ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

Studijní program:P2301Strojní inženýrstvíStudijní obor:2302V013 Stavba energetických strojů a zařízení

DISERTAČNÍ PRÁCE

Experimentální výzkum proudění v úzkých štěrbinách odlehčovacího systému regulačních ventilů parních turbín

Autor:	Ing. Lukáš Mrózek
Školitel:	prof. Ing. Jiří Linhart, CSc.
Konzultant specialista:	Ing. Ladislav Tajč, CSc.

Akademický rok 2019/2020

PROHLÁŠENÍ O AUTORSTVÍ

Předkládám tímto k posouzení disertační práci zpracovanou na téma:

Experimentální výzkum proudění v úzkých štěrbinách odlehčovacího systému regulačních ventilů parních turbín

Prohlašuji, že jsem předloženou práci vypracoval samostatně, dle Studijního a zkušebního řádu Západočeské univerzity v Plzni, pod odborným dohledem školitele a s použitím odborné literatury a pramenů uvedených v seznamu, který je součástí této práce.

V Plzni dne:.....

Podpis autora

PODĚKOVÁNÍ

Rád bych poděkoval především školiteli – specialistovi p. Ing. Ladislavu Tajčovi, CSc., za jeho odborné vedení, přínosné rady a připomínky, bez kterých by tato práce nemohla vzniknout. Dále díky patří školiteli disertační práce p. prof. Ing. Jiřímu Linhartovi, CSc., za vstřícnost během psaní této práce. V neposlední řadě bych chtěl poděkovat p. Ing. Kamilu Sedlákovi, Ph.D., za pomoc při realizaci experimentálního zařízení obtokového systému ventilu v laboratoři DŠP a podnětné rady při zpracování primárních dat z měření.

"One, remember to look up at the stars and not down at your feet. Two, never give up work. Work gives you meaning and purpose and life is empty without it. Three, if you are lucky enough to find love, remember it is there and don't throw it away."

Stephen Hawking

"Find what you love and let it kill you."

Charles Bukowski

ANOTACE

	Příjmení (včetně titulů)	Jméno		
AUTOR	Mrózek, Ing. Lukáš			
STUDIJNÍ OBOR	Stavba energetických strojů a zařízení			
VEDOUCÍ	Příjmení (včetně titulů)	Jméno		
PRÁCE	Linhart, prof., Ing., CSc. Jiří			
PRACOVIŠTĚ VEDOUCÍHO	ZČU – FST – KKE			
DRUH PRÁCE	disertační			
NÁZEV PRÁCE	Experimentální výzkum proudění v úzkých štěrbinách odlehčovacího systému regulačních ventilů parních turbín			

Fakulta:	Strojí
Katedra:	Stavba energetických strojů a zařízení
Rok odevzdání:	2020

Počet stránek (A4 a ekvivalentů A4)

	Celkem	101		Textová část	99		Grafická část	2
--	--------	-----	--	--------------	----	--	---------------	---

STRUČNÝ POPIS ZAMĚŘENÍ, TÉMA, CÍL POZNATKY A PŘÍNOSY	Disertační práce se zaměřuje na experimentální výzkum proudění odlehčovací štěrbinou v odlehčeném systému regulačních ventilů parních turbín. Cílem je pomocí experimentů zpřesnit původní nepříliš vhodné výpočtové podklady pro průtok média štěrbinou. Hlavním výsledkem je určení závislosti ztrátového součinitele pro proudění v mezikruhové štěrbině a vyhodnocení stabilizační síly působící na kuželku pro typové uspořádání odlehčeného ventilu.
KLÍČOVÁ SLOVA	parní turbína, regulační ventil, odlehčovací štěrbina, ztrátový součinitel, stabilizační síla

SUMMARY

	Surname (including of Degrees)	Name	
AUTHOR	Mrózek, Ing. Lukáš		
FIELD OF STUDY	Design of Power Machines and Equipment		
	Surname (including of Degrees)	Name	
SUPERVISOR	Linhart, prof., Ing., CSc. Jiří		
INSTITUTION	ZČU – FST – KKE		
TYPE OF WORK	dissertation		
TITLE OF THE WORK	Experimental research of flow in the narrow slots of the balancing control valves of steam turbines		

Faculty:	Mechanical Engineering
Department:	Design of Power Machines and Equipment
Submitted in:	2020

Number of pages (A4 a eq. A4)

Totaly 101 Text part	99	Graphical part	2
--------------------------	----	----------------	---

BRIEF DESCRIPTION TOPIC, GOAL, RESULTS AND CONTRIBUTIONS	The dissertation focuses on experimental research of flow through the relief slot, which is part of the control valves of steam turbines and facilitates their handling. The aim of the work is to refine the results of numerical simulations of the flow of the medium through the slot, which were not suitable for further application by experiments. The main goal of this work is to determine the dependence of the coefficient of pressure loss of the flow through the relief slit with an annular shape on the Reynolds number and to evaluate the stabilizing force acting on the cone of the valve.
KEY WORDS	steam turbine, control valve, unloading slot, loss coefficient, stabilizing force

Obsah

Seznam obrázků9
Seznam tabulek
Seznam častěji použitých označení13
Glosář
Úvod
1 Motivace
1.1 Konstrukční řešení odlehčených regulačních ventilů 19
1.1.1 Odlehčené ventily trámcové regulace
1.1.2 Ventily se škrcením tlaku ve štěrbině
1.2 Silová a průtoková charakteristika regulačního ventilu
1.3 Důvody pro výzkum v oblasti proudění ve štěrbinách 24
2 Přehled dosud získaných poznatků ve výzkumu odlehčených regulačních ventilů 25
2.1 Experimentální model odlehčeného regulačního ventilu
2.1.1 Charakteristické rozložení tlaků v odlehčeném regulačním ventilu
2.2 Tlakové pulsace na ventilu27
2.3 Výpočtová studie proudění v hrdle difuzoru
2.4 Numerická simulace proudění úzkou štěrbinou
2.5 Průtokový součinitel a zúžení průtoku otvorů malých dimenzí
3 Teorie proudění v ideální dýze a štěrbině
3.1 Průtok soustavou štěrbin34
3.2 Dostupné podklady pro tlakovou ztrátu37
3.3 Rozbor proudění na štěrbině pro vazkou stlačitelnou tekutinu
4 Model experimentální trati pro výzkum proudění štěrbinou
4.1 Popis měření
4.2 Měření základních veličin46
4.2.1 Popis měření teplot a tlaků46
4.2.2 Popis měření hmotnostního průtoku47
4.3 Nejistoty měření obecně48
4.3.1 Nejistota typu A49
4.3.2 Nejistota typu B49
4.3.3 Kombinovaná nejistota u _c 50
4.3.4 Rozšířená nejistota U50
4.4 Odhad nejistoty měření teploty51
4.4.1 Kalibrace termočlánků52

4.5	Odh	ad nejistoty měření tlaku	54
4.6	Odh	ad nejistoty měření průtoku	55
4.6	5.1	Odhad nejistoty poměrného průtoku štěrbinou	55
4.7	Zpra	acování experimentálně získaných dat	57
5 Vył	hodnc	ocení dat	61
5.1	Pozr	natky z první etapy experimentu	61
5.1	1.1	Vyhodnocení průtokových součinitelů a kritických tlakových pom	něrů 62
5.1 odlehče	1.2 enéhc	Reálné provedení ventilu – vyhodnocení stabilizační síly r pregulačního ventilu	na kuželce 64
5.2	Nun	nerické výpočty DGFEM	69
5.3	Vyh	odnocení ztrátového součinitele a tlakové ztráty na štěrbině	74
5.4	Vyh	odnocení tlaku na dno a parní stabilizační síly působící na kuželku	ı ventilu 83
6 Pří	ínosy c	disertační práce	89
7 Ná	měty	pro další výzkum	90
Závěr			91
Literárn	ní podl	klady	93
Vlastní	publik	ace	96
Přílohy.			

Seznam obrázků

Obr. 1-1 – schéma neodlehčeného regulačního ventilu [1]	19
Obr. 1-2 – odlehčený ventil trámcové regulace MEI [2]	20
Obr. 1-3 – provedení odlehčení kuželky trámcové regulace ŠKODA [3]	20
Obr. 1-4 – oblasti nestabilního provozu modelu ventilu podle [1]	20
Obr. 1-5 – vektorové pole rychlostí při malém zdvihu kuželky h/D _h = 0,04 a ε = 0,75 [4]	21
Obr. 1-6 – vektorové pole rychlostí při větším zdvihu kuželky h/D _h = 0,6 [4]	21
Obr. 1-7 – standartní odlehčený ventil s pístními kroužky [6]	22
Obr. 1-8 – odlehčený ventil s centrálním otvorem [7]	22
Obr. 1-9 – charakteristický průběh silové charakteristiky neodlehčeného ventilu [1]	23
Obr. 1-10 – silová charakteristika odlehčeného ventilu s rovným dnem kuželky [9]	23
Obr. 1-11 – průtoková charakteristika odlehčeného ventilu	23
Obr. 1-12 – diagramy pro určení korekčního součinitele, podle DŠPW	24
Obr. 2-1 – experimentální model odlehčeného regulačního ventilu [12]	25
Obr. 2-2 – závislost zdvihu kuželky na tlakovém poměru pro provozní charakteristiku [13]	26
Obr. 2-3 – charakteristické tlaky na ventilu	26
Obr. 2-4 – tlak v hrdle difuzoru	26
Obr. 2-5 – poměrný hmotnostní tok štěrbinou	26
Obr. 2-6 – Coandův tlakový poměr [32]	27
Obr. 2-7 – akcelerace na ventilu vlivem Coandova efektu [32]	27
Obr. 2-8 – fluktuace tahové sílv na ventilu [33]	27
Obr. 2-9 – profilovaná kuželka bez odlehčení a s odlehčením [35]	28
Obr. 2-10 – tlakové rozruchy pod kuželkou ventilu [35]	28
Obr. 2-11 – kuželka s výtokem přes perforovanou stěnu [15]	28
Obr. 2-12 – kuželka s orientovaným výtokem [15]	28
Obr. 2-13 – rychlostní profil v hrdle a na výstupu z difuzoru při h/D _b = 0.04 [17]	29
Obr. 2-14 – schéma výpočtové oblasti [19]	29
Obr. 2-15 – závislost hodnoty průtokového součinitele na tlakovém poměru při laminárním mo	delu
proudění – porovnání výpočtů s výsledky podle původních podkladů [18]	30
Obr. 2-16 – závislost hodnoty průtokového součinitele na tlakovém poměru při turbulentním prou	ıdění
– porovnání výpočtů s výsledky podle původních podkladů [18]	30
Obr. 2-17 – tvary ostrohranných otvorů malých dimenzí [25]	31
Obr. 2-18 – součinitel zúžení rovinného proudu v minimálním průřezu [25]	31
Obr. 3-1 – porovnání závislosti G = f (ϵ_1) pro ideální dýzu a pro štěrbinu	32
Obr. 3-2 – porovnání závislosti g = f (ϵ_1) pro ideální dýzu a pro štěrbinu	33
Obr. 3-3 – výpočtové schéma průtočného systému štěrbin	34
Obr. 3-4 – tlakové poměrv na obtokovém ventilu	36
Obr. 3-5 – porovnání proudění v otvorech a ve štěrbině	37
Obr. 3-6 – proudění ve štěrbině	37
Obr. 3-7 – ztrátové součinitelé tvarových úprav potrubí [6]	39
Obr. 3-8 – schéma segmentu potrubí	39
Obr. 3-9 – vliv bezrozměrné vstupní rychlosti λ_1 na maximální délku potrubí [6]	41
Ohr. 3-10 – expanze plynu ve štěrbině	43
Obr. 3-11 – schéma skokové změny vstupního průřezu	43
Obr. 4-1 – uspořádání měřící tratě	44
Obr. 4-2 – fotografie modelu štěrbiny	44
Obr. 4-3 – detailní provedení modelu štěrbiny	45
Obr. 4-4 – předepsané tolerance modelu a výměnných disků	45
Obr. 4-5 – schéma zapojení měřících přístrojů	47
Obr. 4-6 – standardizované Gaussovo rozdělení [30]	48

Obr. 4-7 – schéma měření teplot s osazeným termočlánkem	51
Obr. 4-8 – průběh chyby měření pomocí převodníku NI 9214	51
Obr. 4-9 – schéma měřícího řetězce tlaků	54
Obr. 4-10 – vliv tlakové diference na průtoku clonou	55
Obr. 4-11 – ukázka odhadu nejistoty poměrného průtoku	57
Obr. 4-12 – histogramy v čase i hodnotách, ekvidistantní vzorkování, normální rozdělení hodnot	57
Obr. 4-13 – histogram měřeného tlaku p ₂₁ – vyznačení základních statických parametrů	58
Obr. 4-14 – graf se zobrazením trendu dat	58
Obr. 4-15 – graf pohoří, diagram rozptýlení a vrubový krabicový graf	59
Obr. 4-16 – odhad kumulativní distribuční funkce	59
Obr. 4-17 – Q-Q graf – porovnání se standardizovaným normálním rozdělení	60
Obr. 5-1 – hmotnostní průtoky částmi odlehčovacího systému	62
Obr. 5-2 – průtokoví součinitelé odlehčovacího systému	63
Obr. 5-3 – průtoková charakteristika odlehčovacího systému	63
Obr. 5-4 – záznam průtoku štěrbinou δ = 0,3 mm o délce 10 a 60 mm	64
Obr. 5-5 – provedení výstupní části testovaného ventilu	65
Obr. 5-6 – průtoková charakteristika odlehčeného ventilu	65
Obr. 5-7 – závislost tlakového poměru na dně kuželky a na tlakovém poměru na ventilu	66
Obr. 5-8 – odlehčovací charakteristika ventilu a modelu	66
Obr. 5-9 – stabilizační síla na kuželce ventilu	67
Obr. 5-10 – dílčí síly působící na kuželku ventilu	68
Obr. 5-11 – závislost korekčního činitele na tlakovém poměru	68
Obr. 5-12 – výpočtová síť modelu obtokového systému	69
Obr. 5-13 – porovnání vypočteného hmotnostního průtoku s experimentálně stanovenými daty pro	οδ
= 0,3 mm a l = 50 mm	69
Obr. 5-14 – porovnání vypočteného hmotnostního průtoku s naměřenými daty pro $\delta = 1$ mm a	=
50 mm	69
Obr. 5-15 – vliv poměrné délky l/ δ na poměrný průtok q pro štěrbinu s δ = 0,3 mm	70
Obr. 5-16 – závislost poměrného hmotnostního průtoku q na poměrné délky štěrbiny	70
Obr. 5-17 – vliv poměrné délky l/ δ na poměrný průtok q pro štěrbinu s δ = 0,5 mm	70
Obr. 5-18 – závislost poměrného hmotnostního průtoku q na poměrné délky štěrbiny	70
Obr. 5-19 – vyznačení střednice štěrbiny (červeně)	71
Obr. 5-20 – průběh tlaků, rychlosti, Machova a Reynoldsova čísla podél střednice mezery pro proved	ení
se štěrbinou s δ = 0,15 mm a délkou l = 80 mm [22]	71
Obr. 5-21 – průběh tlaků, rychlosti, Machova a Reynoldsova čísla podél střednice mezery pro proved	ení
se štěrbinou s δ = 0,3 mm a délkou l = 80 mm [22]	72
Obr. 5-22 – závislost ΔI na δ	.72
Obr. 5-23 – rozložení rychlosti ve štěrbině s δ = 0,3 mm při p ₂ /p _{0c} = 0,4 a l = 50 mm	73
Obr. 5-24 – rozložení rychlosti ve štěrbině s δ = 0,3 mm při p ₂ /p _{0c} = 0,8 a l = 50 mm	73
Obr. 5-25 – změny aerodynamických parametrů na modelu štěrbiny	.74
Obr. 5-26 – poměrný hmotnostní průtok vyhodnocený pro G _*	.74
Obr. 5-27 – poměrný hmotnostní průtok vyhodnocený pro q _{imax}	. 75
Obr. 5-28 – tlakový poměr v závislosti na hydraulické štíhlosti pro $\lambda_2 = 1$. 75
Obr. 5-29 – maximální poměrný hmotnostní průtok pro $\lambda_2 = 1$. 76
Obr. 5-30 – rvchlostní poměrv na vstupu do štěrbiny při $\lambda_2 = 1$. 77
Obr. 5-31 – tlaková ztráta při kritickém průtoku štěrbinou	. 77
Obr. 5-32 – závislost bezrozměrné vstupní rvchlosti λ_1 a ztrátového součinitele ζ na poměrné dé	مماذ
štěrhiny	JUE
	.78
Obr. 5-33 – ztrátoví součinitelé různě tvarovaných tvarů	. 78 . 79
Obr. 5-33 – ztrátoví součinitelé různě tvarovaných tvarů Obr. 5-34 – závislost ztrátového součinitele na Reynoldsově čísle	. 78 . 79 . 80
Obr. 5-33 – ztrátoví součinitelé různě tvarovaných tvarů Obr. 5-34 – závislost ztrátového součinitele na Reynoldsově čísle Obr. 5-35 – vliv λ_1 na poměr G _{Imax} /G*	78 79 80 81

Obr. 5-36 – poměrný hmotnostní průtok štěrbinou bez vlivu q_{lmax}
Obr. 5-37 – průtokový součinitel pro štěrbinu
Obr. 5-38 – vliv protitlaku na průtok štěrbinou
Obr. 5-39 – posun hrdla ve štěrbině [25] 82
Obr. 5-40 – průběh tlakového poměru v hrdle difuzoru u ventilu bez síta
Obr. 5-41 – tlak na dno kuželky ventilu bez síta
Obr. 5-42 – průběh tlaků působících na kuželku odlehčeného regulačního ventilu ve štěrbině δ = 0,3 mm
Obr. 5-43 – závislost poměrného tlaku v hrdle a na dně kuželky na poměrném výstupním tlaku podle
[40]
Obr. 5-44 – závislost poměrného tlaku na dně kuželky na poměrném výstupním tlaku podle [38] 85
Obr. 5-45 – měřená stabilizační síla pomocí tenzometrů pro parametry vzduchu v závislosti na tlakovém
poměru [41]
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky
Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky

Seznam tabulek

Tab. 2-1 – popis měřených tlaků v modelu ventilu	25
Tab. 2-2 – hodnoty ϵ_{**} a μ pro různé tvary ostrohranných otvorů pro vzduch [25]	31
Tab. 4-1 – přehled měřených variant	46
Tab. 4-2 – označení měřených teplot a jejich popis	46
Tab. 4-3 – označení měřených statických tlaků a jejich popis	47
Tab. 4-4 – toleranční třída termočlánku typu K	. 51
Tab. 4-5 – chyby měření převodníkem NI 9214 v závislosti na teplotě z technická specifikace NI	51
Tab. 4-6 – odhad nejistoty měření teploty pomocí termočlánku	52
Tab. 4-7 – odhad nejistoty měření teploty pomocí kalibrace termočlánku	53
Tab. 4-8 – odhad nejistoty měření tlaku	54
Tab. 5-1 – okrajové podmínky pro numerické výpočty	71

Seznam častěji použitých označení

Α	Konstanta	[1]
D	Průměr	[m]
G	Hmotnostní průtok	[kg.s ⁻¹]
L	Délka	[m]
М	Machovo číslo	[1]
Q	Síla	[N]
\bar{Q}	Poměrná síla	[1]
F	Plocha	[m²]
\overline{F}	Poměr ploch	[1]
Т	Teplota	[K]
V	Objem	[m³]
Re	Reynoldsovo číslo	[1]
а	Rychlost zvuku	[m.s ⁻¹]
С	Rychlost	[m.s ⁻¹]
d	Průměr	[m]
h	Entalpie	[J.kg ⁻¹]
h	Zdvih kuželky	[m]
\overline{h}	Poměrný zdvih	[1]
k	Koeficient rozšíření	[1]
k	Konstanta	[1]
l	Délka štěrbiny	[m]
т	Hmotnost	[kg]
p	Tlak	[Pa]
q	Poměrný průtok	[1]
r	Plynový konstanta	[J.kg ⁻¹ .K ⁻¹]
S	Měrná entropie	[J.kg ⁻¹ .K ⁻¹]
t	Čas	[s]
t	Teplota	[°C]
u	Standardní nejistota měření	
Řecké syn	nboly	
δ	Šířka štěrbiny	[m]

δ

ε	Tlakový poměr	[1]
ζ	Ztrátový součinitel	[1]
η	Dynamická vazkost	[kg.m ⁻¹ .s ⁻¹]
κ	Poissonova konstanta	[1]
λ	Součinitel tření	[1]
λ	Rychlostní poměr	[1]
μ	Průtokový součinitel	[1]
χ	Poměrná délka trubice	[1]
ν	Kinematická vazkost	[m ² .s ⁻¹]
ν	Měrný objem	[m ³ .kg ⁻¹]
π	Ludolfovo číslo	[1]
ρ	Měrná hustota	[kg.m ⁻³]
Indexy		
0 ÷ 7	Místa odběrů tlaků (modely vzduch	nového ventilu a štěrbinové trati)
Κ	Kotouč štěrbiny	
М	Model štěrbiny	
ar	ΑχιάΙηί	

ax	Axiální
С	Celkový

h	Hrdlo

d	Výstup z	difuzoru
u	vystap z	anazora

- d Dýza
- s Sedlo
- *si* Síto
- š Štěrbina
- t Teoretický
- v Vstupní
- v Vřeteno
- * Kritický
- ** Kritický štěrbina

Zkratky

2D	Dvoudimenzionální
3D	Trojdimenzionální
CFD	Computational Fluid Dynamics

СКТІ	Центральный котлотурбинный институт
ČSN	Česká státní norma
ČVUT	České vysoké učení technické v Praze
DGFEM	Discontinuous Galerkin finite element method
DŠP	Doosan Škoda Power
JETE	Jaderná elektrárna Temelín
EDA	Exploratory Data Analysis
MEI	Московский энергетический институт
NT	Nízkotlaký
ST	Středotlaký
VT	Vysokotlaký
VZLU	Výzkumný a zkušební letecký ústav
ZČU	Západočeská univerzita v Plzni

Glosář

A/D převodník	Zařízení určené pro převod spojitého na diskrétní (digitální) signál
Akcelerometr	Zařízení, které převádí obvykle zrychlení nebo rychlost kmitání na elektrický signál.
DLC senzor	Měří rozdíl teplot mezi spodní a horní zónou měřicí jímky a pomocí zpětné vazby je plynule měněn příkon topných spirál kalibrační pece
Dewarova nádoba	Speciální nádoba s vakuovou izolací sloužící mimo jiné k udržení stabilní teploty ledové lázně

Úvod

Parní turbíny jsou sekundární energetické lopatkové stroje sloužící jako pohonné jednotky generátorů či jiných průmyslových agregátů. Nedílnou součástí turbosoustrojí jsou regulační ventily, které umožňují přivádět k parní turbíně takové množství páry, jež je potřebné k dosažení požadovaného výkonu. Jedná se o průtok konvergentně-divergentním kanálem, kde je hmotnostní tok dán počátečními stavy páry a průtočným průřezem.

Největší problémy vznikají při stavbě jednotek s velkými výkony. Ventilem musí při nominálním zatížení turbíny protéct velký objemový tok páry. Je potřeba hledat kompromis mezi rozměrem ventilu a rychlostí proudění páry, která ventilem protéká. Osová síla na vřeteno závisí na velikosti dosedací plochy, která je úměrná kvadrátu průměru sedla ventilu. Velikosti osové síly musí odpovídat možnosti servopohonu. Pokud jsou síly příliš velké, je třeba použít větší počet regulačních ventilů nebo použít ventil s odlehčovací kuželkou. Během konstruování ventilů je třeba zvažovat i rychlost, kterou pára ventilem proudí. Při velkých rychlostech vznikají ve ventilu větší tlakové rozruchy a je generován vyšší hluk.

Aby bylo možné turbínu vždy bezpečně odstavit, je nutné mít možnost uzavřít velmi rychle jak přívod páry do VT dílu, tak i uzavřít přepouštěcí potrubí mezi VT a ST dílem a dále mezi ST a NT dílem. K tomu se používají rychlozávěrné a záchytné ventily, které mají jen polohy – plně otevřené nebo zavřené. Tyto ventily musí být v uzavřeném stavu naprosto těsné, aby nemohlo dojít k samovolnému roztočení turbíny při jejím odstavení.

Pro zaručení provozní spolehlivosti při všech režimech turbíny, jsou na regulační ventily kladeny mnohé požadavky [1].

- Vyžaduje se spolehlivý přenos síly od servopohohu k regulačním orgánům ventilu.
 Vnitřní části ventilu musí být navrženy tak, aby servopohon mohl pracovat s jistou silovou rezervou.
- Na účinnost turbíny může mít negativní vliv pokles tlaku v parním systému, proto se při plném otevření ventilu požaduje minimální tlaková ztráta.
- Musí být zajištěna provozní spolehlivost turbíny od nulového do jmenovitého zatížení. Týká se to i spolehlivé funkce ventilu, při všech provozních zdvizích kuželky a tlakových poměrech na ventilu.
- Ventily musí zajistit maximální těsnost v zavřeném stavu, aby se tak zabránilo vstupu páry do průtočné části parní turbíny a nedocházelo k samovolnému roztáčení turbíny.
- Při všech provozech turbíny se musí vyloučit možnost samovolného přestavení částí ventilů, které by způsobilo skokové změny průtočného průřezu.
- Ventil nesmí být zdrojem nadměrného hluku.
- Statické síly, které se přenášejí na vřeteno ventilu, musí mít jisté ohraničení a nesmí překročit možnosti servopohonu. Při všech pracovních polohách vřetena s kuželkou musí síla působit jen v jednom směru.
- Ventily musí být absolutně spolehlivé bez rizika zadírání pohyblivých částí.
- Ventily nesmí být zdrojem nadměrných tlakových pulsací, které by vedly k destrukci částí ventilu, potrubí nebo i lopatek parních turbín.
- Je třeba vyloučit provoz v oblastech blízkých vlastním frekvencím a jejich celočíselným násobkům, tzn., že budicí frekvence, především otáčková a její vyšší harmonické složky nemohou ležet blízko vlastních frekvencí ventilové soustavy.

• Důležitá je i otázka snadné montáže a demontáže částí ventilu jakož i jednoduchost celé konstrukce.

