vývojového tímu,
potrebné k nastaveniu správneho postupu testovania.

Na základe prevedenej analýzy je následne vytvorený štandardný testovací plán, ob­
sahujúci základné časti, akými sú testovacie položky, kritéria, riziká spojené s testovaním a
ďalšie. Automatizácia testov nie je vždy výhodným riešením a pred testovaním je potrebné
vykonať analýzu nákladov a prínosov.

Implementačná časť sa skladá z dvoch hlavných častí a popisuje všetky nástroje využité
počas testovania, metódy použité pri testovaní už existujúceho kódu a praktiky, či konvencie
dodržiavané pri testovaní pre zlepšenie kvality a prehľadnosti testov.

V prvej implementačnej časti sa testuje už existujúci kód. Keďže sa jedná o mikroslužby,
objavuje sa v tejto časti problém so závislosťami. Pre správne testovanie komponentov je
potrebné čo najviac izolovať kód. Pre tento účel sa používajú techniky ako extrakcia metód
či vkladanie závislostí. Dôležitým výstupom tejto časti je testovacia sada testov kompo­
nentov, ktorá slúži primárne na overenie funkčnosti E A S . P r i vytváraní nových mikroservis
úspešné spustenie tejto sady indikuje, že nový kód nepoškodil existujúci funkčný kód. Táto
sada má významnú rolu pri regresnom testovaní. Okrem toho sa vytvárajú aj integračné
testy, ktoré simulujú produkčné prostredie.

Druhá čast implementácie sa zaoberá postupom pri vytváraní nových mikroservis. Pro­
gramovanie riadené testami zaručuje vysoké pokrytie kódu a celkové zlepšenie kvality. Táto
časť obsahuje praktickú ukážku tohto procesu, obsahujúcu všetky časti od dizajnu prvot­
ných testov až po plnú funkcionalitu výslednej mikroslužby.

Záver tejto práce skúma získané metriky a reporty z testovacej sady a zvýšenie pokrytia
testov mikroslužieb E A S . Táto práca zvyšuje kvalitu testovania tohto systému, no kvôli
komplexnosti systému pokrýva len časť testovania. Preto by tá to práca mala slúžiť ako
podklad pre ďalšie testovanie E A S pri testovaní vyšších vrstiev V-modelu.

T e s t S u i t e o f t h e E A S F r a m e w o r k

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Ales Smrcka, Ph.D. I have listed all the literary sources,
publications, and other sources, which were used during the preparation of this thesis.

Júlia Mazákova
May 8, 2023

Acknowledgements
I would like to express my gratitude towards my supervisor Ing. Ales Smrcka, Ph.D. for
his guidance, valuable tips, and expert consultations about this work. I would also like to
thank my family for their support and encouragement.

Contents

1 Introduction 4

2 Testing and Development Methodologies for Microservices 5
2.1 Testing 5
2.2 V-model in Software Testing 6
2.3 Types of Testing 6
2.4 Test Driven Development 11
2.5 Testing Tools 11
2.6 Microservice Architecture 13

3 Selected System Under Test 15
3.1 About E A S 15
3.2 Backend Microservices Specifications 16
3.3 Required Tools 17
3.4 Architecture of The System 17
3.5 Aspects of The System 18
3.6 Future Development 19
3.7 Current State of Testing E A S 19
3.8 Sensitive Aspects of E A S 21

4 Testing Strategy for Selected System Under Test 23
4.1 Test Items 23
4.2 Software Risk Issues 24
4.3 Features to Be Tested 24
4.4 Features Not to Be Tested 25
4.5 Test Approach 26
4.6 Pass/Fail criteria 26
4.7 Test Deliverables 26
4.8 Risks and Contingencies 27
4.9 Cost-Benefit Analysis 27

5 Implementation of Tests for Microservices in E A S 29
5.1 Used Tools 29
5.2 Test Data Management 30
5.3 Test Base 30
5.4 Testing Existing Code 31
5.5 Generating Test Report 32
5.6 Test Driven Development of Microservice 33

1

5.7 Final Test Suite 37
5.8 Automation of The Test Suite 37
5.9 Testing Best Practices 39

6 Test Evaluation and Future Planning 42
6.1 Test Metrics 42
6.2 Final Test Coverage 43

6.3 Future Testing Strategy 44

7 Conclusion 45

Bibliography 46

A Contents of the included storage media 50

B Overall test coverage before 51

2

List of Figures

2.1 V-Model in Software Testing 6
2.2 Comparison between Black and White Box Testing 7
2.3 Difference Between Narrow and Broad Integration Tests 9
2.4 Test Driven Development Cycle 11
2.5 U M L Diagram of XUnit ' s Architecture^] 12
2.6 Difference Between Monolithic Architecture and Microservices 14

3.1 E A S Architecture 16
3.2 Layered Jar Architecture 17
3.3 Inter-process Communication in Microservice Architecture [28] 18
3.4 Difference Between Single-tenancy and Multi-tenancy 19
3.5 Current Testing State of E A S 20
3.6 Domain Service Class Coverage 20
3.7 Test Report 21

4.1 Ratio Between Time and Cost of Manual and Automated Testing [11] . . . 28
4.2 SW Testing Reference Process [25] 28

5.1 E A S Test Management System 30
5.2 Test Driven Development Cycle 33
5.3 Initial Failed Tests 34
5.4 Service's Classes and Methods 36
5.5 Final Tests Passed 37
5.6 Continuous Integration Cycle [34] 39
5.7 DisplayName Annotation 41

6.1 Test Metrics 42
6.2 Overall Increase in Test Coverage 43
6.3 Test Coverage of Expression microservice 44

3

Chapter 1

Introduction

Microservice architecture is becoming increasingly popular and it is widely used by many
organizations. This architecture is beneficial in terms of improved scalability, modularity,
isolation of services, and ease of deployment and it also helps reduce overall costs.

To ensure that the system is reliable, secure, and meets all of the business requirements
it is necessary to test it properly. It is important to test if all of the services are functioning
as expected and that they can interact and communicate with each other. When defects
are detected, and subsequently fixed it contributes to the overall quality of the system.
The main goal of testing is to capture these defects as early as possible and hence save the
organization's time and money.

This can be done both manually and automatically. However, automation testing brings
its own benefits like running tests more quickly, often in parallel, more scenarios can be
tested, and decreasing the impact of human error. They can be run repeatedly to ensure
consistency. In a microservice architecture, automated testing ensures the reliability and
scalability of microservices with the help of many automated tools and techniques. It also
allows services to be tested in isolation. A very important part of testing is reports which
allow us to identify and analyze any potential problems.

A n example of a system using microservices is E A S , an internal system of the company
InQool. This thesis focuses on developing a testing suite for E A S microservices architecture.
The proposed suite enables developers to quickly and accurately assess their microservices
for potential errors, bugs, and other issues. The test suite mainly consists of unit tests and
integration tests to evaluate the functionality of microservices and their interactions with
other components of the system. After the suite is executed, detailed reports of the results
are generated so the developers and testers can easily identify and address any issues.

The next chapters provide an in-depth look into the fundamentals of testing terminology
with a special emphasis on Test-Driven Development and testing tools used to evaluate the
quality of the E A S . In the second half, the current status of the E A S is discussed and a
testing suite is introduced to analyze critical components of the system. At the very end,
the results of the testing suite are analyzed and discussed. This thesis is a valuable resource
for those who are involved in the testing process of the E A S .

4

Chapter 2

Testing and Development
Methodologies for Microservices

In this chapter, the term testing is introduced along with the different testing types, meth­
ods, and tools. This part also examines manual and automation testing, the differences
between them, and their benefits and disadvantages to the testing process. The concept of
test-driven development is also discussed in Section 2.4.

Lastly, the difference between monolithic and microservice architecture is introduced
in Section 2.6, as the type of architecture has a significant impact on the way testing is
approached.

2.1 Testing

There are many misconceptions about the term testing such as the belief that testing
ensures that the applications have no errors or that the program functions properly and it
does what it is supposed to do. However, the proper definition of testing is the process of
executing a program with the intent of finding errors. [17]

This process consists of many different activities like designing, planning, executing,
and analyzing results, as well as other activities such as reporting test progress and results.
It is desired to find errors as early in the development process as possible which results in
decreasing the costs used for fixing defects. [10]

Another misconception about testing is that testing is only focused on the verification
of the product. Even though the process is based on requirements or other specifications,
it also involves checking if the final product meets the stakeholder's needs while using the
product. This process is called validation. [10]

Testing is not only a technical task but it also leans on a proper knowledge of testing
and attitude. Tester's individual aspects, skills and methods used for testing have a strong
effect on the results of testing. Nowadays it seems to be less common to execute testing by
the thoroughly documented test-case-based process. Increasingly, the experience and skill
of the tester come into consideration. [13]

Testing every combination of input and output of the product is impossible and ex­
hausting even with relatively small applications. Therefore, it is important to choose wise
testing methods and techniques to achieve an almost bug-free state. [17]

5

At the same time, to ensure the most efficient approach, it is cruciai to properiy select
the most suitabie parts of the application to be tested, aiso commoniy referred to as SUT
(System under test). []

Testing tools in general and also concepts of specific testing tools used in this work are
described in Section 2.5.

2.2 V-model in Software Testing

V-model serves as a general development test model. It divides the system development
into several layers each with a corresponding test process. [2G] V-model is displayed in
Figure 2.1.

V-model was created to combat the notion of testing the product at the end of its life
cycle. Defects being found way too late in the process resulted in poor quality of the final
product, hence, wasting resources and high costs. [10]

There are many activities to be carried out before the coding phase is over, such as
finding defects in the test basis documents. A good practice of involving testers involved as
early as possible is what makes V-model a powerful tool for ensuring high-quality products.
A common variant of V-model includes four different test levels, which are component
testing, integration testing, system testing, and acceptance testing. [10]

Even though V-model is ensuring the testing is executed on several layers and hap­
pens as soon as possible in the life cycle, the biggest portion of testing comes after code
realization. [10]

This approach is the opposite of the Test-driven development described in Section 2.4.

Verification Validation

Requirement Acceptance
Gathering Testing

Module
Design

System System
Analysis Testing

z
Software Integration

Design Testing

/
Unit Testing

Coding

Figure 2.1: V-Model in Software Testing

2.3 Types of Testing

Tests can be divided into different types based on their requirements, levels, design tech­
niques, execution, system structure and accessibility, and many more. [10]

(i

Test levels are describing typical objects, targets of testing, related work products,
testers, types of defects, and failures. On the other hand, test types define the targets of
testing, since it helps focus on making and communicating decisions against test objectives
easier. [10]

Different levels and types of testing are introduced in the next parts.

2.3.1 White Box and Black Box Testing
White-box and Black-box testing types divide tests based on the system's internal structure.
Wi th the White-box testing the tester needs to have access to the way the code is built,
and the database, but also know what the overall purpose of the product is. [17]

Black-box testing does not require access to the code. [17] The main difference between
these two approaches is displayed in Figure 2.2.

RESULT

TESTER

INPUT v

DATABASE

SOURCE CODE

INPUT v

DATABASE

SOURCE CODE
RESULT

DATABASE

SOURCE CODE
RESULT

DATABASE

SOURCE CODE

Figure 2.2: Comparison between Black and White Box Testing

2.3.2 Unit Testing

Unit (or module) testing validates the low-level design development phase according to the
V-model.

However, the term unit has a different meaning depending on the environment. [1] Unit
testing is a process of testing the individual subprograms, subroutines, classes, or procedures
in a program. [19]

As the name indicates, the goal of unit testing is to gain confidence that each part
functions properly. To ensure that each unit is truly independent, we must simulate the
behavior of dependencies, this can be done by mocking. [17]

Mocking

A n external dependency is an object interacting with the code under test and cannot be
controlled. [19]

Mocking is very useful when dependencies such as databases or web services are present.
They may slow down the execution, and be costly to properly set up. External dependencies
also require more control. Mocking helps to mitigate inefficient testing. The key challenge
with mocking is to decide whether mocking makes the process of testing easier or not. [1]

External dependencies may not be available all the time which could result in test errors.
This is where using mocks or stubs comes in useful. Mocking also ensures that when the

7

same test case is run in a new environment, all dependent external services can be called
normally. This adds to the overall ability to migrate. [15]

Many microservices are dependent on each other and therefore the problem of depen­
dency in microservice applications is present. To solve this problem controllable mock
technologies are used. Mock technologies create virtual objects that simulate other ob­
jects needed during testing. Microservice under test can obtain an expected result which
helps with isolating the test errors of this microservice due to the errors of other dependent
microservices. [15]

Code Coverage

To measure how much of the code is tested there are several metrics that can be calculated.
These metrics are also called code coverage. There are several criteria involved, as shown
in Table 2.1.