Nelze navrhnout typový ventil, který by v plném rozsahu vyhovoval všem těmto požadavkům. Hledá se taková koncepce provedení ventilů, která se daným požadavkům co nejvíce přiblíží. Obecně platí, že zmenšení tlakové ztráty při jmenovitých provozech parní turbíny, vede k výraznějším tlakovým pulzacím při malých zdvizích kuželky, tj. především při najíždění turbíny. Návrh ventilů je odvislý od jeho funkce i od pochopení 3D proudění v jeho jednotlivých částech.

V této práci je pozornost věnovaná pouze odlehčeným regulačním ventilům parních turbín. Se zaměřením na proudění v obtokové štěrbině, jež hraje důležitou roli při silovém odlehčení těchto ventilů. Hlavním cílem disertační práce je na základě experimentů zpřesnit původní nepříliš vhodné výpočtové podklady pro průtok média štěrbinou. Dílčí kroky vedoucí k cíli práce lze definovat jako:

- Popsat problematiku proudění v odlehčovacím systému odlehčených regulačních ventilů
- Navrhnout experimentální model obtokového systému ventilu na měřící trati
- Provést kalibraci jednotlivých měřicích přístrojů a stanovit nejistotu měření štěrbinové trati
- Sestavit metodiku snímání a vyhodnocení experimentálních dat
- Vyhodnotit kritické tlakové poměry i odpovídající hodnoty poměrných průtoků pro štěrbiny o různých šířkách
- Prověřit vliv délky štěrbiny na hodnoty průtokových součinitelů a vyhodnotit vliv Reynoldsova čísla na hodnoty ztrátových součinitelů pro vyhodnocení tlakové ztráty
- Experimentálně stanovená data porovnat s numerickým výpočtem
- Na základě změn tlaku v prostorách ventilu posoudit úroveň stabilizační síly při daném zdvihu kuželky

1 Motivace

Maximální zdvihová síla neodlehčených regulačních ventilů je úměrná vstupnímu tlaku a kvadrátu průměru sedla ventilu. Možnosti servopohonu nejsou neomezené. Pro ventily s průměrem sedla 120 mm a vstupním tlaku 24 MPa je zapotřebí síla 250 ÷ 300 kN k odtržení kuželky od sedla ventilu. Pro parní turbíny s výkonem nad 300 MW je nutné použít větší počet neodlehčených ventilů nebo přejít k odlehčeným variantám. Rovněž turbíny jaderných elektráren nebo turbíny, kde je použit geotermální zdroj tepla se bez silově odlehčených ventilů neobejdou. Vstupní tlak páry je sice menší, než jaký je produkován u kotlů na fosilní paliva. Pracuje se však s velkými objemovými průtoky a tím pádem i s většími rozměry sedel ventilů. Ty mohou být 400 mm i více.

1.1 Konstrukční řešení odlehčených regulačních ventilů

V praxi existuje široká škála provedení ventilů. Bez ohledu na konstrukční rozmanitost regulačních ventilů se u všech typů vyskytují stejné konstrukční prvky, jak je naznačeno na Obr. 1-1. Jedná se zejména o přívodní potrubí 1 napojené na ventilovou komoru 2, kuželka 3 spojená s vřetenem 4 a difuzor 5. Nedílnou součástí ventilů je i ovládací mechanismus 6 a výstupní úsek 7 spojující ventil s dýzovými komorami turbíny 8.

Obr. 1-1 – schéma neodlehčeného regulačního ventilu [1]

Vlastní ventily můžeme rozdělit podle několika kritérií. Existují ventily se společným a samostatným pohonem. Podle silového působení jsou ventily rozděleny na odlehčené a neodlehčené. Z hlediska geometrie kuželky jsou ventily profilové, talířové, kulovité, kulovité s podpíchnutím, pístové a zvonovité. Jednotlivá provedení mají své přednosti ale i nedostatky.

1.1.1 Odlehčené ventily trámcové regulace

U ventilů trámcové regulace se zpravidla používá odlehčení pomocí řízení hmotnostního průtoku. Předností této koncepce je značná konstrukční jednoduchost. Charakteristické provedení tohoto typu ventilu z roku 1970 podle návrhu MEI je znázorněno na Obr. 1-2.

Obr. 1-2 – odlehčený ventil trámcové regulace MEI [2]

Silové odlehčení je realizováno průtokem dostatečného množství páry přes vstupní okna 4 a odlehčovací otvor 5 pod malou kuželkou 3 na konci vřetena 2. K ovládání vřetena je zapotřebí menší síla, než pokud by se zvedla jen hlavní kuželka 1. Pod velkou kuželkou se postupně zvýší tlak na úroveň, kdy je již servopohon schopen ovládat celý ventil. Tato konstrukce má kulovou kuželku a zkrácený difuzor 6.

Jak je naznačeno na jiném provedení ventilů obdobné konstrukce, (Obr. 1-3), existence dvou proudů s podobnými hmotnostními toky vede v oblasti jejich vzájemného propojení (na vstupu do difuzoru), ke vzniku silných tlakových pulzací za ventilem. Částečného snížení těchto nežádoucích vibrací lze dosáhnout prodloužením difuzoru. V tomto případě je kuželka s rovným dnem s podpíchnutím v bezprostřední blízkosti sedla. Takto upravená kuželka stabilizuje místo odtržení proudu, ale nesnižuje dynamické namáhání při jmenovitých provozech.

Jak ukázaly experimenty zaměřené na stanovení silové charakteristiky ventilu podobného provedení jako na Obr. 1-3 [8], byla pozorována silná provozní nestabilita i při velkých zdvizích

kuželky a malém přetlaku, tj. v oblasti běžných provozních stavů. Údaje o vibracích jsou zachyceny na Obr. 1-4.

Určité představy o charakteru proudění částmi tohoto typu ventilů dávají výpočty vektorových polí rychlosti. Při malém otevření ventilu a velkém tlakovém spádu (Obr. 1-5) větší část hmotnostního průtoku prochází okny a odlehčovacím otvorem. V hrdle otvoru dochází k prudkému nárůstu rychlosti až na 350–400 m/s. Proud se udržuje v centrální části difuzoru. Nedochází k mísení s proudem, který z vnějšku obtéká velkou kuželku. V oblasti stěny sedla dosahuje rychlost proudu až 560 m/s (Ma = 0,9). Oba proudy jsou odděleny širokou oblastí zpětného proudění.

Při úplném otevření ventilu (Obr. 1-6) veškerý hmotnostní tok prakticky protéká sedlem mezi kuželkou a stěnou difuzoru. Odlehčovacím otvorem protéká jen malé množství páry s malou rychlosti (cca 30 m/s). U hrdla difuzoru to je až 300 m/s (Ma = 0,45). Pod velkou kuželkou se udržuje zavířená oblast, která může být zdrojem zvýšení provozní nestability ventilů trámcové regulace.

Obr. 1-5 – vektorové pole rychlostí při malém zdvihu kuželky $h/D_h = 0,04$ a $\varepsilon = 0,75$ [4]

Obr. 1-6 – vektorové pole rychlostí při větším zdvihu kuželky h/D_h = 0,6 [4]

Obecně lze říct, že ventily trámcového systému regulace jsou více náchylné na vznik poruch než ventily se samostatným ovládáním zdvihu kuželky. Zejména se jedná o poruchu vytloukání sedla.

1.1.2 Ventily se škrcením tlaku ve štěrbině

Navzdory různému konstrukčnímu řešení silově odlehčených regulačních ventilů je princip odlehčení postaven na škrcení tlaku v obtokové štěrbině. Vřeteno ventilu je zakončeno malou kuželkou. Velká kuželka je volně zavěšená na vřetenu. Po odtržení malé kuželky od základní polohy, kdy je průtočná plocha uzavřená, se propojí vnitřní prostory ventilu s prostory pod velkou kuželkou. Po určitém zdvihu velké kuželky se propojení prostorů uvnitř kuželky a pod kuželkou uzavře. Regulační ventil se tak z odlehčeného provozu přesune do neodlehčeného režimu. Zvětší se stabilizační síla, která udržuje velkou kuželku opřenou o malou kuželku vřetena. Typický příklad takovéto konstrukce silového odlehčení regulačního ventilu podle koncepce MEI je uveden na Obr. 1-7. Tento typ ventilu s kulovitým tvarem kuželky pracuje spolehlivě při regulaci parních turbín se vstupním tlakem 8,7 MPa. V praxi byl použit i k regulaci turbín se vstupním tlakem admisní páry 12,8 a 23,5 MPa, během provozu se však projevily zvýšené vibrace a v některých případech docházelo i ke ztrátě axiální stability ventilu.

S přihlédnutím k těmto problémům se stabilitou odlehčených ventilů je zapotřebí vzít v potaz tři faktory, které napomáhají k rozvoji těchto nežádoucích vibrací:

- rozložení tlaků na spodní ploše kuželky
- tlakové pulzace pod ventilem způsobené nestacionární povahou proudění páry v turbínové soustavě
- příliš malá střední hodnota síly působící (fluktuace mohou změnit směr působení síly) na kuželku ventilu při úplném otevření

Obr. 1-7 – standartní odlehčený ventil s pístními kroužky [6]

Obr. 1-8 – odlehčený ventil s centrálním otvorem [7]

Negativní důsledky těchto faktorů jsou výrazně potlačeny v konstrukci zobrazené na Obr. 1-8. Kuželka ventilu 1 a vstupní část do difuzoru 2 tvoří kruhový osový kanál, přičemž lze na základě výpočtů s dostatečnou přesností stanovit rozložení rychlostního a tlakového pole pod kuželkou. Provedením sedla 2 s perforací povrchu 3 před vstupní části difuzoru a komorou tlumičů 4 dochází ke snížení hodnoty tlakových pulzací pod ventilem. Aby se vyrovnala obvodová nerovnoměrnost, jak je tomu u neodlehčených ventilů, jsou v kuželce vyříznuty úzké příčné drážky. Vřeteno 5 je zatíženo silou pouze v axiálním směru. Ohybové síly a případný točivý moment na kuželce jsou přeneseny do vnějšího ochranného krytu 6. Je zapotřebí podotknout ještě jeden konstrukční prvek, a to pouzdro 7, které uzavírá přístup páry k výstupnímu otvoru 9, jenž má kuželový tvar. To znamená, zvedá-li se ventil touto kuželovou částí pouzdra, zvětšuje se uvnitř jeho netěsnost a statická síla na vřeteno se zvětšuje. V takovémto případě je po otevření malé kuželky síla potřebná pro zvednutí velké kuželky malá. Poté se však výrazně zvětší, protože v oblasti centrálního otvoru se skokově navýší tlak a je rázem větší než tlak na povrchu kuželky 11. Tímto narůstá tlaková ztráta ventilem.

1.2 Silová a průtoková charakteristika regulačního ventilu

Průtokové a silové charakteristiky jsou potřebné s ohledem na výpočet systému regulace a dimenzování ovládacích mechanizmů.

Příklad silové charakteristiky neodlehčeného ventilu je zpracován na Obr. 1-9. Provozní charakteristika turbíny protíná obecnou charakteristiku v konkrétních hodnotách poměrného zdvihu h a tlakového poměru ε_d . U neodlehčeného provedení ventilu je největší síla zapotřebí k odtržení kuželky od sedla při startu turbíny. Pokud silové poměry na ventilu přesahují možnosti servopohonu, je nutné použít odlehčenou verzi ventilu nebo zvolit větší počet neodlehčených ventilů. Ukázka obecné silové charakteristiky odlehčeného provedení ventilu se nachází na Obr. 1-10. Do určitého rozsahu zdvihu kuželky pracuje ventil v odlehčeném režimu, pak se přestaví do neodlehčeného provedení. Zlepší se tak stabilizační síla působící na kuželku při úplném otevření ventilu.

charakteristiky neodlehčeného ventilu [1]

ventilu s rovným dnem kuželky [9]

Obecná průtoková charakteristika je v bezrozměrném uspořádání vyjádřena vztahem $q = f(\varepsilon_d, \bar{h})$. Pro každou typovou variantu ventilu existuje příslušná průtoková charakteristika. Na Obr. 1-11 je zobrazena obecná průtoková charakteristika odlehčeného ventilu s rovným dnem kuželky.

Obr. 1-11 – průtoková charakteristika odlehčeného ventilu

Symboly ve výše uvedených obrázcích představují:

$$\begin{split} \varepsilon_d &= \frac{p_d}{p_{vc}} & \dots \text{ tlakový poměr přes celý ventil} \\ \bar{h} &= \frac{h}{D_h} & \dots \text{ zdvih kuželky vztažený k průměru hrdla difuzoru} \end{split}$$

 $q = \frac{G}{G_*} \qquad \dots \text{ poměrný hmotnostní tok (} G_* = 0,0404 \frac{p_{vc}}{\sqrt{T_{0c}}} \frac{\pi D_h^2}{4} \text{ - pro vzduch)}$ $\bar{Q} = \frac{Q}{\frac{\pi D_s^2}{4} p_{vc}} \qquad \dots \text{ poměrná síla uvažovaná pro plochu sedla pod kuželkou a vstupní$

celkový tlak

1.3 Důvody pro výzkum v oblasti proudění ve štěrbinách

Jak již bylo zmíněno v úvodu, existují určitá omezení v rozsahu silového působení a zdvihu servopohonů regulačních ventilů parních turbín. V případě překročení daných limitů je nutné rozdělit přívod páry na více ventilů nebo použít odlehčené provedení ventilů. U odlehčených regulačních ventilů se uměle sníží tlak působící na určitou plochu kuželky, což usnadní manipulaci s kuželkou. Poklesu tlaku se dosáhne škrcením páry v obtokové štěrbině. Pro správné dimenzování odlehčovacího systému je zapotřebí mít ověřené podklady pro návrh rozměrů štěrbiny a znát jejich dopad na hodnoty průtokových součinitelů. Je žádoucí umět navrhnout vhodnou šířku štěrbiny s ohledem na základní rozměry ventilu.

Rozdíly tlaků před a za štěrbinou jsou závislé na volbě šířky štěrbiny a rovněž na rozměrech ostatních průtočných ploch. Jisté nejistoty v konstrukčním provedení ventilu v DŠP se týkají právě štěrbiny. Není známo, zda platí podobnost proudění ve štěrbině při přechodu na jiné, zejména pak větší rozměry ventilu. Se zvětšováním vůle se štěrbina začíná chovat spíše jako dýza. S úpravou rozměrů se mění kritický tlakový poměr i hmotnostní průtokový součinitel.

Obr. 1-12 – diagramy pro určení korekčního součinitele, podle DŠPW

Dosud používané podklady pro návrh štěrbiny ve firmě DŠP jsou zpracovány v Příloze A. Třecí ztráty jsou závislé na tlakovém poměru i na hodnotě Reynoldsova čísla. Při aplikaci těchto podkladů se pohybujeme v oblasti nízkých hodnot vlivu Re čísla. Je to úsek, který neumožňuje konkrétně odhadnout hodnotu průtokového součinitele, viz Obr. 1-12.

K eliminaci tlakových pulsací v difuzoru, které jsou způsobeny odtržením proudu od jeho stěny, může posloužit právě proud páry z odlehčovacího ventilu, tedy pára, která protéká štěrbinou. Numerické studie [10] a [11] modelující výtok páry ze štěrbiny, tento předpoklad potvrzují. Ukazuje se, že pára, která vytéká centrálním otvorem, spíše napomáhá k odtržení proudu. Aby se odtržení proudu potlačilo, je zapotřebí páru o vhodné hybnosti nasměrovat ke stěně difuzoru. Toto je další důvod pro experimentální výzkum proudění kruhovou štěrbinou v odlehčených regulačních ventilech.

2 Přehled dosud získaných poznatků ve výzkumu odlehčených regulačních ventilů

2.1 Experimentální model odlehčeného regulačního ventilu

Pro potřeby vylepšení konstrukčního návrhu ventilu a odhadu rozměrů štěrbiny byl v DŠP vyroben experimentální model v měřítku 1:1. Provedení tohoto modelu odlehčeného regulačního ventilu ukazuje Obr. 2-1.

Obr. 2-1 – experimentální model odlehčeného regulačního ventilu [12]

Na modelu mohou být snímány lokální tlaky ve vybraných místech. Seznam měřených tlaků je uveden v Tab. 2-1.

p_{vc}	Celkový vstupní tlak	
p _{si}	Tlak za sítem	
p_0	Tlak v komůrce mezi kuželkou, vodítkem a deskou	
p_s	Tlak v místě sedla kuželky	
p_2	Tlak v dutině kuželky	
p_3	Tlak pod perforovaným dnem kuželky – neměří	
p_4	Tlak pod obtokovou kuželkou, nad perforovaným dnem	
p_5	Tlak kolem obtokové kuželky	
p_6	Tlak mezi vložkou a deskou	
p_h	Tlak pod perforovaným dnem kuželky – měřený na stěně hrdla	
p_d	Statický výstupní tlak v difuzoru	

2.1.1 Charakteristické rozložení tlaků v odlehčeném regulačním ventilu

Provozní charakteristika turbíny určuje vazbu mezi poměrným zdvihem kuželky h/D_h a tlakovým poměrem p_d/p_{vc} . Pro experimentální turbínu je tato vazba uvedena na Obr. 2-2.

Západočeská univerzita v Plzni, Fakulta strojní Stavba energetických strojů a zařízení

Charakteristické rozložení tlaků uvnitř ventilu testovaného ve VZLU [14] je uvedeno na Obr. 2-3 a Obr. 2-4. Testovaný ventil má šířku štěrbiny $\delta = 0.3$ mm a průměr hrdla difuzoru $D_h = 100$ mm.

V počáteční fázi zdvihu vřetena, tj. v okamžiku, kdy se otvírá obtokový ventil, nastává ve štěrbině skoková změna tlaku. Prostor za štěrbinou se musí vyprazdňovat dostatečně rychle, aby se tlak p_2 v komoře snížil na přijatelnou úroveň, kdy servopohon zvládne odtrhnout od sedla i velkou kuželku. Vždy musí být zajištěna dostatečná přítlačná síla na velkou kuželku. Záleží tedy na udržení kladného rozdílu tlaků $p_0 - p_3$ a $p_2 - p_3$ při všech provozech ventilu. Obr. 2-4 ukazuje tlak v místě hrdla difuzoru. Během zdvihu kuželky se mění rozložení tlakového pole právě pod kuželkou respektive na vstupu do difuzoru. Z experimentálních měření lze konstatovat, že náhlá změna průběhu tlakového poměru p_2/p_{vc} a p_4/p_{vc} souvisí s počátkem přechodu z odlehčeného do neodlehčeného režimu provozu ventilu. Jak se mění podíl proudící páry z obtokového ventilu k hlavnímu proudu, ukazuje Obr. 2-5. Je patrné, že k odtržení proudu dochází při velmi nízkých tlakových poměrech. Výzkumné měření při těchto stavech lze realizovat jen na ventilech s parním provozem. V případě experimentu na vzduchové verzi ventilu zpracovaném na Obr. 2-4 bylo použito síto bez směrových zářezů. Při provozu ventilu bez síta se počátek přechodu od odlehčeného do neodlehčeného do neodlehčeného do neodlehčeného do neodlehčeného kazuje Obr. 2-5.

2.2 Tlakové pulsace na ventilu

Jistým zdrojem tlakových fluktuací jsou rázové vlny vznikající při nadzvukovém proudění v částech ventilu. K výraznému potlačení tohoto efektu je kuželka ventilu opatřena rovným dnem. Cílem této úpravy je stabilizování místa odtržení proudu a snížení intenzity tlakového fluktuace. Při obtékání zakřiveného povrchu, ke kterému dochází u přechodů ze sedla pod kuželkou přes hrdlo do difuzoru, se uplatňuje Coandův efekt – viz Obr. 2-6. Při určitém tlakovém poměru a geometrii zakřivení plochy dojde k odtržení proudu od stěny a přilnutí proudícího media k zakřivené kuželce. Vznik Coandova efektu potvrzují výsledky měření na ventilech v dostupných publikacích, viz Siemens [32].

Obr. 2-6 – Coandův tlakový poměr [32]

Obr. 2-7 – akcelerace na ventilu vlivem Coandova efektu [32]

Záznam průběhu relativního zrychlení na ventilu během najíždění turbíny na nominální výkon ukazuje Obr. 2-7. Ze záznamu lze vysledovat vlastní frekvence ventilu, popř. dalších částí systému. Po překročení určitého tlakového poměru se intenzita pulsací a tím i zrychlení výrazně sníží. Silové fluktuace, jak ukazuje měření provedené v MEI [1], mohou dosahovat až 10 % jmenovitého zatížení. Výsledky tohoto měření jsou zachyceny na Obr. 2-8. Na ventilu se vyskytují nízkofrekvenční i vysokofrekvenční vibrace. Ty se vyskytovaly i ve ventilech s profilovanou kuželkou u turbíny na sytou páru o výkonu 1000 MW v JETE. Po aplikaci tlumiče (hustého síta) a úpravě dna kuželky na rovné dno se vibrace utlumily.

K utlumení tlakových pulzací a tedy i zrychlení se dosáhlo i u profilované kuželky. Pomohlo nasměrování média od obtokové kuželky k povrchu difuzoru. Příslušné experimenty se uskutečnily v CKTI [34]. Testování proběhlo na modelu ventilu bez síta. Na Obr. 2-9 je znázorněno provedení profilované kuželky s vefukováním a bez vefukování média do mezní vrstvy na stěně difuzoru. Na Obr. 2-10 je zaznamenán pokles intenzity fluktuací tlaku po aplikaci vefukování média. K utlumení tlakových pulsací může tedy přispět i pára od obtokového ventilu usměrněná ze dna kuželky s rovným dnem k hrdlu difuzoru.

Západočeská univerzita v Plzni, Fakulta strojní Stavba energetických strojů a zařízení

2.3 Výpočtová studie proudění v hrdle difuzoru

Rychlostní poměry v prostoru pod kuželkou při vzájemném působení hlavního proudu páry a páry z odlehčovacího systému byly řešeny ve spolupráci s ČVUT [15] a [16]. Výsledkem výpočtové studie je optimalizace umístění a směrové orientace výtokové dýzy. Výtoková dýza je štěrbina, která využívá proud z bypassového systému, k dodání kinetické energie do mezní vrstvy na stěně difuzoru tak, aby byla odolnější vůči odtržení při proudění s pozitivním gradientem tlaku. Řeší se i požadavek na potřebnou intenzitu proudu a rozdíly mezi 2D a 3D charakterem proudění. Ukázka výpočtové studie se nachází na Obr. 2-11 a Obr. 2-12.

Srovnává se zde charakter proudového pole ventilu s centrálním výtokem páry a výtokem páry z dýzy nasměrované k vnějšímu obvodu výstupního difuzoru. Centrální výtok páry spíše napomáhá vlivem ejekčního účinku k odtržení hlavního proudu páry od stěny difuzoru. Lepší

výsledek přináší nasměrování odlehčovacího proudu páry ke stěně difuzoru. Výpočtová studie této alternativy je zachycena na Obr. 2-12.

Z jiné výpočtové studie [17] si lze udělat představu o charakteru rychlostního pole v difuzoru odlehčeného regulačního ventilu.

Na Obr. 2-13 je uvedeno rozložení rychlosti pro hrdlo a výstup z difuzoru pro poměrný zdvih kuželky $h/D_h = 0,04$. V hrdle difuzoru se vyskytuje zpětné proudění. Značně nerovnoměrné rychlostní pole existuje i ve výstupním průřezu difuzoru. Pro porovnání se uvádí i rychlostní pole pro variantu dýza, což je ventil bez kuželky. Hmotnostní průtok je stejný jako v předchozím případě. Zpětné proudění v hrdle se vyskytuje prakticky v celém rozsahu zdvihu kuželky. Existují značné rozdíly mezi rychlostí na stěně a v ose difuzoru. Týká se to i rozdílů statických tlaků uvnitř kanálu.

2.4 Numerická simulace proudění úzkou štěrbinou

Možnosti experimentů jsou omezené zejména s ohledem na změny vazkosti pracovního media. Z tohoto důvodu je užitečné prověřit i možností CFD studií. Software ANSYS – FLUENT není zcela vhodný pro výpočty proudění v úzkých štěrbinách. V těchto případech se doporučuje použít nespojitou Galerkinovu metodu konečných prvků (DGFEM) pro numerické simulace proudění. Výpočty pro různé provozní teploty a rozměry štěrbin se zpracovávají na ZČU. Schéma výpočtové oblasti je znázorněno na Obr. 2-14.

Obr. 2-14 – schéma výpočtové oblasti [19]

Na základě orientačních numerických výpočtů provedených pro různé vstupní tlaky a teploty páry se dá odhadnout, zda se pro praktické účely výpočtu hmotnostního průtokového součinitele štěrbiny vystačí s jednotným univerzálním postupem, či nikoliv.

Ukázalo se, že již samotná volba turbulentního nebo laminárního modelu proudění je příčinou významných rozdílů mezi výsledky. Rovněž záleží na vstupních parametrech páry. Výsledná hodnota průtokového součinitele silně závisí na délce štěrbiny. Vše nasvědčuje tomu, že pro odhad hodnoty průtokového součinitele není možné použít jeden univerzální diagram, jak je uvedeno v Příloze A. Výslednou hodnotu průtokového součinitele zásadně ovlivňuje velikost Reynoldsova čísla.

Obr. 2-15 – závislost hodnoty průtokového součinitele na tlakovém poměru při laminárním modelu proudění – porovnání výpočtů s výsledky podle původních podkladů [18]

Obr. 2-16 – závislost hodnoty průtokového součinitele na tlakovém poměru při turbulentním proudění – porovnání výpočtů s výsledky podle původních podkladů [18]

Porovnání vypočtených hodnot *q* s výsledky podle původních podkladů v DŠP zobrazených na Obr. 2-15 a Obr. 2-16, ukazuje velké rozdíly. Tyto rozdíly lze přisoudit zatím nízké úrovni pochopení fyziky proudění vazkého, stlačitelného media úzkou štěrbinou. Ukazuje se naléhavá potřeba porovnání výsledků z numerických výpočtů s poznatky z experimentu. Je žádoucí umět posoudit, kdy je vhodné použít laminární nebo turbulentní model proudění.

2.5 Průtokový součinitel a zúžení průtoku otvorů malých dimenzí

Na Obr. 2-17 jsou vyobrazeny některé varianty tvarů otvorů malých dimenzí uvedených v publikaci [25]. Popisuje se deformace rychlostního pole při výtoku plynu pro oblast nadzvukových rychlostí a vznik kritického poměru $\varepsilon_{**} < \varepsilon_*$.