Coverage criteria Description
Function Coverage Has each function in the program been executed?
Statement Coverage Has each statement in the program been executed?
Condition Coverage Has each Boolean sub-expression been evaluated to both

true and false?
Branch Coverage Has each branch of the control structure been executed?
Class Coverage Has each class in the package been covered?

Table 2.1: Description of Code Coverage Criteria

2.3.3 Integration Testing

There are many testing approaches in microservice architecture systems. When we make
sure that each unit works as designed, higher-order or integration testing takes place. In­
tegration testing is one of the most important types of testing, as it verifies the proper
interaction through the entire interface both internally and externally .[31]

On the other hand, analyzing logs from different microservices and writing sufficient
test cases can be very difficult tasks. [31]

Moreover, integration tests increase the risk of testing too many things at the same
time. This can easily result in not knowing the root cause of the failure. [19]

Integration Test Types

Integration tests can be divided by granularity into narrow and broad integration tests. [31]
Narrow integration tests deal with the code that cooperates with another service while

mocking these outside services. They are very similar to unit tests in terms of scope. []
Broad integration tests test all of the code, not just the interaction one. It also requires

live versions of services and network access. [8]
For a better understanding of the difference between these two types, a visualization of

both integration testing types is displayed in Figure 2.3.

8

module module

microservicel

module module

microservice2 double

module module module module

microservicel

module module module module

microservice2

module module 9 module module

microservice3

Figure 2.3: Difference Between Narrow and Broad Integration Tests

Another criterion taken into account when dividing tests into subcategories is execution.
Based on the execution, testing can be divided into manual and automated testing.

2.3.4 Manual Testing

Manual testing is the basic way of testing the application by hand. Tester takes on the role
of a regular user of the final product and simulates the process of using the application. Its
reliability is affected by the possibility of human error but at the same time it cannot be
completely replaced by automation. [16]

Manually performing testing has the disadvantage of being more time-consuming in
terms of setting up and executing the tests. [2]

System-level testing is still very dependent on manual testing since most of the defects
are found this way. The automation should serve as a way of removing the repetitiveness of
the testing process and allow for more creative types of manual testing such as exploratory
testing. [13]

In general, manual tests can be divided into Exploratory and Planned Testing.

Exploratory Testing
Exploratory Testing is an informal and experience-based type of test execution technique
performed by simultaneous test design execution and reporting. Tester's experience with
testing similar applications is key during this process.[13]

Thanks to the strong subjectivity, some major testing organizations consider this method
as auxiliary testing that should only complement basic testing strategies. [35]

Exploratory testing is more common nowadays. It is a form of testing that does not
rely on test case documentation. It is an intuitive test performing built on the experience
and knowledge of the tester executing the process. [13]

Exploratory thinking can also be used during the designing and execution of test
cases. [35]

9

Planned Testing

Planned Testing is a test-case-based testing focused more on prediction and control. Test
cases directed from requirements are created in advance. This method does not cover all
the possible defects and tells little about overall user usability.

Construing test cases can be difficult and sometimes quite a useless activity. It barely
happens that a user reports particular problems that can be traced back to the lack of
structured methods specifically. [12]

This shows that it is valuable to use both test-case-based testing and complement it
with experience-based test techniques like error guessing, exploratory testing, and checklist-
based testing.

2.3.5 Automation Testing

The goal of automating test script execution is mainly to increase the number of tests being
run and also the frequency at which they run while reducing the manual test cycles. On
the other hand, automation testing often faces failed projects because of underestimation
of the effort required to develop and maintain automated tests. [21]

At first, automation tests setup is more time-consuming because of the initial creation
of the scripts but many results show that automated testing is more effective than manual
testing in the long run. However, it can also be counterproductive if the initial investment
and also continuous maintenance are not handled properly. This happens since any updates
and adjustments of the SUT can lead to malfunction in the automation test suite. [']

Microservice architecture framework requires adding more and more services which usu­
ally results in a very complex system. And with every complexity whether inherent or
accidental comes a cost. When the complexity of software grows, it takes more time to test
everything, find bugs, and retest the system all over again after fixing the defects. This
process is repeated after adding every new feature to the product. [1]

There are several ways to automate manual testing. In the case of UI testing, many tools
such as Selenium or Cypress come with a recording function that tracks the interactions
with web elements and then automates the whole process.

Automated test suites are created to automate lower levels of testing like unit testing
and integration testing.

The summary of automation's advantages and disadvantages can be seen in Table 2.2

Advantages Disadvantages
Improves accuracy and quick finding
of bugs compared to manual testing.

Choosing the right tool requires con­
siderable effort, time, and an evolu­
tion plan.

Saves time and effort by making
testing more efficient.

Requires knowledge of the testing
tool.

Increases test coverage because mul­
tiple testing tools can be used at
once allowing for parallel testing of
different test scenarios.

Cost of buying the testing tool and,
in the case of playback methods,
test maintenance is a bit expensive.

The automation test script is re-
peatable.

Proficiency is required to write the
automation test scripts..

Table 2.2: Advantages and Disadvantages of Test Automation []

10

2.3.6 Cost Benefit Analysis Between Manual and Automation Testing

C B A (Cost-benefit analysis) is a process of comparing the costs of an object with the
expected benefits to determine if it is worth pursuing it. It consists of the Cost Model and
Benefit Model. [] The example of this analysis can be seen in the Section 4.9.

2.4 Test Driven Development

Test Driven Development consists of the creation of unit tests for the functions to imple­
ment. The whole process is displayed in Figure 2.4.

Developers can validate their code by running these tests. After tests succeed, refac-
toring takes place to increase code readability. It can be done after writing several tests
or one by one. These steps are then repeated recursively for each bit of the product's
functionality. [33]

This method helps with decreasing defect occurrence and theoretically, it creates a unit
test suite with code coverage close to 100 percent. [33]

It has also other benefits like aiding in design and reducing complexity by breaking the
problem into small solvable solutions. [19]

Test fails

Repeat

Figure 2.4: Test Driven Development Cycle

2.5 Testing Tools

The growing size and complexity of software systems increase the need for test automation.
To easily manage and execute automation, testing tools are a beneficial and popular choice
by many companies. []

It is very important to choose the correct tools and to properly examine the system
under test. Many industrial surveys indicate the lack of the right tools as the main obstacle
to test automation. [5] There are both commercial and open-source tools available to choose
from. Choosing the right tool can speed up testing and adds to the overall quality of the
whole process. [22]

This work mainly focuses on unit and integration testing of backend microservices writ­
ten in Java language built by Spring framework. That narrows down the circle of possible
tools to use. In the next subsections, one of the most popular tools for unit testing, Ju-
nit5. As for mocking the tested objects, the tool Mockito is described. Both of them are
integrated with Spring Boot by default.

11

2.5.1 J U n i t 5

JUnit is one of the most popular unit-testing frameworks for Java applications. It utilizes
Java classes called test cases, consisting of class components i.e. test methods. By adding
multiple test cases together, a testing suite is created. Important methods called fixtures
contain setUp and TearDown methods in order to save the repetitive configuration of
each method within one test case. [32]

JUnit is an instance of the xUnit architecture depicted in the U M L class diagram 2.5.
It provides a variety of assertions for testing expected results. This is very important in
automated testing since the system is capable of automatically judging if the test has failed
or passed. [20]

The test run consists of two phases, configuration, and test case execution. Another
benefit that this framework offers is the distinction between failures and errors. Failures
are instances of AssertionFailureError and are created by test case code, anything else that
went wrong is considered an error. [30]

« i n t e r f a c e »
Test

+run()
Tsr

TestRunner

+run()

TestSuite Object

+run()

TestCase Object

+run()

TestCase

+setup()
+testMethod1()

+testMethodN()
+tearDown()

Figure 2.5: U M L Diagram of XUnit ' s Architecture[20]

2.5.2 Mockito

There are many mocking tools for Java language including Mockito, JMock, Mock, or
Mocker. Mockito is the most widely used mocking framework. It is derived from EasyMock
and one of the main advances is that it is integrated into Spring Testing by default. Mockito
dynamically generates proxy objects for each mocked class or object using C G L i b handing
back pre-designed results. [15]

Mockito architecture is based on a proxy design pattern and uses C G L i b to create proxy
stubs. [15]

Another reason why using Mockito is a great option is that Mockito uses lenient mocks
by default.

The difference between strict and lenient mocks is noticeable when unexpected interac­
tion happens. After this unexpected interaction occurs, strict mocks result in a test failure.
On the other hand, while using lenient mocks, tests do not fail and warnings happen. [!]

12

To demonstrate how Mockito works let's consider this situation. MethodX calls
methodY in itself, therefore methodX is dependent on methodY. Listing 2.1 shows how
Mockito verifies that methodY is invoked after calling methodX.

// C r e a t e a mock o b j e c t f o r t h e Y c l a s s
Y mockY = M o c k i t o . m o c k (Y . c l a s s) ;
// C r e a t e an i n s t a n c e o f X, p a s s i n g t h e mock o b j e c t Y
X x = new X(mockY);
// C a l l method X
x.methodX();
// V e r i f y t h a t method Y was c a l l e d a f t e r method X
M o c k i t o . v e r i f y (m o c k Y , M o c k i t o . t i m e s (1)) . m e t h o d Y () ;

Listing 2.1: General Example of Testing Method's Dependencies with Mockito

2.6 Microservice Architecture

This Section introduces microservice architecture, a new to design software applications,
and also the difference relative to the traditional monolithic applications.

2.6.1 Microservices

Microservices can be set up as individual, standalone applications and deployed to either
bare-metal or virtualized hardware. [31] Unlike the monolithic style, the microservice ar­
chitecture system is composed of parts called services. These services can be developed
and deployed independently and each of these microservices deals with one task so the
business logic can be divided into small maintainable tasks. [3] In a monolithic application,
components interact with each other via language-level methods or function calls, whereby
in microservice architecture inter-process communication takes place. [! i] The difference
between these architectures is displayed in Figure 2.6.

Many enterprise companies adopted the microservice architecture - Amazon, Netflix,
and Uber to name a few. One of Werner Vogels's arguments, why Amazon switched mi­
croservices, is that it gives a level of isolation between each of its pieces of software that
allows the company to build individual parts of their software independently and much
quicker [3].

13

MICROSERVICE MICROSERVICE MICROSERVICE

Figure 2.6: Difference Between Monolithic Architecture and Microservices

Microservices offer several advantages over traditional architecture types but they also
come with several drawbacks. Table 2.3 demonstrates the benefits and drawbacks of using
such architecture.

To pinpoint some other drawbacks of microservices, the main idea of this architecture
is the division of the whole system into small units, which can seem tricky in terms of
orchestration. To overcome this issue, containerization comes in place. [24]

Benefits Drawbacks
Better understanding and maintenance.
Fast deployment pipeline.
Parallel development.
Relationship to the business.

Team autonomy.

Increased complexity.
Lack of security.
Possible services redundancy.
Difficult to move code between microser­
vices.
Harder debugging process.

Table 2.3: Benefits and Drawbacks of Microservice Architecture

14

Chapter 3

Selected System Under Test

For the purpose of testing, it is necessary to select the correct SUT. In order to maximize
the value of the solution, the system criteria were carefully selected while taking into ac­
count many aspects such as applicability, expandability, business priorities, and testers'
capabilities. The final system selected for this purpose has the following characteristics:

• system with microservice architecture—application is broken into small independent
services,

• multi-tenant system—allowing clients to use a single application while keeping their
data separate,

• real-world system—system in actual use,

• continuous integration system—code changes are frequently integrated, automatically
built and tested,

• containerized system—packaging the application and dependencies into containers
that can run on different environments.

E A S (Effective Agenda System) framework owned by the company is a system fulfilling
all the mentioned characteristics.

The following information about the SUT is acquired from the E A S documentation
available for internal employees only.

3.1 About E A S

The company is focusing on creating solutions for its clients by developing new information
systems. As many of these systems share several microservices, it has been very beneficial
to create a system that would allow sharing them seamlessly and efficiently.

E A S depicted in Figure 3.1, a successor of U A S (Universal Agenda System), is an
upgraded business system containing applications with the knowledge acquired from using
U A S .

It is an information system of microservice architecture written mainly in Java, Type-
Script, and P H P but can be applied to any other language allowing rapid scalability, de­
ployment, and maintenance. Each microservice either works separately or communicates
with a limited number of other microservices.

15

It also contains third-party microservices such as PostgreSQL which is a microservice
that provides a secure, easy-to-use web-based interface for managing and accessing a Post­
greSQL database.

The second third-party microservice contained as a part of E A S is indexing in Elas-
ticsearch to allow storing and effectively retrieving data from a distributed cloud-based
system. It can also be used for log management, data analytics, and other applications.

Microservices in E A S can be divided into frontend, backend-oriented services, or a
combination of both. Backend microservices are written in Java and use the shared library
Common, while frontend microservices are written in Typescript and use the Common-
web library. It is also possible to have microservices in the E A S that do not use the shared
library or are written in other languages, such as PHP.

w v y y y

MICROSERVICE

MICROSERVICE

MICROSERVICE

Figure 3.1: E A S Architecture

3.2 Backend Microservices Specifications

In this work, the main focus lies in testing backend (BE) microservices. These modules are
built by Gradle script.

A n important feature enabled by the script is Layered Jars that create independent
layered executable J A R files. By default the following layers are created by the script:

• dependencies,

• spring-boot-loader,

• snapshot-dependencies and

• application.

Built layered J A R file is then copied to Docker which results in a basic container with
J A R , ready to run.

When change occurs in the lower-level layer, all the upper-level ones have to be rebuilt
too. The architecture is shown in Figure 3.2. Therefore application layer is on the top.
When a change is made to the source code, all the dependencies and loader remain cached
which results in reduced startup time.

16

application

snapshot-dependencies

dependencies

spring-boot-loader
frequency of changes

Figure 3.2: Layered Jar Architecture

3.3 Required Tools

E A S applications have basic requirements for deploying standalone applications and sub­
systems, including Java, NodeJS, PHP, and others. Another important requirement is the
ability to specify version numbers in a formal and unified way and provide release manage­
ment, which is handled by S E M V E R (semantic versioning).

The E A S framework enables developers to create applications using modern technologies
like Docker, Docker Compose, and Gradle. Docker Compose is used to configure microser-
vices that are hosted in containers, and Gradle is used to build the application and manage
dependencies.

3.4 Architecture of The System

E A S is a microservice architecture system consisting of frontend (FE) and B E services.
Microservices and their architecture descriptions are stated in Section 2.6. This part focuses
on how E A S microservices communicate with each other, and the specific aspects of E A S
with an emphasis on critical parts.

3.4.1 Containerization in E A S

E A S uses HyperV and VMware as part of operating service virtualization and hence the
deployment of the code is more efficient since it allows various services to be run in units
that are resource-independent. Containers are a natural option for microservices-based
applications because of their smooth integration with container orchestration platforms. []
This fact was the main reason for choosing it as a solution for the E A S framework.

3.4.2 Communication Between E A S Microservices

Communication between microservices is based on RESTful A P I which is a web-based A P I
that uses the H T T P protocol to transmit data between microservices.

This A P I is described using the OpenAPI Specification, an open-source framework.
This gives developers the freedom to define the structure of the A P I , the types of data to
exchange, and the possible operations. The OpenAPI Specification can be used to generate
a Swagger UI, which provides a graphical interface for developers to interact with the A P I .

17

This allows developers to easily send requests and get responses from the microservices.
The communication between microservices is secure and is based on authentication and
authorization protocols. The visualization of the communication is visible in figure 3.3 and
it also clearly demonstrates the difference between monolithic and microservice architecture
systems.

Figure 3.3: Inter-process Communication in Microservice Architecture []

3.5 Aspects of The System

The system stores information about the creation, last update, and deletion of objects, as
well as information about the author of the objects. The database and indexing support
multiple languages, allowing for flexibility in data management.

Evidence of the objects by institute makes the system multi-tenant, meaning it's sharing
a single instance of executable software while isolating the data and business process serving
each tenant, in this case, the customer.

In Figure 3.4 is displayed how is this architecture different in opposite to single-tenant
system.

18

Figure 3.4: Difference Between Single-tenancy and Multi-tenancy

The files are saved on a hard disk drive as an optimized structure created by the UUID
file, so that the effect of 'bucketing' of files is achieved and the problem of many files in one
folder is solved. This ensures efficient storage and retrieval of files.

The system works on the principle of tabular overview. It supports filtering, multiple
sorting, and virtual scrolling, which is used instead of paging. Users can change the order
and visibility of columns, save filters and sorting, and share the data. The system also
supports full-text searching, allowing users to quickly find the information they need.

The system supports various field types such as text, number, floats, select, autocom-
plete, checkbox, textarea, and editor with the support of highlighting, date and time without
picker, table of dependent objects, and button. This allows for a wide range of data to be
captured and managed in the system.

3.6 Future Development

It is planned to create a subsystem of server-side actions in the 'name, code, script' format
with the possibility to set permissions for who can execute this action. This should be
callable from B E .

For future development, it is also planned to implement a subsystem for workflow es­
tablished on Activit i B P M N with the support of B P M N 2.0. The graphical definition will
likely be done outside of the system in a desktop application.

After that, the system will receive a fully responsive UI, with a menu upon Grid or
menu upon detail, as well as an optional floating action menu or hamburger menu. The
main menu will also be included.

These are only a few of the possible changes to the system. Each task should be properly
planned to prevent any problems especially when it is a complex architecture like this.

3.7 Current State of Testing E A S

The current state of E A S testing is minimal, with only a few of the B E microservices being
tested. Even those that have been tested have not been done so thoroughly. The tests are
written in Java and include test classes for testing Elasticsearch filters, MultipleFieldsEntity,
and its repositories, as well as simple tests for checking if the TestBase is initialized and
the database connection is working.

19

The system also includes tests for Date Utils, multiple filter tests such as AndFilter,
ContainsFilter, EndWithFilter, and others, testing for field and index sort, DatedReposi-
tory, KeyValue, and Multiple. The Dictionary microservice is also tested.

Out of 45 B E microservices, only 4 of them are covered which makes test coverage of B E
microservices pretty low and insufficient as can be seen in Figure 3.5. Overall test coverage
of B E microservices is attached in Appendix B.

Figure 3.5: Current Testing State of E A S

In order to address this issue, the development team should focus on increasing the
test coverage of the B E microservices. This can be done by implementing Test-Driven
Development practices demonstrated in section 5.6 and by dedicating more resources to
testing.

3.7.1 Test Coverage

This metric can express the level of the system being covered by tests. The coverage can
be shown by the popular Java library JaCoCo. It can show the code coverage of each
microservice under test. For example, class coverage of the domain service is shown in the
figure below 3.6.

\mk common > 0 cz.inqool eas common domain

cz.inqool.eas. common, domain
Element Missed Instructions T Cov. Missed Branc hes Gov Missed C x t y * Missed Lines Missed Methods Missed Classes

0 DomainRepository

fi DomainService 11% m 26%

0%

55

46

82

48

130

117

222

117

23

45

55

45

0 1

1 1

C o m ; t A i : : o% n/a 7 7 9 9 7 7 1 1

C o m ; " R i i : ; ' t : r . i : l£>:Uoc;ti?t J<r.e:i-. : 105% n/a 0 1 0 3 0 1 0 1

Total 1,114of 1,588 2 9 % 43 of 56 2 3 % 110 138 256 351 80 108 2 4

Figure 3.6: Domain Service Class Coverage

The tests are not well-documented and do not contain any comments which is prob­
lematic because, in a microservice architecture, it is important to ensure that the services

20

are maintainable, traceable, reusable, and mainly debuggable. These services are often
developed by different developers so having fixed naming and commenting conventions for
microservices is crucial to ensure that others can understand and navigate the services when
changes need to be made. This allows developers to easily edit the tests and understand
their purpose, which helps maintain the system's functionality and integrity. Furthermore,
well-documented tests can be reused for regression testing and testing different versions of
the service, saving time and resources.

Microservices are not implemented by Test-Driven Development which can significantly
impact the overall quality and stability of the system in a negative way. Without the use of
T D D , there is a higher likelihood that bugs and other issues will go undetected until later
stages of development, or even after deployment. It can also be difficult to identify and fix
issues that arise when the services are combined. This can lead to more downtime and a
less stable system overall.

The current test suite of the system consists of approximately 600 unit tests with the
overwhelming majority being filter tests.

The overall test summary is displayed in Figure 3.7

Test S u m m a r y

608 1 5 3m59.71s

tests failures ignored duration

Failed tests Ignored tests Packages Classes

MultipleFieldEntityTest. create find fullO

Figure 3.7: Test Report

3.8 Sensitive Aspects of E A S

E A S has been created by multiple developers and is being used by a variety of employees,
and as any other system has its drawbacks and areas for improvement. The following list
is depicting the main aspects of the system that are sensitive, meaning it is crucial to take
them into consideration when testing the system. Omitting their importance might result
in creating faulty solutions. Sensitive aspects £1X6 ctS follows:

• containeriaztion,

• RESTful communication between microservices,

• data consistency,

• security and

• fault tolerance.

9 9 %
successful

21

3.8.1 Containerization

Given that the E A S has a microservice architecture and is using Docker for containerization,
it is important to test the configuration of the containers to ensure they are correctly
set. Additionally, communication between the containers must be secure and efficient.
Monitoring the containers should also be a priority to quickly identify any issues that may
arise and address them properly. Lastly, the deployment process should be tested to ensure
its reliability.

3.8.2 R E S T f u l Communication Between Microservices

This system relies on RESTful communication between microservices for efficient, main­
tainable, and standardized architecture. However, this also poses potential risks such as
security vulnerabilities due to inadequate authentication and authorization. Third-party
access is a particular area of concern. Additionally, the failure of one service can have a
domino effect, causing cascading failures that can lead to a widespread disruption of the
system. Finally, the system may become overloaded, leading to a decrease in performance
or a complete shutdown.

3.8.3 Data Consistency

Microservice architecture has the potential to create major risks, such as data inconsistency
due to its asynchronous structure. Wi th data distributed across many microservices, errors
can be difficult to identify and repair. Furthermore, it may take time for updates to be
propagated throughout the system. If one of the services malfunctions, data could be lost,
resulting in damaged integrity.

3.8.4 Security

In terms of security, injection attacks can be used to gain access to or modify a database
within the E A S , as well as exploit weak authentication controls to gain access to its archi­
tecture. Therefore, it is important to ensure that appropriate logs and monitoring systems
are in place to detect any suspicious activity.

3.8.5 Fault Tolerance

Fault tolerance is critical for any framework to ensure minimal disruption in case of any
internal or external failure. To achieve this, concrete measures such as redundancy, fault
tolerance modeling, and automated testing must be implemented.

When using a microservice architecture, fault tolerance testing is even more important
since each service is a separate unit that is responsible for different tasks. Testing should
include both individual services to handle failure scenarios and the overall system to ensure
it can handle multiple service failures.

22

Chapter 4

Testing Strategy for Selected
System Under Test

The test plan for the E A S will mainly contain parts that should be in a test plan according
to I E E E 29119-3 standards.

A company that owns the E A S has recently hired 3 testers, out of which none have
experience in test automation and they do mainly manual testing. Testers have to test 44
B E microservices, with 4 already tested. The goal of testing is to test at least one-third of
the B E microservices being covered with unit tests so at least 10 more microservice tests
should be created. It is suitable to use an automated test suite of unit and integration tests
to ensure that nothing breaks with new changes made to the code.

4.1 Test Items

In this work, the functionality of ten specific B E microservices from the common module
is tested:

• reporting microservice—used for reporting,

• certificate microservice—used the for creation of certificates,

• sequence microservice—used for generating sequences,

• mail microservice—used as a mail service,

• schedule microservice—used for scheduling,

• template microservice—used for creating templates,

• storage microservice—used for file management,

• pdfa microservice—used for converting files to P D F format,

• intl microservice—used for translation processes and

• multi-string microservice—used for working with multi-strings.

Each microservice needs to be tested in isolation and other dependent microservices
are to be replaced by mocks. The E A S testing automation should start from the bottom
layers of the V-model described in Section 2.2, so the focus will be mainly on the unit and
integration tests.