Obr. 2-17 – tvary ostrohranných otvorů malých dimenzí [25]

Hodnoty druhého kritického tlakového poměru a průtokového součinitele pro výše uvedené tvary ostrohranných otvorů jsou znázorněny v Tab. 2-2. V těchto podkladech není uveden ε_{**} pro tvar otvoru s poměrem 2:1 odvozeného od poměru délky kanálu a velikosti průměru ostrohranného otvoru.

Tab. 2-2 – hodnoty ε_{**} a μ pro různé tvary ostrohranných otvorů pro vzduch [25]

Tvar otvoru	1	2	3
Druhý kritický tlakový poměr $arepsilon_{**}$ [1]	0,037	0,18	-
Průtokový součinitel μ [1]	0,85	0,88	0,9

Podle G. A. Dombrovského [25] – viz Obr. 2-18, je zúžení průřezu proudu závislé na velikosti poměrného zúžení průřezu kanálu a na velikosti Machova čísla.

Obr. 2-18 – součinitel zúžení rovinného proudu v minimálním průřezu [25]

Pro štěrbiny na regulačních ventilech platí, že poměr a/a_0 je blízký nule a převažuje proudění s $M_2 = 1$ na jeho výstupu. Při nižších tlakových poměrech se výrazněji projevuje pokles tlaku podél štěrbiny způsobený třením o stěny kanálu. Čím užší a delší je štěrbina, tím větší je tlaková ztráta. Je-li na výstupu dosaženo kritické rychlosti a tím pádem také kritického tlakového spádu, pak na vstupu do štěrbiny musí být vyšší tlak, aby byla kompenzována tlaková ztráta. Kritický tlakový poměr přes štěrbinu ε_{**} pak musí být menší, než jaký platí pro ideálně tvarovanou dýzu bez tlakové ztráty ε_{*} . Jelikož kritické poměry na štěrbině nastávají přesně ve výstupním průřezu, bylo nutné v tomto místě při experimentech měřit tlak – viz statický tlak $p_{2š}$ na Obr. 4-3.

3 Teorie proudění v ideální dýze a štěrbině

Teoretický rozbor proudění v dýzách je podrobně popsán v řadě publikací např. [6] a [25]. V případě proudění přes úzké štěrbiny se kritický tlakový poměr posouvá k nižším hodnotám. Mění se i hodnota průtokového součinitele. Zaleží na geometrii otvoru, na celkovém uspořádání průtočného systému i na konkrétní geometrii odlehčeného ventilu. Tím může být u odlehčovacího systému regulačních ventilů průtočný systém značně komplikovaný.

Jak se liší hmotnostní průtok v ideálně tvarované dýze od hmotnostního průtoku ve štěrbině je schematicky vyznačeno na Obr. 3-1.

Obr. 3-1 – porovnání závislosti $G = f(\varepsilon_1)$ pro ideální dýzu a pro štěrbinu

Při podkritickém proudění dýzou a štěrbinou se hmotnostní průtok vyhodnotí pomocí vztahů

$$G_d = \mu_d F_{\sqrt{\frac{2\kappa}{\kappa-1}} \frac{p_{0c}}{\sqrt{rT_{0c}}}} \varepsilon_1^{\frac{1}{\kappa}} \sqrt{1 - \varepsilon_1^{\frac{\kappa-1}{\kappa}}} \text{ (ideální tvar} \Longrightarrow \mu_d = 1)$$
(1)

$$G_{\breve{s}} = \mu_{\breve{s}} F \sqrt{\frac{2\kappa}{\kappa-1}} \frac{p_{0c}}{\sqrt{rT_{0c}}} \varepsilon_1^{\frac{1}{\kappa}} \sqrt{1 - \varepsilon_1^{\frac{\kappa-1}{\kappa}}} \quad \mu_{\breve{s}} = f(\varepsilon_1, \text{ tvar štěrbiny})$$
(2)

V případě, že tlakový poměr na dýze je $\varepsilon_1 = p_1/p_0 < \varepsilon_{*d}$, kde $\varepsilon_{*d} = 0,528$ pro vzduch se kritický hmotnostní průtok dýzou stanoví

$$G_{*d} = \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{2(\kappa-1)}} \sqrt{\frac{\kappa}{r}} \frac{p_{0c}F}{\sqrt{T_{0c}}} = 0.0404 \frac{p_{0c}F}{\sqrt{T_{0c}}}$$
(3)

Obdobně při tlakovém poměru na štěrbině $\varepsilon_1 = p_1/p_{0c} < \varepsilon_{**\$}$ se kritický hmotnostní průtok štěrbinou stanoví

$$G_{*\check{s}} = \mu_{*\check{s}} \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{2(\kappa-1)}} \sqrt{\frac{\kappa}{r}} \frac{p_{0c}F}{\sqrt{T_{0c}}}$$
(4)

Pro bezrozměrné vyjádření hmotnostního průtoku pro dýzu a štěrbinu se dostanou následující vztahy

$$q_d = \frac{G_d}{G_{*d}} = \sqrt{\frac{2}{\kappa - 1}} \left(\frac{\kappa + 1}{2}\right)^{\frac{\kappa + 1}{2(\kappa - 1)}} \varepsilon_1^{\frac{1}{\kappa}} \sqrt{1 - \varepsilon_1^{\frac{\kappa - 1}{\kappa}}}$$
(5)

$$q_{\breve{s}} = \frac{G_{\breve{s}}}{G_{\ast d}} = \mu_{\breve{s}} \sqrt{\frac{2}{\kappa - 1}} \left(\frac{\kappa + 1}{2}\right)^{\frac{\kappa + 1}{2(\kappa - 1)}} \varepsilon_1^{\frac{1}{\kappa}} \sqrt{1 - \varepsilon_1^{\frac{\kappa - 1}{\kappa}}}$$
(6)

V běžné praxi jsou vztahy (5) a (6) pro vyhodnocení tlakového poměru nevhodné. Ukazuje se, že závislost poměrných průtoků lze s přijatelnou mírou odchylky nahradit pomocí rovnice elipsy. Pro dýzu (7) a pro štěrbinu (8), $q_{*s} = \mu_{*s}$.

$$\left(\frac{q_d}{1}\right)^2 + \left(\frac{\varepsilon_1 - \varepsilon_{*d}}{1 - \varepsilon_{*d}}\right)^2 = 1 \tag{7}$$

$$\left(\frac{q_{\breve{s}}}{q_{\ast\breve{s}}}\right)^2 + \left(\frac{\varepsilon_1 - \varepsilon_{\ast\ast\breve{s}}}{1 - \varepsilon_{\ast\ast\breve{s}}}\right)^2 = 1$$
(8)

Experimenty na modelu štěrbinové trati umožní vyhodnocení průtokového součinitele pro štěrbinu $\mu_{\breve{s}}$ i kritický průtokový součinitel $\mu_{\ast\breve{s}}$. A za pomocí regresní funkce elipsy jsou určeny poloosy $q_{\ast\breve{s}}$ a $\varepsilon_{\ast\ast\breve{s}}$. Jestliže je zaveden poměrný průtok $q_{\breve{s}i} = G_{\breve{s}}/G_{\ast\breve{s}}$, pak bude mít elipsa tvar

$$\left(\frac{q_{\check{s}i}}{1}\right)^2 + \left(\frac{\varepsilon_1 - \varepsilon_{**\check{s}}}{1 - \varepsilon_{**\check{s}}}\right)^2 = 1$$
(9)

Jak se liší poměrný průtok v ideálně tvarované dýze q_d od poměrného průtoku ve štěrbině $q_{\check{s}}$ a zavedení poměrného průtoku $q_{\check{s}i}$ je schematicky vyznačeno na Obr. 3-2.

Obr. 3-2 – porovnání závislosti q = $f(\varepsilon_1)$ pro ideální dýzu a pro štěrbinu

3.1 Průtok soustavou štěrbin

Systém štěrbin v reálném regulačním ventilu lze pro výpočty zjednodušit náhradou tzv. výpočtovým schématem průtočným systémem štěrbin, viz Obr. 3-3.

Obr. 3-3 – výpočtové schéma průtočného systému štěrbin

V soustavě se předpokládá na vstupu do první štěrbiny konstantní celkový tlak p_{0c} a teplota T_{0c} . V průtočné části systému dochází k termodynamickému ději škrcení, to znamená, že teploty T_{0c} , T_{1c} a T_{2c} se nebudou zásadně lišit. Je-li tlakový poměr na druhé štěrbině $\varepsilon_2 = p_2/p_1 < \varepsilon_{**}$, kritický hmotnostní průtok štěrbinou se stanoví

$$G_{*2\breve{s}} = A\mu_{\breve{s}2} \frac{p_1 F_2}{\sqrt{T_{0c}}}$$
(10)

Kde:

$$A = \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa+1}{2(\kappa-1)}} \sqrt{\frac{\kappa}{r}}$$

Maximálně možný kritický průtok systémem je určen poměry na 1. štěrbině, kdy na 2. úseku je zanedbatelná tlaková ztráta

$$G_{*1max} = A\mu_{\S1} \frac{p_{0c} F_1}{\sqrt{T_{0c}}}$$
(11)

Pro poměr kritických hmotnostních průtoků je získán vztah

$$q_* = \frac{G_{*2\check{s}}}{G_{*1max}} = \frac{p_1}{p_{0c}} \sqrt{\frac{T_{0c}}{T_{1c}}} \frac{F_2 \mu_{\check{s}2}}{F_1 \mu_{\check{s}1}} = \varepsilon_1 \frac{F_2 \mu_{\check{s}2}}{F_1 \mu_{\check{s}1}}$$
(12)

Kde:

$$\sqrt{\frac{T_{0c}}{T_{1c}}}\approx 1$$

Při podkritickém proudění druhou štěrbinou se hmotnostní průtok vyhodnotí pomocí vztahu

$$G_{2} = \mu_{\$2} F_{2} \sqrt{\frac{2\kappa}{\kappa - 1}} \frac{p_{1}}{\sqrt{rT_{1c}}} \left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{\kappa}} \sqrt{1 - \left(\frac{p_{2}}{p_{1}}\right)^{\frac{\kappa - 1}{\kappa}}}$$
(13)

Pokud se tlakové poměry pro soustavu štěrbin vyjádří pomocí tlakových poměrů vztažených k vstupnímu tlaku, je získán pro bezrozměrné vyjádření hmotnostního průtoku pro druhou štěrbinu následující vztah

$$q_{2} = \frac{G_{2}}{G_{*1max}} = \left(\frac{2}{\kappa-1}\right)^{\frac{1}{2}} \left(\frac{2}{\kappa+1}\right)^{\frac{-\kappa+1}{2(\kappa-1)}} \frac{p_{1}}{p_{0c}} \left(\frac{p_{2}/p_{0c}}{p_{1}/p_{0c}}\right)^{\frac{1}{\kappa}} \sqrt{1 - \left(\frac{p_{2}/p_{0}}{p_{1}/p_{0}}\right)^{\frac{\kappa-1}{\kappa}} \sqrt{\frac{T_{0c}}{T_{1c}}} \frac{\mu_{\S2}F_{2}}{\mu_{\S1}F_{1}}}$$

$$q_{2} = \left(\frac{2}{\kappa-1}\right)^{\frac{1}{2}} \left(\frac{2}{\kappa+1}\right)^{\frac{-\kappa+1}{2(\kappa-1)}} \varepsilon_{1} \left(\frac{\varepsilon_{2n}}{\varepsilon_{1}}\right)^{\frac{1}{\kappa}} \sqrt{1 - \left(\frac{\varepsilon_{2n}}{\varepsilon_{1}}\right)^{\frac{\kappa-1}{\kappa}} \frac{\mu_{\S2}F_{2}}{\mu_{\S1}F_{1}}}$$
(14)

Po úpravách $\varepsilon_1 = 1$ a $\varepsilon_{2n} = \varepsilon_1$, lze poměrný hmotnostní průtok pro první štěrbinu zapsat ve tvaru

$$q_{1} = \left(\frac{2}{\kappa - 1}\right)^{\frac{1}{2}} \left(\frac{2}{\kappa + 1}\right)^{\frac{-\kappa + 1}{2(\kappa - 1)}} \varepsilon_{1}^{\frac{1}{\kappa}} \sqrt{1 - \varepsilon_{1}^{\frac{\kappa - 1}{\kappa}}}$$
(15)

Proudění pracovní látky přes různě tvarované otvory zahrnující soustavu štěrbin lze s dostatečnou přesností popsat pomocí elips, kde je jedna poloosa určena tlakovým poměrem $1 - \varepsilon_{**}$ a druhá poměrným hmotnostním průtokem q. Rovnice elipsy pro první štěrbinu má následující tvar

$$q_1 = \frac{q_{1\check{s}}}{q_{1*l}} = \sqrt{1 - \frac{(\varepsilon_1 - \varepsilon_{**1})^2}{(1 - \varepsilon_{**1})^2}}$$
(16)

Kde:

$$\varepsilon_{**1} = f\left(\frac{l}{\delta_h}\right)$$
$$q_{1*l} = f\left(\frac{l}{\delta_h}\right)$$

Zde δ_h je hydraulický průměr štěrbiny.

Obdobně pro druhou štěrbinu lze zapsat rovnici elipsy ve tvaru

$$q_{2} = \frac{q_{2\breve{s}}}{q_{2\ast}} = \sqrt{\varepsilon_{1}^{2} - \frac{(\varepsilon_{2n} - \varepsilon_{1}\varepsilon_{\ast\ast 2})^{2}}{(1 - \varepsilon_{\ast\ast 2})^{2}}}$$
(17)

Následnou úpravou

$$\begin{aligned} q_2^2 (1 - \varepsilon_{**2})^2 &= \varepsilon_1^2 - 2\varepsilon_1^2 \varepsilon_{**2} + \varepsilon_1^2 \varepsilon_{**2}^2 - \varepsilon_{2n}^2 + 2\varepsilon_{2n} \varepsilon_1 \varepsilon_{**2} - \varepsilon_1^2 \varepsilon_{**2}^2 \\ q_2^2 (1 - \varepsilon_{**2})^2 &= \varepsilon_1^2 (1 - \varepsilon_{**2}) - \varepsilon_1^2 \varepsilon_{**2} + \varepsilon_{2n}^2 \varepsilon_{**2} - \varepsilon_{2n}^2 \varepsilon_{**2} - \varepsilon_{2n}^2 + 2\varepsilon_{2n} \varepsilon_{**2} \varepsilon_{**2} \\ q_2^2 (1 - \varepsilon_{**2})^2 &= \varepsilon_1^2 (1 - \varepsilon_{**2}) - \varepsilon_{2n}^2 (1 - \varepsilon_{**2}) - \varepsilon_{**2} (\varepsilon_1^2 - 2\varepsilon_{2n} \varepsilon_1 + \varepsilon_{2n}^2) \end{aligned}$$

Pro poměry v soustavě štěrbin, kde se pára škrtí z tlaku p_0 na p_1 a dále pak z tlaku p_1 na p_2 , lze celý proces proudění přes štěrbiny popsat následující soustavou rovnic

$$q_2^2(1 - \varepsilon_{**2})^2 = (1 - \varepsilon_{**2})(\varepsilon_1^2 - \varepsilon_{2n}^2) - \varepsilon_{**2}(\varepsilon_1 - \varepsilon_{2n})^2 \qquad 2. \text{ štěrbina}$$
(18)

$$q_1^2 (1 - \varepsilon_{**1})^2 = (1 - \varepsilon_{**1})(1 - \varepsilon_1^2) - \varepsilon_{**1}(1 - \varepsilon_1)^2$$
 1. štěrbina (19)

Musí platit podmínka rovnosti hmotnostního průtoku první i druhou štěrbinou. Pro bezrozměrné hmotnostní toky druhou štěrbinou $q_2 = \frac{G}{\mu_{2\$}A \frac{p_0}{\sqrt{T_0}}F_2}$ a první štěrbinou

$$q_{1} = \frac{c}{\mu_{1\bar{s}}A\frac{p_{0}}{\sqrt{T_{0}}}F_{1}} \text{ lze psát následující vztah}$$

$$q_{2} = q_{1}\frac{\mu_{1\bar{s}}}{\mu_{2\bar{s}}}\frac{F_{1}}{F_{2}} \Longrightarrow q_{2}^{2} = q_{1}^{2}\overline{F}^{2}$$

$$\frac{(1 - \varepsilon_{**1})^{2}}{\overline{F}^{2}(1 - \varepsilon_{**2})^{2}} = \frac{(1 - \varepsilon_{1}^{2})(1 - \varepsilon_{**1}) - \varepsilon_{**1}(1 - \varepsilon_{1})^{2}}{(\varepsilon_{1}^{2} - \varepsilon_{2n}^{2})(1 - \varepsilon_{**2}) - \varepsilon_{**2}(\varepsilon_{1} - \varepsilon_{2n})^{2}}$$
(20)

Pokud se na základě experimentů určí hodnoty ε_{**1} , ε_{**2} a ε_{2n} , potom je možné vypočítat i ε_1 . Ze znalosti hodnot tří veličin lze dopočítat čtvrtá, viz následující vztah.

$$\varepsilon_1^2 - \varepsilon_1 = \frac{k_1 \bar{F}^2 - k_2 \varepsilon_{2n}}{k_4 + \bar{F}^2} - \frac{k_3 \varepsilon_{2n}^2 + k_5 \bar{F}^2}{k_4 + \bar{F}^2} = 0$$
(21)

Kde $k_1 \div k_5$ jsou konstanty závislé na hodnotách kritického tlakového poměru ε_{**1} a ε_{**2} . Hodnoty $\mu_{2š}$ a ε_{**2} se určí z experimentu na modelu odlehčeného ventilu, viz Obr. 2-1. Hodnoty $\mu_{1š}$ a ε_{**1} jsou stanoveny z výsledků experimentu na modelu štěrbinové trati, viz Obr. 4-3.

Z experimentálně stanovených tlakových poměrů v jednotlivých sekcích na obtokovém ventilu mohou být určeny síly působící na kuželku ventilu, jak je naznačeno na Obr. 3-4. V tomto případě je $\varepsilon_{**1} = 0.3$ a $\varepsilon_{**2} = 0.5$.

Obr. 3-4 – tlakové poměry na obtokovém ventilu

Je-li $\overline{F} = 0$, je $\varepsilon_1 = \varepsilon_{2n}$, potom je v prostoru pod štěrbinou stejný tlak, tzn. na dno i svršek kuželky působí stejné tlaky. Jestliže \overline{F} roste, roste i rozdíl tlaků působících na vnitřní a vnější plochu velké kuželky. Roste tak i stabilizační síla i síla potřebná k ovládání kuželky. Pro nominální (návrhový) provoz je naopak žádoucí, aby byla stabilizační síla co nejmenší. Hodnota \overline{F} je určena nejen průtočnou plochou štěrbiny, ale i hodnotou průtokového součinitele μ_* .

Volbou průtočných ploch na ventilu se rozhoduje o tlakových poměrech v jeho jednotlivých částech a tím i o silách působících na kuželku a vřeteno ventilu.
3.2 Dostupné podklady pro tlakovou ztrátu

Rozdíly tlaků nad a pod štěrbinou jsou závislé na volbě šířky štěrbiny a rovněž na rozměrech ostatních průtočných ploch. Proudění štěrbinou se liší od proudění dýzou či otvorem s ostrými hranami. Základní rozdíly jsou zachyceny Obr. 3-5.

Obr. 3-5 – porovnání proudění v otvorech a ve štěrbině

Ztrátový součinitel štěrbiny při laminárním proudění je ve srovnání se ztrátovým součinitelem otvoru kruhového průřezu rozdílný. Dochází k ovlivnění kritického tlakového poměru průtokového součinitele. Aerodynamické parametry pro štěrbinu se liší od hodnot pro ideální dýzu. Vnitřní průtočný systém odlehčeného regulačního ventilu tvoří vedle štěrbiny i soustava otvorů a kanálků různého průměru. Uplatňuje se zde i skoková změna průřezu i úprava směru proudění. K vyhodnocení tlakové ztráty při proudění složitě tvarovaným kanálem proměnného průřezu lze sice použít dílčí podklady, nicméně spolehlivější podklady představují experimentálně získané a vyhodnocené hodnoty průtokového součinitele a kritického tlakového poměru pro celý průtočný systém. Proudění ovlivňuje i změna tlakového poměru přes celý ventil. Proudění ve štěrbině je schematicky znázorněno na Obr. 3-6.

Obr. 3-6 – proudění ve štěrbině

K popisu proudění vazké nestlačitelné tekutiny v mezi-kruhové mezeře [6] lze použít rovnici pro změnu hybnosti ve válcovém souřadném systému ve tvaru

$$\frac{\partial^2 c}{\partial r^2} + \frac{1}{r} \frac{\partial c}{\partial r} + \frac{1}{r^2} \frac{\partial^2 c}{\partial \Theta^2} = \frac{1}{\mu} \frac{dp}{dz}$$
(22)

Jelikož se jedná o rotačně symetrické proudění

$$\frac{\partial c}{\partial \Theta} = \frac{\partial^2 c}{\partial \Theta^2} = 0$$

Rovnice (22) se může zjednodušit na tvar

$$\frac{d^2c}{dr^2} + \frac{1}{r}\frac{dc}{dr} = \frac{1}{\mu}\frac{dp}{dz}$$

a upravit na

že

$$\frac{1}{r}\frac{dc}{dr}\left(r\frac{dc}{dr}\right) = \frac{1}{\mu}\frac{dp}{dz}$$
(23)

Jelikož dp/dz = konstanta, lze vyjádřit rychlost v následujícím tvaru

$$c = \frac{1}{4\mu} \frac{dp}{dz} r^2 + c_1 \ln r + c_2$$
(24)

Okrajové podmínky pro řešení konstant c_1 a c_2 mají podobu c = 0 pro r_1 a r_2 . Pak platí,

$$C_1 = -\frac{\frac{1}{4\mu} \frac{dp}{dz} (r_2^2 - r_1^2)}{\ln(r_2/r_1)}$$
(25)

$$C_2 = -\frac{1}{4\mu} \frac{dp}{dz} \left[r_1^2 + \frac{r_2^2 - r_1^2}{\ln(r_2/r_1)} \ln r_1 \right]$$
(26)

Výsledný vztah pro rychlost lze potom zapsat ve tvaru

$$c = -\frac{1}{4\mu} \frac{\Delta p}{l} \Big[r_1^2 - r^2 + \frac{r_2^2 - r_1^2}{\ln(r_2/r_1)} \ln\left(\frac{r}{r_1}\right) \Big].$$
(27)

Za předpokladu laminárního proudění se střední rychlost výpočte podle vztahu

$$\bar{c} = \frac{\Delta p}{8\mu l} \left[r_2^2 + r_1^2 - \frac{r_2^2 - r_1^2}{\ln(r_2/r_1)} \right].$$
(28)

Tlaková ztráta na štěrbině je potom pomocí výše uvedeného vztahu popsána následujícím způsobem

$$\Delta p = \frac{8\mu l\bar{c}}{r_2^2 + r_1^2 - \frac{r_2^2 - r_1^2}{\ln(r_2/r_1)}}.$$
(29)

Pro velmi úzkou štěrbinu, kd
y $r_2-r_1=\delta$ lze pro tlakovou ztrátu (29) použít aproximaci v násle
dujícím tvaru

$$\Delta p = \frac{12\mu l\bar{c}}{\delta^2}.$$
(30)

Tlaková ztráta na štěrbině se pomocí ztrátového součinitele ζ vyjádří jako

$$\Delta p = \zeta \frac{l}{\delta} \frac{\rho \bar{c}^2}{2}.$$
(31)

Ztrátový součinitel pro kruhové štěrbiny a laminární proudění je definován jako

$$\zeta = \frac{24}{\frac{\bar{c}\delta}{\nu}} = \frac{24}{Re}$$
(32)

Podle jiných podkladů [26] může být ztrátový součinitel pro mezikruhovou štěrbinu určen vztahem

$$\zeta = \frac{96}{Re} \tag{33}$$

Ztrátový součinitel pro štěrbinu je závislý na Reynoldsově čísle, kde charakteristickým rozměrem vstupujícím do určení Re je šířka štěrbiny δ .

Obr. 3-7 – ztrátové součinitelé tvarových úprav potrubí [6]

Na Obr. 3-7 je podle podkladů [6] a [20] uveden přehled experimentálně vyhodnocených ztrátových součinitelů pro vybrané průtočné průřezy. Uvažována je také varianta s mezikruhovou štěrbinou [21]. Ukazuje se určitá podobnost závislosti $\zeta = f(Re)$ s klasickým potrubím. Podle těchto podkladů vychází pro turbulentní proudění štěrbinou závislost

$$\zeta = 0,0008 + 0,0552Re_{\delta}^{-0,237} \tag{34}$$

Menší hodnota ztrátového součinitele oproti hodnotě ztrátového součinitele plného průtočného průřezu je dána především definicí Reynoldsova čísla, které je vztaženo k šířce štěrbiny a rovněž definicí $\frac{l}{\delta}$ oproti obvyklé definici $\frac{l}{\rho}$.

3.3 Rozbor proudění na štěrbině pro vazkou stlačitelnou tekutinu

Změna hybnosti ustáleného proudu v trubici konstantního průřezu, kde nedochází k výměně energie s okolním prostředím, lze vyjádřit pomocí věty o změně toku hybnosti pro kontrolní plochu zobrazenou na Obr. 3-8 jako $\Delta J = \sum R_i$.