23

4.2 Software Risk Issues

Due to the modular nature of the E A S , there is a higher security risk. System exposure
to the network causes the possibility of attacks from outside. The dependencies between
microservices allow weak spots to appear quickly in the system.

4.3 Features to Be Tested

Reporting Service

• Verify that the Service can list allowed definitions.

• Verify that the Report can be acquired by the definition.

• Verify that the Report is correctly generated.

Certificate Service

• Verify that the Service can create a Certificate object.

• Verify that the Service can update the Certificate object.

• Verify that the Service can delete the Certificate object.

• Verify that Resource can be acquired by code.

Sequence Service

• Verify that the next value of the sequence can be generated by Id.

• Verify that the next value of sequence can be generated by Sequence's code.

• Verify that the sequence can be updated.

Mail Service

• Verify that Mai l Service is able to create Mai l object.

• Verify that input parameters are assigned to Mai l object.

• Verify that Mai l object can be retrieved from the Queue.

• Verify that Mai l object can be updated with new parameters.

Schedule Service

• Verify that the Service can create scheduled jobs.

• Verify that the Service can update scheduled jobs.

• Verify that the Service can delete scheduled jobs.

• Verify that the Service can change the job into running state.

• Verify that the Service can access times of last and next run of specific job.

• Verify that the Job can start successfully.

• Verify that the Job can stop successfully.

24

Template Service

• Verify that Template is in Cache.

• Verify that the Template is removed from the cache.

• Verify the computation of fingerprint.

• Verify the creation of a new Template.

• Verify that the new Template is stored.

Storage Service

• Verify that all unsupported and unimplemented methods throw an exception.

• Verify that all File's attributes can be accessed.

• Verify conversion between File object and string.

• Verify correct behavior when the File is null.

Pdfa Service

• Verify that the Service can convert other data types to pdf.

• Verify that the Service can change extensions.

• Verify that the Service can return Content type.

• Verify the correct behavior when the Converter is null.

Intl Service

• Verify that the Service can create different Translations.

• Verify that the Service can update translations.

• Verify that the Service can delete translations.

• Verify that the cache can be successfully evicted.

Multistring Service

• Verify that Service returns correct type.

• Verify that Service can convert String data to entity attribute.

4.4 Features Not to Be Tested

• Creation of basic data objects.

• Filtering of objects.

• Constructors.

These features will not be tested because they are properly tested already and are used as
a part of almost every other test case.

25

4.5 Test Approach

Testing tools that will be used to implement tests in an automated test suite will be JUnit5
as a unit-testing framework and Mockito to inject mocked dependencies in the test class.

JUnit5 should not require special training because Java developers of E A S are used
to implementing unit tests using this framework. Mockito is not used by the developers
but in general, is closely used with the JUnit5 framework so it should not be difficult to
incorporate mocking into the tests. Some of the metrics to be acquired from the test suite:

• total number of test cases,

• number of test cases passed,

• number of test cases failed,

• number of test cases ignored,

• total execution time of the test suite,

• class testing success rate,

• package testing success rate,

• test coverage and

• severity of found defects.

Other metrics can be derived from these. Based on these metrics and mainly on the
severity of the found defects, it will be decided how much regression testing should be done.
Ideally, regression testing whether manual or automated should be done with every product
change. [10]

A l l of these metrics will be aggregated in the final report generated after the execution
of the automated test suite of the E A S .

The main coverage requirements will be class coverage of individual services expressed
as a percentage.

4.6 Pass/Fail criteria

• A l l tests should be executed.

• A l l requirements from Section 4.1 should be tested.

• No critical defects found by the automation test suite.

4.7 Test Deliverables

Testing deliverables that come with this work:

• test plan,

• test case specification and

• test results reports.

26

4.8 Risks and Contingencies

Implementation of the test suite should be aware of risks described in Table 4.1 and follow
the suggested contingency strategies.

Risk Contingency plan
Lack of testing staff. Hiring more personnel.
Multiple dependencies on other microser- Mocking of test classes.
vices.
The complexity of the system. Combination of unit and integration tests to en­

sure overall functionality.
Sensitive data exposure. Test data do not contain any sensitive informa­

tion.

Table 4.1: Testing Risks and Contingency Plans

4.9 Cost-Benefit Analysis

To see clear results of analysis all of the benefit factors should be converted into a single
unit of comparison. [] For the purpose of this work we will choose time [h].

Let's say we would like to test 5 microservices each testable by approximately 10 test
cases so 50 test cases in total.

Manual approach
Total number of test cases 50
Average time spend designing per test case 0.4h [6]
Total time designing test cases 50*0.4 = 20h
Average time spend executing per test case 0.05h [6]
Total time executing test cases 50*0.05 = 2.5h

Table 4.2: Manual Testing Time

According to the test results from Figure 3.7 600 tests passed in approximately jgh so
1 test case last A 600 = ^ h .

Automated approach
Total number of test cases 50
Average time spend designing per test case l h [6]
Total time designing test cases 50 * 1 = 50h
Average time spend executing per test case 90011

Total time executing test cases 5 0 * 9 0 0 = T8Ö n

Table 4.3: Automation Testing Time

The results displayed in Tables 4.2 and 4.3 say that even though designing the automa­
tion scripts take a long time in comparison with the manual tests, the execution is much
faster.

27

The initial time and cost investment seem resource-heavy and overwhelming but with
automated testing, the return on investment is visible after some time and is also more
cost-saving in the long run as displayed in Figure 4.1.

T i m e

Figure 4.1: Ratio Between Time and Cost of Manual and Automated Testing [11]

With automation comes new testing activities for testers like test scripting, maintenance
of test scripts, evaluating test results, and many more according to Figure 4.2. Wi th the
current number of E A S testers and their time and cost allocations, it is recommended to
increase these values.

Self
Exploratory testing

knowledge
I Activity/data

providing benefit

Cost-incurring

activity (effort)

Figure 4.2: SW Testing Reference Process []

28

Chapter 5

Implementation of Tests for
Microservices in E A S

This part contains the implementation parts consisting mainly of testing the existing code
described in Section 5.4 and Test-Driven Development process outlined in Section 5.6.

5.1 Used Tools

This section of the work describes all the tools that were used while creating unit and inte­
gration tests. The most important tools Junit5 and Mockito are described in Section 2.5.1.

5.1.1 PostgreSQL

While executing the integration tests a testing database is created and filled with the
test data, so SQL queries and work with the database are properly tested. For viewing the
schemes of the database pgAdmin is used, which is a graphical user interface for PostgreSQL
management and visualization of the data.

5.1.2 Hibernate

Hibernate is a framework used to map Java objects to relational database tables and then
proceed to operate on them. In the SUT, it interacts with the application's database entities
through classes' annotations.

5.1.3 Liquibase

Liquibase is another database-related tool that allows the management of the test database
schema and provides a way to define changes through the X M L configuration file where it
is possible to define all the data needed for the testing.

5.1.4 Elasticsearch

To handle large amounts of test objects, methods, and other data it is desirable to be able
to quickly search, index, and filter needed information.

As a part of this thesis, Elasticsearch is used for this purpose, since it is a widely used
open-source engine. It is relatively fast and accurate. E A S is used mainly for full-text
search and indexing of data objects.

29

The Elasticsearch stack consists of Elasticsearch, Logstash, and Kibana(ELK). In E A S ,
Kibana is used for data visualization and manipulation via a graphical interface. []

5.1.5 Redis

Redis which stands for Remote Directory Server is a data structure storage while also being
caching server providing different data structures and data types like strings, hashes, lists,
sets, sorted sets, bitmaps, geospatial indexes, and more. This particular storage was chosen
to allow the user to run atomic operations on these types, but it also works with in-memory
datasets. [23]

Most databases store their data on the database server disk but Redis data stays in
memory. That is making this solution profitable in real-time applications and message
queuing systems. [18]

5.2 Test Data Management

Test data management in E A S uses all the tools mentioned above when integration tests
are executed. The whole process is depicted in Figure 5.1. The test data is primarily
stored in PostgreSQL which uses Liquibase to create and initialize the database schema.
This database is populated using Hibernate. Redis is used as a caching layer to reduce the
number of database queries. The final data can be accessed in the tables via the Kibana
interface.

Figure 5.1: E A S Test Management System

5.3 Test Base

To uniformly test E A S , there is a Java class called TestBase designed to test applications
that use PostgreSQL, ElasticSearch, and Redis. It sets up Docker containers for each
of these services with specific configurations such as the database name, username, and
password for the PostgreSQL container.

This class also provides URLs and credentials needed to connect to the Docker contain­
ers, however, test containers will automatically shut down after tests.

30

To ensure that previous test executions do not interfere with other tests, the Elastic-
search indexes are dropped and recreated before each test. It also tests Elasticsearch's data
indexing and deletion functionality.

This test base is used as a base for integration tests and it closely resembles the pro­
duction environment to find also environment-related bugs along with functionality bugs.

5.3.1 Common Test Base

This test class extends the test base in Attachment 5.3 and is primarily used for testing the
B E microservices of E A S . It declares that the tests will be Spring Boot tests.

Integration tests should be separated from the unit tests mainly because of higher time
consumption and also because they need an actual database to work with.

Common Test Base also contains a test initializer that triggers auto-configuration of the
services and component scanning.

5.4 Testing Exist ing Code

A few problems have occurred while testing existing microservices. Most of the code con­
tains mixed concerns which means that the code is doing more than one task. Another
problem is related to the multiple dependencies across the system. In order to solve these
issues, extraction methods and mocking are used.

5.4.1 Extraction Method

As stated in the description of unit testing in Section 2.3.2 the purpose of these tests is to
test a single unit of code.

To solve this problem a technique called extraction was used while developing unit tests.
This method moves code to new methods, classes, or functions. For example, as we can see
in the code snippet 5.1, the function generate contains the lambda function.

p u b l i c s y n c h r o n i z e d S t r i n g g e n e r a t e (@ N o t N u l l S t r i n g sequenceld) {
T r a n s a c t i o n T e m p l a t e t r a n s a c t i o n T e m p l a t e = new T r a n s a c t i o n T e m p l a t e (

t r a n s a c t i o n M a n a g e r) ;
t r a n s a c t i o n T e m p l a t e . s e t P r o p a g a t i o n B e h a v i o r (T r a n s a c t i o n D e f i n i t i o n .

PROPAGATION_REQUIRES_NEW);

r e t u r n t r a n s a c t i o n T e m p l a t e . e x e c u t e (s t a t u s -> {
Sequence sequence = r e p o s i t o r y . f i n d (s e q u e n c e l d) ;
Long c o u n t e r = s e q u e n c e . g e t C o u n t e r () ;

s e q u e n c e . s e t C o u n t e r (c o u n t e r + 1) ;
r e p o s i t o r y . u p d a t e (s e q u e n c e) ;

DecimalFormat format = new D e c i m a l F o r m a t (s e q u e n c e . g e t F o r m a t ()) ;
r e t u r n f o r m a t . f o r m a t (c o u n t e r) ;
}) ;
}

Listing 5.1: Function generate

31

To isolate this function an extraction method is used and the newly created method
displayed in code 5.2 is now suitable for unit testing.

S t r i n g g e t F o r m a t (S t r i n g s e q u e n c e l d) {
Sequence sequence = r e p o s i t o r y . f i n d (s e q u e n c e l d) ;
Long c o u n t e r = s e q u e n c e . g e t C o u n t e r () ;

s e q u e n c e . s e t C o u n t e r (c o u n t e r + 1) ;
r e p o s i t o r y . u p d a t e (s e q u e n c e) ;

DecimalFormat format = new D e c i m a l F o r m a t (s e q u e n c e . g e t F o r m a t ()) ;
r e t u r n f o r m a t . f o r m a t (c o u n t e r) ;

}

Listing 5.2: Method getFormat

5.4.2 Mocks

Testing code that calls another code can be difficult and it also conflicts with the idea of
unit testing as described in Section 2.3.2. To handle this problem unit test creates a mock
of the dependency and provides it to the code under test. This process is called depen­
dency injection. For creating mocks or test doubles in E A S , the Mockito tool described in
Section 2.5.2 is used, an example of dependency injection in our test suite can be seen in
the code 5.3 where classes generator and repository present mocked objects.

@ E x t e n d W i t h (M o c k i t o E x t e n s i o n . c l a s s)
p u b l i c c l a s s S e q u e n c e S e r v i c e T e s t {

p r i v a t e s t a t i c S e q u e n c e S e r v i c e s e r v i c e ;

@Mock
p r i v a t e s t a t i c SequenceGenerator g e n e r a t o r ;
@Mock
p r i v a t e s t a t i c S e q u e n c e R e p o s i t o r y r e p o s i t o r y ;

}

Listing 5.3: SequenceServiceTest class

The disadvantage of mocks is the need to update the mocks when the original depen­
dency has changed with new methods.

5.5 Generating Test Report

The results from the automated test suite are visualized via Gradle. A failing test in the
suite creates a test report located in build/reports/tests/test/index.html. By default setting
you can see information about the reason test has failed and about packages and classes'
success rates.

32

5.6 Test Driven Development of Microservice

This part of the work serves only as a simple example of Test-Driven Development described
in Section 2.4. It covers all parts including designing the tests, implementing the new
service, making tests pass, refactoring, and repeating this cycle displayed in figure 5.2 until
the whole implementation is done.

requirements

Development of tests

Execution of tests append

Yes

Yes Implementing the <
functionality

> t
Execution of tests

>

Yes
Failed

No

Execution of tests Refactoring

Figure 5.2: Test Driven Development Cycle

5.6.1 Description of Expression Microservice

The developed service is a simple microservice that is able to solve complex math expressions
with the help of a stack that converts infix expressions to postfix expressions and returns
the correct result.

The simplicity of the Service is for the purpose of easier understanding of the develop­
ment process. This part of the work can serve as a guide for the developers when developing
a new microservice into the system.

33

5.6.2 Design of the Initial Tests

Just as the features to be tested are defined in Section 4.3, it is also required to implement
these new features:

• Verify that the Service is able to perform Addition.

• Verify that the Service is able to perform Subtraction.

• Verify that the Service is able to perform Multiplication.

• Verify that the Service is able to perform Division.

• Verify that the Service is able to perform Exponentiation.

• Verify that the Zero Division Operation throws an Exception.

• Verify that invalid operands and operators in input expression throw an Exception.

• Verify that the Service is able to convert an infix expression into a postfix expression.

• Verify that the Service is able to evaluate complex expressions.

Firstly, the focus will be on primary mathematical operations including addition, subtrac­
tion, multiplication, and division. It can be seen that the initial tests in Figure 5.3 failed
because the basic mathematical operations were not implemented yet.

v O Test Results 51 ms

v O Gradle Test Executor 7 51 ms

v O TDD Math Expression Test 51 ms

0 Test subtraction operation 43ms

O Test division operation 1 ms

O Test mul t ip l icat ion operation 1 ms

O Test addit ion operation 1 ms

Figure 5.3: Initial Failed Tests

5.6.3 Implementation of The Code

After seeing the initial tests fail it is time to implement these features and retest the
functionality again. In this case, it is sufficient to implement just basic mathematical
operations and execute the test suite again. A l l of the original failed tests in Figure 5.3
have now passed.

34

5.6.4 Refactoring of The Code

A n initial implementation with just the intention to make the initial tests pass may look
like the one in Listing 5.4.

p u b l i c d o u b l e e v a l (S t r i n g e x p r e s s i o n) {
f i n a l S t r i n g o p e r a t o r ;
f i n a l S t r i n g [] operands;
i f (e x p r e s s i o n . c o n t a i n s (" + ")) {

o p e r a t o r = "+";
operands = e x p r e s s i o n . s p l i t (" \ \ + ") ;

} e l s e i f (e x p r e s s i o n . c o n t a i n s (" - ")) {
o p e r a t o r =
operands = e x p r e s s i o n . s p l i t ("\\-");

} e l s e i f (e x p r e s s i o n . c o n t a i n s ("*")) {
o p e r a t o r = "*";
operands = e x p r e s s i o n . s p l i t ("*");

} e l s e i f (e x p r e s s i o n . c o n t a i n s (" / ")) {
o p e r a t o r = "/";
operands = e x p r e s s i o n . s p l i t ("\\/");

} e l s e
throw new I l l e g a l A r g u m e n t E x c e p t i o n (" I n v a l i d e x p r e s s i o n ") ;

s w i t c h (o p e r a t o r) {
case "+":

r e t u r n D o u b l e . p a r s e D o u b l e (o p e r a n d s [0]) + Do u b l e . p a r s e D o u b l e (
o p e r a n d s [1]) ;

case "-":
r e t u r n D o u b l e . p a r s e D o u b l e (o p e r a n d s [0]) - Do u b l e . p a r s e D o u b l e (

o p e r a n d s [1]) ;
case "*":

r e t u r n D o u b l e . p a r s e D o u b l e (o p e r a n d s [0]) * Do u b l e . p a r s e D o u b l e (
o p e r a n d s [1]) ;

case "/":
r e t u r n D o u b l e . p a r s e D o u b l e (o p e r a n d s [0]) / Do u b l e . p a r s e D o u b l e (

o p e r a n d s [1]) ;
d e f a u l t :

throw new I l l e g a l A r g u m e n t E x c e p t i o n (" I n v a l i d e x p r e s s i o n ") ;
}

}
}

Listing 5.4: First Implementation of Eval Method

After seeing the test pass it is recommended to rethink the effectiveness and logic of the
code and write cleaner more understandable code like the one in Listing 5.5 with the help
of known techniques.

35

p u b l i c d o u b l e e v a l (S t r i n g e x p r e s s i o n) {

f i n a l v a r e x p r e s s i o n = E x p r . o f (e x p r e s s i o n) ;

s w i t c h (e x p r e s s i o n . o p e r a t o r) {
case ADD:

r e t u r n e x p r e s s i o n . O p e r a n d i + e x p r e s s i o n . 0 p e r a n d 2 ;
case SUBTRACT:

r e t u r n e x p r e s s i o n . O p e r a n d i - e x p r e s s i o n . 0 p e r a n d 2 ;
case MULTIPLE:

r e t u r n e x p r e s s i o n . O p e r a n d i * e x p r e s s i o n . 0 p e r a n d 2 ;
case DIVIDE:

r e t u r n e x p r e s s i o n . O p e r a n d i / e x p r e s s s i o n . 0 p e r a n d 2 ;
}
throw new I l l e g a l A r g u m e n t E x c e p t i o n (" U n s u p p o r t e d o p e r a t i o n ") ;

}

Listing 5.5: Refactored Implementation of Eval Method

If the tests pass even after the refactoring, the design of the tests of other features can take
place.

5.6.5 Final Microservice

This process of designing tests, implementing, and refactoring is repeated until all of the
initial requirements are fulfilled.

Implementation of this service requires handling all possible exceptions, implementing
an algorithm for converting infix expressions to postfix expressions with the usage of a
stack, and adding other mathematical operations.

The final implementation classes and methods can be seen in Figure 5.4.

o % Expression

eval(String) double

build 0 Expression

Node< >

® i Node(Node<V>, V)

0 * StackExpression

© % StackExpressionO

© i doEval (String) double

© i precedence (char) int

© ii main (String[]) void

© i ensurePop{MyStack< Double>) double

© % eval (String) double

© i toPostfix(String) String

0 * MyStack<T>

© o MyStackO

© * toStringO String

© * popO T

© * pusKT) boolean

© t peekO T

J© empty boolean

Figure 5.4: Service's Classes and Methods

36

The whole code of the Expression service can be accessed in the implementation. The
Test-Driven Development part can be localized by Appendix A .

After successful Test-Driven Development of the new microservice, all of the tests in
Figure 5.5 passed and the service is fully functional.

Tests Standard output

Test Method name Duration Result

[1] expressions +2*3-4/2, expected=5 testComplexExpression(Stririg, double)[1] 0.037s passed

[2] expressions+2*3, expected=7 testComplexExpression(Stririg, double)[2] 0.002s passed

[3] expressions+2*3-4, expected=3 testComplexExpression(Stririg, double)[3] 0.001s passed

[4] expression=(13+4}*2 + 2A3, expected=42 testComplexExpression(Stririg, double)[4] 0.001s passed

Test division operation test Divide Ad dExpression() 0.001s passed

Test addition operation testEvalAddExpressionO 0.001s passed

Test infix to postfix conversion testlnfixToPostfixConversion() 0.001s passed

Test multiplication operation testMultiplyAdd Expression) 0.001s passed

Test subtraction operation testSubstractAddExpression{) 0.041s passed

Test Division by zero throwExceptionWhenDividedbyZeroQ 0.003s passed

Test invalid operator throwExceptionWhenExpressionContainsUnsupportedOperatorO 0.002s passed

Test blank expression throwExceptionWhenExpressionlsBlank() 0.001s passed

Test Expression is null throwExcepfionWhenExpressionlsNull() 0.002s passed

Test Invalid operand throwExcepfionWhenOperandlsNotNurnericQ 0.001s passed

Figure 5.5: Final Tests Passed

5.7 Final Test Suite

The final test suite contains multiple tests that exercise the functionality of all the microser-
vices that were planned to test and listed in Subsection 4.1.

It is divided into unit and integration parts due to the importance of isolation of in­
tegration tests. Having integration tests that require configurations such as the database
connection and mixed together with unit tests is generally bad practice in testing. [19]

Having unit tests in separation creates a so-called the safe green zone []. It should
always pass and if some tests don't pass, it is safe to say there is a real problem with func­
tionality and not in the configuration unlike in the case of integration tests. By executing
these tests developers can gain partial confidence in the code functionality.

5.8 Automation of The Test Suite

Having the test suite automated is a huge benefit in terms of creating and incorporating
new functionalities into the system while ensuring that all the critical parts work properly
and new changes do not interfere with the already working code.

Build configurations and build scripts are invoked by a continuous integration (CI)
server's build configuration. This whole process of building and executing tests automati­
cally is called CI [19], as displayed in Figure 5.6.

5.8.1 Bui ld Script

This script runs all the unit tests and is meant to gain information in the least amount of
time. For this case a tests with the tag Fast are mainly used.

The main build to automatically run our final test suite is in Listing 5.6.

37

image: g r a d l e : jdk.15

v a r i a b l e s :
GRADLE_OPTS: "-Dorg.gradle.daemon=false"

b e f o r e _ s c r i p t :
- e x p o r t GRADLE_USER_HOME= ,pwdV. g r a d l e

cache:
p a t h s :
- . g r a d l e / w r a p p e r
- . g r a d l e / c a c h e s

s t a g e s :
- b u i l d
- t e s t

b u i l d :
s t a g e : b u i l d
s c r i p t : ./gradlew — b u i l d - c a c h e assemble
cache:
key: "$CI_COMMIT_REF_NAME"
p o l i c y : push
p a t h s :
- b u i l d
- . g r a d l e

t e s t :
s t a g e : t e s t
s c r i p t : ./gradlew check
a r t i f a c t s :
when: always
r e p o r t s :

j u n i t : b u i l d / t e s t - r e s u l t s / t e s t / * * / T E S T - * . x m l
cache:
key: "$CI_COMMIT_REF_NAME"
p o l i c y : p u l l
p a t h s :
- b u i l d
- . g r a d l e

Listing 5.6: Gitlab CI Test Build

38

Figure 5.6: Continuous Integration Cycle []

5.8.2 Bui ld Triggers

The purpose of triggers is to run the specific build script after special events occur such
as deployment, time passing, and so on[19]. Build scripts for the E A S are triggered auto­
matically along with the deployment process. There is also an option for a manual trigger
available if needed.

5.9 Testing Best Practices

For better sustainability and extensibility of the test suite, several conventions were used
while implementing test cases.

5.9.1 Test Labels

For better orientation in tests and also prioritization it is appropriate to mark tests with
some tags. In E A S , there is an interface called Tags displayed in Listing 5.7 declaring
several markings according to the speed of test execution and severity of functionality
being tested.

This is quite useful in manipulating which tests should be run when deploying, cutting
down time, and making sure that critical tests are covered. A n example of Fast Tag is
shown in Listing 5.8.

p u b l i c i n t e r f a c e Tags {
i n t e r f a c e Speed {

S t r i n g SLOW = "SLOW";
S t r i n g MODERATE = "MODERATE";
S t r i n g FAST = "FAST";

}
i n t e r f a c e S e v e r i t y {

S t r i n g CRITICAL = "CRITICAL";
S t r i n g STANDARD = "STANDARD";
S t r i n g MINOR = "MINOR";

}

Listing 5.7: Tags Instance

39

@FastTest
v o i d updateSequence() {

M o c k i t o . w h e n (r e p o s i t o r y . f i n d (A r g u m e n t M a t c h e r s . a n y ())) . t h e n R e t u r n (
sequence);

Long c o u n t e r = g e n e r a t o r . u p d a t e S e q u e n c e (s e q u e n c e . g e t I d ()) ;
A s s e r t i o n s . a s s e r t E q u a l s (1 L , c o u n t e r) ;

}
}

Listing 5.8: Example of Fast Tag Usage

5.9.2 J U n i t Annotations

Junit5 offers multiple annotations that help make the code more readable and cut down
the number of lines of code.