Obr. 3-8 – schéma segmentu potrubí

$$\Delta J = m(c + dc) - mc = mdc = \rho c dcF$$

$$\Sigma R_i = pF - (p + dp)F - \tau_w ds = -Fdp - \tau_w ds$$

$$cdc = -\frac{dp}{\rho} - \frac{1}{\rho}\tau_w 4\frac{\pi D dx}{\pi D^2}$$

$$cdc = -\frac{dp}{\rho} - \frac{1}{\rho}\zeta \frac{1}{2}\rho c^2 \frac{dx}{D}$$

$$cdc = -\frac{dp}{\rho} - \frac{1}{\rho}d\chi, \text{ zde } d\chi = \zeta \frac{\rho c^2}{2} \frac{dx}{D}$$

Další úpravou výše uvedené rovnice je získán následující tvar

$$cdc + a^{2} \frac{d\rho}{\rho} = -\zeta \frac{c^{2}}{2} \frac{dx}{D}$$

$$\frac{c_{*}}{c_{*}} a^{2} \frac{dc}{c} (M^{2} - 1) = -\zeta \frac{c^{2}}{2} \frac{dx}{D}$$
(36)

Jelikož $\frac{c_*}{c_*} \frac{dc}{c} = \frac{d\lambda}{\lambda}$, lze vztah (36) upravit do následující podoby

$$\frac{d\lambda}{\lambda} \left(\frac{1}{M^2} - 1\right) = -\zeta \frac{M^2}{2} \frac{dx}{D}$$
(37)

Mezi bezrozměrnými rychlostmi λ a M existuje vazba

$$\frac{1}{2} + \frac{1}{M^2(k-1)} = \frac{k+1}{k-1} \frac{1}{2\lambda^2}$$
(38)

Po dosazení (37) do (38) je vztah upraven do následující podoby

$$\frac{d\lambda}{\lambda^3}(1-\lambda^2) = \frac{\zeta}{k+1}\frac{dx}{D}$$
(39)

Po integraci za předpokladu, že ζ je konstanta (zanedbá se závislost ζ na Re a λ) přejde vztah do podoby uvedené na následující řádce

$$\frac{1}{\lambda_1^2} - \frac{1}{\lambda_i^2} - \ln \frac{\lambda_i^2}{\lambda_1^2} = \frac{2\zeta}{k+1} \bar{x} = \chi$$
(40)

Zde λ_1 – bezrozměrná rychlost na vstupu do potrubí

 λ_i – bezrozměrná rychlost v řezu potrubí na vzdálenosti $\bar{x} = \frac{x}{D}$

Jestliže je na výstupu ze štěrbiny kritická rychlost je $\lambda_i = \lambda_2 = 1$.

Při daném λ_1 existuje určitá délka potrubí l_{max} , kdy je $\chi = \chi_{max} = \frac{2\zeta}{k+1} \frac{l_{max}}{D}$

$$\chi_{max} = \frac{1}{\lambda_1^2} - 1 - \ln \frac{1}{\lambda_1^2}$$
(41)

Závislost χ_{max} na λ_1 je pro oblast podzvukového i nadzvukového proudění vynesena na Obr. 3-9. Jedná se o orientační průběh. Závislost pro danou geometrii a parametry proudícího media bude vyhodnocena až z experimentálně získaných dat.

(35)

Obr. 3-9 – vliv bezrozměrné vstupní rychlosti λ_1 na maximální délku potrubí [6]

U regulačních ventilů má odlehčovací štěrbina tvar mezikruží. Jak bylo ukázáno, nelze tedy štěrbinu zjednodušit na proudění kruhovým průřezem. Hodnotu ztrátového součinitele ζ a průměru D je potřeba vyhodnotit pro hydraulický průměr d_h . Pomocí Obr. 3-6 a Obr. 3-8 a lze hydraulický průměr štěrbiny odvodit ze vztahu

$$\pi \left(\frac{D_2 + D_1}{2}\right) \delta \Delta p = \tau_w \pi (D_2 + D_1) \Delta x = \frac{\pi d_h^2}{4} \Delta p$$

$$\frac{1}{2} \frac{\pi}{\pi} \frac{(D_2 + D_1) \delta}{D_2 + D_1} \frac{\Delta p}{\Delta x} = \frac{\pi d_h^2}{\pi (D_2 + D_1)} \frac{\Delta p}{\Delta x} \frac{1}{4}$$
(42)

Odkud

$$d_h = \sqrt{2(D_2 + D_1)\delta} \tag{43}$$

Hodnota ztrátového součinitele pro různé velikosti d_h a závislosti Re_{dh} byly stanoveny z experimentálně získaných dat v rámci zpracovávání této práce.

Pro maximální bezrozměrný hmotnostní průtok na vstupu do štěrbiny platí vztah

$$q_{1max} = \left(\frac{k+1}{2}\right)^{\frac{1}{k-1}} \lambda_{1max} \left(1 - \frac{k-1}{k+1}\lambda_{1max}^2\right)^{\frac{1}{k-1}}$$
(44)

Maximální hmotnostní průtok na vstupu do štěrbiny nastane při $c_1=c_*$ a l=0.

$$G_{max} = q_{1max}G_{*1} = q_{1max}F\rho_{*1}c_{*1} = q_{1max}\frac{\rho_{*1}}{\rho_{01}}\underbrace{\sqrt{\frac{2k}{k+1}rT_{01}}\rho_{01}F}_{c_{*1}}$$
$$= q_{1max}\underbrace{\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}}}_{\rho_{*1}/\rho_{01}}\underbrace{\sqrt{\frac{2krT_{01}}{k+1}}}_{c_{*1}}\frac{p_{01}}{\rho_{01}}F = \left(\frac{2}{k+1}\right)^{\frac{2k-1}{2(k-1)}}\sqrt{\frac{k}{r}\frac{p_{01}}{\sqrt{T_{01}}}}Fq_{1max}$$

Pokud je q_{1max} vyjádřen pomocí λ_{1max} , je získána následující závislost.

$$G_{max} = F \sqrt{\frac{2k}{(k+1)r}} \lambda_{1max} \left(1 - \frac{k-1}{k+1} \lambda_{1max}^2 \right)^{\frac{1}{k-1}} \frac{p_{01}}{\sqrt{T_{01}}}$$
(45)

(46)

$$G_{max} = G_* \lambda_{1max} \left(1 - \frac{k-1}{k+1} \lambda_{1max}^2 \right)^{\frac{1}{k-1}} \left[\frac{1}{\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}}} \right]$$

Pro vyhodnocení rozložení tlaku podél proudové cesty je použit vztah odvozený pro výpočet hmotnostního průtoku podél trubice, kdy

$$G = \left(\frac{2}{k+1}\right)^{\frac{k+1}{2(k-1)}} \sqrt{\frac{k}{r}} q_1 \frac{p_{01}}{\sqrt{T_{01}}} F = \left(\frac{2}{k+1}\right)^{\frac{k+1}{2(k-1)}} \sqrt{\frac{k}{r}} q_i \frac{p_{0i}}{\sqrt{T_{0i}}} F = \text{konst.}$$

Po úpravě se dostane

$$\frac{q_1 p_{01}}{\sqrt{T_{01}}} = \frac{q_i p_{0i}}{\sqrt{T_{0i}}}$$

Jelikož pro izolovaný kanál platí, že $h_0 = h_{0i}$ a tedy i v libovolném řezu kanálu platí rovnost stagnační (celkové) teploty $T_{0i} = T_{01}$, pak

$$\frac{p_{01}}{p_{0i}} = \frac{q_i}{q_1} \tag{47}$$

Pro tlakový poměr $\varepsilon_i = \frac{p_i}{p_{0i}} = \frac{p_i}{p_{0i}} \frac{p_{0i}}{p_{0i}} = \frac{p_i}{p_{0i}} \frac{q_1}{q_i}$ s použitím vztahu $\frac{p_i}{p_{0i}} = \left(1 - \frac{k-1}{k+1}\lambda_i\right)^{\frac{1}{k-1}}$ platí

$$\varepsilon_{i} = q_{1} \underbrace{\left(1 - \frac{k-1}{k+1}\lambda_{i}^{2}\right)^{\frac{k}{k-1}}}_{p_{i}/p_{0i}} \underbrace{\frac{1}{\left(\frac{2}{k+1}\right)^{\frac{-1}{k-1}}\lambda_{i}\left(1 - \frac{k-1}{k+1}\lambda_{i}^{2}\right)^{\frac{1}{k-1}}}_{q_{i}}}_{= \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}}q_{1}\frac{1 - \frac{k-1}{k+1}\lambda_{i}^{2}}{\lambda_{i}}}$$
(48)

Pro výstupní průřez lze psát

$$\varepsilon_{2} = \left(\frac{2}{k+1}\right)^{\frac{1}{k-1}} q_{1} \frac{\left(1 - \frac{k-1}{k+1}\lambda_{2}^{2}\right)}{\lambda_{2}}$$
(49)

Jestliže je výstupním průřezu dosaženo kritické rychlosti $\lambda_2=1$, pak je $\varepsilon_2=\varepsilon_{**}$ a $q_1=q_{1max}$,

$$\varepsilon_{**} = \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}} q_{1max} = \varepsilon_* q_{1max}$$
(50)

Průběhy tlaků na štěrbině jsou v h-s diagramu zobrazeny na Obr. 3-10. Z doposud uvedeného je zřejmé, že s rostoucí délkou štěrbiny musí klesat vstupní rychlost c_1 a λ_1 , aby bylo ve výstupním průřezu dosaženo kritické rychlosti s $\lambda_{2*} = 1$.

Obr. 3-10 – expanze plynu ve štěrbině

Z experimentálně získaných dat v rámci této práce plyne, že na vstupu do štěrbiny vzniká dílčí tlaková ztráta v důsledku skokové změny průřezu. Typické uspořádání vstupního úseku do štěrbiny je znázorněno na Obr. 3-11. Tlaková ztráta $\Delta p_{sk} = p_{0c} - p_{1c}$ je dána vztahem (51).

Obr. 3-11 – schéma skokové změny vstupního průřezu

$$\Delta p_{sk} = \frac{\rho c_1^2}{2} \left(\frac{1}{\varepsilon} - 1\right)^2 \tag{51}$$

Místní ztrátový součinitel pro skokovou změnu průřezu má tvar $\zeta_{sk} = \left(\frac{1}{\varepsilon} - 1\right)^2$, kde se předpokládá, že

$$\varepsilon = k_1 + k_2 \left(\frac{F_1}{F_0}\right)^2. \tag{52}$$

Konstanty k_1 a k_2 jsou závislé na konkrétní geometrii vstupního úseku. Jelikož poměr ploch $F_1/F_0 \doteq 0$ je $\varepsilon = k_1$ a tím i $\zeta_{sk} =$ konst.

4 Model experimentální trati pro výzkum proudění štěrbinou

Model ventilu se štěrbinou je napojen na rozvod tlakového vzduchu a prodloužený výstup osazený ručním ventilem ústí do atmosféry. Tato konfigurace umožňuje plynule nastavovat tlakové poměry na štěrbině v rozsahu $p_2/p_0 = 0,2 \div 1$. Uspořádání jednotlivých části systému je schematicky znázorněno na Obr. 4-1. Za vstupním uzávěrem tlakového vzduchu 1 byl instalován samočinný redukční ventil 2, který slouží k udržování nastaveného vstupního tlaku vstupujícího do měřící tratě. Dále je v potrubí nainstalována měřící clona 3 sloužící k vyhodnocení hmotnostního průtoku. Na samotném modelu štěrbiny 4 se uvažují obdobné vstupní a výstupní úseky jaké se nachází na reálném provedení ventilu. Pracovní látka se za štěrbinou dostává řadou otvorů k ručnímu ventilu 5, který slouží pro nastavení ustáleného tlakového poměru. Ve všech potřebných částech štěrbinové trati se měří tlaky a teploty. Fotografie modelu štěrbiny 4 soznačením měřených tlaků a teploty je uvedena na Obr. 4-2.

Obr. 4-1 – uspořádání měřící tratě

Obr. 4-2 – fotografie modelu štěrbiny

4.1 Popis měření

Detailní provedení modelu pro výzkum proudění mezikruhovou štěrbinou je zobrazeno na Obr. 4-3. Tato konfigurace byla zvolena s ohledem na dostupné podklady výpočtových studií. Základní rozměry průtočné plochy jsou odvozeny od rozměrů experimentálního modelu ventilu navrženém se šířkou štěrbiny $\delta = 0,3$ mm. Provedení ventilu je znázorněno na Obr. 2-1. Pro počáteční měření bylo k modelování vstupního úseku zvoleno 8 otvorů o průměru $d_1 = 9$ mm. Vstupní otvory byly dimenzovány tak, aby na nich vznikala minimální tlaková ztráta. Byly uvažovány varianty se šířkou štěrbiny $\delta = 0,15; 0,3; 0,5,1$ a 3 mm. Délka štěrbiny je ve všech případech $l_2 = 50$ mm. Výstupní úsek tvoří 6 otvorů $d_3 = 9,5$ mm. Cílem

první fáze experimentu bylo získat pro různé šířky štěrbiny podklady o hmotnostních tocích, průtokových součinitelích jednotlivých částí obtokového systému a jejich dopadech na přítlačnou sílu působící na kuželku ventilu.

Obr. 4-3 – detailní provedení modelu štěrbiny

Na základě poznatků z počáteční etapy experimentů byly u modelu štěrbiny provedeny určité změny. Konkrétně se jednalo o doplnění tlakových odběrů na výstupu ze štěrbiny. Dále bylo nutné zvětšit průtočnou plochu otvorů d_3 ve výstupní části obtokového systému, tak aby bylo možné na štěrbinách $\delta > 0,3$ mm dosáhnout kritických parametrů. Rozšířil se i počet testovaných variant štěrbiny. Poznatky z úvodní etapy experimentů a důvody pro dodatečné úpravy modelu jsou popsány v kapitole 5.1.

Během dodatečných úprav modelu, konkrétně při navařování přechodových kusů mezi odběry statických tlaků a tlakovými sondami, došlo vlivem tepelného namáhání k deformaci vnějšího tělesa, a ke zmenšení navrhované šířky, kruhovitý tvar modelu se změnil na elipsovitý. Z tohoto důvodu bylo vyrobeno nové vnější těleso. Model společně s výměnnými disky (kotouče k simulaci štěrbiny δ) byl zadán do výroby podle původní technické dokumentace spolu s výše popsanými úpravami a s přídavkem na obrábění po svařovaní. Na Obr. 4-4 jsou uvedena toleranční pole pro průměr modelu $D_M = 150,3$ mm a pro průměry vyměnitelných kotoučů štěrbin D_k . Podle [37] jsou pro průměry 140-160 mm a toleranční pole H7 dány mezní úchylky od +40 µm do 0 µm a pro toleranční pole h6 jsou mezní úchylky od 0 µm do -25 µm.

Obr. 4-4 – předepsané tolerance modelu a výměnných disků

Navzdory tomu, že veškeré komponenty byly vyrobeny v předepsaných tolerancích, tak vzniklo 15 originálních variant šířek štěrbiny. Přehled měřených variant je uveden v Tab. 4-1. Tabulka vznikla na základě měření vnějších rozměrů kotouče třmenovým mikrometrem a měření vnitřního průměru vnějšího tělesa mikrometrickým odpichem. Jednotlivé varianty jsou vyjádřeny pomocí štíhlosti l/d_h . l představuje délku štěrbiny a d_h hydraulický průměr vyhodnoceny podle vztahu (43).

Tab. 4-1 – přehled měřených variant

l [mm]	10	20	50	
l/d _h [1]	1,286	2,967	6,776	
	1,108	2,216	5,490	
	0,742	1,495	3,770	
	0,562	1,149	2,831	
	0,410	0,820	2,048	

4.2 Měření základních veličin

4.2.1 Popis měření teplot a tlaků

Pro měření teplot bylo využito jednoslotové šasi NI cDAQ 9171, které je možno vybavit libovolnou vstupní či výstupní kartou z nabídky firmy National Instruments. V tomto případě je slot obsazen 16-ti kanálovou 24 bitovou A/D kartou NI 9214. Tato karta je určena pro měření teplot termočlánkem libovolného typu, což výrazně zjednodušuje měřící řetězec. Studený konec termočlánků je ve vlastní kartě i konektoru NI TB – 9214, který je součástí celého setu. Přepočet termoelektrického napětí lze provádět standardně dle normy a koeficientů pro daný typ termočlánků. Pro případ vlastní kalibrace lze každému kanálu z karty přiřadit vlastní kalibrační rovnici, která popisuje chování konkrétního měřicího řetězce. Měřené teploty jsou uvedeny v Tab. 4-2.

NI cDAQ 9171					
Označení kanálu	Měřená veličina	Popis měřené veličiny			
k0	t _{in}	Teplota na vstupu			
k1	to	Teplota za měřící clonou			
k2	t3	Teplota v převáděcím kanálu			

Tab. 4-2 – označení měřených teplot a jejich popis

Na experimentální trati je osazeno celkem 12 míst pro měření statických tlaků. Z toho polovina tlaků (6) je měřena v průtočné části modelu štěrbiny. A to ve třech rovinách, na vstupu před štěrbinou, na výstupu ze štěrbiny a ve výstupní komoře za štěrbinou. To znamená, že v daných rovinách jsou tlaky zdvojeny. Statické tlaky jsou měřeny pomocí otvorů, které jsou vrtány kolmo ke stěně o průměru 0,5 mm.

Měření tlaků probíhala s použitím přístroje NetScanner 9022 s absolutními čidly 9401 s rozsahem 0 ÷ 100 PSI o přesnosti 0,05 % FS a diferenčním čidlem 9402 s rozsahem 0 ÷ 15 PSI o přesnosti 0,5 % FS, s odfiltrováním dat, které přesáhly hranici ±2δ, uváděné hodnoty tedy leží v daném rozmezí s pravděpodobností 95,5 %. NetScanner má možnost připojení 12-ti tlakových kanálů. Výstupem z NetScanneru je digitální signál přenášený po ethernetové síti prostřednictvím TCP/IP protokolu, čtený a zapisovaný měřicím PC. Propojení čidla 9401 a vlastní jednotky 9022 je provedeno prostřednictvím standardního kabelu 9096.

Pomocí tlakových převodníků jsou sbírána data vzorkovací frekvencí 100 Hz. Pro každé měření je nasbíráno 300 vzorků. Označení jednotlivých měřených tlaků je uvedeno v Tab. 4-3.

NetScanner 9022				
Označení kanálu	Měřená veličina	Popis měřené veličiny		
P1	p _{in}	Tlak na vstupu		
P2	p _{cl}	Tlak clona - vstup		
P3	Δp_{dif}	Tlak clona - diference		
P4	pv	Tlak před vstupem do modelu		
P5	p ol	Tlak v komoře před štěrbinou - levá		
P6	p _{0p}	Tlak v komoře před štěrbinou - pravá		
P7	p _{2šl}	Tlak na výstupu ze štěrbiny - levá		
P8	p _{2šp}	Tlak na výstupu ze štěrbiny - pravá		
P9	p ₂₁	Tlak v komoře za štěrbinou - levá		
P10	p _{2p}	Tlak v komoře za štěrbinou - pravá		
P11	p ₃	Tlak v převáděcím kanálu		
P12	P ₄	Tlak na výstupu měřící trati		

ab. 4-3 – označení měřer	ých statických	tlaků a	jejich į	oopis
--------------------------	----------------	---------	----------	-------

Na následujícím Obr. 4-5 je schematicky naznačeno popisované propojení měřicí aparatury s měřicím počítačem.

Obr. 4-5 – schéma zapojení měřících přístrojů

4.2.2 Popis měření hmotnostního průtoku

Měření hmotnostního průtoku přivedeného tlakového vzduchu bylo provedeno pomocí centrické clony s bodovými odběry tlaku umístěné v přívodním potrubí o průměru D = 43,1 mm. Vzhledem k minimalizaci nejistoty měření hmotnostního průtoku byly použity dva clonové kotouče (podle měřené varianty štěrbiny), pro větší průtoky do 0,6 kg/s byl využit clonový kotouč o průměru d = 29,805 mm a pro měření velmi nízkých průtoků do 0,1 kg/s byl použit clonový kotouč o průměru d = 12,884 mm. Clony byly použity s koutovými odběry. Tlak před clonou je měřen absolutním tlakovým převodníkem NetScanner 9401. Tlaková diference na cloně je měřena diferenčním čidlem 9402. Celé měření je navrženo dle ČSN EN ISO 5167-1. Dále uvedený postup naznačuje princip výpočtu, detailně je výpočet hmotnostního průtoku centrickou clonou popsán normou ČSN EN ISO 5167-2.

$$G = \frac{C}{\sqrt{1 - \beta^4}} \varepsilon \frac{\pi}{4} d^{\prime 2} \sqrt{2\Delta p_{dif} \rho_0}$$
(53)

V normě jsou zavedeny následující podobnostní čísla

$$\beta = \frac{d}{D}; \ L_1 = \frac{l_1}{D}; \ \dot{L_2} = \frac{\dot{l_2}}{D}; \ M_2 = \frac{\dot{L_2}}{1-\beta}; \ A = \left(\frac{19000\beta}{Re_{D'}}\right)^{0,8}$$
(54)

Dále je dle výše uvedené normy počítán součinitel průtoku C a součinitel expanze ε

$$C = 0,5961 + 0,0261\beta^{2} - 0,216\beta^{8} + 0,000521 \left(\frac{10^{6}\beta}{Re_{D'}}\right)^{0,7} +$$

$$(0,0188 + 0,0063A)\beta^{3,5} \left(\frac{10^{6}}{Re_{D'}}\right)^{0,3} + (0,043 + 0,080e^{-10L_{1}} - 0,123e^{-7L_{1}})$$

$$\frac{(1 - 0,11A)\beta^{4}}{1 - \beta^{4}} - 0,031 \left(M_{2}^{'} - 0,8M_{2}^{'1,1}\right)\beta^{1,3} + 0,011(0,75 - \beta) \left(2,8 - \frac{D}{25,4}\right)$$

$$\varepsilon = 1 - (0,351 + 0,256\beta^{4} + 0,93\beta^{8}) \left[1 - \left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{\kappa}}\right]$$
(55)

Zde je použito Reynoldsovo číslo počítané z hmotnostního průtoku clonou počítané z korigovaných rozměrů potrubí.

$$Re_{D'} = \frac{4G}{\pi \nu D'} \tag{57}$$

Kromě proudových charakteristik je brán v potaz i vliv teploty na roztahování clony a také na potrubí.

$$d' = d[1 + \alpha_c(t_0 - 20)]; D' = D[1 + \alpha_p(t_0 - 20)]$$
(58)

Zvýše uvedených vztahů je zřejmé, výpočet není implicitní, proto je nutné počítat hmotnostní průtok na cloně iteračním způsobem s vhodně nastavenou zastavovací podmínkou. Výpočet hmotnostního průtoku clonou byl zpracován v Excelu jako makro programu Visual Basic.

4.3 Nejistoty měření obecně

Problematika zabývající se nejistotami měření je podrobně zpracována v publikacích [27], [28], [29] a [30]. Na Obr. 4-6 je zobrazena hustota pravděpodobnosti pro případ normálního rozložení sledované veličiny s nulovou střední hodnotou a směrodatnou odchylkou σ = 0,5. Pro tento případ jsou jednotlivé kvantilové odhady funkcí směrodatné odchylky.

Obr. 4-6 – standardizované Gaussovo rozdělení [30]

Prakticky je zaváděn koeficient rozšíření k, který slouží pro výpočet rozšířené nejistoty měření, vztah (64). Koeficient k v případě normálního rozdělení nabývá hodnot 1, 2 a 3 a odpovídá zmiňovaným kvantilům.

Mezi tři základní kvantilové odhady patří oblasti vymezené celočíselnými násobky směrodatné odchylky. Trojnásobek směrodatné odchylky vymezuje oblast pod křivkou hustoty pravděpodobnosti, kde se skutečná hodnota nachází v intervalu s pravděpodobností 99,7 %. Koeficient rozšíření *k* pro tento případ nabývá hodnoty 3. Tato chyba je označována jako krajní chyba. Dvojnásobkem směrodatné odchylky od střední hodnoty je označena pravděpodobná chyba. Je to taková oblast, kdy skutečná hodnota měřené veličiny leží s pravděpodobností 95,5 % v daném intervalu kolem střední hodnoty, koeficient rozšíření *k* je 2.

A konečně směrodatná odchylka, která vymezuje oblast pod křivkou hustoty pravděpodobnosti, kde skutečná měřená hodnota leží v tomto intervalu s pravděpodobností 68,3 %.

Podle způsobu vyhodnocení nejistoty je možné je rozdělit do čtyř skupin:

- nejistota typu A u_A
- nejistota typu B *u*_B
- kombinovaná nejistota *u*_C
- rozšířená nejistota U

4.3.1 Nejistota typu A

Nejistota typu A se získá z nejistoty rozptylu naměřených hodnot. Její hodnota klesá s rostoucím počtem změřených hodnot. Střední hodnota nejistoty typu A by měla nabývat nulové hodnoty. Křivka hustoty pravděpodobnosti by měla být symetrická, to znamená, rozdělení by mělo být nejlépe Gaussovského charakteru.

Nejlepším odhadem střední hodnoty je aritmetický průměr z naměřených hodnot, je dán vztahem

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{59}$$

Na základě výběrové směrodatné odchylky z naměřených hodnot se určí standardní nejistota typu A

$$u_A = s_{\bar{x}} \sqrt{\frac{1}{(n-1)n} \sum_{i=1}^n (x_i - \bar{x})^2}$$
(60)

4.3.2 Nejistota typu B

Způsob pro určení nejistoty typu B je založen na jiných než statistických přístupech. Příslušná standardní nejistota je určena odborným úsudkem na základě všech dostupných informací o možné variabilitě vstupní veličiny.

Možná odvození nejistot měření typu B jsou z [31]:

• údajů z dříve provedených měření

- zkušenosti s chováním a vlastnostmi příslušných zařízení, popř. jejich obecné znalosti
- údajů výrobce
- údajů z kalibračních listů, popř. jiných certifikátů
- nejistot referenčních údajů převzatých z příruček

$$u_{zj} = \frac{z_{jmax}}{k} \tag{61}$$

Výše zmíněný koeficient rozšíření k, vychází ze znalosti zákona rozdělení. Pro zmiňovaný případ Gaussova rozdělení, nabývá k hodnoty 2, pro případ rovnoměrného rozdělení $\sqrt{3}$. V případě, že se nejistota daného zdroje řídí trojúhelníkovým rozdělením, tak $k = \sqrt{6}$.

Výslednou nejistotu typu B od všech uvažovaných zdrojů je možné počítat podle následujícího vztahu

$$u_B = \sqrt{\sum_{j=1}^n u_{Zj}^2}$$
(62)

4.3.3 Kombinovaná nejistota uc

Standartní kombinovanou nejistotu je možné určit z rovnice (63), kdy čtverec kombinované nejistoty u_c je součtem čtverců nejistoty typu A a B.

$$u_c^2 = u_A^2 + u_B^2 (63)$$

4.3.4 Rozšířená nejistota U

Koeficient rozšíření *k*, jak již bylo zmíněno, v případě normální rozdělení nabývá hodnot 1, 2 a 3 a odpovídá jednotlivým kvantilům. Rozšířená nejistota měření se určí podle následujícího vztahu

$$U = k. u_C = k \sqrt{u_A^2 + u_B^2}$$
(64)

Jsou-li v odhadu nejistoty dvě významné složky, výsledné rozdělení pravděpodobnosti nebude normální, ale bude lichoběžníkové. Parametr stran lichoběžníku se určí podle vztahu (65) a koeficient rozšíření dle vztahu (66), kde hodnota pravděpodobnosti *p* bude nabývat hodnoty 0,95. Což je v souladu s normálním rozdělením pravděpodobnosti, viz Obr. 4-6.

$$\beta = \frac{|\delta_1 - \delta_2|}{\delta_1 + \delta_2} \tag{65}$$

$$k = \frac{1 - \sqrt{(1 - p).(1 - \beta^2)}}{\sqrt{\frac{1 + \beta^2}{6}}}$$
(66)

4.4 Odhad nejistoty měření teploty

Schématické zapojení termočlánku do měřícího řetězce je schematicky naznačeno na Obr. 4-7.

Obr. 4-7 – schéma měření teplot s osazeným termočlánkem

Teplota je v této práci měřena pomocí termočlánků typu K, který má složení NiCr – NiAl (chromel – alumel). Pro odhad nejistoty měření teploty termočlánkem se vychází z provedené kalibrace, nebo z tolerančních tříd, které jsou uvedeny v normě ČSN IEC 584-2. Podle Tab. 4-4 je v toleranční třídě 1 odhad nejistoty měření termočlánkem $\delta_{TC} = \pm 1,5$ °C.

Tab. 4-4 – toleranční třída termočlánku typu K

Typ termočlánku	Toleranční třída 1	Toleranční třída 2	Toleranční třída 3	
К	-40 ÷ 375 °C	40÷333 °C	-167 ÷ 40 °C	
	±1,5 °C	±1,5 °C	±2,5 °C	
	375 ÷ 1000 °C	333 ÷ 1200 °C	-200 ÷ -167 °C	
	±0,004. t	±0,0075 . t	±0,015. t	

Standartní nejistota termoelektrického snímače za předpokladu rovnoměrného rozložení se určí pomocí vztahu

$$u_{TC} = \frac{\delta_{TC}}{k} = \frac{\delta_{TC}}{\sqrt{3}}; \ \delta_{TC} = \pm 1.5 \text{ °C}$$
(67)

Tab. 4-5 – chyby měření převodníkem NI 9214 v závislosti na teplotě z technická specifikace NI

	-100 °C	0 °C	100 °C	300 °C	700 °C	900 °C	1100 °C	1400 °C
Teplota v laboratorních podmínkách 23 ± 5 °C	0,5	0,36	0,37	0,42	0,52	0,6	0,69	0,85

Obr. 4-8 – průběh chyby měření pomocí převodníku NI 9214

Průběh nejistoty převodníku NI 9214 termočlánku v závislosti na měřené teplotě je ve výše uvedeném grafu – viz Obr. 4-8. Diskrétní data z technické specifikace ve výše uvedené tabulce, byla proložena regresní rovnici, konkrétně polynomem šestého stupně.

Regresní rovnice pro termočlánek typu K vychází z technické specifikace A/D převodníku NI 9214.

$$\begin{split} &\delta_{NI9214} = 3,714222.\,10^{-18}.\,t^6\,-\,1,537571.\,10^{-14}.\,t^5\,+\,2,390912.\,10^{-11}.\,t^4\,-\,-\,1,718772.\,10^{-8}.\,t^3\,+\,5,738282.\,10^{-6}.\,t^2\,-\,5,172580.\,10^{-4}.\,t\,+\,3,689053.\,10^{-1}.\,t^{-1}.\,$$

Standardní nejistota převodníku za předpokladu rovnoměrného rozdělení je dána vztahem

$$u_{NI9214} = \frac{\delta_{NI9214}}{k} = \frac{\delta_{NI9214}}{\sqrt{3}}$$
(68)

Pro měřící řetězec termočlánku je výsledná nejistota typu B dána níže uvedeným vztahem a celkovou standartní kombinovanou nejistotu je možné určit z rovnice (63)

$$u_B = \sqrt{u_{TC}^2 + u_{NI9214}^2} \tag{69}$$

Jelikož jsou v celkové standartní kombinované nejistotě obsaženy dvě významné složky δ_{TC} a δ_{NI9214} s rovnoměrným rozdělením. Výsledné rozdělení pravděpodobnosti nebude normální, ale lichoběžníkové. Parametr stran lichoběžníku se určí pomocí vztahu (70) a následný koeficient rozšíření k pro pravděpodobnost p = 95% se vypočítá z rovnice (66). Výsledná rozšířená nejistota měření se určí podle vztahu (64).

$$\beta = \frac{|\delta_{TC} - \delta_{NI9214}|}{\delta_{TC} + \delta_{NI9214}}$$
(70)

Výsledek odhadu nejistot pro měřenou teplotu t_0 je uveden v Tab. 4-6.

Tab. 4-6 – odhad nejistoty měření teploty pomocí termočlánku

	Měřená ve	Teplota <i>t</i> ₀ [°C]			
	Střední ho	15,6			
	Nejistota ty		±0,0397		
Přístrojová nejistota z _j	Standardní nejistota zdroje u _{zi}	Pravděpodobnostní rozdělení	Nejistota typu B - <i>u_B</i>	Kombinovaná nejistota u _c	
тс	±0,8660 °C	rovnoměrné	+0 8000 °C	±0.9019.°C	
NI9214	±0,2091 °C	Tovnomerne	±0,8909 C	±0,0910 C	
Rozšířená nejistota U		Pravděpodobnostní rozdělení	Výsledek měření		
±1,	,5341 °C	lichoběžníkové	t ₀ = 15,6 ±1,6 °C		

4.4.1 Kalibrace termočlánků

Kalibrace celého měřícího řetězce proběhla v pěti referenčních bodech v rozmezí teplot 0 ÷ 45 °C. K tomuto účelu byla využita kalibrační pec Ametek Jofra RTC 700-B s přesností nastavené teploty do 0,11 °C. Pro kalibraci při teplotě 0 °C byla použita Dewarova nádoba. Po dosažení maximální kalibrační hodnoty 45 °C proběhla kalibrace termočlánků opačným směrem k hodnotě 0 °C, čímž se prověřila hystereze čidel. Kalibrace zahrnovala celý měřící řetězec, teplota tak byla odečítaná přímo z karty NI 9214. Sběr dat byl řízen z měřicího

počítače aplikací vytvořené v programovacím jazyku LabVIEW prostřednictvím ethernetové sítě.

Nejistota referenčního teploměru kalibrační pece za předpokladu rovnoměrného rozložení se rovná

$$u_{REF} = \frac{\delta_R}{k} = \frac{\delta_R}{\sqrt{3}} ; \delta_R = \pm 0,11 \text{ °C}$$
(71)

Chyba stability nastavené teploty je podle technické specifikace, pro teplotní rozsah 33 ÷ 125 °C dána hodnotou $\delta_S = \pm 0,008$ °C. Nejistota vlivem axiální homogenity teplotního pole v měřicí jímce byla eliminována pomocí referenčního DLC sensoru. Chyba DLC sensoru je podle technické specifikace, pro teplotní rozsah 33 ÷ 100 °C dána hodnotou $\delta_H = \pm 0,1$ °C. Určení nejistoty stability a vlivu homogenity teplotního pole jsou definovány v následujících vztazích

$$u_{S} = \frac{\delta_{S}}{\sqrt{3}}; \ \delta_{S} = \pm 0,008 \text{ °C}$$
(72)
$$u_{H} = \frac{\delta_{H}}{\sqrt{3}}; \ \delta_{H} = \pm 0,1 \text{ °C}$$
(73)

Výsledek kalibrace pro měřenou teplotu t_0 je uveden v Tab. 4-7.

Tab. 4-7 – odhad nejistoty měření teploty pomocí kalibrace termočlánku

		Teplota t ₀ [°C]		
		15,6		
Zdro nejisto	oj ty z _j	Standardní nejistota u _{zj}	Pravděpodobnostní rozdělení	Standartní nejistota kalibrace u _{kal}
-В	U _R	±0,0635 °C		
C 700	<i>u</i> s	±0,0046 °C	rounoměrné	±0,0860 °C
RTC	u _H	±0,0577 °C	rovnomerne	
U _{HYS}	5	±0,0000 °C		
	Roz	šířená nejistota U	Pravděpodobnostní rozdělení	Výsledek měření
	4	±0,1720 °C	normální	<i>t</i> ₀ = 15,6 ±0,2 °C

Podle předpokladu se ukázalo, že pro dosažení vyšší přesnosti měření teploty je vhodné provést kalibraci celého měřícího řetězce. V tomto případě se odhad nejistoty snížil o 87 % oproti odhadu rozborem nejistot na základě technické specifikace pro danou instrumentaci. Výrazné snížení nejistoty měření je dáno faktem, že byla provedena kalibrace daného čidla a daného A/D převodníku, které splňují výše uváděné třídy, ale ve skutečnosti jsou významně přesnější, resp. kalibrací je podchyceno případné posunutí střední hodnoty, proto je možné snížit interval nejistoty měření.

4.5 Odhad nejistoty měření tlaku

Na následujícím Obr. 4-9 je schematicky naznačeno zapojení měřicího řetězce pro měření tlaku. Pro rozbor nejistot měření bylo uvažováno toto jednoduché, ale dostatečně reprezentativní schéma.

Obr. 4-9 – schéma měřícího řetězce tlaků

Vztahy (74) a (75) reprezentují nejistoty vázané k tlakovému převodníku 9401, resp. převodníku 9402. Jedná se o statickou přesnost, jež zahrnuje vliv nelinearity, hystereze a opakovatelnosti.

$$u_{P9401} = \frac{\delta_{P01}}{2.\sqrt{3}}; \ \delta_{P01} = \pm 0.05 \ \% \ \text{F.S.}$$
 (74)

$$u_{P9402} = \frac{\delta_{P02}}{\sqrt{3}}; \ \delta_{P02} = \pm 0.5 \ \% \ \text{F.S.}$$
 (75)

Ve vlastním NetScanneru 9022 se vyskytují nejistoty měření spojené s chybou rozlišení δ_R , přesností měření δ_{P22} (statickou přesností) a teplotní závislostí δ_t A/D převodníku.

$$u_R = \frac{\delta_R}{2.\sqrt{3}}; \ \delta_R = \pm 0,003 \ \% \text{ F. S.}$$
 (76)

$$u_{P22} = \frac{\delta_{P22}}{\sqrt{3}}; \ \delta_{P22} = \pm 0.025 \ \% \text{ F. S.}$$
 (77)

Nejistota způsobená vlivem teplotní závislostí A/D převodníku se neuplatní, jelikož měření byla provedena v rozsahu teplot, pro které byl převodník kalibrován.

$$u_t = \frac{\delta_t}{\sqrt{3}} \cdot \Delta t; \ \delta_t = \pm 0.01 \ \% \ \text{F. S./°C}$$
 (78)

Výsledná nejistota typu B pro NetScanner 9022 je dána rovnicí

$$u_B = u_{Net9022} = \sqrt{u_{P9401(02)}^2 + u_R^2 + u_{P22}^2 + u_t^2}$$
(79)

Příklad nejistot měření tlaku uvedenou aparaturou je uveden v Tab. 4-8.

Tab. 4-8 – odhad nejistoty měření tlaku

Použitý tlakový převodník	Použitý typ A/D převodníku	Nejistota typu B - <i>u_B</i>	
NetScanner 9022 se sondou 9402 (10 psi)	diferenční	±100,09 Pa	
NetScanner 9022 se sondou 9401 (100 psi)	absolutní	±140,77 Pa	

4.6 Odhad nejistoty měření průtoku

Praktický vzorec pro odhad absolutní nejistotu hmotnostního průtoku clonou je uveden v normě ČSN EN ISO 5167-2, viz následující vztah

$$\Delta G = G \sqrt{\left(\frac{\Delta C}{C}\right)^2 + \left(\frac{\Delta \varepsilon}{\varepsilon}\right)^2 + \left(\frac{2\beta^4}{1-\beta^4}\right)^2 \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{2}{1-\beta^4}\right)^2 \left(\frac{\Delta d}{d}\right)^2 + \frac{1}{4} \left(\frac{\Delta \Delta p}{\Delta p}\right)^2 + \frac{1}{4} \left(\frac{\Delta \rho_1}{\rho_1}\right)^2}$$
(80)

Pro případ, $0.2 \le \beta \le 0.6$ a současně D < 71,12 mm je možné vyjádřit podle normy absolutní nejistotu průtokového součinitele

$$\Delta C = 0.5 \frac{C}{100} + 0.9(0.75 - \beta) \left(2.8 - \frac{D}{25.4}\right) \frac{C}{100}$$
(81)

Absolutní nejistota součinitele expanze je vyjádřena následujícím způsobem

$$\Delta \varepsilon = 3.5 \frac{\Delta p_{dif}}{\kappa p_0} \frac{\varepsilon}{100}$$
(82)

Na Obr. 4-10 je pro jednu měřenou variantu vynesen vliv tlakové diference na hmotnostním průtoku.

Obr. 4-10 – vliv tlakové diference na průtoku clonou

Nejistota měření průtoku clonou je na výše uvedeném obrázku naznačena pomocí chybových úseček. Relativní nejistota měření průtoku clonou se pohybuje v rozmezí 1 ÷ 2 %.

4.6.1 Odhad nejistoty poměrného průtoku štěrbinou

Jedním z nejdůležitějších a základních bezrozměrných parametrů vyhodnocených v této práci je poměrný průtok štěrbinou, který je dán poměrem hmotnostního průtoku clonou a kritickým hmotnostním průtokem pro vzduch.

$$q = \frac{G}{G_*} = \frac{G}{\frac{0.0404F_{\delta}p_0}{\sqrt{t_0 + 273.15}}}$$
(83)

Kde F_{δ} je průtočná plochy štěrbiny

$$F_{\delta} = \frac{\pi}{4} \left(D_M^2 - D_K^2 \right) \tag{84}$$

Kde D_M – průměr modelu štěrbiny

 D_k – průměr kotouče štěrbiny

Vstupní tlak do prostoru štěrbiny p_1 , se určí jako aritmetický průměr měřených statických tlaků $p_0 = (p_{0l} + p_{0p})/2$. Odhad nejistoty měření tlaku p_0 je dán vztahem

$$\Delta F_{p_0} = \sqrt{A_{p_{0l}}^2 \Delta D_{p_{0l}}^2 + A_{p_{0p}}^2 \Delta D_{p_{0p}}^2}$$
(85)

Kde citlivostní koeficienty jsou určeny takto

$$A_{p_{0l}} = \frac{dp_0}{dp_{0l}} = \frac{1}{2} \tag{86}$$

$$A_{p_{0p}} = \frac{dp_0}{dp_{0p}} = \frac{1}{2} \tag{87}$$

Odhad nejistoty měření průtočné plochy

$$\Delta F_{\delta} = \sqrt{A_{D_p}^2 \Delta D_p^2 + A_{D_k}^2 \Delta D_k^2} \tag{88}$$

Kde citlivostní koeficienty jsou určeny takto

$$A_{D_p} = \frac{dF_{\delta}}{dD_p} = 2\frac{\pi}{4}D_p \tag{89}$$

$$A_{D_k} = \frac{dF_\delta}{dD_k} = 2\frac{\pi}{4}D_k \tag{90}$$

Odhad nejistoty měření kritického průtoku štěrbinou

$$\Delta G_* = \sqrt{A_{p_0}^2 \Delta p_0^2 + A_{F_\delta}^2 \Delta F_\delta^2 + A_{t_0}^2 \Delta t_0^2}$$
(91)

Kde citlivostní koeficienty jsou určeny takto

$$A_{p_0} = \frac{dG_*}{dp_0} = \frac{0.0404F_\delta}{\sqrt{t_0 + 273.15}}$$
(92)

$$A_{F_{\delta}} = \frac{dG_*}{dF_{\delta}} = \frac{0,0404p_1}{\sqrt{t_0 + 273,15}}$$
(93)

$$A_{t_0} = \frac{dG_*}{dt_0} = -\frac{0.0404p_1F_\delta}{2(t_0 + 273.15)^{\frac{3}{2}}}$$
(94)

Výsledný odhad nejistoty měření poměrného průtoku štěrbinou

$$\Delta q = \frac{G}{G_*} \sqrt{\left(\frac{\Delta G}{G}\right)^2 + \left(\frac{\Delta G_*}{G_*}\right)^2}$$
(95)

Obr. 4-11 – ukázka odhadu nejistoty poměrného průtoku

Nejistota vyhodnocení poměrného průtoku je na výše uvedeném obrázku naznačena opět pomocí chybových úseček. Relativní nejistota se pohybuje v rozmezí 0,8 ÷ 3,1 % v závislosti na průtoku (při velmi malých průtocích roste relativní nejistota k 3,1 %).

4.7 Zpracování experimentálně získaných dat

V této kapitole je nastíněn způsob zpracování primárních dat měření tlaku p_{2l} na štěrbinové trati. V literatuře zabývající se statistickým zpracováním dat [23], [24] a [36] je úvodní proces předzpracování primárních dat nazýván průzkumová analýza dat (EDA). Na úvodní průzkumovou analýzu navazuje ověření předpokladů o datech, především jde o ověření nezávislosti, homogenity, minimálního rozsahu souboru a normality rozděleni dat.

Následující Obr. 4-12 ukazuje primární data doplněná o histogramy na časové ose i na ose hodnot. Histogram na ose hodnot je hodně blízký normálnímu rozdělení, což je jeden ze základních předpokladů pro standardní zpracování dat. Histogram na časové ose se blíží rovnoměrnému rozdělení, což napovídá tomu, že vzorkování v čase probíhalo konstantní vzorkovací frekvencí. Odchylky jsou dány především vytížením ethernetové sítě, kdy požadavky s vyšší prioritou mohly zpomalit sběr dat.

Obr. 4-12 – histogramy v čase i hodnotách, ekvidistantní vzorkování, normální rozdělení hodnot

Obr. 4-13 zobrazuje jen histogram hodnot spolu s červenou křivou normálního rozdělení. Vykreslena je také hodnota aritmetického průměru a mediánu, dále jsou čerchovanými úsečkami ukázaný intervaly odpovídající aritmetickému průměru ± směrodatná odchylka a ± dvě směrodatné odchylky. Tyto intervaly by v případě dat pocházejících z normálního rozdělení měly pokrývat 68 %, resp. 95 % hodnot.

Obr. 4-13 – histogram měřeného tlaku p₂₁ – vyznačení základních statických parametrů

Primární data podrobená analýze hledaní trendu jsou zobrazena na Obr. 4-14. Na záznamu je vykreslena i regresní přímka včetně predikčního a konfidenčního intervalu neboli intervalu spolehlivosti. Data mají rostoucí trend 1999,8 Pa za minutu. Tato skutečnost poukazuje na fakt mírné nestability přivedeného tlaku na vstupu do měřící trati.

Obr. 4-14 – graf se zobrazením trendu dat

Na následujícím Obr. 4-15 je zobrazen graf pohoří, rozptýlení a vrubový krabicový graf. Tyto grafy slouží k odhalení nesymetrie dat. Dále poukazují na odlehlé nebo vybočující hodnoty nebo lokální koncentraci dat. Vhledem k tomu, že lze data považovat za vzorek z normálního rozdělení, všechny tři níže zmíněné grafy jsou redundantní.

Obr. 4-15 – graf pohoří, diagram rozptýlení a vrubový krabicový graf

Další dvojice grafů ukazuje porovnání empirických dat s kvantily standardizovaného normálního rozdělení (Q-Q graf) – viz Obr. 4-17 a porovnaní kumulativní distribuční funkce standardizovaného rozděleni a empirických dat na Obr. 4-16.

Obr. 4-16 – odhad kumulativní distribuční funkce

Při pohledu na výše uvedený graf je dobře vidět, že kumulativní distribuční funkce teoretického normálního rozděleni a empirického rozděleni experimentálních dat se téměř v celém vykreslovaném rozmezí dobře překrývají. Proto je možné tato data považovat za vzorek pocházející z normálního rozdělení.

Obr. 4-17 – Q-Q graf – porovnání se standardizovaným normálním rozdělení

Posledním z vykreslených grafů je tzv. kvantil-kvantilový graf. Jak už samotný název napovídá, jsou proti sobě vykreslovány odpovídající si kvantily empirického a teoretického rozdělení. Mají-li data pocházet z daného rozdělení, musí modré body ležet na úsečce, která je v grafu vykreslena červenou čerchovanou čarou. Odchylky jednotlivých bodů od ideální úsečky na okrajích Q-Q grafu mohou souviset s drobnými odchylkami od normality, které je možné vidět také v histogramu, viz Obr. 4-13. Především jde o část dat v pravé části histogramu oproti normálnímu rozdělení a o mírnou nesymetrii histogramu v centrální časti dat. Přesto je možné data z pohledu normality považovat za vhodná pro další zpracovaní klasickým přístupem.

5 Vyhodnocení dat

Provozní parametry na díle jsou odlišné od parametrů, při kterých probíhají měření na experimentálních modelech. Z tohoto důvodu je nutné uvažovat univerzální bezrozměrné charakteristiky. Pomocí bezrozměrných parametrů lze při zachování geometrické podobnosti stanovit požadované údaje jak pro různé rozměry průtočného systému, tak i pro různé vstupní tlaky a teploty proudícího média. Na základě těchto závislostí lze porovnat dosažené výsledky získané z měření na štěrbinové trati s výsledky na jiných modelech odlehčených ventilů či na skutečných ventilech na díle.

5.1 Poznatky z první etapy experimentu

Na modelu obtokového systému ventilu, který je znázorněn na Obr. 4-3, se prověřily aerodynamické parametry všech tří částí, tj. sady vstupních otvorů (1), vlastní štěrbiny (2) i výstupního úseku (3).

Jak už bylo popsáno v teoretickém rozboru, tak proudění pracovní látky přes různě tvarované otvory včetně štěrbin lze s dostatečnou přesností popsat pomocí elipsy, kde jedna poloosa je určena tlakovým poměr $1 - \varepsilon_{**}$ a druhá poměrným hmotnostním průtokem q. Plocha vstupních otvorů ve vodící objímce se volí taková, aby vzniklá tlaková ztráta byla minimální. Rozhodující pokles tlaku nastává až ve vlastní štěrbině a ve výstupním úseku. Proudové poměry na této části odlehčovacího systému můžeme popsat pomocí rovnic

Pro štěrbinu:
$$q_2^2 (1 - \varepsilon_{**_2})^2 = (1 - \varepsilon_2^2) (1 - \varepsilon_{**_2}) - \varepsilon_{**_2} (1 - \varepsilon_2)^2$$
 (96)

Pro otvory
$$d_3$$
: $q_3^2 (1 - \varepsilon_{**_3})^2 = (\varepsilon_2^2 - \varepsilon_3^2) (1 - \varepsilon_{**_3}) - \varepsilon_{**_3} (\varepsilon_2 - \varepsilon_3)^2$ (97)

Kde ε_{**_2} a ε_{**_3} představují kritický tlakový poměr na štěrbině a ve výstupní sekci. Jsou menší než ideální tlakový poměr $\varepsilon_* = 0,528$ pro vzduch či $\varepsilon_* = 0,546$ pro páru.

Tlakový poměr je zde:
$$\varepsilon_2 = \frac{p_2}{p_0}$$
; $\varepsilon_3 = \frac{p_3}{p_0}$; $\varepsilon_{**2} = f\left(\frac{l}{\delta_h}\right)$; $\varepsilon_{**_3} = \text{konst.}$

Na vstupních otvorech d_1 je tlakový poměr: $\varepsilon_1 = rac{p_0}{p_{vc}}$

Poměrný hmotnostní průtok:
$$q_2 = \frac{G}{G_{*2}} = \frac{G}{0,0404 \frac{p_0}{\sqrt{T_0}} \mu_{\S2} F_2}$$
 a $q_3 = \frac{G}{0,0404 \frac{p_0}{\sqrt{T_0}} \mu_{\S3} F_3}$; $\frac{q_3}{q_2} = \frac{\mu_{\S2} F_2}{\mu_{\S3} F_3}$

Použité konstanty platí pro experimenty na vzduchu. $\mu_{\S 2}$ a $\mu_{\S 3}$ jsou součinitele průtoku pro úsek štěrbiny a výstupní sekce. Průtočná plocha štěrbiny je $F_2 = \pi D\delta$ a u výstupní sekce $F_3 = 6\frac{\pi d_3^2}{4}$.

K vyjádření vazby tlakových poměrů $\varepsilon_{\$2}$ a $\varepsilon_{\$3}$ je tedy nutné znát příslušné kritické tlakové poměry ε_* a hodnoty průtokových součinitelů $\mu_{\$3}$. Po jejich dosazení do rovnic (96) a (97) a po jejich úpravě dostaneme průtokovou charakteristiku odlehčovacího systému ve tvaru

$$\varepsilon_{2}^{2} - \varepsilon_{2} \frac{k_{1} \overline{F}^{2} - k_{2} \varepsilon_{3}}{k_{4} + \overline{F}^{2}} - \frac{k_{3} \varepsilon_{3}^{2} + k_{5} \overline{F}^{2}}{k_{4} + \overline{F}^{2}} = 0$$
(98)

Kde $k_1 \div k_5$ jsou konstanty a $\overline{F} = \frac{F_2}{F_3}$.

5.1.1 Vyhodnocení průtokových součinitelů a kritických tlakových poměrů

Byla provedena série měření tlaků v jednotlivých sekcích při změně hmotnostního průtoku odlehčovacím systémem. Průtočné plochy (1) a (3) části jsou konstantní, mění se jen průtočná plocha štěrbiny. Závislosti hmotnostních průtoků na tlakových poměrech jednotlivých úseků jsou zpracovány na Obr. 5-1. Průtoky štěrbinou *G* jsou výrazně menší než teoretické hmotnostní průtoky G_t .

Obr. 5-1 – hmotnostní průtoky částmi odlehčovacího systému

Potvrdil se předpoklad, že v části (1) vzniká malá tlaková ztráta. Je zde dostatečná rezerva na hmotnostní průtok. V případě potřeby je možné zvětšit průtočnou plochu a tlakovou ztrátu ještě zmenšit. U varianty se štěrbinou $\delta = 0,3$ mm nastává kritický hmotnostní průtok právě na štěrbině. V části (3) se ukázala určitá rezerva na průtok. Při použití štěrbiny v šířce $\delta = 0,5$ mm je již hmotnostní průtok limitován poměry na sekci (3). Na štěrbině je jen malá rezerva v průtoku. Aby se průtok zvětšil, musela se zvětšit plocha v části (3). Z těchto diagramů lze vyhodnotit kritický tlakový poměr jednotlivých částí.