For less code @BeforeEach and @AfterEach annotations are used to execute code
that repeats before and after every test to remove code duplications.

Annotation @BeforeAll serves to initialize the data object that is tested in Listing 5.9
and shows the correct use of these annotations.

@ B e f o r e A l l
p u b l i c s t a t i c v o i d i n i t () {

s e r v i c e = new S e q u e n c e S e r v i c e () ;
}
@BeforeEach
v o i d s e t u p () {

s e r v i c e . s e t G e n e r a t o r (g e n e r a t o r) ;
s e r v i c e . s e t R e p o s i t o r y (r e p o s i t o r y) ;

}

@AfterEach
v o i d tearDown() {

M o c k i t o . v e r i f y N o M o r e I n t e r a c t i o n s (r e p o s i t o r y , g e n e r a t o r) ;
}

Listing 5.9: Junit5 Annotations

5.9.3 Naming Conventions

A l l of the tests in the test suite follow a unified naming system. Every class under the test
has the same name ending with the word Test.

Testing methods follow the naming pattern UnitOfWork Scenario ExpectedResult.
[19] Example can be seen in Listing 5.10. It also ensures that the test is easy to

understand with no need for additional comments.

@FastTest
v o i d P r o c e s s _ P r o c e s s i n g E r r o r _ T h r o w s E x c e p t i o n () throws I O E x c e p t i o n { }

Listing 5.10: Testing Naming Conventions

40

The IDE test report shows the class name and method name by default. Adding anno­
tation @DisplayName above the test method or class results in a clear summary like the
one in Figure 5.7. It also provides a better understanding for non-technical users.

MailQueueTest > Test g e t N e x t W a i t i n g 0 PASSED

MailQueueTest > Test u p d a t e M a i U) PASSED

MailQueueTest > Test g e t M a i l Q PASSED

SequenceGeneratorTest > updateSequenceQ PASSED

SequenceGeneratorTest > getFormatByCode() PASSED

SequenceGeneratorTest > getF o r m a t B y l d () PASSED

SequenceServiceTest > Test g e n e r a t e N e x t V a l u e () PASSED

Figure 5.7: DisplayName Annotation

5.9.4 Testing Unwanted Interactions

It is important to test both test cases, by happy and unhappy paths. The designed tests
check that the methods work as supposed but they also control if other interactions were
not executed. Mockito can check if any of the given mocks have any unverified interaction.
After each test in tearDownQ function, this method is called. A n example of tearDown
method can be also seen in Listing 5.9.

41

Chapter 6

Test Evaluation and Future
Planning

The final testing suite did not reveal any defects and serves for controlling purpose that the
tested microservices work well. If there is a failing test in the final suite it is safe to assume
that the defect is caused by newly added features. B E of E A S is now more covered.

6.1 Test Metrics

Due to the complexity of the system, the final test suite covers only a part of the B E
microservices, more specifically 11 selected microservices. It consists of a total of 63 tests
with 100% success rate and a total execution time of 3.680s. The tested microservices are
listed in Section 4.1 and all of the initial requirements in Section 4.3 are accomplished. A l l
of the metrics can be seen in Gradle generated report in Figure 6.1.

Test Summary

63 0 0 3.680s

t es ts fa i l u res i gno red dura t ion

Packages Classes

P a c k a g e T e s t s F a i l u r e s I g n o r e d D u r a t i o n S u c c e s s ra te

c z . i n a o o l . e a s . c o m m o n , cer t i f icate 4 0 0 0 .955s 1 0 0 %

c z . i n q o o l . e a s . c o m m o n d a t e d 2 0 0 1.208s 1 0 0 %

c z . i n a o o l . e a s . c o m m o n e x o r e s s i o n 10 0 0 D.012S 1 0 0 %

c z . i n q o o l . e a s . c o m m o n intl 5 0 0 0 .294s 1 0 0 %

c z . i n a o o l . e a s . c o m m o n , mai l 3 0 0 0 .097s 1 0 0 %

cz . inaoo l . e a s . c o m m o n . mu l t iS t r ina 2 0 0 0 .045s 1 0 0 %

c z . i n q o o l . e a s . c o m m o n pd fa 3 0 0 0 .010s 1 0 0 %

c z . i n a o o l . e a s . c o m m o n re D O r t ina.reDort 4 0 0 0 .200s 1 0 0 %

c z . i n a o o l . e a s . c o m m o n , s c h e d u l e , iob 9 0 0 0 .253s 1 0 0 %

c z . i n a o o l . e a s . c o m m o n . s e a u e n c e 5 0 0 0.117s 1 0 0 %

cz . inaoo l . e a s . c o m m o n , s to raae. f i le 13 0 0 0 .075s 1 0 0 %

c z . i n q o o l . e a s . c o m m o n t e m p l a t e 3 0 0 0 .414s 1 0 0 %

Figure 6.1: Test Metrics

100%
s u c c e s s f u l

42

6.2 Final Test Coverage

Initial test coverage values are displayed in the Jacoco report in Attachment B and have
increased with the extended unit test suite and added integration tests. The new values
can be seen in the newly generated Jacoco report after each execution of the test suite.
Table 6.1 and Figure 6.2 represent the specific test coverage metrics and increases in their
values. The overall test coverage of E A S is currently not sufficient but even the small test
suite (50 test cases) increased the numbers in a significant manner and set the precedence
for future implementation.

Test Coverage metric Increase
Instructions +912
Code lines +245
Methods +137
Classes +31

Table 6.1: Final Test Coverage Statistics

Figure 6.2: Overall Increase in Test Coverage

The Test-Driven Development part of the implementation should aim for 100% test
coverage. In figure 6.3 it can be seen that the overall test coverage of the microservice is
much higher in the opposite to other services when using this approach.

43

StackExpression

Element * Missed Instructions Cov* Missed Branches * Cov.* Missed Cxty Missed
'

Lines T Missed Methods

e toPostfrxfStrina]
• StackExpression 0

9 5":
100% n/a

2
ö~~

' 2
1~~

23

1~~

0
ö I -

• 100% 100% 0 5 0 6 0 1

e mainfSlrinani 1 0% n/a 1 1 2 2 1 1

eya Steina; 100% 100% 0 3 0 5 0 1

e ensurePop(MvStack) 61% • 50% 1 2 1 3 0 1

« doEvalfStrina) 100% 90% 2 13 0 32 0 1

Total 15 of 302 95% 5 of 53 90% 6 37 4 72 1 7

Figure 6.3: Test Coverage of Expression microservice

6.3 Future Testing Strategy

The overall testing state of the B E services of E A S has progressed but it is far from accept­
able test coverage. Wi th a relatively small suite consisting of approximately 50 tests, we
managed to cover 10 more services. In the future, it is recommended to extend the number
of unit tests with the attention of more class coverage and aim to at least 80 % test coverage
of the system. This thesis is recommended as a basis and a guide for such expansion.

44

Chapter 7

Conclusion

The objective of this thesis was to conduct an analysis of E A S in the context of microservice
architecture and test it accordingly. The primary focus of this analysis was to examine the
current state of testing, identify critical components of the system, and evaluate the skills of
the development team. The subsequent goal was to devise and implement a comprehensive
test suite for the B E microservices of E A S while considering the possibility of automation
and potential expansion of test cases in the future.

The final test suite is sustainable and expandable, covering a significant part of B E of
the system following proposed contingency strategies to mitigate risks. Consequently, the
primary objective of this thesis has been successfully achieved.

To develop the final product of this work, which is the test suite, the initial step involved
conducting research and studying the theory behind software testing and automation, with
a primary focus on the lower layers of the V-model.

After analyzing the framework, unit, and integration tests were formulated to cover the
fundamental functionality of the system. During the implementation process, the best prac­
tices for testing were observed to ensure the quality of testing, and established conventions
were put in place to guide developers in creating tests independently among other things.

Lastly, final evaluations of the test results from the test suite were made and the final
test report contains all the needed metrics for evaluating the confidence in the system's
functionality.

At the beginning of this work, existing testing solutions covered only 9% of the B E
components of the framework. Moreover, these tests lacked any standardized conventions
or best practices, making it challenging for inexperienced developers to test the framework
adequately. However, following the creation and implementation of the updated test suite,
the coverage of the system has increased, accompanied by a clear guide on how to proceed
during testing and potential expansion.

This work is useful as a base for testing E A S and it can be reused for testing the F E
part of the application, as well.

45

Bibliography

[1] A X E L R O D , A . Complete guide to test automation techniques, practices, and patterns
for building and maintaining effective software projects. 1st ed. Apress, 2018. ISBN
978-1-4842-3831-8.

[2] B E Z B A R U A H , A . , P R A T A P , B . and H A K E , S. B . Automation of Tests and

Comparative Analysis between Manual and Automated testing. In: SCES. 2020
IEEE Students Conference on Engineering & Systems (SCES). 2020, p. 1-5. DOI:
10.1109/SCES50439.2020.9236748. ISBN 978-1-7281-9339-7.

[3] C A R N E I R O , C. and S C H M E L M E R , T. Microservices from day one: Build robust and
scalable software from the start. 1st ed. Apress, 2016. ISBN 978-1-4842-1936-2.

[4] C A S T I L L O , C. and H A M R A , M . Unit Testing of Java EE Web Applications.
Stockholm, Sweden, 2014. Dissertation. K T H Information and Communication
Technology.

[5] C H E V U T U R U , A . , M A T H U R , D., K U M A R R E D D Y , B . J . and R , D. A Comparative
Survey on Software Testing Tools. International Journal of Engineering and
Advanced Technology. 1st ed. august 2022, vol. 11, no. 1, p. 32-40. DOI:
10.35940/ijeat.F3664.0811622.

[6] C u i , M . and W A N G , C. Cost-benefit evaluation model for automated testing based
on Test Case Prioritization. Journal of Software Engineering. 1st ed. 2015, vol. 9,
no. 4, p. 808-817. DOI: 10.3923/jse.2015.808.817.

[7] D O B L E S , L , M A R T I N E Z , A . and Q U E S A D A L O P E Z , C. Comparing the effort and
effectiveness of automated and manual tests. In: CISTI. 2019 lJ^th Iberian
Conference on Information Systems and Technologies (CISTI). 2019, p. 1-6. DOI:
10.23919/CISTI.2019.8760848. ISBN 978-9-8998-4349-3.

[8] F O W L E R , M . Bliki: Integrationtest. Jan 2018. Available at:
h t t p s : / / m a r t i n f o w l e r . c o m / b l i k i / I n t e g r a t i o n T e s t . h t m l .

[9] G E O R G I E V A , P. Elasticsearch explained: Components, usage and benefits. Sep 2022.
Available at: h t t p s : / / f l a t r o c k t e c h . c o m / e l a s t i c s e a r c h / .

[10] G R A H A M , D., B L A C K , R . and V E E N E N D A A L , E . V . Foundations of Software Testing:
ISTQB certification. 3rd ed. Cengage Learning, E M E A , 2020. ISBN 978-1408044056.

[11] H M E L I K , I. You don't need automated testing? C O B E , Mar 2021. Available at:
h t t p s ://www.cobeisfresh.com/blog/you-dont-need-automated-testing.

46

http://infowler.com/bliki/
http://flatrocktech.com/
http://www.cobeisfresh.com/blog/

[12] I T K O N E N , J. , M A N T Y L A , M . V . and L A S S E N I U S , C. Defect Detection Efficiency: Test
Case Based vs. Exploratory Testing. In: E S E M . Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement. USA: I E E E
Computer Society 2007, p. 61-70. E S E M '07. DOI: 10.1109/ESEM.2007.38. ISBN
0769528864. Available at: https://doi.org/10.1109/ESEM.2007.38.