Obr. 5-2 – průtokoví součinitelé odlehčovacího systému

Hodnoty průtokových součinitelů jednotlivých sekcí jsou vyneseny v grafech na Obr. 5-2. Ukazuje se, že nemají konstantní hodnotu. U první sekce se potvrzuje závislost na tvarovém uspořádání průtoku otvorem. Je zde jednoznačná souvislost s tlakovým poměrem a tím i s Machovým číslem. Závislost průtokových součinitelů štěrbiny na tlakovém poměru se značně liší od závislosti pro otvor první sekce. Je zde patrný vliv šířky štěrbiny. Uplatňuje se zde především vliv tření v mezní vrstvě štěrbiny. Výsledná hodnota průtokového součinitele je závislá především na Reynoldsově čísle, i na poměrné délce štěrbiny. Zcela odlišný průběh vykazují hodnoty průtokového součinitele sekce (3) ve srovnání se sekcí (1). Jsou zde otvory o přibližně stejném průměru jako v (1) sekci. V tomto případě se ale ukazuje jistá závislost hodnot průtokového součinitele na charakteru proudového pole. Jelikož uspořádání sekce (3) se liší od provedení výstupní části odlehčovacího systému reálného ventilu, musí se lišit i jejich hodnoty průtokových součinitelů. Ukázalo se, že nelze v tomto případě výsledky z modelu přenášet přímo na dílo. Výstupní sekci je potřeba modelovat podle reálného provedení ventilu. Pro modelové uspořádání ventilu však lze vyhodnotit na základě změřených tlaků průtokovou charakteristiku odlehčovacího systému. Průtoková charakteristika je zobrazena na Obr. 5-3.

Obr. 5-3 – průtoková charakteristika odlehčovacího systému

Pro daný poměr ploch sekcí (2) a (3) $\overline{F} = \frac{F_2}{F_3}$ se může ke každému tlakovému poměru ε_3 najít odpovídající tlakový poměr ε_2 . Přetlak na kuželku je dán rozdílem tlakových poměrů

$$\Delta p = (\varepsilon_2 - \varepsilon_3) p_0 \tag{99}$$

Při malém zdvihu kuželky ventilu a nízké hodnotě ε_3 je přetlak výraznější než při větší hodnotě ε_3 . Potom je pro zvětšení přetlaku a tím i stabilizační síly působící na kuželku nutné přejít na větší poměr ploch \overline{F} . Stabilizační síla se zvětší i úplným uzavřením přívodního kanálu. Tlakový poměr ε_2 může být teoreticky $\varepsilon_2 = 1$. Záleží jen na těsnosti obtokového systému.

Je zřejmé, že ke každé zvolené šířce štěrbiny je potřeba upravit i průtočnou plochu ve vstupním úseku ① a rovněž na výstupu v části ③. Vstupní úsek má dostatečnou rezervu pro průtok a není jej potřeba upravovat. Jiná situace je v části ③. Jelikož geometrie modelu se výrazně liší od reálného provedení ventilu, nelze výsledky z modelu přenést na dílo, nemá smysl průtočnou plochu části ③ vždy upravovat podle zvolené šířky štěrbiny. Proto se pro další experimenty plocha zvětšila tak, aby se v úseku ② vždy dosáhlo kritického hmotnostního průtoku. Průtokové poměry v úseku ③ je vhodné ověřovat na modelu pro návrhovou šířku a délku štěrbiny.

Ukazuje se, že měřený tlak p_2 nezaručuje správnou hodnotu statického tlaku na výstupu ze štěrbiny. Pokud tlakové odběry $p_{2\$l}$ a $p_{2\$p}$ byť jen nepatrně zasahují celým svým průřezem do prostoru štěrbiny, pak opět neumožňují určit skutečný statický tlak na výstupu ze štěrbiny. Je to dobře patrné z Obr. 5-4, kde je zaznamenán poměrný průtok pro štěrbinu s $\delta = 0,3$ mm o délce 10 a 60 mm. Průběh q v okolí svého maxima je plochý a je tedy obtížné přesně vyhodnotit kritický tlakový poměr ε_{**} . Z tohoto důvodu se na upraveném modelu umístily odběry tlaků $p_{2\$l}$ a $p_{2\$p}$ tak, aby se jejich osa shodovala s výstupní hranou štěrbiny. Hodnota tlakového poměru se potvrzuje pomocí regresní funkce (elipsy).

Obr. 5-4 – záznam průtoku štěrbinou δ = 0,3 mm o délce 10 a 60 mm

5.1.2 Reálné provedení ventilu – vyhodnocení stabilizační síly na kuželce odlehčeného regulačního ventilu

Výstupní část konkrétního provedení ventilu, včetně jeho odlehčovacího systému je uvedena na Obr. 5-5. Sekce (3) je v tomto případě tvořena sadou otvorů a kanálků o přibližně stejném průtočném průřezu. Jedná se o odlišně uspořádaný systém ve srovnání s modelem. Může se tedy očekávat, že průtokový součinitel μ_3 modelu se bude lišit od μ_3 ventilu. Na ventilu je rovněž jiná délka štěrbiny, která se při provozu mění.

Obr. 5-5 – provedení výstupní části testovaného ventilu

Na Obr. 5-6 je ukázána obecná průtoková charakteristika ventilu, která udává vazbu mezi poměrným průtokem q a tlakovým poměrem na ventilu p_d/p_{vc} . Jako parametr je zde poměrný zdvih kuželky h/D_h . Poměrný průtok q představuje poměr skutečného hmotnostního průtoku G ke kritickému G_* , který je uvažován pro plochu hrdla difuzoru D_h . Pro konkrétní turbínu a dané rozměry ventilu platí příslušná provozní charakteristika. Na Obr. 5-6 je pro ilustraci uvedena také provozní charakteristika experimentální turbíny.

Obr. 5-6 – průtoková charakteristika odlehčeného ventilu

Tlak na dně kuželky p_3 se liší od výstupního tlaku za difuzorem ventilu p_d . Závislost tlakového poměru $\varepsilon_3 = p_3/p_0$ na $\varepsilon_d = p_d/p_{vc}$ je pro daný ventil na základě experimentů [14] zpracována na Obr. 5-7. Obdobnou závislost potvrzují i numerické výpočty [38], [39] a [40].

Pokud hlavní proud pod velkou kuželkou přilne k povrchu difuzoru, tak jak je to vyznačeno na Obr. 2-12, je vnitřní prostor difuzoru ovlivněn výstupním tlakem. Teprve, když je vnitřní prostor difuzoru zcela zaplněn hlavním proudem může plnit svoji funkci a napomáhat k nárůstu tlaku. Pak je tlak p_3 menší než je tlak na výstupu z difuzoru p_d . Výpočtová studie [15] ukazuje, že při nulovém zdvihu velké kuželky a výtoku média jen přes obtokový ventil a prakticky nulovém tlakovém poměru je prostor difuzoru v celém průřezu plně vyplněn. Difuzor se chová jako rozšiřující se dýza a tlak směrem od dna kuželky postupně klesá. Vyhodnocení tlaku na povrchu dna kuželky pro tento případ není zpracováno.

Obr. 5-7 – závislost tlakového poměru na dně kuželky a na tlakovém poměru na ventilu

Uskutečnilo se proměření příslušných tlaků v částech ventilu pro uvažovanou provozní charakteristiku turbíny. Porovnání odlehčovací charakteristiky ventilu a modelu pro daný poměr \overline{F} je uvedeno na Obr. 5-8.

Ukazuje se, že průběh tlakových poměrů na ventilu odpovídá variantě modelu s extrémně úzkou štěrbinou o $\delta = 0,15$ mm. Na reálném ventilu je však použitá štěrbina o $\delta = 0,3$ mm. Jelikož na ventilu je menší plocha štěrbiny než na modelu, je příslušný posun způsoben změnou průtokového součinitele $\mu_{\$2}$ a $\mu_{\$3}$ na ventilu oproti hodnotám pro model. Proudění na ventilu odpovídá poměrům na modelu při jiné délce štěrbiny. Těmto změnám vyhovuje stav na modelu s menší štěrbinou.

$$F_{2V} < F_{2M}$$
; když je $\left(\frac{F_2}{F_3}\right)_M = \left(\frac{F_2}{F_3}\right)_V$ (100)

Zmenšení ε_2 pro ventil oproti ε_2 modelu vede ke zmenšení rozdílů tlaků působících na horní a dolní plochu kuželky. Dochází ke snížení stabilizační síly působící na stejné plochy ventilu. S rostoucím zdvihem kuželky se stabilizační síla postupně zmenšuje. Na testovacím ventilu se pro zadanou provozní charakteristiku zaznamenala kromě tlaků také s využitím tenzometrů umístěných na dříku kuželky stabilizační síla působící na kuželku ventilu. Veškeré zaznamenané tlaky a síly jsou součástí zprávy [14]. Základní rozměry jsou uvedeny na Obr. 2-1. Pro známé plochy a tlakové poměry lze vyhodnotit i dílčí síly působící na příslušné plochy a vyhodnotit také jejich dopad na výslednou stabilizační sílu. Uvažují se tři přítlačné síly od tlakových rozdílů. Síla Q_1 se týká úseku ovlivněného odlehčovacím systémem o ploše na kuželce F_{k1} .

$$Q_1 = (\varepsilon_2 - \varepsilon_3) p_1 F_{k1} \tag{101}$$

Síla Q_2 je vztažena k ploše na kuželce F_{k2} , kde na jedné straně působí vstupní tlak a na druhé působí tlak p_3

$$Q_2 = (1 - \varepsilon_3) p_1 F_{k2} \tag{102}$$

Síla Q_3 se týká plochy F_{k3} , kde na spodní straně dochází k expanzi pracovní látky a kde se mění statický tlak na jejím povrchu

$$Q_3 = Q_{3H} - Q_{3D} = (1 - k_d) p_1 F_{k3}$$
(103)

Pro změřenou celkovou stabilizační sílu $Q = Q_1 + Q_2 + Q_3$ se může vyhodnotit i síla působící na spodní část kuželky Q_{3D} a tím i korekční čitatel k_d . Stabilizační síla působící na kuželku ventilu je vynesena na Obr. 5-9.

Obr. 5-9 – stabilizační síla na kuželce ventilu

Obr. 5-10 – dílčí síly působící na kuželku ventilu

Při provozu ventilu s aktivním odlehčením je síla Q_1 minimální. Tlaky z obou stran kuželky na ploše F_{k1} jsou velmi blízké. Stabilizační síla je dána především silovým působením na plochy ovlivňované vstupním tlakem, tj. plochy F_{k2} a F_{k3} . Nejvýrazněji se uplatňuje síla Q_3 . Při tlakovém poměru nižším než je kritický je tato síla konstantní a korekční činitel k_d , který je uveden na Obr. 5-11, má hodnotu $k_d = 0,75$. Je-li tlakový poměr větší než kritický, roste tlak na spodní části povrchu F_{k3} a korekční činitel k_d také roste. Vede to ke snížení přítlačné síly Q_3 . Pokud se pro konkrétní turbínu zvolí ventil, kde q_{max} bude mít menší hodnotu, než jaká je na Obr. 5-6 ($q_{max} = 0,34$), vznikne na ventilu menší tlaková ztráta (p_d/p_{vc} se zvětší) a přítlačná síla Q_3 se zmenší (k_d se zvětší). Pokud by se použila na ventilu štěrbina s větší šířkou ($\delta > 0,3$ mm), zvětšila by se přítlačná síla na plochu F_{k1} . Pokud by bylo potřeba zachovat celkovou přítlačnou sílu, bylo by nutné zmenšit plochu F_{k3} , aby se snížila síla Q_3 .

Obr. 5-11 – závislost korekčního činitele na tlakovém poměru

5.2 Numerické výpočty DGFEM

Dalším z cílů této práce bylo validovat výsledky použitého výpočtového softwaru. Pro modelování proudění vzduchu štěrbinou je zvolen systém Navierových – Stokesových rovnic, který popisuje proudění stlačitelné vazké tekutiny. Jako numerická metoda je pro svoji přesnost a malou umělou vazkost použita moderní nespojitá Galerkinova metoda. Výpočtová studie vznikla ve spolupráci s FAV při ZČU [22]. Výpočtová síť – viz Obr. 5-12, odpovídá experimentálnímu modelu štěrbiny.

Obr. 5-12 – výpočtová síť modelu obtokového systému

Původní numerické výpočty s turbulentním modelem proudění se uskutečnily sice pro stejnou šířku štěrbiny, ale pro jinou délku a rozdílné pracovní medium – pro přehřátou páru (kapitola 2.4).

Bylo tedy nutné uskutečnit novou sadu výpočtu přizpůsobenou provedenému experimentu. S ohledem na určitou nejistotu kvality experimentu v rámci prvního testování se štěrbinou o šířce $\delta = 0,3$ mm uskutečnil obdobný experiment se štěrbinou o šířce $\delta = 1$ mm. Srovnání vypočteného a experimentálně stanoveného hmotnostního průtoku se nachází na Obr. 5-13 a Obr. 5-14. U varianty se štěrbinou o šířce $\delta = 1$ mm dává výpočtový model uspokojivé výsledky.

0,5

0.45 7.56 hai $p_1 = 7,56 \text{ b}$ $T_1 = 297 \text{ K}$ 0,4 0,35 $\delta = 1 \text{ mm}$ = 50 mm [**s/g**) 0,3 ص 0,25 0,2 DGFEM 0,15 0,1 0.95 0,79 0,81 0.83 0.85 0,87 0,89 0,91 0.93 ε₂[1]

Obr. 5-13 – porovnání vypočteného hmotnostního průtoku s experimentálně stanovenými daty pro δ = 0,3 mm a l = 50 mm

Uskutečnila se řada výpočtu průtoku štěrbinou s $\delta = 0,3$ mm a délkou $l = 1 \div 80$ mm. Při vyhodnocení bezrozměrného parametru $q = G/G_*$ se uvažovala jako pracovní médium přehřátá pára a ve vybraných případech vzduch. Rovněž byly využity i poznatky z experimentu. Výsledné hmotnostní průtoky jsou zpracovány na Obr. 5-15. Je patrné, že s rostoucí délkou štěrbiny poměrný hmotnostní průtok klesá.

Jak ukazuje jeho průběh pro konstantní tlakový poměr $\varepsilon_2 = 0,4$ a $\varepsilon_2 = 0,8$ na Obr. 5-16, nejedná se o lineární závislost q na poměrné délce l/δ . Podobné poznatky jako pro štěrbinu o šířce $\delta = 0,3$ mm platí i pro štěrbinu s $\delta = 0,5$ mm. Výsledky z výpočtů a experimentů jsou zpracovány na Obr. 5-17 a Obr. 5-18.

V praktických aplikacích na ventilech se mohou vyskytovat maximální poměrné délky štěrbin s $l/\delta \approx 50 - 80$. Jedná se tedy o oblast mimo průběh $q = f(\varepsilon_2)$ s výraznější nejistotou závislostí.

Numerická simulace umožňuje vyhodnotit průběhy aerodynamických parametrů ve všech částech testovaného modelu. Platí to zejména pro rozložení tlaků, rychlosti, Machova čísla a Reynoldsova čísla. Ukázka rozložení uvedených parametrů ve štěrbině o šířce $\delta = 0,15$ mm a $\delta = 0,3$ mm pro tři tlakové poměry podle podkladu z [22] je zobrazena Obr. 5-20 a Obr. 5-21.

Příslušné tlakové poměry a hmotnostní průtoky jsou uvedeny v Tab. 5-1.

δ	$\epsilon_3 = p_3/p_v$	G	$\epsilon_2 = p_2/p_0$	q	p _{vstup}	T _{vstup}	η	ρ
[mm]	[1]	[kg.s ⁻¹]	[1]	[1]	[Pa]	[°K]	[kg.m ⁻¹ .s ⁻¹]	[kg.m ⁻³]
	0,35	0,062	0,43	0,611				2,89
0,15	0,55	0,058	0,6	0,572				
	0,85	0,02	0,92	0,197	607050	202 12	1 070 10-5	
	0,35	0,135	0,52	0,665	007950	295,15	1,879.10	
0,3	0,55	0,122	0,67	0,601				
	0,85	0,065	0,92	0,32				

Tab. 5-1 – okrajové podmínky pro numerické výpočty

V tabulce je uveden i tlakový poměr ε_2 , který se týká pouze samotné štěrbiny a dále vstupní okrajové podmínky pro vzduch. Hodnoty jednotlivých veličin jsou vyneseny podél střednice mezery, viz Obr. 5-19.

Obr. 5-19 – vyznačení střednice štěrbiny (červeně)

Obr. 5-20 – průběh tlaků, rychlosti, Machova a Reynoldsova čísla podél střednice mezery pro provedení se štěrbinou s $\delta = 0,15 \text{ mm a délkou l} = 80 \text{ mm [22]}$

Obr. 5-21 – průběh tlaků, rychlosti, Machova a Reynoldsova čísla podél střednice mezery pro provedení se štěrbinou s $\delta = 0,3 \text{ mm a délkou l} = 80 \text{ mm [22]}$

Bezprostředně na vstupu do štěrbiny dochází k náhlému poklesu tlaku a tím i ke skokovému nárůstu rychlosti. U varianty $\delta = 0,15$ mm se při $\varepsilon_3 = 0,35$ dosáhne na výstupu aerodynamického ucpání štěrbiny. Z průběhu rozložení tlaku při $\varepsilon_3 = 0,85$ lze vypozorovat změny způsobené zúžením průtočného průřezu po odtržení proudu od stěny kanálu. Tlak v první fázi klesne a po zaplnění celého průtočného průřezu se opět zvedne, a to při současném poklesu rychlosti. Při nižších tlakových poměrech převládá vliv tření, který způsobuje plynulý pokles tlaku. I při těchto stavech lze rozpoznat narušení proudu ve vstupním úseku štěrbiny. U štěrbiny s $\delta = 0,15$ mm dochází k zaplnění celého průtočného průtočného průřezu až ve vzdálenosti $\Delta l \approx 50$ mm. Se změnou tlakového poměru se tato vzdálenost nemění. S růstem šířky štěrbiny se však zkracuje. Na základě provedených výpočtů je tato závislost ukázána na Obr. 5-22.

Obr. 5-22 – závislost Δl na δ
Toto narušení proudu je spojeno s určitou tlakovou ztrátou. Její vliv se projeví ve větší míře u kratších délek štěrbiny. To je případ běžných aplikací štěrbin na ventilech. Nelze tedy vyloučit i určitý dopad na vyhodnocení vzniklé tlakové ztráty u experimentů s kratší délkou štěrbiny.

Rozložení rychlosti na vstupu a na výstupu ze štěrbiny je zobrazeno na Obr. 5-23 a Obr. 5-24. Jedná se o výpočet s tlakovými poměry $\varepsilon_2 = 0,4$ a $\varepsilon_2 = 0,8$. V tomto případě byla upravena výstupní část výpočetní sítě. Je zde uvažován přímý výstup v osovém směru, tak jak je to provedeno u ventilu.

Obr. 5-23 – rozložení rychlosti ve štěrbině s δ = 0,3 mm při p_2/p_{0c} = 0,4 a l = 50 mm

Obr. 5-24 – rozložení rychlosti ve štěrbině s δ = 0,3 mm při p_2/p_{0c} = 0,8 a l = 50 mm

Modelují se dva tlakové poměry na štěrbině s $\varepsilon_2 = 0.4$ a $\varepsilon_2 = 0.8$. Charakteristické je odtržení proudu na vstupu do štěrbiny a zmenšení průtočné plochy. Dochází k ovlivnění průběhu rychlosti i rozložení tlaku napříč štěrbinou. Na vstupu je u této varianty průtočná plocha zaplněná. Proud se přimyká k vnější omezující stěně. Nelze garantovat, že v místě tlakových odběrů je zachycena reprezentativní hodnota statického tlaku. Při nižším tlakovém poměru se oblast s maximální rychlostí posouvá do prostoru za výstupní hranou ze štěrbiny. U většího tlakového poměru se největší rychlosti vyskytují již ve vnitřním prostoru štěrbiny.

5.3 Vyhodnocení ztrátového součinitele a tlakové ztráty na štěrbině

Předpokládaný model expanze v h-s diagramu pro reálný plyn se nachází na Obr. 5-25. Na vstupu do štěrbiny u reálného plynu je nutné rozlišit stavy s limitní délkou štěrbiny l = 0 (břit) a s konkrétní délkou l.

Obr. 5-25 – změny aerodynamických parametrů na modelu štěrbiny

Vyhodnocení poměrného průtoku pro vybrané měřené varianty se nachází na Obr. 5-26. Poměrný hmotnostní průtok je vyhodnocen pomocí změřeného hmotnostního průtoku G a kritického hmotnostního průtoku G*, který je definován pro vstupní celkový tlak a teplotu jako

Obr. 5-26 – poměrný hmotnostní průtok vyhodnocený pro G*

Pomocí vztahu (104) a náhrady $q = f(\varepsilon_2)$ pomocí elipsy se vyhodnotí maximální poměrný hmotnostní průtok q_{1max} pro příslušnou variantu štěrbiny a pomocí vztahu (105) se určí kritický tlakový poměr ε_{**} pro příslušnou šířku a délku štěrbiny.

$$\varepsilon_{**} = \varepsilon_* q_{1max} \tag{105}$$

Výsledný poměrný hmotnostní průtok pro veškeré měřené varianty šířek a délek štěrbin je uveden na Obr. 5-27. Jsou zde vyznačeny i kritické parametry q_{1max} a ε_{**} pro jednotlivé varianty štěrbin.

Obr. 5-27 – poměrný hmotnostní průtok vyhodnocený pro q_{Imax}

Závislost druhého tlakového poměru ε_{**} na hydraulické štíhlosti l/d_h je uvedena na Obr. 5-28.

Obr. 5-28 – tlakový poměr v závislosti na hydraulické štíhlosti pro $\lambda_2 = 1$

Z dané závislosti lze vyhodnotit i tlakový poměr ε_{**} pro nulovou délku štěrbiny. Jelikož pro l = 0 je $\varepsilon_{**} < 0.528$, je zřejmé, že i na vstupu do štěrbiny existuje určitá vstupní tlaková ztráta. Může zde být souvislost také se zúžením proudu při skokové změně vstupního průřezu Obr. 5-39. Nárůst tlakové ztráty s rostoucí délkou štěrbiny způsobuje pokles hmotnostního průtoku štěrbinou. Proložení experimentálně získaných dat regresní křivkou umožňuje interpolovat závislost $q_{lmax} = f(l/d_h)$ při konkrétní ε_{**} , popř. je možné provést extrapolaci, ale jen v rozumné vzdálenosti za posledním, popř. před prvním měřeným bodem. Extrapolace závislosti $q_{lmax} = f(l/d_h)$ při ε_{**} je uvedena na Obr. 5-29.

Obr. 5-29 – maximální poměrný hmotnostní průtok pro $\lambda_2 = 1$

Poměry na vstupu do štěrbiny pro varianty kritického průtoku (předpokládající rychlostní poměr na výstupu ze štěrbiny $\lambda_2 = 1$) se určí podle následujících vztahů. Maximální hmotnostní průtok G_{lmax} je definován vztahem (106), kde p_{0c} , T_{0c} a $G_{lmax} = G$ jsou známy z měření a lze tedy vyhodnotit hodnotu statického tlaku p_0 .

$$G_{lmax} = F_{\delta} \sqrt{\frac{2\kappa}{\kappa - 1} p_{0c} \rho_{0c} \left[\left(\frac{p_0}{p_{0c}}\right)^{\frac{2}{\kappa}} - \left(\frac{p_0}{p_{0c}}\right)^{\frac{\kappa + 1}{\kappa}} \right]} \Longrightarrow p_0$$
(106)

Následně se určí rychlostní poměr λ_1 na vstupu do štěrbiny, kde rychlost c_0 reprezentuje vstupní rychlost do štěrbiny a c_* kritickou rychlost na výstupu ze štěrbiny.

$$\lambda_1 = \frac{c_0}{c_*} \tag{107}$$

(4.0.0)

Kde

$$c_{0} = \sqrt{\frac{2\kappa}{\kappa - 1} \frac{p_{0c}}{\rho_{0c}}} \left[1 - \left(\frac{p_{0}}{p_{0c}}\right)^{\frac{\kappa - 1}{\kappa}} \right]$$
(108)
$$c_{*} = \sqrt{\frac{2\kappa}{\kappa + 1} \frac{p_{0c}}{\rho_{0c}}}$$
(109)

Rychlostní poměry na vstupu λ_1 do štěrbiny v závislosti na parametru l/d_h jsou zobrazeny na Obr. 5-30. Extrapolováním pomocí regresní křivky do $l/d_h = 0$ lze zjistit hodnotu λ_1 pro limitní případ, kdy l = 0. Potvrzuje se, že $\lambda_1 < 1$. Kritická rychlost c_* se vyskytuje ve zúžené ploše až břitem. Odtržení proudu je spojeno s mírnou tlakovou ztrátou.

Obr. 5-30 – rychlostní poměry na vstupu do štěrbiny při λ_2 = 1

Hodnota celkového tlaku $p_{2šc}$ na výstupu ze štěrbiny je dopočítávána prostřednictvím vztahu (110), kde $T_{2c} = T_{0c}$.

$$G_{lmax} = 0,0404F_{\delta} \frac{p_{2\&c}}{\sqrt{T_{2c}}} \Longrightarrow p_{2\&c}$$
(110)

Potom statický tlak na výstupu $p_{2š} = p_{2sc} \varepsilon_*$, který se porovnává s měřeným tlakem p_{2s} . Tlaková ztráta na štěrbině Δp_z se určí jako

$$\Delta p_z = p_{0c} - p_{2\check{s}c} \tag{111}$$

Průběh tlakové ztráty Δp_z vztažené k měřenému tlaku p_{0c} v závislosti na poměrné délce štěrbiny při kritickém rychlostním poměru a výstupu ze štěrbiny ($\lambda_2 = 1$) je zobrazen na Obr. 5-31.