[13] I T K O N E N , J. , M A N T Y L A , M . V . and L A S S E N I U S , C. H O W do testers do it? A n
exploratory study on manual testing practices. In: E S E M . 2009 3rd International
Symposium on Empirical Software Engineering and Measurement. 2009, p. 494-497.
DOI: 10.1109/ESEM.2009.5314240. ISBN 978-1-4244-4842-5.

[14] L E E , T., B A I K , D . and I N , H . P. Cost Benefit Analysis of Personal Software Process
Training Program. In: CIT. 2008 IEEE 8th International Conference on Computer
and Information Technology Workshops. 2008, p. 631-636. DOI:
10.1109/CIT.2008.Workshops.l20. ISBN 978-0-7695-3242-4.

[15] L I N , D., L I P I N G , F. , J I A J I A , H . , Q I N G Z H A O , T., C H A N G H U A , S. et al. Research on
Microservice Application Testing Based on Mock Technology. In: ICVRIS. 2020
International Conference on Virtual Reality and Intelligent Systems (ICVRIS). 2020,
p. 815-819. DOI: 10.1109/ICVRIS51417.2020.00200. ISBN 978-1-7281-9636-7.

[16] M A T E E N , A . and A B B A S , K . Optimization of model based functional test case
generation for android applications. In: ICPCSI. 2017 IEEE International
Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI).
2017, p. 90-95. DOI: 10.1109/ICPCSI.2017.8391869. ISBN 978-1-5386-0814-2.

[17] M Y E R S , S A N D L E R , C. and B A D G E T T , T. The Psychology and Economics of Software
Testing. 3rd ed. John Wiley &; Sons, 2012. ISBN 978-1-118-13315-6.

[18] N N A K W U E , A . A guide to fully understanding redis. Jan 2020. Available at:
h t t p s : / / b l o g . l o g r o c k e t . c o m / g u i d e - t o - f u l l y - u n d e r s t a n d i n g - r e d i s / .

[19] O S H E R O V E , R. and O S H E R O V E , R. The Art of Unit Testing. Secondth ed. MITP,

2015. ISBN 9781617290893.

[20] P L E W N I A , C. A Framework for Regression Test Prioritization and Selection.
Templergraben 55, 52062 Aachen, Germany, 2015. Dissertation. R W T H A A C H E N
U N I V E R S I T Y .

[21] R A M L E R , R. and W O L F M A I E R , K . Economic Perspectives in Test Automation:

Balancing Automated and Manual Testing with Opportunity Cost. In: Proceedings
of 1st International Workshop on Automation of Software Test. 1st ed. 2006, no. 1,
p. 85-91.

[22] R A U L A M O J U R V A N E N , P., HosiO, S. and M Ä N T Y L Ä , M . V . Practitioner Evaluations
on Software Testing Tools. In: IT University of Copenhagen. Proceedings of the
Evaluation and Assessment on Software Engineering. New York, N Y , USA:
Association for Computing Machinery, 2019, p. 57-66. E A S E '19. DOI:
10.1145/3319008.3319018. ISBN 9781450371452. Available at:
https://doi.org/10.1145/33190 0 8.3319018.

47

https://doi.org/10.1109/ESEM.2007.38
http://ogrocket.com/
https://doi.org/10.1145/33190
http://0
http://8.3319018

[23] Introduction to redis. Redis Ltd. , 2023. Available at:
h t t p s : / / r e d i s . i o / d o c s / a b o u t / .

[24] R E I L E , C , C H A D H A , M . , H A U N E R , V . , J I N D A L , A . , H O F M A N N , B . et al. Bunk8s:
Enabling Easy Integration Testing of Microservices in Kubernetes. 2022.

[25] S A H A F , Z . , G A R O U S I , V . , P F A H L , D. , I R V I N G , R. and A M A N N E J A D , Y . When to
Automate Software Testing? Decision Support Based on System Dynamics: A n
Industrial Case Study. In: ICSSP. Proceedings of the 2014 International Conference
on Software and System Process. New York, N Y , USA: Association for Computing
Machinery, 2014, p. 149-158. ICSSP 2014. DOI: 10.1145/2600821.2600832. ISBN
9781450327541. Available at: h t t p s : //doi.org/10.1145/2600821.2600832.

[26] S H U P I N G , L . and L I N G , P. The Research of V Model in Testing Embedded Software.
In: ICCSIT. 2008 International Conference on Computer Science and Information
Technology. 2008, p. 463-466. DOI: 10.1109/ICCSIT.2008.51. ISBN
978-0-7695-3308-7.

[27] S P A D I N I , D., A N I C H E , M . , B R U N T I N K , M . and B A C C H E L L I , A . To Mock or Not to
Mock? A n Empirical Study on Mocking Practices. In: MSR. 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). 2017, p. 402-412.
ISBN 978-1-5386-1544-7.

[28] T E A M , W . Building microservices: Inter-process Communication. Jan 2023.
Available at: h t t p s : / / w w w . n g i n x . c o m / b l o g / b u i l d i n g - m i c r o s e r v i c e s - i n t e r -
p r o c e s s - c o m m u n i c a t i o n / .

[29] U M A R , M . A . and C H E N , Z . A Study of Automated Software Testing: Automation
Tools and Frameworks. International Journal of Computer Science Engineering. 1st
ed. december 2019, vol. 8, no. 1, p. 217-225. DOI: 10.5281/zenodo.3924795.

[30] W A H I D , M . and A L M A L A I S E , A . JUnit framework: A n interactive approach for basic
unit testing learning in Software Engineering. In: I C E E D . 2011 3rd International
Congress on Engineering Education (ICEED). 2011, p. 159-164. DOI:
10.1109/ICEED.2011.6235381. ISBN 978-1-4577-1259-3.

[31] W A S E E M , M . , L I A N G , P., M Ä R Q U E Z , G . and S A L L E , A . D. Testing Microservices
Architecture-Based Applications: A Systematic Mapping Study. In: A P S E C . 2020
27th Asia-Pacific Software Engineering Conference (APSEC). 2020, p. 119-128.
DOI: 10.1109/APSEC51365.2020.00020. ISBN 978-1-7281-9553-7.

[32] W I C K , M . R., S T E V E N S O N , D. E . and W A G N E R , P. J . Using testing and JUnit across
the curriculum. In: SIGCSE Technical Symposium on Computer Science
Education. Technical Symposium on Computer Science Education. 2005. ISBN
10.1145/1047344.1047427.

[33] W i E C Z O R E K , S., S T E F A N E S C U , A . , F R I T Z S C H E , M . and S C H N I T T E R , J . Enhancing
Test Driven Development with Model Based Testing and Performance Analysis. In:
T A I C P A R T . Testing: Academic & Industrial Conference - Practice and Research
Techniques (taic part 2008). 2008, p. 82-86. DOI: 10.1109/TAIC-PART.2008.17.
ISBN 978-0-7695-3383-4.

18

http://www.nginx.com/blog/building-microservices-inter-

[34] W I L L I A M S , L . Agile Software Development Methodologies and Practices. In:
Z E L K O W I T Z , M . V . , ed. Advances in Computers. Elsevier, 2010, vol. 80, p. 1-44.
Advances in Computers. DOI: https://doi.org/10.1016/S0065-2458(10)80001-4. ISSN
0065-2458. Available at:
h t t p s : / / w w w . s c i e n c e d i r e c t . c o m / s c i e n c e / a r t i c l e / p i i / S 0 0 6 5 2 4 5 8 1 0 8 0 0 0 1 4 .

[35] Y u , J. , Z H A N G , J. , P A N , L . , C H E N , Y . , W U , N . et al. Software Exploratory Testing:
Present, Problem and Prospect. In: I A E C S T . 2021 3rd International Academic
Exchange Conference on Science and Technology Innovation (IAECST). 2021,
p. 44-47. DOI: 10.1109/IAECST54258.2021.9695695. ISBN CFP21BJ6-ART.

49

https://doi.org/10.1016/S0065-2458(10)80001-4
http://www.sciencedirect.com/

Appendix A

Contents of the included storage
media

• executable eas project/—EAS project demonstrating usage of microservices.

• source code/—Source code and test code of B E microservices.

• thesis tex/— Source code of the thesis.

• thesis pdf /—PDF version of thesis.

• user guide/—Documentation and Execution Guide.

50

Appendix B

Overall test coverage before

Test reports on the following pages were generated by the JaCocCo tool. JaCoco is an
open-source code coverage plugin for Java applications. It is integrated into IDE Intellij
Idea used while developing the implementation part of this work.

JaCoCo was used because of the simplicity of usability and setup. The final reports are
informative and provide the exact percentage of code coverage together with these columns
in order from left to right:

• Element—the name of the package,

• Missed Instructions—graphical representation of test coverage,

• Cov.—overall instruction coverage,

• Missed Branches—graphical representation of missed branches in the package,

• Cov.—overall branch coverage,

• Missed—missed complexity,

• Cxty—cyclomatic complexity,

• Missed—the number of missed lines,

• Lines—total count of lines,

• Missed—the number of missed methods,

• Methods—total count of methods,

• Missed—the number of missed classes and finally

• Classes—total count of classes.

51

Sessionscommon

c o m m o n

Element

cz. inqo ol. eas. co mmo n. exc ep tio n. v2

eas. common, signing, request
eas. common, reporting.generator .aggregator
eas. common, schedule .job
eas. common, sto rage, file
eas.common, export.request
eas.common.alog.event

eas. common, domain.ind ex. dto.filter

eas. common, domain.index.dto.aggregation
eas.common.i mail
eas. common, ws.soap.logger.message
eas. common, exp ort, template
eas. common, utils
eas.common.reporting.report
eas.common, sequence
eas. co mmo n. die tio nary. sto re
eas. co mmo n. exc ep tio n
eas. common, settings.named
eas. co mmo n. exp ort, b ate h
n ŝ. common, schedule.run
eas. common, intl
eas. common, his tory
eas.common. action
eas. common, certificate
eas. common, security .personal
eas. common, settings.user
eas. common, domain
eas.common. state.app
eas.common. settings.app
eas. co mmo n. diff e r
eas. co mmo n. do main, s tor e
eas.common. exception.v2,rest.processor
eas.common, antivirus.scan
eas. co mmo n. dated. sto re
eas. common, authored
eas.common. security.service
eas. common, security, saml
eas. common, domain.ind ex. reindex.reference
eas. common, client, action.dto
eas. common, authored.store
eas. common. exception.v2 .rest
eas. common, template
eas. common, init
eas.common.domain.index.dto.sort
eas.common. security.captcha
eas.common, security.form.internal
eas. co mmo n. die tio nary
eas. common, security
eas. common, reporting.generator
eas.common. ws.soap.logger.interceptor
eas. common, reporting, input
eas.common. ws. soap, validator
oüs. common, do mam, index, fie k I
eas. common, domain.index. dynamic
eas. common, domain.index, reference
eas. common, security.form
eas .common, domain, index, dto.params
eas.common.reporting.dto
eas. common.differ.parser
eas. co mmo n. do main. index
eas. co mmo n. mo dule
eas. common, security.form, two Factor
eas. co mmo n. his to ry. op eratio n
eas. common, differ, strategy, impl
eas. common, client
eas.common, script
eas.common. differ, m od el .pro p
eas. common, exception.dto
eas. common, differ, exception
eas. common, ws.soap.logger
eas. common, client.export
eas. common, client.file
eas.common.authored.user
eas.common, ws.soap.logger.interceptor.extract
eas.common. security.header
eas.common, alog.syslog
eas. co mmo n. do main, index. map ping

Missed
Instructions
i

Cov. Missed _ . . . o . Cov. Missed Cxty Branches J Missed Lines Missed Methods Missed Classes

•

•
•
•
Lzn
•
•
•
•
•
•
•
•

•
•
a
•
•

•
•
•
•
•
•
•
•
c
•
•

8% 1 = 1 3% 370 392 233 272 261 280 37 46

1% r_zzi 0% 358 360 663 67 1 288 290 25 26
0% i i 0% 389 389 279 27!) 281 281 31 31
1% • 0% 313 315 635 642 263 265 21 22
0°/) 0% 288 288 528 528 233 233 16 16
2% 0% 271 273 528 536 220 222 15 16
4% • 0% 258 262 497 506 215 219 16 18