Obr. 5-31 – tlaková ztráta při kritickém průtoku štěrbinou

K vyhodnocení ztrátového součinitele ζ lze přistoupit buďto ze znalosti tlakové ztráty dle vztahu (112) nebo ze znalosti rychlostního poměru na vstupu do štěrbiny λ_1 a následného vyhodnocení χ_{max} dle (114).

$$\Delta p_z = \zeta \frac{l}{d_h} \frac{\rho_{st} c_{st}^2}{2} \Longrightarrow \zeta \tag{112}$$

Kde $\rho_{st} = \frac{\rho_1 + \rho_2}{2}$ je střední hustota a $c_{st} = \frac{c_0 + c_2}{2}$ je střední rychlost ve štěrbině. Jelikož proudění ve štěrbinách regulačního ventilů převládá pro $\lambda_2 = 1$ s $c_2 = c_*$ je $c_0 = \lambda_1 c_*$. Pak

$$c_{st} = \frac{c_*(\lambda_1 + 1)}{2}$$
(113)

$$\chi_{max} = \frac{1}{\lambda_1^2} - 1 - \ln \frac{1}{\lambda_1^2} = \frac{2}{k+1} \zeta \frac{l}{d_h} \Longrightarrow \zeta$$
(114)

Následující graf na Obr. 5-32 zobrazuje na pravé ose závislost ztrátového součinitele (114) na parametru χ_{max} a současně na levé ose závislost rychlostního poměru na vstupu do štěrbiny taktéž na parametru χ_{max} .

Obr. 5-32 – závislost bezrozměrné vstupní rychlosti $λ_1$ a ztrátového součinitele ζ na poměrné délce štěrbiny

Vztah (115) je odvozen pro laminární proudění vazké nestlačitelné tekutiny a vztah (116) pro turbulentní proudění [6], kde pro případ mezikruhové štěrbiny je koeficient K= 1/4. Takto vypočtená tlaková ztráta může dát v určitých případech hrubý odhad tlakové ztráty při proudění reálného plynu kritickou rychlostí na výstupu ze štěrbiny.

$$\zeta = \frac{24}{\frac{c_*\delta}{\nu}} = \frac{24}{Re_{\delta}}$$
(115)
$$\zeta = K(0,0032 + 0,221Re_{\delta}^{-237})$$
(116)

Z porovnání ztrátových součinitelů s dostupnými experimentálně vyhodnocenými podklady pro proudění tekutiny v různě tvarovaném potrubí vychází zásadní nesoulad. Platí to zejména pro proudění v mezikruhové mezeře podle [21] – viz níže uvedený graf. Bohužel

nejsou dostupné detailnější podklady k provedeným experimentům. Z porovnaných podkladů plyne, že ztrátový součinitel proudění v mezikruhovém kanálu by měl být menší, než ztrátový součinitel proudění potrubím kruhového průřezu. Je nutné poznamenat, že třecí plocha kanálu s mezikruhovým průřezem má téměř dvojnásobnou třecí plochu oproti prostému potrubí kruhového průřezu. Ukazuje se, že použití vztahu (115) pro predikci tlakové ztráty není vhodné – viz Obr. 5-33 (fialová křivka). Nejedná se totiž o laminární proudění.

Obr. 5-33 – ztrátoví součinitelé různě tvarovaných tvarů

Ukázalo se, že doporučený vztah (117) k vyhodnocení ztrát pomocí hydraulického průměru ani pomocí štěrbiny δ nevyhovuje.

$$d_{h} = \frac{4F}{O} = \frac{4\pi (D_{M} + D_{K})\delta}{2\pi (D_{M} + D_{K})} = 2\delta$$
(117)

Takto stanovený hydraulický průměr vyhovuje spíše pro mírně tvarované trubky (o eliptickém či čtvercovém průtočném průřezu). Pro variantu mezikruží je vhodnější pro určení hydraulického průměru vyjít přímo z definice rovnováhy třecích sil působících na stěny trubice

$$d_h = \sqrt{2(D_M + D_K)\delta} \tag{118}$$

Rozdíly v určení d_h jsou v tomto případě značné. Pro variantu experimentu s $D=150~{\rm mm}$ a $\delta=0,3~{\rm mm}$ dostaneme

$$d_h = 0,6 \text{ mm}$$
 podle (117) a
 $d_h = 13,41 \text{ mm}$ podle (118)

Volba d_h má přímý dopad na vyhodnocení ztrátového součinitele a samozřejmě i na definici Reynoldsova čísla.

$$Re_{dh} = \frac{c_{st}d_h}{\nu} \tag{119}$$

Ztrátový součinitel ζ je funkcí Reynoldsova čísla. Uvažují se stavy na výstupu ze štěrbiny a rovněž střední hodnoty pro celou délku štěrbiny. Jejich závislosti podle (112) a (114) jsou vyneseny na Obr. 5-34.

Obr. 5-34 – závislost ztrátového součinitele na Reynoldsově čísle

Je zřejmé, že proudění ve štěrbinách u odlehčených regulačních ventilů bude silně turbulentní. Při startu turbíny a příslušných tlakových poměrech bude na výstupu ze štěrbiny dosaženo zpravidla kritické rychlosti. Na tlakové ztrátě se nepochybně podepíše i vliv stlačitelnosti proudícího média. Pokles tlaku na štěrbině se liší od podkladů daných vztahy (30) a (34). Na základě experimentů lze hodnotu ztrátového součinitele pro turbulentní proudění určit – viz Obr. 5-33 (zelená a oranžová čára) a podle vztahu (120), kde hodnota koeficientu K, pro střední parametry na štěrbině má hodnotu K = 33,5

$$\zeta = K (0,0032 + 0,221 R e_{\delta}^{-237})$$
(120)

K vyhodnocení přesnější závislosti na Re čísle by bylo zapotřebí uskutečnit experimenty s rozsahem změn Re čísla o jeden až dva řády.

Kritický hmotnostní průtok štěrbinou určité šířky závisí na vstupních parametrech media a na tlakovém poměru přes štěrbinu u konkrétní délky. Poměr G_{lmax}/G_* v závislosti na λ_1 je vynesena na Obr. 5-35.

Obr. 5-35 – vliv λ_1 na poměr G_{lmax}/G_*

 G_{lmax}/G_* může být vyjádřeno také jako funkce štíhlostí l/d_h . Jelikož platí rovnice (105) a (106), lze k vyhodnocení G_{lmax} dopočítat také velikost průtočné plochy a tím i šířku štěrbiny δ . K výpočtu hmotnostního průtoku štěrbinou lze použít vztah

$$G = G_* q_i \mu_l q_{lmax} \frac{G_{lmax}}{G_*} \tag{121}$$

Kde

$$q_{i} = \sqrt{1 - \left(\frac{\varepsilon - \varepsilon_{*}}{1 - \varepsilon_{*}}\right)^{2}}; \text{ pro } \varepsilon < \varepsilon_{*} \text{ je } q_{i} = 1; \ \varepsilon_{*} = 0,528 \text{ pro vzduch}$$
(122)

$$\mu_{l} = \frac{q_{l}}{\sqrt{1 - \left(\frac{\varepsilon - \varepsilon_{**}}{1 - \varepsilon_{**}}\right)^{2}}}; \text{ pro } \varepsilon < \varepsilon_{**} \text{ je } \mu_{l} = 1$$
(123)

Pro zadané ε při ε_{**} pro příslušnou délku štěrbinu se pomocí q_{lmax} a G_{lmax} vyhodnotí hmotnostní průtok štěrbinou. Na Obr. 5-36 je vynesen poměrný hmotnostní průtok s vyloučením vlivu q_{lmax} . Závislost průtokových součinitelů μ_l pro vybrané šířky a délky, resp. štíhlosti štěrbiny je zobrazena na Obr. 5-37.

Obr. 5-36 – poměrný hmotnostní průtok štěrbinou bez vlivu q_{Imax}

Obr. 5-37 – průtokový součinitel pro štěrbinu

Pomocí regresních funkcí pro q_{lmax} , ε_{**l} a G_{lmax}/G_* se mohou určit průtoky pro libovolné provozní stavy a délky štěrbiny s příslušným d_h . Na ventilech může být tlak v komoře za výstupem ze štěrbiny při určitých provozech menší než je tlak kritický. Vliv tohoto stavu na průtoky štěrbinou je zobrazen na následujícím obrázku, viz Obr. 5-38. Při nižším tlaku než je kritický, dochází k snížení hmotnostního průtoku štěrbinou. Ukazuje se, že existuje další kritický tlakový poměr ε_{***} . Ten je s největší pravděpodobností způsoben posunem hrdla do vnitřního prostoru štěrbiny, jak je to vyznačeno na Obr. 5-39. Proudění uvnitř štěrbiny má charakter proudění v rozšířené dýze. Tento jev již byl dříve pozorován a popsán například v [25].

Obr. 5-38 – vliv protitlaku na průtok štěrbinou

Obr. 5-39 – posun hrdla ve štěrbině [25]

5.4 Vyhodnocení tlaku na dno a parní stabilizační síly působící na kuželku ventilu

Volbou rozměrů regulačního ventilu se rozhoduje o provozní charakteristice turbíny, tedy závislosti hmotnostního průtoku na tlakovém poměru a zdvihu kuželky $q \cong f(\varepsilon, \overline{h})$. Čím menší jsou rozměry ventilu, tím větší je q_{max} při $(h/D)_{max}$ a zároveň roste tlaková ztráta. Pro optimální provoz se doporučuje navrhnout regulační ventil turbíny tak, aby $q_{max} = 0,3$. Pro každé provedení ventilu existuje jiná obecná průtoková a silová charakteristika. Pro provozní charakteristiku turbíny se nastavuje odpovídající vazba tlakového poměru přes celý ventil p_d/p_{vc} a poměrný zdvih $\overline{h} = h/D_h$. Tomu odpovídá i rozložení tlaku na kuželce ventilu a tlaků v prostoru difuzoru. Pro dimenzování servopohonu je důležité znát zejména tlak působící na dno kuželky. Pro některá typová provedení ventilu se podařilo tento tlak v omezeném rozsahu tlakových poměrů a zdvihů kuželky experimentálně ověřit. U jiných provedení se vychází z numerických simulací pro zadanou provozní charakteristiku. Z práce [44] je vyhodnocena závislost tlaku na dno a tlaku v hrdle difuzoru viz Obr. 5-40 a Obr. 5-41. Jedná se o ventil s úhlem sedla 60°.

Detailní porovnání tlaků v hrdle difuzoru a na výstupu z ventilu je zpracováno pro různé zdvihy kuželky Obr. 5-40. S růstem zdvihu kuželky dochází k výraznějšímu poklesu tlaku v hrdle difuzoru p_h . Pokles tlaku na povrchu hrdla difuzoru se zastaví, až když dojde k aerodynamickému ucpání. Při úplném otevření ventilu a postupném snižování tlaku za ventilem dostává proudění v difuzoru charakter proudění v Lavalově dýze při nenávrhových parametrech. V určitém rozsahu zdvihů kuželky u typové provozní charakteristiky se ve ventilu vyskytuje nadzvukové proudění. To se může projevovat až do zdvihu $\overline{h} = 0,07$ při tlakovém poměru přes ventil v rozsahu $p_d/p_{vc} \approx 0 \div 0,6$.

Obr. 5-40 – průběh tlakového poměru v hrdle difuzoru u ventilu bez síta

Tlak na dno p_3 může být výrazně větší než je tlak v hrdle difuzoru p_h . Čím větší je zdvih kuželky, tím výraznější jsou rozdíly obou tlaků. Závisí především na tlakovém poměru p_d/p_{vc} . S poklesem tlakového poměru p_d/p_{vc} rozdíl tlaků $\Delta p = p_3 - p_h$ roste. Je to dáno rostoucím

rozdílem tlaků mezi sedlem ventilu a hrdlem difuzoru. Tlak na dně kuželky je závislý především na tlaku v sedle ventilu.

Obr. 5-41 – tlak na dno kuželky ventilu bez síta

Pro ventil s úhlem sedla 90° se experimentální data pro tlak na dně kuželky dosud nepodařilo získat. Uskutečnilo se několik výpočtových studii [38], [39] a [40]. Na Obr. 5-42 je uveden poměr p_2/p_{vc} a p_3/p_{vc} pro zadanou provozní charakteristiku $q_{max} = 0,6$ podle [39].

Obr. 5-42 – průběh tlaků působících na kuželku odlehčeného regulačního ventilu ve štěrbině δ = 0,3 mm

Existují zde provozní stavy, kdy je tlak p_h větší než tlak p_3 . Výpočet pro provozní charakteristiku $q_{max} \approx 0.3$ byl proveden v [40]. Tato závislost tlaku na dno kuželky je uvedena na Obr. 5-43. Údaje podle numerické studie [38] jsou zakresleny na Obr. 5-44. Vzniklé odchylky v průběhu závislosti tlaku na dno kuželky jsou způsobeny rozdíly v zadávání provozní charakteristiky, která v době provádění výpočtů ještě nebyla v plném rozsahu experimentálně prověřena.

dně kuželky na poměrném výstupním tlaku podle [40]

Pro predikci stabilizační síly působící na kuželku ventilu jsou užitečné údaje získané z experimentů s typovým provedením ventilu bez síta s úhlem sedla 90°. Pomocí tenzometrů byla vyhodnocena síla působící na kuželku. Při experimentech byl vstupní tlak roven barometrickému tlaku. Průběh měřených sil pro různé tlakové poměry a zdvihy kuželky se nachází na Obr. 5-45 [41]. Stabilizační síla v závislosti na zdvihu kuželky *h* roste až do h = 14 mm ($\overline{h} = 0,14$). Dalším zvětšováním zdvihu se maximální stabilizační síla zmenšuje. Uvažují se zde absolutní hodnoty síly. Stabilizační síla zpracována podle standardní metodiky je zpracována pro páru a tlak 1,429.10⁶ Pa rovněž v absolutních hodnotách.

Obr. 5-45 – měřená stabilizační síla pomocí tenzometrů pro parametry vzduchu v závislosti na tlakovém poměru [41]

Je proveden odhad stabilizační síly působící na kuželku podle stávající metodiky. Porovnávání predikované a měřené síly se nachází na Obr. 5-46. Pro přepočet na parametry páry se stabilizační síla vypočítá pomocí vztahu (124), kde 1,429.10⁶ Pa je uvažovaný vstupní tlak páry v návrhovém výpočtu.

$$Q_{p\acute{a}ra} = Q \, \frac{1,429.\,10^6}{p_{\nu c}} \tag{124}$$

Obr. 5-46 – parní stabilizační síla v závislosti na poměrném zdvihu kuželky

Je zřejmé, že původní podklady pro odhad stabilizační síly nevyhovují. Stabilizační síla vyhodnocena pomocí experimentů na modelu ventilu je výrazně větší než její očekávaná hodnota. Nicméně predikovaná maximální síla pro $h/D_h = 0$ se od experimentu liší jen málo. Maximální síla potřebná k odtržení kuželky od sedla nebyla překročena. Stabilizační síla vyhodnocená pro bezrozměrné parametry podle vztahu (125) je uvedena na Obr. 5-47.

Obr. 5-47 – stabilizační síla na kuželce typového provedení odlehčeného regulačního ventilu

V daném případě se pomocí výpočtu a experimentů věnovala pozornost jen jedné provozní charakteristice turbíny, a tedy i odpovídajícímu rozložení tlaků na dně kuželky. Poměrně kvalitně je zpracovaná ta část provozu, která odpovídá tlakovým poměrem přes celý ventil s $p_d/p_{vc} > 0,5$. Pro nižší tlakové poměry je nutné počítat s větší mírou nejistoty ve vyhodnocení stabilizační síly.

Provozní charakteristika turbín se může lišit od testované varianty. Znamená to, že se bude lišit i průběh tlaků nad i pod velkou kuželkou. Pomocí provedených experimentů na modelu ventilu lze odhadnout vliv provozní charakteristiky na změny tlaků a tím i na změny v průběhu stabilizační síly. Na Obr. 5-48 je uveden průběh poměrného zdvihu $\bar{h} = h/D_h$ na tlakovém poměru přes celý ventil. Závislost tlakového poměru $\varepsilon_3 = p_3/p_{vc}$ na $\varepsilon_d = p_d/p_{vc}$ je pro daný ventil na základě experimentů [41] pro variantu provozu s $q_{max} = 0.4$; 0.3 a 0.2 zpracována na Obr. 5-49. Západočeská univerzita v Plzni, Fakulta strojní Stavba energetických strojů a zařízení

Obr. 5-48 – závislost poměrného zdvihu na tlakovém poměru přes celý ventil pro variantu provozu q_{max} = 0,4; 0,3 a 0,2

Obr. 5-50 – průběh tlaků p_2/p_{vc} a p_3/p_{vc} pro variantu provozu s $q_{max} = 0,4; 0,3$ a 0,2

Stabilizační síla vyhodnocená pro bezrozměrné parametry podle vztahu (125) pro variantu provozu s $q_{max} = 0,4$; 0,3 a 0,2 je uvedena na Obr. 5-51. Jednotlivé dílčí složky výsledné stabilizační síly působící na kuželku ventilu, vyhodnocené dle vztahů (101), (102) a (103) pro bezrozměrné parametry, jsou v závislosti na poměrném zdvihu vyneseny na Obr. 5-52. Průběhy korekčních činitelů k_d pro zmíněné varianty provozu jsou zobrazeny na Obr. 5-53. Bezrozměrné síly $\overline{Q}_1, \overline{Q}_2$ a \overline{Q}_3 jsou definovány obdobně jako bezrozměrná stabilizační síla \overline{Q} .

$$\bar{Q}_1 = \frac{Q_1}{\frac{\pi D_s^2}{4} p_{vc}}; \, \bar{Q}_2 = \frac{Q_2}{\frac{\pi D_s^2}{4} p_{vc}}; \, \bar{Q}_3 = \frac{Q_3}{\frac{\pi D_s^2}{4} p_{vc}}$$
(126)

Západočeská univerzita v Plzni, Fakulta strojní Stavba energetických strojů a zařízení

Obr. 5-51 – stabilizační síla na kuželce ventilu pro variantu provozu s q_{max} = 0,4; 0,3 a 0,2

Obr. 5-52 – dílčí síly působící na kuželku ventilu pro variantu provozu s q_{max} = 0,4; 0,3 a 0,2

Obr. 5-53 – závislost korekčního činitele na tlakovém poměru pro variantu provozu s q_{max} = 0,4; 0,3 a 0,2

Na základě experimentu na štěrbinové trati a nových poznatků o proudění úzkými štěrbinami lze pomocí rovnic (96) a (97) vyhodnotit hmotnostní průtok štěrbinou i přesnost měřených tlaků. Pro známý zdvih velké kuželky se vyhodnotí délka štěrbiny a příslušná štíhlost l/d_h . Tím je určen i tlakový poměr ε_{**2} a příslušný průtokový součinitel μ_2 . Parametry pro otvory d_3 se během zdvihu kuželky nemění. Výpočet koriguje měřený tlak p_2 , tak aby byl dodržen zákon o zachování hmotnosti, tzn. rovnost hmotnostního průtoku štěrbinou a výstupní sekcí odlehčení $G_{02} = G_{03}$. Parametry pro výstupní otvory na dně kuželky se u modelu ventilu kvůli poruše zařízení nepodařilo vyhodnotit. Pro orientační výpočet jsou zvoleny hodnoty $\mu_3 = 0.8$ a $\varepsilon_{**3} = 0.42$. Změna průběhu přítlačné síly Q_1 a korekčního činitele k_d pro variantu provozu s $q_{max} = 0.3$ jsou zobrazeny na Obr. 5-54 resp. Obr. 5-55.

0,95

0,9

王_{0,85}

 $q_{max} = 0.3$

Obr. 5-54 – korekce přítlačné síly Q_1 pro variantu provozu s $q_{max} = 0,3$

Obr. 5-55 – oprava korekčního činitele pro variantu provozu s q_{max} = 0,3

0,8

1

výpoče

6 Přínosy disertační práce

Významným přínosem disertační práce je shrnutí a rozšíření dosavadních znalostí v oblasti proudění odlehčovací štěrbinou v odlehčeném systému regulačních ventilů parních turbín. V práci je proveden detailní teoretický rozbor dané problematiky a jsou zde uvedeny výsledky jak z experimentálního výzkumu, tak i z numerických simulací.

V průběhu zpracovávání disertační práce bylo provedeno měření a vyhodnocení mnoha variant, primární data z měření na modelové štěrbině jsou k dispozici a lze je využívat pro další zpracování. Na modelu byly vyhodnoceny kritické tlakové poměry a hodnoty průtokových součinitelů štěrbin různé šířky a délky. Prokázala se jejich závislost na tlakovém poměru, a tedy souvislost s Reynoldsovým a s Machovým číslem. Na výstupu ze štěrbin ve ventilech je zpravidla dosaženo kritických rychlostních poměrů ($M_2 = 1$, $\lambda_2 = 1$). Ze zpracovaných dat plyne závěr, že ve štěrbinách reálných odlehčených regulačních ventilů se vyskytuje silně turbulentní proudění. Kritický hmotnostní průtok štěrbinou je závislý na vstupních parametrech média, průtočné ploše štěrbiny a na její délce. Na vstupu do štěrbiny se projevuje mírná vstupní tlaková ztráta, ve vlastní štěrbině se uplatňuje především tlaková ztráta způsobená třením média o povrch štěrbiny. Pro výpočet hydraulického průměru štěrbin různých rozměrů nelze použít standardní v literárních podkladech doporučovaný vzorec. Pro štěrbinu mezikruhové průřezu je vhodnější pro určení hydraulického průměru vyjít přímo z definice rovnováhy třecích sil působících na stěnách průtočného kanálu. Pro rychlý odhad tlakové ztráty ve štěrbině lze použít standardní vzorec pro potrubí, kde je výsledná ztráta násobena korekčním koeficientem o velikosti 33,5. Za charakteristický rozměr vystupující v definici Reynoldsova čísla je nutné použít hydraulický průměr štěrbiny.

Průtokový součinitel výstupní části odlehčovacího systému je závislý rovněž na celkovém charakteru proudového pole. Uspořádání této části na modelu štěrbiny neodpovídá provedení na reálném ventilu. Průtokový součinitel této sekce u ventilu se tudíž může lišit od údajů vyhodnocených pro model. Reálné provedení ventilu je zatíženo větším průtokovým součinitelem výstupní části oproti srovnatelné variantě modelu se stejným poměrem průtočných ploch. Stabilizační síla působící na kuželku ventilu je při odlehčeném provozu dána především silou působící na plochy, které nejsou součástí odlehčovacího systému. Tlak na povrchu kuželky ovlivněný expanzí pracovní látky je závislý na volbě provozní charakteristiky. Prokázalo se, že původní podklady pro odhad stabilizační síly nevyhovují, stabilizační síla vyhodnocená z primárních dat měřených na modelu ventilu na modelu ventilu je výrazně větší než její očekávaná hodnota.

7 Náměty pro další výzkum

Zpracovávaná primární data změřená na modelu štěrbiny ukázala, že dalším vhodným krokem by bylo zabývat se přechodovými ději. V tomto případě to znamená sledovat časový průběh tlaků na modelu po skokové změně, tzn. náhlé otevření nebo uzavření traktu. Tato úloha klade poměrně velké nároky na frekvenční charakteristiky měřicí aparatury a na naladění celého měřicího řetězce tak, aby nedocházelo k amplitudovému a frekvenčnímu zkreslení měřeného signálu.

Dále by bylo vhodné uvažovat rychlostní poměry s nízkými rychlostmi $\lambda_2 \ll 1$ na výstupu ze štěrbiny a tím se přiblížit k přechodu do laminárního proudění. Takto se získá charakteristika štěrbiny, resp. jejího ztrátového součinitele na Reynoldsově čísle. Vhodné by bylo dosáhnout Reynoldsova čísla o jeden a dva řády nižší, než je prezentováno v této práci. Dále provést podpůrnou výpočtovou studii proudění ve štěrbině s cílem vyhodnotit především vstupní tlakovou ztrátu.

Je žádoucí dokončit experimenty na modelu typového provedení odlehčeného regulačního ventilu s cílem vyhodnotit tlak na dno kuželky při extrémně nízkých tlakových poměrech přes celý ventil $p_d/p_{vc} = 0 \div 0,6$ a rovněž získat reálné údaje o hmotnostním průtokovém součiniteli μ_3 ve výstupní sekci kuželky.

Jednoznačně neoddiskutovatelným přínosem by byl program na ucelený výzkum odlehčených ventilů trámcové regulace. Doposud není experimentálně podchycena obecná průtoková a silová charakteristika tohoto konstrukčního provedení regulačních ventilů. Není zmapována spolehlivost těchto ventilů s ohledem na vibrace. Zcela chybí spolehlivé podklady k popisu stabilizační síly a dílčích přítlačných sil působících na kuželku ventilu trámcové regulace. Dosud není popsán vliv společné ventilové komory na průtok jednotlivými sekcemi. V neposlední řadě zcela chybí ověření optimálního tvaru odlehčené verze tohoto provedení ventilu.

Závěr

Disertační práce se zabývá problematikou proudění odlehčovacím systémem odlehčených regulačních ventilů parních turbín. Úvod práce se věnuje obecným požadavkům, které jsou kladeny na ventily s ohledem na spolehlivý provoz celého turbosoustrojí, dále jsou nastíněny důvody pro rozvoj a praktické používání regulačních ventilů se silovým odlehčením.

První kapitoly jsou věnovány přehledu konstrukčních řešení vybraných provedení odlehčení regulačních ventilů. Je podrobněji popsán princip funkce koncepcí odlehčení, jejich provozní výhody a nevýhody. Kapitola vyústí koncepcí ventilů, kde k silovému odlehčení kuželky ventilu dochází za pomoci škrcení tlaku v obtokové štěrbině. Toto provedení odlehčených regulačních ventilů parních turbín bylo předmětem výzkumu předkládané práce. Byla provedena rešerše výzkumných prací jak experimentálního charakteru, tak uskutečněných numerických studií, které byly v oblasti odlehčených regulačních ventilů publikovány. Během hledání dostupných informací a materiálů, bylo zjištěno, že dosud používané podklady pro návrh obtokové štěrbiny u odlehčených ventilů ve firmě DŠP jsou nedostatečné. Není spolehlivě popsán optimální tvar štěrbiny pro odlehčené regulační ventily, který by vyhovoval širší škále provozních parametrů a geometrického uspořádání. Tato skutečnost byla motivací pro vypracování předkládané disertační práce.

Další kapitola je věnována teoretickému popisu proudění v úzkých štěrbinách a průtoku soustavou štěrbin. Z rozboru na základě [6] plyne, že proudění pracovního média přes různě tvarované otvory včetně soustavy štěrbin lze s dostatečnou přesností popsat pomocí rovnice elipsy, kde je jedna poloosa určena tlakovým poměrem $1 - \varepsilon_{**}$ a druhá poměrným hmotnostním průtokem q. Dále byla provedena rešerše dostupných podkladů jak pro určení tlakové ztráty, tak různých definic ztrátových součinitelů pro tvarovou variantu mezikruhové štěrbiny. Publikace z experimentů [21] ukazují, že ztrátový součinitel pro mezikruží, kde je téměř dvojnásobná třecí plocha než u potrubí bez vnitřního jádra, je výrazně menší než v případě potrubí kruhového průřezu.

V úvodu kapitoly 4 byl zobrazen a popsán model experimentální měřicí tratě pro výzkum proudění štěrbinou. Zařízení je konstruováno k testování štěrbin různých šířek a délek. V rámci této kapitoly byla také proveden rozbor nejistot měření pro popisovaný měřicí řetězec pro přímé měření dané veličiny (měření teploty, tlaku a hmotnostního průtoku). Na základě výsledků rozboru nejistot měření a citlivostní analýzy byly optimalizovány jednotlivé měřicí řetězce, byly nastaveny parametry sběru primárních dat. Citlivostní analýza pomohla nastavení dalšího zpracování primárních dat do výsledných výstupních veličin.

Práce se v první části kapitoly 5 věnuje jak způsobu vyhodnocení naměřených dat, tak poznatkům z prvního testovacího měření na štěrbinové trati. První měření poukázaly na nedostatky experimentálního zařízení. Jednalo se především o vyhodnocení hmotnostních průtoků při úzkých štěrbinách a na nedostatečné množstvím tlakových odběrů osazených na měřicí trati, zejména pak na výstupu ze štěrbiny. Dále byl popsán princip metodiky vyhodnocení přítlačných sil působících na příslušné plochy kuželky, vedoucí k určení stabilizační síly na kuželce odlehčeného regulačního ventilu.

Dalším z cílů této práce bylo validovat výsledky použitého výpočtového softwaru DGFEM (ZČU KME). Byly porovnány hmotnostní průtoky z experimentu a numerických výpočtů pro šířku štěrbiny 0,3 a 1 mm. Ukázalo se, že nespojitá Galerkinova metoda konečných prvků pro

numerické simulace proudění skrze úzké štěrbiny se jeví jako vhodný nástroj k popisu aerodynamických procesů a její výsledky kvalitativně předčí výsledky komerčních softwarů.

Měření na štěrbinové trati umožnila získat podklady o hmotnostních průtocích, průtokových součinitelích a vlivu Reynoldsova čísla na tlakovou ztrátu pro jednotlivé rozměry štěrbin. Měření prokázala, že proudění ve štěrbinách u odlehčených ventilů je silně turbulentní. Na základě experimentů byla určena hodnota ztrátového součinitele pro tvarovou variantu mezikruží.

V závěrečné části kapitoly 5 je provedeno určení tlaku na dno a vyhodnocení stabilizační síly působící na kuželku ventilu. Měření na modelu ventilu pomocí tenzometrů prokázalo výrazně větší hodnotu stabilizační síly, než byla predikovaná hodnota dle stávající metodiky DŠP. Podle nově získaných poznatků o proudění úzkými štěrbinami byla provedena korekce výpočtu přítlačné stabilizační síly a korekčního činitele pro vybraný provoz turbíny.

Literární podklady

- [1] ЗАРЯНКИН, А. Е., СИМОНОВ, В. М. *Регулирующие и стопорнорегулирующие* клапаны паровых турбин. Москва, Издательство МЭИ, ISBN 5-7046-1143-5, 2005
- [2] ЗАРЯНКИН, А. Е. Исследование неразгруженных и разгруженных клапанов концерна "ШКОДА" при траверсном парораспределении. Výzkumná zpráva MEI, 1996
- [3] TAJČ, L., MICZÁN, M., MRÓZEK, L., KODL, I. *Tlaková ztráta v typových provedeních regulačních ventilů parních turbín používaných ve společnosti DOOSAN ŠKODA POWER*. Výzkumná zpráva Doosan Škoda Power, Plzeň, VZTP 1092, 9/2015
- [4] ŠŤASTNÝ, M. *Restriction of Vibration and Noise Produced by Nucleal Turbine Control Valves*. Energy and enviroment, Shanghai, China, 2003
- [5] TAJČ, L., BEDNÁŘ, L., POSKOČILOVÁ, M., KREJČÍ, J. *Regulační ventily parních turbín*. Výzkumná zpráva Doosan Škoda Power, Plzeň, VZTP 0974, 2005
- [6] ЗАРЯНКИН, А. Е. *Механика Несжимаемых и Сжимаемых Жидкостей*. Moscow, Moscow Power Engineering Institute, 2014, ISBN 978-5-383-00903-1
- [7] ЗАРЯНКИН, А. Е. Проектировании комбинированного стопорно регулирующего клапана для турбины ШКОДА мощностью 100 – 150 MBT. Výzkumná zpráva MEI, 2003
- [8] ТУБЯНСКИЙ, Л.И. Испытание органов парораспределения паровых турбин. Машгиз, 1960
- [9] MICZÁN, M. Silové poměry a rozbor tlakových ztrát v odlehčeném regulačním ventilu parní turbíny. Disertační práce ČVUT Praha, 2016
- [10] KOČÁRNÍK, P. Výzkum v oblasti regulačních ventilů. Závěrečná zpráva pro ŠKODA POWER a.s ke smlouvě 13114/830/120023C, ČVUT v Praze, Fakulta elektrotechnická, 2012
- [11] KOČÁRNÍK, P. Výzkum v oblasti regulačních ventilů. Závěrečná zpráva pro ŠKODA POWER a.s ke smlouvě 13114/830/130029C000C, ČVUT v Praze, Fakulta elektrotechnická, 2013
- [12] MICZÁN, M., BEDNÁŘ, L., TAJČ, L. *Funkční zkoušky odlehčeného regulačního ventilu*. Technická zpráva Doosan Škoda Power, Plzeň, VZTP 1081
- [13] TAJČ, L., MICZÁN, M., MRÓZEK, L. *Rozbor tlakových ztrát v typovém odlehčeném regulačním ventilu Škoda*. Výzkumná zpráva Doosan Škoda Power, VZTP 1090, 2015
- [14] MACHOVIČ, M., NĚMEC, M. *Prověření vlastností záchytného ventilu*. Výzkumná zpráva VZLU Praha, R-5365, 2012
- [15] KOČÁRNÍK, P. Výzkum v oblasti regulačních ventilů. Závěrečná zpráva pro ŠKODA POWER a.s ke smlouvě 13114/830/8301437C000, ČVUT v Praze, Fakulta elektrotechnická, 2014
- [16] KOČÁRNÍK, P. Výzkum v oblasti regulačních ventilů. Závěrečná zpráva pro ŠKODA POWER a.s ke smlouvě 13114/830/8301564C000. ČVUT v Praze, Fakulta elektrotechnická, 2015

- [17] TURECKÝ, P., MRÓZEK, L., TAJČ, L., KOLOVRATNÍK, M. *Analysis of pressure losses in the diffuser of a control valve.* In The European Physical Journal (EPJ). Vol. 143, 2017, DOI: 10.1051/epjconf/201714302135
- [18] BUBLÍK, O., VIMMR, J. Modelování a numerické simulace proudění stlačitelné tekutiny ve štěrbinách odlehčených regulačních ventilů III. stanovení průtokového součinitele. Zpráva FAV ZČU v Plzni, NTIS-VP3-0014/2014
- [19] BUBLÍK, O., VIMMR, J. Modelování a numerické simulace proudění stlačitelné tekutiny ve štěrbinách odlehčených regulačních ventilů IV. stanovení závislostí průtokového součinitele na tlakovém poměru. Zpráva FAV ZČU v Plzni, NTIS-VP3-0018/2015
- [20] SCHLICHTING, H. Boundary-layer theory. 1979, ISBN 0-07-055334-3
- [21] KOCH, R., FEIND, K. Druckverlust und Wärmeubergang in Ringspalten. 1958
- [22] BUBLÍK, O., VIMMR, J. Modelování a numerické simulace proudění stlačitelné tekutiny ve štěrbinách odlehčených regulačních ventilů II. Zpráva FAV ZČU v Plzni, NTIS-VP3-0002/2013
- [23] MELOUN, M., MILITKY, J. *Statistická analýza experimentálních dat*. Academia Praha 2004, ISBN 80-200-1254-0
- [24] MELOUN, M., MILITKY, J. Postup statistického zpracovaní výsledku stopové analýzy při použiti transformace dat. Academia Praha 2004, ISBN 80-200-1254-0
- [25] DEJČ, M. E. Technická dynamika plynů. Praha SNTL, 1967
- [26] PROCHÁZKA, A. Proudění tekutin potrubím a kanály. Praha SNTL, 1962
- [27] KLENOVSKÝ, P. Nejistoty měření snadno a rychle. Podklady z kurzu ČMI, 2008
- [28] PALENČÁR, R. a kol. *Nejistoty v měření IV*. AUTOMA 12 (2002)
- [29] SEDLÁK, K. Odhad nejistot měření tlaku při uvažování celého měřícího řetězce. Výzkumná zpráva TZTP0887, 2014, Doosan Škoda Power
- [30] SEDLÁK, K. Odhad nejistot měření teploty při uvažování celého měřicího řetězce. Výzkumná zpráva TZTP0886, 2014, Doosan Škoda Power
- [31] KADLEC, K. Snímače tlaku principy, vlastnosti a použití (část 1). AUTOMA 2 (2007)
- [32] DOMNICK, C., BEDRA, F., DOHMEN, H., MUSH, CH., BRILLERT, F. Improving the design of steam turbine inlet valves by numerical methods for enhanced part load operation. In 11th European Conference on Turbomachinery Fluid dynamics & Thermodynamics. University of Duisburg – Essen, Siemens AG, Madrid, March 23–27, 2015
- [33] BEDNÁŘ, L., TAJČ, L., MICZÁN, M., MRÓZEK, L., HOZNEDL, M. Possibility of Damping Pressure Pulsations in Balancing Control Valves. In 24th International Conference Engineering Mechanics 2017. Svratka, 2017, ISBN: 978-80-214-5497-2
- [34] ФЕЛДБЕРГ, Л. А. Иследование аэродинамических характеристик разгруженого регулирующего клапана на оптическом стенде. Счот ЦКТИ, 2005
- [35] BEDNÁŘ, L., TAJČ, L., MICZÁN, M., FELDBERG, L. A. Flow visualition in control valve with profiling cone. In 18th International Conference Engineering Mechanics 2012. Svratka, 2012, ISBN: 978-80-86246-40-6

- [36] SEDLÁK, K. *Statistické zpracování experimentálně získaných primárních dat*. Výzkumná zpráva VZTP1131, 2018, Doosan Škoda Power
- [37] LEINVEBER, J., VÁVRA, P. Strojnické tabulky Čtvrté doplněné vydání. 2008. ISBN 978-80-7361-051-7
- [38] MATAS, R. *CFD simulace nového typu odlehčeného regulačního ventilu parní turbíny pro vysoké parametry páry*. Výzkumná zpráva, NTC 02-04/08b, 2008
- [39] STRAKA, F. Numerická simulace proudění v odlehčeném ventilu ŠKODA a určení namáhání vřetene od aerodynamických sil. Diplomová práce ZČU, 2012
- [40] TURECKÝ, P. *Rozbor tlakových ztrát v difuzoru regulačního ventilu*. Diplomová práce ČVUT Praha, 2015
- [41] TAJČ, L., KOVANDOVÁ, D. *Experimentální ověření sil působících na kuželku a vřeteno odlehčeného regulačního ventilu ŠKODA bez ochranného síta*. Výzkumná zpráva VZTP1065, 2012, Doosan Škoda Power.
- [42] NIKURADSE, J. Untersuchungen über turbulente Strömungen in nicht kreisförmigen Rohren. Ingenieur-Archiv volume 1, 1930
- [43] SHILLER, L. Über den Strömungswiderstand von Rohren verschiedenen Querschnitts und Rauhigkeitsgrades, Z. angew. Math. Mech., 3: doi:10.1002/zamm.19230030102, 1923
- [44] SLÁMA, V., MRÓZEK, L., TAJČ, L., KLIMKO, M., ŽÍTEK, P. Flow analysis in the steam turbine control valve for the variant with flow valve chamber and without the strainer. In Journal of Nuclear Engineering and Radiation Science. [to be published]

Vlastní publikace

Zahraniční publikace (SCOPUS)

- [1] MRÓZEK, L., TAJČ, L., HOZNEDL, M., MICZÁN, M. Application of the Balancing Holes on the Turbine Stage Discs with Higher Root Reaction. In *The European Physical Journal (EPJ)*. Vol. 114, 2016. DOI: 10.1051/epjconf/201611402080
- [2] HOZNEDL, M., SEDLÁK, K., MRÓZEK, L., BEDNÁŘ, L., KALISTA, R. Experimental Investigation on Flow in Diffuser of 1090 MW Steam Turbine. In *The American Institute of Physics (AIP)*. Vol. 1745, 2016. DOI: 10.1063/1.4953707
- [3] SEDLÁK, K., HOZNEDL, M., BEDNÁŘ, L., **MRÓZEK, L.**, KALISTA, R. Experimental research of flow parameters on the last stage of the steam turbine 1090MW. In *The American Institute of Physics (AIP)*. Vol. 1745, 2016. DOI: 10.1063/1.4953746
- [4] KLIMKO M., MRÓZEK, L., NOGA, T., LINHART, J. Strength Analysis of AL-7F-1 Engine Turbine Rotor Blade. In ASME 2016 International Mechanical Engineering Congress and Exposition (IMECE). Vol. 9, Phoenix – Arizona (USA), 2016. DOI: 10.1115/IMECE2016-65251
- [5] TURECKÝ, P., MRÓZEK, L., TAJČ, L., KOLOVRATNÍK, M. Analysis of pressure losses in the diffuser of a control valve. In *The European Physical Journal (EPJ)*. Vol. 143, 2017. DOI: 10.1051/epjconf/201714302135
- [6] **MRÓZEK, L.**, TAJČ, L. Modellning of flow in the unloading slot of the control valve. In *The American Institute of Physics (AIP)*. Vol. 1889, 2017. DOI: 10.1063/1.5004358
- [7] KALISTA, R., MRÓZEK, L., HOZNEDL, M. The Experimental Investigation of the Internal Support Effects on Exhaust Casing Pressure Recovery. In ASME 2017 International Mechanical Engineering Congress and Exposition (IMECE). Vol. 6, Tampa – Florida (USA), 2017. DOI: 10.1115/IMECE2017-70279
- [8] HOZNEDL, M., KOLOVRATNÍK, M., BARTOŠ, O., SEDLÁK, K., KALISTA, R., MRÓZEK, L. Experimental research on the flow at last stage of a 1090 MW steam turbine. In Proceedings of the Institution of Machanical Engineers. Part A: Journal of Power and Energy, 2018. DOI 10.1177/0957650917749692
- [9] HOZNEDL, M., KOLOVRATNÍK, TAJČ, L., WEIβ, A., MRÓZEK, L. Influence of Wet Steam on the Five-Stage Steam Turbine Efficiency. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Vol. 8, Oslo, Norway, 2018. DOI:10.1115/GT2018-75049
- [10] KALISTA, R., MRÓZEK, L., SLÁMA, V., VRÁTNÝ, M., SEDLÁK, K., BARTOLOMĚJ, R., TMEJ, M. Experimental Measurement on the Air Test Rig of the Axial Steam Turbine Exhaust Casing. In *The American Institute of Physics (AIP)*. Vol. 2047, 2018. DOI: 10.1063/1.5081639
- [11] MRÓZEK, L., TAJČ, L., VIMMR, J., BUBLÍK, O., SLÁMA, V., KALISTA, R. The computational study in the unloading slot of the control valve. In *The European Physical Journal (EPJ)*. Vol. 180, 2018. DOI: 10.1051/epjconf/201818002070
- [12] JUN, G., **MRÓZEK, L.** An Influence of the Numerical Modeling of the Transition between the Stator and Rotor on the Thermodynamic Condensation Loss in the

Low-Pressure Part of a Steam Turbine. In *ASME 2018 International Mechanical Engineering Congress and Exposition (IMECE)*. Vol. 8B, Pittsburgh – Pennsylvania (USA), 2018. DOI: 10.1115/IMECE2018-86571

- [13] SLÁMA, V., MRÓZEK, L., TAJČ, L., ŠIMURDA, D., HÁLA, J., Creation and validation of pressure loss model for steam turbine control valves. In *The American Institute of Physics (AIP)*. Vol. 2189, 2019. DOI: 10.1063/1.5138632
- [14] KALISTA, R., MRÓZEK, L., SLÁMA, V., SEDLÁK, K. Steam Turbine Axial Exhaust Diffuser Investigation Using a Test Rig and its Numerical Model. In ASME 2019 International Mechanical Engineering Congress and Exposition (IMECE). DOI: 10.1115/IMECE2019-10267
- [15] SLÁMA, V., MRÓZEK, L., BARTOLOMĚJ, R., LUXA, M., ŠIMURDA, D., HÁLA, J. Experimental and Numerical Study on Pressure Losses and Flow Fluctuations in a High-Pressure Valve Assembly of Steam Turbine Governing System. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. GT2020-14474. [to be published]
- [16] HOZNEDL, M., SEDLÁK, K., MRÓZEK, L., DADÁKOVÁ, T., KUBÍN, Z., GREGOR, K. Experimental and Numerical Study of Flow and Dynamics on LSB at 34 MW Steam Turbine. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. GT2020-14280. [to be published]
- [17] **MRÓZEK, L.**, SLÁMA, V., SEDLÁK, K., TAJČ, L. Analysis of Losses in Steam Turbine Control Valves. In *The American Institute of Physics (AIP)*. [to be published]
- [18] SLÁMA, V., **MRÓZEK, L.**, TAJČ, L. Flow analysis in the steam turbine control valve for the variant with flow valve chamber and without the strainer. In *Journal of Nuclear Engineering and Radiation Science*. [to be published]

Publikace v rámci ČR

- [19] MRÓZEK, L., HOZNEDL, M. A 3D CFD Computation of the flow in the Axial Exhaust Body ŠKODA; Comparison of a Model and a Real Turbine. In *The 14th Conference on Power System Engineering, Thermodynamics & Fluid Flow – ES 2015*. Plzeň, 2015. ISBN 978-80-261-0360-8
- [20] HOZNEDL, M., TAJČ, L., MRÓZEK, L. Summary of Findings from Experimental Reseach of Turbine Stages with Various Shape Modifications of Blades. In *The 14th Conference on Power System Engineering, Thermodynamics & Fluid Flow – ES 2015.* Plzeň, 2015. ISBN 978-80-261-0360-8
- [21] HOZNEDL, M., MRÓZEK, L., FELDBERG, L. A. Středotlaké difuzory ŠKODA. In Sborník: Energetika a životní prostředí 2015, XIX. ročník mezinárodní konference. Rožnov pod Radhoštěm, 2015, str. 31-35
- [22] MRÓZEK, L., TAJČ, L., MICZÁN, M. Proudění odlehčovací štěrbinou regulačního ventilu. In The 15th Conference on Power System Engineering, Thermodynamics & Fluid Flow – ES 2016. Plzeň, 2016, ISBN: 978-80-261-0626-5
- [23] MRÓZEK, L., KALISTA, R. Kalibrace tři-otvorové pneumatické sondy, nejistota měření. In The 15th Conference on Power System Engineering, Thermodynamics & Fluid Flow – ES 2016. Plzeň, 2016, ISBN: 978-80-261-0626-5

- [24] HOZNEDL, M., KOLOVRATNÍK, M., SEDLÁK, K., BEDNÁŘ, L., KALISTA, R., BARTOŠ, O., MRÓZEK, L. Flow Conditions at the Last Stage and in the Exhaust Hood of the Turbine 1090 MW for Saturated Steam. In: *Proc. Wet Steam Conference Prague*. Prague, 2016, pp. 102-116, ISBN: 978-80-01-5997-5
- [25] HOZNEDL, M., MRÓZEK, L., TAJČ, L. Vliv Reynoldsova a Machova čísla na účinnost turbínových stupňů při subsonickém charakteru proudění. In *Proceedings: Turbostroje 2016*. Plzeň, 2016, ISBN 978-80-270-0055-5
- [26] HOZNEDL, M., KOLOVRATNÍK, M., SEDLÁK, K., BEDNÁŘ, L., KALISTA, R., BARTOŠ, O., MRÓZEK, L. Proudové poměry na posledním stupni a ve výstupním tělese turbíny 1090 MW na sytou vodní páru. In *Proceedings: Turbostroje 2016*. Plzeň, 2016, ISBN 978-80-270-0055-5
- [27] BEDNÁŘ, L., TAJČ, L., MICZÁN, M., MRÓZEK, L., HOZNEDL, M. Possibility of Damping Pressure Pulsations in Balancing Control Valves. In 24th International Conference Engineering Mechanics 2017. Svratka, 2017, ISBN: 978-80-214-5497-2
- [28] KALISTA, R., MRÓZEK, L., HOZNEDL, M. Experimentální měření na vzduchovém tunelu pro výzkum proudění ve výstupním tělese NT části parní turbíny. In Sborník: Energetika a životní prostředí 2017, XX. ročník mezinárodní konference. Ostrava, 2017
- [29] HOZNEDL, M., SEDLÁK, K., KALISTA, R., MRÓZEK, L. Experimentální měření statických tlaků v nízkotlakém tělese parní turbíny o výkonu 1090 MW. In Sborník: Energetika a životní prostředí 2017, XX. ročník mezinárodní konference. Ostrava, 2017
- [30] KALISTA, R., **MRÓZEK, L.**, HOZNEDL, M. Experimentální výzkum vlivu vybraných vnitřních prvků a úprav výstupního tělesa NT části parní turbíny na součinitel zvýšení tlaku. In *Proceedings: Turbostroje 2017*. Praha, 2017, str. 123-131.
- [31] HOZNEDL, M., SEDLÁK, K., **MRÓZEK, L.**, KALISTA, R. Odsávání parovodní směsi z rozváděcích lopatek posledních stupňů parních turbín. In *Proceedings: Turbostroje* 2017. Praha, 2017, str. 103-112.
- [32] HOZNEDL, M., SEDLÁK, K., ŽIVNÝ, A., MACÁLKA, A., MRÓZEK, L. Experimental and numerical research on flow in the last stage of 1090 MW steam turbine. In *Proceedings: Turbomachines 2018.* Prague, 2018, ISBN: 978-80-270-4594-5

Výzkumné zprávy

- [33] HOZNEDL, M., SEDLÁK, K., BEDNÁŘ, L., MRÓZEK, L., KOLOVRATNÍK, M. Proudové poměry na posledním stupni a v tělese turbíny 1078 MW. Výzkumná zpráva Doosan Škoda Power, Plzeň, VZTP 1088, 2/2015
- [34] TAJČ, L., MICZÁN, M., **MRÓZEK, L.** Rozbor tlakových ztrát v typovém odlehčeném regulačním ventilu Škoda. Výzkumná zpráva Doosan Škoda Power, VZTP 1090, 2015
- [35] HOZNEDL, M., TAJČ, L., SEDLÁK, K., MRÓZEK, L. Turbínový stupeň VT5 Ledvice stupeň se zvýšenou reakcí na patě. Výzkumná zpráva Doosan Škoda Power, Plzeň, VZTP 1087, 4/2015

- [36] TAJČ, L., MICZÁN, M., **MRÓZEK, L.**, KODL, I. Tlaková ztráta v typových provedeních regulačních ventilů parních turbín používaných ve společnosti DOOSAN ŠKODA POWER. Výzkumná zpráva Doosan Škoda Power, Plzeň, VZTP 1092, 9/2015
- [37] HOZNEDL, M., SEDLÁK, K., BEDNÁŘ, L., MRÓZEK, L., KALISTA, R., KOLOVRATNÍK, M. Proudové poměry na posledním stupni a v tělese turbíny 1078 MW, část II. Výzkumná zpráva Doosan Škoda Power, Plzeň, VZTP 1104, 5/2016
- [38] HOZNEDL, M., BEDNÁŘ, L., **MRÓZEK, L.**, TAJČ, L. Experimentální výzkum 8-mi stupňové turbíně s přetlakovým lopatkovaním. Výzkumná zpráva Doosan Škoda Power, Plzeň, VZTP 1120, 2/2017
- [39] HOZNEDL, M., **MRÓZEK, L.**, SEDLÁK, K., BEDNÁŘ, L. Experimentální výzkum proudění v turbíně T10 MW provedení turbonapáječka. Výzkumná zpráva Doosan Škoda Power, Plzeň, VZTP 1133, 1/2018
- [40] KALISTA, R., MRÓZEK, L., SLÁMA, V., VRÁTNÝ, M., SEDLÁK, K., KANTA, L. Návrh experimentálního modelu axiálního výstupního tělesa pro výzkum výstupních ztrát. Výzkumná zpráva Doosan Škoda Power, Plzeň, VZTP 1139, 1/2019

Technické zprávy

- [41] BEDNÁŘ, L., **MRÓZEK, L.** Hluk turbosoustrojí 65 MW v elektrárně Tychy, Polsko. Technická zpráva Doosan Škoda Power, Plzeň, TZTP-0944, 2/2016
- [42] TAJČ, L., **MRÓZEK, L.** Rozbor tlakových ztrát v regulačním systému turbíny Kladno. Technická zpráva Doosan Škoda Power, Plzeň, TZTP-0947, 3/2016
- [43] HOZNEDL, M., BEDNÁŘ, L., POLÁK, M., MRÓZEK, L., KALISTA, R. Snímání a zpracování dat naměřených na čtyřstupňové turbíně T10MW – provedení Turbonapáječka. Technická zpráva Doosan Škoda Power, Plzeň, TZTP 1015, 9/2018
- [44] TAJČ, L., **MRÓZEK, L.** Skupinová regulace parních turbín se samostatným pohonem ventilů. Technická zpráva Doosan Škoda Power, Plzeň, TZTP 1019, 12/2018
- [45] TAJČ, L., MRÓZEK, L. Experimentální ověření proudových parametrů v regulačním systému turbíny Dunbar. Technická zpráva Doosan Škoda Power, Plzeň, TZTP 1035, 5/2019

Funkční vzorek

[46] KALISTA, R., **MRÓZEK, L.**, SLÁMA, V. Experimentální model axiálního výstupního tělesa. Funkční vzorek Doosan Škoda Power, Plzeň, TZTP 1026, 12/2018

PŘÍLOHA A

Ztráty prouděním kolem vřeten