49%
i 1 32% 422 623 149 48 í! 134 324 12 41

0°/, 0% 277 278 290 292 219 220 29 30
2% • 0% 240 242 462 470 204 206 17 18
0% • 0% 209 209 420 420 172 1 72 14 14
5% • 0% 206 208 406 418 176 178 14 15
14% 9% 270 311 411 486 139 175 7 14
0% 0% 213 213 365 365 168 168 19 19
0% 0% 179 179 367 367 150 1 50 16 16
10% • 0% 137 152 278 318 115 130 16 19
0% n 0% 120 122 318 320 109 111 18 19
0% i i 0% 177 177 334 334 148 148 14 14
3% n 0% 158 160 329 336 121 123 13 14
3% • 0% 185 187 319 326 154 156 14 15
4% • 0% 152 154 338 343 119 121 15 16
0% 0% 171 171 326 326 138 138 16 16
0% 0% 153 153 312 312 125 125 16 16
0°/, 0% 141 141 293 293 111 I I I 15 15
4% 0% 159 161 291 299 128 130 15 16
0% 0% 138 138 258 258 108 108 14 14
29% 23% 110 138 256 351 80 1 08 2 4
0% 0% 122 122 230 230 93 93 14 14
0% 0% 122 122 230 230 93 93 14 14
0% 0% 107 107 242 242 82 82 6 6
34% 21% 129 172 193 315 65 103 8 13
0% 0% 95 95 197 197 76 76 11 11
3% 0% 120 121 216 220 90 91 11 12
20% 5% 80 104 171 205 63 87 9 15
0% 0% 71 72 110 1 1 1 54 55 4 5
21% 4% 98 113 177 219 40 52 0 4
0% 0% 59 59 177 177 37 37 3 3
0% 0% 83 83 135 135 45 45 6 6
0% 0% 113 113 179 179 85 85 7 7
23% 15% 78 96 153 193 58 76 9 12
0% 0% 81 81 141 141 54 54 5 5
0% 0% 72 72 65 65 52 52 11 11
0% 0% 60 60 162 162 43 43 6 6
29% 46% 89 115 76 128 77 100 9 13
0% 0% 59 59 102 102 45 45 8 8
0% 0% 63 63 144 144 44 44 5 5
1% 0% 40 42 76 78 34 36 2 3
0% 0% 68 69 123 124 56 57 6 7
0°/) 0% 54 54 97 97 40 40 4 4
0% 0% 39 39 112 112 33 33 4 4
0% 0% 63 63 42 42 37 37 5 5
0% 0% 37 37 98 98 13 13 3 3
67% 52% 57 138 63 214 16 73 0 7
1% 0% 27 29 63 65 15 1 7 1 3
0% 0% 65 65 47 47 32 32 4 4
0% 0% 40 40 101 101 27 27 2 2
23% 0% 55 80 20 47 14 39 2 5
0% 0% 52 52 32 32 22 22 1 1
0% 0% 33 33 72 72 14 14 1 1
71% 47% 72 148 82 293 19 90 1 6
0% 0% 46 46 47 47 31 31 5 5
0% 0% 44 44 84 84 38 38 6 6
0% 0% 42 42 41 41 27 27 4 4

0% 38 38 69 69 21 21 6 6
0% 0% 44 44 80 80 38 38 5 5
9% 0% 31 33 81 87 23 25 3 4
0% 0% 35 35 65 65 26 26 3 3
0% 0% 43 43 68 68 26 26 4 4
0% 0% 35 35 18 18 25 25 4 4
0% 0% 36 36 79 79 30 30 3 3
0% n/a 22 22 72 72 22 22 4 4
0% 0% 20 20 61 61 18 18 4 4
24% 9% 45 57 36 55 24 36 2 7
3% 0% 38 41 51 54 30 33 6 8
0% 0% 22 22 62 62 14 14 2 2
0% 0% 26 26 68 68 17 17 3 3
0% 0% 39 39 46 46 26 26 4 4

cz.inqoo! .eas.common.authored. tenant • 24% C 10% 42 54 31 50 22 34 1 6
cz.inqoo! .eas. common, differ.model • 0% 0% 26 26 51 51 18 18 3 3
cz.inqoo! .eas.common, exception.handler • 8% 0% 27 33 48 56 18 24 1 3
cz.incKm .eas.common.multiStrina • 4% 2% 36 39 14 18 16 19 2 4
cz.incKm .eas. common. securitv.form.ldaD • 0% 0% 19 19 61 61 18 18 3 3
cz.incKm .eas.common, securitv.internal • 4% 0% 30 33 63 66 16 19 3 5
cz.inqoo! .eas.common, export.init D 0% 0% 19 19 63 63 9 9 1 1
cz.inqoo! .eas. common, differ.event • 0% 0% 34 34 45 45 24 24 4 4
cz.inqoo! .eas.common, kewalue • 0% 0% 22 22 47 47 19 19 4 4
cz.incKm .eas.common. exceDtion.Darser • 10% 0% 26 33 50 57 20 27 1 8
cz.incKm .eas. common, domain.index.reindex.reference. entity 20% n/a 15 18 30 41 15 18 1 3
cz.inqoo! .eas. common, domain.index.reindex 0% 0% 21 21 48 48 15 15 3 3
cz.inqoo! .eas.common, projection D 23% 66% 15 23 32 47 13 20 1 4
cz.inqoo! . eas.common.admin.console.stream 0 0% 0% 15 15 30 30 9 9 2 2
cz.incKm .eas.common, ws D 0% 0% 13 13 44 44 7 7 2 2
cz.incKm .eas.common, securitv.header.internal D 0% 0% 18 18 43 43 17 17 2 2
cz.incKm .eas. common, domain.index.reindex.cmeue D 0% n/a 18 18 23 23 18 18 5 5
cz.inqoo! .eas.common, dated.index D 21% 0% 18 24 30 44 16 22 1 3
cz.inqoo! .eas.common, dictionarv.index D 23% n/a 27 31 26 39 27 31 2 4
cz.inqoo! .eas.common.admin.console D 0% n/a 13 13 36 36 13 13 3 3
cz.incKm .eas.common, db D 7% 25% 9 12 29 34 5 8 2 3
cz.incKm .eas.common, domain.event.store D 0% n/a 20 20 38 38 20 20 10 10
cz.inqoo! .eas.common, securitv.session Ö 7% 0% 21 24 36 40 20 23 1 2
cz.inqoo! .eas.common.il 8n.vml D 35% 0% 12 17 30 50 3 8 0 2
cz.inqoo! .eas.common, client.action D 0% n/a 16 16 30 30 16 16 4 4
cz.inqoo! .eas.common, domain.index.dto.filter.custom D 0% 0% 16 16 19 19 13 13 3 3
cz.incKm .eas.common, dictionarv.reference 0 0% 0% 20 20 15 15 10 10 2 2
cz.incKm .eas. common, differ.util 0 0% 0% 24 24 24 24 11 11 2 2
cz.inqoo! .eas.common.authored.index D 29% 0% 17 21 13 25 14 18 1 3
cz.inqoo! .eas.common, client.export.runner D 0% n/a 14 14 27 27 14 14 3 3
cz.inqoo! .eas.common, securitv.form. secret D 0% 0% 13 13 25 25 10 10 1 1
cz.incKm .eas.common. Ddfa 0% 0% 10 10 29 29 9 9 2 2
cz.incKm .eas.common. exDort.init.dto 0% n/a 28 28 17 17 28 28 2 2
cz.inqoo! .eas.common, export 0% 0% 17 17 23 23 16 16 1 1
cz.inqoo! .eas.common, antivirus 0% 0% 11 11 28 28 10 10 2 2
cz.inqoo! .eas.common.admin.console.dto 0% n/a 20 20 20 20 20 20 2 2
cz.inqoo! .eas.common.xml 0% 0% 23 23 29 29 19 19 6 6
cz.incKm .eas.common 0% n/a 2 2 14 14 2 2 1 1
cz.incKm .eas.common, schedule 15% n/a 12 14 21 26 12 14 1 2
cz.inqoo! .eas. common, an tivirus.clamav 0% 0% 12 12 20 20 10 10 1 1
cz.inqoo! .eas.common, trace 0% 0% 7 7 22 22 4 4 1 1
cz.inqoo! .eas. common, export.svstem 0% n/a 7 7 21 21 7 7 1 1
cz.incKm .eas.common, variable 10% 0% 10 11 21 23 9 10 0 1
cz.incKm .eas.common.stonro 0% 0% 6 6 13 13 5 5 1 1
cz.incKm .eas.common. Ddfa.mock 0% 0% 12 12 20 20 9 9 2 2
cz.inqoo! .eas.common.storaqe 0% n/a 6 6 16 16 6 6 1 1
cz.inqoo! .eas.common, aloq 0% n/a 8 8 15 15 8 8 1 1
cz.inqoo! .eas.common, reporting 0% n/a 7 7 12 12 7 7 1 1
cz.incKm .eas.common. reDortina.exceDtion 0% n/a 10 10 20 20 10 10 2 2
cz.incKm .eas.common, domain.index.reindex.reference.event 0% n/a 8 8 15 15 8 8 3 3
cz.inqoo! .eas.common.siqninq 0% n/a 6 6 11 11 6 6 1 1
cz.inqoo! .eas.common, exception. v2.rest.dto 0% n/a 10 10 13 13 10 10 2 2
cz.inqoo! .eas.common, export.event 0% n/a 8 8 16 16 8 8 4 4
cz.incKm .eas.common. crvDto 0% 0% 5 5 9 9 2 2 1 1
cz.incKm .eas.common, reportina.convert 19% n/a 3 6 7 10 3 6 0 3
cz.incKm .eas.common, event 16% n/a 6 8 12 15 6 8 1 2
cz.inqoo! .eas.common, domain.index.field.java 37% n/a 4 8 8 14 4 8 1 2
cz.inqoo! .eas.common, export.request.dto 0% n/a 8 8 8 8 8 8 2 2
cz.inqoo! .eas.common.sicminq.request.event 0% n/a 6 6 12 12 6 6 3 3
cz.incKm .eas. common, ws.wsdl 9% n/a 4 5 7 8 4 5 1 2
cz.incKm .eas.common, securitv.saml.internal 0% n/a 4 4 10 10 4 4 1 1
cz.inqoo! .eas.common, exception. v2.dto 0% n/a 7 7 11 11 7 7 2 2
cz.inqoo! .eas.common, securitv.captcha.exception 0% n/a 6 6 12 12 6 6 2 2
cz.inqoo! .eas.common, export.access 0% n/a 5 5 4 4 5 5 1 1
cz.inqoo! .eas.common.il 8n 25% n/a 3 4 4 6 3 4 0 1
cz.incKm .eas.common, mail.event 0% n/a 4 4 8 8 4 4 3 3
cz.incKm .eas.common.sianina.recmest.dto 0% n/a 5 5 4 4 5 5 1 1
cz.inqoo! .eas.common, ws.soap.interceptor 0% 0% 3 3 6 6 2 2 1 1
cz.inqoo! .eas. common, domain.event 0% n/a 3 3 6 6 3 3 3 3
cz.inqoo! .eas. common, export.provider D 90% n/a 4 8 4 20 4 8 0 2
cz.incKm .eas.common.authored.svstem 29% n/a 4 6 5 7 4 6 1 2
cz.incKm .eas.common, differ.rest 0% n/a 3 3 4 4 3 3 1 1
cz.inqoo! .eas.common, certificate.event 0% n/a 2 2 4 4 2 2 1 1
cz.inqoo! .eas.common, dictionarv.event 0% n/a 2 2 4 4 2 2 2 2
cz.inqoo! .eas.common, reportinq.event 0% n/a 2 2 4 4 2 2 1 1
cz.inqoo! .eas.common, ws.soap 0% n/a 3 3 3 3 3 3 1 1
cz.incKm .eas.common, dated 91% 50% 3 7 2 19 2 6 2 3
cz.incKm .eas. common, differ.strateav 0% n/a 1 1 1 1 1 1 1 1
cz.inqoo! .eas. common, domain.index. dto 100% n/a 0 10 0 7 0 10 0 1
cz.inqoo! .eas.common, asvnc 100% n/a 0 2 0 5 0 2 0 1
cz.inqoo! .eas.common, cache

81,026 of
89,073

100% n/a 0 2 0 2 0 2 0 1

Total 81,026 of
89,073 9% 4 ' " 5 0 f

B / 0 5,428 7% 10,049 10,81816,717 18,3117,367 8,076 852 1,015

Created with TaCoCo 0.8.7.202105040129

http://common.il
http://eas.common.xml
http://common.il

